diff options
Diffstat (limited to 'drivers/net/dsa/bcm_sf2_cfp.c')
-rw-r--r-- | drivers/net/dsa/bcm_sf2_cfp.c | 1346 |
1 files changed, 1346 insertions, 0 deletions
diff --git a/drivers/net/dsa/bcm_sf2_cfp.c b/drivers/net/dsa/bcm_sf2_cfp.c new file mode 100644 index 000000000..c4010b7bf --- /dev/null +++ b/drivers/net/dsa/bcm_sf2_cfp.c @@ -0,0 +1,1346 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * Broadcom Starfighter 2 DSA switch CFP support + * + * Copyright (C) 2016, Broadcom + */ + +#include <linux/list.h> +#include <linux/ethtool.h> +#include <linux/if_ether.h> +#include <linux/in.h> +#include <linux/netdevice.h> +#include <net/dsa.h> +#include <linux/bitmap.h> +#include <net/flow_offload.h> +#include <net/switchdev.h> +#include <uapi/linux/if_bridge.h> + +#include "bcm_sf2.h" +#include "bcm_sf2_regs.h" + +struct cfp_rule { + int port; + struct ethtool_rx_flow_spec fs; + struct list_head next; +}; + +struct cfp_udf_slice_layout { + u8 slices[UDFS_PER_SLICE]; + u32 mask_value; + u32 base_offset; +}; + +struct cfp_udf_layout { + struct cfp_udf_slice_layout udfs[UDF_NUM_SLICES]; +}; + +static const u8 zero_slice[UDFS_PER_SLICE] = { }; + +/* UDF slices layout for a TCPv4/UDPv4 specification */ +static const struct cfp_udf_layout udf_tcpip4_layout = { + .udfs = { + [1] = { + .slices = { + /* End of L2, byte offset 12, src IP[0:15] */ + CFG_UDF_EOL2 | 6, + /* End of L2, byte offset 14, src IP[16:31] */ + CFG_UDF_EOL2 | 7, + /* End of L2, byte offset 16, dst IP[0:15] */ + CFG_UDF_EOL2 | 8, + /* End of L2, byte offset 18, dst IP[16:31] */ + CFG_UDF_EOL2 | 9, + /* End of L3, byte offset 0, src port */ + CFG_UDF_EOL3 | 0, + /* End of L3, byte offset 2, dst port */ + CFG_UDF_EOL3 | 1, + 0, 0, 0 + }, + .mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG, + .base_offset = CORE_UDF_0_A_0_8_PORT_0 + UDF_SLICE_OFFSET, + }, + }, +}; + +/* UDF slices layout for a TCPv6/UDPv6 specification */ +static const struct cfp_udf_layout udf_tcpip6_layout = { + .udfs = { + [0] = { + .slices = { + /* End of L2, byte offset 8, src IP[0:15] */ + CFG_UDF_EOL2 | 4, + /* End of L2, byte offset 10, src IP[16:31] */ + CFG_UDF_EOL2 | 5, + /* End of L2, byte offset 12, src IP[32:47] */ + CFG_UDF_EOL2 | 6, + /* End of L2, byte offset 14, src IP[48:63] */ + CFG_UDF_EOL2 | 7, + /* End of L2, byte offset 16, src IP[64:79] */ + CFG_UDF_EOL2 | 8, + /* End of L2, byte offset 18, src IP[80:95] */ + CFG_UDF_EOL2 | 9, + /* End of L2, byte offset 20, src IP[96:111] */ + CFG_UDF_EOL2 | 10, + /* End of L2, byte offset 22, src IP[112:127] */ + CFG_UDF_EOL2 | 11, + /* End of L3, byte offset 0, src port */ + CFG_UDF_EOL3 | 0, + }, + .mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG, + .base_offset = CORE_UDF_0_B_0_8_PORT_0, + }, + [3] = { + .slices = { + /* End of L2, byte offset 24, dst IP[0:15] */ + CFG_UDF_EOL2 | 12, + /* End of L2, byte offset 26, dst IP[16:31] */ + CFG_UDF_EOL2 | 13, + /* End of L2, byte offset 28, dst IP[32:47] */ + CFG_UDF_EOL2 | 14, + /* End of L2, byte offset 30, dst IP[48:63] */ + CFG_UDF_EOL2 | 15, + /* End of L2, byte offset 32, dst IP[64:79] */ + CFG_UDF_EOL2 | 16, + /* End of L2, byte offset 34, dst IP[80:95] */ + CFG_UDF_EOL2 | 17, + /* End of L2, byte offset 36, dst IP[96:111] */ + CFG_UDF_EOL2 | 18, + /* End of L2, byte offset 38, dst IP[112:127] */ + CFG_UDF_EOL2 | 19, + /* End of L3, byte offset 2, dst port */ + CFG_UDF_EOL3 | 1, + }, + .mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG, + .base_offset = CORE_UDF_0_D_0_11_PORT_0, + }, + }, +}; + +static inline unsigned int bcm_sf2_get_num_udf_slices(const u8 *layout) +{ + unsigned int i, count = 0; + + for (i = 0; i < UDFS_PER_SLICE; i++) { + if (layout[i] != 0) + count++; + } + + return count; +} + +static inline u32 udf_upper_bits(int num_udf) +{ + return GENMASK(num_udf - 1, 0) >> (UDFS_PER_SLICE - 1); +} + +static inline u32 udf_lower_bits(int num_udf) +{ + return (u8)GENMASK(num_udf - 1, 0); +} + +static unsigned int bcm_sf2_get_slice_number(const struct cfp_udf_layout *l, + unsigned int start) +{ + const struct cfp_udf_slice_layout *slice_layout; + unsigned int slice_idx; + + for (slice_idx = start; slice_idx < UDF_NUM_SLICES; slice_idx++) { + slice_layout = &l->udfs[slice_idx]; + if (memcmp(slice_layout->slices, zero_slice, + sizeof(zero_slice))) + break; + } + + return slice_idx; +} + +static void bcm_sf2_cfp_udf_set(struct bcm_sf2_priv *priv, + const struct cfp_udf_layout *layout, + unsigned int slice_num) +{ + u32 offset = layout->udfs[slice_num].base_offset; + unsigned int i; + + for (i = 0; i < UDFS_PER_SLICE; i++) + core_writel(priv, layout->udfs[slice_num].slices[i], + offset + i * 4); +} + +static int bcm_sf2_cfp_op(struct bcm_sf2_priv *priv, unsigned int op) +{ + unsigned int timeout = 1000; + u32 reg; + + reg = core_readl(priv, CORE_CFP_ACC); + reg &= ~(OP_SEL_MASK | RAM_SEL_MASK); + reg |= OP_STR_DONE | op; + core_writel(priv, reg, CORE_CFP_ACC); + + do { + reg = core_readl(priv, CORE_CFP_ACC); + if (!