diff options
Diffstat (limited to 'drivers/mtd/nand/raw/pl35x-nand-controller.c')
-rw-r--r-- | drivers/mtd/nand/raw/pl35x-nand-controller.c | 1203 |
1 files changed, 1203 insertions, 0 deletions
diff --git a/drivers/mtd/nand/raw/pl35x-nand-controller.c b/drivers/mtd/nand/raw/pl35x-nand-controller.c new file mode 100644 index 000000000..7bcece135 --- /dev/null +++ b/drivers/mtd/nand/raw/pl35x-nand-controller.c @@ -0,0 +1,1203 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * ARM PL35X NAND flash controller driver + * + * Copyright (C) 2017 Xilinx, Inc + * Author: + * Miquel Raynal <miquel.raynal@bootlin.com> + * Original work (rewritten): + * Punnaiah Choudary Kalluri <punnaia@xilinx.com> + * Naga Sureshkumar Relli <nagasure@xilinx.com> + */ + +#include <linux/amba/bus.h> +#include <linux/err.h> +#include <linux/delay.h> +#include <linux/interrupt.h> +#include <linux/io.h> +#include <linux/ioport.h> +#include <linux/iopoll.h> +#include <linux/irq.h> +#include <linux/module.h> +#include <linux/moduleparam.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/rawnand.h> +#include <linux/mtd/partitions.h> +#include <linux/of_address.h> +#include <linux/of_device.h> +#include <linux/of_platform.h> +#include <linux/platform_device.h> +#include <linux/slab.h> +#include <linux/clk.h> + +#define PL35X_NANDC_DRIVER_NAME "pl35x-nand-controller" + +/* SMC controller status register (RO) */ +#define PL35X_SMC_MEMC_STATUS 0x0 +#define PL35X_SMC_MEMC_STATUS_RAW_INT_STATUS1 BIT(6) +/* SMC clear config register (WO) */ +#define PL35X_SMC_MEMC_CFG_CLR 0xC +#define PL35X_SMC_MEMC_CFG_CLR_INT_DIS_1 BIT(1) +#define PL35X_SMC_MEMC_CFG_CLR_INT_CLR_1 BIT(4) +#define PL35X_SMC_MEMC_CFG_CLR_ECC_INT_DIS_1 BIT(6) +/* SMC direct command register (WO) */ +#define PL35X_SMC_DIRECT_CMD 0x10 +#define PL35X_SMC_DIRECT_CMD_NAND_CS (0x4 << 23) +#define PL35X_SMC_DIRECT_CMD_UPD_REGS (0x2 << 21) +/* SMC set cycles register (WO) */ +#define PL35X_SMC_CYCLES 0x14 +#define PL35X_SMC_NAND_TRC_CYCLES(x) ((x) << 0) +#define PL35X_SMC_NAND_TWC_CYCLES(x) ((x) << 4) +#define PL35X_SMC_NAND_TREA_CYCLES(x) ((x) << 8) +#define PL35X_SMC_NAND_TWP_CYCLES(x) ((x) << 11) +#define PL35X_SMC_NAND_TCLR_CYCLES(x) ((x) << 14) +#define PL35X_SMC_NAND_TAR_CYCLES(x) ((x) << 17) +#define PL35X_SMC_NAND_TRR_CYCLES(x) ((x) << 20) +/* SMC set opmode register (WO) */ +#define PL35X_SMC_OPMODE 0x18 +#define PL35X_SMC_OPMODE_BW_8 0 +#define PL35X_SMC_OPMODE_BW_16 1 +/* SMC ECC status register (RO) */ +#define PL35X_SMC_ECC_STATUS 0x400 +#define PL35X_SMC_ECC_STATUS_ECC_BUSY BIT(6) +/* SMC ECC configuration register */ +#define PL35X_SMC_ECC_CFG 0x404 +#define PL35X_SMC_ECC_CFG_MODE_MASK 0xC +#define PL35X_SMC_ECC_CFG_MODE_BYPASS 0 +#define PL35X_SMC_ECC_CFG_MODE_APB BIT(2) +#define PL35X_SMC_ECC_CFG_MODE_MEM BIT(3) +#define PL35X_SMC_ECC_CFG_PGSIZE_MASK 0x3 +/* SMC ECC command 1 register */ +#define PL35X_SMC_ECC_CMD1 0x408 +#define PL35X_SMC_ECC_CMD1_WRITE(x) ((x) << 0) +#define PL35X_SMC_ECC_CMD1_READ(x) ((x) << 8) +#define PL35X_SMC_ECC_CMD1_READ_END(x) ((x) << 16) +#define PL35X_SMC_ECC_CMD1_READ_END_VALID(x) ((x) << 24) +/* SMC ECC command 2 register */ +#define PL35X_SMC_ECC_CMD2 0x40C +#define PL35X_SMC_ECC_CMD2_WRITE_COL_CHG(x) ((x) << 0) +#define PL35X_SMC_ECC_CMD2_READ_COL_CHG(x) ((x) << 8) +#define PL35X_SMC_ECC_CMD2_READ_COL_CHG_END(x) ((x) << 16) +#define PL35X_SMC_ECC_CMD2_READ_COL_CHG_END_VALID(x) ((x) << 24) +/* SMC ECC value registers (RO) */ +#define PL35X_SMC_ECC_VALUE(x) (0x418 + (4 * (x))) +#define PL35X_SMC_ECC_VALUE_IS_CORRECTABLE(x) ((x) & BIT(27)) +#define PL35X_SMC_ECC_VALUE_HAS_FAILED(x) ((x) & BIT(28)) +#define PL35X_SMC_ECC_VALUE_IS_VALID(x) ((x) & BIT(30)) + +/* NAND AXI interface */ +#define PL35X_SMC_CMD_PHASE 0 +#define PL35X_SMC_CMD_PHASE_CMD0(x) ((x) << 3) +#define PL35X_SMC_CMD_PHASE_CMD1(x) ((x) << 11) +#define PL35X_SMC_CMD_PHASE_CMD1_VALID BIT(20) +#define PL35X_SMC_CMD_PHASE_ADDR(pos, x) ((x) << (8 * (pos))) +#define PL35X_SMC_CMD_PHASE_NADDRS(x) ((x) << 21) +#define PL35X_SMC_DATA_PHASE BIT(19) +#define PL35X_SMC_DATA_PHASE_ECC_LAST BIT(10) +#define PL35X_SMC_DATA_PHASE_CLEAR_CS BIT(21) + +#define PL35X_NAND_MAX_CS 1 +#define PL35X_NAND_LAST_XFER_SZ 4 +#define TO_CYCLES(ps, period_ns) (DIV_ROUND_UP((ps) / 