diff options
Diffstat (limited to '')
-rw-r--r-- | fs/xfs/libxfs/xfs_ialloc.c | 2969 |
1 files changed, 2969 insertions, 0 deletions
diff --git a/fs/xfs/libxfs/xfs_ialloc.c b/fs/xfs/libxfs/xfs_ialloc.c new file mode 100644 index 000000000..94db50eb7 --- /dev/null +++ b/fs/xfs/libxfs/xfs_ialloc.c @@ -0,0 +1,2969 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. + * All Rights Reserved. + */ +#include "xfs.h" +#include "xfs_fs.h" +#include "xfs_shared.h" +#include "xfs_format.h" +#include "xfs_log_format.h" +#include "xfs_trans_resv.h" +#include "xfs_bit.h" +#include "xfs_mount.h" +#include "xfs_inode.h" +#include "xfs_btree.h" +#include "xfs_ialloc.h" +#include "xfs_ialloc_btree.h" +#include "xfs_alloc.h" +#include "xfs_errortag.h" +#include "xfs_error.h" +#include "xfs_bmap.h" +#include "xfs_trans.h" +#include "xfs_buf_item.h" +#include "xfs_icreate_item.h" +#include "xfs_icache.h" +#include "xfs_trace.h" +#include "xfs_log.h" +#include "xfs_rmap.h" +#include "xfs_ag.h" + +/* + * Lookup a record by ino in the btree given by cur. + */ +int /* error */ +xfs_inobt_lookup( + struct xfs_btree_cur *cur, /* btree cursor */ + xfs_agino_t ino, /* starting inode of chunk */ + xfs_lookup_t dir, /* <=, >=, == */ + int *stat) /* success/failure */ +{ + cur->bc_rec.i.ir_startino = ino; + cur->bc_rec.i.ir_holemask = 0; + cur->bc_rec.i.ir_count = 0; + cur->bc_rec.i.ir_freecount = 0; + cur->bc_rec.i.ir_free = 0; + return xfs_btree_lookup(cur, dir, stat); +} + +/* + * Update the record referred to by cur to the value given. + * This either works (return 0) or gets an EFSCORRUPTED error. + */ +STATIC int /* error */ +xfs_inobt_update( + struct xfs_btree_cur *cur, /* btree cursor */ + xfs_inobt_rec_incore_t *irec) /* btree record */ +{ + union xfs_btree_rec rec; + + rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino); + if (xfs_has_sparseinodes(cur->bc_mp)) { + rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask); + rec.inobt.ir_u.sp.ir_count = irec->ir_count; + rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount; + } else { + /* ir_holemask/ir_count not supported on-disk */ + rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount); + } + rec.inobt.ir_free = cpu_to_be64(irec->ir_free); + return xfs_btree_update(cur, &rec); +} + +/* Convert on-disk btree record to incore inobt record. */ +void +xfs_inobt_btrec_to_irec( + struct xfs_mount *mp, + const union xfs_btree_rec *rec, + struct xfs_inobt_rec_incore *irec) +{ + irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino); + if (xfs_has_sparseinodes(mp)) { + irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask); + irec->ir_count = rec->inobt.ir_u.sp.ir_count; + irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount; + } else { + /* + * ir_holemask/ir_count not supported on-disk. Fill in hardcoded + * values for full inode chunks. + */ + irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL; + irec->ir_count = XFS_INODES_PER_CHUNK; + irec->ir_freecount = + be32_to_cpu(rec->inobt.ir_u.f.ir_freecount); + } + irec->ir_free = be64_to_cpu(rec->inobt.ir_free); +} + +/* + * Get the data from the pointed-to record. + */ +int +xfs_inobt_get_rec( + struct xfs_btree_cur *cur, + struct xfs_inobt_rec_incore *irec, + int *stat) +{ + struct xfs_mount *mp = cur->bc_mp; + union xfs_btree_rec *rec; + int error; + uint64_t realfree; + + error = xfs_btree_get_rec(cur, &rec, stat); + if (error || *stat == 0) + return error; + + xfs_inobt_btrec_to_irec(mp, rec, irec); + + if (!xfs_verify_agino(cur->bc_ag.pag, irec->ir_startino)) + goto out_bad_rec; + if (irec->ir_count < XFS_INODES_PER_HOLEMASK_BIT || + irec->ir_count > XFS_INODES_PER_CHUNK) + goto out_bad_rec; + if (irec->ir_freecount > XFS_INODES_PER_CHUNK) + goto out_bad_rec; + + /* if there are no holes, return the first available offset */ + if (!xfs_inobt_issparse(irec->ir_holemask)) + realfree = irec->ir_free; + else + realfree = irec->ir_free & xfs_inobt_irec_to_allocmask(irec); + if (hweight64(realfree) != irec->ir_freecount) + goto out_bad_rec; + + return 0; + +out_bad_rec: + xfs_warn(mp, + "%s Inode BTree record corruption in AG %d detected!", + cur->bc_btnum == XFS_BTNUM_INO ? "Used" : "Free", + cur->bc_ag.pag->pag_agno); + xfs_warn(mp, +"start inode 0x%x, count 0x%x, free 0x%x freemask 0x%llx, holemask 0x%x", + irec->ir_startino, irec->ir_count, irec->ir_freecount, + irec->ir_free, irec->ir_holemask); + return -EFSCORRUPTED; +} + +/* + * Insert a single inobt record. Cursor must already point to desired location. + */ +int +xfs_inobt_insert_rec( + struct xfs_btree_cur *cur, + uint16_t holemask, + uint8_t count, + int32_t freecount, + xfs_inofree_t free, + int *stat) +{ + cur->bc_rec.i.ir_holemask = holemask; + cur->bc_rec.i.ir_count = count; + cur->bc_rec.i.ir_freecount = freecount; + cur->bc_rec.i.ir_free = free; + return xfs_btree_insert(cur, stat); +} + +/* + * Insert records describing a newly allocated inode chunk into the inobt. + */ +STATIC int +xfs_inobt_insert( + struct xfs_mount *mp, + struct xfs_trans *tp, + struct xfs_buf *agbp, + struct xfs_perag *pag, + xfs_agino_t newino, + xfs_agino_t newlen, + xfs_btnum_t btnum) +{ + struct xfs_btree_cur *cur; + xfs_agino_t thisino; + int i; + int error; + + cur = xfs_inobt_init_cursor(mp, tp, agbp, pag, btnum); + + for (thisino = newino; + thisino < newino + newlen; + thisino += XFS_INODES_PER_CHUNK) { + error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i); + if (error) { + xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); + return error; + } + ASSERT(i == 0); + + error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL, + XFS_INODES_PER_CHUNK, + XFS_INODES_PER_CHUNK, + XFS_INOBT_ALL_FREE, &i); + if (error) { + xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); + return error; + } + ASSERT(i == 1); + } + + xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); + + return 0; +} + +/* + * Verify that the number of free inodes in the AGI is correct. + */ +#ifdef DEBUG +static int +xfs_check_agi_freecount( + struct xfs_btree_cur *cur) +{ + if (cur->bc_nlevels == 1) { + xfs_inobt_rec_incore_t rec; + int freecount = 0; + int error; + int i; + + error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i); + if (error) + return error; + + do { + error = xfs_inobt_get_rec(cur, &rec, &i); + if (error) + return error; + + if (i) { + freecount += rec.ir_freecount; + error = xfs_btree_increment(cur, 0, &i); + if (error) + return error; + } + } while (i == 1); + + if (!xfs_is_shutdown(cur->bc_mp)) + ASSERT(freecount == cur->bc_ag.pag->pagi_freecount); + } + return 0; +} +#else +#define xfs_check_agi_freecount(cur) 0 +#endif + +/* + * Initialise a new set of inodes. When called without a transaction context + * (e.g. from recovery) we initiate a delayed write of the inode buffers rather + * than logging them (which in a transaction context puts them into the AIL + * for writeback rather than the xfsbufd queue). + */ +int +xfs_ialloc_inode_init( + struct xfs_mount *mp, + struct xfs_trans *tp, + struct list_head *buffer_list, + int icount, + xfs_agnumber_t agno, + xfs_agblock_t agbno, + xfs_agblock_t length, + unsigned int gen) +{ + struct xfs_buf *fbuf; + struct xfs_dinode *free; + int nbufs; + int version; + int i, j; + xfs_daddr_t d; + xfs_ino_t ino = 0; + int error; + + /* + * Loop over the new block(s), filling in the inodes. For small block + * sizes, manipulate the inodes in buffers which are multiples of the + * blocks size. + */ + nbufs = length / M_IGEO(mp)->blocks_per_cluster; + + /* + * Figure out what version number to use in the inodes we create. If + * the superblock version has caught up to the one that supports the new + * inode format, then use the new inode version. Otherwise use the old + * version so that old kernels will continue to be able to use the file + * system. + * + * For v3 inodes, we also need to write the inode number into the inode, + * so calculate the first inode number of the chunk here as + * XFS_AGB_TO_AGINO() only works within a filesystem block, not + * across multiple filesystem blocks (such as a cluster) and so cannot + * be used in the cluster buffer loop below. + * + * Further, because we are writing the inode directly into the buffer + * and calculating a CRC on the entire inode, we have ot log the entire + * inode so that the entire range the CRC covers is present in the log. + * That means for v3 inode we log the entire buffer rather than just the + * inode cores. + */ + if (xfs_has_v3inodes(mp)) { + version = 3; + ino = XFS_AGINO_TO_INO(mp, agno, XFS_AGB_TO_AGINO(mp, agbno)); + + /* + * log the initialisation that is about to take place as an + * logical operation. This means the transaction does not + * need to log the physical changes to the inode buffers as log + * recovery will know what initialisation is actually needed. + * Hence we only need to log the buffers as "ordered" buffers so + * they track in the AIL as if they were physically logged. + */ + if (tp) + xfs_icreate_log(tp, agno, agbno, icount, + mp->m_sb.sb_inodesize, length, gen); + } else + version = 2; + + for (j = 0; j < nbufs; j++) { + /* + * Get the block. + */ + d = XFS_AGB_TO_DADDR(mp, agno, agbno + + (j * M_IGEO(mp)->blocks_per_cluster)); + error = xfs_trans_get_buf(tp, mp->m_ddev_targp, d, + mp->m_bsize * M_IGEO(mp)->blocks_per_cluster, + XBF_UNMAPPED, &fbuf); + if (error) + return error; + + /* Initialize the inode buffers and log them appropriately. */ + fbuf->b_ops = &xfs_inode_buf_ops; + xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length)); + for (i = 0; i < M_IGEO(mp)->inodes_per_cluster; i++) { + int ioffset = i << mp->m_sb.sb_inodelog; + + free = xfs_make_iptr(mp, fbuf, i); + free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC); + free->di_version = version; + free->di_gen = cpu_to_be32(gen); + free->di_next_unlinked = cpu_to_be32(NULLAGINO); + + if (version == 3) { + free->di_ino = cpu_to_be64(ino); + ino++; + uuid_copy(&free->di_uuid, + &mp->m_sb.sb_meta_uuid); + xfs_dinode_calc_crc(mp, free); + } else if (tp) { + /* just log the inode core */ + xfs_trans_log_buf(tp, fbuf, ioffset, + ioffset + XFS_DINODE_SIZE(mp) - 1); + } + } + + if (tp) { + /* + * Mark the buffer as an inode allocation buffer so it + * sticks in AIL at the point of this allocation + * transaction. This ensures the they are on disk