diff options
Diffstat (limited to 'include/math-emu/op-4.h')
-rw-r--r-- | include/math-emu/op-4.h | 692 |
1 files changed, 692 insertions, 0 deletions
diff --git a/include/math-emu/op-4.h b/include/math-emu/op-4.h new file mode 100644 index 000000000..ba226f823 --- /dev/null +++ b/include/math-emu/op-4.h @@ -0,0 +1,692 @@ +/* Software floating-point emulation. + Basic four-word fraction declaration and manipulation. + Copyright (C) 1997,1998,1999 Free Software Foundation, Inc. + This file is part of the GNU C Library. + Contributed by Richard Henderson (rth@cygnus.com), + Jakub Jelinek (jj@ultra.linux.cz), + David S. Miller (davem@redhat.com) and + Peter Maydell (pmaydell@chiark.greenend.org.uk). + + The GNU C Library is free software; you can redistribute it and/or + modify it under the terms of the GNU Library General Public License as + published by the Free Software Foundation; either version 2 of the + License, or (at your option) any later version. + + The GNU C Library is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + Library General Public License for more details. + + You should have received a copy of the GNU Library General Public + License along with the GNU C Library; see the file COPYING.LIB. If + not, write to the Free Software Foundation, Inc., + 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ + +#ifndef __MATH_EMU_OP_4_H__ +#define __MATH_EMU_OP_4_H__ + +#define _FP_FRAC_DECL_4(X) _FP_W_TYPE X##_f[4] +#define _FP_FRAC_COPY_4(D,S) \ + (D##_f[0] = S##_f[0], D##_f[1] = S##_f[1], \ + D##_f[2] = S##_f[2], D##_f[3] = S##_f[3]) +#define _FP_FRAC_SET_4(X,I) __FP_FRAC_SET_4(X, I) +#define _FP_FRAC_HIGH_4(X) (X##_f[3]) +#define _FP_FRAC_LOW_4(X) (X##_f[0]) +#define _FP_FRAC_WORD_4(X,w) (X##_f[w]) + +#define _FP_FRAC_SLL_4(X,N) \ + do { \ + _FP_I_TYPE _up, _down, _skip, _i; \ + _skip = (N) / _FP_W_TYPE_SIZE; \ + _up = (N) % _FP_W_TYPE_SIZE; \ + _down = _FP_W_TYPE_SIZE - _up; \ + if (!_up) \ + for (_i = 3; _i >= _skip; --_i) \ + X##_f[_i] = X##_f[_i-_skip]; \ + else \ + { \ + for (_i = 3; _i > _skip; --_i) \ + X##_f[_i] = X##_f[_i-_skip] << _up \ + | X##_f[_i-_skip-1] >> _down; \ + X##_f[_i--] = X##_f[0] << _up; \ + } \ + for (; _i >= 0; --_i) \ + X##_f[_i] = 0; \ + } while (0) + +/* This one was broken too */ +#define _FP_FRAC_SRL_4(X,N) \ + do { \ + _FP_I_TYPE _up, _down, _skip, _i; \ + _skip = (N) / _FP_W_TYPE_SIZE; \ + _down = (N) % _FP_W_TYPE_SIZE; \ + _up = _FP_W_TYPE_SIZE - _down; \ + if (!