summaryrefslogtreecommitdiffstats
path: root/drivers/powercap
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/powercap')
-rw-r--r--drivers/powercap/Kconfig69
-rw-r--r--drivers/powercap/Makefile8
-rw-r--r--drivers/powercap/dtpm.c661
-rw-r--r--drivers/powercap/dtpm_cpu.c302
-rw-r--r--drivers/powercap/dtpm_devfreq.c198
-rw-r--r--drivers/powercap/dtpm_subsys.h22
-rw-r--r--drivers/powercap/idle_inject.c370
-rw-r--r--drivers/powercap/intel_rapl_common.c1561
-rw-r--r--drivers/powercap/intel_rapl_msr.c221
-rw-r--r--drivers/powercap/powercap_sys.c681
10 files changed, 4093 insertions, 0 deletions
diff --git a/drivers/powercap/Kconfig b/drivers/powercap/Kconfig
new file mode 100644
index 000000000..863e240b3
--- /dev/null
+++ b/drivers/powercap/Kconfig
@@ -0,0 +1,69 @@
+# SPDX-License-Identifier: GPL-2.0-only
+#
+# Generic power capping sysfs interface configuration
+#
+
+menuconfig POWERCAP
+ bool "Generic powercap sysfs driver"
+ help
+ The power capping sysfs interface allows kernel subsystems to expose power
+ capping settings to user space in a consistent way. Usually, it consists
+ of multiple control types that determine which settings may be exposed and
+ power zones representing parts of the system that can be subject to power
+ capping.
+
+ If you want this code to be compiled in, say Y here.
+
+if POWERCAP
+# Client driver configurations go here.
+config INTEL_RAPL_CORE
+ tristate
+ depends on PCI
+ select IOSF_MBI
+
+config INTEL_RAPL
+ tristate "Intel RAPL Support via MSR Interface"
+ depends on X86 && PCI
+ select INTEL_RAPL_CORE
+ help
+ This enables support for the Intel Running Average Power Limit (RAPL)
+ technology via MSR interface, which allows power limits to be enforced
+ and monitored on modern Intel processors (Sandy Bridge and later).
+
+ In RAPL, the platform level settings are divided into domains for
+ fine grained control. These domains include processor package, DRAM
+ controller, CPU core (Power Plane 0), graphics uncore (Power Plane
+ 1), etc.
+
+config IDLE_INJECT
+ bool "Idle injection framework"
+ depends on CPU_IDLE
+ default n
+ help
+ This enables support for the idle injection framework. It
+ provides a way to force idle periods on a set of specified
+ CPUs for power capping. Idle period can be injected
+ synchronously on a set of specified CPUs or alternatively
+ on a per CPU basis.
+
+config DTPM
+ bool "Power capping for Dynamic Thermal Power Management (EXPERIMENTAL)"
+ depends on OF
+ help
+ This enables support for the power capping for the dynamic
+ thermal power management userspace engine.
+
+config DTPM_CPU
+ bool "Add CPU power capping based on the energy model"
+ depends on DTPM && ENERGY_MODEL
+ help
+ This enables support for CPU power limitation based on
+ energy model.
+
+config DTPM_DEVFREQ
+ bool "Add device power capping based on the energy model"
+ depends on DTPM && ENERGY_MODEL
+ help
+ This enables support for device power limitation based on
+ energy model.
+endif
diff --git a/drivers/powercap/Makefile b/drivers/powercap/Makefile
new file mode 100644
index 000000000..494617cda
--- /dev/null
+++ b/drivers/powercap/Makefile
@@ -0,0 +1,8 @@
+# SPDX-License-Identifier: GPL-2.0-only
+obj-$(CONFIG_DTPM) += dtpm.o
+obj-$(CONFIG_DTPM_CPU) += dtpm_cpu.o
+obj-$(CONFIG_DTPM_DEVFREQ) += dtpm_devfreq.o
+obj-$(CONFIG_POWERCAP) += powercap_sys.o
+obj-$(CONFIG_INTEL_RAPL_CORE) += intel_rapl_common.o
+obj-$(CONFIG_INTEL_RAPL) += intel_rapl_msr.o
+obj-$(CONFIG_IDLE_INJECT) += idle_inject.o
diff --git a/drivers/powercap/dtpm.c b/drivers/powercap/dtpm.c
new file mode 100644
index 000000000..ce920f17f
--- /dev/null
+++ b/drivers/powercap/dtpm.c
@@ -0,0 +1,661 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright 2020 Linaro Limited
+ *
+ * Author: Daniel Lezcano <daniel.lezcano@linaro.org>
+ *
+ * The powercap based Dynamic Thermal Power Management framework
+ * provides to the userspace a consistent API to set the power limit
+ * on some devices.
+ *
+ * DTPM defines the functions to create a tree of constraints. Each
+ * parent node is a virtual description of the aggregation of the
+ * children. It propagates the constraints set at its level to its
+ * children and collect the children power information. The leaves of
+ * the tree are the real devices which have the ability to get their
+ * current power consumption and set their power limit.
+ */
+#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
+
+#include <linux/dtpm.h>
+#include <linux/init.h>
+#include <linux/kernel.h>
+#include <linux/powercap.h>
+#include <linux/slab.h>
+#include <linux/mutex.h>
+#include <linux/of.h>
+
+#include "dtpm_subsys.h"
+
+#define DTPM_POWER_LIMIT_FLAG 0
+
+static const char *constraint_name[] = {
+ "Instantaneous",
+};
+
+static DEFINE_MUTEX(dtpm_lock);
+static struct powercap_control_type *pct;
+static struct dtpm *root;
+
+static int get_time_window_us(struct powercap_zone *pcz, int cid, u64 *window)
+{
+ return -ENOSYS;
+}
+
+static int set_time_window_us(struct powercap_zone *pcz, int cid, u64 window)
+{
+ return -ENOSYS;
+}
+
+static int get_max_power_range_uw(struct powercap_zone *pcz, u64 *max_power_uw)
+{
+ struct dtpm *dtpm = to_dtpm(pcz);
+
+ *max_power_uw = dtpm->power_max - dtpm->power_min;
+
+ return 0;
+}
+
+static int __get_power_uw(struct dtpm *dtpm, u64 *power_uw)
+{
+ struct dtpm *child;
+ u64 power;
+ int ret = 0;
+
+ if (dtpm->ops) {
+ *power_uw = dtpm->ops->get_power_uw(dtpm);
+ return 0;
+ }
+
+ *power_uw = 0;
+
+ list_for_each_entry(child, &dtpm->children, sibling) {
+ ret = __get_power_uw(child, &power);
+ if (ret)
+ break;
+ *power_uw += power;
+ }
+
+ return ret;
+}
+
+static int get_power_uw(struct powercap_zone *pcz, u64 *power_uw)
+{
+ return __get_power_uw(to_dtpm(pcz), power_uw);
+}
+
+static void __dtpm_rebalance_weight(struct dtpm *dtpm)
+{
+ struct dtpm *child;
+
+ list_for_each_entry(child, &dtpm->children, sibling) {
+
+ pr_debug("Setting weight '%d' for '%s'\n",
+ child->weight, child->zone.name);
+
+ child->weight = DIV64_U64_ROUND_CLOSEST(
+ child->power_max * 1024, dtpm->power_max);
+
+ __dtpm_rebalance_weight(child);
+ }
+}
+
+static void __dtpm_sub_power(struct dtpm *dtpm)
+{
+ struct dtpm *parent = dtpm->parent;
+
+ while (parent) {
+ parent->power_min -= dtpm->power_min;
+ parent->power_max -= dtpm->power_max;
+ parent->power_limit -= dtpm->power_limit;
+ parent = parent->parent;
+ }
+}
+
+static void __dtpm_add_power(struct dtpm *dtpm)
+{
+ struct dtpm *parent = dtpm->parent;
+
+ while (parent) {
+ parent->power_min += dtpm->power_min;
+ parent->power_max += dtpm->power_max;
+ parent->power_limit += dtpm->power_limit;
+ parent = parent->parent;
+ }
+}
+
+/**
+ * dtpm_update_power - Update the power on the dtpm
+ * @dtpm: a pointer to a dtpm structure to update
+ *
+ * Function to update the power values of the dtpm node specified in
+ * parameter. These new values will be propagated to the tree.
+ *
+ * Return: zero on success, -EINVAL if the values are inconsistent
+ */
+int dtpm_update_power(struct dtpm *dtpm)
+{
+ int ret;
+
+ __dtpm_sub_power(dtpm);
+
+ ret = dtpm->ops->update_power_uw(dtpm);
+ if (ret)
+ pr_err("Failed to update power for '%s': %d\n",
+ dtpm->zone.name, ret);
+
+ if (!test_bit(DTPM_POWER_LIMIT_FLAG, &dtpm->flags))
+ dtpm->power_limit = dtpm->power_max;
+
+ __dtpm_add_power(dtpm);
+
+ if (root)
+ __dtpm_rebalance_weight(root);
+
+ return ret;
+}
+
+/**
+ * dtpm_release_zone - Cleanup when the node is released
+ * @pcz: a pointer to a powercap_zone structure
+ *
+ * Do some housecleaning and update the weight on the tree. The
+ * release will be denied if the node has children. This function must
+ * be called by the specific release callback of the different
+ * backends.
+ *
+ * Return: 0 on success, -EBUSY if there are children
+ */
+int dtpm_release_zone(struct powercap_zone *pcz)
+{
+ struct dtpm *dtpm = to_dtpm(pcz);
+ struct dtpm *parent = dtpm->parent;
+
+ if (!list_empty(&dtpm->children))
+ return -EBUSY;
+
+ if (parent)
+ list_del(&dtpm->sibling);
+
+ __dtpm_sub_power(dtpm);
+
+ if (dtpm->ops)
+ dtpm->ops->release(dtpm);
+ else
+ kfree(dtpm);
+
+ return 0;
+}
+
+static int get_power_limit_uw(struct powercap_zone *pcz,
+ int cid, u64 *power_limit)
+{
+ *power_limit = to_dtpm(pcz)->power_limit;
+
+ return 0;
+}
+
+/*
+ * Set the power limit on the nodes, the power limit is distributed
+ * given the weight of the children.
+ *
+ * The dtpm node lock must be held when calling this function.
+ */
+static int __set_power_limit_uw(struct dtpm *dtpm, int cid, u64 power_limit)
+{
+ struct dtpm *child;
+ int ret = 0;
+ u64 power;
+
+ /*
+ * A max power limitation means we remove the power limit,
+ * otherwise we set a constraint and flag the dtpm node.
+ */
+ if (power_limit == dtpm->power_max) {
+ clear_bit(DTPM_POWER_LIMIT_FLAG, &dtpm->flags);
+ } else {
+ set_bit(DTPM_POWER_LIMIT_FLAG, &dtpm->flags);
+ }
+
+ pr_debug("Setting power limit for '%s': %llu uW\n",
+ dtpm->zone.name, power_limit);
+
+ /*
+ * Only leaves of the dtpm tree has ops to get/set the power
+ */
+ if (dtpm->ops) {
+ dtpm->power_limit = dtpm->ops->set_power_uw(dtpm, power_limit);
+ } else {
+ dtpm->power_limit = 0;
+
+ list_for_each_entry(child, &dtpm->children, sibling) {
+
+ /*
+ * Integer division rounding will inevitably
+ * lead to a different min or max value when
+ * set several times. In order to restore the
+ * initial value, we force the child's min or
+ * max power every time if the constraint is
+ * at the boundaries.
+ */
+ if (power_limit == dtpm->power_max) {
+ power = child->power_max;
+ } else if (power_limit == dtpm->power_min) {
+ power = child->power_min;
+ } else {
+ power = DIV_ROUND_CLOSEST_ULL(
+ power_limit * child->weight, 1024);
+ }
+
+ pr_debug("Setting power limit for '%s': %llu uW\n",
+ child->zone.name, power);
+
+ ret = __set_power_limit_uw(child, cid, power);
+ if (!ret)
+ ret = get_power_limit_uw(&child->zone, cid, &power);
+
+ if (ret)
+ break;
+
+ dtpm->power_limit += power;
+ }
+ }
+
+ return ret;
+}
+
+static int set_power_limit_uw(struct powercap_zone *pcz,
+ int cid, u64 power_limit)
+{
+ struct dtpm *dtpm = to_dtpm(pcz);
+ int ret;
+
+ /*
+ * Don't allow values outside of the power range previously
+ * set when initializing the power numbers.
+ */
+ power_limit = clamp_val(power_limit, dtpm->power_min, dtpm->power_max);
+
+ ret = __set_power_limit_uw(dtpm, cid, power_limit);
+
+ pr_debug("%s: power limit: %llu uW, power max: %llu uW\n",
+ dtpm->zone.name, dtpm->power_limit, dtpm->power_max);
+
+ return ret;
+}
+
+static const char *get_constraint_name(struct powercap_zone *pcz, int cid)
+{
+ return constraint_name[cid];
+}
+
+static int get_max_power_uw(struct powercap_zone *pcz, int id, u64 *max_power)
+{
+ *max_power = to_dtpm(pcz)->power_max;
+
+ return 0;
+}
+
+static struct powercap_zone_constraint_ops constraint_ops = {
+ .set_power_limit_uw = set_power_limit_uw,
+ .get_power_limit_uw = get_power_limit_uw,
+ .set_time_window_us = set_time_window_us,
+ .get_time_window_us = get_time_window_us,
+ .get_max_power_uw = get_max_power_uw,
+ .get_name = get_constraint_name,
+};
+
+static struct powercap_zone_ops zone_ops = {
+ .get_max_power_range_uw = get_max_power_range_uw,
+ .get_power_uw = get_power_uw,
+ .release = dtpm_release_zone,
+};
+
+/**
+ * dtpm_init - Allocate and initialize a dtpm struct
+ * @dtpm: The dtpm struct pointer to be initialized
+ * @ops: The dtpm device specific ops, NULL for a virtual node
+ */
+void dtpm_init(struct dtpm *dtpm, struct dtpm_ops *ops)
+{
+ if (dtpm) {
+ INIT_LIST_HEAD(&dtpm->children);
+ INIT_LIST_HEAD(&dtpm->sibling);
+ dtpm->weight = 1024;
+ dtpm->ops = ops;
+ }
+}
+
+/**
+ * dtpm_unregister - Unregister a dtpm node from the hierarchy tree
+ * @dtpm: a pointer to a dtpm structure corresponding to the node to be removed
+ *
+ * Call the underlying powercap unregister function. That will call
+ * the release callback of the powercap zone.
+ */
+void dtpm_unregister(struct dtpm *dtpm)
+{
+ powercap_unregister_zone(pct, &dtpm->zone);
+
+ pr_debug("Unregistered dtpm node '%s'\n", dtpm->zone.name);
+}
+
+/**
+ * dtpm_register - Register a dtpm node in the hierarchy tree
+ * @name: a string specifying the name of the node
+ * @dtpm: a pointer to a dtpm structure corresponding to the new node
+ * @parent: a pointer to a dtpm structure corresponding to the parent node
+ *
+ * Create a dtpm node in the tree. If no parent is specified, the node
+ * is the root node of the hierarchy. If the root node already exists,
+ * then the registration will fail. The powercap controller must be
+ * initialized before calling this function.
+ *
+ * The dtpm structure must be initialized with the power numbers
+ * before calling this function.
+ *
+ * Return: zero on success, a negative value in case of error:
+ * -EAGAIN: the function is called before the framework is initialized.
+ * -EBUSY: the root node is already inserted
+ * -EINVAL: * there is no root node yet and @parent is specified
+ * * no all ops are defined
+ * * parent have ops which are reserved for leaves
+ * Other negative values are reported back from the powercap framework
+ */
+int dtpm_register(const char *name, struct dtpm *dtpm, struct dtpm *parent)
+{
+ struct powercap_zone *pcz;
+
+ if (!pct)
+ return -EAGAIN;
+
+ if (root && !parent)
+ return -EBUSY;
+
+ if (!root && parent)
+ return -EINVAL;
+
+ if (parent && parent->ops)
+ return -EINVAL;
+
+ if (!dtpm)
+ return -EINVAL;
+
+ if (dtpm->ops && !(dtpm->ops->set_power_uw &&
+ dtpm->ops->get_power_uw &&
+ dtpm->ops->update_power_uw &&
+ dtpm->ops->release))
+ return -EINVAL;
+
+ pcz = powercap_register_zone(&dtpm->zone, pct, name,
+ parent ? &parent->zone : NULL,
+ &zone_ops, MAX_DTPM_CONSTRAINTS,
+ &constraint_ops);
+ if (IS_ERR(pcz))
+ return PTR_ERR(pcz);
+
+ if (parent) {
+ list_add_tail(&dtpm->sibling, &parent->children);
+ dtpm->parent = parent;
+ } else {
+ root = dtpm;
+ }
+
+ if (dtpm->ops && !dtpm->ops->update_power_uw(dtpm)) {
+ __dtpm_add_power(dtpm);
+ dtpm->power_limit = dtpm->power_max;
+ }
+
+ pr_debug("Registered dtpm node '%s' / %llu-%llu uW, \n",
+ dtpm->zone.name, dtpm->power_min, dtpm->power_max);
+
+ return 0;
+}
+
+static struct dtpm *dtpm_setup_virtual(const struct dtpm_node *hierarchy,
+ struct dtpm *parent)
+{
+ struct dtpm *dtpm;
+ int ret;
+
+ dtpm = kzalloc(sizeof(*dtpm), GFP_KERNEL);
+ if (!dtpm)
+ return ERR_PTR(-ENOMEM);
+ dtpm_init(dtpm, NULL);
+
+ ret = dtpm_register(hierarchy->name, dtpm, parent);
+ if (ret) {
+ pr_err("Failed to register dtpm node '%s': %d\n",
+ hierarchy->name, ret);
+ kfree(dtpm);
+ return ERR_PTR(ret);
+ }
+
+ return dtpm;
+}
+
+static struct dtpm *dtpm_setup_dt(const struct dtpm_node *hierarchy,
+ struct dtpm *parent)
+{
+ struct device_node *np;
+ int i, ret;
+
+ np = of_find_node_by_path(hierarchy->name);
+ if (!np) {
+ pr_err("Failed to find '%s'\n", hierarchy->name);
+ return ERR_PTR(-ENXIO);
+ }
+
+ for (i = 0; i < ARRAY_SIZE(dtpm_subsys); i++) {
+
+ if (!dtpm_subsys[i]->setup)
+ continue;
+
+ ret = dtpm_subsys[i]->setup(parent, np);
+ if (ret) {
+ pr_err("Failed to setup '%s': %d\n", dtpm_subsys[i]->name, ret);
+ of_node_put(np);
+ return ERR_PTR(ret);
+ }
+ }
+
+ of_node_put(np);
+
+ /*
+ * By returning a NULL pointer, we let know the caller there
+ * is no child for us as we are a leaf of the tree
+ */
+ return NULL;
+}
+
+typedef struct dtpm * (*dtpm_node_callback_t)(const struct dtpm_node *, struct dtpm *);
+
+static dtpm_node_callback_t dtpm_node_callback[] = {
+ [DTPM_NODE_VIRTUAL] = dtpm_setup_virtual,
+ [DTPM_NODE_DT] = dtpm_setup_dt,
+};
+
+static int dtpm_for_each_child(const struct dtpm_node *hierarchy,
+ const struct dtpm_node *it, struct dtpm *parent)
+{
+ struct dtpm *dtpm;
+ int i, ret;
+
+ for (i = 0; hierarchy[i].name; i++) {
+
+ if (hierarchy[i].parent != it)
+ continue;
+
+ dtpm = dtpm_node_callback[hierarchy[i].type](&hierarchy[i], parent);
+
+ /*
+ * A NULL pointer means there is no children, hence we
+ * continue without going deeper in the recursivity.