1000, period_ns)) + +#define PL35X_NAND_ECC_BITS_MASK 0xFFF +#define PL35X_NAND_ECC_BYTE_OFF_MASK 0x1FF +#define PL35X_NAND_ECC_BIT_OFF_MASK 0x7 + +struct pl35x_nand_timings { + unsigned int t_rc:4; + unsigned int t_wc:4; + unsigned int t_rea:3; + unsigned int t_wp:3; + unsigned int t_clr:3; + unsigned int t_ar:3; + unsigned int t_rr:4; + unsigned int rsvd:8; +}; + +struct pl35x_nand { + struct list_head node; + struct nand_chip chip; + unsigned int cs; + unsigned int addr_cycles; + u32 ecc_cfg; + u32 timings; +}; + +/** + * struct pl35x_nandc - NAND flash controller driver structure + * @dev: Kernel device + * @conf_regs: SMC configuration registers for command phase + * @io_regs: NAND data registers for data phase + * @controller: Core NAND controller structure + * @chip: NAND chip information structure + * @selected_chip: NAND chip currently selected by the controller + * @assigned_cs: List of assigned CS + * @ecc_buf: Temporary buffer to extract ECC bytes + */ +struct pl35x_nandc { + struct device *dev; + void __iomem *conf_regs; + void __iomem *io_regs; + struct nand_controller controller; + struct list_head chips; + struct nand_chip *selected_chip; + unsigned long assigned_cs; + u8 *ecc_buf; +}; + +static inline struct pl35x_nandc *to_pl35x_nandc(struct nand_controller *ctrl) +{ + return container_of(ctrl, struct pl35x_nandc, controller); +} + +static inline struct pl35x_nand *to_pl35x_nand(struct nand_chip *chip) +{ + return container_of(chip, struct pl35x_nand, chip); +} + +static int pl35x_ecc_ooblayout16_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + + if (section >= chip->ecc.steps) + return -ERANGE; + + oobregion->offset = (section * chip->ecc.bytes); + oobregion->length = chip->ecc.bytes; + + return 0; +} + +static int pl35x_ecc_ooblayout16_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + + if (section >= chip->ecc.steps) + return -ERANGE; + + oobregion->offset = (section * chip->ecc.bytes) + 8; + oobregion->length = 8; + + return 0; +} + +static const struct mtd_ooblayout_ops pl35x_ecc_ooblayout16_ops = { + .ecc = pl35x_ecc_ooblayout16_ecc, + .free = pl35x_ecc_ooblayout16_free, +}; + +/* Generic flash bbt decriptors */ +static u8 bbt_pattern[] = { 'B', 'b', 't', '0' }; +static u8 mirror_pattern[] = { '1', 't', 'b', 'B' }; + +static struct nand_bbt_descr bbt_main_descr = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE + | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, + .offs = 4, + .len = 4, + .veroffs = 20, + .maxblocks = 4, + .pattern = bbt_pattern +}; + +static struct nand_bbt_descr bbt_mirror_descr = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE + | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, + .offs = 4, + .len = 4, + .veroffs = 20, + .maxblocks = 4, + .pattern = mirror_pattern +}; + +static void pl35x_smc_update_regs(struct pl35x_nandc *nfc) +{ + writel(PL35X_SMC_DIRECT_CMD_NAND_CS | + PL35X_SMC_DIRECT_CMD_UPD_REGS, + nfc->conf_regs + PL35X_SMC_DIRECT_CMD); +} + +static int pl35x_smc_set_buswidth(struct pl35x_nandc *nfc, unsigned int bw) +{ + if (bw != PL35X_SMC_OPMODE_BW_8 && bw != PL35X_SMC_OPMODE_BW_16) + return -EINVAL; + + writel(bw, nfc->conf_regs + PL35X_SMC_OPMODE); + pl35x_smc_update_regs(nfc); + + return 0; +} + +static void pl35x_smc_clear_irq(struct pl35x_nandc *nfc) +{ + writel(PL35X_SMC_MEMC_CFG_CLR_INT_CLR_1, + nfc->conf_regs + PL35X_SMC_MEMC_CFG_CLR); +} + +static int pl35x_smc_wait_for_irq(struct pl35x_nandc *nfc) +{ + u32 reg; + int ret; + + ret = readl_poll_timeout(nfc->conf_regs + PL35X_SMC_MEMC_STATUS, reg, + reg & PL35X_SMC_MEMC_STATUS_RAW_INT_STATUS1, + 10, 1000000); + if (ret) + dev_err(nfc->dev, + "Timeout polling on NAND controller interrupt (0x%x)\n", + reg); + + pl35x_smc_clear_irq(nfc); + + return ret; +} + +static int pl35x_smc_wait_for_ecc_done(struct pl35x_nandc *nfc) +{ + u32 reg; + int ret; + + ret = readl_poll_timeout(nfc->conf_regs + PL35X_SMC_ECC_STATUS, reg, + !