_down) \ + for (_i = 0; _i <= 3-_skip; ++_i) \ + X##_f[_i] = X##_f[_i+_skip]; \ + else \ + { \ + for (_i = 0; _i < 3-_skip; ++_i) \ + X##_f[_i] = X##_f[_i+_skip] >> _down \ + | X##_f[_i+_skip+1] << _up; \ + X##_f[_i++] = X##_f[3] >> _down; \ + } \ + for (; _i < 4; ++_i) \ + X##_f[_i] = 0; \ + } while (0) + + +/* Right shift with sticky-lsb. + * What this actually means is that we do a standard right-shift, + * but that if any of the bits that fall off the right hand side + * were one then we always set the LSbit. + */ +#define _FP_FRAC_SRS_4(X,N,size) \ + do { \ + _FP_I_TYPE _up, _down, _skip, _i; \ + _FP_W_TYPE _s; \ + _skip = (N) / _FP_W_TYPE_SIZE; \ + _down = (N) % _FP_W_TYPE_SIZE; \ + _up = _FP_W_TYPE_SIZE - _down; \ + for (_s = _i = 0; _i < _skip; ++_i) \ + _s |= X##_f[_i]; \ + _s |= X##_f[_i] << _up; \ +/* s is now != 0 if we want to set the LSbit */ \ + if (!_down) \ + for (_i = 0; _i <= 3-_skip; ++_i) \ + X##_f[_i] = X##_f[_i+_skip]; \ + else \ + { \ + for (_i = 0; _i < 3-_skip; ++_i) \ + X##_f[_i] = X##_f[_i+_skip] >> _down \ + | X##_f[_i+_skip+1] << _up; \ + X##_f[_i++] = X##_f[3] >> _down; \ + } \ + for (; _i < 4; ++_i) \ + X##_f[_i] = 0; \ + /* don't fix the LSB until the very end when we're sure f[0] is stable */ \ + X##_f[0] |= (_s != 0); \ + } while (0) + +#define _FP_FRAC_ADD_4(R,X,Y) \ + __FP_FRAC_ADD_4(R##_f[3], R##_f[2], R##_f[1], R##_f[0], \ + X##_f[3], X##_f[2], X##_f[1], X##_f[0], \ + Y##_f[3], Y##_f[2], Y##_f[1], Y##_f[0]) + +#define _FP_FRAC_SUB_4(R,X,Y) \ + __FP_FRAC_SUB_4(R##_f[3], R##_f[2], R##_f[1], R##_f[0], \ + X##_f[3], X##_f[2], X##_f[1], X##_f[0], \ + Y##_f[3], Y##_f[2], Y##_f[1], Y##_f[0]) + +#define _FP_FRAC_DEC_4(X,Y) \ + __FP_FRAC_DEC_4(X##_f[3], X##_f[2], X##_f[1], X##_f[0], \ + Y##_f[3], Y##_f[2], Y##_f[1], Y##_f[0]) + +#define _FP_FRAC_ADDI_4(X,I) \ + __FP_FRAC_ADDI_4(X##_f[3], X##_f[2], X##_f[1], X##_f[0], I) + +#define _FP_ZEROFRAC_4 0,0,0,0 +#define _FP_MINFRAC_4 0,0,0,1 +#define _FP_MAXFRAC_4 (~(_FP_WS_TYPE)0), (~(_FP_WS_TYPE)0), (~(_FP_WS_TYPE)0), (~(_FP_WS_TYPE)0) + +#define _FP_FRAC_ZEROP_4(X) ((X##_f[0] | X##_f[1] | X##_f[2] | X##_f[3]) == 0) +#define _FP_FRAC_NEGP_4(X) ((_FP_WS_TYPE)X##_f[3] < 0) +#define _FP_FRAC_OVERP_4(fs,X) (_FP_FRAC_HIGH_##fs(X) & _FP_OVERFLOW_##fs) +#define _FP_FRAC_CLEAR_OVERP_4(fs,X) (_FP_FRAC_HIGH_##fs(X) &= ~_FP_OVERFLOW_##fs) + +#define _FP_FRAC_EQ_4(X,Y) \ + (X##_f[0] == Y##_f[0] && X##_f[1] == Y##_f[1] \ + && X##_f[2] == Y##_f[2] && X##_f[3] == Y##_f[3]) + +#define _FP_FRAC_GT_4(X,Y) \ + (X##_f[3] > Y##_f[3] || \ + (X##_f[3] == Y##_f[3] && (X##_f[2] > Y##_f[2] || \ + (X##_f[2] == Y##_f[2] && (X##_f[1] > Y##_f[1] || \ + (X##_f[1] == Y##_f[1] && X##_f[0] > Y##_f[0]) \ + )) \ + )) \ + ) + +#define _FP_FRAC_GE_4(X,Y) \ + (X##_f[3] > Y##_f[3] || \ + (X##_f[3] == Y##_f[3] && (X##_f[2] > Y##_f[2] || \ + (X##_f[2] == Y##_f[2] && (X##_f[1] > Y##_f[1] || \ + (X##_f[1] == Y##_f[1] && X##_f[0] >= Y##_f[0]) \ + )) \ + )) \ + ) + + +#define _FP_FRAC_CLZ_4(R,X) \ + do { \ + if (X##_f[3]) \ + { \ + __FP_CLZ(R,X##_f[3]); \ + } \ + else if (X##_f[2]) \ + { \ + __FP_CLZ(R,X##_f[2]); \ + R += _FP_W_TYPE_SIZE; \ + } \ + else if (X##_f[1]) \ + { \ + __FP_CLZ(R,X##_f[2]); \ + R += _FP_W_TYPE_SIZE*2; \ + } \ + else \ + { \ + __FP_CLZ(R,X##_f[0]); \ + R += _FP_W_TYPE_SIZE*3; \ + } \ + } while(0) + + +#define _FP_UNPACK_RAW_4(fs, X, val) \ + do { \ + union _FP_UNION_##fs _flo; _flo.flt = (val); \ + X##_f[0] = _flo.bits.frac0; \ + X##_f[1] = _flo.bits.frac1; \ + X##_f[2] = _flo.bits.frac2; \ + X##_f[3] = _flo.bits.frac3; \ + X##_e = _flo.bits.exp; \ + X##_s = _flo.bits.sign; \ + } while (0) + +#define _FP_UNPACK_RAW_4_P(fs, X, val) \ + do { \ + union _FP_UNION_##fs *_flo = \ + (union _FP_UNION_##fs *)(val); \ + \ + X##_f[0] = _flo->bits.frac0; \ + X##_f[1] = _flo->bits.frac1; \ + X##_f[2] = _flo->bits.frac2; \ + X##_f[3] = _flo->bits.frac3; \ + X##_e = _flo->bits.exp; \ + X##_s = _flo->bits.sign; \ + } while (0) + +#define _FP_PACK_RAW_4(fs, val, X) \ + do { \ + union _FP_UNION_##fs _flo; \ + _flo.bits.frac0 = X##_f[0]; \ + _flo.bits.frac1 = X##_f[1]; \ + _flo.bits.frac2 = X##_f[2]; \ + _flo.bits.frac3 = X##_f[3]; \ + _flo.bits.exp = X##_e; \ + _flo.bits.sign = X##_s; \ + (val) = _flo.flt; \ + } while (0) + +#define _FP_PACK_RAW_4_P(fs, val, X) \ + do { \ + union _FP_UNION_##fs *_flo = \ + (union _FP_UNION_##fs *)(val); \ + \ + _flo->bits.frac0 = X##_f[0]; \ + _flo->bits.frac1 = X##_f[1]; \ + _flo->bits.frac2 = X##_f[2]; \ + _flo->bits.frac3 = X##_f[3]; \ + _flo->bits.exp = X##_e; \ + _flo->bits.sign = X##_s; \ + } while (0) + +/* + * Multiplication algorithms: + */ + +/* Given a 1W * 1W => 2W primitive, do the extended multiplication. */ + +#define _FP_MUL_MEAT_4_wide(wfracbits, R, X, Y, doit) \ + do { \ + _FP_FRAC_DECL_8(_z); _FP_FRAC_DECL_2(_b); _FP_FRAC_DECL_2(_c); \ + _FP_FRAC_DECL_2(_d); _FP_FRAC_DECL_2(_e); _FP_FRAC_DECL_2(_f); \ + \ + doit(_FP_FRAC_WORD_8(_z,1), _FP_FRAC_WORD_8(_z,0), X##_f[0], Y##_f[0]); \ + doit(_b_f1, _b_f0, X##_f[0], Y##_f[1]); \ + doit(_c_f1, _c_f0, X##_f[1], Y##_f[0]); \ + doit(_d_f1, _d_f0, X##_f[1], Y##_f[1]); \ + doit(_e_f1, _e_f0, X##_f[0], Y##_f[2]); \ + doit(_f_f1, _f_f0, X##_f[2], Y##_f[0]); \ + __FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,3),_FP_FRAC_WORD_8(_z,2), \ + _FP_FRAC_WORD_8(_z,1), 0,_b_f1,_b_f0, \ + 0,0,_FP_FRAC_WORD_8(_z,1)); \ + __FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,3),_FP_FRAC_WORD_8(_z,2), \ + _FP_FRAC_WORD_8(_z,1), 0,_c_f1,_c_f0, \ + _FP_FRAC_WORD_8(_z,3),_FP_FRAC_WORD_8(_z,2), \ + _FP_FRAC_WORD_8(_z,1)); \ + __FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,4),_FP_FRAC_WORD_8(_z,3), \ + _FP_FRAC_WORD_8(_z,2), 0,_d_f1,_d_f0, \ + 0,_FP_FRAC_WORD_8(_z,3),_FP_FRAC_WORD_8(_z,2)); \ + __FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,4),_FP_FRAC_WORD_8(_z,3), \ + _FP_FRAC_WORD_8(_z,2), 0,_e_f1,_e_f0, \ + _FP_FRAC_WORD_8(_z,4),_FP_FRAC_WORD_8(_z,3), \ + _FP_FRAC_WORD_8(_z,2)); \ + __FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,4),_FP_FRAC_WORD_8(_z,3), \ + _FP_FRAC_WORD_8(_z,2), 0,_f_f1,_f_f0, \ + _FP_FRAC_WORD_8(_z,4),_FP_FRAC_WORD_8(_z,3), \ + _FP_FRAC_WORD_8(_z,2)); \ + doit(_b_f1, _b_f0, X##_f[0], Y##_f[3]); \ + doit(_c_f1, _c_f0, X##_f[3], Y##_f[0]); \ + doit(_d_f1, _d_f0, X##_f[1], Y##_f[2]); \ + doit(_e_f1, _e_f0, X##_f[2], Y##_f[1]); \ + __FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,5),_FP_FRAC_WORD_8(_z,4), \ + _FP_FRAC_WORD_8(_z,3), 0,_b_f1,_b_f0, \ + 0,_FP_FRAC_WORD_8(_z,4),_FP_FRAC_WORD_8(_z,3)); \ + __FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,5),_FP_FRAC_WORD_8(_z,4), \ + _FP_FRAC_WORD_8(_z,3), 0,_c_f1,_c_f0, \ + _FP_FRAC_WORD_8(_z,5),_FP_FRAC_WORD_8(_z,4), \ + _FP_FRAC_WORD_8(_z,3)); \ + __FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,5),_FP_FRAC_WORD_8(_z,4), \ + _FP_FRAC_WORD_8(_z,3), 0,_d_f1,_d_f0, \ + _FP_FRAC_WORD_8(_z,5),_FP_FRAC_WORD_8(_z,4), \ + _FP_FRAC_WORD_8(_z,3)); \ + __FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,5),_FP_FRAC_WORD_8(_z,4), \ + _FP_FRAC_WORD_8(_z,3), 0,_e_f1,_e_f0, \ + _FP_FRAC_WORD_8(_z,5),_FP_FRAC_WORD_8(_z,4), \ + _FP_FRAC_WORD_8(_z,3)); \ + doit(_b_f1, _b_f0, X##_f[2], Y##_f[2]); \ + doit(_c_f1, _c_f0, X##_f[1], Y##_f[3]); \ + doit(_d_f1, _d_f0, X##_f[3], Y##_f[1]); \ + doit(_e_f1, _e_f0, X##_f[2], Y##_f[3]); \ + doit(_f_f1, _f_f0, X##_f[3], Y##_f[2]); \ + __FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,6),_FP_FRAC_WORD_8(_z,5), \ + _FP_FRAC_WORD_8(_z,4), 0,_b_f1,_b_f0, \ + 0,_FP_FRAC_WORD_8(_z,5),_FP_FRAC_WORD_8(_z,4)); \ + __FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,6),_FP_FRAC_WORD_8(_z,5), \ + _FP_FRAC_WORD_8(_z,4), 0,_c_f1,_c_f0, \ + _FP_FRAC_WORD_8(_z,6),_FP_FRAC_WORD_8(_z,5), \ + _FP_FRAC_WORD_8(_z,4)); \ + __FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,6),_FP_FRAC_WORD_8(_z,5), \ + _FP_FRAC_WORD_8(_z,4), 0,_d_f1,_d_f0, \ + _FP_FRAC_WORD_8(_z,6),_FP_FRAC_WORD_8(_z,5), \ + _FP_FRAC_WORD_8(_z,4)); \ + __FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,7),_FP_FRAC_WORD_8(_z,6), \ + _FP_FRAC_WORD_8(_z,5), 0,_e_f1,_e_f0, \ + 0,_FP_FRAC_WORD_8(_z,6),_FP_FRAC_WORD_8(_z,5)); \ + __FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,7),_FP_FRAC_WORD_8(_z,6), \ + _FP_FRAC_WORD_8(_z,5), 0,_f_f1,_f_f0, \ + _FP_FRAC_WORD_8(_z,7),_FP_FRAC_WORD_8(_z,6), \ + _FP_FRAC_WORD_8(_z,5)); \ + doit(_b_f1, _b_f0, X##_f[3], Y##_f[3]); \ + __FP_FRAC_ADD_2(_FP_FRAC_WORD_8(_z,7),_FP_FRAC_WORD_8(_z,6), \ + _b_f1,_b_f0, \ + _FP_FRAC_WORD_8(_z,7),_FP_FRAC_WORD_8(_z,6)); \ + \ + /* Normalize since we know where the msb of the multiplicands \ + were (bit B), we know that the msb of the of the product is \ + at either 2B or 2B-1. */ \ + _FP_FRAC_SRS_8(_z, wfracbits-1, 2*wfracbits); \ + __FP_FRAC_SET_4(R, _FP_FRAC_WORD_8(_z,3), _FP_FRAC_WORD_8(_z,2), \ + _FP_FRAC_WORD_8(_z,1), _FP_FRAC_WORD_8(_z,0)); \ + } while (0) + +#define _FP_MUL_MEAT_4_gmp(wfracbits, R, X, Y) \ + do { \ + _FP_FRAC_DECL_8(_z); \ + \ + mpn_mul_n(_z_f, _x_f, _y_f, 4); \ + \ + /* Normalize since we know where the msb of the multiplicands \ + were (bit B), we know that the msb of the of the product is \ + at either 2B or 2B-1. */ \ + _FP_FRAC_SRS_8(_z, wfracbits-1, 2*wfracbits); \ + __FP_FRAC_SET_4(R, _FP_FRAC_WORD_8(_z,3), _FP_FRAC_WORD_8(_z,2), \ + _FP_FRAC_WORD_8(_z,1), _FP_FRAC_WORD_8(_z,0)); \ + } while (0) + +/* + * Helper utility for _FP_DIV_MEAT_4_udiv: + * pppp = m * nnn + */ +#define umul_ppppmnnn(p3,p2,p1,p0,m,n2,n1,n0) \ + do { \ + UWtype _t; \ + umul_ppmm(p1,p0,m,n0); \ + umul_ppmm(p2,_t,m,n1); \ + __FP_FRAC_ADDI_2(p2,p1,_t); \ + umul_ppmm(p3,_t,m,n2); \ + __FP_FRAC_ADDI_2(p3,p2,_t); \ + } while (0) + +/* + * Division algorithms: + */ + +#define _FP_DIV_MEAT_4_udiv(fs, R, X, Y) \ + do { \ + int _i; \ + _FP_FRAC_DECL_4(_n); _FP_FRAC_DECL_4(_m); \ + _FP_FRAC_SET_4(_n, _FP_ZEROFRAC_4); \ + if (_FP_FRAC_GT_4(X, Y)) \ + { \ + _n_f[3] = X##_f[0] << (_FP_W_TYPE_SIZE - 1); \ + _FP_FRAC_SRL_4(X, 1); \ + } \ + else \ + R##_e--; \ + \ + /* Normalize, i.e. make the most significant bit of the \ + denominator set. */ \ + _FP_FRAC_SLL_4(Y, _FP_WFRACXBITS_##fs); \ + \ + for (_i = 3; ; _i--) \ + { \ + if (X##_f[3] == Y##_f[3]) \ + { \ + /* This is a special case, not an optimization \ + (X##_f[3]/Y##_f[3] would not fit into UWtype). \ + As X## is guaranteed to be < Y, R##_f[_i] can be either \ + (UWtype)-1 or (UWtype)-2. */ \ + R##_f[_i] = -1; \ + if (!