+ */
+ if (!dtpm)
+ continue;
+
+ /*
+ * There are multiple reasons why the callback could
+ * fail. The generic glue is abstracting the backend
+ * and therefore it is not possible to report back or
+ * take a decision based on the error. In any case,
+ * if this call fails, it is not critical in the
+ * hierarchy creation, we can assume the underlying
+ * service is not found, so we continue without this
+ * branch in the tree but with a warning to log the
+ * information the node was not created.
+ */
+ if (IS_ERR(dtpm)) {
+ pr_warn("Failed to create '%s' in the hierarchy\n",
+ hierarchy[i].name);
+ continue;
+ }
+
+ ret = dtpm_for_each_child(hierarchy, &hierarchy[i], dtpm);
+ if (ret)
+ return ret;
+ }
+
+ return 0;
+}
+
+/**
+ * dtpm_create_hierarchy - Create the dtpm hierarchy
+ * @hierarchy: An array of struct dtpm_node describing the hierarchy
+ *
+ * The function is called by the platform specific code with the
+ * description of the different node in the hierarchy. It creates the
+ * tree in the sysfs filesystem under the powercap dtpm entry.
+ *
+ * The expected tree has the format:
+ *
+ * struct dtpm_node hierarchy[] = {
+ * [0] { .name = "topmost", type = DTPM_NODE_VIRTUAL },
+ * [1] { .name = "package", .type = DTPM_NODE_VIRTUAL, .parent = &hierarchy[0] },
+ * [2] { .name = "/cpus/cpu0", .type = DTPM_NODE_DT, .parent = &hierarchy[1] },
+ * [3] { .name = "/cpus/cpu1", .type = DTPM_NODE_DT, .parent = &hierarchy[1] },
+ * [4] { .name = "/cpus/cpu2", .type = DTPM_NODE_DT, .parent = &hierarchy[1] },
+ * [5] { .name = "/cpus/cpu3", .type = DTPM_NODE_DT, .parent = &hierarchy[1] },
+ * [6] { }
+ * };
+ *
+ * The last element is always an empty one and marks the end of the
+ * array.
+ *
+ * Return: zero on success, a negative value in case of error. Errors
+ * are reported back from the underlying functions.
+ */
+int dtpm_create_hierarchy(struct of_device_id *dtpm_match_table)
+{
+ const struct of_device_id *match;
+ const struct dtpm_node *hierarchy;
+ struct device_node *np;
+ int i, ret;
+
+ mutex_lock(&dtpm_lock);
+
+ if (pct) {
+ ret = -EBUSY;
+ goto out_unlock;
+ }
+
+ pct = powercap_register_control_type(NULL, "dtpm", NULL);
+ if (IS_ERR(pct)) {
+ pr_err("Failed to register control type\n");
+ ret = PTR_ERR(pct);
+ goto out_pct;
+ }
+
+ ret = -ENODEV;
+ np = of_find_node_by_path("/");
+ if (!np)
+ goto out_err;
+
+ match = of_match_node(dtpm_match_table, np);
+
+ of_node_put(np);
+
+ if (!match)
+ goto out_err;
+
+ hierarchy = match->data;
+ if (!hierarchy) {
+ ret = -EFAULT;
+ goto out_err;
+ }
+
+ ret = dtpm_for_each_child(hierarchy, NULL, NULL);
+ if (ret)
+ goto out_err;
+
+ for (i = 0; i < ARRAY_SIZE(dtpm_subsys); i++) {
+
+ if (!dtpm_subsys[i]->init)
+ continue;
+
+ ret = dtpm_subsys[i]->init();
+ if (ret)
+ pr_info("Failed to initialize '%s': %d",
+ dtpm_subsys[i]->name, ret);
+ }
+
+ mutex_unlock(&dtpm_lock);
+
+ return 0;
+
+out_err:
+ powercap_unregister_control_type(pct);
+out_pct:
+ pct = NULL;
+out_unlock:
+ mutex_unlock(&dtpm_lock);
+
+ return ret;
+}
+EXPORT_SYMBOL_GPL(dtpm_create_hierarchy);
+
+static void __dtpm_destroy_hierarchy(struct dtpm *dtpm)
+{
+ struct dtpm *child, *aux;
+
+ list_for_each_entry_safe(child, aux, &dtpm->children, sibling)
+ __dtpm_destroy_hierarchy(child);
+
+ /*
+ * At this point, we know all children were removed from the
+ * recursive call before
+ */
+ dtpm_unregister(dtpm);
+}
+
+void dtpm_destroy_hierarchy(void)
+{
+ int i;
+
+ mutex_lock(&dtpm_lock);
+
+ if (!pct)
+ goto out_unlock;
+
+ __dtpm_destroy_hierarchy(root);
+
+
+ for (i = 0; i < ARRAY_SIZE(dtpm_subsys); i++) {
+
+ if (!dtpm_subsys[i]->exit)
+ continue;
+
+ dtpm_subsys[i]->exit();
+ }
+
+ powercap_unregister_control_type(pct);
+
+ pct = NULL;
+
+ root = NULL;
+
+out_unlock:
+ mutex_unlock(&dtpm_lock);
+}
+EXPORT_SYMBOL_GPL(dtpm_destroy_hierarchy);
diff --git a/drivers/powercap/dtpm_cpu.c b/drivers/powercap/dtpm_cpu.c
new file mode 100644
index 000000000..9193c3b8e
--- /dev/null
+++ b/drivers/powercap/dtpm_cpu.c
@@ -0,0 +1,302 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright 2020 Linaro Limited
+ *
+ * Author: Daniel Lezcano <daniel.lezcano@linaro.org>
+ *
+ * The DTPM CPU is based on the energy model. It hooks the CPU in the
+ * DTPM tree which in turns update the power number by propagating the
+ * power number from the CPU energy model information to the parents.
+ *
+ * The association between the power and the performance state, allows
+ * to set the power of the CPU at the OPP granularity.
+ *
+ * The CPU hotplug is supported and the power numbers will be updated
+ * if a CPU is hot plugged / unplugged.
+ */
+#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
+
+#include <linux/cpumask.h>
+#include <linux/cpufreq.h>
+#include <linux/cpuhotplug.h>
+#include <linux/dtpm.h>
+#include <linux/energy_model.h>
+#include <linux/of.h>
+#include <linux/pm_qos.h>
+#include <linux/slab.h>
+
+struct dtpm_cpu {
+ struct dtpm dtpm;
+ struct freq_qos_request qos_req;
+ int cpu;
+};
+
+static DEFINE_PER_CPU(struct dtpm_cpu *, dtpm_per_cpu);
+
+static struct dtpm_cpu *to_dtpm_cpu(struct dtpm *dtpm)
+{
+ return container_of(dtpm, struct dtpm_cpu, dtpm);
+}
+
+static u64 set_pd_power_limit(struct dtpm *dtpm, u64 power_limit)
+{
+ struct dtpm_cpu *dtpm_cpu = to_dtpm_cpu(dtpm);
+ struct em_perf_domain *pd = em_cpu_get(dtpm_cpu->cpu);
+ struct cpumask cpus;
+ unsigned long freq;
+ u64 power;
+ int i, nr_cpus;
+
+ cpumask_and(&cpus, cpu_online_mask, to_cpumask(pd->cpus));
+ nr_cpus = cpumask_weight(&cpus);
+
+ for (i = 0; i < pd->nr_perf_states; i++) {
+
+ power = pd->table[i].power * nr_cpus;
+
+ if (power > power_limit)
+ break;
+ }
+
+ freq = pd->table[i - 1].frequency;
+
+ freq_qos_update_request(&dtpm_cpu->qos_req, freq);
+
+ power_limit = pd->table[i - 1].power * nr_cpus;
+
+ return power_limit;
+}
+
+static u64 scale_pd_power_uw(struct cpumask *pd_mask, u64 power)
+{
+ unsigned long max, sum_util = 0;
+ int cpu;
+
+ /*
+ * The capacity is the same for all CPUs belonging to
+ * the same perf domain.
+ */
+ max = arch_scale_cpu_capacity(cpumask_first(pd_mask));
+
+ for_each_cpu_and(cpu, pd_mask, cpu_online_mask)
+ sum_util += sched_cpu_util(cpu);
+
+ return (power * ((sum_util << 10) / max)) >> 10;
+}
+
+static u64 get_pd_power_uw(struct dtpm *dtpm)
+{
+ struct dtpm_cpu *dtpm_cpu = to_dtpm_cpu(dtpm);
+ struct em_perf_domain *pd;
+ struct cpumask *pd_mask;
+ unsigned long freq;
+ int i;
+
+ pd = em_cpu_get(dtpm_cpu->cpu);
+
+ pd_mask = em_span_cpus(pd);
+
+ freq = cpufreq_quick_get(dtpm_cpu->cpu);
+
+ for (i = 0; i < pd->nr_perf_states; i++) {
+
+ if (pd->table[i].frequency < freq)
+ continue;
+
+ return scale_pd_power_uw(pd_mask, pd->table[i].power);
+ }
+
+ return 0;
+}
+
+static int update_pd_power_uw(struct dtpm *dtpm)
+{
+ struct dtpm_cpu *dtpm_cpu = to_dtpm_cpu(dtpm);
+ struct em_perf_domain *em = em_cpu_get(dtpm_cpu->cpu);
+ struct cpumask cpus;
+ int nr_cpus;
+
+ cpumask_and(&cpus, cpu_online_mask, to_cpumask(em->cpus));
+ nr_cpus = cpumask_weight(&cpus);
+
+ dtpm->power_min = em->table[0].power;
+ dtpm->power_min *= nr_cpus;
+
+ dtpm->power_max = em->table[em->nr_perf_states - 1].power;
+ dtpm->power_max *= nr_cpus;
+
+ return 0;
+}
+
+static void pd_release(struct dtpm *dtpm)
+{
+ struct dtpm_cpu *dtpm_cpu = to_dtpm_cpu(dtpm);
+ struct cpufreq_policy *policy;
+
+ if (freq_qos_request_active(&dtpm_cpu->qos_req))
+ freq_qos_remove_request(&dtpm_cpu->qos_req);
+
+ policy = cpufreq_cpu_get(dtpm_cpu->cpu);
+ if (policy) {
+ for_each_cpu(dtpm_cpu->cpu, policy->related_cpus)
+ per_cpu(dtpm_per_cpu, dtpm_cpu->cpu) = NULL;
+
+ cpufreq_cpu_put(policy);
+ }
+
+ kfree(dtpm_cpu);
+}
+
+static struct dtpm_ops dtpm_ops = {
+ .set_power_uw = set_pd_power_limit,
+ .get_power_uw = get_pd_power_uw,
+ .update_power_uw = update_pd_power_uw,
+ .release = pd_release,
+};
+
+static int cpuhp_dtpm_cpu_offline(unsigned int cpu)
+{
+ struct dtpm_cpu *dtpm_cpu;
+
+ dtpm_cpu = per_cpu(dtpm_per_cpu, cpu);
+ if (dtpm_cpu)
+ dtpm_update_power(&dtpm_cpu->dtpm);
+
+ return 0;
+}
+
+static int cpuhp_dtpm_cpu_online(unsigned int cpu)
+{
+ struct dtpm_cpu *dtpm_cpu;
+
+ dtpm_cpu = per_cpu(dtpm_per_cpu, cpu);
+ if (dtpm_cpu)
+ return dtpm_update_power(&dtpm_cpu->dtpm);
+
+ return 0;
+}
+
+static int __dtpm_cpu_setup(int cpu, struct dtpm *parent)
+{
+ struct dtpm_cpu *dtpm_cpu;
+ struct cpufreq_policy *policy;
+ struct em_perf_domain *pd;
+ char name[CPUFREQ_NAME_LEN];
+ int ret = -ENOMEM;
+
+ dtpm_cpu = per_cpu(dtpm_per_cpu, cpu);
+ if (dtpm_cpu)
+ return 0;
+
+ policy = cpufreq_cpu_get(cpu);
+ if (!policy)
+ return 0;
+
+ pd = em_cpu_get(cpu);
+ if (!pd || em_is_artificial(pd)) {
+ ret = -EINVAL;
+ goto release_policy;
+ }
+
+ dtpm_cpu = kzalloc(sizeof(*dtpm_cpu), GFP_KERNEL);
+ if (!dtpm_cpu) {
+ ret = -ENOMEM;
+ goto release_policy;
+ }
+
+ dtpm_init(&dtpm_cpu->dtpm, &dtpm_ops);
+ dtpm_cpu->cpu = cpu;
+
+ for_each_cpu(cpu, policy->related_cpus)
+ per_cpu(dtpm_per_cpu, cpu) = dtpm_cpu;
+
+ snprintf(name, sizeof(name), "cpu%d-cpufreq", dtpm_cpu->cpu);
+
+ ret = dtpm_register(name, &dtpm_cpu->dtpm, parent);
+ if (ret)
+ goto out_kfree_dtpm_cpu;
+
+ ret = freq_qos_add_request(&policy->constraints,
+ &dtpm_cpu->qos_req, FREQ_QOS_MAX,
+ pd->table[pd->nr_perf_states - 1].frequency);
+ if (ret)
+ goto out_dtpm_unregister;
+
+ cpufreq_cpu_put(policy);
+ return 0;
+
+out_dtpm_unregister:
+ dtpm_unregister(&dtpm_cpu->dtpm);
+ dtpm_cpu = NULL;
+
+out_kfree_dtpm_cpu:
+ for_each_cpu(cpu, policy->related_cpus)
+ per_cpu(dtpm_per_cpu, cpu) = NULL;
+ kfree(dtpm_cpu);
+
+release_policy:
+ cpufreq_cpu_put(policy);
+ return ret;
+}
+
+static int dtpm_cpu_setup(struct dtpm *dtpm, struct device_node *np)
+{
+ int cpu;
+
+ cpu = of_cpu_node_to_id(np);
+ if (cpu < 0)
+ return 0;
+
+ return __dtpm_cpu_setup(cpu, dtpm);
+}
+
+static int dtpm_cpu_init(void)
+{
+ int ret;
+
+ /*
+ * The callbacks at CPU hotplug time are calling
+ * dtpm_update_power() which in turns calls update_pd_power().
+ *
+ * The function update_pd_power() uses the online mask to
+ * figure out the power consumption limits.
+ *
+ * At CPUHP_AP_ONLINE_DYN, the CPU is present in the CPU
+ * online mask when the cpuhp_dtpm_cpu_online function is
+ * called, but the CPU is still in the online mask for the
+ * tear down callback. So the power can not be updated when
+ * the CPU is unplugged.
+ *
+ * At CPUHP_AP_DTPM_CPU_DEAD, the situation is the opposite as
+ * above. The CPU online mask is not up to date when the CPU
+ * is plugged in.
+ *
+ * For this reason, we need to call the online and offline
+ * callbacks at different moments when the CPU online mask is
+ * consistent with the power numbers we want to update.
+ */
+ ret = cpuhp_setup_state(CPUHP_AP_DTPM_CPU_DEAD, "dtpm_cpu:offline",
+ NULL, cpuhp_dtpm_cpu_offline);
+ if (ret < 0)
+ return ret;
+
+ ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "dtpm_cpu:online",
+ cpuhp_dtpm_cpu_online, NULL);
+ if (ret < 0)
+ return ret;
+
+ return 0;
+}
+
+static void dtpm_cpu_exit(void)
+{
+ cpuhp_remove_state_nocalls(CPUHP_AP_ONLINE_DYN);
+ cpuhp_remove_state_nocalls(CPUHP_AP_DTPM_CPU_DEAD);
+}
+
+struct dtpm_subsys_ops dtpm_cpu_ops = {
+ .name = KBUILD_MODNAME,
+ .init = dtpm_cpu_init,
+ .exit = dtpm_cpu_exit,
+ .setup = dtpm_cpu_setup,
+};
diff --git a/drivers/powercap/dtpm_devfreq.c b/drivers/powercap/dtpm_devfreq.c
new file mode 100644
index 000000000..612c3b59d
--- /dev/null
+++ b/drivers/powercap/dtpm_devfreq.c
@@ -0,0 +1,198 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright 2021 Linaro Limited
+ *
+ * Author: Daniel Lezcano <daniel.lezcano@linaro.org>
+ *
+ * The devfreq device combined with the energy model and the load can
+ * give an estimation of the power consumption as well as limiting the
+ * power.
