diff options
Diffstat (limited to 'drivers/mtd/nand/raw/sunxi_nand.c')
-rw-r--r-- | drivers/mtd/nand/raw/sunxi_nand.c | 2267 |
1 files changed, 2267 insertions, 0 deletions
diff --git a/drivers/mtd/nand/raw/sunxi_nand.c b/drivers/mtd/nand/raw/sunxi_nand.c new file mode 100644 index 000000000..ea953e319 --- /dev/null +++ b/drivers/mtd/nand/raw/sunxi_nand.c @@ -0,0 +1,2267 @@ +// SPDX-License-Identifier: GPL-2.0+ +/* + * Copyright (C) 2013 Boris BREZILLON <b.brezillon.dev@gmail.com> + * + * Derived from: + * https://github.com/yuq/sunxi-nfc-mtd + * Copyright (C) 2013 Qiang Yu <yuq825@gmail.com> + * + * https://github.com/hno/Allwinner-Info + * Copyright (C) 2013 Henrik Nordström <Henrik Nordström> + * + * Copyright (C) 2013 Dmitriy B. <rzk333@gmail.com> + * Copyright (C) 2013 Sergey Lapin <slapin@ossfans.org> + */ + +#include <linux/dma-mapping.h> +#include <linux/slab.h> +#include <linux/module.h> +#include <linux/moduleparam.h> +#include <linux/platform_device.h> +#include <linux/of.h> +#include <linux/of_device.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/rawnand.h> +#include <linux/mtd/partitions.h> +#include <linux/clk.h> +#include <linux/delay.h> +#include <linux/dmaengine.h> +#include <linux/interrupt.h> +#include <linux/iopoll.h> +#include <linux/reset.h> + +#define NFC_REG_CTL 0x0000 +#define NFC_REG_ST 0x0004 +#define NFC_REG_INT 0x0008 +#define NFC_REG_TIMING_CTL 0x000C +#define NFC_REG_TIMING_CFG 0x0010 +#define NFC_REG_ADDR_LOW 0x0014 +#define NFC_REG_ADDR_HIGH 0x0018 +#define NFC_REG_SECTOR_NUM 0x001C +#define NFC_REG_CNT 0x0020 +#define NFC_REG_CMD 0x0024 +#define NFC_REG_RCMD_SET 0x0028 +#define NFC_REG_WCMD_SET 0x002C +#define NFC_REG_A10_IO_DATA 0x0030 +#define NFC_REG_A23_IO_DATA 0x0300 +#define NFC_REG_ECC_CTL 0x0034 +#define NFC_REG_ECC_ST 0x0038 +#define NFC_REG_DEBUG 0x003C +#define NFC_REG_ECC_ERR_CNT(x) ((0x0040 + (x)) & ~0x3) +#define NFC_REG_USER_DATA(x) (0x0050 + ((x) * 4)) +#define NFC_REG_SPARE_AREA 0x00A0 +#define NFC_REG_PAT_ID 0x00A4 +#define NFC_REG_MDMA_ADDR 0x00C0 +#define NFC_REG_MDMA_CNT 0x00C4 +#define NFC_RAM0_BASE 0x0400 +#define NFC_RAM1_BASE 0x0800 + +/* define bit use in NFC_CTL */ +#define NFC_EN BIT(0) +#define NFC_RESET BIT(1) +#define NFC_BUS_WIDTH_MSK BIT(2) +#define NFC_BUS_WIDTH_8 (0 << 2) +#define NFC_BUS_WIDTH_16 (1 << 2) +#define NFC_RB_SEL_MSK BIT(3) +#define NFC_RB_SEL(x) ((x) << 3) +#define NFC_CE_SEL_MSK GENMASK(26, 24) +#define NFC_CE_SEL(x) ((x) << 24) +#define NFC_CE_CTL BIT(6) +#define NFC_PAGE_SHIFT_MSK GENMASK(11, 8) +#define NFC_PAGE_SHIFT(x) (((x) < 10 ? 0 : (x) - 10) << 8) +#define NFC_SAM BIT(12) +#define NFC_RAM_METHOD BIT(14) +#define NFC_DMA_TYPE_NORMAL BIT(15) +#define NFC_DEBUG_CTL BIT(31) + +/* define bit use in NFC_ST */ +#define NFC_RB_B2R BIT(0) +#define NFC_CMD_INT_FLAG BIT(1) +#define NFC_DMA_INT_FLAG BIT(2) +#define NFC_CMD_FIFO_STATUS BIT(3) +#define NFC_STA BIT(4) +#define NFC_NATCH_INT_FLAG BIT(5) +#define NFC_RB_STATE(x) BIT(x + 8) + +/* define bit use in NFC_INT */ +#define NFC_B2R_INT_ENABLE BIT(0) +#define NFC_CMD_INT_ENABLE BIT(1) +#define NFC_DMA_INT_ENABLE BIT(2) +#define NFC_INT_MASK (NFC_B2R_INT_ENABLE | \ + NFC_CMD_INT_ENABLE | \ + NFC_DMA_INT_ENABLE) + +/* define bit use in NFC_TIMING_CTL */ +#define NFC_TIMING_CTL_EDO BIT(8) + +/* define NFC_TIMING_CFG register layout */ +#define NFC_TIMING_CFG(tWB, tADL, tWHR, tRHW, tCAD) \ + (((tWB) & 0x3) | (((tADL) & 0x3) << 2) | \ + (((tWHR) & 0x3) << 4) | (((tRHW) & 0x3) << 6) | \ + (((tCAD) & 0x7) << 8)) + +/* define bit use in NFC_CMD */ +#define NFC_CMD_LOW_BYTE_MSK GENMASK(7, 0) +#define NFC_CMD_HIGH_BYTE_MSK GENMASK(15, 8) +#define NFC_CMD(x) (x) +#define NFC_ADR_NUM_MSK GENMASK(18, 16) +#define NFC_ADR_NUM(x) (((x) - 1) << 16) +#define NFC_SEND_ADR BIT(19) +#define NFC_ACCESS_DIR BIT(20) +#define NFC_DATA_TRANS BIT(21) +#define NFC_SEND_CMD1 BIT(22) +#define NFC_WAIT_FLAG BIT(23) +#define NFC_SEND_CMD2 BIT(24) +#define NFC_SEQ BIT(25) +#define NFC_DATA_SWAP_METHOD BIT(26) +#define NFC_ROW_AUTO_INC BIT(27) +#define NFC_SEND_CMD3 BIT(28) +#define NFC_SEND_CMD4 BIT(29) +#define NFC_CMD_TYPE_MSK GENMASK(31, 30) +#define NFC_NORMAL_OP (0 << 30) +#define NFC_ECC_OP (1 << 30) +#define NFC_PAGE_OP (2U << 30) + +/* define bit use in NFC_RCMD_SET */ +#define NFC_READ_CMD_MSK GENMASK(7, 0) +#define NFC_RND_READ_CMD0_MSK GENMASK(15, 8) +#define NFC_RND_READ_CMD1_MSK GENMASK(23, 16) + +/* define bit use in NFC_WCMD_SET */ +#define NFC_PROGRAM_CMD_MSK GENMASK(7, 0) +#define NFC_RND_WRITE_CMD_MSK GENMASK(15, 8) +#define NFC_READ_CMD0_MSK GENMASK(23, 16) +#define NFC_READ_CMD1_MSK GENMASK(31, 24) + +/* define bit use in NFC_ECC_CTL */ +#define NFC_ECC_EN BIT(0) +#define NFC_ECC_PIPELINE BIT(3) +#define NFC_ECC_EXCEPTION BIT(4) +#define NFC_ECC_BLOCK_SIZE_MSK BIT(5) +#define NFC_ECC_BLOCK_512 BIT(5) +#define NFC_RANDOM_EN BIT(9) +#define NFC_RANDOM_DIRECTION BIT(10) +#define NFC_ECC_MODE_MSK GENMASK(15, 12) +#define NFC_ECC_MODE(x) ((x) << 12) +#define NFC_RANDOM_SEED_MSK GENMASK(30, 16) +#define NFC_RANDOM_SEED(x) ((x) << 16) + +/* define bit use in NFC_ECC_ST */ +#define NFC_ECC_ERR(x) BIT(x) +#define NFC_ECC_ERR_MSK GENMASK(15, 0) +#define NFC_ECC_PAT_FOUND(x) BIT(x + 16) +#define NFC_ECC_ERR_CNT(b, x) (((x) >> (((b) % 4) * 8)) & 0xff) + +#define NFC_DEFAULT_TIMEOUT_MS 1000 + +#define NFC_SRAM_SIZE 1024 + +#define NFC_MAX_CS 7 + +/** + * struct sunxi_nand_chip_sel - stores information related to NAND Chip Select + * + * @cs: the NAND CS id used to communicate with a NAND Chip + * @rb: the Ready/Busy pin ID. -1 means no R/B pin connected to the NFC + */ +struct sunxi_nand_chip_sel { + u8 cs; + s8 rb; +}; + +/** + * struct sunxi_nand_hw_ecc - stores information related to HW ECC support + * + * @mode: the sunxi ECC mode field deduced from ECC requirements + */ +struct sunxi_nand_hw_ecc { + int mode; +}; + +/** + * struct sunxi_nand_chip - stores NAND chip device related information + * + * @node: used to store NAND chips into a list + * @nand: base NAND chip structure + * @ecc: ECC controller structure + * @clk_rate: clk_rate required for this NAND chip + * @timing_cfg: TIMING_CFG register value for this NAND chip + * @timing_ctl: TIMING_CTL register value for this NAND chip + * @nsels: number of CS lines required by the NAND chip + * @sels: array of CS lines descriptions + */ +struct sunxi_nand_chip { + struct list_head node; + struct nand_chip nand; + struct sunxi_nand_hw_ecc *ecc; + unsigned long clk_rate; + u32 timing_cfg; + u32 timing_ctl; + int nsels; + struct sunxi_nand_chip_sel sels[]; +}; + +static inline struct sunxi_nand_chip *to_sunxi_nand(struct nand_chip *nand) +{ + return container_of(nand, struct sunxi_nand_chip, nand); +} + +/* + * NAND Controller capabilities structure: stores NAND controller capabilities + * for distinction between compatible strings. + * + * @has_mdma: Use mbus dma mode, otherwise general dma + * through MBUS on A23/A33 needs extra configuration. + * @reg_io_data: I/O data register + * @dma_maxburst: DMA maxburst + */ +struct sunxi_nfc_caps { + bool has_mdma; + unsigned int reg_io_data; + unsigned int dma_maxburst; +}; + +/** + * struct sunxi_nfc - stores sunxi NAND controller information + * + * @controller: base controller structure + * @dev: parent device (used to print error messages) + * @regs: NAND controller registers + * @ahb_clk: NAND controller AHB clock + * @mod_clk: NAND controller mod clock + * @reset: NAND controller reset line + * @assigned_cs: bitmask describing already assigned CS lines + * @clk_rate: NAND controller current clock rate + * @chips: a list containing all the NAND chips attached to this NAND + * controller + * @complete: a completion object used to wait for NAND controller events + * @dmac: the DMA channel attached to the NAND controller + * @caps: NAND Controller capabilities + */ +struct sunxi_nfc { + struct nand_controller controller; + struct device *dev; + void __iomem *regs; + struct clk *ahb_clk; + struct clk *mod_clk; + struct reset_control *reset; + unsigned long assigned_cs; + unsigned long clk_rate; + struct list_head chips; + struct completion complete; + struct dma_chan *dmac; + const struct sunxi_nfc_caps *caps; +}; + +static inline struct sunxi_nfc *to_sunxi_nfc(struct nand_controller *ctrl) +{ + return container_of(ctrl, struct sunxi_nfc, controller); +} + +static irqreturn_t sunxi_nfc_interrupt(int irq, void *dev_id) +{ + struct sunxi_nfc *nfc = dev_id; + u32 st = readl(nfc->regs + NFC_REG_ST); + u32 ien = readl(nfc->regs + NFC_REG_INT); + + if (!