(reg & OP_STR_DONE)) + break; + + cpu_relax(); + } while (timeout--); + + if (!timeout) + return -ETIMEDOUT; + + return 0; +} + +static inline void bcm_sf2_cfp_rule_addr_set(struct bcm_sf2_priv *priv, + unsigned int addr) +{ + u32 reg; + + WARN_ON(addr >= priv->num_cfp_rules); + + reg = core_readl(priv, CORE_CFP_ACC); + reg &= ~(XCESS_ADDR_MASK << XCESS_ADDR_SHIFT); + reg |= addr << XCESS_ADDR_SHIFT; + core_writel(priv, reg, CORE_CFP_ACC); +} + +static inline unsigned int bcm_sf2_cfp_rule_size(struct bcm_sf2_priv *priv) +{ + /* Entry #0 is reserved */ + return priv->num_cfp_rules - 1; +} + +static int bcm_sf2_cfp_act_pol_set(struct bcm_sf2_priv *priv, + unsigned int rule_index, + int src_port, + unsigned int port_num, + unsigned int queue_num, + bool fwd_map_change) +{ + int ret; + u32 reg; + + /* Replace ARL derived destination with DST_MAP derived, define + * which port and queue this should be forwarded to. + */ + if (fwd_map_change) + reg = CHANGE_FWRD_MAP_IB_REP_ARL | + BIT(port_num + DST_MAP_IB_SHIFT) | + CHANGE_TC | queue_num << NEW_TC_SHIFT; + else + reg = 0; + + /* Enable looping back to the original port */ + if (src_port == port_num) + reg |= LOOP_BK_EN; + + core_writel(priv, reg, CORE_ACT_POL_DATA0); + + /* Set classification ID that needs to be put in Broadcom tag */ + core_writel(priv, rule_index << CHAIN_ID_SHIFT, CORE_ACT_POL_DATA1); + + core_writel(priv, 0, CORE_ACT_POL_DATA2); + + /* Configure policer RAM now */ + ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | ACT_POL_RAM); + if (ret) { + pr_err("Policer entry at %d failed\n", rule_index); + return ret; + } + + /* Disable the policer */ + core_writel(priv, POLICER_MODE_DISABLE, CORE_RATE_METER0); + + /* Now the rate meter */ + ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | RATE_METER_RAM); + if (ret) { + pr_err("Meter entry at %d failed\n", rule_index); + return ret; + } + + return 0; +} + +static void bcm_sf2_cfp_slice_ipv4(struct bcm_sf2_priv *priv, + struct flow_dissector_key_ipv4_addrs *addrs, + struct flow_dissector_key_ports *ports, + const __be16 vlan_tci, + unsigned int slice_num, u8 num_udf, + bool mask) +{ + u32 reg, offset; + + /* UDF_Valid[7:0] [31:24] + * S-Tag [23:8] + * C-Tag [7:0] + */ + reg = udf_lower_bits(num_udf) << 24 | be16_to_cpu(vlan_tci) >> 8; + if (mask) + core_writel(priv, reg, CORE_CFP_MASK_PORT(5)); + else + core_writel(priv, reg, CORE_CFP_DATA_PORT(5)); + + /* C-Tag [31:24] + * UDF_n_A8 [23:8] + * UDF_n_A7 [7:0] + */ + reg = (u32)(be16_to_cpu(vlan_tci) & 0xff) << 24; + if (mask) + offset = CORE_CFP_MASK_PORT(4); + else + offset = CORE_CFP_DATA_PORT(4); + core_writel(priv, reg, offset); + + /* UDF_n_A7 [31:24] + * UDF_n_A6 [23:8] + * UDF_n_A5 [7:0] + */ + reg = be16_to_cpu(ports->dst) >> 8; + if (mask) + offset = CORE_CFP_MASK_PORT(3); + else + offset = CORE_CFP_DATA_PORT(3); + core_writel(priv, reg, offset); + + /* UDF_n_A5 [31:24] + * UDF_n_A4 [23:8] + * UDF_n_A3 [7:0] + */ + reg = (be16_to_cpu(ports->dst) & 0xff) << 24 | + (u32)be16_to_cpu(ports->src) << 8 | + (be32_to_cpu(addrs->dst) & 0x0000ff00) >> 8; + if (mask) + offset = CORE_CFP_MASK_PORT(2); + else + offset = CORE_CFP_DATA_PORT(2); + core_writel(priv, reg, offset); + + /* UDF_n_A3 [31:24] + * UDF_n_A2 [23:8] + * UDF_n_A1 [7:0] + */ + reg = (u32)(be32_to_cpu(addrs->dst) & 0xff) << 24 | + (u32)(be32_to_cpu(addrs->dst) >> 16) << 8 | + (be32_to_cpu(addrs->src) & 0x0000ff00) >> 8; + if (mask) + offset = CORE_CFP_MASK_PORT(1); + else + offset = CORE_CFP_DATA_PORT(1); + core_writel(priv, reg, offset); + + /* UDF_n_A1 [31:24] + * UDF_n_A0 [23:8] + * Reserved [7:4] + * Slice ID [3:2] + * Slice valid [1:0] + */ + reg = (u32)(be32_to_cpu(addrs->src) & 0xff) << 24 | + (u32)(be32_to_cpu(addrs->src) >> 