+ *
+ */
+#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
+
+#include <linux/cpumask.h>
+#include <linux/devfreq.h>
+#include <linux/dtpm.h>
+#include <linux/energy_model.h>
+#include <linux/of.h>
+#include <linux/pm_qos.h>
+#include <linux/slab.h>
+#include <linux/units.h>
+
+struct dtpm_devfreq {
+ struct dtpm dtpm;
+ struct dev_pm_qos_request qos_req;
+ struct devfreq *devfreq;
+};
+
+static struct dtpm_devfreq *to_dtpm_devfreq(struct dtpm *dtpm)
+{
+ return container_of(dtpm, struct dtpm_devfreq, dtpm);
+}
+
+static int update_pd_power_uw(struct dtpm *dtpm)
+{
+ struct dtpm_devfreq *dtpm_devfreq = to_dtpm_devfreq(dtpm);
+ struct devfreq *devfreq = dtpm_devfreq->devfreq;
+ struct device *dev = devfreq->dev.parent;
+ struct em_perf_domain *pd = em_pd_get(dev);
+
+ dtpm->power_min = pd->table[0].power;
+
+ dtpm->power_max = pd->table[pd->nr_perf_states - 1].power;
+
+ return 0;
+}
+
+static u64 set_pd_power_limit(struct dtpm *dtpm, u64 power_limit)
+{
+ struct dtpm_devfreq *dtpm_devfreq = to_dtpm_devfreq(dtpm);
+ struct devfreq *devfreq = dtpm_devfreq->devfreq;
+ struct device *dev = devfreq->dev.parent;
+ struct em_perf_domain *pd = em_pd_get(dev);
+ unsigned long freq;
+ int i;
+
+ for (i = 0; i < pd->nr_perf_states; i++) {
+ if (pd->table[i].power > power_limit)
+ break;
+ }
+
+ freq = pd->table[i - 1].frequency;
+
+ dev_pm_qos_update_request(&dtpm_devfreq->qos_req, freq);
+
+ power_limit = pd->table[i - 1].power;
+
+ return power_limit;
+}
+
+static void _normalize_load(struct devfreq_dev_status *status)
+{
+ if (status->total_time > 0xfffff) {
+ status->total_time >>= 10;
+ status->busy_time >>= 10;
+ }
+
+ status->busy_time <<= 10;
+ status->busy_time /= status->total_time ? : 1;
+
+ status->busy_time = status->busy_time ? : 1;
+ status->total_time = 1024;
+}
+
+static u64 get_pd_power_uw(struct dtpm *dtpm)
+{
+ struct dtpm_devfreq *dtpm_devfreq = to_dtpm_devfreq(dtpm);
+ struct devfreq *devfreq = dtpm_devfreq->devfreq;
+ struct device *dev = devfreq->dev.parent;
+ struct em_perf_domain *pd = em_pd_get(dev);
+ struct devfreq_dev_status status;
+ unsigned long freq;
+ u64 power;
+ int i;
+
+ mutex_lock(&devfreq->lock);
+ status = devfreq->last_status;
+ mutex_unlock(&devfreq->lock);
+
+ freq = DIV_ROUND_UP(status.current_frequency, HZ_PER_KHZ);
+ _normalize_load(&status);
+
+ for (i = 0; i < pd->nr_perf_states; i++) {
+
+ if (pd->table[i].frequency < freq)
+ continue;
+
+ power = pd->table[i].power;
+ power *= status.busy_time;
+ power >>= 10;
+
+ return power;
+ }
+
+ return 0;
+}
+
+static void pd_release(struct dtpm *dtpm)
+{
+ struct dtpm_devfreq *dtpm_devfreq = to_dtpm_devfreq(dtpm);
+
+ if (dev_pm_qos_request_active(&dtpm_devfreq->qos_req))
+ dev_pm_qos_remove_request(&dtpm_devfreq->qos_req);
+
+ kfree(dtpm_devfreq);
+}
+
+static struct dtpm_ops dtpm_ops = {
+ .set_power_uw = set_pd_power_limit,
+ .get_power_uw = get_pd_power_uw,
+ .update_power_uw = update_pd_power_uw,
+ .release = pd_release,
+};
+
+static int __dtpm_devfreq_setup(struct devfreq *devfreq, struct dtpm *parent)
+{
+ struct device *dev = devfreq->dev.parent;
+ struct dtpm_devfreq *dtpm_devfreq;
+ struct em_perf_domain *pd;
+ int ret = -ENOMEM;
+
+ pd = em_pd_get(dev);
+ if (!pd) {
+ ret = dev_pm_opp_of_register_em(dev, NULL);
+ if (ret) {
+ pr_err("No energy model available for '%s'\n", dev_name(dev));
+ return -EINVAL;
+ }
+ }
+
+ dtpm_devfreq = kzalloc(sizeof(*dtpm_devfreq), GFP_KERNEL);
+ if (!dtpm_devfreq)
+ return -ENOMEM;
+
+ dtpm_init(&dtpm_devfreq->dtpm, &dtpm_ops);
+
+ dtpm_devfreq->devfreq = devfreq;
+
+ ret = dtpm_register(dev_name(dev), &dtpm_devfreq->dtpm, parent);
+ if (ret) {
+ pr_err("Failed to register '%s': %d\n", dev_name(dev), ret);
+ kfree(dtpm_devfreq);
+ return ret;
+ }
+
+ ret = dev_pm_qos_add_request(dev, &dtpm_devfreq->qos_req,
+ DEV_PM_QOS_MAX_FREQUENCY,
+ PM_QOS_MAX_FREQUENCY_DEFAULT_VALUE);
+ if (ret) {
+ pr_err("Failed to add QoS request: %d\n", ret);
+ goto out_dtpm_unregister;
+ }
+
+ dtpm_update_power(&dtpm_devfreq->dtpm);
+
+ return 0;
+
+out_dtpm_unregister:
+ dtpm_unregister(&dtpm_devfreq->dtpm);
+
+ return ret;
+}
+
+static int dtpm_devfreq_setup(struct dtpm *dtpm, struct device_node *np)
+{
+ struct devfreq *devfreq;
+
+ devfreq = devfreq_get_devfreq_by_node(np);
+ if (IS_ERR(devfreq))
+ return 0;
+
+ return __dtpm_devfreq_setup(devfreq, dtpm);
+}
+
+struct dtpm_subsys_ops dtpm_devfreq_ops = {
+ .name = KBUILD_MODNAME,
+ .setup = dtpm_devfreq_setup,
+};
diff --git a/drivers/powercap/dtpm_subsys.h b/drivers/powercap/dtpm_subsys.h
new file mode 100644
index 000000000..db1712938
--- /dev/null
+++ b/drivers/powercap/dtpm_subsys.h
@@ -0,0 +1,22 @@
+/* SPDX-License-Identifier: GPL-2.0-only */
+/*
+ * Copyright (C) 2022 Linaro Ltd
+ *
+ * Author: Daniel Lezcano <daniel.lezcano@linaro.org>
+ */
+#ifndef ___DTPM_SUBSYS_H__
+#define ___DTPM_SUBSYS_H__
+
+extern struct dtpm_subsys_ops dtpm_cpu_ops;
+extern struct dtpm_subsys_ops dtpm_devfreq_ops;
+
+struct dtpm_subsys_ops *dtpm_subsys[] = {
+#ifdef CONFIG_DTPM_CPU
+ &dtpm_cpu_ops,
+#endif
+#ifdef CONFIG_DTPM_DEVFREQ
+ &dtpm_devfreq_ops,
+#endif
+};
+
+#endif
diff --git a/drivers/powercap/idle_inject.c b/drivers/powercap/idle_inject.c
new file mode 100644
index 000000000..999e218d7
--- /dev/null
+++ b/drivers/powercap/idle_inject.c
@@ -0,0 +1,370 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright 2018 Linaro Limited
+ *
+ * Author: Daniel Lezcano <daniel.lezcano@linaro.org>
+ *
+ * The idle injection framework provides a way to force CPUs to enter idle
+ * states for a specified fraction of time over a specified period.
+ *
+ * It relies on the smpboot kthreads feature providing common code for CPU
+ * hotplug and thread [un]parking.
+ *
+ * All of the kthreads used for idle injection are created at init time.
+ *
+ * Next, the users of the idle injection framework provide a cpumask via
+ * its register function. The kthreads will be synchronized with respect to
+ * this cpumask.
+ *
+ * The idle + run duration is specified via separate helpers and that allows
+ * idle injection to be started.
+ *
+ * The idle injection kthreads will call play_idle_precise() with the idle
+ * duration and max allowed latency specified as per the above.
+ *
+ * After all of them have been woken up, a timer is set to start the next idle
+ * injection cycle.
+ *
+ * The timer interrupt handler will wake up the idle injection kthreads for
+ * all of the CPUs in the cpumask provided by the user.
+ *
+ * Idle injection is stopped synchronously and no leftover idle injection
+ * kthread activity after its completion is guaranteed.
+ *
+ * It is up to the user of this framework to provide a lock for higher-level
+ * synchronization to prevent race conditions like starting idle injection
+ * while unregistering from the framework.
+ */
+#define pr_fmt(fmt) "ii_dev: " fmt
+
+#include <linux/cpu.h>
+#include <linux/hrtimer.h>
+#include <linux/kthread.h>
+#include <linux/sched.h>
+#include <linux/slab.h>
+#include <linux/smpboot.h>
+#include <linux/idle_inject.h>
+
+#include <uapi/linux/sched/types.h>
+
+/**
+ * struct idle_inject_thread - task on/off switch structure
+ * @tsk: task injecting the idle cycles
+ * @should_run: whether or not to run the task (for the smpboot kthread API)
+ */
+struct idle_inject_thread {
+ struct task_struct *tsk;
+ int should_run;
+};
+
+/**
+ * struct idle_inject_device - idle injection data
+ * @timer: idle injection period timer
+ * @idle_duration_us: duration of CPU idle time to inject
+ * @run_duration_us: duration of CPU run time to allow
+ * @latency_us: max allowed latency
+ * @cpumask: mask of CPUs affected by idle injection
+ */
+struct idle_inject_device {
+ struct hrtimer timer;
+ unsigned int idle_duration_us;
+ unsigned int run_duration_us;
+ unsigned int latency_us;
+ unsigned long cpumask[];
+};
+
+static DEFINE_PER_CPU(struct idle_inject_thread, idle_inject_thread);
+static DEFINE_PER_CPU(struct idle_inject_device *, idle_inject_device);
+
+/**
+ * idle_inject_wakeup - Wake up idle injection threads
+ * @ii_dev: target idle injection device
+ *
+ * Every idle injection task associated with the given idle injection device
+ * and running on an online CPU will be woken up.
+ */
+static void idle_inject_wakeup(struct idle_inject_device *ii_dev)
+{
+ struct idle_inject_thread *iit;
+ unsigned int cpu;
+
+ for_each_cpu_and(cpu, to_cpumask(ii_dev->cpumask), cpu_online_mask) {
+ iit = per_cpu_ptr(&idle_inject_thread, cpu);
+ iit->should_run = 1;
+ wake_up_process(iit->tsk);
+ }
+}
+
+/**
+ * idle_inject_timer_fn - idle injection timer function
+ * @timer: idle injection hrtimer
+ *
+ * This function is called when the idle injection timer expires. It wakes up
+ * idle injection tasks associated with the timer and they, in turn, invoke
+ * play_idle_precise() to inject a specified amount of CPU idle time.
+ *
+ * Return: HRTIMER_RESTART.
+ */
+static enum hrtimer_restart idle_inject_timer_fn(struct hrtimer *timer)
+{
+ unsigned int duration_us;
+ struct idle_inject_device *ii_dev =
+ container_of(timer, struct idle_inject_device, timer);
+
+ duration_us = READ_ONCE(ii_dev->run_duration_us);
+ duration_us += READ_ONCE(ii_dev->idle_duration_us);
+
+ idle_inject_wakeup(ii_dev);
+
+ hrtimer_forward_now(timer, ns_to_ktime(duration_us * NSEC_PER_USEC));
+
+ return HRTIMER_RESTART;
+}
+
+/**
+ * idle_inject_fn - idle injection work function
+ * @cpu: the CPU owning the task
+ *
+ * This function calls play_idle_precise() to inject a specified amount of CPU
+ * idle time.
+ */
+static void idle_inject_fn(unsigned int cpu)
+{
+ struct idle_inject_device *ii_dev;
+ struct idle_inject_thread *iit;
+
+ ii_dev = per_cpu(idle_inject_device, cpu);
+ iit = per_cpu_ptr(&idle_inject_thread, cpu);
+
+ /*
+ * Let the smpboot main loop know that the task should not run again.
+ */
+ iit->should_run = 0;
+
+ play_idle_precise(READ_ONCE(ii_dev->idle_duration_us) * NSEC_PER_USEC,
+ READ_ONCE(ii_dev->latency_us) * NSEC_PER_USEC);
+}
+
+/**
+ * idle_inject_set_duration - idle and run duration update helper
+ * @run_duration_us: CPU run time to allow in microseconds
+ * @idle_duration_us: CPU idle time to inject in microseconds
+ */
+void idle_inject_set_duration(struct idle_inject_device *ii_dev,
+ unsigned int run_duration_us,
+ unsigned int idle_duration_us)
+{
+ if (run_duration_us && idle_duration_us) {
+ WRITE_ONCE(ii_dev->run_duration_us, run_duration_us);
+ WRITE_ONCE(ii_dev->idle_duration_us, idle_duration_us);
+ }
+}
+
+/**
+ * idle_inject_get_duration - idle and run duration retrieval helper
+ * @run_duration_us: memory location to store the current CPU run time
+ * @idle_duration_us: memory location to store the current CPU idle time
+ */
+void idle_inject_get_duration(struct idle_inject_device *ii_dev,
+ unsigned int *run_duration_us,
+ unsigned int *idle_duration_us)
+{
+ *run_duration_us = READ_ONCE(ii_dev->run_duration_us);
+ *idle_duration_us = READ_ONCE(ii_dev->idle_duration_us);
+}
+
+/**
+ * idle_inject_set_latency - set the maximum latency allowed
+ * @latency_us: set the latency requirement for the idle state
+ */
+void idle_inject_set_latency(struct idle_inject_device *ii_dev,
+ unsigned int latency_us)
+{
+ WRITE_ONCE(ii_dev->latency_us, latency_us);
+}
+
+/**
+ * idle_inject_start - start idle injections
+ * @ii_dev: idle injection control device structure
+ *
+ * The function starts idle injection by first waking up all of the idle
+ * injection kthreads associated with @ii_dev to let them inject CPU idle time
+ * sets up a timer to start the next idle injection period.
+ *
+ * Return: -EINVAL if the CPU idle or CPU run time is not set or 0 on success.
+ */
+int idle_inject_start(struct idle_inject_device *ii_dev)
+{
+ unsigned int idle_duration_us = READ_ONCE(ii_dev->idle_duration_us);
+ unsigned int run_duration_us = READ_ONCE(ii_dev->run_duration_us);
+
+ if (!idle_duration_us || !run_duration_us)
+ return -EINVAL;
+
+ pr_debug("Starting injecting idle cycles on CPUs '%*pbl'\n",
+ cpumask_pr_args(to_cpumask(ii_dev->cpumask)));
+
+ idle_inject_wakeup(ii_dev);
+
+ hrtimer_start(&ii_dev->timer,
+ ns_to_ktime((idle_duration_us + run_duration_us) *
+ NSEC_PER_USEC),
+ HRTIMER_MODE_REL);
+
+ return 0;
+}
+
+/**
+ * idle_inject_stop - stops idle injections
+ * @ii_dev: idle injection control device structure
+ *
+ * The function stops idle injection and waits for the threads to finish work.
+ * If CPU idle time is being injected when this function runs, then it will
+ * wait until the end of the cycle.
+ *
+ * When it returns, there is no more idle injection kthread activity. The
+ * kthreads are scheduled out and the periodic timer is off.
+ */
+void idle_inject_stop(struct idle_inject_device *ii_dev)
+{
+ struct idle_inject_thread *iit;
+ unsigned int cpu;
+
+ pr_debug("Stopping idle injection on CPUs '%*pbl'\n",
+ cpumask_pr_args(to_cpumask(ii_dev->cpumask)));
+
+ hrtimer_cancel(&ii_dev->timer);
+
+ /*
+ * Stopping idle injection requires all of the idle injection kthreads
+ * associated with the given cpumask to be parked and stay that way, so
+ * prevent CPUs from going online at this point. Any CPUs going online
+ * after the loop below will be covered by clearing the should_run flag
+ * that will cause the smpboot main loop to schedule them out.
+ */
+ cpu_hotplug_disable();
+
+ /*
+ * Iterate over all (online + offline) CPUs here in case one of them
+ * goes offline with the should_run flag set so as to prevent its idle
+ * injection kthread from running when the CPU goes online again after
+ * the ii_dev has been freed.
+ */
+ for_each_cpu(cpu, to_cpumask(ii_dev->cpumask)) {
+ iit = per_cpu_ptr(&idle_inject_thread, cpu);
+ iit->should_run = 0;
+
+ wait_task_inactive(iit->tsk, TASK_ANY);
+ }
+
+ cpu_hotplug_enable();
+}
+
+/**
+ * idle_inject_setup - prepare the current task for idle injection
+ * @cpu: not used
+ *
+ * Called once, this function is in charge of setting the current task's
+ * scheduler parameters to make it an RT task.
+ */
+static void idle_inject_setup(unsigned int cpu)
+{
+ sched_set_fifo(current);
+}
+
+/**
+ * idle_inject_should_run - function helper for the smpboot API
+ * @cpu: CPU the kthread is running on
+ *
+ * Return: whether or not the thread can run.
+ */
+static int idle_inject_should_run(unsigned int cpu)
+{
+ struct idle_inject_thread *iit =
+ per_cpu_ptr(&idle_inject_thread, cpu);
+
+ return iit->should_run;
+}
+
+/**
+ * idle_inject_register - initialize idle injection on a set of CPUs
+ * @cpumask: CPUs to be affected by idle injection
+ *
+ * This function creates an idle injection control device structure for the
+ * given set of CPUs and initializes the timer associated with it. It does not
+ * start any injection cycles.
+ *
+ * Return: NULL if memory allocation fails, idle injection control device
+ * pointer on success.
+ */
+struct idle_inject_device *idle_inject_register(struct cpumask *cpumask)
+{
+ struct idle_inject_device *ii_dev;
+ int cpu, cpu_rb;
+
+ ii_dev = kzalloc(sizeof(*ii_dev) + cpumask_size(), GFP_KERNEL);
+ if (!ii_dev)
+ return NULL;
+
+ cpumask_copy(to_cpumask(ii_dev->cpumask), cpumask);
+ hrtimer_init(&ii_dev->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
+ ii_dev->timer.function = idle_inject_timer_fn;
+ ii_dev->latency_us = UINT_MAX;
+
+ for_each_cpu(cpu, to_cpumask(ii_dev->cpumask)) {
+
+ if (per_cpu(idle_inject_device, cpu)) {
+ pr_err("cpu%d is already registered\n", cpu);
+ goto out_rollback;
+ }
+
+ per_cpu(idle_inject_device, cpu) = ii_dev;
+ }
+
+ return ii_dev;
+
+out_rollback:
+ for_each_cpu(cpu_rb, to_cpumask(ii_dev->cpumask)) {
+ if (cpu == cpu_rb)
+ break;
+ per_cpu(idle_inject_device, cpu_rb) = NULL;
+ }
+
+ kfree(ii_dev);
+
+ return NULL;
+}
+
+/**
+ * idle_inject_unregister - unregister idle injection control device
+ * @ii_dev: idle injection control device to unregister
+ *
+ * The function stops idle injection for the given control device,
+ * unregisters its kthreads and frees memory allocated when that device was
+ * created.