(ien & st)) + return IRQ_NONE; + + if ((ien & st) == ien) + complete(&nfc->complete); + + writel(st & NFC_INT_MASK, nfc->regs + NFC_REG_ST); + writel(~st & ien & NFC_INT_MASK, nfc->regs + NFC_REG_INT); + + return IRQ_HANDLED; +} + +static int sunxi_nfc_wait_events(struct sunxi_nfc *nfc, u32 events, + bool use_polling, unsigned int timeout_ms) +{ + int ret; + + if (events & ~NFC_INT_MASK) + return -EINVAL; + + if (!timeout_ms) + timeout_ms = NFC_DEFAULT_TIMEOUT_MS; + + if (!use_polling) { + init_completion(&nfc->complete); + + writel(events, nfc->regs + NFC_REG_INT); + + ret = wait_for_completion_timeout(&nfc->complete, + msecs_to_jiffies(timeout_ms)); + if (!ret) + ret = -ETIMEDOUT; + else + ret = 0; + + writel(0, nfc->regs + NFC_REG_INT); + } else { + u32 status; + + ret = readl_poll_timeout(nfc->regs + NFC_REG_ST, status, + (status & events) == events, 1, + timeout_ms * 1000); + } + + writel(events & NFC_INT_MASK, nfc->regs + NFC_REG_ST); + + if (ret) + dev_err(nfc->dev, "wait interrupt timedout\n"); + + return ret; +} + +static int sunxi_nfc_wait_cmd_fifo_empty(struct sunxi_nfc *nfc) +{ + u32 status; + int ret; + + ret = readl_poll_timeout(nfc->regs + NFC_REG_ST, status, + !(status & NFC_CMD_FIFO_STATUS), 1, + NFC_DEFAULT_TIMEOUT_MS * 1000); + if (ret) + dev_err(nfc->dev, "wait for empty cmd FIFO timedout\n"); + + return ret; +} + +static int sunxi_nfc_rst(struct sunxi_nfc *nfc) +{ + u32 ctl; + int ret; + + writel(0, nfc->regs + NFC_REG_ECC_CTL); + writel(NFC_RESET, nfc->regs + NFC_REG_CTL); + + ret = readl_poll_timeout(nfc->regs + NFC_REG_CTL, ctl, + !(ctl & NFC_RESET), 1, + NFC_DEFAULT_TIMEOUT_MS * 1000); + if (ret) + dev_err(nfc->dev, "wait for NAND controller reset timedout\n"); + + return ret; +} + +static int sunxi_nfc_dma_op_prepare(struct sunxi_nfc *nfc, const void *buf, + int chunksize, int nchunks, + enum dma_data_direction ddir, + struct scatterlist *sg) +{ + struct dma_async_tx_descriptor *dmad; + enum dma_transfer_direction tdir; + dma_cookie_t dmat; + int ret; + + if (ddir == DMA_FROM_DEVICE) + tdir = DMA_DEV_TO_MEM; + else + tdir = DMA_MEM_TO_DEV; + + sg_init_one(sg, buf, nchunks * chunksize); + ret = dma_map_sg(nfc->dev, sg, 1, ddir); + if (!ret) + return -ENOMEM; + + if (!nfc->caps->has_mdma) { + dmad = dmaengine_prep_slave_sg(nfc->dmac, sg, 1, tdir, DMA_CTRL_ACK); + if (!dmad) { + ret = -EINVAL; + goto err_unmap_buf; + } + } + + writel(readl(nfc->regs + NFC_REG_CTL) | NFC_RAM_METHOD, + nfc->regs + NFC_REG_CTL); + writel(nchunks, nfc->regs + NFC_REG_SECTOR_NUM); + writel(chunksize, nfc->regs + NFC_REG_CNT); + + if (nfc->caps->has_mdma) { + writel(readl(nfc->regs + NFC_REG_CTL) & ~NFC_DMA_TYPE_NORMAL, + nfc->regs + NFC_REG_CTL); + writel(chunksize * nchunks, nfc->regs + NFC_REG_MDMA_CNT); + writel(sg_dma_address(sg), nfc->regs + NFC_REG_MDMA_ADDR); + } else { + dmat = dmaengine_submit(dmad); + + ret = dma_submit_error(dmat); + if (ret) + goto err_clr_dma_flag; + } + + return 0; + +err_clr_dma_flag: + writel(readl(nfc->regs + NFC_REG_CTL) & ~NFC_RAM_METHOD, + nfc->regs + NFC_REG_CTL); + +err_unmap_buf: + dma_unmap_sg(nfc->dev, sg, 1, ddir); + return ret; +} + +static void sunxi_nfc_dma_op_cleanup(struct sunxi_nfc *nfc, + enum dma_data_direction ddir, + struct scatterlist *sg) +{ + dma_unmap_sg(nfc->dev, sg, 1, ddir); + writel(readl(nfc->regs + NFC_REG_CTL) & ~NFC_RAM_METHOD, + nfc->regs + NFC_REG_CTL); +} + +static void sunxi_nfc_select_chip(struct nand_chip *nand, unsigned int cs) +{ + struct mtd_info *mtd = nand_to_mtd(nand); + struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand); + struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller); + struct sunxi_nand_chip_sel *sel; + u32 ctl; + + if (cs > 0 && cs >= sunxi_nand->nsels) + return; + + ctl = readl(nfc->regs + NFC_REG_CTL) & + ~(NFC_PAGE_SHIFT_MSK | NFC_CE_SEL_MSK | NFC_RB_SEL_MSK | NFC_EN); + + sel = &sunxi_nand->sels[cs]; + ctl |= NFC_CE_SEL(sel->cs) | NFC_EN | NFC_PAGE_SHIFT(nand->page_shift); + if (sel->rb >= 0) + ctl |= NFC_RB_SEL(sel->rb); + + writel(mtd->writesize, nfc->regs + NFC_REG_SPARE_AREA); + + if (nfc->clk_rate != sunxi_nand->clk_rate) { + clk_set_rate(nfc->mod_clk, sunxi_nand->clk_rate); + nfc->clk_rate = sunxi_nand->clk_rate; + } + + writel(sunxi_nand->timing_ctl, nfc->regs + NFC_REG_TIMING_CTL); + writel(sunxi_nand->timing_cfg, nfc->regs + NFC_REG_TIMING_CFG); + writel(ctl, nfc->regs + NFC_REG_CTL); +} + +static void sunxi_nfc_read_buf(struct nand_chip *nand, uint8_t *buf, int len) +{ + struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand); + struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller); + int ret; + int cnt; + int offs = 0; + u32 tmp; + + while (len > offs) { + bool poll = false; + + cnt = min(len - offs, NFC_SRAM_SIZE); + + ret = sunxi_nfc_wait_cmd_fifo_empty(nfc); + if (ret) + break; + + writel(cnt, nfc->regs + NFC_REG_CNT); + tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD; + writel(tmp, nfc->regs + NFC_REG_CMD); + + /* Arbitrary limit for polling mode */ + if (cnt < 64) + poll = true; + + ret = sunxi_nfc_wait_events(nfc, NFC_CMD_INT_FLAG, poll, 0); + if (ret) + break; + + if (buf) + memcpy_fromio(buf + offs, nfc->regs + NFC_RAM0_BASE, + cnt); + offs += cnt; + } +} + +static void sunxi_nfc_write_buf(struct nand_chip *nand, const uint8_t *buf, + int len) +{ + struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand); + struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller); + int ret; + int cnt; + int offs = 0; + u32 tmp; + + while (len > offs) { + bool poll = false; + + cnt = min(len - offs, NFC_SRAM_SIZE); + + ret = sunxi_nfc_wait_cmd_fifo_empty(nfc); + if (ret) + break; + + writel(cnt, nfc->regs + NFC_REG_CNT); + memcpy_toio(nfc->regs + NFC_RAM0_BASE, buf + offs, cnt); + tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD | + NFC_ACCESS_DIR; + writel(tmp, nfc->regs + NFC_REG_CMD); + + /* Arbitrary limit for polling mode */ + if (cnt < 64) + poll = true; + + ret = sunxi_nfc_wait_events(nfc, NFC_CMD_INT_FLAG, poll, 0); + if (ret) + break; + + offs += cnt; + } +} + +/* These seed values have been extracted from Allwinner's BSP */ +static const u16 sunxi_nfc_randomizer_page_seeds[] = { + 0x2b75, 0x0bd0, 0x5ca3, 0x62d1, 0x1c93, 0x07e9, 0x2162, 0x3a72, + 0x0d67, 0x67f9, 0x1be7, 0x077d, 0x032f, 0x0dac, 0x2716, 0x2436, + 0x7922, 0x1510, 0x3860, 0x5287, 0x480f, 0x4252, 0x1789, 0x5a2d, + 0x2a49, 0x5e10, 0x437f, 0x4b4e, 0x2f45, 0x216e, 0x5cb7, 0x7130, + 0x2a3f, 0x60e4, 0x4dc9, 0x0ef0, 0x0f52, 0x1bb9, 0x6211, 0x7a56, + 0x226d, 0x4ea7, 0x6f36, 0x3692, 0x38bf, 0x0c62, 0x05eb, 0x4c55, + 0x60f4, 0x728c, 0x3b6f, 0x2037, 0x7f69, 0x0936, 0x651a, 0x4ceb, + 0x6218, 0x79f3, 0x383f, 0x18d9, 0x4f05, 0x5c82, 0x2912, 0x6f17, + 0x6856, 0x5938, 0x1007, 0x61ab, 0x3e7f, 0x57c2, 0x542f, 0x4f62, + 0x7454, 