before + * the tail of the log can be moved past this + * transaction (i.e. by preventing relogging from moving + * it forward in the log). + */ + xfs_trans_inode_alloc_buf(tp, fbuf); + if (version == 3) { + /* + * Mark the buffer as ordered so that they are + * not physically logged in the transaction but + * still tracked in the AIL as part of the + * transaction and pin the log appropriately. + */ + xfs_trans_ordered_buf(tp, fbuf); + } + } else { + fbuf->b_flags |= XBF_DONE; + xfs_buf_delwri_queue(fbuf, buffer_list); + xfs_buf_relse(fbuf); + } + } + return 0; +} + +/* + * Align startino and allocmask for a recently allocated sparse chunk such that + * they are fit for insertion (or merge) into the on-disk inode btrees. + * + * Background: + * + * When enabled, sparse inode support increases the inode alignment from cluster + * size to inode chunk size. This means that the minimum range between two + * non-adjacent inode records in the inobt is large enough for a full inode + * record. This allows for cluster sized, cluster aligned block allocation + * without need to worry about whether the resulting inode record overlaps with + * another record in the tree. Without this basic rule, we would have to deal + * with the consequences of overlap by potentially undoing recent allocations in + * the inode allocation codepath. + * + * Because of this alignment rule (which is enforced on mount), there are two + * inobt possibilities for newly allocated sparse chunks. One is that the + * aligned inode record for the chunk covers a range of inodes not already + * covered in the inobt (i.e., it is safe to insert a new sparse record). The + * other is that a record already exists at the aligned startino that considers + * the newly allocated range as sparse. In the latter case, record content is + * merged in hope that sparse inode chunks fill to full chunks over time. + */ +STATIC void +xfs_align_sparse_ino( + struct xfs_mount *mp, + xfs_agino_t *startino, + uint16_t *allocmask) +{ + xfs_agblock_t agbno; + xfs_agblock_t mod; + int offset; + + agbno = XFS_AGINO_TO_AGBNO(mp, *startino); + mod = agbno % mp->m_sb.sb_inoalignmt; + if (!mod) + return; + + /* calculate the inode offset and align startino */ + offset = XFS_AGB_TO_AGINO(mp, mod); + *startino -= offset; + + /* + * Since startino has been aligned down, left shift allocmask such that + * it continues to represent the same physical inodes relative to the + * new startino. + */ + *allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT; +} + +/* + * Determine whether the source inode record can merge into the target. Both + * records must be sparse, the inode ranges must match and there must be no + * allocation overlap between the records. + */ +STATIC bool +__xfs_inobt_can_merge( + struct xfs_inobt_rec_incore *trec, /* tgt record */ + struct xfs_inobt_rec_incore *srec) /* src record */ +{ + uint64_t talloc; + uint64_t salloc; + + /* records must cover the same inode range */ + if (trec->ir_startino != srec->ir_startino) + return false; + + /* both records must be sparse */ + if (!xfs_inobt_issparse(trec->ir_holemask) || + !xfs_inobt_issparse(srec->ir_holemask)) + return false; + + /* both records must track some inodes */ + if (!trec->ir_count || !srec->ir_count) + return false; + + /* can't exceed capacity of a full record */ + if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK) + return false; + + /* verify there is no allocation overlap */ + talloc = xfs_inobt_irec_to_allocmask(trec); + salloc = xfs_inobt_irec_to_allocmask(srec); + if (talloc & salloc) + return false; + + return true; +} + +/* + * Merge the source inode record into the target. The caller must call + * __xfs_inobt_can_merge() to ensure the merge is valid. + */ +STATIC void +__xfs_inobt_rec_merge( + struct xfs_inobt_rec_incore *trec, /* target */ + struct xfs_inobt_rec_incore *srec) /* src */ +{ + ASSERT(trec->ir_startino == srec->ir_startino); + + /* combine the counts */ + trec->ir_count += srec->ir_count; + trec->ir_freecount += srec->ir_freecount; + + /* + * Merge the holemask and free mask. For both fields, 0 bits refer to + * allocated inodes. We combine the allocated ranges with bitwise AND. + */ + trec->ir_holemask &= srec->ir_holemask; + trec->ir_free &= srec->ir_free; +} + +/* + * Insert a new sparse inode chunk into the associated inode btree. The inode + * record for the sparse chunk is pre-aligned to a startino that should match + * any pre-existing sparse inode record in the tree. This allows sparse chunks + * to fill over time. + * + * This function supports two modes of handling preexisting records depending on + * the merge flag. If merge is true, the provided record is merged with the + * existing record and updated in place. The merged record is returned in nrec. + * If merge is false, an existing record is replaced with the provided record. + * If no preexisting record exists, the provided record is always inserted. + * + * It is considered corruption if a merge is requested and not possible. Given + * the sparse inode alignment constraints, this should never happen. + */ +STATIC int +xfs_inobt_insert_sprec( + struct xfs_mount *mp, + struct xfs_trans *tp, + struct xfs_buf *agbp, + struct xfs_perag *pag, + int btnum, + struct xfs_inobt_rec_incore *nrec, /* in/out: new/merged rec. */ + bool merge) /* merge or replace */ +{ + struct xfs_btree_cur *cur; + int error; + int i; + struct xfs_inobt_rec_incore rec; + + cur = xfs_inobt_init_cursor(mp, tp, agbp, pag, btnum); + + /* the new record is pre-aligned so we know where to look */ + error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i); + if (error) + goto error; + /* if nothing there, insert a new record and return */ + if (i == 0) { + error = xfs_inobt_insert_rec(cur, nrec->ir_holemask, + nrec->ir_count, nrec->ir_freecount, + nrec->ir_free, &i); + if (error) + goto error; + if (XFS_IS_CORRUPT(mp, i != 1)) { + error = -EFSCORRUPTED; + goto error; + } + + goto out; + } + + /* + * A record exists at this startino. Merge or replace the record + * depending on what we've been asked to do. + */ + if (merge) { + error = xfs_inobt_get_rec(cur, &rec, &i); + if (error) + goto error; + if (XFS_IS_CORRUPT(mp, i != 1)) { + error = -EFSCORRUPTED; + goto error; + } + if (XFS_IS_CORRUPT(mp, rec.ir_startino != nrec->ir_startino)) { + error = -EFSCORRUPTED; + goto error; + } + + /* + * This should never fail. If we have coexisting records that + * cannot merge, something is seriously wrong. + */ + if (XFS_IS_CORRUPT(mp, !__xfs_inobt_can_merge(nrec, &rec))) { + error = -EFSCORRUPTED; + goto error; + } + + trace_xfs_irec_merge_pre(mp, pag->pag_agno, rec.ir_startino, + rec.ir_holemask, nrec->ir_startino, + nrec->ir_holemask); + + /* merge to nrec to output the updated record */ + __xfs_inobt_rec_merge(nrec, &rec); + + trace_xfs_irec_merge_post(mp, pag->pag_agno, nrec->ir_startino, + nrec->ir_holemask); + + error = xfs_inobt_rec_check_count(mp, nrec); + if (error) + goto error; + } + + error = xfs_inobt_update(cur, nrec); + if (error) + goto error; + +out: + xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); + return 0; +error: + xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); + return error; +} + +/* + * Allocate new inodes in the allocation group specified by agbp. Returns 0 if + * inodes were allocated in this AG; -EAGAIN if there was no space in this AG so + * the caller knows it can try another AG, a hard -ENOSPC when over the maximum + * inode count threshold, or the usual negative error code for other errors. + */ +STATIC int +xfs_ialloc_ag_alloc( + struct xfs_trans *tp, + struct xfs_buf *agbp, + struct xfs_perag *pag) +{ + struct xfs_agi *agi; + struct xfs_alloc_arg args; + int error; + xfs_agino_t newino; /* new first inode's number */ + xfs_agino_t newlen; /* new number of inodes */ + int isaligned = 0; /* inode allocation at stripe */ + /* unit boundary */ + /* init. to full chunk */ + struct xfs_inobt_rec_incore rec; + struct xfs_ino_geometry *igeo = M_IGEO(tp->t_mountp); + uint16_t allocmask = (uint16_t) -1; + int do_sparse = 0; + + memset(&args, 0, sizeof(args)); + args.tp = tp; + args.mp = tp->t_mountp; + args.fsbno = NULLFSBLOCK; + args.oinfo = XFS_RMAP_OINFO_INODES; + +#ifdef DEBUG + /* randomly do sparse inode allocations */ + if (xfs_has_sparseinodes(tp->t_mountp) && + igeo->ialloc_min_blks < igeo->ialloc_blks) + do_sparse = prandom_u32_max(2); +#endif + + /* + * Locking will ensure that we don't have two callers in here + * at one time. + */ + newlen = igeo->ialloc_inos; + if (igeo->maxicount && + percpu_counter_read_positive(&args.mp->m_icount) + newlen > + igeo->maxicount) + return -ENOSPC; + args.minlen = args.maxlen = igeo->ialloc_blks; + /* + * First try to allocate inodes contiguous with the last-allocated + * chunk of inodes. If the filesystem is striped, this will fill + * an entire stripe unit with inodes. + */ + agi = agbp->b_addr; + newino = be32_to_cpu(agi->agi_newino); + args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) + + igeo->ialloc_blks; + if (do_sparse) + goto sparse_alloc; + if (likely(newino != NULLAGINO && + (args.agbno < be32_to_cpu(agi->agi_length)))) { + args.fsbno = XFS_AGB_TO_FSB(args.mp, pag->pag_agno, args.agbno); + args.type = XFS_ALLOCTYPE_THIS_BNO; + args.prod = 1; + + /* + * We need to take into account alignment here to ensure that + * we don't modify the free list if we fail to have an exact + * block. If we don't have an exact match, and every oher + * attempt allocation attempt fails, we'll end up cancelling + * a dirty transaction and shutting down. + * + * For an exact allocation, alignment must be 1, + * however we need to take cluster alignment into account when + * fixing up the freelist. Use the minalignslop field to + * indicate that extra blocks might be required for alignment, + * but not to use them in the actual exact allocation. + */ + args.alignment = 1; + args.minalignslop = igeo->cluster_align - 1; + + /* Allow space for the inode btree to split. */ + args.minleft = igeo->inobt_maxlevels; + if ((error = xfs_alloc_vextent(&args))) + return error; + + /* + * This request might have dirtied the transaction if the AG can + * satisfy the request, but the exact block was not available. + * If the allocation did fail, subsequent requests will relax + * the exact agbno