+ */
+void idle_inject_unregister(struct idle_inject_device *ii_dev)
+{
+ unsigned int cpu;
+
+ idle_inject_stop(ii_dev);
+
+ for_each_cpu(cpu, to_cpumask(ii_dev->cpumask))
+ per_cpu(idle_inject_device, cpu) = NULL;
+
+ kfree(ii_dev);
+}
+
+static struct smp_hotplug_thread idle_inject_threads = {
+ .store = &idle_inject_thread.tsk,
+ .setup = idle_inject_setup,
+ .thread_fn = idle_inject_fn,
+ .thread_comm = "idle_inject/%u",
+ .thread_should_run = idle_inject_should_run,
+};
+
+static int __init idle_inject_init(void)
+{
+ return smpboot_register_percpu_thread(&idle_inject_threads);
+}
+early_initcall(idle_inject_init);
diff --git a/drivers/powercap/intel_rapl_common.c b/drivers/powercap/intel_rapl_common.c
new file mode 100644
index 000000000..26d00b185
--- /dev/null
+++ b/drivers/powercap/intel_rapl_common.c
@@ -0,0 +1,1561 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Common code for Intel Running Average Power Limit (RAPL) support.
+ * Copyright (c) 2019, Intel Corporation.
+ */
+#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
+
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/list.h>
+#include <linux/types.h>
+#include <linux/device.h>
+#include <linux/slab.h>
+#include <linux/log2.h>
+#include <linux/bitmap.h>
+#include <linux/delay.h>
+#include <linux/sysfs.h>
+#include <linux/cpu.h>
+#include <linux/powercap.h>
+#include <linux/suspend.h>
+#include <linux/intel_rapl.h>
+#include <linux/processor.h>
+#include <linux/platform_device.h>
+
+#include <asm/iosf_mbi.h>
+#include <asm/cpu_device_id.h>
+#include <asm/intel-family.h>
+
+/* bitmasks for RAPL MSRs, used by primitive access functions */
+#define ENERGY_STATUS_MASK 0xffffffff
+
+#define POWER_LIMIT1_MASK 0x7FFF
+#define POWER_LIMIT1_ENABLE BIT(15)
+#define POWER_LIMIT1_CLAMP BIT(16)
+
+#define POWER_LIMIT2_MASK (0x7FFFULL<<32)
+#define POWER_LIMIT2_ENABLE BIT_ULL(47)
+#define POWER_LIMIT2_CLAMP BIT_ULL(48)
+#define POWER_HIGH_LOCK BIT_ULL(63)
+#define POWER_LOW_LOCK BIT(31)
+
+#define POWER_LIMIT4_MASK 0x1FFF
+
+#define TIME_WINDOW1_MASK (0x7FULL<<17)
+#define TIME_WINDOW2_MASK (0x7FULL<<49)
+
+#define POWER_UNIT_OFFSET 0
+#define POWER_UNIT_MASK 0x0F
+
+#define ENERGY_UNIT_OFFSET 0x08
+#define ENERGY_UNIT_MASK 0x1F00
+
+#define TIME_UNIT_OFFSET 0x10
+#define TIME_UNIT_MASK 0xF0000
+
+#define POWER_INFO_MAX_MASK (0x7fffULL<<32)
+#define POWER_INFO_MIN_MASK (0x7fffULL<<16)
+#define POWER_INFO_MAX_TIME_WIN_MASK (0x3fULL<<48)
+#define POWER_INFO_THERMAL_SPEC_MASK 0x7fff
+
+#define PERF_STATUS_THROTTLE_TIME_MASK 0xffffffff
+#define PP_POLICY_MASK 0x1F
+
+/*
+ * SPR has different layout for Psys Domain PowerLimit registers.
+ * There are 17 bits of PL1 and PL2 instead of 15 bits.
+ * The Enable bits and TimeWindow bits are also shifted as a result.
+ */
+#define PSYS_POWER_LIMIT1_MASK 0x1FFFF
+#define PSYS_POWER_LIMIT1_ENABLE BIT(17)
+
+#define PSYS_POWER_LIMIT2_MASK (0x1FFFFULL<<32)
+#define PSYS_POWER_LIMIT2_ENABLE BIT_ULL(49)
+
+#define PSYS_TIME_WINDOW1_MASK (0x7FULL<<19)
+#define PSYS_TIME_WINDOW2_MASK (0x7FULL<<51)
+
+/* Non HW constants */
+#define RAPL_PRIMITIVE_DERIVED BIT(1) /* not from raw data */
+#define RAPL_PRIMITIVE_DUMMY BIT(2)
+
+#define TIME_WINDOW_MAX_MSEC 40000
+#define TIME_WINDOW_MIN_MSEC 250
+#define ENERGY_UNIT_SCALE 1000 /* scale from driver unit to powercap unit */
+enum unit_type {
+ ARBITRARY_UNIT, /* no translation */
+ POWER_UNIT,
+ ENERGY_UNIT,
+ TIME_UNIT,
+};
+
+/* per domain data, some are optional */
+#define NR_RAW_PRIMITIVES (NR_RAPL_PRIMITIVES - 2)
+
+#define DOMAIN_STATE_INACTIVE BIT(0)
+#define DOMAIN_STATE_POWER_LIMIT_SET BIT(1)
+#define DOMAIN_STATE_BIOS_LOCKED BIT(2)
+
+static const char pl1_name[] = "long_term";
+static const char pl2_name[] = "short_term";
+static const char pl4_name[] = "peak_power";
+
+#define power_zone_to_rapl_domain(_zone) \
+ container_of(_zone, struct rapl_domain, power_zone)
+
+struct rapl_defaults {
+ u8 floor_freq_reg_addr;
+ int (*check_unit)(struct rapl_package *rp, int cpu);
+ void (*set_floor_freq)(struct rapl_domain *rd, bool mode);
+ u64 (*compute_time_window)(struct rapl_package *rp, u64 val,
+ bool to_raw);
+ unsigned int dram_domain_energy_unit;
+ unsigned int psys_domain_energy_unit;
+ bool spr_psys_bits;
+};
+static struct rapl_defaults *rapl_defaults;
+
+/* Sideband MBI registers */
+#define IOSF_CPU_POWER_BUDGET_CTL_BYT (0x2)
+#define IOSF_CPU_POWER_BUDGET_CTL_TNG (0xdf)
+
+#define PACKAGE_PLN_INT_SAVED BIT(0)
+#define MAX_PRIM_NAME (32)
+
+/* per domain data. used to describe individual knobs such that access function
+ * can be consolidated into one instead of many inline functions.
+ */
+struct rapl_primitive_info {
+ const char *name;
+ u64 mask;
+ int shift;
+ enum rapl_domain_reg_id id;
+ enum unit_type unit;
+ u32 flag;
+};
+
+#define PRIMITIVE_INFO_INIT(p, m, s, i, u, f) { \
+ .name = #p, \
+ .mask = m, \
+ .shift = s, \
+ .id = i, \
+ .unit = u, \
+ .flag = f \
+ }
+
+static void rapl_init_domains(struct rapl_package *rp);
+static int rapl_read_data_raw(struct rapl_domain *rd,
+ enum rapl_primitives prim,
+ bool xlate, u64 *data);
+static int rapl_write_data_raw(struct rapl_domain *rd,
+ enum rapl_primitives prim,
+ unsigned long long value);
+static u64 rapl_unit_xlate(struct rapl_domain *rd,
+ enum unit_type type, u64 value, int to_raw);
+static void package_power_limit_irq_save(struct rapl_package *rp);
+
+static LIST_HEAD(rapl_packages); /* guarded by CPU hotplug lock */
+
+static const char *const rapl_domain_names[] = {
+ "package",
+ "core",
+ "uncore",
+ "dram",
+ "psys",
+};
+
+static int get_energy_counter(struct powercap_zone *power_zone,
+ u64 *energy_raw)
+{
+ struct rapl_domain *rd;
+ u64 energy_now;
+
+ /* prevent CPU hotplug, make sure the RAPL domain does not go
+ * away while reading the counter.
+ */
+ cpus_read_lock();
+ rd = power_zone_to_rapl_domain(power_zone);
+
+ if (!rapl_read_data_raw(rd, ENERGY_COUNTER, true, &energy_now)) {
+ *energy_raw = energy_now;
+ cpus_read_unlock();
+
+ return 0;
+ }
+ cpus_read_unlock();
+
+ return -EIO;
+}
+
+static int get_max_energy_counter(struct powercap_zone *pcd_dev, u64 *energy)
+{
+ struct rapl_domain *rd = power_zone_to_rapl_domain(pcd_dev);
+
+ *energy = rapl_unit_xlate(rd, ENERGY_UNIT, ENERGY_STATUS_MASK, 0);
+ return 0;
+}
+
+static int release_zone(struct powercap_zone *power_zone)
+{
+ struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
+ struct rapl_package *rp = rd->rp;
+
+ /* package zone is the last zone of a package, we can free
+ * memory here since all children has been unregistered.
+ */
+ if (rd->id == RAPL_DOMAIN_PACKAGE) {
+ kfree(rd);
+ rp->domains = NULL;
+ }
+
+ return 0;
+
+}
+
+static int find_nr_power_limit(struct rapl_domain *rd)
+{
+ int i, nr_pl = 0;
+
+ for (i = 0; i < NR_POWER_LIMITS; i++) {
+ if (rd->rpl[i].name)
+ nr_pl++;
+ }
+
+ return nr_pl;
+}
+
+static int set_domain_enable(struct powercap_zone *power_zone, bool mode)
+{
+ struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
+
+ if (rd->state & DOMAIN_STATE_BIOS_LOCKED)
+ return -EACCES;
+
+ cpus_read_lock();
+ rapl_write_data_raw(rd, PL1_ENABLE, mode);
+ if (rapl_defaults->set_floor_freq)
+ rapl_defaults->set_floor_freq(rd, mode);
+ cpus_read_unlock();
+
+ return 0;
+}
+
+static int get_domain_enable(struct powercap_zone *power_zone, bool *mode)
+{
+ struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
+ u64 val;
+
+ if (rd->state & DOMAIN_STATE_BIOS_LOCKED) {
+ *mode = false;
+ return 0;
+ }
+ cpus_read_lock();
+ if (rapl_read_data_raw(rd, PL1_ENABLE, true, &val)) {
+ cpus_read_unlock();
+ return -EIO;
+ }
+ *mode = val;
+ cpus_read_unlock();
+
+ return 0;
+}
+
+/* per RAPL domain ops, in the order of rapl_domain_type */
+static const struct powercap_zone_ops zone_ops[] = {
+ /* RAPL_DOMAIN_PACKAGE */
+ {
+ .get_energy_uj = get_energy_counter,
+ .get_max_energy_range_uj = get_max_energy_counter,
+ .release = release_zone,
+ .set_enable = set_domain_enable,
+ .get_enable = get_domain_enable,
+ },
+ /* RAPL_DOMAIN_PP0 */
+ {
+ .get_energy_uj = get_energy_counter,
+ .get_max_energy_range_uj = get_max_energy_counter,
+ .release = release_zone,
+ .set_enable = set_domain_enable,
+ .get_enable = get_domain_enable,
+ },
+ /* RAPL_DOMAIN_PP1 */
+ {
+ .get_energy_uj = get_energy_counter,
+ .get_max_energy_range_uj = get_max_energy_counter,
+ .release = release_zone,
+ .set_enable = set_domain_enable,
+ .get_enable = get_domain_enable,
+ },
+ /* RAPL_DOMAIN_DRAM */
+ {
+ .get_energy_uj = get_energy_counter,
+ .get_max_energy_range_uj = get_max_energy_counter,
+ .release = release_zone,
+ .set_enable = set_domain_enable,
+ .get_enable = get_domain_enable,
+ },
+ /* RAPL_DOMAIN_PLATFORM */
+ {
+ .get_energy_uj = get_energy_counter,
+ .get_max_energy_range_uj = get_max_energy_counter,
+ .release = release_zone,
+ .set_enable = set_domain_enable,
+ .get_enable = get_domain_enable,
+ },
+};
+
+/*
+ * Constraint index used by powercap can be different than power limit (PL)
+ * index in that some PLs maybe missing due to non-existent MSRs. So we
+ * need to convert here by finding the valid PLs only (name populated).
+ */
+static int contraint_to_pl(struct rapl_domain *rd, int cid)
+{
+ int i, j;
+
+ for (i = 0, j = 0; i < NR_POWER_LIMITS; i++) {
+ if ((rd->rpl[i].name) && j++ == cid) {
+ pr_debug("%s: index %d\n", __func__, i);
+ return i;
+ }
+ }
+ pr_err("Cannot find matching power limit for constraint %d\n", cid);
+
+ return -EINVAL;
+}
+
+static int set_power_limit(struct powercap_zone *power_zone, int cid,
+ u64 power_limit)
+{
+ struct rapl_domain *rd;
+ struct rapl_package *rp;
+ int ret = 0;
+ int id;
+
+ cpus_read_lock();
+ rd = power_zone_to_rapl_domain(power_zone);
+ id = contraint_to_pl(rd, cid);
+ if (id < 0) {
+ ret = id;
+ goto set_exit;
+ }
+
+ rp = rd->rp;
+
+ if (rd->state & DOMAIN_STATE_BIOS_LOCKED) {
+ dev_warn(&power_zone->dev,
+ "%s locked by BIOS, monitoring only\n", rd->name);
+ ret = -EACCES;
+ goto set_exit;
+ }
+
+ switch (rd->rpl[id].prim_id) {
+ case PL1_ENABLE:
+ rapl_write_data_raw(rd, POWER_LIMIT1, power_limit);
+ break;
+ case PL2_ENABLE:
+ rapl_write_data_raw(rd, POWER_LIMIT2, power_limit);
+ break;
+ case PL4_ENABLE:
+ rapl_write_data_raw(rd, POWER_LIMIT4, power_limit);
+ break;
+ default:
+ ret = -EINVAL;
+ }
+ if (!ret)
+ package_power_limit_irq_save(rp);
+set_exit:
+ cpus_read_unlock();
+ return ret;
+}
+
+static int get_current_power_limit(struct powercap_zone *power_zone, int cid,
+ u64 *data)
+{
+ struct rapl_domain *rd;
+ u64 val;
+ int prim;
+ int ret = 0;
+ int id;
+
+ cpus_read_lock();
+ rd = power_zone_to_rapl_domain(power_zone);
+ id = contraint_to_pl(rd, cid);
+ if (id < 0) {
+ ret = id;
+ goto get_exit;
+ }
+
+ switch (rd->rpl[id].prim_id) {
+ case PL1_ENABLE:
+ prim = POWER_LIMIT1;
+ break;
+ case PL2_ENABLE:
+ prim = POWER_LIMIT2;
+ break;
+ case PL4_ENABLE:
+ prim = POWER_LIMIT4;
+ break;
+ default:
+ cpus_read_unlock();
+ return -EINVAL;
+ }
+ if (rapl_read_data_raw(rd, prim, true, &val))
+ ret = -EIO;
+ else
+ *data = val;
+
+get_exit:
+ cpus_read_unlock();
+
+ return ret;
+}
+
+static int set_time_window(struct powercap_zone *power_zone, int cid,
+ u64 window)
+{
+ struct rapl_domain *rd;
+ int ret = 0;
+ int id;
+
+ cpus_read_lock();
+ rd = power_zone_to_rapl_domain(power_zone);
+ id = contraint_to_pl(rd, cid);
+ if (id < 0) {
+ ret = id;
+ goto set_time_exit;
+ }
+
+ switch (rd->rpl[id].prim_id) {
+ case PL1_ENABLE:
+ rapl_write_data_raw(rd, TIME_WINDOW1, window);
+ break;
+ case PL2_ENABLE:
+ rapl_write_data_raw(rd, TIME_WINDOW2, window);
+ break;
+ default:
+ ret = -EINVAL;
+ }
+
+set_time_exit:
+ cpus_read_unlock();
+ return ret;
+}
+
+static int get_time_window(struct powercap_zone *power_zone, int cid,
+ u64 *data)
+{
+ struct rapl_domain *rd;
+ u64 val;
+ int ret = 0;
+ int id;
+
+ cpus_read_lock();
+ rd = power_zone_to_rapl_domain(power_zone);
+ id = contraint_to_pl(rd, cid);
+ if (id < 0) {
+ ret = id;
+ goto get_time_exit;
+ }
+
+ switch (rd->rpl[id].prim_id) {
+ case PL1_ENABLE:
+ ret = rapl_read_data_raw(rd, TIME_WINDOW1, true, &val);
+ break;
+ case PL2_ENABLE:
+ ret = rapl_read_data_raw(rd, TIME_WINDOW2, true, &val);
+ break;
+ case PL4_ENABLE:
+ /*
+ * Time window parameter is not applicable for PL4 entry
+ * so assigining '0' as default value.