16) << 8 | + SLICE_NUM(slice_num) | SLICE_VALID; + if (mask) + offset = CORE_CFP_MASK_PORT(0); + else + offset = CORE_CFP_DATA_PORT(0); + core_writel(priv, reg, offset); +} + +static int bcm_sf2_cfp_ipv4_rule_set(struct bcm_sf2_priv *priv, int port, + unsigned int port_num, + unsigned int queue_num, + struct ethtool_rx_flow_spec *fs) +{ + __be16 vlan_tci = 0, vlan_m_tci = htons(0xffff); + struct ethtool_rx_flow_spec_input input = {}; + const struct cfp_udf_layout *layout; + unsigned int slice_num, rule_index; + struct ethtool_rx_flow_rule *flow; + struct flow_match_ipv4_addrs ipv4; + struct flow_match_ports ports; + struct flow_match_ip ip; + u8 ip_proto, ip_frag; + u8 num_udf; + u32 reg; + int ret; + + switch (fs->flow_type & ~FLOW_EXT) { + case TCP_V4_FLOW: + ip_proto = IPPROTO_TCP; + break; + case UDP_V4_FLOW: + ip_proto = IPPROTO_UDP; + break; + default: + return -EINVAL; + } + + ip_frag = !!(be32_to_cpu(fs->h_ext.data[0]) & 1); + + /* Extract VLAN TCI */ + if (fs->flow_type & FLOW_EXT) { + vlan_tci = fs->h_ext.vlan_tci; + vlan_m_tci = fs->m_ext.vlan_tci; + } + + /* Locate the first rule available */ + if (fs->location == RX_CLS_LOC_ANY) + rule_index = find_first_zero_bit(priv->cfp.used, + priv->num_cfp_rules); + else + rule_index = fs->location; + + if (rule_index > bcm_sf2_cfp_rule_size(priv)) + return -ENOSPC; + + input.fs = fs; + flow = ethtool_rx_flow_rule_create(&input); + if (IS_ERR(flow)) + return PTR_ERR(flow); + + flow_rule_match_ipv4_addrs(flow->rule, &ipv4); + flow_rule_match_ports(flow->rule, &ports); + flow_rule_match_ip(flow->rule, &ip); + + layout = &udf_tcpip4_layout; + /* We only use one UDF slice for now */ + slice_num = bcm_sf2_get_slice_number(layout, 0); + if (slice_num == UDF_NUM_SLICES) { + ret = -EINVAL; + goto out_err_flow_rule; + } + + num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices); + + /* Apply the UDF layout for this filter */ + bcm_sf2_cfp_udf_set(priv, layout, slice_num); + + /* Apply to all packets received through this port */ + core_writel(priv, BIT(port), CORE_CFP_DATA_PORT(7)); + + /* Source port map match */ + core_writel(priv, 0xff, CORE_CFP_MASK_PORT(7)); + + /* S-Tag status [31:30] + * C-Tag status [29:28] + * L2 framing [27:26] + * L3 framing [25:24] + * IP ToS [23:16] + * IP proto [15:08] + * IP Fragm [7] + * Non 1st frag [6] + * IP Authen [5] + * TTL range [4:3] + * PPPoE session [2] + * Reserved [1] + * UDF_Valid[8] [0] + */ + core_writel(priv, ip.key->tos << IPTOS_SHIFT | + ip_proto << IPPROTO_SHIFT | ip_frag << IP_FRAG_SHIFT | + udf_upper_bits(num_udf), + CORE_CFP_DATA_PORT(6)); + + /* Mask with the specific layout for IPv4 packets */ + core_writel(priv, layout->udfs[slice_num].mask_value | + udf_upper_bits(num_udf), CORE_CFP_MASK_PORT(6)); + + /* Program the match and the mask */ + bcm_sf2_cfp_slice_ipv4(priv, ipv4.key, ports.key, vlan_tci, + slice_num, num_udf, false); + bcm_sf2_cfp_slice_ipv4(priv, ipv4.mask, ports.mask, vlan_m_tci, + SLICE_NUM_MASK, num_udf, true); + + /* Insert into TCAM now */ + bcm_sf2_cfp_rule_addr_set(priv, rule_index); + + ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL); + if (ret) { + pr_err("TCAM entry at addr %d failed\n", rule_index); + goto out_err_flow_rule; + } + + /* Insert into Action and policer RAMs now */ + ret = bcm_sf2_cfp_act_pol_set(priv, rule_index, port, port_num, + queue_num, true); + if (ret) + goto out_err_flow_rule; + + /* Turn on CFP for this rule now */ + reg = core_readl(priv, CORE_CFP_CTL_REG); + reg |= BIT(port); + core_writel(priv, reg, CORE_CFP_CTL_REG); + + /* Flag the rule as being used and return it */ + set_bit(rule_index, priv->cfp.used); + set_bit(rule_index, priv->cfp.unique); + fs->location = rule_index; + + return 0; + +out_err_flow_rule: + ethtool_rx_flow_rule_destroy(flow); + return ret; +} + +static void bcm_sf2_cfp_slice_ipv6(struct bcm_sf2_priv *priv, + const __be32 *ip6_addr, const __be16 port, + const __be16 vlan_tci, + unsigned int slice_num, u32 udf_bits, + bool mask) +{ + u32 reg, tmp, val, offset; + + /* UDF_Valid[7:0] [31:24] + * S-Tag [23:8] + * C-Tag [7:0] + */ + reg = udf_bits << 24 | be16_to_cpu(vlan_tci) >> 8; + if (mask) + core_writel(priv, reg, CORE_CFP_MASK_PORT(5)); + else + core_writel(priv, reg, CORE_CFP_DATA_PORT(5)); + + /* C-Tag [31:24] + * UDF_n_B8 [23:8] (port) + * UDF_n_B7 (upper) [7:0] (addr[15:8]) + */ + reg = be32_to_cpu(ip6_addr[3]); + val = (u32)be16_to_cpu(port) << 8 | ((reg >> 8) & 0xff); + val |= (u32)(be16_to_cpu(vlan_tci) & 0xff) << 24; + if (mask) + offset = CORE_CFP_MASK_PORT(4); + else + offset = CORE_CFP_DATA_PORT(4); + core_writel(priv, val, offset); + + /* UDF_n_B7 (lower) [31:24] (addr[7:0]) + * UDF_n_B6 [23:8] (addr[31:16]) + * UDF_n_B5 (upper) [7:0] (addr[47:40]) + */ + tmp = be32_to_cpu(ip6_addr[2]); + val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 | + ((tmp >> 8) & 0xff); + if (mask) + offset = CORE_CFP_MASK_PORT(3); + else + offset = CORE_CFP_DATA_PORT(3); + core_writel(priv, val, offset); + + /* UDF_n_B5 (lower) [31:24] (addr[39:32]) + * UDF_n_B4 [23:8] (addr[63:48]) + * UDF_n_B3 (upper) [7:0] (addr[79:72]) + */ + reg = be32_to_cpu(ip6_addr[1]); + val = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 | + ((reg >> 8) & 0xff); + if (mask) + offset = CORE_CFP_MASK_PORT(2); + else + offset = CORE_CFP_DATA_PORT(2); + core_writel(priv, val, offset); + + /* UDF_n_B3 (lower) [31:24] (addr[71:64]) + * UDF_n_B2 [23:8] (addr[95:80]) + * UDF_n_B1 (upper) [7:0] (addr[111:104]) + */ + tmp = be32_to_cpu(ip6_addr[0]); + val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 | + ((tmp >> 8) & 0xff); + if (mask) + offset = CORE_CFP_MASK_PORT(1); + else + offset = CORE_CFP_DATA_PORT(1); + core_writel(priv, val, offset); + + /* UDF_n_B1 (lower) [31:24] (addr[103:96]) + * UDF_n_B0 [23:8] (addr[127:112]) + * Reserved [7:4] + * Slice ID [3:2] + * Slice valid [1:0] + */ + reg = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 | + SLICE_NUM(slice_num) | SLICE_VALID; + if (mask) + offset = CORE_CFP_MASK_PORT(0); + else + offset = CORE_CFP_DATA_PORT(0); + core_writel(priv, reg, offset); +} + +static struct cfp_rule *bcm_sf2_cfp_rule_find(struct bcm_sf2_priv *priv, + int port, u32 location) +{ + struct cfp_rule *rule; + + list_for_each_entry(rule, &priv->cfp.rules_list, next) { + if (rule->port == port && rule->fs.location == location) + return rule; + } + + return NULL; +} + +static int bcm_sf2_cfp_rule_cmp(struct bcm_sf2_priv *priv, int port, + struct ethtool_rx_flow_spec *fs) +{ + struct cfp_rule *rule = NULL; + size_t fs_size = 0; + int ret = 1; + + if (list_empty(&priv->cfp.rules_list)) + return ret; + + list_for_each_entry(rule, &priv->cfp.rules_list, next) { + ret = 1; + if (rule->port != port) + continue; + + if (rule->fs.flow_type != fs->flow_type || + rule->fs.ring_cookie != fs->ring_cookie || + rule->fs.h_ext.data[0] != fs->h_ext.data[0]) + continue; + + switch (fs->flow_type & ~FLOW_EXT) { + case TCP_V6_FLOW: + case UDP_V6_FLOW: + fs_size = sizeof(struct ethtool_tcpip6_spec); + break; + case TCP_V4_FLOW: + case UDP_V4_FLOW: + fs_size = sizeof(struct ethtool_tcpip4_spec); + break; + default: + continue; + } + + ret = memcmp(&rule->fs.h_u, &fs->h_u, fs_size); + ret |= memcmp(&rule->fs.m_u, &fs->m_u, fs_size); + /* Compare VLAN TCI values as well */ + if (rule->fs.flow_type & FLOW_EXT) { + ret |= rule->fs.h_ext.vlan_tci != fs->h_ext.vlan_tci; + ret |= rule->fs.m_ext.vlan_tci != fs->m_ext.vlan_tci; + } + if (ret == 0) + break; + } + + return ret; +} + +static int bcm_sf2_cfp_ipv6_rule_set(struct bcm_sf2_priv *priv, int port, + unsigned int port_num, + unsigned int queue_num, + struct ethtool_rx_flow_spec *fs) +{ + __be16 vlan_tci = 0, vlan_m_tci = htons(0xffff); + struct ethtool_rx_flow_spec_input input = {}; + unsigned int slice_num, rule_index[2]; + const struct cfp_udf_layout *layout; + struct ethtool_rx_flow_rule *flow; + struct flow_match_ipv6_addrs ipv6; + struct flow_match_ports ports; + u8 ip_proto, ip_frag; + int ret = 0; + u8 num_udf; + u32 reg; + + switch (fs->flow_type & ~FLOW_EXT) { + case TCP_V6_FLOW: + ip_proto = IPPROTO_TCP; + break; + case UDP_V6_FLOW: + ip_proto = IPPROTO_UDP; + break; + default: + return -EINVAL; + } + + ip_frag = !!