0x2eac, 0x7739, 0x42d4, 0x2f90, 0x435a, 0x2e52, 0x2064, + 0x637c, 0x66ad, 0x2c90, 0x0bad, 0x759c, 0x0029, 0x0986, 0x7126, + 0x1ca7, 0x1605, 0x386a, 0x27f5, 0x1380, 0x6d75, 0x24c3, 0x0f8e, + 0x2b7a, 0x1418, 0x1fd1, 0x7dc1, 0x2d8e, 0x43af, 0x2267, 0x7da3, + 0x4e3d, 0x1338, 0x50db, 0x454d, 0x764d, 0x40a3, 0x42e6, 0x262b, + 0x2d2e, 0x1aea, 0x2e17, 0x173d, 0x3a6e, 0x71bf, 0x25f9, 0x0a5d, + 0x7c57, 0x0fbe, 0x46ce, 0x4939, 0x6b17, 0x37bb, 0x3e91, 0x76db, +}; + +/* + * sunxi_nfc_randomizer_ecc512_seeds and sunxi_nfc_randomizer_ecc1024_seeds + * have been generated using + * sunxi_nfc_randomizer_step(seed, (step_size * 8) + 15), which is what + * the randomizer engine does internally before de/scrambling OOB data. + * + * Those tables are statically defined to avoid calculating randomizer state + * at runtime. + */ +static const u16 sunxi_nfc_randomizer_ecc512_seeds[] = { + 0x3346, 0x367f, 0x1f18, 0x769a, 0x4f64, 0x068c, 0x2ef1, 0x6b64, + 0x28a9, 0x15d7, 0x30f8, 0x3659, 0x53db, 0x7c5f, 0x71d4, 0x4409, + 0x26eb, 0x03cc, 0x655d, 0x47d4, 0x4daa, 0x0877, 0x712d, 0x3617, + 0x3264, 0x49aa, 0x7f9e, 0x588e, 0x4fbc, 0x7176, 0x7f91, 0x6c6d, + 0x4b95, 0x5fb7, 0x3844, 0x4037, 0x0184, 0x081b, 0x0ee8, 0x5b91, + 0x293d, 0x1f71, 0x0e6f, 0x402b, 0x5122, 0x1e52, 0x22be, 0x3d2d, + 0x75bc, 0x7c60, 0x6291, 0x1a2f, 0x61d4, 0x74aa, 0x4140, 0x29ab, + 0x472d, 0x2852, 0x017e, 0x15e8, 0x5ec2, 0x17cf, 0x7d0f, 0x06b8, + 0x117a, 0x6b94, 0x789b, 0x3126, 0x6ac5, 0x5be7, 0x150f, 0x51f8, + 0x7889, 0x0aa5, 0x663d, 0x77e8, 0x0b87, 0x3dcb, 0x360d, 0x218b, + 0x512f, 0x7dc9, 0x6a4d, 0x630a, 0x3547, 0x1dd2, 0x5aea, 0x69a5, + 0x7bfa, 0x5e4f, 0x1519, 0x6430, 0x3a0e, 0x5eb3, 0x5425, 0x0c7a, + 0x5540, 0x3670, 0x63c1, 0x31e9, 0x5a39, 0x2de7, 0x5979, 0x2891, + 0x1562, 0x014b, 0x5b05, 0x2756, 0x5a34, 0x13aa, 0x6cb5, 0x2c36, + 0x5e72, 0x1306, 0x0861, 0x15ef, 0x1ee8, 0x5a37, 0x7ac4, 0x45dd, + 0x44c4, 0x7266, 0x2f41, 0x3ccc, 0x045e, 0x7d40, 0x7c66, 0x0fa0, +}; + +static const u16 sunxi_nfc_randomizer_ecc1024_seeds[] = { + 0x2cf5, 0x35f1, 0x63a4, 0x5274, 0x2bd2, 0x778b, 0x7285, 0x32b6, + 0x6a5c, 0x70d6, 0x757d, 0x6769, 0x5375, 0x1e81, 0x0cf3, 0x3982, + 0x6787, 0x042a, 0x6c49, 0x1925, 0x56a8, 0x40a9, 0x063e, 0x7bd9, + 0x4dbf, 0x55ec, 0x672e, 0x7334, 0x5185, 0x4d00, 0x232a, 0x7e07, + 0x445d, 0x6b92, 0x528f, 0x4255, 0x53ba, 0x7d82, 0x2a2e, 0x3a4e, + 0x75eb, 0x450c, 0x6844, 0x1b5d, 0x581a, 0x4cc6, 0x0379, 0x37b2, + 0x419f, 0x0e92, 0x6b27, 0x5624, 0x01e3, 0x07c1, 0x44a5, 0x130c, + 0x13e8, 0x5910, 0x0876, 0x60c5, 0x54e3, 0x5b7f, 0x2269, 0x509f, + 0x7665, 0x36fd, 0x3e9a, 0x0579, 0x6295, 0x14ef, 0x0a81, 0x1bcc, + 0x4b16, 0x64db, 0x0514, 0x4f07, 0x0591, 0x3576, 0x6853, 0x0d9e, + 0x259f, 0x38b7, 0x64fb, 0x3094, 0x4693, 0x6ddd, 0x29bb, 0x0bc8, + 0x3f47, 0x490e, 0x0c0e, 0x7933, 0x3c9e, 0x5840, 0x398d, 0x3e68, + 0x4af1, 0x71f5, 0x57cf, 0x1121, 0x64eb, 0x3579, 0x15ac, 0x584d, + 0x5f2a, 0x47e2, 0x6528, 0x6eac, 0x196e, 0x6b96, 0x0450, 0x0179, + 0x609c, 0x06e1, 0x4626, 0x42c7, 0x273e, 0x486f, 0x0705, 0x1601, + 0x145b, 0x407e, 0x062b, 0x57a5, 0x53f9, 0x5659, 0x4410, 0x3ccd, +}; + +static u16 sunxi_nfc_randomizer_step(u16 state, int count) +{ + state &= 0x7fff; + + /* + * This loop is just a simple implementation of a Fibonacci LFSR using + * the x16 + x15 + 1 polynomial. + */ + while (count--) + state = ((state >> 1) | + (((state ^ (state >> 1)) & 1) << 14)) & 0x7fff; + + return state; +} + +static u16 sunxi_nfc_randomizer_state(struct nand_chip *nand, int page, + bool ecc) +{ + struct mtd_info *mtd = nand_to_mtd(nand); + const u16 *seeds = sunxi_nfc_randomizer_page_seeds; + int mod = mtd_div_by_ws(mtd->erasesize, mtd); + + if (mod > ARRAY_SIZE(sunxi_nfc_randomizer_page_seeds)) + mod = ARRAY_SIZE(sunxi_nfc_randomizer_page_seeds); + + if (ecc) { + if (mtd->ecc_step_size == 512) + seeds = sunxi_nfc_randomizer_ecc512_seeds; + else + seeds = sunxi_nfc_randomizer_ecc1024_seeds; + } + + return seeds[page % mod]; +} + +static void sunxi_nfc_randomizer_config(struct nand_chip *nand, int page, + bool ecc) +{ + struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); + u32 ecc_ctl = readl(nfc->regs + NFC_REG_ECC_CTL); + u16 state; + + if (!(nand->options & NAND_NEED_SCRAMBLING)) + return; + + ecc_ctl = readl(nfc->regs + NFC_REG_ECC_CTL); + state = sunxi_nfc_randomizer_state(nand, page, ecc); + ecc_ctl = readl(nfc->regs + NFC_REG_ECC_CTL) & ~NFC_RANDOM_SEED_MSK; + writel(ecc_ctl | NFC_RANDOM_SEED(state), nfc->regs + NFC_REG_ECC_CTL); +} + +static void sunxi_nfc_randomizer_enable(struct nand_chip *nand) +{ + struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); + + if (!(nand->options & NAND_NEED_SCRAMBLING)) + return; + + writel(readl(nfc->regs + NFC_REG_ECC_CTL) | NFC_RANDOM_EN, + nfc->regs + NFC_REG_ECC_CTL); +} + +static void sunxi_nfc_randomizer_disable(struct nand_chip *nand) +{ + struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); + + if (!(nand->options & NAND_NEED_SCRAMBLING)) + return; + + writel(readl(nfc->regs + NFC_REG_ECC_CTL) & ~NFC_RANDOM_EN, + nfc->regs + NFC_REG_ECC_CTL); +} + +static void sunxi_nfc_randomize_bbm(struct nand_chip *nand, int page, u8 *bbm) +{ + u16 state = sunxi_nfc_randomizer_state(nand, page, true); + + bbm[0] ^= state; + bbm[1] ^= sunxi_nfc_randomizer_step(state, 8); +} + +static void sunxi_nfc_randomizer_write_buf(struct nand_chip *nand, + const uint8_t *buf, int len, + bool ecc, int page) +{ + sunxi_nfc_randomizer_config(nand, page, ecc); + sunxi_nfc_randomizer_enable(nand); + sunxi_nfc_write_buf(nand, buf, len); + sunxi_nfc_randomizer_disable(nand); +} + +static void sunxi_nfc_randomizer_read_buf(struct nand_chip *nand, uint8_t *buf, + int len, bool ecc, int page) +{ + sunxi_nfc_randomizer_config(nand, page, ecc); + sunxi_nfc_randomizer_enable(nand); + sunxi_nfc_read_buf(nand, buf, len); + sunxi_nfc_randomizer_disable(nand); +} + +static void sunxi_nfc_hw_ecc_enable(struct nand_chip *nand) +{ + struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand); + struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); + u32 ecc_ctl; + + ecc_ctl = readl(nfc->regs + NFC_REG_ECC_CTL); + ecc_ctl &= ~(NFC_ECC_MODE_MSK | NFC_ECC_PIPELINE | + NFC_ECC_BLOCK_SIZE_MSK); + ecc_ctl |= NFC_ECC_EN | NFC_ECC_MODE(sunxi_nand->ecc->mode) | + NFC_ECC_EXCEPTION | NFC_ECC_PIPELINE; + + if (nand->ecc.size == 512) + ecc_ctl |= NFC_ECC_BLOCK_512; + + writel(ecc_ctl, nfc->regs + NFC_REG_ECC_CTL); +} + +static void sunxi_nfc_hw_ecc_disable(struct nand_chip *nand) +{ + struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); + + writel(readl(nfc->regs + NFC_REG_ECC_CTL) & ~NFC_ECC_EN, + nfc->regs + NFC_REG_ECC_CTL); +} + +static inline void sunxi_nfc_user_data_to_buf(u32 user_data, u8 *buf) +{ + buf[0] = user_data; + buf[1] = user_data >> 8; + buf[2] = user_data >> 16; + buf[3] = user_data >> 24; +} + +static inline u32 sunxi_nfc_buf_to_user_data(const u8 *buf) +{ + return buf[0] | (buf[1] << 8) | (buf[2] << 16) | (buf[3] << 24); +} + +static void sunxi_nfc_hw_ecc_get_prot_oob_bytes(struct nand_chip *nand, u8 *oob, + int step, bool bbm, int page) +{ + struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); + + sunxi_nfc_user_data_to_buf(readl(nfc->regs + NFC_REG_USER_DATA(step)), + oob); + + /* De-randomize the Bad Block Marker. */ + if (bbm && (nand->options & NAND_NEED_SCRAMBLING)) + sunxi_nfc_randomize_bbm(nand, page, oob); +} + +static void sunxi_nfc_hw_ecc_set_prot_oob_bytes(struct nand_chip *nand, + const u8 *oob, int step, + bool bbm, int page) +{ + struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); + u8 user_data[4]; + + /* Randomize the Bad Block Marker. */ + if (bbm && (nand->options & NAND_NEED_SCRAMBLING)) { + memcpy(user_data, oob, sizeof(user_data)); + sunxi_nfc_randomize_bbm(nand, page, user_data); + oob = user_data; + } + + writel(sunxi_nfc_buf_to_user_data(oob), + nfc->regs + NFC_REG_USER_DATA(step)); +} + +static void sunxi_nfc_hw_ecc_update_stats(struct nand_chip *nand, + unsigned int *max_bitflips, int ret) +{ + struct mtd_info *mtd = nand_to_mtd(nand); + + if (ret < 0) { + mtd->ecc_stats.failed++; + } else { + mtd->ecc_stats.corrected += ret; + *max_bitflips = max_t(unsigned int, *max_bitflips, ret); + } +} + +static int sunxi_nfc_hw_ecc_correct(struct nand_chip *nand, u8 *data, u8 *oob, + int step, u32 status, bool *erased) +{ + struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); + struct nand_ecc_ctrl *ecc = &nand->ecc; + u32 tmp; + + *erased = false; + + if (status & NFC_ECC_ERR(step)) + return -EBADMSG; + + if (status & NFC_ECC_PAT_FOUND(step)) { + u8 pattern; + + if (unlikely(!