+ */
+ val = 0;
+ break;
+ default:
+ cpus_read_unlock();
+ return -EINVAL;
+ }
+ if (!ret)
+ *data = val;
+
+get_time_exit:
+ cpus_read_unlock();
+
+ return ret;
+}
+
+static const char *get_constraint_name(struct powercap_zone *power_zone,
+ int cid)
+{
+ struct rapl_domain *rd;
+ int id;
+
+ rd = power_zone_to_rapl_domain(power_zone);
+ id = contraint_to_pl(rd, cid);
+ if (id >= 0)
+ return rd->rpl[id].name;
+
+ return NULL;
+}
+
+static int get_max_power(struct powercap_zone *power_zone, int id, u64 *data)
+{
+ struct rapl_domain *rd;
+ u64 val;
+ int prim;
+ int ret = 0;
+
+ cpus_read_lock();
+ rd = power_zone_to_rapl_domain(power_zone);
+ switch (rd->rpl[id].prim_id) {
+ case PL1_ENABLE:
+ prim = THERMAL_SPEC_POWER;
+ break;
+ case PL2_ENABLE:
+ prim = MAX_POWER;
+ break;
+ case PL4_ENABLE:
+ prim = MAX_POWER;
+ break;
+ default:
+ cpus_read_unlock();
+ return -EINVAL;
+ }
+ if (rapl_read_data_raw(rd, prim, true, &val))
+ ret = -EIO;
+ else
+ *data = val;
+
+ /* As a generalization rule, PL4 would be around two times PL2. */
+ if (rd->rpl[id].prim_id == PL4_ENABLE)
+ *data = *data * 2;
+
+ cpus_read_unlock();
+
+ return ret;
+}
+
+static const struct powercap_zone_constraint_ops constraint_ops = {
+ .set_power_limit_uw = set_power_limit,
+ .get_power_limit_uw = get_current_power_limit,
+ .set_time_window_us = set_time_window,
+ .get_time_window_us = get_time_window,
+ .get_max_power_uw = get_max_power,
+ .get_name = get_constraint_name,
+};
+
+/* called after domain detection and package level data are set */
+static void rapl_init_domains(struct rapl_package *rp)
+{
+ enum rapl_domain_type i;
+ enum rapl_domain_reg_id j;
+ struct rapl_domain *rd = rp->domains;
+
+ for (i = 0; i < RAPL_DOMAIN_MAX; i++) {
+ unsigned int mask = rp->domain_map & (1 << i);
+
+ if (!mask)
+ continue;
+
+ rd->rp = rp;
+
+ if (i == RAPL_DOMAIN_PLATFORM && rp->id > 0) {
+ snprintf(rd->name, RAPL_DOMAIN_NAME_LENGTH, "psys-%d",
+ topology_physical_package_id(rp->lead_cpu));
+ } else
+ snprintf(rd->name, RAPL_DOMAIN_NAME_LENGTH, "%s",
+ rapl_domain_names[i]);
+
+ rd->id = i;
+ rd->rpl[0].prim_id = PL1_ENABLE;
+ rd->rpl[0].name = pl1_name;
+
+ /*
+ * The PL2 power domain is applicable for limits two
+ * and limits three
+ */
+ if (rp->priv->limits[i] >= 2) {
+ rd->rpl[1].prim_id = PL2_ENABLE;
+ rd->rpl[1].name = pl2_name;
+ }
+
+ /* Enable PL4 domain if the total power limits are three */
+ if (rp->priv->limits[i] == 3) {
+ rd->rpl[2].prim_id = PL4_ENABLE;
+ rd->rpl[2].name = pl4_name;
+ }
+
+ for (j = 0; j < RAPL_DOMAIN_REG_MAX; j++)
+ rd->regs[j] = rp->priv->regs[i][j];
+
+ switch (i) {
+ case RAPL_DOMAIN_DRAM:
+ rd->domain_energy_unit =
+ rapl_defaults->dram_domain_energy_unit;
+ if (rd->domain_energy_unit)
+ pr_info("DRAM domain energy unit %dpj\n",
+ rd->domain_energy_unit);
+ break;
+ case RAPL_DOMAIN_PLATFORM:
+ rd->domain_energy_unit =
+ rapl_defaults->psys_domain_energy_unit;
+ if (rd->domain_energy_unit)
+ pr_info("Platform domain energy unit %dpj\n",
+ rd->domain_energy_unit);
+ break;
+ default:
+ break;
+ }
+ rd++;
+ }
+}
+
+static u64 rapl_unit_xlate(struct rapl_domain *rd, enum unit_type type,
+ u64 value, int to_raw)
+{
+ u64 units = 1;
+ struct rapl_package *rp = rd->rp;
+ u64 scale = 1;
+
+ switch (type) {
+ case POWER_UNIT:
+ units = rp->power_unit;
+ break;
+ case ENERGY_UNIT:
+ scale = ENERGY_UNIT_SCALE;
+ /* per domain unit takes precedence */
+ if (rd->domain_energy_unit)
+ units = rd->domain_energy_unit;
+ else
+ units = rp->energy_unit;
+ break;
+ case TIME_UNIT:
+ return rapl_defaults->compute_time_window(rp, value, to_raw);
+ case ARBITRARY_UNIT:
+ default:
+ return value;
+ }
+
+ if (to_raw)
+ return div64_u64(value, units) * scale;
+
+ value *= units;
+
+ return div64_u64(value, scale);
+}
+
+/* in the order of enum rapl_primitives */
+static struct rapl_primitive_info rpi[] = {
+ /* name, mask, shift, msr index, unit divisor */
+ PRIMITIVE_INFO_INIT(ENERGY_COUNTER, ENERGY_STATUS_MASK, 0,
+ RAPL_DOMAIN_REG_STATUS, ENERGY_UNIT, 0),
+ PRIMITIVE_INFO_INIT(POWER_LIMIT1, POWER_LIMIT1_MASK, 0,
+ RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
+ PRIMITIVE_INFO_INIT(POWER_LIMIT2, POWER_LIMIT2_MASK, 32,
+ RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
+ PRIMITIVE_INFO_INIT(POWER_LIMIT4, POWER_LIMIT4_MASK, 0,
+ RAPL_DOMAIN_REG_PL4, POWER_UNIT, 0),
+ PRIMITIVE_INFO_INIT(FW_LOCK, POWER_LOW_LOCK, 31,
+ RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
+ PRIMITIVE_INFO_INIT(PL1_ENABLE, POWER_LIMIT1_ENABLE, 15,
+ RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
+ PRIMITIVE_INFO_INIT(PL1_CLAMP, POWER_LIMIT1_CLAMP, 16,
+ RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
+ PRIMITIVE_INFO_INIT(PL2_ENABLE, POWER_LIMIT2_ENABLE, 47,
+ RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
+ PRIMITIVE_INFO_INIT(PL2_CLAMP, POWER_LIMIT2_CLAMP, 48,
+ RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
+ PRIMITIVE_INFO_INIT(PL4_ENABLE, POWER_LIMIT4_MASK, 0,
+ RAPL_DOMAIN_REG_PL4, ARBITRARY_UNIT, 0),
+ PRIMITIVE_INFO_INIT(TIME_WINDOW1, TIME_WINDOW1_MASK, 17,
+ RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
+ PRIMITIVE_INFO_INIT(TIME_WINDOW2, TIME_WINDOW2_MASK, 49,
+ RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
+ PRIMITIVE_INFO_INIT(THERMAL_SPEC_POWER, POWER_INFO_THERMAL_SPEC_MASK,
+ 0, RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
+ PRIMITIVE_INFO_INIT(MAX_POWER, POWER_INFO_MAX_MASK, 32,
+ RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
+ PRIMITIVE_INFO_INIT(MIN_POWER, POWER_INFO_MIN_MASK, 16,
+ RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
+ PRIMITIVE_INFO_INIT(MAX_TIME_WINDOW, POWER_INFO_MAX_TIME_WIN_MASK, 48,
+ RAPL_DOMAIN_REG_INFO, TIME_UNIT, 0),
+ PRIMITIVE_INFO_INIT(THROTTLED_TIME, PERF_STATUS_THROTTLE_TIME_MASK, 0,
+ RAPL_DOMAIN_REG_PERF, TIME_UNIT, 0),
+ PRIMITIVE_INFO_INIT(PRIORITY_LEVEL, PP_POLICY_MASK, 0,
+ RAPL_DOMAIN_REG_POLICY, ARBITRARY_UNIT, 0),
+ PRIMITIVE_INFO_INIT(PSYS_POWER_LIMIT1, PSYS_POWER_LIMIT1_MASK, 0,
+ RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
+ PRIMITIVE_INFO_INIT(PSYS_POWER_LIMIT2, PSYS_POWER_LIMIT2_MASK, 32,
+ RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
+ PRIMITIVE_INFO_INIT(PSYS_PL1_ENABLE, PSYS_POWER_LIMIT1_ENABLE, 17,
+ RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
+ PRIMITIVE_INFO_INIT(PSYS_PL2_ENABLE, PSYS_POWER_LIMIT2_ENABLE, 49,
+ RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
+ PRIMITIVE_INFO_INIT(PSYS_TIME_WINDOW1, PSYS_TIME_WINDOW1_MASK, 19,
+ RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
+ PRIMITIVE_INFO_INIT(PSYS_TIME_WINDOW2, PSYS_TIME_WINDOW2_MASK, 51,
+ RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
+ /* non-hardware */
+ PRIMITIVE_INFO_INIT(AVERAGE_POWER, 0, 0, 0, POWER_UNIT,
+ RAPL_PRIMITIVE_DERIVED),
+ {NULL, 0, 0, 0},
+};
+
+static enum rapl_primitives
+prim_fixups(struct rapl_domain *rd, enum rapl_primitives prim)
+{
+ if (!rapl_defaults->spr_psys_bits)
+ return prim;
+
+ if (rd->id != RAPL_DOMAIN_PLATFORM)
+ return prim;
+
+ switch (prim) {
+ case POWER_LIMIT1:
+ return PSYS_POWER_LIMIT1;
+ case POWER_LIMIT2:
+ return PSYS_POWER_LIMIT2;
+ case PL1_ENABLE:
+ return PSYS_PL1_ENABLE;
+ case PL2_ENABLE:
+ return PSYS_PL2_ENABLE;
+ case TIME_WINDOW1:
+ return PSYS_TIME_WINDOW1;
+ case TIME_WINDOW2:
+ return PSYS_TIME_WINDOW2;
+ default:
+ return prim;
+ }
+}
+
+/* Read primitive data based on its related struct rapl_primitive_info.
+ * if xlate flag is set, return translated data based on data units, i.e.
+ * time, energy, and power.
+ * RAPL MSRs are non-architectual and are laid out not consistently across
+ * domains. Here we use primitive info to allow writing consolidated access
+ * functions.
+ * For a given primitive, it is processed by MSR mask and shift. Unit conversion
+ * is pre-assigned based on RAPL unit MSRs read at init time.
+ * 63-------------------------- 31--------------------------- 0
+ * | xxxxx (mask) |
+ * | |<- shift ----------------|
+ * 63-------------------------- 31--------------------------- 0
+ */
+static int rapl_read_data_raw(struct rapl_domain *rd,
+ enum rapl_primitives prim, bool xlate, u64 *data)
+{
+ u64 value;
+ enum rapl_primitives prim_fixed = prim_fixups(rd, prim);
+ struct rapl_primitive_info *rp = &rpi[prim_fixed];
+ struct reg_action ra;
+ int cpu;
+
+ if (!rp->name || rp->flag & RAPL_PRIMITIVE_DUMMY)
+ return -EINVAL;
+
+ ra.reg = rd->regs[rp->id];
+ if (!ra.reg)
+ return -EINVAL;
+
+ cpu = rd->rp->lead_cpu;
+
+ /* domain with 2 limits has different bit */
+ if (prim == FW_LOCK && rd->rp->priv->limits[rd->id] == 2) {
+ rp->mask = POWER_HIGH_LOCK;
+ rp->shift = 63;
+ }
+ /* non-hardware data are collected by the polling thread */
+ if (rp->flag & RAPL_PRIMITIVE_DERIVED) {
+ *data = rd->rdd.primitives[prim];
+ return 0;
+ }
+
+ ra.mask = rp->mask;
+
+ if (rd->rp->priv->read_raw(cpu, &ra)) {
+ pr_debug("failed to read reg 0x%llx on cpu %d\n", ra.reg, cpu);
+ return -EIO;
+ }
+
+ value = ra.value >> rp->shift;
+
+ if (xlate)
+ *data = rapl_unit_xlate(rd, rp->unit, value, 0);
+ else
+ *data = value;
+
+ return 0;
+}
+
+/* Similar use of primitive info in the read counterpart */
+static int rapl_write_data_raw(struct rapl_domain *rd,
+ enum rapl_primitives prim,
+ unsigned long long value)
+{
+ enum rapl_primitives prim_fixed = prim_fixups(rd, prim);
+ struct rapl_primitive_info *rp = &rpi[prim_fixed];
+ int cpu;
+ u64 bits;
+ struct reg_action ra;
+ int ret;
+
+ cpu = rd->rp->lead_cpu;
+ bits = rapl_unit_xlate(rd, rp->unit, value, 1);
+ bits <<= rp->shift;
+ bits &= rp->mask;
+
+ memset(&ra, 0, sizeof(ra));
+
+ ra.reg = rd->regs[rp->id];
+ ra.mask = rp->mask;
+ ra.value = bits;
+
+ ret = rd->rp->priv->write_raw(cpu, &ra);
+
+ return ret;
+}
+
+/*
+ * Raw RAPL data stored in MSRs are in certain scales. We need to
+ * convert them into standard units based on the units reported in
+ * the RAPL unit MSRs. This is specific to CPUs as the method to
+ * calculate units differ on different CPUs.
+ * We convert the units to below format based on CPUs.
+ * i.e.
+ * energy unit: picoJoules : Represented in picoJoules by default
+ * power unit : microWatts : Represented in milliWatts by default
+ * time unit : microseconds: Represented in seconds by default
+ */
+static int rapl_check_unit_core(struct rapl_package *rp, int cpu)
+{
+ struct reg_action ra;
+ u32 value;
+
+ ra.reg = rp->priv->reg_unit;
+ ra.mask = ~0;
+ if (rp->priv->read_raw(cpu, &ra)) {
+ pr_err("Failed to read power unit REG 0x%llx on CPU %d, exit.\n",
+ rp->priv->reg_unit, cpu);
+ return -ENODEV;
+ }
+
+ value = (ra.value & ENERGY_UNIT_MASK) >> ENERGY_UNIT_OFFSET;
+ rp->energy_unit = ENERGY_UNIT_SCALE * 1000000 / (1 << value);
+
+ value = (ra.value & POWER_UNIT_MASK) >> POWER_UNIT_OFFSET;
+ rp->power_unit = 1000000 / (1 << value);
+
+ value = (ra.value & TIME_UNIT_MASK) >> TIME_UNIT_OFFSET;
+ rp->time_unit = 1000000 / (1 << value);
+
+ pr_debug("Core CPU %s energy=%dpJ, time=%dus, power=%duW\n",
+ rp->name, rp->energy_unit, rp->time_unit, rp->power_unit);
+
+ return 0;
+}
+
+static int rapl_check_unit_atom(struct rapl_package *rp, int cpu)
+{
+ struct reg_action ra;
+ u32 value;
+
+ ra.reg = rp->priv->reg_unit;
+ ra.mask = ~0;
+ if (rp->priv->read_raw(cpu, &ra)) {
+ pr_err("Failed to read power unit REG 0x%llx on CPU %d, exit.\n",
+ rp->priv->reg_unit, cpu);
+ return -ENODEV;
+ }
+
+ value = (ra.value & ENERGY_UNIT_MASK) >> ENERGY_UNIT_OFFSET;
+ rp->energy_unit = ENERGY_UNIT_SCALE * 1 << value;
+
+ value = (ra.value & POWER_UNIT_MASK) >> POWER_UNIT_OFFSET;
+ rp->power_unit = (1 << value) * 1000;
+
+ value = (ra.value & TIME_UNIT_MASK) >> TIME_UNIT_OFFSET;
+ rp->time_unit = 1000000 / (1 << value);
+
+ pr_debug("Atom %s energy=%dpJ, time=%dus, power=%duW\n",
+ rp->name, rp->energy_unit, rp->time_unit, rp->power_unit);
+
+ return 0;
+}
+
+static void power_limit_irq_save_cpu(void *info)
+{
+ u32 l, h = 0;
+ struct rapl_package *rp = (struct rapl_package *)info;
+
+ /* save the state of PLN irq mask bit before disabling it */
+ rdmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, &l, &h);
+ if (!(rp->power_limit_irq & PACKAGE_PLN_INT_SAVED)) {
+ rp->power_limit_irq = l & PACKAGE_THERM_INT_PLN_ENABLE;
+ rp->power_limit_irq |= PACKAGE_PLN_INT_SAVED;
+ }
+ l &= ~PACKAGE_THERM_INT_PLN_ENABLE;
+ wrmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
+}
+
+/* REVISIT:
+ * When package power limit is set artificially low by RAPL, LVT
+ * thermal interrupt for package power limit should be ignored
+ * since we are not really exceeding the real limit. The intention
+ * is to avoid excessive interrupts while we are trying to save power.
+ * A useful feature might be routing the package_power_limit interrupt
+ * to userspace via eventfd. once we have a usecase, this is simple
+ * to do by adding an atomic notifier.
+ */
+
+static void package_power_limit_irq_save(struct rapl_package *rp)
+{
+ if (!boot_cpu_has(X86_FEATURE_PTS) || !boot_cpu_has(X86_FEATURE_PLN))
+ return;
+
+ smp_call_function_single(rp->lead_cpu, power_limit_irq_save_cpu, rp, 1);
+}
+
+/*
+ * Restore per package power limit interrupt enable state. Called from cpu
+ * hotplug code on package removal.
+ */
+static void package_power_limit_irq_restore(struct rapl_package *rp)
+{
+ u32 l, h;
+
+ if (!boot_cpu_has(X86_FEATURE_PTS) || !boot_cpu_has(X86_FEATURE_PLN))
+ return;
+
+ /* irq enable state not saved, nothing to restore */
+ if (!(rp->power_limit_irq & PACKAGE_PLN_INT_SAVED))
+ return;
+
+ rdmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, &l, &h);
+
+ if (rp->power_limit_irq & PACKAGE_THERM_INT_PLN_ENABLE)
+ l |= PACKAGE_THERM_INT_PLN_ENABLE;
+ else
+ l &= ~PACKAGE_THERM_INT_PLN_ENABLE;
+
+ wrmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
+}
+
+static void set_floor_freq_default(struct rapl_domain *rd, bool mode)
+{
+ int nr_powerlimit = find_nr_power_limit(rd);
+
+ /* always enable clamp such that p-state can go below OS requested
+ * range. power capping priority over guranteed frequency.
+ */
+ rapl_write_data_raw(rd, PL1_CLAMP, mode);
+
+ /* some domains have pl2 */
+ if (nr_powerlimit > 1) {
+ rapl_write_data_raw(rd, PL2_ENABLE, mode);
+ rapl_write_data_raw(rd, PL2_CLAMP, mode);
+ }
+}
+
+static void set_floor_freq_atom(struct rapl_domain *rd, bool enable)
+{
+ static u32 power_ctrl_orig_val;
+ u32 mdata;
+
+ if (!rapl_defaults->floor_freq_reg_addr) {
+ pr_err("Invalid floor frequency config register\n");
+ return;
+ }
+
+ if (!power_ctrl_orig_val)
+ iosf_mbi_read(BT_MBI_UNIT_PMC, MBI_CR_READ,
+ rapl_defaults->floor_freq_reg_addr,
+ &power_ctrl_orig_val);
+ mdata = power_ctrl_orig_val;
+ if (enable) {
+ mdata &= ~(0x7f << 8);
+ mdata |= 1 << 8;
+ }
+ iosf_mbi_write(BT_MBI_UNIT_PMC, MBI_CR_WRITE,
+ rapl_defaults->floor_freq_reg_addr, mdata);
+}
+
+static u64 rapl_compute_time_window_core(struct rapl_package *rp, u64 value,
+ bool to_raw)
+{
+ u64 f, y; /* fraction and exp. used for time unit */
+
+ /*
+ * Special processing based on 2^Y*(1+F/4), refer
+ * to Intel Software Developer's manual Vol.3B: CH 14.9.3.