(reg & PL35X_SMC_ECC_STATUS_ECC_BUSY), + 10, 1000000); + if (ret) + dev_err(nfc->dev, + "Timeout polling on ECC controller interrupt\n"); + + return ret; +} + +static int pl35x_smc_set_ecc_mode(struct pl35x_nandc *nfc, + struct nand_chip *chip, + unsigned int mode) +{ + struct pl35x_nand *plnand; + u32 ecc_cfg; + + ecc_cfg = readl(nfc->conf_regs + PL35X_SMC_ECC_CFG); + ecc_cfg &= ~PL35X_SMC_ECC_CFG_MODE_MASK; + ecc_cfg |= mode; + writel(ecc_cfg, nfc->conf_regs + PL35X_SMC_ECC_CFG); + + if (chip) { + plnand = to_pl35x_nand(chip); + plnand->ecc_cfg = ecc_cfg; + } + + if (mode != PL35X_SMC_ECC_CFG_MODE_BYPASS) + return pl35x_smc_wait_for_ecc_done(nfc); + + return 0; +} + +static void pl35x_smc_force_byte_access(struct nand_chip *chip, + bool force_8bit) +{ + struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller); + int ret; + + if (!(chip->options & NAND_BUSWIDTH_16)) + return; + + if (force_8bit) + ret = pl35x_smc_set_buswidth(nfc, PL35X_SMC_OPMODE_BW_8); + else + ret = pl35x_smc_set_buswidth(nfc, PL35X_SMC_OPMODE_BW_16); + + if (ret) + dev_err(nfc->dev, "Error in Buswidth\n"); +} + +static void pl35x_nand_select_target(struct nand_chip *chip, + unsigned int die_nr) +{ + struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller); + struct pl35x_nand *plnand = to_pl35x_nand(chip); + + if (chip == nfc->selected_chip) + return; + + /* Setup the timings */ + writel(plnand->timings, nfc->conf_regs + PL35X_SMC_CYCLES); + pl35x_smc_update_regs(nfc); + + /* Configure the ECC engine */ + writel(plnand->ecc_cfg, nfc->conf_regs + PL35X_SMC_ECC_CFG); + + nfc->selected_chip = chip; +} + +static void pl35x_nand_read_data_op(struct nand_chip *chip, u8 *in, + unsigned int len, bool force_8bit, + unsigned int flags, unsigned int last_flags) +{ + struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller); + unsigned int buf_end = len / 4; + unsigned int in_start = round_down(len, 4); + unsigned int data_phase_addr; + u32 *buf32 = (u32 *)in; + u8 *buf8 = (u8 *)in; + int i; + + if (force_8bit) + pl35x_smc_force_byte_access(chip, true); + + for (i = 0; i < buf_end; i++) { + data_phase_addr = PL35X_SMC_DATA_PHASE + flags; + if (i + 1 == buf_end) + data_phase_addr = PL35X_SMC_DATA_PHASE + last_flags; + + buf32[i] = readl(nfc->io_regs + data_phase_addr); + } + + /* No working extra flags on unaligned data accesses */ + for (i = in_start; i < len; i++) + buf8[i] = readb(nfc->io_regs + PL35X_SMC_DATA_PHASE); + + if (force_8bit) + pl35x_smc_force_byte_access(chip, false); +} + +static void pl35x_nand_write_data_op(struct nand_chip *chip, const u8 *out, + int len, bool force_8bit, + unsigned int flags, + unsigned int last_flags) +{ + struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller); + unsigned int buf_end = len / 4; + unsigned int in_start = round_down(len, 4); + const u32 *buf32 = (const u32 *)out; + const u8 *buf8 = (const u8 *)out; + unsigned int data_phase_addr; + int i; + + if (force_8bit) + pl35x_smc_force_byte_access(chip, true); + + for (i = 0; i < buf_end; i++) { + data_phase_addr = PL35X_SMC_DATA_PHASE + flags; + if (i + 1 == buf_end) + data_phase_addr = PL35X_SMC_DATA_PHASE + last_flags; + + writel(buf32[i], nfc->io_regs + data_phase_addr); + } + + /* No working extra flags on unaligned data accesses */ + for (i = in_start; i < len; i++) + writeb(buf8[i], nfc->io_regs + PL35X_SMC_DATA_PHASE); + + if (force_8bit) + pl35x_smc_force_byte_access(chip, false); +} + +static int pl35x_nand_correct_data(struct pl35x_nandc *nfc, unsigned char *buf, + unsigned char *read_ecc, + unsigned char *calc_ecc) +{ + unsigned short ecc_odd, ecc_even, read_ecc_lower, read_ecc_upper; + unsigned short calc_ecc_lower, calc_ecc_upper; + unsigned short byte_addr, bit_addr; + + read_ecc_lower = (read_ecc[0] | (read_ecc[1] << 8)) & + PL35X_NAND_ECC_BITS_MASK; + read_ecc_upper = ((read_ecc[1] >> 4) | (read_ecc[2] << 4)) & + PL35X_NAND_ECC_BITS_MASK; + + calc_ecc_lower = (calc_ecc[0] | (calc_ecc[1] << 8)) & + PL35X_NAND_ECC_BITS_MASK; + calc_ecc_upper = ((calc_ecc[1] >> 4) | (calc_ecc[2] << 4)) & + PL35X_NAND_ECC_BITS_MASK; + + ecc_odd = read_ecc_lower ^ calc_ecc_lower; + ecc_even = read_ecc_upper ^ calc_ecc_upper; + + /* No error */ + if (likely(!ecc_odd && !ecc_even)) + return 0; + + /* One error in the main data; to be corrected */ + if (ecc_odd == (~ecc_even & PL35X_NAND_ECC_BITS_MASK)) { + /* Bits [11:3] of error code give the byte offset */ + byte_addr = (ecc_odd >> 3) & PL35X_NAND_ECC_BYTE_OFF_MASK; + /* Bits [2:0] of error code give the bit offset */ + bit_addr = ecc_odd & PL35X_NAND_ECC_BIT_OFF_MASK; + /* Toggle the faulty bit */ + buf[byte_addr] ^= (BIT(bit_addr)); + + return 1; + } + + /* One error in the ECC data; no action needed */ + if (hweight32(ecc_odd | ecc_even) == 1) + return 1; + + return -EBADMSG; +} + +static void pl35x_nand_ecc_reg_to_array(struct nand_chip *chip, u32 ecc_reg, + u8 *ecc_array) +{ + u32 ecc_value = ~ecc_reg; + unsigned int ecc_byte; + + for (ecc_byte = 0; ecc_byte < chip->ecc.bytes; ecc_byte++) + ecc_array[ecc_byte] = ecc_value >> (8 * ecc_byte); +} + +static int pl35x_nand_read_eccbytes(struct pl35x_nandc *nfc, + struct nand_chip *chip, u8 *read_ecc) +{ + u32 ecc_value; + int chunk; + + for (chunk = 0; chunk < chip->ecc.steps; + chunk++, read_ecc += chip->ecc.bytes) { + ecc_value = readl(nfc->conf_regs + PL35X_SMC_ECC_VALUE(chunk)); + if (!PL35X_SMC_ECC_VALUE_IS_VALID(ecc_value)) + return -EINVAL; + + pl35x_nand_ecc_reg_to_array(chip, ecc_value, read_ecc); + } + + return 0; +} + +static int pl35x_nand_recover_data_hwecc(struct pl35x_nandc *nfc, + struct nand_chip *chip, u8 *data, + u8 *read_ecc) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + unsigned int max_bitflips = 0, chunk; + u8 calc_ecc[3]; + u32 ecc_value; + int stats; + + for (chunk = 0; chunk < chip->ecc.steps; + chunk++, data += chip->ecc.size, read_ecc += chip->ecc.bytes) { + /* Read ECC value for each chunk */ + ecc_value = readl(nfc->conf_regs + PL35X_SMC_ECC_VALUE(chunk)); + + if (!PL35X_SMC_ECC_VALUE_IS_VALID(ecc_value)) + return -EINVAL; + + if (PL35X_SMC_ECC_VALUE_HAS_FAILED(ecc_value)) { + mtd->ecc_stats.failed++; + continue; + } + + pl35x_nand_ecc_reg_to_array(chip, ecc_value, calc_ecc); + stats = pl35x_nand_correct_data(nfc, data, read_ecc, calc_ecc); + if (stats < 0) { + mtd->ecc_stats.failed++; + } else { + mtd->ecc_stats.corrected += stats; + max_bitflips = max_t(unsigned int, max_bitflips, stats); + } + } + + return max_bitflips; +} + +static int pl35x_nand_write_page_hwecc(struct nand_chip *chip, + const u8 *buf, int oob_required, + int page) +{ + struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller); + struct pl35x_nand *plnand = to_pl35x_nand(chip); + struct mtd_info *mtd = nand_to_mtd(chip); + unsigned int first_row = (mtd->writesize <= 512) ? 1 : 2; + unsigned int nrows = plnand->addr_cycles; + u32 addr1 = 0, addr2 = 0, row; + u32 cmd_addr; + int i, ret; + u8 status; + + ret = pl35x_smc_set_ecc_mode(nfc, chip, PL35X_SMC_ECC_CFG_MODE_APB); + if (ret) + return ret; + + cmd_addr = PL35X_SMC_CMD_PHASE | + PL35X_SMC_CMD_PHASE_NADDRS(plnand->addr_cycles) | + PL35X_SMC_CMD_PHASE_CMD0(NAND_CMD_SEQIN); + + for (i = 0, row = first_row; row < nrows; i++, row++) { + u8 addr = page >> ((i * 8) & 0xFF); + + if (row < 4) + addr1 |= PL35X_SMC_CMD_PHASE_ADDR(row, addr); + else + addr2 |= PL35X_SMC_CMD_PHASE_ADDR(row - 4, addr); + } + + /* Send the command and address cycles */ + writel(addr1, nfc->io_regs + cmd_addr); + if (plnand->addr_cycles > 4) + writel(addr2, nfc->io_regs + cmd_addr); + + /* Write the data with the engine enabled */ + pl35x_nand_write_data_op(chip, buf, mtd->writesize, false, + 0, PL35X_SMC_DATA_PHASE_ECC_LAST); + ret = pl35x_smc_wait_for_ecc_done(nfc); + if (ret) + goto disable_ecc_engine; + + /* Copy the HW calculated ECC bytes in the OOB buffer */ + ret = pl35x_nand_read_eccbytes(nfc, chip, nfc->ecc_buf); + if (ret) + goto disable_ecc_engine; + + if (!oob_required) + memset(chip->oob_poi, 0xFF, mtd->oobsize); + + ret = mtd_ooblayout_set_eccbytes(mtd, nfc->ecc_buf, chip->oob_poi, + 0, chip->ecc.total); + if (ret) + goto disable_ecc_engine; + + /* Write the spare area with ECC bytes */ + pl35x_nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false, 0, + PL35X_SMC_CMD_PHASE_CMD1(NAND_CMD_PAGEPROG) | + PL35X_SMC_CMD_PHASE_CMD1_VALID | + PL35X_SMC_DATA_PHASE_CLEAR_CS); + ret = pl35x_smc_wait_for_irq(nfc); + if (ret) + goto disable_ecc_engine; + + /* Check write status on the chip side */ + ret = nand_status_op(chip, &status); + if (ret) + goto disable_ecc_engine; + + if (status & NAND_STATUS_FAIL) + ret = -EIO; + +disable_ecc_engine: + pl35x_smc_set_ecc_mode(nfc, chip, PL35X_SMC_ECC_CFG_MODE_BYPASS); + + return ret; +} + +/* + * This functions reads data and checks the data integrity by comparing hardware + * generated ECC values and read ECC values from spare area. + * + * There is a limitation with SMC controller: ECC_LAST must be set on the + * last data access to tell the ECC engine not to expect any further data. + * In practice, this implies to shrink the last data transfert by eg. 4 bytes, + * and doing a last 4-byte transfer with the additional bit set. The last block + * should be aligned with the end of an ECC block. Because of this limitation, + * it is not possible to use the core routines. + */ +static int pl35x_nand_read_page_hwecc(struct nand_chip *chip, + u8 *buf, int oob_required, int page) +{ + const struct nand_sdr_timings *sdr = + nand_get_sdr_timings(nand_get_interface_config(chip)); + struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller); + struct pl35x_nand *plnand = to_pl35x_nand(chip); + struct mtd_info *mtd = nand_to_mtd(chip); + unsigned int first_row = (mtd->writesize <= 512) ? 1 : 2; + unsigned int nrows = plnand->addr_cycles; + unsigned int addr1 = 0, addr2 = 0, row; + u32 cmd_addr; + int i, ret; + + ret = pl35x_smc_set_ecc_mode(nfc, chip, PL35X_SMC_ECC_CFG_MODE_APB); + if (ret) + return ret; + + cmd_addr = PL35X_SMC_CMD_PHASE | + PL35X_SMC_CMD_PHASE_NADDRS(plnand->addr_cycles) | + PL35X_SMC_CMD_PHASE_CMD0(NAND_CMD_READ0) | + PL35X_SMC_CMD_PHASE_CMD1(NAND_CMD_READSTART) | + PL35X_SMC_CMD_PHASE_CMD1_VALID; + + for (i = 0, row = first_row; row < nrows; i++, row++) { + u8 addr = page >> ((i * 8) & 0xFF); + + if (row < 4) + addr1 |= PL35X_SMC_CMD_PHASE_ADDR(row, addr); + else + addr2 |= PL35X_SMC_CMD_PHASE_ADDR(row - 4, addr); + } + + /* Send the command and address cycles */ + writel(addr1, nfc->io_regs + cmd_addr); + if (plnand->addr_cycles > 4) + writel(addr2, nfc->io_regs + cmd_addr); + + /* Wait the data to be available in the NAND cache */ + ndelay(PSEC_TO_NSEC(sdr->tRR_min)); + ret = pl35x_smc_wait_for_irq(nfc); + if (ret) + goto disable_ecc_engine; + + /* Retrieve the raw data with the engine enabled */ + pl35x_nand_read_data_op(chip, buf, mtd->writesize, false, + 0, PL35X_SMC_DATA_PHASE_ECC_LAST); + ret = pl35x_smc_wait_for_ecc_done(nfc); + if (ret) + goto disable_ecc_engine; + + /* Retrieve the stored ECC bytes */ + pl35x_nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false, + 0, PL35X_SMC_DATA_PHASE_CLEAR_CS); + ret = mtd_ooblayout_get_eccbytes(mtd, nfc->ecc_buf, chip->oob_poi, 0, + chip->ecc.total); + if (ret) + goto disable_ecc_engine; + + pl35x_smc_set_ecc_mode(nfc, chip, PL35X_SMC_ECC_CFG_MODE_BYPASS); + + /* Correct the data and report failures */ + return pl35x_nand_recover_data_hwecc(nfc, chip, buf, nfc->ecc_buf); + +disable_ecc_engine: + pl35x_smc_set_ecc_mode(nfc, chip, PL35X_SMC_ECC_CFG_MODE_BYPASS); + + return ret; +} + +static int pl35x_nand_exec_op(struct nand_chip *chip, + const struct nand_subop *subop) +{ + struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller); + const struct nand_op_instr *instr, *data_instr = NULL; + unsigned int rdy_tim_ms = 0, naddrs = 0, cmds = 0, last_flags = 0; + u32 addr1 = 0, addr2 = 0, cmd0 = 0, cmd1 = 0, cmd_addr = 0; + unsigned int op_id, len, offset, rdy_del_ns; + int last_instr_type = -1; + bool cmd1_valid = false; + const u8 *addrs; + int i, ret; + + for (op_id = 0; op_id < subop->ninstrs; op_id++) { + instr = &subop->instrs[op_id]; + + switch (instr->type) { + case NAND_OP_CMD_INSTR: + if (!cmds) { + cmd0 = PL35X_SMC_CMD_PHASE_CMD0(instr->ctx.cmd.opcode); + } else { + cmd1 = PL35X_SMC_CMD_PHASE_CMD1(instr->ctx.cmd.opcode); + if (last_instr_type != NAND_OP_DATA_OUT_INSTR) + cmd1_valid = true; + } + cmds++; + break; + + case NAND_OP_ADDR_INSTR: + offset = nand_subop_get_addr_start_off(subop, op_id); + naddrs = nand_subop_get_num_addr_cyc(subop, op_id); + addrs = &instr->ctx.addr.addrs[offset]; + cmd_addr |= PL35X_SMC_CMD_PHASE_NADDRS(naddrs); + + for (i = offset; i < naddrs; i++) { + if (i < 4) + addr1 |= PL35X_SMC_CMD_PHASE_ADDR(i, addrs[i]); + else + addr2 |= PL35X_SMC_CMD_PHASE_ADDR(i - 4, addrs[i]); + } + break; + + case NAND_OP_DATA_IN_INSTR: + case NAND_OP_DATA_OUT_INSTR: + data_instr = instr; + len = nand_subop_get_data_len(subop, op_id); + break; + + case NAND_OP_WAITRDY_INSTR: + rdy_tim_ms = instr->ctx.waitrdy.timeout_ms; + rdy_del_ns = instr->delay_ns; + break; + } + + last_instr_type = instr->type; + } + + /* Command phase */ + cmd_addr |= PL35X_SMC_CMD_PHASE | cmd0 | cmd1 | + (cmd1_valid ? PL35X_SMC_CMD_PHASE_CMD1_VALID : 0); + writel(addr1, nfc->io_regs + cmd_addr); + if (naddrs > 4) + writel(addr2, nfc->io_regs + cmd_addr); + + /* Data phase */ + if (data_instr && data_instr->type == NAND_OP_DATA_OUT_INSTR) { + last_flags = PL35X_SMC_DATA_PHASE_CLEAR_CS; + if (cmds == 2) + last_flags |= cmd1 | PL35X_SMC_CMD_PHASE_CMD1_VALID; + + pl35x_nand_write_data_op(chip, data_instr->ctx.data.buf.out, + len, data_instr->ctx.data.force_8bit, + 0, last_flags); + } + + if (rdy_tim_ms) { + ndelay(rdy_del_ns); + ret = pl35x_smc_wait_for_irq(nfc); + if (ret) + return ret; + } + + if (data_instr && data_instr->type == NAND_OP_DATA_IN_INSTR) + pl35x_nand_read_data_op(chip, data_instr->ctx.data.buf.in, + len, data_instr->ctx.data.force_8bit, + 0, PL35X_SMC_DATA_PHASE_CLEAR_CS); + + return 0; +} + +static const struct nand_op_parser pl35x_nandc_op_parser = NAND_OP_PARSER( + NAND_OP_PARSER_PATTERN(pl35x_nand_exec_op, + NAND_OP_PARSER_PAT_CMD_ELEM(true), + NAND_OP_PARSER_PAT_ADDR_ELEM(true, 7), + NAND_OP_PARSER_PAT_CMD_ELEM(true), + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true), + NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, 2112)), + NAND_OP_PARSER_PATTERN(pl35x_nand_exec_op, + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_ADDR_ELEM(false, 7), + NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 2112), + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)), + NAND_OP_PARSER_PATTERN(pl35x_nand_exec_op, + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_ADDR_ELEM(false, 7), + NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 2112), + NAND_OP_PARSER_PAT_CMD_ELEM(true), + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)), + ); + +static int pl35x_nfc_exec_op(struct nand_chip *chip, + const struct nand_operation *op, + bool check_only) +{ + if (!check_only) + pl35x_nand_select_target(chip, op->cs); + + return nand_op_parser_exec_op(chip, &pl35x_nandc_op_parser, + op, check_only); +} + +static int pl35x_nfc_setup_interface(struct nand_chip *chip, int cs, + const struct nand_interface_config *conf) +{ + struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller); + struct pl35x_nand *plnand = to_pl35x_nand(chip); + struct pl35x_nand_timings tmgs = {}; + const struct nand_sdr_timings *sdr; + unsigned int period_ns, val; + struct clk *mclk; + + sdr = nand_get_sdr_timings(conf); + if (IS_ERR(sdr)) + return PTR_ERR(sdr); + + mclk = of_clk_get_by_name(nfc->dev->parent->of_node, "memclk"); + if (IS_ERR(mclk)) { + dev_err(nfc->dev, "Failed to retrieve SMC memclk\n"); + return PTR_ERR(mclk); + } + + /* + * SDR timings are given in pico-seconds while NFC timings must be + * expressed in NAND controller clock cycles. We use the TO_CYCLE() + * macro to convert from one to the other. + */ + period_ns = NSEC_PER_SEC / clk_get_rate(mclk); + + /* + * PL35X SMC needs one extra read cycle in SDR Mode 5. This is not + * written anywhere in the datasheet but is an empirical observation. + */ + val = TO_CYCLES(sdr->tRC_min, period_ns); + if (sdr->tRC_min <= 20000) + val++; + + tmgs.t_rc = val; + if (tmgs.t_rc != val || tmgs.t_rc < 2) + return -EINVAL; + + val = TO_CYCLES(sdr->tWC_min, period_ns); + tmgs.t_wc = val; + if (tmgs.t_wc != val || tmgs.t_wc < 2) + return -EINVAL; + + /* + * For all SDR modes, PL35X SMC needs tREA_max being 1, + * this is also an empirical result. + */ + tmgs.t_rea = 1; + + val = TO_CYCLES(sdr->tWP_min, period_ns); + tmgs.t_wp = val; + if (tmgs.t_wp != val || tmgs.t_wp < 1) + return -EINVAL; + + val = TO_CYCLES(sdr->tCLR_min, period_ns); + tmgs.t_clr = val; + if (tmgs.t_clr != val) + return -EINVAL; + + val = TO_CYCLES(sdr->tAR_min, period_ns); + tmgs.t_ar = val; + if (tmgs.t_ar != val) + return -EINVAL; + + val = TO_CYCLES(sdr->tRR_min, period_ns); + tmgs.t_rr = val; + if (tmgs.t_rr != val) + return -EINVAL; + + if (cs == NAND_DATA_IFACE_CHECK_ONLY) + return 0; + + plnand->timings = PL35X_SMC_NAND_TRC_CYCLES(tmgs.t_rc) | + PL35X_SMC_NAND_TWC_CYCLES(tmgs.t_wc) | + PL35X_SMC_NAND_TREA_CYCLES(tmgs.t_rea) | + PL35X_SMC_NAND_TWP_CYCLES(tmgs.t_wp) | + PL35X_SMC_NAND_TCLR_CYCLES(tmgs.t_clr) | + PL35X_SMC_NAND_TAR_CYCLES(tmgs.t_ar) | + PL35X_SMC_NAND_TRR_CYCLES(tmgs.t_rr); + + return 