(readl(nfc->regs + NFC_REG_PAT_ID) & 0x1))) { + pattern = 0x0; + } else { + pattern = 0xff; + *erased = true; + } + + if (data) + memset(data, pattern, ecc->size); + + if (oob) + memset(oob, pattern, ecc->bytes + 4); + + return 0; + } + + tmp = readl(nfc->regs + NFC_REG_ECC_ERR_CNT(step)); + + return NFC_ECC_ERR_CNT(step, tmp); +} + +static int sunxi_nfc_hw_ecc_read_chunk(struct nand_chip *nand, + u8 *data, int data_off, + u8 *oob, int oob_off, + int *cur_off, + unsigned int *max_bitflips, + bool bbm, bool oob_required, int page) +{ + struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); + struct nand_ecc_ctrl *ecc = &nand->ecc; + int raw_mode = 0; + bool erased; + int ret; + + if (*cur_off != data_off) + nand_change_read_column_op(nand, data_off, NULL, 0, false); + + sunxi_nfc_randomizer_read_buf(nand, NULL, ecc->size, false, page); + + if (data_off + ecc->size != oob_off) + nand_change_read_column_op(nand, oob_off, NULL, 0, false); + + ret = sunxi_nfc_wait_cmd_fifo_empty(nfc); + if (ret) + return ret; + + sunxi_nfc_randomizer_enable(nand); + writel(NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD | NFC_ECC_OP, + nfc->regs + NFC_REG_CMD); + + ret = sunxi_nfc_wait_events(nfc, NFC_CMD_INT_FLAG, false, 0); + sunxi_nfc_randomizer_disable(nand); + if (ret) + return ret; + + *cur_off = oob_off + ecc->bytes + 4; + + ret = sunxi_nfc_hw_ecc_correct(nand, data, oob_required ? oob : NULL, 0, + readl(nfc->regs + NFC_REG_ECC_ST), + &erased); + if (erased) + return 1; + + if (ret < 0) { + /* + * Re-read the data with the randomizer disabled to identify + * bitflips in erased pages. + */ + if (nand->options & NAND_NEED_SCRAMBLING) + nand_change_read_column_op(nand, data_off, data, + ecc->size, false); + else + memcpy_fromio(data, nfc->regs + NFC_RAM0_BASE, + ecc->size); + + nand_change_read_column_op(nand, oob_off, oob, ecc->bytes + 4, + false); + + ret = nand_check_erased_ecc_chunk(data, ecc->size, + oob, ecc->bytes + 4, + NULL, 0, ecc->strength); + if (ret >= 0) + raw_mode = 1; + } else { + memcpy_fromio(data, nfc->regs + NFC_RAM0_BASE, ecc->size); + + if (oob_required) { + nand_change_read_column_op(nand, oob_off, NULL, 0, + false); + sunxi_nfc_randomizer_read_buf(nand, oob, ecc->bytes + 4, + true, page); + + sunxi_nfc_hw_ecc_get_prot_oob_bytes(nand, oob, 0, + bbm, page); + } + } + + sunxi_nfc_hw_ecc_update_stats(nand, max_bitflips, ret); + + return raw_mode; +} + +static void sunxi_nfc_hw_ecc_read_extra_oob(struct nand_chip *nand, + u8 *oob, int *cur_off, + bool randomize, int page) +{ + struct mtd_info *mtd = nand_to_mtd(nand); + struct nand_ecc_ctrl *ecc = &nand->ecc; + int offset = ((ecc->bytes + 4) * ecc->steps); + int len = mtd->oobsize - offset; + + if (len <= 0) + return; + + if (!cur_off || *cur_off != offset) + nand_change_read_column_op(nand, mtd->writesize, NULL, 0, + false); + + if (!randomize) + sunxi_nfc_read_buf(nand, oob + offset, len); + else + sunxi_nfc_randomizer_read_buf(nand, oob + offset, len, + false, page); + + if (cur_off) + *cur_off = mtd->oobsize + mtd->writesize; +} + +static int sunxi_nfc_hw_ecc_read_chunks_dma(struct nand_chip *nand, uint8_t *buf, + int oob_required, int page, + int nchunks) +{ + bool randomized = nand->options & NAND_NEED_SCRAMBLING; + struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); + struct mtd_info *mtd = nand_to_mtd(nand); + struct nand_ecc_ctrl *ecc = &nand->ecc; + unsigned int max_bitflips = 0; + int ret, i, raw_mode = 0; + struct scatterlist sg; + u32 status, wait; + + ret = sunxi_nfc_wait_cmd_fifo_empty(nfc); + if (ret) + return ret; + + ret = sunxi_nfc_dma_op_prepare(nfc, buf, ecc->size, nchunks, + DMA_FROM_DEVICE, &sg); + if (ret) + return ret; + + sunxi_nfc_hw_ecc_enable(nand); + sunxi_nfc_randomizer_config(nand, page, false); + sunxi_nfc_randomizer_enable(nand); + + writel((NAND_CMD_RNDOUTSTART << 16) | (NAND_CMD_RNDOUT << 8) | + NAND_CMD_READSTART, nfc->regs + NFC_REG_RCMD_SET); + + wait = NFC_CMD_INT_FLAG; + + if (nfc->caps->has_mdma) + wait |= NFC_DMA_INT_FLAG; + else + dma_async_issue_pending(nfc->dmac); + + writel(NFC_PAGE_OP | NFC_DATA_SWAP_METHOD | NFC_DATA_TRANS, + nfc->regs + NFC_REG_CMD); + + ret = sunxi_nfc_wait_events(nfc, wait, false, 0); + if (ret && !nfc->caps->has_mdma) + dmaengine_terminate_all(nfc->dmac); + + sunxi_nfc_randomizer_disable(nand); + sunxi_nfc_hw_ecc_disable(nand); + + sunxi_nfc_dma_op_cleanup(nfc, DMA_FROM_DEVICE, &sg); + + if (ret) + return ret; + + status = readl(nfc->regs + NFC_REG_ECC_ST); + + for (i = 0; i < nchunks; i++) { + int data_off = i * ecc->size; + int oob_off = i * (ecc->bytes + 4); + u8 *data = buf + data_off; + u8 *oob = nand->oob_poi + oob_off; + bool erased; + + ret = sunxi_nfc_hw_ecc_correct(nand, randomized ? data : NULL, + oob_required ? oob : NULL, + i, status, &erased); + + /* ECC errors are handled in the second loop. */ + if (ret < 0) + continue; + + if (oob_required && !erased) { + /* TODO: use DMA to retrieve OOB */ + nand_change_read_column_op(nand, + mtd->writesize + oob_off, + oob, ecc->bytes + 4, false); + + sunxi_nfc_hw_ecc_get_prot_oob_bytes(nand, oob, i, + !i, page); + } + + if (erased) + raw_mode = 1; + + sunxi_nfc_hw_ecc_update_stats(nand, &max_bitflips, ret); + } + + if (status & NFC_ECC_ERR_MSK) { + for (i = 0; i < nchunks; i++) { + int data_off = i * ecc->size; + int oob_off = i * (ecc->bytes + 4); + u8 *data = buf + data_off; + u8 *oob = nand->oob_poi + oob_off; + + if (!(status & NFC_ECC_ERR(i))) + continue; + + /* + * Re-read the data with the randomizer disabled to + * identify bitflips in erased pages. + * TODO: use DMA to read page in raw mode + */ + if (randomized) + nand_change_read_column_op(nand, data_off, + data, ecc->size, + false); + + /* TODO: use DMA to retrieve OOB */ + nand_change_read_column_op(nand, + mtd->writesize + oob_off, + oob, ecc->bytes + 4, false); + + ret = nand_check_erased_ecc_chunk(data, ecc->size, + oob, ecc->bytes + 4, + NULL, 0, + ecc->strength); + if (ret >= 0) + raw_mode = 1; + + sunxi_nfc_hw_ecc_update_stats(nand, &max_bitflips, ret); + } + } + + if (oob_required) + sunxi_nfc_hw_ecc_read_extra_oob(nand, nand->oob_poi, + NULL, !raw_mode, + page); + + return max_bitflips; +} + +static int sunxi_nfc_hw_ecc_write_chunk(struct nand_chip *nand, + const u8 *data, int data_off, + const u8 *oob, int oob_off, + int *cur_off, bool bbm, + int page) +{ + struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); + struct nand_ecc_ctrl *ecc = &nand->ecc; + int ret; + + if (data_off != *cur_off) + nand_change_write_column_op(nand, data_off, NULL, 0, false); + + sunxi_nfc_randomizer_write_buf(nand, data, ecc->size, false, page); + + if (data_off + ecc->size != oob_off) + nand_change_write_column_op(nand, oob_off, NULL, 0, false); + + ret = sunxi_nfc_wait_cmd_fifo_empty(nfc); + if (ret) + return ret; + + sunxi_nfc_randomizer_enable(nand); + sunxi_nfc_hw_ecc_set_prot_oob_bytes(nand, oob, 0, bbm, page); + + writel(NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD | + NFC_ACCESS_DIR | NFC_ECC_OP, + nfc->regs + NFC_REG_CMD); + + ret = sunxi_nfc_wait_events(nfc, NFC_CMD_INT_FLAG, false, 0); + sunxi_nfc_randomizer_disable(nand); + if (ret) + return ret; + + *cur_off = oob_off + ecc->bytes + 4; + + return 0; +} + +static void sunxi_nfc_hw_ecc_write_extra_oob(struct nand_chip *nand, + u8 *oob, int *cur_off, + int page) +{ + struct mtd_info *mtd = nand_to_mtd(nand); + struct nand_ecc_ctrl *ecc = &nand->ecc; + int offset = ((ecc->bytes + 4) * ecc->steps); + int len = mtd->oobsize - offset; + + if (len <= 0) + return; + + if (!cur_off || *cur_off != offset) + nand_change_write_column_op(nand, offset + mtd->writesize, + NULL, 0, false); + + sunxi_nfc_randomizer_write_buf(nand, oob + offset, len, false, page); + + if (cur_off) + *cur_off = mtd->oobsize + mtd->writesize; +} + +static int sunxi_nfc_hw_ecc_read_page(struct nand_chip *nand, uint8_t *buf, + int oob_required, int page) +{ + struct mtd_info *mtd = nand_to_mtd(nand); + struct nand_ecc_ctrl *ecc = &nand->ecc; + unsigned int max_bitflips = 0; + int ret, i, cur_off = 0; + bool raw_mode = false; + + sunxi_nfc_select_chip(nand, nand->cur_cs); + + nand_read_page_op(nand, page, 0, NULL, 0); + + sunxi_nfc_hw_ecc_enable(nand); + + for (i = 0; i < ecc->steps; i++) { + int data_off = i * ecc->size; + int oob_off = i * (ecc->bytes + 4); + u8 *data = buf + data_off; + u8 *oob = nand->oob_poi + oob_off; + + ret = sunxi_nfc_hw_ecc_read_chunk(nand, data, data_off, oob, + oob_off + mtd->writesize, + &cur_off, &max_bitflips, + !i, oob_required, page); + if (ret < 0) + return ret; + else if (ret) + raw_mode = true; + } + + if (oob_required) + sunxi_nfc_hw_ecc_read_extra_oob(nand, nand->oob_poi, &cur_off, + !raw_mode, page); + + sunxi_nfc_hw_ecc_disable(nand); + + return max_bitflips; +} + +static int sunxi_nfc_hw_ecc_read_page_dma(struct nand_chip *nand, u8 *buf, + int oob_required, int page) +{ + int ret; + + sunxi_nfc_select_chip(nand, nand->cur_cs); + + nand_read_page_op(nand, page, 0, NULL, 0); + + ret = sunxi_nfc_hw_ecc_read_chunks_dma(nand, buf, oob_required, page, + nand->ecc.steps); + if (ret >= 0) + return ret; + + /* Fallback to PIO mode */ + return sunxi_nfc_hw_ecc_read_page(nand, buf, oob_required, page); +} + +static int sunxi_nfc_hw_ecc_read_subpage(struct nand_chip *nand, + u32 data_offs, u32 readlen, + u8 *bufpoi, int page) +{ + struct mtd_info *mtd = nand_to_mtd(nand); + struct nand_ecc_ctrl *ecc = &nand->ecc; + int ret, i, cur_off = 0; + unsigned int max_bitflips = 0; + + sunxi_nfc_select_chip(nand, nand->cur_cs); + + nand_read_page_op(nand, page, 0, NULL, 0); + + sunxi_nfc_hw_ecc_enable(nand); + + for (i = data_offs / ecc->size; + i < DIV_ROUND_UP(data_offs + readlen, ecc->size); i++) { + int data_off = i * ecc->size; + int oob_off = i * (ecc->bytes + 4); + u8 *data = bufpoi + data_off; + u8 *oob = nand->oob_poi + oob_off; + + ret = sunxi_nfc_hw_ecc_read_chunk(nand, data, data_off, + oob, + oob_off + mtd->writesize, + &cur_off, &max_bitflips, !i, + false, page); + if (ret < 0) + return ret; + } + + sunxi_nfc_hw_ecc_disable(nand); + + return max_bitflips; +} + +static int sunxi_nfc_hw_ecc_read_subpage_dma(struct nand_chip *nand, + u32 data_offs, u32 readlen, + u8 *buf, int page) +{ + int nchunks = DIV_ROUND_UP(data_offs + readlen, nand->ecc.size); + int ret; + + sunxi_nfc_select_chip(nand, nand->cur_cs); + + nand_read_page_op(nand, page, 0, NULL, 0); + + ret = sunxi_nfc_hw_ecc_read_chunks_dma(nand, buf, false, page, nchunks); + if (ret >= 0) + return ret; + + /* Fallback to PIO mode */ + return sunxi_nfc_hw_ecc_read_subpage(nand, data_offs, readlen, + buf, page); +} + +static int sunxi_nfc_hw_ecc_write_page(struct nand_chip *nand, + const uint8_t *buf, int oob_required, + int page) +{ + struct mtd_info *mtd = nand_to_mtd(nand); + struct nand_ecc_ctrl *ecc = &nand->ecc; + int ret, i, cur_off = 0; + + sunxi_nfc_select_chip(nand, nand->cur_cs); + + nand_prog_page_begin_op(nand, page, 0, NULL, 0); + + sunxi_nfc_hw_ecc_enable(nand); + + for (i = 0; i < ecc->steps; i++) { + int data_off = i * ecc->size; + int oob_off = i * (ecc->bytes + 4); + const u8 *data = buf + data_off; + const u8 *oob = nand->oob_poi + oob_off; + + ret = sunxi_nfc_hw_ecc_write_chunk(nand, data, data_off, oob, + oob_off + mtd->writesize, + &cur_off, !i, page); + if (ret) + return ret; + } + + if (oob_required || (nand->options & NAND_NEED_SCRAMBLING)) + sunxi_nfc_hw_ecc_write_extra_oob(nand, nand->oob_poi, + &cur_off, page); + + sunxi_nfc_hw_ecc_disable(nand); + + return nand_prog_page_end_op(nand); +} + +static int sunxi_nfc_hw_ecc_write_subpage(struct nand_chip *nand, + u32 data_offs, u32 data_len, + const u8 *buf, int oob_required, + int page) +{ + struct mtd_info *mtd = nand_to_mtd(nand); + struct nand_ecc_ctrl *ecc = &nand->ecc; + int ret, i, cur_off = 0; + + sunxi_nfc_select_chip(nand, nand->cur_cs); + + nand_prog_page_begin_op(nand, page, 0, NULL, 0); + + sunxi_nfc_hw_ecc_enable(nand); + + for (i = data_offs / ecc->size; + i < DIV_ROUND_UP(data_offs + data_len, ecc->size); i++) { + int data_off = i * ecc->size; + int oob_off = i * (ecc->bytes + 4); + const u8 *data = buf + data_off; + const u8 *oob = nand->oob_poi + oob_off; + + ret = sunxi_nfc_hw_ecc_write_chunk(nand, data, data_off, oob, + oob_off + mtd->writesize, + &cur_off, !i, page); + if (ret) + return ret; + } + + sunxi_nfc_hw_ecc_disable(nand); + + return nand_prog_page_end_op(nand); +} + +static int sunxi_nfc_hw_ecc_write_page_dma(struct nand_chip *nand, + const u8 *buf, + int oob_required, + int page) +{ + struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); + struct nand_ecc_ctrl *ecc = &nand->ecc; + struct scatterlist sg; + u32 wait; + int ret, i; + + sunxi_nfc_select_chip(nand, nand->cur_cs); + + ret = sunxi_nfc_wait_cmd_fifo_empty(nfc); + if (ret) + return ret; + + ret = sunxi_nfc_dma_op_prepare(nfc, buf, ecc->size, ecc->steps, + DMA_TO_DEVICE, &sg); + if (ret) + goto pio_fallback; + + for (i = 0; i < ecc->steps; i++) { + const u8 *oob = nand->oob_poi + (i * (ecc->bytes + 4)); + + sunxi_nfc_hw_ecc_set_prot_oob_bytes(nand, oob, i, !i, page); + } + + nand_prog_page_begin_op(nand, page, 0, NULL, 0); + + sunxi_nfc_hw_ecc_enable(nand); + sunxi_nfc_randomizer_config(nand, page, false); + sunxi_nfc_randomizer_enable(nand); + + writel((NAND_CMD_RNDIN << 8) | NAND_CMD_PAGEPROG, + nfc->regs + NFC_REG_WCMD_SET); + + wait = NFC_CMD_INT_FLAG; + + if (nfc->caps->has_mdma) + wait |= NFC_DMA_INT_FLAG; + else + dma_async_issue_pending(nfc->dmac); + + writel(NFC_PAGE_OP | NFC_DATA_SWAP_METHOD | + NFC_DATA_TRANS | NFC_ACCESS_DIR, + nfc->regs + NFC_REG_CMD); + + ret = sunxi_nfc_wait_events(nfc, wait, false, 0); + if (ret && !nfc->caps->has_mdma) + dmaengine_terminate_all(nfc->dmac); + + sunxi_nfc_randomizer_disable(nand); + sunxi_nfc_hw_ecc_disable(nand); + + sunxi_nfc_dma_op_cleanup(nfc, DMA_TO_DEVICE, &sg); + + if (ret) + return ret; + + if (oob_required || (nand->options & NAND_NEED_SCRAMBLING)) + /* TODO: use DMA to transfer extra OOB bytes ? */ + sunxi_nfc_hw_ecc_write_extra_oob(nand, nand->oob_poi, + NULL, page); + + return nand_prog_page_end_op(nand); + +pio_fallback: + return sunxi_nfc_hw_ecc_write_page(nand, buf, oob_required, page); +} + +static int sunxi_nfc_hw_ecc_read_oob(struct nand_chip *nand, int page) +{ + u8 *buf = nand_get_data_buf(nand); + + return nand->ecc.read_page(nand, buf, 1, page); +} + +static int sunxi_nfc_hw_ecc_write_oob(struct nand_chip *nand, int