+ */
+ if (!to_raw) {
+ f = (value & 0x60) >> 5;
+ y = value & 0x1f;
+ value = (1 << y) * (4 + f) * rp->time_unit / 4;
+ } else {
+ if (value < rp->time_unit)
+ return 0;
+
+ do_div(value, rp->time_unit);
+ y = ilog2(value);
+ f = div64_u64(4 * (value - (1 << y)), 1 << y);
+ value = (y & 0x1f) | ((f & 0x3) << 5);
+ }
+ return value;
+}
+
+static u64 rapl_compute_time_window_atom(struct rapl_package *rp, u64 value,
+ bool to_raw)
+{
+ /*
+ * Atom time unit encoding is straight forward val * time_unit,
+ * where time_unit is default to 1 sec. Never 0.
+ */
+ if (!to_raw)
+ return (value) ? value * rp->time_unit : rp->time_unit;
+
+ value = div64_u64(value, rp->time_unit);
+
+ return value;
+}
+
+static const struct rapl_defaults rapl_defaults_core = {
+ .floor_freq_reg_addr = 0,
+ .check_unit = rapl_check_unit_core,
+ .set_floor_freq = set_floor_freq_default,
+ .compute_time_window = rapl_compute_time_window_core,
+};
+
+static const struct rapl_defaults rapl_defaults_hsw_server = {
+ .check_unit = rapl_check_unit_core,
+ .set_floor_freq = set_floor_freq_default,
+ .compute_time_window = rapl_compute_time_window_core,
+ .dram_domain_energy_unit = 15300,
+};
+
+static const struct rapl_defaults rapl_defaults_spr_server = {
+ .check_unit = rapl_check_unit_core,
+ .set_floor_freq = set_floor_freq_default,
+ .compute_time_window = rapl_compute_time_window_core,
+ .psys_domain_energy_unit = 1000000000,
+ .spr_psys_bits = true,
+};
+
+static const struct rapl_defaults rapl_defaults_byt = {
+ .floor_freq_reg_addr = IOSF_CPU_POWER_BUDGET_CTL_BYT,
+ .check_unit = rapl_check_unit_atom,
+ .set_floor_freq = set_floor_freq_atom,
+ .compute_time_window = rapl_compute_time_window_atom,
+};
+
+static const struct rapl_defaults rapl_defaults_tng = {
+ .floor_freq_reg_addr = IOSF_CPU_POWER_BUDGET_CTL_TNG,
+ .check_unit = rapl_check_unit_atom,
+ .set_floor_freq = set_floor_freq_atom,
+ .compute_time_window = rapl_compute_time_window_atom,
+};
+
+static const struct rapl_defaults rapl_defaults_ann = {
+ .floor_freq_reg_addr = 0,
+ .check_unit = rapl_check_unit_atom,
+ .set_floor_freq = NULL,
+ .compute_time_window = rapl_compute_time_window_atom,
+};
+
+static const struct rapl_defaults rapl_defaults_cht = {
+ .floor_freq_reg_addr = 0,
+ .check_unit = rapl_check_unit_atom,
+ .set_floor_freq = NULL,
+ .compute_time_window = rapl_compute_time_window_atom,
+};
+
+static const struct rapl_defaults rapl_defaults_amd = {
+ .check_unit = rapl_check_unit_core,
+};
+
+static const struct x86_cpu_id rapl_ids[] __initconst = {
+ X86_MATCH_INTEL_FAM6_MODEL(SANDYBRIDGE, &rapl_defaults_core),
+ X86_MATCH_INTEL_FAM6_MODEL(SANDYBRIDGE_X, &rapl_defaults_core),
+
+ X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE, &rapl_defaults_core),
+ X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE_X, &rapl_defaults_core),
+
+ X86_MATCH_INTEL_FAM6_MODEL(HASWELL, &rapl_defaults_core),
+ X86_MATCH_INTEL_FAM6_MODEL(HASWELL_L, &rapl_defaults_core),
+ X86_MATCH_INTEL_FAM6_MODEL(HASWELL_G, &rapl_defaults_core),
+ X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, &rapl_defaults_hsw_server),
+
+ X86_MATCH_INTEL_FAM6_MODEL(BROADWELL, &rapl_defaults_core),
+ X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_G, &rapl_defaults_core),
+ X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_D, &rapl_defaults_core),
+ X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, &rapl_defaults_hsw_server),
+
+ X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE, &rapl_defaults_core),
+ X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_L, &rapl_defaults_core),
+ X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_X, &rapl_defaults_hsw_server),
+ X86_MATCH_INTEL_FAM6_MODEL(KABYLAKE_L, &rapl_defaults_core),
+ X86_MATCH_INTEL_FAM6_MODEL(KABYLAKE, &rapl_defaults_core),
+ X86_MATCH_INTEL_FAM6_MODEL(CANNONLAKE_L, &rapl_defaults_core),
+ X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_L, &rapl_defaults_core),
+ X86_MATCH_INTEL_FAM6_MODEL(ICELAKE, &rapl_defaults_core),
+ X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_NNPI, &rapl_defaults_core),
+ X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X, &rapl_defaults_hsw_server),
+ X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D, &rapl_defaults_hsw_server),
+ X86_MATCH_INTEL_FAM6_MODEL(COMETLAKE_L, &rapl_defaults_core),
+ X86_MATCH_INTEL_FAM6_MODEL(COMETLAKE, &rapl_defaults_core),
+ X86_MATCH_INTEL_FAM6_MODEL(TIGERLAKE_L, &rapl_defaults_core),
+ X86_MATCH_INTEL_FAM6_MODEL(TIGERLAKE, &rapl_defaults_core),
+ X86_MATCH_INTEL_FAM6_MODEL(ROCKETLAKE, &rapl_defaults_core),
+ X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE, &rapl_defaults_core),
+ X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE_L, &rapl_defaults_core),
+ X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE_N, &rapl_defaults_core),
+ X86_MATCH_INTEL_FAM6_MODEL(RAPTORLAKE, &rapl_defaults_core),
+ X86_MATCH_INTEL_FAM6_MODEL(RAPTORLAKE_P, &rapl_defaults_core),
+ X86_MATCH_INTEL_FAM6_MODEL(RAPTORLAKE_S, &rapl_defaults_core),
+ X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, &rapl_defaults_spr_server),
+ X86_MATCH_INTEL_FAM6_MODEL(LAKEFIELD, &rapl_defaults_core),
+
+ X86_MATCH_INTEL_FAM6_MODEL(ATOM_SILVERMONT, &rapl_defaults_byt),
+ X86_MATCH_INTEL_FAM6_MODEL(ATOM_AIRMONT, &rapl_defaults_cht),
+ X86_MATCH_INTEL_FAM6_MODEL(ATOM_SILVERMONT_MID, &rapl_defaults_tng),
+ X86_MATCH_INTEL_FAM6_MODEL(ATOM_AIRMONT_MID, &rapl_defaults_ann),
+ X86_MATCH_INTEL_FAM6_MODEL(ATOM_GOLDMONT, &rapl_defaults_core),
+ X86_MATCH_INTEL_FAM6_MODEL(ATOM_GOLDMONT_PLUS, &rapl_defaults_core),
+ X86_MATCH_INTEL_FAM6_MODEL(ATOM_GOLDMONT_D, &rapl_defaults_core),
+ X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT, &rapl_defaults_core),
+ X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT_D, &rapl_defaults_core),
+ X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT_L, &rapl_defaults_core),
+
+ X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNL, &rapl_defaults_hsw_server),
+ X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNM, &rapl_defaults_hsw_server),
+
+ X86_MATCH_VENDOR_FAM(AMD, 0x17, &rapl_defaults_amd),
+ X86_MATCH_VENDOR_FAM(AMD, 0x19, &rapl_defaults_amd),
+ X86_MATCH_VENDOR_FAM(HYGON, 0x18, &rapl_defaults_amd),
+ {}
+};
+MODULE_DEVICE_TABLE(x86cpu, rapl_ids);
+
+/* Read once for all raw primitive data for domains */
+static void rapl_update_domain_data(struct rapl_package *rp)
+{
+ int dmn, prim;
+ u64 val;
+
+ for (dmn = 0; dmn < rp->nr_domains; dmn++) {
+ pr_debug("update %s domain %s data\n", rp->name,
+ rp->domains[dmn].name);
+ /* exclude non-raw primitives */
+ for (prim = 0; prim < NR_RAW_PRIMITIVES; prim++) {
+ if (!rapl_read_data_raw(&rp->domains[dmn], prim,
+ rpi[prim].unit, &val))
+ rp->domains[dmn].rdd.primitives[prim] = val;
+ }
+ }
+
+}
+
+static int rapl_package_register_powercap(struct rapl_package *rp)
+{
+ struct rapl_domain *rd;
+ struct powercap_zone *power_zone = NULL;
+ int nr_pl, ret;
+
+ /* Update the domain data of the new package */
+ rapl_update_domain_data(rp);
+
+ /* first we register package domain as the parent zone */
+ for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
+ if (rd->id == RAPL_DOMAIN_PACKAGE) {
+ nr_pl = find_nr_power_limit(rd);
+ pr_debug("register package domain %s\n", rp->name);
+ power_zone = powercap_register_zone(&rd->power_zone,
+ rp->priv->control_type, rp->name,
+ NULL, &zone_ops[rd->id], nr_pl,
+ &constraint_ops);
+ if (IS_ERR(power_zone)) {
+ pr_debug("failed to register power zone %s\n",
+ rp->name);
+ return PTR_ERR(power_zone);
+ }
+ /* track parent zone in per package/socket data */
+ rp->power_zone = power_zone;
+ /* done, only one package domain per socket */
+ break;
+ }
+ }
+ if (!power_zone) {
+ pr_err("no package domain found, unknown topology!\n");
+ return -ENODEV;
+ }
+ /* now register domains as children of the socket/package */
+ for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
+ struct powercap_zone *parent = rp->power_zone;
+
+ if (rd->id == RAPL_DOMAIN_PACKAGE)
+ continue;
+ if (rd->id == RAPL_DOMAIN_PLATFORM)
+ parent = NULL;
+ /* number of power limits per domain varies */
+ nr_pl = find_nr_power_limit(rd);
+ power_zone = powercap_register_zone(&rd->power_zone,
+ rp->priv->control_type,
+ rd->name, parent,
+ &zone_ops[rd->id], nr_pl,
+ &constraint_ops);
+
+ if (IS_ERR(power_zone)) {
+ pr_debug("failed to register power_zone, %s:%s\n",
+ rp->name, rd->name);
+ ret = PTR_ERR(power_zone);
+ goto err_cleanup;
+ }
+ }
+ return 0;
+
+err_cleanup:
+ /*
+ * Clean up previously initialized domains within the package if we
+ * failed after the first domain setup.
+ */
+ while (--rd >= rp->domains) {
+ pr_debug("unregister %s domain %s\n", rp->name, rd->name);
+ powercap_unregister_zone(rp->priv->control_type,
+ &rd->power_zone);
+ }
+
+ return ret;
+}
+
+static int rapl_check_domain(int cpu, int domain, struct rapl_package *rp)
+{
+ struct reg_action ra;
+
+ switch (domain) {
+ case RAPL_DOMAIN_PACKAGE:
+ case RAPL_DOMAIN_PP0:
+ case RAPL_DOMAIN_PP1:
+ case RAPL_DOMAIN_DRAM:
+ case RAPL_DOMAIN_PLATFORM:
+ ra.reg = rp->priv->regs[domain][RAPL_DOMAIN_REG_STATUS];
+ break;
+ default:
+ pr_err("invalid domain id %d\n", domain);
+ return -EINVAL;
+ }
+ /* make sure domain counters are available and contains non-zero
+ * values, otherwise skip it.
+ */
+
+ ra.mask = ENERGY_STATUS_MASK;
+ if (rp->priv->read_raw(cpu, &ra) || !ra.value)
+ return -ENODEV;
+
+ return 0;
+}
+
+/*
+ * Check if power limits are available. Two cases when they are not available:
+ * 1. Locked by BIOS, in this case we still provide read-only access so that
+ * users can see what limit is set by the BIOS.
+ * 2. Some CPUs make some domains monitoring only which means PLx MSRs may not
+ * exist at all. In this case, we do not show the constraints in powercap.
+ *
+ * Called after domains are detected and initialized.
+ */
+static void rapl_detect_powerlimit(struct rapl_domain *rd)
+{
+ u64 val64;
+ int i;
+
+ /* check if the domain is locked by BIOS, ignore if MSR doesn't exist */
+ if (!rapl_read_data_raw(rd, FW_LOCK, false, &val64)) {
+ if (val64) {
+ pr_info("RAPL %s domain %s locked by BIOS\n",
+ rd->rp->name, rd->name);
+ rd->state |= DOMAIN_STATE_BIOS_LOCKED;
+ }
+ }
+ /* check if power limit MSR exists, otherwise domain is monitoring only */
+ for (i = 0; i < NR_POWER_LIMITS; i++) {
+ int prim = rd->rpl[i].prim_id;
+
+ if (rapl_read_data_raw(rd, prim, false, &val64))
+ rd->rpl[i].name = NULL;
+ }
+}
+
+/* Detect active and valid domains for the given CPU, caller must
+ * ensure the CPU belongs to the targeted package and CPU hotlug is disabled.
+ */
+static int rapl_detect_domains(struct rapl_package *rp, int cpu)
+{
+ struct rapl_domain *rd;
+ int i;
+
+ for (i = 0; i < RAPL_DOMAIN_MAX; i++) {
+ /* use physical package id to read counters */
+ if (!rapl_check_domain(cpu, i, rp)) {
+ rp->domain_map |= 1 << i;
+ pr_info("Found RAPL domain %s\n", rapl_domain_names[i]);
+ }
+ }
+ rp->nr_domains = bitmap_weight(&rp->domain_map, RAPL_DOMAIN_MAX);
+ if (!rp->nr_domains) {
+ pr_debug("no valid rapl domains found in %s\n", rp->name);
+ return -ENODEV;
+ }
+ pr_debug("found %d domains on %s\n", rp->nr_domains, rp->name);
+
+ rp->domains = kcalloc(rp->nr_domains + 1, sizeof(struct rapl_domain),
+ GFP_KERNEL);
+ if (!rp->domains)
+ return -ENOMEM;
+
+ rapl_init_domains(rp);
+
+ for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++)
+ rapl_detect_powerlimit(rd);
+
+ return 0;
+}
+
+/* called from CPU hotplug notifier, hotplug lock held */
+void rapl_remove_package(struct rapl_package *rp)
+{
+ struct rapl_domain *rd, *rd_package = NULL;
+
+ package_power_limit_irq_restore(rp);
+
+ for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
+ rapl_write_data_raw(rd, PL1_ENABLE, 0);
+ rapl_write_data_raw(rd, PL1_CLAMP, 0);
+ if (find_nr_power_limit(rd) > 1) {
+ rapl_write_data_raw(rd, PL2_ENABLE, 0);
+ rapl_write_data_raw(rd, PL2_CLAMP, 0);
+ rapl_write_data_raw(rd, PL4_ENABLE, 0);
+ }
+ if (rd->id == RAPL_DOMAIN_PACKAGE) {
+ rd_package = rd;
+ continue;
+ }
+ pr_debug("remove package, undo power limit on %s: %s\n",
+ rp->name, rd->name);
+ powercap_unregister_zone(rp->priv->control_type,
+ &rd->power_zone);
+ }
+ /* do parent zone last */
+ powercap_unregister_zone(rp->priv->control_type,
+ &rd_package->power_zone);
+ list_del(&rp->plist);
+ kfree(rp);
+}
+EXPORT_SYMBOL_GPL(rapl_remove_package);
+
+/* caller to ensure CPU hotplug lock is held */
+struct rapl_package *rapl_find_package_domain(int cpu, struct rapl_if_priv *priv)
+{
+ int id = topology_logical_die_id(cpu);
+ struct rapl_package *rp;
+
+ list_for_each_entry(rp, &rapl_packages, plist) {
+ if (rp->id == id
+ && rp->priv->control_type == priv->control_type)
+ return rp;
+ }
+
+ return NULL;
+}
+EXPORT_SYMBOL_GPL(rapl_find_package_domain);
+
+/* called from CPU hotplug notifier, hotplug lock held */
+struct rapl_package *rapl_add_package(int cpu, struct rapl_if_priv *priv)
+{
+ int id = topology_logical_die_id(cpu);
+ struct rapl_package *rp;
+ int ret;
+
+ if (!rapl_defaults)
+ return ERR_PTR(-ENODEV);
+
+ rp = kzalloc(sizeof(struct rapl_package), GFP_KERNEL);
+ if (!rp)
+ return ERR_PTR(-ENOMEM);
+
+ /* add the new package to the list */
+ rp->id = id;
+ rp->lead_cpu = cpu;
+ rp->priv = priv;
+
+ if (topology_max_die_per_package() > 1)
+ snprintf(rp->name, PACKAGE_DOMAIN_NAME_LENGTH,
+ "package-%d-die-%d",
+ topology_physical_package_id(cpu), topology_die_id(cpu));
+ else
+ snprintf(rp->name, PACKAGE_DOMAIN_NAME_LENGTH, "package-%d",
+ topology_physical_package_id(cpu));
+
+ /* check if the package contains valid domains */
+ if (rapl_detect_domains(rp, cpu) || rapl_defaults->check_unit(rp, cpu)) {
+ ret = -ENODEV;
+ goto err_free_package;
+ }
+ ret = rapl_package_register_powercap(rp);
+ if (!ret) {
+ INIT_LIST_HEAD(&rp->plist);
+ list_add(&rp->plist, &rapl_packages);
+ return rp;
+ }
+
+err_free_package:
+ kfree(rp->domains);
+ kfree(rp);
+ return ERR_PTR(ret);
+}
+EXPORT_SYMBOL_GPL(rapl_add_package);
+
+static void power_limit_state_save(void)
+{
+ struct rapl_package *rp;
+ struct rapl_domain *rd;
+ int nr_pl, ret, i;
+
+ cpus_read_lock();
+ list_for_each_entry(rp, &rapl_packages, plist) {
+ if (!rp->power_zone)
+ continue;
+ rd = power_zone_to_rapl_domain(rp->power_zone);
+ nr_pl = find_nr_power_limit(rd);
+ for (i = 0; i < nr_pl; i++) {
+ switch (rd->rpl[i].prim_id) {
+ case PL1_ENABLE:
+ ret = rapl_read_data_raw(rd,
+ POWER_LIMIT1, true,
+ &rd->rpl[i].last_power_limit);
+ if (ret)
+ rd->rpl[i].last_power_limit = 0;
+ break;
+ case PL2_ENABLE:
+ ret = rapl_read_data_raw(rd,
+ POWER_LIMIT2, true,
+ &rd->rpl[i].last_power_limit);
+ if (ret)
+ rd->rpl[i].last_power_limit = 0;
+ break;
+ case PL4_ENABLE:
+ ret = rapl_read_data_raw(rd,
+ POWER_LIMIT4, true,
+ &rd->rpl[i].last_power_limit);
+ if (ret)
+ rd->rpl[i].last_power_limit = 0;
+ break;
+ }
+ }
+ }
+ cpus_read_unlock();
+}
+
+static void power_limit_state_restore(void)
+{
+ struct rapl_package *rp;
+ struct rapl_domain *rd;
+ int nr_pl, i;
+
+ cpus_read_lock();
+ list_for_each_entry(rp, &rapl_packages, plist) {
+ if (!rp->power_zone)
+ continue;
+ rd = power_zone_to_rapl_domain(rp->power_zone);
+ nr_pl = find_nr_power_limit(rd);
+ for (i = 0; i < nr_pl; i++) {
+ switch (rd->rpl[i].prim_id) {
+ case PL1_ENABLE:
+ if (rd->rpl[i].last_power_limit)
+ rapl_write_data_raw(rd, POWER_LIMIT1,
+ rd->rpl[i].last_power_limit);
+ break;
+ case PL2_ENABLE:
+ if (rd->rpl[i].last_power_limit)
+ rapl_write_data_raw(rd, POWER_LIMIT2,
+ rd->rpl[i].last_power_limit);
+ break;
+ case PL4_ENABLE:
+ if (rd->rpl[i].last_power_limit)
+ rapl_write_data_raw(rd, POWER_LIMIT4,
+ rd->rpl[i].last_power_limit);
+ break;
+ }
+ }
+ }
+ cpus_read_unlock();
+}
+
+static int rapl_pm_callback(struct notifier_block *nb,
+ unsigned long mode, void *_unused)
+{
+ switch (mode) {
+ case PM_SUSPEND_PREPARE:
+ power_limit_state_save();
+ break;
+ case PM_POST_SUSPEND:
+ power_limit_state_restore();
+ break;
+ }
+ return NOTIFY_OK;
+}
+
+static struct notifier_block rapl_pm_notifier = {
+ .notifier_call = rapl_pm_callback,
+};
+
+static struct platform_device *rapl_msr_platdev;
+
+static int __init rapl_init(void)
+{
+ const struct x86_cpu_id *id;
+ int ret;
+
+ id = x86_match_cpu(rapl_ids);
+ if (!id) {
+ pr_err("driver does not support CPU family %d model %d\n",
+ boot_cpu_data.x86, boot_cpu_data.x86_model);
+
+ return -ENODEV;
+ }
+
+ rapl_defaults = (struct rapl_defaults *)id->driver_data;
+
+ ret = register_pm_notifier(&rapl_pm_notifier);
+ if (ret)
+ return ret;
+
+ rapl_msr_platdev = platform_device_alloc("intel_rapl_msr", 0);
+ if (!rapl_msr_platdev) {
+ ret = -ENOMEM;
+ goto end;
+ }
+
+ ret = platform_device_add(rapl_msr_platdev);
+ if (ret)
+ platform_device_put(rapl_msr_platdev);
+
+end:
+ if (ret)
+ unregister_pm_notifier(&rapl_pm_notifier);
+
+ return ret;
+}
+
+static void __exit rapl_exit(void)
+{
+ platform_device_unregister(rapl_msr_platdev);
+ unregister_pm_notifier(&rapl_pm_notifier);
+}
+
+fs_initcall(rapl_init);
+module_exit(rapl_exit);
+
+MODULE_DESCRIPTION("Intel Runtime Average Power Limit (RAPL) common code");
+MODULE_AUTHOR("Jacob Pan <jacob.jun.pan@intel.com>");
+MODULE_LICENSE("GPL v2");
diff --git a/drivers/powercap/intel_rapl_msr.c b/drivers/powercap/intel_rapl_msr.c
new file mode 100644
index 000000000..65adb4cba
--- /dev/null
+++ b/drivers/powercap/intel_rapl_msr.c
@@ -0,0 +1,221 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Intel Running Average Power Limit (RAPL) Driver via MSR interface
+ * Copyright (c) 2019, Intel Corporation.