(be32_to_cpu(fs->h_ext.data[0]) & 1); + + /* Extract VLAN TCI */ + if (fs->flow_type & FLOW_EXT) { + vlan_tci = fs->h_ext.vlan_tci; + vlan_m_tci = fs->m_ext.vlan_tci; + } + + layout = &udf_tcpip6_layout; + slice_num = bcm_sf2_get_slice_number(layout, 0); + if (slice_num == UDF_NUM_SLICES) + return -EINVAL; + + num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices); + + /* Negotiate two indexes, one for the second half which we are chained + * from, which is what we will return to user-space, and a second one + * which is used to store its first half. That first half does not + * allow any choice of placement, so it just needs to find the next + * available bit. We return the second half as fs->location because + * that helps with the rule lookup later on since the second half is + * chained from its first half, we can easily identify IPv6 CFP rules + * by looking whether they carry a CHAIN_ID. + * + * We also want the second half to have a lower rule_index than its + * first half because the HW search is by incrementing addresses. + */ + if (fs->location == RX_CLS_LOC_ANY) + rule_index[1] = find_first_zero_bit(priv->cfp.used, + priv->num_cfp_rules); + else + rule_index[1] = fs->location; + if (rule_index[1] > bcm_sf2_cfp_rule_size(priv)) + return -ENOSPC; + + /* Flag it as used (cleared on error path) such that we can immediately + * obtain a second one to chain from. + */ + set_bit(rule_index[1], priv->cfp.used); + + rule_index[0] = find_first_zero_bit(priv->cfp.used, + priv->num_cfp_rules); + if (rule_index[0] > bcm_sf2_cfp_rule_size(priv)) { + ret = -ENOSPC; + goto out_err; + } + + input.fs = fs; + flow = ethtool_rx_flow_rule_create(&input); + if (IS_ERR(flow)) { + ret = PTR_ERR(flow); + goto out_err; + } + flow_rule_match_ipv6_addrs(flow->rule, &ipv6); + flow_rule_match_ports(flow->rule, &ports); + + /* Apply the UDF layout for this filter */ + bcm_sf2_cfp_udf_set(priv, layout, slice_num); + + /* Apply to all packets received through this port */ + core_writel(priv, BIT(port), CORE_CFP_DATA_PORT(7)); + + /* Source port map match */ + core_writel(priv, 0xff, CORE_CFP_MASK_PORT(7)); + + /* S-Tag status [31:30] + * C-Tag status [29:28] + * L2 framing [27:26] + * L3 framing [25:24] + * IP ToS [23:16] + * IP proto [15:08] + * IP Fragm [7] + * Non 1st frag [6] + * IP Authen [5] + * TTL range [4:3] + * PPPoE session [2] + * Reserved [1] + * UDF_Valid[8] [0] + */ + reg = 1 << L3_FRAMING_SHIFT | ip_proto << IPPROTO_SHIFT | + ip_frag << IP_FRAG_SHIFT | udf_upper_bits(num_udf); + core_writel(priv, reg, CORE_CFP_DATA_PORT(6)); + + /* Mask with the specific layout for IPv6 packets including + * UDF_Valid[8] + */ + reg = layout->udfs[slice_num].mask_value | udf_upper_bits(num_udf); + core_writel(priv, reg, CORE_CFP_MASK_PORT(6)); + + /* Slice the IPv6 source address and port */ + bcm_sf2_cfp_slice_ipv6(priv, ipv6.key->src.in6_u.u6_addr32, + ports.key->src, vlan_tci, slice_num, + udf_lower_bits(num_udf), false); + bcm_sf2_cfp_slice_ipv6(priv, ipv6.mask->src.in6_u.u6_addr32, + ports.mask->src, vlan_m_tci, SLICE_NUM_MASK, + udf_lower_bits(num_udf), true); + + /* Insert into TCAM now because we need to insert a second rule */ + bcm_sf2_cfp_rule_addr_set(priv, rule_index[0]); + + ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL); + if (ret) { + pr_err("TCAM entry at addr %d failed\n", rule_index[0]); + goto out_err_flow_rule; + } + + /* Insert into Action and policer RAMs now */ + ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[0], port, port_num, + queue_num, false); + if (ret) + goto out_err_flow_rule; + + /* Now deal with the second slice to chain this rule */ + slice_num = bcm_sf2_get_slice_number(layout, slice_num + 1); + if (slice_num == UDF_NUM_SLICES) { + ret = -EINVAL; + goto out_err_flow_rule; + } + + num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices); + + /* Apply the UDF layout for this filter */ + bcm_sf2_cfp_udf_set(priv, layout, slice_num); + + /* Chained rule, source port match is coming from the rule we are + * chained from. + */ + core_writel(priv, 0, CORE_CFP_DATA_PORT(7)); + core_writel(priv, 0, CORE_CFP_MASK_PORT(7)); + + /* + * CHAIN ID [31:24] chain to previous slice + * Reserved [23:20] + * UDF_Valid[11:8] [19:16] + * UDF_Valid[7:0] [15:8] + * UDF_n_D11 [7:0] + */ + reg = rule_index[0] << 24 | udf_upper_bits(num_udf) << 16 | + udf_lower_bits(num_udf) << 8; + core_writel(priv, reg, CORE_CFP_DATA_PORT(6)); + + /* Mask all except chain ID, UDF Valid[8] and UDF Valid[7:0] */ + reg = XCESS_ADDR_MASK << 24 | udf_upper_bits(num_udf) << 16 | + udf_lower_bits(num_udf) << 8; + core_writel(priv, reg, CORE_CFP_MASK_PORT(6)); + + bcm_sf2_cfp_slice_ipv6(priv, ipv6.key->dst.in6_u.u6_addr32, + ports.key->dst, 0, slice_num, + 0, false); + bcm_sf2_cfp_slice_ipv6(priv, ipv6.mask->dst.in6_u.u6_addr32, + ports.key->dst, 