requirement and increase the alignment + * instead. It is critical that the total size of the request + * (len + alignment + slop) does not increase from this point + * on, so reset minalignslop to ensure it is not included in + * subsequent requests. + */ + args.minalignslop = 0; + } + + if (unlikely(args.fsbno == NULLFSBLOCK)) { + /* + * Set the alignment for the allocation. + * If stripe alignment is turned on then align at stripe unit + * boundary. + * If the cluster size is smaller than a filesystem block + * then we're doing I/O for inodes in filesystem block size + * pieces, so don't need alignment anyway. + */ + isaligned = 0; + if (igeo->ialloc_align) { + ASSERT(!xfs_has_noalign(args.mp)); + args.alignment = args.mp->m_dalign; + isaligned = 1; + } else + args.alignment = igeo->cluster_align; + /* + * Need to figure out where to allocate the inode blocks. + * Ideally they should be spaced out through the a.g. + * For now, just allocate blocks up front. + */ + args.agbno = be32_to_cpu(agi->agi_root); + args.fsbno = XFS_AGB_TO_FSB(args.mp, pag->pag_agno, args.agbno); + /* + * Allocate a fixed-size extent of inodes. + */ + args.type = XFS_ALLOCTYPE_NEAR_BNO; + args.prod = 1; + /* + * Allow space for the inode btree to split. + */ + args.minleft = igeo->inobt_maxlevels; + if ((error = xfs_alloc_vextent(&args))) + return error; + } + + /* + * If stripe alignment is turned on, then try again with cluster + * alignment. + */ + if (isaligned && args.fsbno == NULLFSBLOCK) { + args.type = XFS_ALLOCTYPE_NEAR_BNO; + args.agbno = be32_to_cpu(agi->agi_root); + args.fsbno = XFS_AGB_TO_FSB(args.mp, pag->pag_agno, args.agbno); + args.alignment = igeo->cluster_align; + if ((error = xfs_alloc_vextent(&args))) + return error; + } + + /* + * Finally, try a sparse allocation if the filesystem supports it and + * the sparse allocation length is smaller than a full chunk. + */ + if (xfs_has_sparseinodes(args.mp) && + igeo->ialloc_min_blks < igeo->ialloc_blks && + args.fsbno == NULLFSBLOCK) { +sparse_alloc: + args.type = XFS_ALLOCTYPE_NEAR_BNO; + args.agbno = be32_to_cpu(agi->agi_root); + args.fsbno = XFS_AGB_TO_FSB(args.mp, pag->pag_agno, args.agbno); + args.alignment = args.mp->m_sb.sb_spino_align; + args.prod = 1; + + args.minlen = igeo->ialloc_min_blks; + args.maxlen = args.minlen; + + /* + * The inode record will be aligned to full chunk size. We must + * prevent sparse allocation from AG boundaries that result in + * invalid inode records, such as records that start at agbno 0 + * or extend beyond the AG. + * + * Set min agbno to the first aligned, non-zero agbno and max to + * the last aligned agbno that is at least one full chunk from + * the end of the AG. + */ + args.min_agbno = args.mp->m_sb.sb_inoalignmt; + args.max_agbno = round_down(args.mp->m_sb.sb_agblocks, + args.mp->m_sb.sb_inoalignmt) - + igeo->ialloc_blks; + + error = xfs_alloc_vextent(&args); + if (error) + return error; + + newlen = XFS_AGB_TO_AGINO(args.mp, args.len); + ASSERT(newlen <= XFS_INODES_PER_CHUNK); + allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1; + } + + if (args.fsbno == NULLFSBLOCK) + return -EAGAIN; + + ASSERT(args.len == args.minlen); + + /* + * Stamp and write the inode buffers. + * + * Seed the new inode cluster with a random generation number. This + * prevents short-term reuse of generation numbers if a chunk is + * freed and then immediately reallocated. We use random numbers + * rather than a linear progression to prevent the next generation + * number from being easily guessable. + */ + error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, pag->pag_agno, + args.agbno, args.len, get_random_u32()); + + if (error) + return error; + /* + * Convert the results. + */ + newino = XFS_AGB_TO_AGINO(args.mp, args.agbno); + + if (xfs_inobt_issparse(~allocmask)) { + /* + * We've allocated a sparse chunk. Align the startino and mask. + */ + xfs_align_sparse_ino(args.mp, &newino, &allocmask); + + rec.ir_startino = newino; + rec.ir_holemask = ~allocmask; + rec.ir_count = newlen; + rec.ir_freecount = newlen; + rec.ir_free = XFS_INOBT_ALL_FREE; + + /* + * Insert the sparse record into the inobt and allow for a merge + * if necessary. If a merge does occur, rec is updated to the + * merged record. + */ + error = xfs_inobt_insert_sprec(args.mp, tp, agbp, pag, + XFS_BTNUM_INO, &rec, true); + if (error == -EFSCORRUPTED) { + xfs_alert(args.mp, + "invalid sparse inode record: ino 0x%llx holemask 0x%x count %u", + XFS_AGINO_TO_INO(args.mp, pag->pag_agno, + rec.ir_startino), + rec.ir_holemask, rec.ir_count); + xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE); + } + if (error) + return error; + + /* + * We can't merge the part we've just allocated as for the inobt + * due to finobt semantics. The original record may or may not + * exist independent of whether physical inodes exist in this + * sparse chunk. + * + * We must update the finobt record based on the inobt record. + * rec contains the fully merged and up to date inobt record + * from the previous call. Set merge false to replace any + * existing record with this one. + */ + if (xfs_has_finobt(args.mp)) { + error = xfs_inobt_insert_sprec(args.mp, tp, agbp, pag, + XFS_BTNUM_FINO, &rec, false); + if (error) + return error; + } + } else { + /* full chunk - insert new records to both btrees */ + error = xfs_inobt_insert(args.mp, tp, agbp, pag, newino, newlen, + XFS_BTNUM_INO); + if (error) + return error; + + if (xfs_has_finobt(args.mp)) { + error = xfs_inobt_insert(args.mp, tp, agbp, pag, newino, + newlen, XFS_BTNUM_FINO); + if (error) + return error; + } + } + + /* + * Update AGI counts and newino. + */ + be32_add_cpu(&agi->agi_count, newlen); + be32_add_cpu(&agi->agi_freecount, newlen); + pag->pagi_freecount += newlen; + pag->pagi_count += newlen; + agi->agi_newino = cpu_to_be32(newino); + + /* + * Log allocation group header fields + */ + xfs_ialloc_log_agi(tp, agbp, + XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO); + /* + * Modify/log superblock values for inode count and inode free count. + */ + xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen); + xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen); + return 0; +} + +/* + * Try to retrieve the next record to the left/right from the current one. + */ +STATIC int +xfs_ialloc_next_rec( + struct xfs_btree_cur *cur, + xfs_inobt_rec_incore_t *rec, + int *done, + int left) +{ + int error; + int i; + + if (left) + error = xfs_btree_decrement(cur, 0, &i); + else + error = xfs_btree_increment(cur, 0, &i); + + if (error) + return error; + *done = !i; + if (i) { + error = xfs_inobt_get_rec(cur, rec, &i); + if (error) + return error; + if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) + return -EFSCORRUPTED; + } + + return 0; +} + +STATIC int +xfs_ialloc_get_rec( + struct xfs_btree_cur *cur, + xfs_agino_t agino, + xfs_inobt_rec_incore_t *rec, + int *done) +{ + int error; + int i; + + error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i); + if (error) + return error; + *done = !i; + if (i) { + error = xfs_inobt_get_rec(cur, rec, &i); + if (error) + return error; + if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) + return -EFSCORRUPTED; + } + + return 0; +} + +/* + * Return the offset of the first free inode in the record. If the inode chunk + * is sparsely allocated, we convert the record holemask to inode granularity + * and mask off the unallocated regions from the inode free mask. + */ +STATIC int +xfs_inobt_first_free_inode( + struct xfs_inobt_rec_incore *rec) +{ + xfs_inofree_t realfree; + + /* if there are no holes, return the first available offset */ + if (!xfs_inobt_issparse(rec->ir_holemask)) + return xfs_lowbit64(rec->ir_free); + + realfree = xfs_inobt_irec_to_allocmask(rec); + realfree &= rec->ir_free; + + return xfs_lowbit64(realfree); +} + +/* + * Allocate an inode using the inobt-only algorithm. + */ +STATIC int +xfs_dialloc_ag_inobt( + struct xfs_trans *tp, + struct xfs_buf *agbp, + struct xfs_perag *pag, + xfs_ino_t parent, + xfs_ino_t *inop) +{ + struct xfs_mount *mp = tp->t_mountp; + struct xfs_agi *agi = agbp->b_addr; + xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent); + xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent); + struct xfs_btree_cur *cur, *tcur; + struct xfs_inobt_rec_incore rec, trec; + xfs_ino_t ino; + int error; + int offset; + int i, j; + int searchdistance = 10; + + ASSERT(pag->pagi_init); + ASSERT(pag->pagi_inodeok); + ASSERT(pag->pagi_freecount > 0); + + restart_pagno: + cur = xfs_inobt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_INO); + /* + * If pagino is 0 (this is the root inode allocation) use newino. + * This must work because we've just allocated some. + */ + if (!pagino) + pagino = be32_to_cpu(agi->agi_newino); + + error = xfs_check_agi_freecount(cur); + if (error) + goto error0; + + /* + * If in the same AG as the parent, try to get near the parent. + */ + if (pagno == pag->pag_agno) { + int doneleft; /* done, to the left */ + int doneright; /* done, to the right */ + + error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i); + if (error) + goto error0; + if (XFS_IS_CORRUPT(mp, i != 1)) { + error = -EFSCORRUPTED; + goto error0; + } + + error = xfs_inobt_get_rec(cur, &rec, &j); + if (error) + goto error0; + if (XFS_IS_CORRUPT(mp, j != 1)) { + error = -EFSCORRUPTED; + goto error0; + } + + if (rec.ir_freecount > 0) { + /* + * Found a free inode in the same chunk + * as the parent, done. + */ + goto alloc_inode; + } + + + /* + * In the same AG as parent, but parent's chunk is full. + */ + + /* duplicate the cursor, search left & right simultaneously */ + error = xfs_btree_dup_cursor(cur, &tcur); + if (error) + goto error0; + + /* + * Skip to last blocks looked up if same parent inode. + */ + if (pagino != NULLAGINO && + pag->pagl_pagino == pagino && + pag->pagl_leftrec != NULLAGINO && + pag->pagl_rightrec != NULLAGINO) { + error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec, + &trec, &doneleft); + if (error) + goto error1; + + error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec, + &rec, &doneright); + if (error) + goto error1; + } else { + /* search left with tcur, back up 1 record */ + error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1); + if (error) + goto error1; + + /* search right with cur, go forward 