+ */
+#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
+
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/list.h>
+#include <linux/types.h>
+#include <linux/device.h>
+#include <linux/slab.h>
+#include <linux/log2.h>
+#include <linux/bitmap.h>
+#include <linux/delay.h>
+#include <linux/sysfs.h>
+#include <linux/cpu.h>
+#include <linux/powercap.h>
+#include <linux/suspend.h>
+#include <linux/intel_rapl.h>
+#include <linux/processor.h>
+#include <linux/platform_device.h>
+
+#include <asm/cpu_device_id.h>
+#include <asm/intel-family.h>
+
+/* Local defines */
+#define MSR_PLATFORM_POWER_LIMIT 0x0000065C
+#define MSR_VR_CURRENT_CONFIG 0x00000601
+
+/* private data for RAPL MSR Interface */
+static struct rapl_if_priv *rapl_msr_priv;
+
+static struct rapl_if_priv rapl_msr_priv_intel = {
+ .reg_unit = MSR_RAPL_POWER_UNIT,
+ .regs[RAPL_DOMAIN_PACKAGE] = {
+ MSR_PKG_POWER_LIMIT, MSR_PKG_ENERGY_STATUS, MSR_PKG_PERF_STATUS, 0, MSR_PKG_POWER_INFO },
+ .regs[RAPL_DOMAIN_PP0] = {
+ MSR_PP0_POWER_LIMIT, MSR_PP0_ENERGY_STATUS, 0, MSR_PP0_POLICY, 0 },
+ .regs[RAPL_DOMAIN_PP1] = {
+ MSR_PP1_POWER_LIMIT, MSR_PP1_ENERGY_STATUS, 0, MSR_PP1_POLICY, 0 },
+ .regs[RAPL_DOMAIN_DRAM] = {
+ MSR_DRAM_POWER_LIMIT, MSR_DRAM_ENERGY_STATUS, MSR_DRAM_PERF_STATUS, 0, MSR_DRAM_POWER_INFO },
+ .regs[RAPL_DOMAIN_PLATFORM] = {
+ MSR_PLATFORM_POWER_LIMIT, MSR_PLATFORM_ENERGY_STATUS, 0, 0, 0},
+ .limits[RAPL_DOMAIN_PACKAGE] = 2,
+ .limits[RAPL_DOMAIN_PLATFORM] = 2,
+};
+
+static struct rapl_if_priv rapl_msr_priv_amd = {
+ .reg_unit = MSR_AMD_RAPL_POWER_UNIT,
+ .regs[RAPL_DOMAIN_PACKAGE] = {
+ 0, MSR_AMD_PKG_ENERGY_STATUS, 0, 0, 0 },
+ .regs[RAPL_DOMAIN_PP0] = {
+ 0, MSR_AMD_CORE_ENERGY_STATUS, 0, 0, 0 },
+};
+
+/* Handles CPU hotplug on multi-socket systems.
+ * If a CPU goes online as the first CPU of the physical package
+ * we add the RAPL package to the system. Similarly, when the last
+ * CPU of the package is removed, we remove the RAPL package and its
+ * associated domains. Cooling devices are handled accordingly at
+ * per-domain level.
+ */
+static int rapl_cpu_online(unsigned int cpu)
+{
+ struct rapl_package *rp;
+
+ rp = rapl_find_package_domain(cpu, rapl_msr_priv);
+ if (!rp) {
+ rp = rapl_add_package(cpu, rapl_msr_priv);
+ if (IS_ERR(rp))
+ return PTR_ERR(rp);
+ }
+ cpumask_set_cpu(cpu, &rp->cpumask);
+ return 0;
+}
+
+static int rapl_cpu_down_prep(unsigned int cpu)
+{
+ struct rapl_package *rp;
+ int lead_cpu;
+
+ rp = rapl_find_package_domain(cpu, rapl_msr_priv);
+ if (!rp)
+ return 0;
+
+ cpumask_clear_cpu(cpu, &rp->cpumask);
+ lead_cpu = cpumask_first(&rp->cpumask);
+ if (lead_cpu >= nr_cpu_ids)
+ rapl_remove_package(rp);
+ else if (rp->lead_cpu == cpu)
+ rp->lead_cpu = lead_cpu;
+ return 0;
+}
+
+static int rapl_msr_read_raw(int cpu, struct reg_action *ra)
+{
+ u32 msr = (u32)ra->reg;
+
+ if (rdmsrl_safe_on_cpu(cpu, msr, &ra->value)) {
+ pr_debug("failed to read msr 0x%x on cpu %d\n", msr, cpu);
+ return -EIO;
+ }
+ ra->value &= ra->mask;
+ return 0;
+}
+
+static void rapl_msr_update_func(void *info)
+{
+ struct reg_action *ra = info;
+ u32 msr = (u32)ra->reg;
+ u64 val;
+
+ ra->err = rdmsrl_safe(msr, &val);
+ if (ra->err)
+ return;
+
+ val &= ~ra->mask;
+ val |= ra->value;
+
+ ra->err = wrmsrl_safe(msr, val);
+}
+
+static int rapl_msr_write_raw(int cpu, struct reg_action *ra)
+{
+ int ret;
+
+ ret = smp_call_function_single(cpu, rapl_msr_update_func, ra, 1);
+ if (WARN_ON_ONCE(ret))
+ return ret;
+
+ return ra->err;
+}
+
+/* List of verified CPUs. */
+static const struct x86_cpu_id pl4_support_ids[] = {
+ { X86_VENDOR_INTEL, 6, INTEL_FAM6_TIGERLAKE_L, X86_FEATURE_ANY },
+ { X86_VENDOR_INTEL, 6, INTEL_FAM6_ALDERLAKE, X86_FEATURE_ANY },
+ { X86_VENDOR_INTEL, 6, INTEL_FAM6_ALDERLAKE_L, X86_FEATURE_ANY },
+ { X86_VENDOR_INTEL, 6, INTEL_FAM6_ALDERLAKE_N, X86_FEATURE_ANY },
+ { X86_VENDOR_INTEL, 6, INTEL_FAM6_RAPTORLAKE, X86_FEATURE_ANY },
+ { X86_VENDOR_INTEL, 6, INTEL_FAM6_RAPTORLAKE_P, X86_FEATURE_ANY },
+ {}
+};
+
+static int rapl_msr_probe(struct platform_device *pdev)
+{
+ const struct x86_cpu_id *id = x86_match_cpu(pl4_support_ids);
+ int ret;
+
+ switch (boot_cpu_data.x86_vendor) {
+ case X86_VENDOR_INTEL:
+ rapl_msr_priv = &rapl_msr_priv_intel;
+ break;
+ case X86_VENDOR_HYGON:
+ case X86_VENDOR_AMD:
+ rapl_msr_priv = &rapl_msr_priv_amd;
+ break;
+ default:
+ pr_err("intel-rapl does not support CPU vendor %d\n", boot_cpu_data.x86_vendor);
+ return -ENODEV;
+ }
+ rapl_msr_priv->read_raw = rapl_msr_read_raw;
+ rapl_msr_priv->write_raw = rapl_msr_write_raw;
+
+ if (id) {
+ rapl_msr_priv->limits[RAPL_DOMAIN_PACKAGE] = 3;
+ rapl_msr_priv->regs[RAPL_DOMAIN_PACKAGE][RAPL_DOMAIN_REG_PL4] =
+ MSR_VR_CURRENT_CONFIG;
+ pr_info("PL4 support detected.\n");
+ }
+
+ rapl_msr_priv->control_type = powercap_register_control_type(NULL, "intel-rapl", NULL);
+ if (IS_ERR(rapl_msr_priv->control_type)) {
+ pr_debug("failed to register powercap control_type.\n");
+ return PTR_ERR(rapl_msr_priv->control_type);
+ }
+
+ ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "powercap/rapl:online",
+ rapl_cpu_online, rapl_cpu_down_prep);
+ if (ret < 0)
+ goto out;
+ rapl_msr_priv->pcap_rapl_online = ret;
+
+ return 0;
+
+out:
+ if (ret)
+ powercap_unregister_control_type(rapl_msr_priv->control_type);
+ return ret;
+}
+
+static int rapl_msr_remove(struct platform_device *pdev)
+{
+ cpuhp_remove_state(rapl_msr_priv->pcap_rapl_online);
+ powercap_unregister_control_type(rapl_msr_priv->control_type);
+ return 0;
+}
+
+static const struct platform_device_id rapl_msr_ids[] = {
+ { .name = "intel_rapl_msr", },
+ {}
+};
+MODULE_DEVICE_TABLE(platform, rapl_msr_ids);
+
+static struct platform_driver intel_rapl_msr_driver = {
+ .probe = rapl_msr_probe,
+ .remove = rapl_msr_remove,
+ .id_table = rapl_msr_ids,
+ .driver = {
+ .name = "intel_rapl_msr",
+ },
+};
+
+module_platform_driver(intel_rapl_msr_driver);
+
+MODULE_DESCRIPTION("Driver for Intel RAPL (Running Average Power Limit) control via MSR interface");
+MODULE_AUTHOR("Zhang Rui <rui.zhang@intel.com>");
+MODULE_LICENSE("GPL v2");
diff --git a/drivers/powercap/powercap_sys.c b/drivers/powercap/powercap_sys.c
new file mode 100644
index 000000000..ff736b006
--- /dev/null
+++ b/drivers/powercap/powercap_sys.c
@@ -0,0 +1,681 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Power capping class
+ * Copyright (c) 2013, Intel Corporation.