0, SLICE_NUM_MASK, + 0, true); + + /* Insert into TCAM now */ + bcm_sf2_cfp_rule_addr_set(priv, rule_index[1]); + + ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL); + if (ret) { + pr_err("TCAM entry at addr %d failed\n", rule_index[1]); + goto out_err_flow_rule; + } + + /* Insert into Action and policer RAMs now, set chain ID to + * the one we are chained to + */ + ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[1], port, port_num, + queue_num, true); + if (ret) + goto out_err_flow_rule; + + /* Turn on CFP for this rule now */ + reg = core_readl(priv, CORE_CFP_CTL_REG); + reg |= BIT(port); + core_writel(priv, reg, CORE_CFP_CTL_REG); + + /* Flag the second half rule as being used now, return it as the + * location, and flag it as unique while dumping rules + */ + set_bit(rule_index[0], priv->cfp.used); + set_bit(rule_index[1], priv->cfp.unique); + fs->location = rule_index[1]; + + return ret; + +out_err_flow_rule: + ethtool_rx_flow_rule_destroy(flow); +out_err: + clear_bit(rule_index[1], priv->cfp.used); + return ret; +} + +static int bcm_sf2_cfp_rule_insert(struct dsa_switch *ds, int port, + struct ethtool_rx_flow_spec *fs) +{ + struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); + s8 cpu_port = dsa_to_port(ds, port)->cpu_dp->index; + __u64 ring_cookie = fs->ring_cookie; + struct switchdev_obj_port_vlan vlan; + unsigned int queue_num, port_num; + u16 vid; + int ret; + + /* This rule is a Wake-on-LAN filter and we must specifically + * target the CPU port in order for it to be working. + */ + if (ring_cookie == RX_CLS_FLOW_WAKE) + ring_cookie = cpu_port * SF2_NUM_EGRESS_QUEUES; + + /* We do not support discarding packets, check that the + * destination port is enabled and that we are within the + * number of ports supported by the switch + */ + port_num = ring_cookie / SF2_NUM_EGRESS_QUEUES; + + if (ring_cookie == RX_CLS_FLOW_DISC || + !(dsa_is_user_port(ds, port_num) || + dsa_is_cpu_port(ds, port_num)) || + port_num >= priv->hw_params.num_ports) + return -EINVAL; + + /* If the rule is matching a particular VLAN, make sure that we honor + * the matching and have it tagged or untagged on the destination port, + * we do this on egress with a VLAN entry. The egress tagging attribute + * is expected to be provided in h_ext.data[1] bit 0. A 1 means untagged, + * a 0 means tagged. + */ + if (fs->flow_type & FLOW_EXT) { + /* We cannot support matching multiple VLAN IDs yet */ + if ((be16_to_cpu(fs->m_ext.vlan_tci) & VLAN_VID_MASK) != + VLAN_VID_MASK) + return -EINVAL; + + vid = be16_to_cpu(fs->h_ext.vlan_tci) & VLAN_VID_MASK; + vlan.vid = vid; + if (be32_to_cpu(fs->h_ext.data[1]) & 1) + vlan.flags = BRIDGE_VLAN_INFO_UNTAGGED; + else + vlan.flags = 0; + + ret = ds->ops->port_vlan_add(ds, port_num, &vlan, NULL); + if (ret) + return ret; + } + + /* + * We have a small oddity where Port 6 just does not have a + * valid bit here (so we substract by one). + */ + queue_num = ring_cookie % SF2_NUM_EGRESS_QUEUES; + if (port_num >= 7) + port_num -= 1; + + switch (fs->flow_type & ~FLOW_EXT) { + case TCP_V4_FLOW: + case UDP_V4_FLOW: + ret = bcm_sf2_cfp_ipv4_rule_set(priv, port, port_num, + queue_num, fs); + break; + case TCP_V6_FLOW: + case UDP_V6_FLOW: + ret = bcm_sf2_cfp_ipv6_rule_set(priv, port, port_num, + queue_num, fs); + break; + default: + ret = -EINVAL; + break; + } + + return ret; +} + +static int bcm_sf2_cfp_rule_set(struct dsa_switch *ds, int port, + struct ethtool_rx_flow_spec *fs) +{ + struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); + struct cfp_rule *rule = NULL; + int ret = -EINVAL; + + /* Check for unsupported extensions */ + if (fs->flow_type & FLOW_MAC_EXT) + return -EINVAL; + + if (fs->location != RX_CLS_LOC_ANY && + fs->location > bcm_sf2_cfp_rule_size(priv)) + return -EINVAL; + + if ((fs->flow_type & FLOW_EXT) && + !