_i) \ + break; \ + __FP_FRAC_SUB_4(X##_f[3], X##_f[2], X##_f[1], X##_f[0], \ + Y##_f[2], Y##_f[1], Y##_f[0], 0, \ + X##_f[2], X##_f[1], X##_f[0], _n_f[_i]); \ + _FP_FRAC_SUB_4(X, Y, X); \ + if (X##_f[3] > Y##_f[3]) \ + { \ + R##_f[_i] = -2; \ + _FP_FRAC_ADD_4(X, Y, X); \ + } \ + } \ + else \ + { \ + udiv_qrnnd(R##_f[_i], X##_f[3], X##_f[3], X##_f[2], Y##_f[3]); \ + umul_ppppmnnn(_m_f[3], _m_f[2], _m_f[1], _m_f[0], \ + R##_f[_i], Y##_f[2], Y##_f[1], Y##_f[0]); \ + X##_f[2] = X##_f[1]; \ + X##_f[1] = X##_f[0]; \ + X##_f[0] = _n_f[_i]; \ + if (_FP_FRAC_GT_4(_m, X)) \ + { \ + R##_f[_i]--; \ + _FP_FRAC_ADD_4(X, Y, X); \ + if (_FP_FRAC_GE_4(X, Y) && _FP_FRAC_GT_4(_m, X)) \ + { \ + R##_f[_i]--; \ + _FP_FRAC_ADD_4(X, Y, X); \ + } \ + } \ + _FP_FRAC_DEC_4(X, _m); \ + if (!_i) \ + { \ + if (!_FP_FRAC_EQ_4(X, _m)) \ + R##_f[0] |= _FP_WORK_STICKY; \ + break; \ + } \ + } \ + } \ + } while (0) + + +/* + * Square root algorithms: + * We have just one right now, maybe Newton approximation + * should be added for those machines where division is fast. + */ + +#define _FP_SQRT_MEAT_4(R, S, T, X, q) \ + do { \ + while (q) \ + { \ + T##_f[3] = S##_f[3] + q; \ + if (T##_f[3] <= X##_f[3]) \ + { \ + S##_f[3] = T##_f[3] + q; \ + X##_f[3] -= T##_f[3]; \ + R##_f[3] += q; \ + } \ + _FP_FRAC_SLL_4(X, 1); \ + q >>= 1; \ + } \ + q = (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE - 1); \ + while (q) \ + { \ + T##_f[2] = S##_f[2] + q; \ + T##_f[3] = S##_f[3]; \ + if (T##_f[3] < X##_f[3] || \ + (T##_f[3] == X##_f[3] && T##_f[2] <= X##_f[2])) \ + { \ + S##_f[2] = T##_f[2] + q; \ + S##_f[3] += (T##_f[2] > S##_f[2]); \ + __FP_FRAC_DEC_2(X##_f[3], X##_f[2], \ + T##_f[3], T##_f[2]); \ + R##_f[2] += q; \ + } \ + _FP_FRAC_SLL_4(X, 1); \ + q >>= 1; \ + } \ + q = (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE - 1); \ + while (q) \ + { \ + T##_f[1] = S##_f[1] + q; \ + T##_f[2] = S##_f[2]; \ + T##_f[3] = S##_f[3]; \ + if (T##_f[3] < X##_f[3] || \ + (T##_f[3] == X##_f[3] && (T##_f[2] < X##_f[2] || \ + (T##_f[2] == X##_f[2] && T##_f[1] <= X##_f[1])))) \ + { \ + S##_f[1] = T##_f[1] + q; \ + S##_f[2] += (T##_f[1] > S##_f[1]); \ + S##_f[3] += (T##_f[2] > S##_f[2]); \ + __FP_FRAC_DEC_3(X##_f[3], X##_f[2], X##_f[1], \ + T##_f[3], T##_f[2], T##_f[1]); \ + R##_f[1] += q; \ + } \ + _FP_FRAC_SLL_4(X, 1); \ + q >>= 1; \ + } \ + q = (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE - 1); \ + while (q != _FP_WORK_ROUND) \ + { \ + T##_f[0] = S##_f[0] + q; \ + T##_f[1] = S##_f[1]; \ + T##_f[2] = S##_f[2]; \ + T##_f[3] = S##_f[3]; \ + if (_FP_FRAC_GE_4(X,T)) \ + { \ + S##_f[0] = T##_f[0] + q; \ + S##_f[1] += (T##_f[0] > S##_f[0]); \ + S##_f[2] += (T##_f[1] > S##_f[1]); \ + S##_f[3] += (T##_f[2] > S##_f[2]); \ + _FP_FRAC_DEC_4(X, T); \ + R##_f[0] += q; \ + } \ + _FP_FRAC_SLL_4(X, 1); \ + q >>= 1; \ + } \ + if (!