+ */
+
+#include <linux/module.h>
+#include <linux/device.h>
+#include <linux/err.h>
+#include <linux/slab.h>
+#include <linux/powercap.h>
+
+#define to_powercap_zone(n) container_of(n, struct powercap_zone, dev)
+#define to_powercap_control_type(n) \
+ container_of(n, struct powercap_control_type, dev)
+
+/* Power zone show function */
+#define define_power_zone_show(_attr) \
+static ssize_t _attr##_show(struct device *dev, \
+ struct device_attribute *dev_attr,\
+ char *buf) \
+{ \
+ u64 value; \
+ ssize_t len = -EINVAL; \
+ struct powercap_zone *power_zone = to_powercap_zone(dev); \
+ \
+ if (power_zone->ops->get_##_attr) { \
+ if (!power_zone->ops->get_##_attr(power_zone, &value)) \
+ len = sprintf(buf, "%lld\n", value); \
+ } \
+ \
+ return len; \
+}
+
+/* The only meaningful input is 0 (reset), others are silently ignored */
+#define define_power_zone_store(_attr) \
+static ssize_t _attr##_store(struct device *dev,\
+ struct device_attribute *dev_attr, \
+ const char *buf, size_t count) \
+{ \
+ int err; \
+ struct powercap_zone *power_zone = to_powercap_zone(dev); \
+ u64 value; \
+ \
+ err = kstrtoull(buf, 10, &value); \
+ if (err) \
+ return -EINVAL; \
+ if (value) \
+ return count; \
+ if (power_zone->ops->reset_##_attr) { \
+ if (!power_zone->ops->reset_##_attr(power_zone)) \
+ return count; \
+ } \
+ \
+ return -EINVAL; \
+}
+
+/* Power zone constraint show function */
+#define define_power_zone_constraint_show(_attr) \
+static ssize_t show_constraint_##_attr(struct device *dev, \
+ struct device_attribute *dev_attr,\
+ char *buf) \
+{ \
+ u64 value; \
+ ssize_t len = -ENODATA; \
+ struct powercap_zone *power_zone = to_powercap_zone(dev); \
+ int id; \
+ struct powercap_zone_constraint *pconst;\
+ \
+ if (!sscanf(dev_attr->attr.name, "constraint_%d_", &id)) \
+ return -EINVAL; \
+ if (id >= power_zone->const_id_cnt) \
+ return -EINVAL; \
+ pconst = &power_zone->constraints[id]; \
+ if (pconst && pconst->ops && pconst->ops->get_##_attr) { \
+ if (!pconst->ops->get_##_attr(power_zone, id, &value)) \
+ len = sprintf(buf, "%lld\n", value); \
+ } \
+ \
+ return len; \
+}
+
+/* Power zone constraint store function */
+#define define_power_zone_constraint_store(_attr) \
+static ssize_t store_constraint_##_attr(struct device *dev,\
+ struct device_attribute *dev_attr, \
+ const char *buf, size_t count) \
+{ \
+ int err; \
+ u64 value; \
+ struct powercap_zone *power_zone = to_powercap_zone(dev); \
+ int id; \
+ struct powercap_zone_constraint *pconst;\
+ \
+ if (!sscanf(dev_attr->attr.name, "constraint_%d_", &id)) \
+ return -EINVAL; \
+ if (id >= power_zone->const_id_cnt) \
+ return -EINVAL; \
+ pconst = &power_zone->constraints[id]; \
+ err = kstrtoull(buf, 10, &value); \
+ if (err) \
+ return -EINVAL; \
+ if (pconst && pconst->ops && pconst->ops->set_##_attr) { \
+ if (!pconst->ops->set_##_attr(power_zone, id, value)) \
+ return count; \
+ } \
+ \
+ return -ENODATA; \
+}
+
+/* Power zone information callbacks */
+define_power_zone_show(power_uw);
+define_power_zone_show(max_power_range_uw);
+define_power_zone_show(energy_uj);
+define_power_zone_store(energy_uj);
+define_power_zone_show(max_energy_range_uj);
+
+/* Power zone attributes */
+static DEVICE_ATTR_RO(max_power_range_uw);
+static DEVICE_ATTR_RO(power_uw);
+static DEVICE_ATTR_RO(max_energy_range_uj);
+static DEVICE_ATTR_RW(energy_uj);
+
+/* Power zone constraint attributes callbacks */
+define_power_zone_constraint_show(power_limit_uw);
+define_power_zone_constraint_store(power_limit_uw);
+define_power_zone_constraint_show(time_window_us);
+define_power_zone_constraint_store(time_window_us);
+define_power_zone_constraint_show(max_power_uw);
+define_power_zone_constraint_show(min_power_uw);
+define_power_zone_constraint_show(max_time_window_us);
+define_power_zone_constraint_show(min_time_window_us);
+
+/* For one time seeding of constraint device attributes */
+struct powercap_constraint_attr {
+ struct device_attribute power_limit_attr;
+ struct device_attribute time_window_attr;
+ struct device_attribute max_power_attr;
+ struct device_attribute min_power_attr;
+ struct device_attribute max_time_window_attr;
+ struct device_attribute min_time_window_attr;
+ struct device_attribute name_attr;
+};
+
+static struct powercap_constraint_attr
+ constraint_attrs[MAX_CONSTRAINTS_PER_ZONE];
+
+/* A list of powercap control_types */
+static LIST_HEAD(powercap_cntrl_list);
+/* Mutex to protect list of powercap control_types */
+static DEFINE_MUTEX(powercap_cntrl_list_lock);
+
+#define POWERCAP_CONSTRAINT_NAME_LEN 30 /* Some limit to avoid overflow */
+static ssize_t show_constraint_name(struct device *dev,
+ struct device_attribute *dev_attr,
+ char *buf)
+{
+ const char *name;
+ struct powercap_zone *power_zone = to_powercap_zone(dev);
+ int id;
+ ssize_t len = -ENODATA;
+ struct powercap_zone_constraint *pconst;
+
+ if (!sscanf(dev_attr->attr.name, "constraint_%d_", &id))
+ return -EINVAL;
+ if (id >= power_zone->const_id_cnt)
+ return -EINVAL;
+ pconst = &power_zone->constraints[id];
+
+ if (pconst && pconst->ops && pconst->ops->get_name) {
+ name = pconst->ops->get_name(power_zone, id);
+ if (name) {
+ sprintf(buf, "%.*s\n", POWERCAP_CONSTRAINT_NAME_LEN - 1,
+ name);
+ len = strlen(buf);
+ }
+ }
+
+ return len;
+}
+
+static int create_constraint_attribute(int id, const char *name,
+ int mode,
+ struct device_attribute *dev_attr,
+ ssize_t (*show)(struct device *,
+ struct device_attribute *, char *),
+ ssize_t (*store)(struct device *,
+ struct device_attribute *,
+ const char *, size_t)
+ )
+{
+
+ dev_attr->attr.name = kasprintf(GFP_KERNEL, "constraint_%d_%s",
+ id, name);
+ if (!dev_attr->attr.name)
+ return -ENOMEM;
+ dev_attr->attr.mode = mode;
+ dev_attr->show = show;
+ dev_attr->store = store;
+
+ return 0;
+}
+
+static void free_constraint_attributes(void)
+{
+ int i;
+
+ for (i = 0; i < MAX_CONSTRAINTS_PER_ZONE; ++i) {
+ kfree(constraint_attrs[i].power_limit_attr.attr.name);
+ kfree(constraint_attrs[i].time_window_attr.attr.name);
+ kfree(constraint_attrs[i].name_attr.attr.name);
+ kfree(constraint_attrs[i].max_power_attr.attr.name);
+ kfree(constraint_attrs[i].min_power_attr.attr.name);
+ kfree(constraint_attrs[i].max_time_window_attr.attr.name);
+ kfree(constraint_attrs[i].min_time_window_attr.attr.name);
+ }
+}
+
+static int seed_constraint_attributes(void)
+{
+ int i;
+ int ret;
+
+ for (i = 0; i < MAX_CONSTRAINTS_PER_ZONE; ++i) {
+ ret = create_constraint_attribute(i, "power_limit_uw",
+ S_IWUSR | S_IRUGO,
+ &constraint_attrs[i].power_limit_attr,
+ show_constraint_power_limit_uw,
+ store_constraint_power_limit_uw);
+ if (ret)
+ goto err_alloc;
+ ret = create_constraint_attribute(i, "time_window_us",
+ S_IWUSR | S_IRUGO,
+ &constraint_attrs[i].time_window_attr,
+ show_constraint_time_window_us,
+ store_constraint_time_window_us);
+ if (ret)
+ goto err_alloc;
+ ret = create_constraint_attribute(i, "name", S_IRUGO,
+ &constraint_attrs[i].name_attr,
+ show_constraint_name,
+ NULL);
+ if (ret)
+ goto err_alloc;
+ ret = create_constraint_attribute(i, "max_power_uw", S_IRUGO,
+ &constraint_attrs[i].max_power_attr,
+ show_constraint_max_power_uw,
+ NULL);
+ if (ret)
+ goto err_alloc;
+ ret = create_constraint_attribute(i, "min_power_uw", S_IRUGO,
+ &constraint_attrs[i].min_power_attr,
+ show_constraint_min_power_uw,
+ NULL);
+ if (ret)
+ goto err_alloc;
+ ret = create_constraint_attribute(i, "max_time_window_us",
+ S_IRUGO,
+ &constraint_attrs[i].max_time_window_attr,
+ show_constraint_max_time_window_us,
+ NULL);
+ if (ret)
+ goto err_alloc;
+ ret = create_constraint_attribute(i, "min_time_window_us",
+ S_IRUGO,
+ &constraint_attrs[i].min_time_window_attr,
+ show_constraint_min_time_window_us,
+ NULL);
+ if (ret)
+ goto err_alloc;
+
+ }
+
+ return 0;
+
+err_alloc:
+ free_constraint_attributes();
+
+ return ret;
+}
+
+static int create_constraints(struct powercap_zone *power_zone,
+ int nr_constraints,
+ const struct powercap_zone_constraint_ops *const_ops)
+{
+ int i;
+ int ret = 0;
+ int count;
+ struct powercap_zone_constraint *pconst;
+
+ if (!power_zone || !const_ops || !const_ops->get_power_limit_uw ||
+ !const_ops->set_power_limit_uw ||
+ !const_ops->get_time_window_us ||
+ !const_ops->set_time_window_us)
+ return -EINVAL;
+
+ count = power_zone->zone_attr_count;
+ for (i = 0; i < nr_constraints; ++i) {
+ pconst = &power_zone->constraints[i];
+ pconst->ops = const_ops;
+ pconst->id = power_zone->const_id_cnt;
+ power_zone->const_id_cnt++;
+ power_zone->zone_dev_attrs[count++] =
+ &constraint_attrs[i].power_limit_attr.attr;
+ power_zone->zone_dev_attrs[count++] =
+ &constraint_attrs[i].time_window_attr.attr;
+ if (pconst->ops->get_name)
+ power_zone->zone_dev_attrs[count++] =
+ &constraint_attrs[i].name_attr.attr;
+ if (pconst->ops->get_max_power_uw)
+ power_zone->zone_dev_attrs[count++] =
+ &constraint_attrs[i].max_power_attr.attr;
+ if (pconst->ops->get_min_power_uw)
+ power_zone->zone_dev_attrs[count++] =
+ &constraint_attrs[i].min_power_attr.attr;
+ if (pconst->ops->get_max_time_window_us)
+ power_zone->zone_dev_attrs[count++] =
+ &constraint_attrs[i].max_time_window_attr.attr;
+ if (pconst->ops->get_min_time_window_us)
+ power_zone->zone_dev_attrs[count++] =
+ &constraint_attrs[i].min_time_window_attr.attr;
+ }
+ power_zone->zone_attr_count = count;
+
+ return ret;
+}
+
+static bool control_type_valid(void *control_type)
+{
+ struct powercap_control_type *pos = NULL;
+ bool found = false;
+
+ mutex_lock(&powercap_cntrl_list_lock);
+
+ list_for_each_entry(pos, &powercap_cntrl_list, node) {
+ if (pos == control_type) {
+ found = true;
+ break;
+ }
+ }
+ mutex_unlock(&powercap_cntrl_list_lock);
+
+ return found;
+}
+
+static ssize_t name_show(struct device *dev,
+ struct device_attribute *attr,
+ char *buf)
+{
+ struct powercap_zone *power_zone = to_powercap_zone(dev);
+
+ return sprintf(buf, "%s\n", power_zone->name);
+}
+
+static DEVICE_ATTR_RO(name);
+
+/* Create zone and attributes in sysfs */
+static void create_power_zone_common_attributes(
+ struct powercap_zone *power_zone)
+{
+ int count = 0;
+
+ power_zone->zone_dev_attrs[count++] = &dev_attr_name.attr;
+ if (power_zone->ops->get_max_energy_range_uj)
+ power_zone->zone_dev_attrs[count++] =
+ &dev_attr_max_energy_range_uj.attr;
+ if (power_zone->ops->get_energy_uj) {
+ if (power_zone->ops->reset_energy_uj)
+ dev_attr_energy_uj.attr.mode = S_IWUSR | S_IRUSR;
+ else
+ dev_attr_energy_uj.attr.mode = S_IRUSR;
+ power_zone->zone_dev_attrs[count++] =
+ &dev_attr_energy_uj.attr;
+ }
+ if (power_zone->ops->get_power_uw)
+ power_zone->zone_dev_attrs[count++] =
+ &dev_attr_power_uw.attr;
+ if (power_zone->ops->get_max_power_range_uw)
+ power_zone->zone_dev_attrs[count++] =
+ &dev_attr_max_power_range_uw.attr;
+ power_zone->zone_dev_attrs[count] = NULL;
+ power_zone->zone_attr_count = count;
+}
+
+static void powercap_release(struct device *dev)
+{
+ bool allocated;
+
+ if (dev->parent) {
+ struct powercap_zone *power_zone = to_powercap_zone(dev);
+
+ /* Store flag as the release() may free memory */
+ allocated = power_zone->allocated;
+ /* Remove id from parent idr struct */
+ idr_remove(power_zone->parent_idr, power_zone->id);
+ /* Destroy idrs allocated for this zone */
+ idr_destroy(&power_zone->idr);
+ kfree(power_zone->name);
+ kfree(power_zone->zone_dev_attrs);
+ kfree(power_zone->constraints);
+ if (power_zone->ops->release)
+ power_zone->ops->release(power_zone);
+ if (allocated)
+ kfree(power_zone);
+ } else {
+ struct powercap_control_type *control_type =
+ to_powercap_control_type(dev);
+
+ /* Store flag as the release() may free memory */
+ allocated = control_type->allocated;
+ idr_destroy(&control_type->idr);
+ mutex_destroy(&control_type->lock);
+ if (control_type->ops && control_type->ops->release)
+ control_type->ops->release(control_type);
+ if (allocated)
+ kfree(control_type);
+ }
+}
+
+static ssize_t enabled_show(struct device *dev,
+ struct device_attribute *attr,
+ char *buf)
+{
+ bool mode = true;
+
+ /* Default is enabled */
+ if (dev->parent) {
+ struct powercap_zone *power_zone = to_powercap_zone(dev);
+ if (power_zone->ops->get_enable)
+ if (power_zone->ops->get_enable(power_zone, &mode))
+ mode = false;
+ } else {
+ struct powercap_control_type *control_type =
+ to_powercap_control_type(dev);
+ if (control_type->ops && control_type->ops->get_enable)
+ if (control_type->ops->get_enable(control_type, &mode))
+ mode = false;
+ }
+
+ return sprintf(buf, "%d\n", mode);
+}
+
+static ssize_t enabled_store(struct device *dev,
+ struct device_attribute *attr,
+ const char *buf, size_t len)
+{
+ bool mode;
+
+ if (strtobool(buf, &mode))
+ return -EINVAL;
+ if (dev->parent) {
+ struct powercap_zone *power_zone = to_powercap_zone(dev);
+ if (power_zone->ops->set_enable)
+ if (!power_zone->ops->set_enable(power_zone, mode))
+ return len;
+ } else {
+ struct powercap_control_type *control_type =
+ to_powercap_control_type(dev);
+ if (control_type->ops && control_type->ops->set_enable)
+ if (!control_type->ops->set_enable(control_type, mode))
+ return len;
+ }
+
+ return -ENOSYS;
+}
+
+static DEVICE_ATTR_RW(enabled);
+
+static struct attribute *powercap_attrs[] = {
+ &dev_attr_enabled.attr,
+ NULL,
+};
+ATTRIBUTE_GROUPS(powercap);
+
+static struct class powercap_class = {
+ .name = "powercap",
+ .dev_release = powercap_release,
+ .dev_groups = powercap_groups,
+};
+
+struct powercap_zone *powercap_register_zone(
+ struct powercap_zone *power_zone,
+ struct powercap_control_type *control_type,
+ const char *name,
+ struct powercap_zone *parent,
+ const struct powercap_zone_ops *ops,
+ int nr_constraints,
+ const struct powercap_zone_constraint_ops *const_ops)
+{
+ int result;
+ int nr_attrs;
+
+ if (!name || !control_type || !ops ||
+ nr_constraints > MAX_CONSTRAINTS_PER_ZONE ||
+ (!ops->get_energy_uj && !ops->get_power_uw) ||
+ !control_type_valid(control_type))
+ return ERR_PTR(-EINVAL);
+
+ if (power_zone) {
+ if (!ops->release)
+ return ERR_PTR(-EINVAL);
+ memset(power_zone, 0, sizeof(*power_zone));
+ } else {
+ power_zone = kzalloc(sizeof(*power_zone), GFP_KERNEL);
+ if (!power_zone)
+ return ERR_PTR(-ENOMEM);
+ power_zone->allocated = true;
+ }
+ power_zone->ops = ops;
+ power_zone->control_type_inst = control_type;
+ if (!parent) {
+ power_zone->dev.parent = &control_type->dev;
+ power_zone->parent_idr = &control_type->idr;
+ } else {
+ power_zone->dev.parent = &parent->dev;
+ power_zone->parent_idr = &parent->idr;
+ }
+ power_zone->dev.class = &powercap_class;
+
+ mutex_lock(&control_type->lock);
+ /* Using idr to get the unique id */
+ result = idr_alloc(power_zone->parent_idr, NULL, 0, 0, GFP_KERNEL);
+ if (result < 0)
+ goto err_idr_alloc;
+
+ power_zone->id = result;
+ idr_init(&power_zone->idr);
+ result = -ENOMEM;
+ power_zone->name = kstrdup(name, GFP_KERNEL);
+ if (!power_zone->name)
+ goto err_name_alloc;
+ power_zone->constraints = kcalloc(nr_constraints,
+ sizeof(*power_zone->constraints),
+ GFP_KERNEL);
+ if (!power_zone->constraints)
+ goto err_const_alloc;
+
+ nr_attrs = nr_constraints * POWERCAP_CONSTRAINTS_ATTRS +
+ POWERCAP_ZONE_MAX_ATTRS + 1;
+ power_zone->zone_dev_attrs = kcalloc(nr_attrs, sizeof(void *),
+ GFP_KERNEL);
+ if (!power_zone->zone_dev_attrs)
+ goto err_attr_alloc;
+ create_power_zone_common_attributes(power_zone);
+ result = create_constraints(power_zone, nr_constraints, const_ops);
+ if (result)
+ goto err_dev_ret;
+
+ power_zone->zone_dev_attrs[power_zone->zone_attr_count] = NULL;
+ power_zone->dev_zone_attr_group.attrs = power_zone->zone_dev_attrs;
+ power_zone->dev_attr_groups[0] = &power_zone->dev_zone_attr_group;
+ power_zone->dev_attr_groups[1] = NULL;
+ power_zone->dev.groups = power_zone->dev_attr_groups;
+ dev_set_name(&power_zone->dev, "%s:%x",
+ dev_name(power_zone->dev.parent),
+ power_zone->id);
+ result = device_register(&power_zone->dev);
+ if (result) {
+ put_device(&power_zone->dev);
+ mutex_unlock(&control_type->lock);
+
+ return ERR_PTR(result);
+ }
+
+ control_type->nr_zones++;
+ mutex_unlock(&control_type->lock);
+
+ return power_zone;
+
+err_dev_ret:
+ kfree(power_zone->zone_dev_attrs);
+err_attr_alloc:
+ kfree(power_zone->constraints);
+err_const_alloc:
+ kfree(power_zone->name);
+err_name_alloc:
+ idr_remove(power_zone->parent_idr, power_zone->id);
+err_idr_alloc:
+ if (power_zone->allocated)
+ kfree(power_zone);
+ mutex_unlock(&control_type->lock);
+
+ return ERR_PTR(result);
+}
+EXPORT_SYMBOL_GPL(powercap_register_zone);
+
+int powercap_unregister_zone(struct powercap_control_type *control_type,
+ struct powercap_zone *power_zone)
+{
+ if (!power_zone || !control_type)
+ return -EINVAL;
+
+ mutex_lock(&control_type->lock);
+ control_type->nr_zones--;
+ mutex_unlock(&control_type->lock);
+
+ device_unregister(&power_zone->dev);
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(powercap_unregister_zone);
+
+struct powercap_control_type *powercap_register_control_type(
+ struct powercap_control_type *control_type,
+ const char *name,
+ const struct powercap_control_type_ops *ops)
+{
+ int result;
+
+ if (!name)
+ return ERR_PTR(-EINVAL);
+ if (control_type) {
+ if (!ops || !ops->release)
+ return ERR_PTR(-EINVAL);
+ memset(control_type, 0, sizeof(*control_type));
+ } else {
+ control_type = kzalloc(sizeof(*control_type), GFP_KERNEL);
+ if (!control_type)
+ return ERR_PTR(-ENOMEM);
+ control_type->allocated = true;
+ }
+ mutex_init(&control_type->lock);
+ control_type->ops = ops;
+ INIT_LIST_HEAD(&control_type->node);
+ control_type->dev.class = &powercap_class;
+ dev_set_name(&control_type->dev, "%s", name);
+ result = device_register(&control_type->dev);
+ if (result) {
+ if (control_type->allocated)
+ kfree(control_type);
+ return ERR_PTR(result);
+ }
+ idr_init(&control_type->idr);
+
+ mutex_lock(&powercap_cntrl_list_lock);
+ list_add_tail(&control_type->node, &powercap_cntrl_list);
+ mutex_unlock(&powercap_cntrl_list_lock);
+
+ return control_type;
+}
+EXPORT_SYMBOL_GPL(powercap_register_control_type);
+
+int powercap_unregister_control_type(struct powercap_control_type *control_type)
+{
+ struct powercap_control_type *pos = NULL;
+
+ if (control_type->nr_zones) {
+ dev_err(&control_type->dev, "Zones of this type still not freed\n");
+ return -EINVAL;
+ }
+ mutex_lock(&powercap_cntrl_list_lock);
+ list_for_each_entry(pos, &powercap_cntrl_list, node) {
+ if (pos == control_type) {
+ list_del(&control_type->node);
+ mutex_unlock(&powercap_cntrl_list_lock);
+ device_unregister(&control_type->dev);
+ return 0;
+ }
+ }
+ mutex_unlock(&powercap_cntrl_list_lock);
+
+ return -ENODEV;
+}
+EXPORT_SYMBOL_GPL(powercap_unregister_control_type);
+
+static int __init powercap_init(void)
+{
+ int result;
+
+ result = seed_constraint_attributes();
+ if (result)
+ return result;
+
+ return class_register(&powercap_class);
+}
+
+fs_initcall(powercap_init);
+
+MODULE_DESCRIPTION("PowerCap sysfs Driver");
+MODULE_AUTHOR("Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>");
+MODULE_LICENSE("GPL v2");