page) +{ + struct mtd_info *mtd = nand_to_mtd(nand); + u8 *buf = nand_get_data_buf(nand); + int ret; + + memset(buf, 0xff, mtd->writesize); + ret = nand->ecc.write_page(nand, buf, 1, page); + if (ret) + return ret; + + /* Send command to program the OOB data */ + return nand_prog_page_end_op(nand); +} + +static const s32 tWB_lut[] = {6, 12, 16, 20}; +static const s32 tRHW_lut[] = {4, 8, 12, 20}; + +static int _sunxi_nand_lookup_timing(const s32 *lut, int lut_size, u32 duration, + u32 clk_period) +{ + u32 clk_cycles = DIV_ROUND_UP(duration, clk_period); + int i; + + for (i = 0; i < lut_size; i++) { + if (clk_cycles <= lut[i]) + return i; + } + + /* Doesn't fit */ + return -EINVAL; +} + +#define sunxi_nand_lookup_timing(l, p, c) \ + _sunxi_nand_lookup_timing(l, ARRAY_SIZE(l), p, c) + +static int sunxi_nfc_setup_interface(struct nand_chip *nand, int csline, + const struct nand_interface_config *conf) +{ + struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand); + struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller); + const struct nand_sdr_timings *timings; + u32 min_clk_period = 0; + s32 tWB, tADL, tWHR, tRHW, tCAD; + long real_clk_rate; + + timings = nand_get_sdr_timings(conf); + if (IS_ERR(timings)) + return -ENOTSUPP; + + /* T1 <=> tCLS */ + if (timings->tCLS_min > min_clk_period) + min_clk_period = timings->tCLS_min; + + /* T2 <=> tCLH */ + if (timings->tCLH_min > min_clk_period) + min_clk_period = timings->tCLH_min; + + /* T3 <=> tCS */ + if (timings->tCS_min > min_clk_period) + min_clk_period = timings->tCS_min; + + /* T4 <=> tCH */ + if (timings->tCH_min > min_clk_period) + min_clk_period = timings->tCH_min; + + /* T5 <=> tWP */ + if (timings->tWP_min > min_clk_period) + min_clk_period = timings->tWP_min; + + /* T6 <=> tWH */ + if (timings->tWH_min > min_clk_period) + min_clk_period = timings->tWH_min; + + /* T7 <=> tALS */ + if (timings->tALS_min > min_clk_period) + min_clk_period = timings->tALS_min; + + /* T8 <=> tDS */ + if (timings->tDS_min > min_clk_period) + min_clk_period = timings->tDS_min; + + /* T9 <=> tDH */ + if (timings->tDH_min > min_clk_period) + min_clk_period = timings->tDH_min; + + /* T10 <=> tRR */ + if (timings->tRR_min > (min_clk_period * 3)) + min_clk_period = DIV_ROUND_UP(timings->tRR_min, 3); + + /* T11 <=> tALH */ + if (timings->tALH_min > min_clk_period) + min_clk_period = timings->tALH_min; + + /* T12 <=> tRP */ + if (timings->tRP_min > min_clk_period) + min_clk_period = timings->tRP_min; + + /* T13 <=> tREH */ + if (timings->tREH_min > min_clk_period) + min_clk_period = timings->tREH_min; + + /* T14 <=> tRC */ + if (timings->tRC_min > (min_clk_period * 2)) + min_clk_period = DIV_ROUND_UP(timings->tRC_min, 2); + + /* T15 <=> tWC */ + if (timings->tWC_min > (min_clk_period * 2)) + min_clk_period = DIV_ROUND_UP(timings->tWC_min, 2); + + /* T16 - T19 + tCAD */ + if (timings->tWB_max > (min_clk_period * 20)) + min_clk_period = DIV_ROUND_UP(timings->tWB_max, 20); + + if (timings->tADL_min > (min_clk_period * 32)) + min_clk_period = DIV_ROUND_UP(timings->tADL_min, 32); + + if (timings->tWHR_min > (min_clk_period * 32)) + min_clk_period = DIV_ROUND_UP(timings->tWHR_min, 32); + + if (timings->tRHW_min > (min_clk_period * 20)) + min_clk_period = DIV_ROUND_UP(timings->tRHW_min, 20); + + /* + * In non-EDO, tREA should be less than tRP to guarantee that the + * controller does not sample the IO lines too early. Unfortunately, + * the sunxi NAND controller does not allow us to have different + * values for tRP and tREH (tRP = tREH = tRW / 2). + * + * We have 2 options to overcome this limitation: + * + * 1/ Extend tRC to fulfil the tREA <= tRC / 2 constraint + * 2/ Use EDO mode (only works if timings->tRLOH > 0) + */ + if (timings->tREA_max > min_clk_period && !timings->tRLOH_min) + min_clk_period = timings->tREA_max; + + tWB = sunxi_nand_lookup_timing(tWB_lut, timings->tWB_max, + min_clk_period); + if (tWB < 0) { + dev_err(nfc->dev, "unsupported tWB\n"); + return tWB; + } + + tADL = DIV_ROUND_UP(timings->tADL_min, min_clk_period) >> 3; + if (tADL > 3) { + dev_err(nfc->dev, "unsupported tADL\n"); + return -EINVAL; + } + + tWHR = DIV_ROUND_UP(timings->tWHR_min, min_clk_period) >> 3; + if (tWHR > 3) { + dev_err(nfc->dev, "unsupported tWHR\n"); + return -EINVAL; + } + + tRHW = sunxi_nand_lookup_timing(tRHW_lut, timings->tRHW_min, + min_clk_period); + if (tRHW < 0) { + dev_err(nfc->dev, "unsupported tRHW\n"); + return tRHW; + } + + if (csline == NAND_DATA_IFACE_CHECK_ONLY) + return 0; + + /* + * TODO: according to ONFI specs this value only applies for DDR NAND, + * but Allwinner seems to set this to 0x7. Mimic them for now. + */ + tCAD = 0x7; + + /* TODO: A83 has some more bits for CDQSS, CS, CLHZ, CCS, WC */ + sunxi_nand->timing_cfg = NFC_TIMING_CFG(tWB, tADL, tWHR, tRHW, tCAD); + + /* Convert min_clk_period from picoseconds to nanoseconds */ + min_clk_period = DIV_ROUND_UP(min_clk_period, 1000); + + /* + * Unlike what is stated in Allwinner datasheet, the clk_rate should + * be set to (1 / min_clk_period), and not (2 / min_clk_period). + * This new formula was verified with a scope and validated by + * Allwinner engineers. + */ + sunxi_nand->clk_rate = NSEC_PER_SEC / min_clk_period; + real_clk_rate = clk_round_rate(nfc->mod_clk, sunxi_nand->clk_rate); + if (real_clk_rate <= 0) { + dev_err(nfc->dev, "Unable to round clk %lu\n", + sunxi_nand->clk_rate); + return -EINVAL; + } + + sunxi_nand->timing_ctl = 0; + + /* + * ONFI specification 3.1, paragraph 4.15.2 dictates that EDO data + * output cycle timings shall be used if the host drives tRC less than + * 30 ns. We should also use EDO mode if tREA is bigger than tRP. + */ + min_clk_period = NSEC_PER_SEC / real_clk_rate; + if (min_clk_period * 2 < 30 || min_clk_period * 1000 < timings->tREA_max) + sunxi_nand->timing_ctl = NFC_TIMING_CTL_EDO; + + return 0; +} + +static int sunxi_nand_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *nand = mtd_to_nand(mtd); + struct nand_ecc_ctrl *ecc = &nand->ecc; + + if (section >= ecc->steps) + return -ERANGE; + + oobregion->offset = section * (ecc->bytes + 4) + 4; + oobregion->length = ecc->bytes; + + return 0; +} + +static int sunxi_nand_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *nand = mtd_to_nand(mtd); + struct nand_ecc_ctrl *ecc = &nand->ecc; + + if (section > ecc->steps) + return -ERANGE; + + /* + * The first 2 bytes are used for BB markers, hence we + * only have 2 bytes available in the first user data + * section. + */ + if (!section && ecc->engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST) { + oobregion->offset = 2; + oobregion->length = 2; + + return 0; + } + + oobregion->offset = section * (ecc->bytes + 4); + + if (section < ecc->steps) + oobregion->length = 4; + else + oobregion->offset = mtd->oobsize - oobregion->offset; + + return 0; +} + +static const struct mtd_ooblayout_ops sunxi_nand_ooblayout_ops = { + .ecc = sunxi_nand_ooblayout_ecc, + .free = sunxi_nand_ooblayout_free, +}; + +static void sunxi_nand_hw_ecc_ctrl_cleanup(struct sunxi_nand_chip *sunxi_nand) +{ + kfree(sunxi_nand->ecc); +} + +static int sunxi_nand_hw_ecc_ctrl_init(struct nand_chip *nand, + struct nand_ecc_ctrl *ecc, + struct device_node *np) +{ + static const u8 strengths[] = { 16, 24, 28, 32, 40, 48, 56, 60, 64 }; + struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand); + struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); + struct mtd_info *mtd = nand_to_mtd(nand); + struct nand_device *nanddev = mtd_to_nanddev(mtd); + int nsectors; + int ret; + int i; + + if (nanddev->ecc.user_conf.flags & NAND_ECC_MAXIMIZE_STRENGTH) { + int bytes; + + ecc->size = 