_FP_FRAC_ZEROP_4(X)) \ + { \ + if (_FP_FRAC_GT_4(X,S)) \ + R##_f[0] |= _FP_WORK_ROUND; \ + R##_f[0] |= _FP_WORK_STICKY; \ + } \ + } while (0) + + +/* + * Internals + */ + +#define __FP_FRAC_SET_4(X,I3,I2,I1,I0) \ + (X##_f[3] = I3, X##_f[2] = I2, X##_f[1] = I1, X##_f[0] = I0) + +#ifndef __FP_FRAC_ADD_3 +#define __FP_FRAC_ADD_3(r2,r1,r0,x2,x1,x0,y2,y1,y0) \ + do { \ + int _c1, _c2; \ + r0 = x0 + y0; \ + _c1 = r0 < x0; \ + r1 = x1 + y1; \ + _c2 = r1 < x1; \ + r1 += _c1; \ + _c2 |= r1 < _c1; \ + r2 = x2 + y2 + _c2; \ + } while (0) +#endif + +#ifndef __FP_FRAC_ADD_4 +#define __FP_FRAC_ADD_4(r3,r2,r1,r0,x3,x2,x1,x0,y3,y2,y1,y0) \ + do { \ + int _c1, _c2, _c3; \ + r0 = x0 + y0; \ + _c1 = r0 < x0; \ + r1 = x1 + y1; \ + _c2 = r1 < x1; \ + r1 += _c1; \ + _c2 |= r1 < _c1; \ + r2 = x2 + y2; \ + _c3 = r2 < x2; \ + r2 += _c2; \ + _c3 |= r2 < _c2; \ + r3 = x3 + y3 + _c3; \ + } while (0) +#endif + +#ifndef __FP_FRAC_SUB_3 +#define __FP_FRAC_SUB_3(r2,r1,r0,x2,x1,x0,y2,y1,y0) \ + do { \ + int _c1, _c2; \ + r0 = x0 - y0; \ + _c1 = r0 > x0; \ + r1 = x1 - y1; \ + _c2 = r1 > x1; \ + r1 -= _c1; \ + _c2 |= r1 > _c1; \ + r2 = x2 - y2 - _c2; \ + } while (0) +#endif + +#ifndef __FP_FRAC_SUB_4 +#define __FP_FRAC_SUB_4(r3,r2,r1,r0,x3,x2,x1,x0,y3,y2,y1,y0) \ + do { \ + int _c1, _c2, _c3; \ + r0 = x0 - y0; \ + _c1 = r0 > x0; \ + r1 = x1 - y1; \ + _c2 = r1 > x1; \ + r1 -= _c1; \ + _c2 |= r1 > _c1; \ + r2 = x2 - y2; \ + _c3 = r2 > x2; \ + r2 -= _c2; \ + _c3 |= r2 > _c2; \ + r3 = x3 - y3 - _c3; \ + } while (0) +#endif + +#ifndef __FP_FRAC_DEC_3 +#define __FP_FRAC_DEC_3(x2,x1,x0,y2,y1,y0) \ + do { \ + UWtype _t0, _t1, _t2; \ + _t0 = x0, _t1 = x1, _t2 = x2; \ + __FP_FRAC_SUB_3 (x2, x1, x0, _t2, _t1, _t0, y2, y1, y0); \ + } while (0) +#endif + +#ifndef __FP_FRAC_DEC_4 +#define __FP_FRAC_DEC_4(x3,x2,x1,x0,y3,y2,y1,y0) \ + do { \ + UWtype _t0, _t1, _t2, _t3; \ + _t0 = x0, _t1 = x1, _t2 = x2, _t3 = x3; \ + __FP_FRAC_SUB_4 (x3,x2,x1,x0,_t3,_t2,_t1,_t0, y3,y2,y1,y0); \ + } while (0) +#endif + +#ifndef __FP_FRAC_ADDI_4 +#define __FP_FRAC_ADDI_4(x3,x2,x1,x0,i) \ + do { \ + UWtype _t; \ + _t = ((x0 += i) < i); \ + x1 += _t; _t = (x1 < _t); \ + x2 += _t; _t = (x2 < _t); \ + x3 += _t; \ + } while (0) +#endif + +/* Convert FP values between word sizes. This appears to be more + * complicated than I'd