(ds->ops->port_vlan_add || ds->ops->port_vlan_del)) + return -EOPNOTSUPP; + + if (fs->location != RX_CLS_LOC_ANY && + test_bit(fs->location, priv->cfp.used)) + return -EBUSY; + + ret = bcm_sf2_cfp_rule_cmp(priv, port, fs); + if (ret == 0) + return -EEXIST; + + rule = kzalloc(sizeof(*rule), GFP_KERNEL); + if (!rule) + return -ENOMEM; + + ret = bcm_sf2_cfp_rule_insert(ds, port, fs); + if (ret) { + kfree(rule); + return ret; + } + + rule->port = port; + memcpy(&rule->fs, fs, sizeof(*fs)); + list_add_tail(&rule->next, &priv->cfp.rules_list); + + return ret; +} + +static int bcm_sf2_cfp_rule_del_one(struct bcm_sf2_priv *priv, int port, + u32 loc, u32 *next_loc) +{ + int ret; + u32 reg; + + /* Indicate which rule we want to read */ + bcm_sf2_cfp_rule_addr_set(priv, loc); + + ret = bcm_sf2_cfp_op(priv, OP_SEL_READ | TCAM_SEL); + if (ret) + return ret; + + /* Check if this is possibly an IPv6 rule that would + * indicate we need to delete its companion rule + * as well + */ + reg = core_readl(priv, CORE_CFP_DATA_PORT(6)); + if (next_loc) + *next_loc = (reg >> 24) & CHAIN_ID_MASK; + + /* Clear its valid bits */ + reg = core_readl(priv, CORE_CFP_DATA_PORT(0)); + reg &= ~SLICE_VALID; + core_writel(priv, reg, CORE_CFP_DATA_PORT(0)); + + /* Write back this entry into the TCAM now */ + ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL); + if (ret) + return ret; + + clear_bit(loc, priv->cfp.used); + clear_bit(loc, priv->cfp.unique); + + return 0; +} + +static int bcm_sf2_cfp_rule_remove(struct bcm_sf2_priv *priv, int port, + u32 loc) +{ + u32 next_loc = 0; + int ret; + + ret = bcm_sf2_cfp_rule_del_one(priv, port, loc, &next_loc); + if (ret) + return ret; + + /* If this was an IPv6 rule, delete is companion rule too */ + if (next_loc) + ret = bcm_sf2_cfp_rule_del_one(priv, port, next_loc, NULL); + + return ret; +} + +static int bcm_sf2_cfp_rule_del(struct bcm_sf2_priv *priv, int port, u32 loc) +{ + struct cfp_rule *rule; + int ret; + + if (loc > bcm_sf2_cfp_rule_size(priv)) + return -EINVAL; + + /* Refuse deleting unused rules, and those that are not unique since + * that could leave IPv6 rules with one of the chained rule in the + * table. + */ + if (!test_bit(loc, priv->cfp.unique) || loc == 0) + return -EINVAL; + + rule = bcm_sf2_cfp_rule_find(priv, port, loc); + if (!rule) + return -EINVAL; + + ret = bcm_sf2_cfp_rule_remove(priv, port, loc); + + list_del(&rule->next); + kfree(rule); + + return ret; +} + +static void bcm_sf2_invert_masks(struct ethtool_rx_flow_spec *flow) +{ + unsigned int i; + + for (i = 0; i < sizeof(flow->m_u); i++) + flow->m_u.hdata[i] ^= 0xff; + + flow->m_ext.vlan_etype ^= cpu_to_be16(~0); + flow->m_ext.vlan_tci ^= cpu_to_be16(~0); + flow->m_ext.data[0] ^= cpu_to_be32(~0); + flow->m_ext.data[1] ^= cpu_to_be32(~0); +} + +static int bcm_sf2_cfp_rule_get(struct bcm_sf2_priv *priv, int port, + struct ethtool_rxnfc *nfc) +{ + struct cfp_rule *rule; + + rule = bcm_sf2_cfp_rule_find(priv, port, nfc->fs.location); + if (!rule) + return -EINVAL; + + memcpy(&nfc->fs, &rule->fs, sizeof(rule->fs)); + + bcm_sf2_invert_masks(&nfc->fs); + + /* Put the TCAM size here */ + nfc->data = bcm_sf2_cfp_rule_size(priv); + + return 0; +} + +/* We implement the search doing a TCAM search operation */ +static int bcm_sf2_cfp_rule_get_all(struct bcm_sf2_priv *priv, + int port, struct ethtool_rxnfc *nfc, + u32 *rule_locs) +{ + unsigned int index = 1, rules_cnt = 0; + + for_each_set_bit_from(index, priv->cfp.unique, priv->num_cfp_rules) { + rule_locs[rules_cnt] = index; + rules_cnt++; + } + + /* Put the TCAM size here */ + nfc->data = bcm_sf2_cfp_rule_size(priv); + nfc->rule_cnt = rules_cnt; + + return 0; +} + +int bcm_sf2_get_rxnfc(struct dsa_switch *ds, int port, + struct ethtool_rxnfc *nfc, u32 *rule_locs) +{ + struct net_device *p = dsa_port_to_master(dsa_to_port(ds, port)); + struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); + int ret = 0; + + mutex_lock(&priv->cfp.lock); + + switch (nfc->cmd) { + case ETHTOOL_GRXCLSRLCNT: + /* Subtract the default, unusable rule */ + nfc->rule_cnt = bitmap_weight(priv->cfp.unique, + priv->num_cfp_rules) - 1; + /* We support specifying rule locations */ + nfc->data |= RX_CLS_LOC_SPECIAL; + break; + case ETHTOOL_GRXCLSRULE: + ret = bcm_sf2_cfp_rule_get(priv, port, nfc); + break; + case ETHTOOL_GRXCLSRLALL: + ret = bcm_sf2_cfp_rule_get_all(priv, port, nfc, rule_locs); + break; + default: + ret = -EOPNOTSUPP; + break; + } + + mutex_unlock(&priv->cfp.lock); + + if (ret) + return ret; + + /* Pass up the commands to the attached master network device */ + if (p->ethtool_ops->get_rxnfc) { + ret = p->ethtool_ops->get_rxnfc(p, nfc, rule_locs); + if (ret == -EOPNOTSUPP) + ret = 0; + } + + return ret; +} + +int bcm_sf2_set_rxnfc(struct dsa_switch *ds, int port, + struct ethtool_rxnfc *nfc) +{ + struct net_device *p = dsa_port_to_master(dsa_to_port(ds, port)); + struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); + int ret = 0; + + mutex_lock(&priv->cfp.lock); + + switch (nfc->cmd) { + case ETHTOOL_SRXCLSRLINS: + ret = bcm_sf2_cfp_rule_set(ds, port, &nfc->fs); + break; + + case ETHTOOL_SRXCLSRLDEL: + ret = bcm_sf2_cfp_rule_del(priv, port, nfc->fs.location); + break; + default: + ret = -EOPNOTSUPP; + break; + } + + mutex_unlock(&priv->cfp.lock); + + if (ret) + return ret; + + /* Pass up the commands to the attached master network device. + * This can fail, so rollback the operation if we need to. + */ + if (p->ethtool_ops->set_rxnfc) { + ret = p->ethtool_ops->set_rxnfc(p, nfc); + if (ret && ret != -EOPNOTSUPP) { + mutex_lock(&priv->cfp.lock); + bcm_sf2_cfp_rule_del(priv, port, nfc->fs.location); + mutex_unlock(&priv->cfp.lock); + } else { + ret = 0; + } + } + + return ret; +} + +int bcm_sf2_cfp_rst(struct bcm_sf2_priv *priv) +{ + unsigned int timeout = 1000; + u32 reg; + + reg = core_readl(priv, CORE_CFP_ACC); + reg |= TCAM_RESET; + core_writel(priv, reg, CORE_CFP_ACC); + + do { + reg = core_readl(priv, CORE_CFP_ACC); + if (!(reg & TCAM_RESET)) + break; + + cpu_relax(); + } while (timeout--); + + if (!timeout) + return -ETIMEDOUT; + + return 0; +} + +void bcm_sf2_cfp_exit(struct dsa_switch *ds) +{ + struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); + struct cfp_rule *rule, *n; + + if (list_empty(&priv->cfp.rules_list)) + return; + + list_for_each_entry_safe_reverse(rule, n, &priv->cfp.rules_list, next) + bcm_sf2_cfp_rule_del(priv, rule->port, rule->fs.location); +} + +int bcm_sf2_cfp_resume(struct dsa_switch *ds) +{ + struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); + struct cfp_rule *rule; + int ret = 0; + u32 reg; + + if (list_empty(&priv->cfp.rules_list)) + return ret; + + reg = core_readl(priv, CORE_CFP_CTL_REG); + reg &= ~CFP_EN_MAP_MASK; + core_writel(priv, reg, CORE_CFP_CTL_REG); + + ret = bcm_sf2_cfp_rst(priv); + if (ret) + return ret; + + list_for_each_entry(rule, &priv->cfp.rules_list, next) { + ret = bcm_sf2_cfp_rule_remove(priv, rule->port, + rule->fs.location); + if (ret) { + dev_err(ds->dev, "failed to remove rule\n"); + return ret; + } + + ret = bcm_sf2_cfp_rule_insert(ds, rule->port, &rule->fs); + if (ret) { + dev_err(ds->dev, "failed to restore rule\n"); + return ret; + } + } + + return ret; +} + +static const struct bcm_sf2_cfp_stat { + unsigned int offset; + unsigned int ram_loc; + const char *name; +} bcm_sf2_cfp_stats[] = { + { + .offset = CORE_STAT_GREEN_CNTR, + .ram_loc = GREEN_STAT_RAM, + .name = "Green" + }, + { + .offset = CORE_STAT_YELLOW_CNTR, + .ram_loc = YELLOW_STAT_RAM, + .name = "Yellow" + }, + { + .offset = CORE_STAT_RED_CNTR, + .ram_loc = RED_STAT_RAM, + .name = "Red" + }, +}; + +void bcm_sf2_cfp_get_strings(struct dsa_switch *ds, int port, + u32 stringset, uint8_t *data) +{ + struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); + unsigned int s = ARRAY_SIZE(bcm_sf2_cfp_stats); + char buf[ETH_GSTRING_LEN]; + unsigned int i, j, iter; + + if (stringset != ETH_SS_STATS) + return; + + for (i = 1; i < priv->num_cfp_rules; i++) { + for (j = 0; j < s; j++) { + snprintf(buf, sizeof(buf), + "CFP%03d_%sCntr", + i, bcm_sf2_cfp_stats[j].name); + iter = (i - 1) * s + j; + strscpy(data + iter * ETH_GSTRING_LEN, + buf, ETH_GSTRING_LEN); + } + } +} + +void bcm_sf2_cfp_get_ethtool_stats(struct dsa_switch *ds, int port, + uint64_t *data) +{ + struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); + unsigned int s = ARRAY_SIZE(bcm_sf2_cfp_stats); + const struct bcm_sf2_cfp_stat *stat; + unsigned int i, j, iter; + struct cfp_rule *rule; + int ret; + + mutex_lock(&priv->cfp.lock); + for (i = 1; i < priv->num_cfp_rules; i++) { + rule = bcm_sf2_cfp_rule_find(priv, port, i); + if (!rule) + continue; + + for (j = 0; j < s; j++) { + stat = &bcm_sf2_cfp_stats[j]; + + bcm_sf2_cfp_rule_addr_set(priv, i); + ret = bcm_sf2_cfp_op(priv, stat->ram_loc | OP_SEL_READ); + if (ret) + continue; + + iter = (i - 1) * s + j; + data[iter] = core_readl(priv, stat->offset); + } + + } + mutex_unlock(&priv->cfp.lock); +} + +int bcm_sf2_cfp_get_sset_count(struct dsa_switch *ds, int port, int sset) +{ + struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); + + if (sset != ETH_SS_STATS) + return 0; + + /* 3 counters per CFP rules */ + return (priv->num_cfp_rules - 1) * ARRAY_SIZE(bcm_sf2_cfp_stats); +} |