1 record. */ + error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0); + if (error) + goto error1; + } + + /* + * Loop until we find an inode chunk with a free inode. + */ + while (--searchdistance > 0 && (!doneleft || !doneright)) { + int useleft; /* using left inode chunk this time */ + + /* figure out the closer block if both are valid. */ + if (!doneleft && !doneright) { + useleft = pagino - + (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) < + rec.ir_startino - pagino; + } else { + useleft = !doneleft; + } + + /* free inodes to the left? */ + if (useleft && trec.ir_freecount) { + xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); + cur = tcur; + + pag->pagl_leftrec = trec.ir_startino; + pag->pagl_rightrec = rec.ir_startino; + pag->pagl_pagino = pagino; + rec = trec; + goto alloc_inode; + } + + /* free inodes to the right? */ + if (!useleft && rec.ir_freecount) { + xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); + + pag->pagl_leftrec = trec.ir_startino; + pag->pagl_rightrec = rec.ir_startino; + pag->pagl_pagino = pagino; + goto alloc_inode; + } + + /* get next record to check */ + if (useleft) { + error = xfs_ialloc_next_rec(tcur, &trec, + &doneleft, 1); + } else { + error = xfs_ialloc_next_rec(cur, &rec, + &doneright, 0); + } + if (error) + goto error1; + } + + if (searchdistance <= 0) { + /* + * Not in range - save last search + * location and allocate a new inode + */ + xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); + pag->pagl_leftrec = trec.ir_startino; + pag->pagl_rightrec = rec.ir_startino; + pag->pagl_pagino = pagino; + + } else { + /* + * We've reached the end of the btree. because + * we are only searching a small chunk of the + * btree each search, there is obviously free + * inodes closer to the parent inode than we + * are now. restart the search again. + */ + pag->pagl_pagino = NULLAGINO; + pag->pagl_leftrec = NULLAGINO; + pag->pagl_rightrec = NULLAGINO; + xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); + xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); + goto restart_pagno; + } + } + + /* + * In a different AG from the parent. + * See if the most recently allocated block has any free. + */ + if (agi->agi_newino != cpu_to_be32(NULLAGINO)) { + error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino), + XFS_LOOKUP_EQ, &i); + if (error) + goto error0; + + if (i == 1) { + error = xfs_inobt_get_rec(cur, &rec, &j); + if (error) + goto error0; + + if (j == 1 && rec.ir_freecount > 0) { + /* + * The last chunk allocated in the group + * still has a free inode. + */ + goto alloc_inode; + } + } + } + + /* + * None left in the last group, search the whole AG + */ + error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i); + if (error) + goto error0; + if (XFS_IS_CORRUPT(mp, i != 1)) { + error = -EFSCORRUPTED; + goto error0; + } + + for (;;) { + error = xfs_inobt_get_rec(cur, &rec, &i); + if (error) + goto error0; + if (XFS_IS_CORRUPT(mp, i != 1)) { + error = -EFSCORRUPTED; + goto error0; + } + if (rec.ir_freecount > 0) + break; + error = xfs_btree_increment(cur, 0, &i); + if (error) + goto error0; + if (XFS_IS_CORRUPT(mp, i != 1)) { + error = -EFSCORRUPTED; + goto error0; + } + } + +alloc_inode: + offset = xfs_inobt_first_free_inode(&rec); + ASSERT(offset >= 0); + ASSERT(offset < XFS_INODES_PER_CHUNK); + ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) % + XFS_INODES_PER_CHUNK) == 0); + ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, rec.ir_startino + offset); + rec.ir_free &= ~XFS_INOBT_MASK(offset); + rec.ir_freecount--; + error = xfs_inobt_update(cur, &rec); + if (error) + goto error0; + be32_add_cpu(&agi->agi_freecount, -1); + xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT); + pag->pagi_freecount--; + + error = xfs_check_agi_freecount(cur); + if (error) + goto error0; + + xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); + xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1); + *inop = ino; + return 0; +error1: + xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR); +error0: + xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); + return error; +} + +/* + * Use the free inode btree to allocate an inode based on distance from the + * parent. Note that the provided cursor may be deleted and replaced. + */ +STATIC int +xfs_dialloc_ag_finobt_near( + xfs_agino_t pagino, + struct xfs_btree_cur **ocur, + struct xfs_inobt_rec_incore *rec) +{ + struct xfs_btree_cur *lcur = *ocur; /* left search cursor */ + struct xfs_btree_cur *rcur; /* right search cursor */ + struct xfs_inobt_rec_incore rrec; + int error; + int i, j; + + error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i); + if (error) + return error; + + if (i == 1) { + error = xfs_inobt_get_rec(lcur, rec, &i); + if (error) + return error; + if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1)) + return -EFSCORRUPTED; + + /* + * See if we've landed in the parent inode record. The finobt + * only tracks chunks with at least one free inode, so record + * existence is enough. + */ + if (pagino >= rec->ir_startino && + pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK)) + return 0; + } + + error = xfs_btree_dup_cursor(lcur, &rcur); + if (error) + return error; + + error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j); + if (error) + goto error_rcur; + if (j == 1) { + error = xfs_inobt_get_rec(rcur, &rrec, &j); + if (error) + goto error_rcur; + if (XFS_IS_CORRUPT(lcur->bc_mp, j != 1)) { + error = -EFSCORRUPTED; + goto error_rcur; + } + } + + if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1 && j != 1)) { + error = -EFSCORRUPTED; + goto error_rcur; + } + if (i == 1 && j == 1) { + /* + * Both the left and right records are valid. Choose the closer + * inode chunk to the target. + */ + if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) > + (rrec.ir_startino - pagino)) { + *rec = rrec; + xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR); + *ocur = rcur; + } else { + xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR); + } + } else if (j == 1) { + /* only the right record is valid */ + *rec = rrec; + xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR); + *ocur = rcur; + } else if (i == 1) { + /* only the left record is valid */ + xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR); + } + + return 0; + +error_rcur: + xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR); + return error; +} + +/* + * Use the free inode btree to find a free inode based on a newino hint. If + * the hint is NULL, find the first free inode in the AG. + */ +STATIC int +xfs_dialloc_ag_finobt_newino( + struct xfs_agi *agi, + struct xfs_btree_cur *cur, + struct xfs_inobt_rec_incore *rec) +{ + int error; + int i; + + if (agi->agi_newino != cpu_to_be32(NULLAGINO)) { + error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino), + XFS_LOOKUP_EQ, &i); + if (error) + return error; + if (i == 1) { + error = xfs_inobt_get_rec(cur, rec, &i); + if (error) + return error; + if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) + return -EFSCORRUPTED; + return 0; + } + } + + /* + * Find the first inode available in the AG. + */ + error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i); + if (error) + return error; + if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) + return -EFSCORRUPTED; + + error = xfs_inobt_get_rec(cur, rec, &i); + if (error) + return error; + if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) + return -EFSCORRUPTED; + + return 0; +} + +/* + * Update the inobt based on a modification made to the finobt. Also ensure that + * the records from both trees are equivalent post-modification. + */ +STATIC int +xfs_dialloc_ag_update_inobt( + struct xfs_btree_cur *cur, /* inobt cursor */ + struct xfs_inobt_rec_incore *frec, /* finobt record */ + int offset) /* inode offset */ +{ + struct xfs_inobt_rec_incore rec; + int error; + int i; + + error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i); + if (error) + return error; + if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) + return -EFSCORRUPTED; + + error = xfs_inobt_get_rec(cur, &rec, &i); + if (error) + return error; + if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) + return -EFSCORRUPTED; + ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) % + XFS_INODES_PER_CHUNK) == 0); + + rec.ir_free &= ~XFS_INOBT_MASK(offset); + rec.ir_freecount--; + + if (XFS_IS_CORRUPT(cur->bc_mp, + rec.ir_free != frec->ir_free || + rec.ir_freecount != frec->ir_freecount)) + return -EFSCORRUPTED; + + return xfs_inobt_update(cur, &rec); +} + +/* + * Allocate an inode using the free inode btree, if available. Otherwise, fall + * back to the inobt search algorithm. + * + * The caller selected an AG for us, and made sure that free inodes are + * available. + */ +static int +xfs_dialloc_ag( + struct xfs_trans *tp, + struct xfs_buf *agbp, + struct xfs_perag *pag, + xfs_ino_t parent, + xfs_ino_t *inop) +{ + struct xfs_mount *mp = tp->t_mountp; + struct xfs_agi *agi = agbp->b_addr; + xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent); + xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent); + struct xfs_btree_cur *cur; /* finobt cursor */ + struct xfs_btree_cur *icur; /* inobt cursor */ + struct xfs_inobt_rec_incore rec; + xfs_ino_t ino; + int error; + int offset; + int i; + + if (!xfs_has_finobt(mp)) + return xfs_dialloc_ag_inobt(tp, agbp, pag, parent, inop); + + /* + * If pagino is 0 (this is the root inode allocation) use newino. + * This must work because we've just allocated some. + */ + if (!pagino) + pagino = be32_to_cpu(agi->agi_newino); + + cur = xfs_inobt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_FINO); + + error = xfs_check_agi_freecount(cur); + if (error) + goto error_cur; + + /* + * The search algorithm depends on whether we're in the same AG as the + * parent. If so, find the closest available inode to the parent. If + * not, consider the agi hint or find the first free inode in the AG. + */ + if (pag->pag_agno == pagno) + error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec); + else + error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec); + if (error) + goto error_cur; + + offset = xfs_inobt_first_free_inode(&rec); + ASSERT(offset >= 0); + ASSERT(offset < XFS_INODES_PER_CHUNK); + ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) % + XFS_INODES_PER_CHUNK) == 0); + ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, rec.ir_startino + offset); + + /* + * Modify or remove the finobt record. + */ + rec.ir_free &= ~XFS_INOBT_MASK(offset); + rec.ir_freecount--; + if (rec.ir_freecount) + error = xfs_inobt_update(cur, &rec); + else + error = xfs_btree_delete(cur, &i); + if (error) + goto error_cur; + + /* + * The finobt has now been updated appropriately. We haven't updated the + * agi and superblock yet, so we can create an inobt cursor and validate + * the original freecount. If all is well, make the equivalent update to + * the inobt using the finobt record and offset information. + */ + icur = xfs_inobt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_INO); + + error = xfs_check_agi_freecount(icur); + if (error) + goto error_icur; + + error = xfs_dialloc_ag_update_inobt(icur, &rec, offset); + if (error) + goto error_icur; + + /* + * Both trees have now been updated. We must update the perag and + * superblock before we can check the freecount for each btree. + */ + be32_add_cpu(&agi->agi_freecount, -1); + xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT); + pag->pagi_freecount--; + + xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1); + + error = xfs_check_agi_freecount(icur); + if (error) + goto error_icur; + error = xfs_check_agi_freecount(cur); + if (error) + goto error_icur; + + xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR); + xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); + *inop = ino; + return 0; + +error_icur: + xfs_btree_del_cursor(icur, XFS_BTREE_ERROR); +error_cur: + xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); + return error; +} + +static int +xfs_dialloc_roll( + struct xfs_trans **tpp, + struct xfs_buf *agibp) +{ + struct xfs_trans *tp = *tpp; + struct xfs_dquot_acct *dqinfo; + int error; + + /* + * Hold to on to the agibp across the commit so no other allocation can + * come in and take the free inodes we just allocated for our caller. + */ + xfs_trans_bhold(tp, agibp); + + /* + * We want the quota changes to be associated with the next transaction, + * NOT this one. So, detach the dqinfo from this and attach it to the + * next transaction. + */ + dqinfo = tp->t_dqinfo; + tp->t_dqinfo = NULL; + + error = xfs_trans_roll(&tp); + + /* Re-attach the quota info that we detached from prev trx. */ + tp->t_dqinfo = dqinfo; + + /* + * Join the buffer even on commit error so that the buffer is released + * when the caller cancels the transaction and doesn't have to handle + * this error case specially. + */ + xfs_trans_bjoin(tp, agibp); + *tpp = tp; + return error; +} + +static xfs_agnumber_t +xfs_ialloc_next_ag( + xfs_mount_t *mp) +{ + xfs_agnumber_t agno; + + spin_lock(&mp->m_agirotor_lock); + agno = mp->m_agirotor; + if (++mp->m_agirotor >= mp->m_maxagi) + mp->m_agirotor = 0; + spin_unlock(&mp->m_agirotor_lock); + + return agno; +} + +static bool +xfs_dialloc_good_ag( + struct xfs_trans *tp, + struct xfs_perag *pag, + umode_t mode, + int flags, + bool ok_alloc) +{ + struct xfs_mount *mp = tp->t_mountp; + xfs_extlen_t ineed; + xfs_extlen_t longest = 0; + int needspace; + int error; + + if (!pag->pagi_inodeok) + return false; + + if (!pag->pagi_init) { + error = xfs_ialloc_read_agi(pag, tp, NULL); + if (error) + return false; + } + + if (pag->pagi_freecount) + return true; + if (!ok_alloc) + return false; + + if (!pag->pagf_init) { + error = xfs_alloc_read_agf(pag, tp, flags, NULL); + if (error) + return false; + } + + /* + * Check that there is enough free space for the file plus a chunk of + * inodes if we need to allocate some. If this is the first pass across + * the AGs, take into account the potential space needed for alignment + * of inode chunks when checking the longest contiguous free space in + * the AG - this prevents us from getting ENOSPC because we have free + * space larger than ialloc_blks but alignment constraints prevent us + * from using it. + * + * If we can't find an AG with space for full alignment slack to be + * taken into account, we must be near ENOSPC in all AGs. Hence we + * don't include alignment for the second pass and so if we fail + * allocation due to alignment issues then it is most likely a real + * ENOSPC condition. + * + * XXX(dgc): this calculation is now bogus thanks to the per-ag + * reservations that xfs_alloc_fix_freelist() now does via + * xfs_alloc_space_available(). When the AG fills up, pagf_freeblks will + * be more than large enough for the check below to succeed, but + * xfs_alloc_space_available() will fail because of the non-zero + * metadata reservation and hence we won't actually be able to allocate + * more inodes in this AG. We do soooo much unnecessary work near ENOSPC + * because of this. + */ + ineed = M_IGEO(mp)->ialloc_min_blks; + if (flags && ineed > 1) + ineed += M_IGEO(mp)->cluster_align; + longest = pag->pagf_longest; + if (!longest) + longest = pag->pagf_flcount > 0; + needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode); + + if (pag->pagf_freeblks < needspace + ineed || longest < ineed) + return false; + return true; +} + +static int +xfs_dialloc_try_ag( + struct xfs_trans **tpp, + struct xfs_perag *pag, + xfs_ino_t parent, + xfs_ino_t *new_ino, + bool ok_alloc) +{ + struct xfs_buf *agbp; + xfs_ino_t ino; + int error; + + /* + * Then read in the AGI buffer and recheck with the AGI buffer + * lock held. + */ + error = xfs_ialloc_read_agi(pag, *tpp, &agbp); + if (error) + return error; + + if (!pag->pagi_freecount) { + if (!ok_alloc) { + error = -EAGAIN; + goto out_release; + } + + error = xfs_ialloc_ag_alloc(*tpp, agbp, pag); + if (error < 0) + goto out_release; + + /* + * We successfully allocated space for an inode cluster in this + * AG. Roll the transaction so that we can allocate one of the + * new inodes. + */ + ASSERT(pag->pagi_freecount > 0); + error = xfs_dialloc_roll(tpp, agbp); + if (error) + goto out_release; + } + + /* Allocate an inode in the found AG */ + error = xfs_dialloc_ag(*tpp, agbp, pag, parent, &ino); + if (!error) + *new_ino = ino; + return error; + +out_release: + xfs_trans_brelse(*tpp, agbp); + return error; +} + +/* + * Allocate an on-disk inode. + * + * Mode is used to tell whether the new inode is a directory and hence where to + * locate it. The on-disk inode that is allocated will be returned in @new_ino + * on success, otherwise an error will be set to indicate the failure (e.g. + * -ENOSPC). + */ +int +xfs_dialloc( + struct xfs_trans **tpp, + xfs_ino_t parent, + umode_t mode, + xfs_ino_t *new_ino) +{ + struct xfs_mount *mp = (*tpp)->t_mountp; + xfs_agnumber_t agno; + int error = 0; + xfs_agnumber_t start_agno; + struct xfs_perag *pag; + struct xfs_ino_geometry *igeo = M_IGEO(mp); + bool ok_alloc = true; + int flags; + xfs_ino_t ino; + + /* + * Directories, symlinks, and regular files frequently allocate at least + * one block, so factor that potential expansion when we examine whether + * an AG has enough space for file creation. + */ + if (S_ISDIR(mode)) + start_agno = xfs_ialloc_next_ag(mp); + else { + start_agno = XFS_INO_TO_AGNO(mp, parent); + if (start_agno >= mp->m_maxagi) + start_agno = 0; + } + + /* + * If we have already hit the ceiling of inode blocks then clear + * ok_alloc so we scan all available agi structures for a free + * inode. + * + * Read rough value of mp->m_icount by percpu_counter_read_positive, + * which will sacrifice the preciseness but improve the performance. + */ + if (igeo->maxicount && + percpu_counter_read_positive(&mp->m_icount) + igeo->ialloc_inos + > igeo->maxicount) { + ok_alloc = false; + } + + /* + * Loop until we find an allocation group that either has free inodes + * or in which we can allocate some inodes. Iterate through the + * allocation groups upward, wrapping at the end. + */ + agno = start_agno; + flags = XFS_ALLOC_FLAG_TRYLOCK; + for (;;) { + pag = xfs_perag_get(mp, agno); + if (xfs_dialloc_good_ag(*tpp, pag, mode, flags, ok_alloc)) { + error = xfs_dialloc_try_ag(tpp, pag, parent, + &ino, ok_alloc); + if (error != -EAGAIN) + break; + } + + if (xfs_is_shutdown(mp)) { + error = -EFSCORRUPTED; + break; + } + if (++agno == mp->m_maxagi) + agno = 0; + if (agno == start_agno) { + if (!flags) { + error = -ENOSPC; + break; + } + flags = 0; + } + xfs_perag_put(pag); + } + + if (!error) + *new_ino = ino; + xfs_perag_put(pag); + return error; +} + +/* + * Free the blocks of an inode chunk. We must consider that the inode chunk + * might be sparse and only free the regions that are allocated as part of the + * chunk. + */ +STATIC void +xfs_difree_inode_chunk( + struct xfs_trans *tp, + xfs_agnumber_t agno, + struct xfs_inobt_rec_incore *rec) +{ + struct xfs_mount *mp = tp->t_mountp; + xfs_agblock_t sagbno = XFS_AGINO_TO_AGBNO(mp, + rec->ir_startino); + int startidx, endidx; + int nextbit; + xfs_agblock_t agbno; + int contigblk; + DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS); + + if (!xfs_inobt_issparse(rec->ir_holemask)) { + /* not sparse, calculate extent info directly */ + xfs_free_extent_later(tp, XFS_AGB_TO_FSB(mp, agno, sagbno), + M_IGEO(mp)->ialloc_blks, + &XFS_RMAP_OINFO_INODES); + return; + } + + /* holemask is only 16-bits (fits in an unsigned long) */ + ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0])); + holemask[0] = rec->ir_holemask; + + /* + * Find contiguous ranges of zeroes (i.e., allocated regions) in the + * holemask and convert the start/end index of each range to an extent. + * We start with the start and end index both pointing at the first 0 in + * the mask. + */ + startidx = endidx = find_first_zero_bit(holemask, + XFS_INOBT_HOLEMASK_BITS); + nextbit = startidx + 1; + while (startidx < XFS_INOBT_HOLEMASK_BITS) { + nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS, + nextbit); + /* + * If the next zero bit is contiguous, update the end index of + * the current range and continue. + */ + if (nextbit != XFS_INOBT_HOLEMASK_BITS && + nextbit == endidx + 1) { + endidx = nextbit; + goto next; + } + + /* + * nextbit is not contiguous with the current end index. Convert + * the current start/end to an extent and add it to the free + * list. + */ + agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) / + mp->m_sb.sb_inopblock; + contigblk = ((endidx - startidx + 