1024; + nsectors = mtd->writesize / ecc->size; + + /* Reserve 2 bytes for the BBM */ + bytes = (mtd->oobsize - 2) / nsectors; + + /* 4 non-ECC bytes are added before each ECC bytes section */ + bytes -= 4; + + /* and bytes has to be even. */ + if (bytes % 2) + bytes--; + + ecc->strength = bytes * 8 / fls(8 * ecc->size); + + for (i = 0; i < ARRAY_SIZE(strengths); i++) { + if (strengths[i] > ecc->strength) + break; + } + + if (!i) + ecc->strength = 0; + else + ecc->strength = strengths[i - 1]; + } + + if (ecc->size != 512 && ecc->size != 1024) + return -EINVAL; + + sunxi_nand->ecc = kzalloc(sizeof(*sunxi_nand->ecc), GFP_KERNEL); + if (!sunxi_nand->ecc) + return -ENOMEM; + + /* Prefer 1k ECC chunk over 512 ones */ + if (ecc->size == 512 && mtd->writesize > 512) { + ecc->size = 1024; + ecc->strength *= 2; + } + + /* Add ECC info retrieval from DT */ + for (i = 0; i < ARRAY_SIZE(strengths); i++) { + if (ecc->strength <= strengths[i]) { + /* + * Update ecc->strength value with the actual strength + * that will be used by the ECC engine. + */ + ecc->strength = strengths[i]; + break; + } + } + + if (i >= ARRAY_SIZE(strengths)) { + dev_err(nfc->dev, "unsupported strength\n"); + ret = -ENOTSUPP; + goto err; + } + + sunxi_nand->ecc->mode = i; + + /* HW ECC always request ECC bytes for 1024 bytes blocks */ + ecc->bytes = DIV_ROUND_UP(ecc->strength * fls(8 * 1024), 8); + + /* HW ECC always work with even numbers of ECC bytes */ + ecc->bytes = ALIGN(ecc->bytes, 2); + + nsectors = mtd->writesize / ecc->size; + + if (mtd->oobsize < ((ecc->bytes + 4) * nsectors)) { + ret = -EINVAL; + goto err; + } + + ecc->read_oob = sunxi_nfc_hw_ecc_read_oob; + ecc->write_oob = sunxi_nfc_hw_ecc_write_oob; + mtd_set_ooblayout(mtd, &sunxi_nand_ooblayout_ops); + + if (nfc->dmac || nfc->caps->has_mdma) { + ecc->read_page = sunxi_nfc_hw_ecc_read_page_dma; + ecc->read_subpage = sunxi_nfc_hw_ecc_read_subpage_dma; + ecc->write_page = sunxi_nfc_hw_ecc_write_page_dma; + nand->options |= NAND_USES_DMA; + } else { + ecc->read_page = sunxi_nfc_hw_ecc_read_page; + ecc->read_subpage = sunxi_nfc_hw_ecc_read_subpage; + ecc->write_page = sunxi_nfc_hw_ecc_write_page; + } + + /* TODO: support DMA for raw accesses and subpage write */ + ecc->write_subpage = sunxi_nfc_hw_ecc_write_subpage; + ecc->read_oob_raw = nand_read_oob_std; + ecc->write_oob_raw = nand_write_oob_std; + + return 0; + +err: + kfree(sunxi_nand->ecc); + + return ret; +} + +static void sunxi_nand_ecc_cleanup(struct sunxi_nand_chip *sunxi_nand) +{ + struct nand_ecc_ctrl *ecc = &sunxi_nand->nand.ecc; + + switch (ecc->engine_type) { + case NAND_ECC_ENGINE_TYPE_ON_HOST: + sunxi_nand_hw_ecc_ctrl_cleanup(sunxi_nand); + break; + case NAND_ECC_ENGINE_TYPE_NONE: + default: + break; + } +} + +static int sunxi_nand_attach_chip(struct nand_chip *nand) +{ + const struct nand_ecc_props *requirements = + nanddev_get_ecc_requirements(&nand->base); + struct nand_ecc_ctrl *ecc = &nand->ecc; + struct device_node *np = nand_get_flash_node(nand); + int ret; + + if (nand->bbt_options & NAND_BBT_USE_FLASH) + nand->bbt_options |= NAND_BBT_NO_OOB; + + if (nand->options & NAND_NEED_SCRAMBLING) + nand->options |= NAND_NO_SUBPAGE_WRITE; + + nand->options |= NAND_SUBPAGE_READ; + + if (!ecc->size) { + ecc->size = requirements->step_size; + ecc->strength = requirements->strength; + } + + if (!ecc->size || !ecc->strength) + return -EINVAL; + + switch (ecc->engine_type) { + case NAND_ECC_ENGINE_TYPE_ON_HOST: + ret = sunxi_nand_hw_ecc_ctrl_init(nand, ecc, np); + if (ret) + return ret; + break; + case NAND_ECC_ENGINE_TYPE_NONE: + case NAND_ECC_ENGINE_TYPE_SOFT: + break; + default: + return -EINVAL; + } + + return 0; +} + +static int sunxi_nfc_exec_subop(struct nand_chip *nand, + const struct nand_subop *subop) +{ + struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); + u32 cmd = 0, extcmd = 0, cnt = 0, addrs[2] = { }; + unsigned int i, j, remaining, start; + void *inbuf = NULL; + int ret; + + for (i = 0; i < subop->ninstrs; i++) { + const struct nand_op_instr *instr = &subop->instrs[i]; + + switch (instr->type) { + case NAND_OP_CMD_INSTR: + if (cmd & NFC_SEND_CMD1) { + if (WARN_ON(cmd & NFC_SEND_CMD2)) + return -EINVAL; + + cmd |= NFC_SEND_CMD2; + extcmd |= instr->ctx.cmd.opcode; + } else { + cmd |= NFC_SEND_CMD1 | + NFC_CMD(instr->ctx.cmd.opcode); + } + break; + + case NAND_OP_ADDR_INSTR: + remaining = nand_subop_get_num_addr_cyc(subop, i); + start = nand_subop_get_addr_start_off(subop, i); + for (j = 0; j < 8 && j + start < remaining; j++) { + u32 addr = instr->ctx.addr.addrs[j + start]; + + addrs[j / 4] |= addr << (j % 4) * 8; + } + + if (j) + cmd |= NFC_SEND_ADR | NFC_ADR_NUM(j); + + break; + + case NAND_OP_DATA_IN_INSTR: + case NAND_OP_DATA_OUT_INSTR: + start = nand_subop_get_data_start_off(subop, i); + remaining = nand_subop_get_data_len(subop, i); + cnt = min_t(u32, remaining, NFC_SRAM_SIZE); + cmd |= NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD; + + if (instr->type == NAND_OP_DATA_OUT_INSTR) { + cmd |= NFC_ACCESS_DIR; + memcpy_toio(nfc->regs + NFC_RAM0_BASE, + instr->ctx.data.buf.out + start, + cnt); + } else { + inbuf = instr->ctx.data.buf.in + start; + } + + break; + + case NAND_OP_WAITRDY_INSTR: + cmd |= NFC_WAIT_FLAG; + break; + } + } + + ret = sunxi_nfc_wait_cmd_fifo_empty(nfc); + if (ret) + return ret; + + if (cmd & NFC_SEND_ADR) { + writel(addrs[0], nfc->regs + NFC_REG_ADDR_LOW); + writel(addrs[1], nfc->regs + NFC_REG_ADDR_HIGH); + } + + if (cmd & NFC_SEND_CMD2) + writel(extcmd, + nfc->regs + + (cmd & NFC_ACCESS_DIR ? + NFC_REG_WCMD_SET : NFC_REG_RCMD_SET)); + + if (cmd & NFC_DATA_TRANS) + writel(cnt, nfc->regs + NFC_REG_CNT); + + writel(cmd, nfc->regs + NFC_REG_CMD); + + ret = sunxi_nfc_wait_events(nfc, NFC_CMD_INT_FLAG, + !(cmd & NFC_WAIT_FLAG) && cnt < 64, + 0); + if (ret) + return ret; + + if (inbuf) + memcpy_fromio(inbuf, nfc->regs + NFC_RAM0_BASE, cnt); + + return 0; +} + +static int sunxi_nfc_soft_waitrdy(struct nand_chip *nand, + const struct nand_subop *subop) +{ + return nand_soft_waitrdy(nand, + subop->instrs[0].ctx.waitrdy.timeout_ms); +} + +static const struct nand_op_parser sunxi_nfc_op_parser = NAND_OP_PARSER( + NAND_OP_PARSER_PATTERN(sunxi_nfc_exec_subop, + NAND_OP_PARSER_PAT_CMD_ELEM(true), + NAND_OP_PARSER_PAT_ADDR_ELEM(true, 8), + NAND_OP_PARSER_PAT_CMD_ELEM(true), + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true), + NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, 1024)), + NAND_OP_PARSER_PATTERN(sunxi_nfc_exec_subop, + NAND_OP_PARSER_PAT_CMD_ELEM(true), + NAND_OP_PARSER_PAT_ADDR_ELEM(true, 8), + NAND_OP_PARSER_PAT_DATA_OUT_ELEM(true, 1024), + NAND_OP_PARSER_PAT_CMD_ELEM(true), + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)), +); + +static const struct nand_op_parser sunxi_nfc_norb_op_parser = NAND_OP_PARSER( + NAND_OP_PARSER_PATTERN(sunxi_nfc_exec_subop, + NAND_OP_PARSER_PAT_CMD_ELEM(true), + NAND_OP_PARSER_PAT_ADDR_ELEM(true, 8), + NAND_OP_PARSER_PAT_CMD_ELEM(true), + NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, 1024)), + NAND_OP_PARSER_PATTERN(sunxi_nfc_exec_subop, + NAND_OP_PARSER_PAT_CMD_ELEM(true), + NAND_OP_PARSER_PAT_ADDR_ELEM(true, 8), + NAND_OP_PARSER_PAT_DATA_OUT_ELEM(true, 1024), + NAND_OP_PARSER_PAT_CMD_ELEM(true)), + NAND_OP_PARSER_PATTERN(sunxi_nfc_soft_waitrdy, + NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), +); + +static int sunxi_nfc_exec_op(struct nand_chip *nand, + const struct nand_operation *op, bool check_only) +{ + struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand); + const struct nand_op_parser *parser; + + if (!check_only) + sunxi_nfc_select_chip(nand, op->cs); + + if (sunxi_nand->sels[op->cs].rb >= 0) + parser = &sunxi_nfc_op_parser; + else + parser = &sunxi_nfc_norb_op_parser; + + return nand_op_parser_exec_op(nand, parser, op, check_only); +} + +static const struct nand_controller_ops sunxi_nand_controller_ops = { + .attach_chip = sunxi_nand_attach_chip, + .setup_interface = sunxi_nfc_setup_interface, + .exec_op = sunxi_nfc_exec_op, +}; + +static int sunxi_nand_chip_init(struct device *dev, struct sunxi_nfc *nfc, + struct device_node *np) +{ + struct sunxi_nand_chip *sunxi_nand; + struct mtd_info *mtd; + struct nand_chip *nand; + int nsels; + int ret; + int i; + u32 tmp; + + if (!of_get_property(np, "reg", &nsels)) + return -EINVAL; + + nsels /= sizeof(u32); + if (!nsels) { + dev_err(dev, "invalid reg property size\n"); + return -EINVAL; + } + + sunxi_nand = devm_kzalloc(dev, struct_size(sunxi_nand, sels, nsels), + GFP_KERNEL); + if (!sunxi_nand) + return -ENOMEM; + + sunxi_nand->nsels = nsels; + + for (i = 0; i < nsels; i++) { + ret = of_property_read_u32_index(np, "reg", i, &tmp); + if (ret) { + dev_err(dev, "could not retrieve reg property: %d\n", + ret); + return ret; + } + + if (tmp > NFC_MAX_CS) { + dev_err(dev, + "invalid reg value: %u (max CS = 7)\n", + tmp); + return -EINVAL; + } + + if (test_and_set_bit(tmp, &nfc->assigned_cs)) { + dev_err(dev, "CS %d already assigned\n", tmp); + return -EINVAL; + } + + sunxi_nand->sels[i].cs = tmp; + + if (!of_property_read_u32_index(np, "allwinner,rb", i, &tmp) && + tmp < 2) + sunxi_nand->sels[i].rb = tmp; + else + sunxi_nand->sels[i].rb = -1; + } + + nand = &sunxi_nand->nand; + /* Default tR value specified in the ONFI spec (chapter 4.15.1) */ + nand->controller = &nfc->controller; + nand->controller->ops = &sunxi_nand_controller_ops; + + /* + * Set the ECC mode to the default value in case nothing is specified + * in the DT. + */ + nand->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; + nand_set_flash_node(nand, np); + + mtd = nand_to_mtd(nand); + mtd->dev.parent = dev; + + ret = nand_scan(nand, nsels); + if (ret) + return ret; + + ret = mtd_device_register(mtd, NULL, 0); + if (ret) { + dev_err(dev, "failed to register mtd device: %d\n", ret); + nand_cleanup(nand); + return ret; + } + + list_add_tail(&sunxi_nand->node, &nfc->chips); + + return 0; +} + +static int sunxi_nand_chips_init(struct device *dev, struct sunxi_nfc *nfc) +{ + struct device_node *np = dev->of_node; + struct device_node *nand_np; + int nchips = of_get_child_count(np); + int ret; + + if (nchips > 8) { + dev_err(dev, "too many NAND chips: %d (max = 8)\n", nchips); + return -EINVAL; + } + + for_each_child_of_node(np, nand_np) { + ret = sunxi_nand_chip_init(dev, nfc, nand_np); + if (ret) { + of_node_put(nand_np); + return ret; + } + } + + return 0; +} + +static void sunxi_nand_chips_cleanup(struct sunxi_nfc *nfc) +{ + struct sunxi_nand_chip *sunxi_nand; + struct nand_chip *chip; + int ret; + + while (!list_empty(&nfc->chips)) { + sunxi_nand = list_first_entry(&nfc->chips, + struct sunxi_nand_chip, + node); + chip = &sunxi_nand->nand; + ret = mtd_device_unregister(nand_to_mtd(chip)); + WARN_ON(ret); + nand_cleanup(chip); + sunxi_nand_ecc_cleanup(sunxi_nand); + list_del(&sunxi_nand->node); + } +} + +static int sunxi_nfc_dma_init(struct sunxi_nfc *nfc, struct resource *r) +{ + int ret; + + if (nfc->caps->has_mdma) + return 0; + + nfc->dmac = dma_request_chan(nfc->dev, "rxtx"); + if (IS_ERR(nfc->dmac)) { + ret = PTR_ERR(nfc->dmac); + if (ret == -EPROBE_DEFER) + return ret; + + /* Ignore errors to fall back to PIO mode */ + dev_warn(nfc->dev, "failed to request rxtx DMA channel: %d\n", ret); + nfc->dmac = NULL; + } else { + struct dma_slave_config dmac_cfg = { }; + + dmac_cfg.src_addr = r->start + nfc->caps->reg_io_data; + dmac_cfg.dst_addr = dmac_cfg.src_addr; + dmac_cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; + dmac_cfg.dst_addr_width = dmac_cfg.src_addr_width; + dmac_cfg.src_maxburst = nfc->caps->dma_maxburst; + dmac_cfg.dst_maxburst = nfc->caps->dma_maxburst; + dmaengine_slave_config(nfc->dmac, &dmac_cfg); + } + return 0; +} + +static int sunxi_nfc_probe(struct platform_device *pdev) +{ + struct device *dev = &pdev->dev; + struct resource *r; + struct sunxi_nfc *nfc; + int irq; + int ret; + + nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL); + if (!nfc) + return -ENOMEM; + + nfc->dev = dev; + nand_controller_init(&nfc->controller); + INIT_LIST_HEAD(&nfc->chips); + + r = platform_get_resource(pdev, IORESOURCE_MEM, 0); + nfc->regs = devm_ioremap_resource(dev, r); + if (IS_ERR(nfc->regs)) + return PTR_ERR(nfc->regs); + + irq = platform_get_irq(pdev, 0); + if (irq < 0) + return irq; + + nfc->ahb_clk = devm_clk_get(dev, "ahb"); + if (IS_ERR(nfc->ahb_clk)) { + dev_err(dev, "failed to retrieve ahb clk\n"); + return PTR_ERR(nfc->ahb_clk); + } + + ret = clk_prepare_enable(nfc->ahb_clk); + if (ret) + return ret; + + nfc->mod_clk = devm_clk_get(dev, "mod"); + if (IS_ERR(nfc->mod_clk)) { + dev_err(dev, "failed to retrieve mod clk\n"); + ret = PTR_ERR(nfc->mod_clk); + goto out_ahb_clk_unprepare; + } + + ret = clk_prepare_enable(nfc->mod_clk); + if (ret) + goto out_ahb_clk_unprepare; + + nfc->reset = devm_reset_control_get_optional_exclusive(dev, "ahb"); + if (IS_ERR(nfc->reset)) { + ret = PTR_ERR(nfc->reset); + goto out_mod_clk_unprepare; + } + + ret = reset_control_deassert(nfc->reset); + if (ret) { + dev_err(dev, "reset err %d\n", ret); + goto out_mod_clk_unprepare; + } + + nfc->caps = of_device_get_match_data(&pdev->dev); + if (!nfc->caps) { + ret = -EINVAL; + goto out_ahb_reset_reassert; + } + + ret = sunxi_nfc_rst(nfc); + if (ret) + goto out_ahb_reset_reassert; + + writel(0, nfc->regs + NFC_REG_INT); + ret = devm_request_irq(dev, irq, sunxi_nfc_interrupt, + 0, "sunxi-nand", nfc); + if (ret) + goto out_ahb_reset_reassert; + + ret = sunxi_nfc_dma_init(nfc, r); + + if (ret) + goto out_ahb_reset_reassert; + + platform_set_drvdata(pdev, nfc); + + ret = sunxi_nand_chips_init(dev, nfc); + if (ret) { + dev_err(dev, "failed to init nand chips\n"); + goto out_release_dmac; + } + + return 0; + +out_release_dmac: + if (nfc->dmac) + dma_release_channel(nfc->dmac); +out_ahb_reset_reassert: + reset_control_assert(nfc->reset); +out_mod_clk_unprepare: + clk_disable_unprepare(nfc->mod_clk); +out_ahb_clk_unprepare: + clk_disable_unprepare(nfc->ahb_clk); + + return ret; +} + +static int sunxi_nfc_remove(struct platform_device *pdev) +{ + struct sunxi_nfc *nfc = platform_get_drvdata(pdev); + + sunxi_nand_chips_cleanup(nfc); + + reset_control_assert(nfc->reset); + + if (nfc->dmac) + dma_release_channel(nfc->dmac); + clk_disable_unprepare(nfc->mod_clk); + clk_disable_unprepare(nfc->ahb_clk); + + return 0; +} + +static const struct sunxi_nfc_caps sunxi_nfc_a10_caps = { + .reg_io_data = NFC_REG_A10_IO_DATA, + .dma_maxburst = 4, +}; + +static const struct sunxi_nfc_caps sunxi_nfc_a23_caps = { + .has_mdma = true, + .reg_io_data = NFC_REG_A23_IO_DATA, + .dma_maxburst = 8, +}; + +static const struct of_device_id sunxi_nfc_ids[] = { + { + .compatible = "allwinner,sun4i-a10-nand", + .data = &sunxi_nfc_a10_caps, + }, + { + .compatible = "allwinner,sun8i-a23-nand-controller", + .data = &sunxi_nfc_a23_caps, + }, + { /* sentinel */ } +}; +MODULE_DEVICE_TABLE(of, sunxi_nfc_ids); + +static struct platform_driver sunxi_nfc_driver = { + .driver = { + .name = "sunxi_nand", + .of_match_table = sunxi_nfc_ids, + }, + .probe = sunxi_nfc_probe, + .remove = sunxi_nfc_remove, +}; +module_platform_driver(sunxi_nfc_driver); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Boris BREZILLON"); +MODULE_DESCRIPTION("Allwinner NAND Flash Controller driver"); +MODULE_ALIAS("platform:sunxi_nand"); |