have expected it to be, so these might be + * wrong... These macros are in any case somewhat bogus because they + * use information about what various FRAC_n variables look like + * internally [eg, that 2 word vars are X_f0 and x_f1]. But so do + * the ones in op-2.h and op-1.h. + */ +#define _FP_FRAC_CONV_1_4(dfs, sfs, D, S) \ + do { \ + if (S##_c != FP_CLS_NAN) \ + _FP_FRAC_SRS_4(S, (_FP_WFRACBITS_##sfs - _FP_WFRACBITS_##dfs), \ + _FP_WFRACBITS_##sfs); \ + else \ + _FP_FRAC_SRL_4(S, (_FP_WFRACBITS_##sfs - _FP_WFRACBITS_##dfs)); \ + D##_f = S##_f[0]; \ + } while (0) + +#define _FP_FRAC_CONV_2_4(dfs, sfs, D, S) \ + do { \ + if (S##_c != FP_CLS_NAN) \ + _FP_FRAC_SRS_4(S, (_FP_WFRACBITS_##sfs - _FP_WFRACBITS_##dfs), \ + _FP_WFRACBITS_##sfs); \ + else \ + _FP_FRAC_SRL_4(S, (_FP_WFRACBITS_##sfs - _FP_WFRACBITS_##dfs)); \ + D##_f0 = S##_f[0]; \ + D##_f1 = S##_f[1]; \ + } while (0) + +/* Assembly/disassembly for converting to/from integral types. + * No shifting or overflow handled here. + */ +/* Put the FP value X into r, which is an integer of size rsize. */ +#define _FP_FRAC_ASSEMBLE_4(r, X, rsize) \ + do { \ + if (rsize <= _FP_W_TYPE_SIZE) \ + r = X##_f[0]; \ + else if (rsize <= 2*_FP_W_TYPE_SIZE) \ + { \ + r = X##_f[1]; \ + r <<= _FP_W_TYPE_SIZE; \ + r += X##_f[0]; \ + } \ + else \ + { \ + /* I'm feeling lazy so we deal with int == 3words (implausible)*/ \ + /* and int == 4words as a single case. */ \ + r = X##_f[3]; \ + r <<= _FP_W_TYPE_SIZE; \ + r += X##_f[2]; \ + r <<= _FP_W_TYPE_SIZE; \ + r += X##_f[1]; \ + r <<= _FP_W_TYPE_SIZE; \ + r += X##_f[0]; \ + } \ + } while (0) + +/* "No disassemble Number Five!" */ +/* move an integer of size rsize into X's fractional part. We rely on + * the _f[] array consisting of words of size _FP_W_TYPE_SIZE to avoid + * having to mask the values we store into it. + */ +#define _FP_FRAC_DISASSEMBLE_4(X, r, rsize) \ + do { \ + X##_f[0] = r; \ + X##_f[1] = (rsize <= _FP_W_TYPE_SIZE ? 0 : r >> _FP_W_TYPE_SIZE); \ + X##_f[2] = (rsize <= 2*_FP_W_TYPE_SIZE ? 0 : r >> 2*_FP_W_TYPE_SIZE); \ + X##_f[3] = (rsize <= 3*_FP_W_TYPE_SIZE ? 0 : r >> 3*_FP_W_TYPE_SIZE); \ + } while (0) + +#define _FP_FRAC_CONV_4_1(dfs, sfs, D, S) \ + do { \ + D##_f[0] = S##_f; \ + D##_f[1] = D##_f[2] = D##_f[3] = 0; \ + _FP_FRAC_SLL_4(D, (_FP_WFRACBITS_##dfs - _FP_WFRACBITS_##sfs)); \ + } while (0) + +#define _FP_FRAC_CONV_4_2(dfs, sfs, D, S) \ + do { \ + D##_f[0] = S##_f0; \ + D##_f[1] = S##_f1; \ + D##_f[2] = D##_f[3] = 0; \ + _FP_FRAC_SLL_4(D, (_FP_WFRACBITS_##dfs - _FP_WFRACBITS_##sfs)); \ + } while (0) + +#endif |