1) * + XFS_INODES_PER_HOLEMASK_BIT) / + mp->m_sb.sb_inopblock; + + ASSERT(agbno % mp->m_sb.sb_spino_align == 0); + ASSERT(contigblk % mp->m_sb.sb_spino_align == 0); + xfs_free_extent_later(tp, XFS_AGB_TO_FSB(mp, agno, agbno), + contigblk, &XFS_RMAP_OINFO_INODES); + + /* reset range to current bit and carry on... */ + startidx = endidx = nextbit; + +next: + nextbit++; + } +} + +STATIC int +xfs_difree_inobt( + struct xfs_mount *mp, + struct xfs_trans *tp, + struct xfs_buf *agbp, + struct xfs_perag *pag, + xfs_agino_t agino, + struct xfs_icluster *xic, + struct xfs_inobt_rec_incore *orec) +{ + struct xfs_agi *agi = agbp->b_addr; + struct xfs_btree_cur *cur; + struct xfs_inobt_rec_incore rec; + int ilen; + int error; + int i; + int off; + + ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC)); + ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length)); + + /* + * Initialize the cursor. + */ + cur = xfs_inobt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_INO); + + error = xfs_check_agi_freecount(cur); + if (error) + goto error0; + + /* + * Look for the entry describing this inode. + */ + if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) { + xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.", + __func__, error); + goto error0; + } + if (XFS_IS_CORRUPT(mp, i != 1)) { + error = -EFSCORRUPTED; + goto error0; + } + error = xfs_inobt_get_rec(cur, &rec, &i); + if (error) { + xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.", + __func__, error); + goto error0; + } + if (XFS_IS_CORRUPT(mp, i != 1)) { + error = -EFSCORRUPTED; + goto error0; + } + /* + * Get the offset in the inode chunk. + */ + off = agino - rec.ir_startino; + ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK); + ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off))); + /* + * Mark the inode free & increment the count. + */ + rec.ir_free |= XFS_INOBT_MASK(off); + rec.ir_freecount++; + + /* + * When an inode chunk is free, it becomes eligible for removal. Don't + * remove the chunk if the block size is large enough for multiple inode + * chunks (that might not be free). + */ + if (!xfs_has_ikeep(mp) && rec.ir_free == XFS_INOBT_ALL_FREE && + mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) { + struct xfs_perag *pag = agbp->b_pag; + + xic->deleted = true; + xic->first_ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, + rec.ir_startino); + xic->alloc = xfs_inobt_irec_to_allocmask(&rec); + + /* + * Remove the inode cluster from the AGI B+Tree, adjust the + * AGI and Superblock inode counts, and mark the disk space + * to be freed when the transaction is committed. + */ + ilen = rec.ir_freecount; + be32_add_cpu(&agi->agi_count, -ilen); + be32_add_cpu(&agi->agi_freecount, -(ilen - 1)); + xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT); + pag->pagi_freecount -= ilen - 1; + pag->pagi_count -= ilen; + xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen); + xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1)); + + if ((error = xfs_btree_delete(cur, &i))) { + xfs_warn(mp, "%s: xfs_btree_delete returned error %d.", + __func__, error); + goto error0; + } + + xfs_difree_inode_chunk(tp, pag->pag_agno, &rec); + } else { + xic->deleted = false; + + error = xfs_inobt_update(cur, &rec); + if (error) { + xfs_warn(mp, "%s: xfs_inobt_update returned error %d.", + __func__, error); + goto error0; + } + + /* + * Change the inode free counts and log the ag/sb changes. + */ + be32_add_cpu(&agi->agi_freecount, 1); + xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT); + pag->pagi_freecount++; + xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1); + } + + error = xfs_check_agi_freecount(cur); + if (error) + goto error0; + + *orec = rec; + xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); + return 0; + +error0: + xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); + return error; +} + +/* + * Free an inode in the free inode btree. + */ +STATIC int +xfs_difree_finobt( + struct xfs_mount *mp, + struct xfs_trans *tp, + struct xfs_buf *agbp, + struct xfs_perag *pag, + xfs_agino_t agino, + struct xfs_inobt_rec_incore *ibtrec) /* inobt record */ +{ + struct xfs_btree_cur *cur; + struct xfs_inobt_rec_incore rec; + int offset = agino - ibtrec->ir_startino; + int error; + int i; + + cur = xfs_inobt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_FINO); + + error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i); + if (error) + goto error; + if (i == 0) { + /* + * If the record does not exist in the finobt, we must have just + * freed an inode in a previously fully allocated chunk. If not, + * something is out of sync. + */ + if (XFS_IS_CORRUPT(mp, ibtrec->ir_freecount != 1)) { + error = -EFSCORRUPTED; + goto error; + } + + error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask, + ibtrec->ir_count, + ibtrec->ir_freecount, + ibtrec->ir_free, &i); + if (error) + goto error; + ASSERT(i == 1); + + goto out; + } + + /* + * Read and update the existing record. We could just copy the ibtrec + * across here, but that would defeat the purpose of having redundant + * metadata. By making the modifications independently, we can catch + * corruptions that we wouldn't see if we just copied from one record + * to another. + */ + error = xfs_inobt_get_rec(cur, &rec, &i); + if (error) + goto error; + if (XFS_IS_CORRUPT(mp, i != 1)) { + error = -EFSCORRUPTED; + goto error; + } + + rec.ir_free |= XFS_INOBT_MASK(offset); + rec.ir_freecount++; + + if (XFS_IS_CORRUPT(mp, + rec.ir_free != ibtrec->ir_free || + rec.ir_freecount != ibtrec->ir_freecount)) { + error = -EFSCORRUPTED; + goto error; + } + + /* + * The content of inobt records should always match between the inobt + * and finobt. The lifecycle of records in the finobt is different from + * the inobt in that the finobt only tracks records with at least one + * free inode. Hence, if all of the inodes are free and we aren't + * keeping inode chunks permanently on disk, remove the record. + * Otherwise, update the record with the new information. + * + * Note that we currently can't free chunks when the block size is large + * enough for multiple chunks. Leave the finobt record to remain in sync + * with the inobt. + */ + if (!xfs_has_ikeep(mp) && rec.ir_free == XFS_INOBT_ALL_FREE && + mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) { + error = xfs_btree_delete(cur, &i); + if (error) + goto error; + ASSERT(i == 1); + } else { + error = xfs_inobt_update(cur, &rec); + if (error) + goto error; + } + +out: + error = xfs_check_agi_freecount(cur); + if (error) + goto error; + + xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); + return 0; + +error: + xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); + return error; +} + +/* + * Free disk inode. Carefully avoids touching the incore inode, all + * manipulations incore are the caller's responsibility. + * The on-disk inode is not changed by this operation, only the + * btree (free inode mask) is changed. + */ +int +xfs_difree( + struct xfs_trans *tp, + struct xfs_perag *pag, + xfs_ino_t inode, + struct xfs_icluster *xic) +{ + /* REFERENCED */ + xfs_agblock_t agbno; /* block number containing inode */ + struct xfs_buf *agbp; /* buffer for allocation group header */ + xfs_agino_t agino; /* allocation group inode number */ + int error; /* error return value */ + struct xfs_mount *mp = tp->t_mountp; + struct xfs_inobt_rec_incore rec;/* btree record */ + + /* + * Break up inode number into its components. + */ + if (pag->pag_agno != XFS_INO_TO_AGNO(mp, inode)) { + xfs_warn(mp, "%s: agno != pag->pag_agno (%d != %d).", + __func__, XFS_INO_TO_AGNO(mp, inode), pag->pag_agno); + ASSERT(0); + return -EINVAL; + } + agino = XFS_INO_TO_AGINO(mp, inode); + if (inode != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) { + xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).", + __func__, (unsigned long long)inode, + (unsigned long long)XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)); + ASSERT(0); + return -EINVAL; + } + agbno = XFS_AGINO_TO_AGBNO(mp, agino); + if (agbno >= mp->m_sb.sb_agblocks) { + xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).", + __func__, agbno, mp->m_sb.sb_agblocks); + ASSERT(0); + return -EINVAL; + } + /* + * Get the allocation group header. + */ + error = xfs_ialloc_read_agi(pag, tp, &agbp); + if (error) { + xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.", + __func__, error); + return error; + } + + /* + * Fix up the inode allocation btree. + */ + error = xfs_difree_inobt(mp, tp, agbp, pag, agino, xic, &rec); + if (error) + goto error0; + + /* + * Fix up the free inode btree. + */ + if (xfs_has_finobt(mp)) { + error = xfs_difree_finobt(mp, tp, agbp, pag, agino, &rec); + if (error) + goto error0; + } + + return 0; + +error0: + return error; +} + +STATIC int +xfs_imap_lookup( + struct xfs_mount *mp, + struct xfs_trans *tp, + struct xfs_perag *pag, + xfs_agino_t agino, + xfs_agblock_t agbno, + xfs_agblock_t *chunk_agbno, + xfs_agblock_t *offset_agbno, + int flags) +{ + struct xfs_inobt_rec_incore rec; + struct xfs_btree_cur *cur; + struct xfs_buf *agbp; + int error; + int i; + + error = xfs_ialloc_read_agi(pag, tp, &agbp); + if (error) { + xfs_alert(mp, + "%s: xfs_ialloc_read_agi() returned error %d, agno %d", + __func__, error, pag->pag_agno); + return error; + } + + /* + * Lookup the inode record for the given agino. If the record cannot be + * found, then it's an invalid inode number and we should abort. Once + * we have a record, we need to ensure it contains the inode number + * we are looking up. + */ + cur = xfs_inobt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_INO); + error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i); + if (!error) { + if (i) + error = xfs_inobt_get_rec(cur, &rec, &i); + if (!error && i == 0) + error = -EINVAL; + } + + xfs_trans_brelse(tp, agbp); + xfs_btree_del_cursor(cur, error); + if (error) + return error; + + /* check that the returned record contains the required inode */ + if (rec.ir_startino > agino || + rec.ir_startino + M_IGEO(mp)->ialloc_inos <= agino) + return -EINVAL; + + /* for untrusted inodes check it is allocated first */ + if ((flags & XFS_IGET_UNTRUSTED) && + (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino))) + return -EINVAL; + + *chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino); + *offset_agbno = agbno - *chunk_agbno; + return 0; +} + +/* + * Return the location of the inode in imap, for mapping it into a buffer. + */ +int +xfs_imap( + struct xfs_mount *mp, /* file system mount structure */ + struct xfs_trans *tp, /* transaction pointer */ + xfs_ino_t ino, /* inode to locate */ + struct xfs_imap *imap, /* location map structure */ + uint flags) /* flags for inode btree lookup */ +{ + xfs_agblock_t agbno; /* block number of inode in the alloc group */ + xfs_agino_t agino; /* inode number within alloc group */ + xfs_agblock_t chunk_agbno; /* first block in inode chunk */ + xfs_agblock_t cluster_agbno; /* first block in inode cluster */ + int error; /* error code */ + int offset; /* index of inode in its buffer */ + xfs_agblock_t offset_agbno; /* blks from chunk start to inode */ + struct xfs_perag *pag; + + ASSERT(ino != NULLFSINO); + + /* + * Split up the inode number into its parts. + */ + pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino)); + agino = XFS_INO_TO_AGINO(mp, ino); + agbno = XFS_AGINO_TO_AGBNO(mp, agino); + if (!pag || agbno >= mp->m_sb.sb_agblocks || + ino != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) { + error = -EINVAL; +#ifdef DEBUG + /* + * Don't output diagnostic information for untrusted inodes + * as they can be invalid without implying corruption. + */ + if (flags & XFS_IGET_UNTRUSTED) + goto out_drop; + if (!pag) { + xfs_alert(mp, + "%s: agno (%d) >= mp->m_sb.sb_agcount (%d)", + __func__, XFS_INO_TO_AGNO(mp, ino), + mp->m_sb.sb_agcount); + } + if (agbno >= mp->m_sb.sb_agblocks) { + xfs_alert(mp, + "%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)", + __func__, (unsigned long long)agbno, + (unsigned long)mp->m_sb.sb_agblocks); + } + if (pag && ino != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) { + xfs_alert(mp, + "%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)", + __func__, ino, + XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)); + } + xfs_stack_trace(); +#endif /* DEBUG */ + goto out_drop; + } + + /* + * For bulkstat and handle lookups, we have an untrusted inode number + * that we have to verify is valid. We cannot do this just by reading + * the inode buffer as it may have been unlinked and removed leaving + * inodes in stale state on disk. Hence we have to do a btree lookup + * in all cases where an untrusted inode number is passed. + */ + if (flags & XFS_IGET_UNTRUSTED) { + error = xfs_imap_lookup(mp, tp, pag, agino, agbno, + &chunk_agbno, &offset_agbno, flags); + if (error) + goto out_drop; + goto out_map; + } + + /* + * If the inode cluster size is the same as the blocksize or + * smaller we get to the buffer by simple arithmetics. + */ + if (M_IGEO(mp)->blocks_per_cluster == 1) { + offset = XFS_INO_TO_OFFSET(mp, ino); + ASSERT(offset < mp->m_sb.sb_inopblock); + + imap->im_blkno = XFS_AGB_TO_DADDR(mp, pag->pag_agno, agbno); + imap->im_len = XFS_FSB_TO_BB(mp, 1); + imap->im_boffset = (unsigned short)(offset << + mp->m_sb.sb_inodelog); + error = 0; + goto out_drop; + } + + /* + * If the inode chunks are aligned then use simple maths to + * find the location. Otherwise we have to do a btree + * lookup to find the location. + */ + if (M_IGEO(mp)->inoalign_mask) { + offset_agbno = agbno & M_IGEO(mp)->inoalign_mask; + chunk_agbno = agbno - offset_agbno; + } else { + error = xfs_imap_lookup(mp, tp, pag, agino, agbno, + &chunk_agbno, &offset_agbno, flags); + if (error) + goto out_drop; + } + +out_map: + ASSERT(agbno >= chunk_agbno); + cluster_agbno = chunk_agbno + + ((offset_agbno / M_IGEO(mp)->blocks_per_cluster) * + M_IGEO(mp)->blocks_per_cluster); + offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) + + XFS_INO_TO_OFFSET(mp, ino); + + imap->im_blkno = XFS_AGB_TO_DADDR(mp, pag->pag_agno, cluster_agbno); + imap->im_len = XFS_FSB_TO_BB(mp, M_IGEO(mp)->blocks_per_cluster); + imap->im_boffset = (unsigned short)(offset << mp->m_sb.sb_inodelog); + + /* + * If the inode number maps to a block outside the bounds + * of the file system then return NULL rather than calling + * read_buf and panicing when we get an error from the + * driver. + */ + if ((imap->im_blkno + imap->im_len) > + XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) { + xfs_alert(mp, + "%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)", + __func__, (unsigned long long) imap->im_blkno, + (unsigned long long) imap->im_len, + XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)); + error = -EINVAL; + goto out_drop; + } + error = 0; +out_drop: + if (pag) + xfs_perag_put(pag); + return error; +} + +/* + * Log specified fields for the ag hdr (inode section). The growth of the agi + * structure over time requires that we interpret the buffer as two logical + * regions delineated by the end of the unlinked list. This is due to the size + * of the hash table and its location in the middle of the agi. + * + * For example, a request to log a field before agi_unlinked and a field after + * agi_unlinked could cause us to log the entire hash table and use an excessive + * amount of log space. To avoid this behavior, log the region up through + * agi_unlinked in one call and the region after agi_unlinked through the end of + * the structure in another. + */ +void +xfs_ialloc_log_agi( + struct xfs_trans *tp, + struct xfs_buf *bp, + uint32_t fields) +{ + int first; /* first byte number */ + int last; /* last byte number */ + static const short offsets[] = { /* field starting offsets */ + /* keep in sync with bit definitions */ + offsetof(xfs_agi_t, agi_magicnum), + offsetof(xfs_agi_t, agi_versionnum), + offsetof(xfs_agi_t, agi_seqno), + offsetof(xfs_agi_t, agi_length), + offsetof(xfs_agi_t, agi_count), + offsetof(xfs_agi_t, agi_root), + offsetof(xfs_agi_t, agi_level), + offsetof(xfs_agi_t, agi_freecount), + offsetof(xfs_agi_t, agi_newino), + offsetof(xfs_agi_t, agi_dirino), + offsetof(xfs_agi_t, agi_unlinked), + offsetof(xfs_agi_t, agi_free_root), + offsetof(xfs_agi_t, agi_free_level), + offsetof(xfs_agi_t, agi_iblocks), + sizeof(xfs_agi_t) + }; +#ifdef DEBUG + struct xfs_agi *agi = bp->b_addr; + + ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC)); +#endif + + /* + * Compute byte offsets for the first and last fields in the first + * region and log the agi buffer. This only logs up through + * agi_unlinked. + */ + if (fields & XFS_AGI_ALL_BITS_R1) { + xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1, + &first, &last); + xfs_trans_log_buf(tp, bp, first, last); + } + + /* + * Mask off the bits in the first region and calculate the first and + * last field offsets for any bits in the second region. + */ + fields &= ~XFS_AGI_ALL_BITS_R1; + if (fields) { + xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2, + &first, &last); + xfs_trans_log_buf(tp, bp, first, last); + } +} + +static xfs_failaddr_t +xfs_agi_verify( + struct xfs_buf *bp) +{ + struct xfs_mount *mp = bp->b_mount; + struct xfs_agi *agi = bp->b_addr; + int i; + + if (xfs_has_crc(mp)) { + if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid)) + return __this_address; + if (!xfs_log_check_lsn(mp, be64_to_cpu(agi->agi_lsn))) + return __this_address; + } + + /* + * Validate the magic number of the agi block. + */ + if (!xfs_verify_magic(bp, agi->agi_magicnum)) + return __this_address; + if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum))) + return __this_address; + + if (be32_to_cpu(agi->agi_level) < 1 || + be32_to_cpu(agi->agi_level) > M_IGEO(mp)->inobt_maxlevels) + return __this_address; + + if (xfs_has_finobt(mp) && + (be32_to_cpu(agi->agi_free_level) < 1 || + be32_to_cpu(agi->agi_free_level) > M_IGEO(mp)->inobt_maxlevels)) + return __this_address; + + /* + * during growfs operations, the perag is not fully initialised, + * so we can't use it for any useful checking. growfs ensures we can't + * use it by using uncached buffers that don't have the perag attached + * so we can detect and avoid this problem. + */ + if (bp->b_pag && be32_to_cpu(agi->agi_seqno) != bp->b_pag->pag_agno) + return __this_address; + + for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++) { + if (agi->agi_unlinked[i] == cpu_to_be32(NULLAGINO)) + continue; + if (!xfs_verify_ino(mp, be32_to_cpu(agi->agi_unlinked[i]))) + return __this_address; + } + + return NULL; +} + +static void +xfs_agi_read_verify( + struct xfs_buf *bp) +{ + struct xfs_mount *mp = bp->b_mount; + xfs_failaddr_t fa; + + if (xfs_has_crc(mp) && + !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF)) + xfs_verifier_error(bp, -EFSBADCRC, __this_address); + else { + fa = xfs_agi_verify(bp); + if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_IALLOC_READ_AGI)) + xfs_verifier_error(bp, -EFSCORRUPTED, fa); + } +} + +static void +xfs_agi_write_verify( + struct xfs_buf *bp) +{ + struct xfs_mount *mp = bp->b_mount; + struct xfs_buf_log_item *bip = bp->b_log_item; + struct xfs_agi *agi = bp->b_addr; + xfs_failaddr_t fa; + + fa = xfs_agi_verify(bp); + if (fa) { + xfs_verifier_error(bp, -EFSCORRUPTED, fa); + return; + } + + if (!xfs_has_crc(mp)) + return; + + if (bip) + agi->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn); + xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF); +} + +const struct xfs_buf_ops xfs_agi_buf_ops = { + .name = "xfs_agi", + .magic = { cpu_to_be32(XFS_AGI_MAGIC), cpu_to_be32(XFS_AGI_MAGIC) }, + .verify_read = xfs_agi_read_verify, + .verify_write = xfs_agi_write_verify, + .verify_struct = xfs_agi_verify, +}; + +/* + * Read in the allocation group header (inode allocation section) + */ +int +xfs_read_agi( + struct xfs_perag *pag, + struct xfs_trans *tp, + struct xfs_buf **agibpp) +{ + struct xfs_mount *mp = pag->pag_mount; + int error; + + trace_xfs_read_agi(pag->pag_mount, pag->pag_agno); + + error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, + XFS_AG_DADDR(mp, pag->pag_agno, XFS_AGI_DADDR(mp)), + XFS_FSS_TO_BB(mp, 1), 0, agibpp, &xfs_agi_buf_ops); + if (error) + return error; + if (tp) + xfs_trans_buf_set_type(tp, *agibpp, XFS_BLFT_AGI_BUF); + + xfs_buf_set_ref(*agibpp, XFS_AGI_REF); + return 0; +} + +/* + * Read in the agi and initialise the per-ag data. If the caller supplies a + * @agibpp, return the locked AGI buffer to them, otherwise release it. + */ +int +xfs_ialloc_read_agi( + struct xfs_perag *pag, + struct xfs_trans *tp, + struct xfs_buf **agibpp) +{ + struct xfs_buf *agibp; + struct xfs_agi *agi; + int