0; +} + +static void pl35x_smc_set_ecc_pg_size(struct pl35x_nandc *nfc, + struct nand_chip *chip, + unsigned int pg_sz) +{ + struct pl35x_nand *plnand = to_pl35x_nand(chip); + u32 sz; + + switch (pg_sz) { + case SZ_512: + sz = 1; + break; + case SZ_1K: + sz = 2; + break; + case SZ_2K: + sz = 3; + break; + default: + sz = 0; + break; + } + + plnand->ecc_cfg = readl(nfc->conf_regs + PL35X_SMC_ECC_CFG); + plnand->ecc_cfg &= ~PL35X_SMC_ECC_CFG_PGSIZE_MASK; + plnand->ecc_cfg |= sz; + writel(plnand->ecc_cfg, nfc->conf_regs + PL35X_SMC_ECC_CFG); +} + +static int pl35x_nand_init_hw_ecc_controller(struct pl35x_nandc *nfc, + struct nand_chip *chip) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + int ret = 0; + + if (mtd->writesize < SZ_512 || mtd->writesize > SZ_2K) { + dev_err(nfc->dev, + "The hardware ECC engine is limited to pages up to 2kiB\n"); + return -EOPNOTSUPP; + } + + chip->ecc.strength = 1; + chip->ecc.bytes = 3; + chip->ecc.size = SZ_512; + chip->ecc.steps = mtd->writesize / chip->ecc.size; + chip->ecc.read_page = pl35x_nand_read_page_hwecc; + chip->ecc.write_page = pl35x_nand_write_page_hwecc; + chip->ecc.write_page_raw = nand_monolithic_write_page_raw; + pl35x_smc_set_ecc_pg_size(nfc, chip, mtd->writesize); + + nfc->ecc_buf = devm_kmalloc(nfc->dev, chip->ecc.bytes * chip->ecc.steps, + GFP_KERNEL); + if (!nfc->ecc_buf) + return -ENOMEM; + + switch (mtd->oobsize) { + case 16: + /* Legacy Xilinx layout */ + mtd_set_ooblayout(mtd, &pl35x_ecc_ooblayout16_ops); + chip->bbt_options |= NAND_BBT_NO_OOB_BBM; + break; + case 64: + mtd_set_ooblayout(mtd, nand_get_large_page_ooblayout()); + break; + default: + dev_err(nfc->dev, "Unsupported OOB size\n"); + return -EOPNOTSUPP; + } + + return ret; +} + +static int pl35x_nand_attach_chip(struct nand_chip *chip) +{ + const struct nand_ecc_props *requirements = + nanddev_get_ecc_requirements(&chip->base); + struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller); + struct pl35x_nand *plnand = to_pl35x_nand(chip); + struct mtd_info *mtd = nand_to_mtd(chip); + int ret; + + if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_NONE && + (!chip->ecc.size || !chip->ecc.strength)) { + if (requirements->step_size && requirements->strength) { + chip->ecc.size = requirements->step_size; + chip->ecc.strength = requirements->strength; + } else { + dev_info(nfc->dev, + "No minimum ECC strength, using 1b/512B\n"); + chip->ecc.size = 512; + chip->ecc.strength = 1; + } + } + + if (mtd->writesize <= SZ_512) + plnand->addr_cycles = 1; + else + plnand->addr_cycles = 2; + + if (chip->options & NAND_ROW_ADDR_3) + plnand->addr_cycles += 3; + else + plnand->addr_cycles += 2; + + switch (chip->ecc.engine_type) { + case NAND_ECC_ENGINE_TYPE_ON_DIE: + /* Keep these legacy BBT descriptors for ON_DIE situations */ + chip->bbt_td = &bbt_main_descr; + chip->bbt_md = &bbt_mirror_descr; + fallthrough; + case NAND_ECC_ENGINE_TYPE_NONE: + case NAND_ECC_ENGINE_TYPE_SOFT: + break; + case NAND_ECC_ENGINE_TYPE_ON_HOST: + ret = pl35x_nand_init_hw_ecc_controller(nfc, chip); + if (ret) + return ret; + break; + default: + dev_err(nfc->dev, "Unsupported ECC mode: %d\n", + chip->ecc.engine_type); + return -EINVAL; + } + + return 0; +} + +static const struct nand_controller_ops pl35x_nandc_ops = { + .attach_chip = pl35x_nand_attach_chip, + .exec_op = pl35x_nfc_exec_op, + .setup_interface = pl35x_nfc_setup_interface, +}; + +static int pl35x_nand_reset_state(struct pl35x_nandc *nfc) +{ + int ret; + + /* Disable interrupts and clear their status */ + writel(PL35X_SMC_MEMC_CFG_CLR_INT_CLR_1 | + PL35X_SMC_MEMC_CFG_CLR_ECC_INT_DIS_1 | + PL35X_SMC_MEMC_CFG_CLR_INT_DIS_1, + nfc->conf_regs + PL35X_SMC_MEMC_CFG_CLR); + + /* Set default bus width to 8-bit */ + ret = pl35x_smc_set_buswidth(nfc, PL35X_SMC_OPMODE_BW_8); + if (ret) + return ret; + + /* Ensure the ECC controller is bypassed by default */ + ret = pl35x_smc_set_ecc_mode(nfc, NULL, PL35X_SMC_ECC_CFG_MODE_BYPASS); + if (ret) + return ret; + + /* + * Configure the commands that the ECC block uses to detect the + * operations it should start/end. + */ + writel(PL35X_SMC_ECC_CMD1_WRITE(NAND_CMD_SEQIN) | + PL35X_SMC_ECC_CMD1_READ(NAND_CMD_READ0) | + PL35X_SMC_ECC_CMD1_READ_END(NAND_CMD_READSTART) | + PL35X_SMC_ECC_CMD1_READ_END_VALID(NAND_CMD_READ1), + nfc->conf_regs + PL35X_SMC_ECC_CMD1); + writel(PL35X_SMC_ECC_CMD2_WRITE_COL_CHG(NAND_CMD_RNDIN) | + PL35X_SMC_ECC_CMD2_READ_COL_CHG(NAND_CMD_RNDOUT) | + PL35X_SMC_ECC_CMD2_READ_COL_CHG_END(NAND_CMD_RNDOUTSTART) | + PL35X_SMC_ECC_CMD2_READ_COL_CHG_END_VALID(NAND_CMD_READ1), + nfc->conf_regs + PL35X_SMC_ECC_CMD2); + + return 0; +} + +static int pl35x_nand_chip_init(struct pl35x_nandc *nfc, + struct device_node *np) +{ + struct pl35x_nand *plnand; + struct nand_chip *chip; + struct mtd_info *mtd; + int cs, ret; + + plnand = devm_kzalloc(nfc->dev, sizeof(*plnand), GFP_KERNEL); + if (!plnand) + return -ENOMEM; + + ret = of_property_read_u32(np, "reg", &cs); + if (ret) + return ret; + + if (cs >= PL35X_NAND_MAX_CS) { + dev_err(nfc->dev, "Wrong CS %d\n", cs); + return -EINVAL; + } + + if (test_and_set_bit(cs, &nfc->assigned_cs)) { + dev_err(nfc->dev, "Already assigned CS %d\n", cs); + return -EINVAL; + } + + plnand->cs = cs; + + chip = &plnand->chip; + chip->options = NAND_BUSWIDTH_AUTO | NAND_USES_DMA | NAND_NO_SUBPAGE_WRITE; + chip->bbt_options = NAND_BBT_USE_FLASH; + chip->controller = &nfc->controller; + mtd = nand_to_mtd(chip); + mtd->dev.parent = nfc->dev; + nand_set_flash_node(chip, np); + if (!mtd->name) { + mtd->name = devm_kasprintf(nfc->dev, GFP_KERNEL, + "%s", PL35X_NANDC_DRIVER_NAME); + if (!mtd->name) { + dev_err(nfc->dev, "Failed to allocate mtd->name\n"); + return -ENOMEM; + } + } + + ret = nand_scan(chip, 1); + if (ret) + return ret; + + ret = mtd_device_register(mtd, NULL, 0); + if (ret) { + nand_cleanup(chip); + return ret; + } + + list_add_tail(&plnand->node, &nfc->chips); + + return ret; +} + +static void pl35x_nand_chips_cleanup(struct pl35x_nandc *nfc) +{ + struct pl35x_nand *plnand, *tmp; + struct nand_chip *chip; + int ret; + + list_for_each_entry_safe(plnand, tmp, &nfc->chips, node) { + chip = &plnand->chip; + ret = mtd_device_unregister(nand_to_mtd(chip)); + WARN_ON(ret); + nand_cleanup(chip); + list_del(&plnand->node); + } +} + +static int pl35x_nand_chips_init(struct pl35x_nandc *nfc) +{ + struct device_node *np = nfc->dev->of_node, *nand_np; + int nchips = of_get_child_count(np); + int ret; + + if (!nchips || nchips > PL35X_NAND_MAX_CS) { + dev_err(nfc->dev, "Incorrect number of NAND chips (%d)\n", + nchips); + return -EINVAL; + } + + for_each_child_of_node(np, nand_np) { + ret = pl35x_nand_chip_init(nfc, nand_np); + if (ret) { + of_node_put(nand_np); + pl35x_nand_chips_cleanup(nfc); + break; + } + } + + return ret; +} + +static int pl35x_nand_probe(struct platform_device *pdev) +{ + struct device *smc_dev = pdev->dev.parent; + struct amba_device *smc_amba = to_amba_device(smc_dev); + struct pl35x_nandc *nfc; + u32 ret; + + nfc = devm_kzalloc(&pdev->dev, sizeof(*nfc), GFP_KERNEL); + if (!nfc) + return -ENOMEM; + + nfc->dev = &pdev->dev; + nand_controller_init(&nfc->controller); + nfc->controller.ops = &pl35x_nandc_ops; + INIT_LIST_HEAD(&nfc->chips); + + nfc->conf_regs = devm_ioremap_resource(&smc_amba->dev, &smc_amba->res); + if (IS_ERR(nfc->conf_regs)) + return PTR_ERR(nfc->conf_regs); + + nfc->io_regs = devm_platform_ioremap_resource(pdev, 0); + if (IS_ERR(nfc->io_regs)) + return PTR_ERR(nfc->io_regs); + + ret = pl35x_nand_reset_state(nfc); + if (ret) + return ret; + + ret = pl35x_nand_chips_init(nfc); + if (ret) + return ret; + + platform_set_drvdata(pdev, nfc); + + return 0; +} + +static int pl35x_nand_remove(struct platform_device *pdev) +{ + struct pl35x_nandc *nfc = platform_get_drvdata(pdev); + + pl35x_nand_chips_cleanup(nfc); + + return 0; +} + +static const struct of_device_id pl35x_nand_of_match[] = { + { .compatible = "arm,pl353-nand-r2p1" }, + {}, +}; +MODULE_DEVICE_TABLE(of, pl35x_nand_of_match); + +static struct platform_driver pl35x_nandc_driver = { + .probe = pl35x_nand_probe, + .remove = pl35x_nand_remove, + .driver = { + .name = PL35X_NANDC_DRIVER_NAME, + .of_match_table = pl35x_nand_of_match, + }, +}; +module_platform_driver(pl35x_nandc_driver); + +MODULE_AUTHOR("Xilinx, Inc."); +MODULE_ALIAS("platform:" PL35X_NANDC_DRIVER_NAME); +MODULE_DESCRIPTION("ARM PL35X NAND controller driver"); +MODULE_LICENSE("GPL"); |