error; + + trace_xfs_ialloc_read_agi(pag->pag_mount, pag->pag_agno); + + error = xfs_read_agi(pag, tp, &agibp); + if (error) + return error; + + agi = agibp->b_addr; + if (!pag->pagi_init) { + pag->pagi_freecount = be32_to_cpu(agi->agi_freecount); + pag->pagi_count = be32_to_cpu(agi->agi_count); + pag->pagi_init = 1; + } + + /* + * It's possible for these to be out of sync if + * we are in the middle of a forced shutdown. + */ + ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) || + xfs_is_shutdown(pag->pag_mount)); + if (agibpp) + *agibpp = agibp; + else + xfs_trans_brelse(tp, agibp); + return 0; +} + +/* Is there an inode record covering a given range of inode numbers? */ +int +xfs_ialloc_has_inode_record( + struct xfs_btree_cur *cur, + xfs_agino_t low, + xfs_agino_t high, + bool *exists) +{ + struct xfs_inobt_rec_incore irec; + xfs_agino_t agino; + uint16_t holemask; + int has_record; + int i; + int error; + + *exists = false; + error = xfs_inobt_lookup(cur, low, XFS_LOOKUP_LE, &has_record); + while (error == 0 && has_record) { + error = xfs_inobt_get_rec(cur, &irec, &has_record); + if (error || irec.ir_startino > high) + break; + + agino = irec.ir_startino; + holemask = irec.ir_holemask; + for (i = 0; i < XFS_INOBT_HOLEMASK_BITS; holemask >>= 1, + i++, agino += XFS_INODES_PER_HOLEMASK_BIT) { + if (holemask & 1) + continue; + if (agino + XFS_INODES_PER_HOLEMASK_BIT > low && + agino <= high) { + *exists = true; + return 0; + } + } + + error = xfs_btree_increment(cur, 0, &has_record); + } + return error; +} + +/* Is there an inode record covering a given extent? */ +int +xfs_ialloc_has_inodes_at_extent( + struct xfs_btree_cur *cur, + xfs_agblock_t bno, + xfs_extlen_t len, + bool *exists) +{ + xfs_agino_t low; + xfs_agino_t high; + + low = XFS_AGB_TO_AGINO(cur->bc_mp, bno); + high = XFS_AGB_TO_AGINO(cur->bc_mp, bno + len) - 1; + + return xfs_ialloc_has_inode_record(cur, low, high, exists); +} + +struct xfs_ialloc_count_inodes { + xfs_agino_t count; + xfs_agino_t freecount; +}; + +/* Record inode counts across all inobt records. */ +STATIC int +xfs_ialloc_count_inodes_rec( + struct xfs_btree_cur *cur, + const union xfs_btree_rec *rec, + void *priv) +{ + struct xfs_inobt_rec_incore irec; + struct xfs_ialloc_count_inodes *ci = priv; + + xfs_inobt_btrec_to_irec(cur->bc_mp, rec, &irec); + ci->count += irec.ir_count; + ci->freecount += irec.ir_freecount; + + return 0; +} + +/* Count allocated and free inodes under an inobt. */ +int +xfs_ialloc_count_inodes( + struct xfs_btree_cur *cur, + xfs_agino_t *count, + xfs_agino_t *freecount) +{ + struct xfs_ialloc_count_inodes ci = {0}; + int error; + + ASSERT(cur->bc_btnum == XFS_BTNUM_INO); + error = xfs_btree_query_all(cur, xfs_ialloc_count_inodes_rec, &ci); + if (error) + return error; + + *count = ci.count; + *freecount = ci.freecount; + return 0; +} + +/* + * Initialize inode-related geometry information. + * + * Compute the inode btree min and max levels and set maxicount. + * + * Set the inode cluster size. This may still be overridden by the file + * system block size if it is larger than the chosen cluster size. + * + * For v5 filesystems, scale the cluster size with the inode size to keep a + * constant ratio of inode per cluster buffer, but only if mkfs has set the + * inode alignment value appropriately for larger cluster sizes. + * + * Then compute the inode cluster alignment information. + */ +void +xfs_ialloc_setup_geometry( + struct xfs_mount *mp) +{ + struct xfs_sb *sbp = &mp->m_sb; + struct xfs_ino_geometry *igeo = M_IGEO(mp); + uint64_t icount; + uint inodes; + + igeo->new_diflags2 = 0; + if (xfs_has_bigtime(mp)) + igeo->new_diflags2 |= XFS_DIFLAG2_BIGTIME; + if (xfs_has_large_extent_counts(mp)) + igeo->new_diflags2 |= XFS_DIFLAG2_NREXT64; + + /* Compute inode btree geometry. */ + igeo->agino_log = sbp->sb_inopblog + sbp->sb_agblklog; + igeo->inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1); + igeo->inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0); + igeo->inobt_mnr[0] = igeo->inobt_mxr[0] / 2; + igeo->inobt_mnr[1] = igeo->inobt_mxr[1] / 2; + + igeo->ialloc_inos = max_t(uint16_t, XFS_INODES_PER_CHUNK, + sbp->sb_inopblock); + igeo->ialloc_blks = igeo->ialloc_inos >> sbp->sb_inopblog; + + if (sbp->sb_spino_align) + igeo->ialloc_min_blks = sbp->sb_spino_align; + else + igeo->ialloc_min_blks = igeo->ialloc_blks; + + /* Compute and fill in value of m_ino_geo.inobt_maxlevels. */ + inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG; + igeo->inobt_maxlevels = xfs_btree_compute_maxlevels(igeo->inobt_mnr, + inodes); + ASSERT(igeo->inobt_maxlevels <= xfs_iallocbt_maxlevels_ondisk()); + + /* + * Set the maximum inode count for this filesystem, being careful not + * to use obviously garbage sb_inopblog/sb_inopblock values. Regular + * users should never get here due to failing sb verification, but + * certain users (xfs_db) need to be usable even with corrupt metadata. + */ + if (sbp->sb_imax_pct && igeo->ialloc_blks) { + /* + * Make sure the maximum inode count is a multiple + * of the units we allocate inodes in. + */ + icount = sbp->sb_dblocks * sbp->sb_imax_pct; + do_div(icount, 100); + do_div(icount, igeo->ialloc_blks); + igeo->maxicount = XFS_FSB_TO_INO(mp, + icount * igeo->ialloc_blks); + } else { + igeo->maxicount = 0; + } + + /* + * Compute the desired size of an inode cluster buffer size, which + * starts at 8K and (on v5 filesystems) scales up with larger inode + * sizes. + * + * Preserve the desired inode cluster size because the sparse inodes + * feature uses that desired size (not the actual size) to compute the + * sparse inode alignment. The mount code validates this value, so we + * cannot change the behavior. + */ + igeo->inode_cluster_size_raw = XFS_INODE_BIG_CLUSTER_SIZE; + if (xfs_has_v3inodes(mp)) { + int new_size = igeo->inode_cluster_size_raw; + + new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE; + if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size)) + igeo->inode_cluster_size_raw = new_size; + } + + /* Calculate inode cluster ratios. */ + if (igeo->inode_cluster_size_raw > mp->m_sb.sb_blocksize) + igeo->blocks_per_cluster = XFS_B_TO_FSBT(mp, + igeo->inode_cluster_size_raw); + else + igeo->blocks_per_cluster = 1; + igeo->inode_cluster_size = XFS_FSB_TO_B(mp, igeo->blocks_per_cluster); + igeo->inodes_per_cluster = XFS_FSB_TO_INO(mp, igeo->blocks_per_cluster); + + /* Calculate inode cluster alignment. */ + if (xfs_has_align(mp) && + mp->m_sb.sb_inoalignmt >= igeo->blocks_per_cluster) + igeo->cluster_align = mp->m_sb.sb_inoalignmt; + else + igeo->cluster_align = 1; + igeo->inoalign_mask = igeo->cluster_align - 1; + igeo->cluster_align_inodes = XFS_FSB_TO_INO(mp, igeo->cluster_align); + + /* + * If we are using stripe alignment, check whether + * the stripe unit is a multiple of the inode alignment + */ + if (mp->m_dalign && igeo->inoalign_mask && + !(mp->m_dalign & igeo->inoalign_mask)) + igeo->ialloc_align = mp->m_dalign; + else + igeo->ialloc_align = 0; +} + +/* Compute the location of the root directory inode that is laid out by mkfs. */ +xfs_ino_t +xfs_ialloc_calc_rootino( + struct xfs_mount *mp, + int sunit) +{ + struct xfs_ino_geometry *igeo = M_IGEO(mp); + xfs_agblock_t first_bno; + + /* + * Pre-calculate the geometry of AG 0. We know what it looks like + * because libxfs knows how to create allocation groups now. + * + * first_bno is the first block in which mkfs could possibly have + * allocated the root directory inode, once we factor in the metadata + * that mkfs formats before it. Namely, the four AG headers... + */ + first_bno = howmany(4 * mp->m_sb.sb_sectsize, mp->m_sb.sb_blocksize); + + /* ...the two free space btree roots... */ + first_bno += 2; + + /* ...the inode btree root... */ + first_bno += 1; + + /* ...the initial AGFL... */ + first_bno += xfs_alloc_min_freelist(mp, NULL); + + /* ...the free inode btree root... */ + if (xfs_has_finobt(mp)) + first_bno++; + + /* ...the reverse mapping btree root... */ + if (xfs_has_rmapbt(mp)) + first_bno++; + + /* ...the reference count btree... */ + if (xfs_has_reflink(mp)) + first_bno++; + + /* + * ...and the log, if it is allocated in the first allocation group. + * + * This can happen with filesystems that only have a single + * allocation group, or very odd geometries created by old mkfs + * versions on very small filesystems. + */ + if (xfs_ag_contains_log(mp, 0)) + first_bno += mp->m_sb.sb_logblocks; + + /* + * Now round first_bno up to whatever allocation alignment is given + * by the filesystem or was passed in. + */ + if (xfs_has_dalign(mp) && igeo->ialloc_align > 0) + first_bno = roundup(first_bno, sunit); + else if (xfs_has_align(mp) && + mp->m_sb.sb_inoalignmt > 1) + first_bno = roundup(first_bno, mp->m_sb.sb_inoalignmt); + + return XFS_AGINO_TO_INO(mp, 0, XFS_AGB_TO_AGINO(mp, first_bno)); +} + +/* + * Ensure there are not sparse inode clusters that cross the new EOAG. + * + * This is a no-op for non-spinode filesystems since clusters are always fully + * allocated and checking the bnobt suffices. However, a spinode filesystem + * could have a record where the upper inodes are free blocks. If those blocks + * were removed from the filesystem, the inode record would extend beyond EOAG, + * which will be flagged as corruption. + */ +int +xfs_ialloc_check_shrink( + struct xfs_trans *tp, + xfs_agnumber_t agno, + struct xfs_buf *agibp, + xfs_agblock_t new_length) +{ + struct xfs_inobt_rec_incore rec; + struct xfs_btree_cur *cur; + struct xfs_mount *mp = tp->t_mountp; + struct xfs_perag *pag; + xfs_agino_t agino = XFS_AGB_TO_AGINO(mp, new_length); + int has; + int error; + + if (!xfs_has_sparseinodes(mp)) + return 0; + + pag = xfs_perag_get(mp, agno); + cur = xfs_inobt_init_cursor(mp, tp, agibp, pag, XFS_BTNUM_INO); + + /* Look up the inobt record that would correspond to the new EOFS. */ + error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &has); + if (error || !has) + goto out; + + error = xfs_inobt_get_rec(cur, &rec, &has); + if (error) + goto out; + + if (!has) { + error = -EFSCORRUPTED; + goto out; + } + + /* If the record covers inodes that would be beyond EOFS, bail out. */ + if (rec.ir_startino + XFS_INODES_PER_CHUNK > agino) { + error = -ENOSPC; + goto out; + } +out: + xfs_btree_del_cursor(cur, error); + xfs_perag_put(pag); + return error; +} |