diff options
Diffstat (limited to '')
-rw-r--r-- | kernel/bpf/btf.c | 8035 |
1 files changed, 8035 insertions, 0 deletions
diff --git a/kernel/bpf/btf.c b/kernel/bpf/btf.c new file mode 100644 index 000000000..7582ec4fd --- /dev/null +++ b/kernel/bpf/btf.c @@ -0,0 +1,8035 @@ +// SPDX-License-Identifier: GPL-2.0 +/* Copyright (c) 2018 Facebook */ + +#include <uapi/linux/btf.h> +#include <uapi/linux/bpf.h> +#include <uapi/linux/bpf_perf_event.h> +#include <uapi/linux/types.h> +#include <linux/seq_file.h> +#include <linux/compiler.h> +#include <linux/ctype.h> +#include <linux/errno.h> +#include <linux/slab.h> +#include <linux/anon_inodes.h> +#include <linux/file.h> +#include <linux/uaccess.h> +#include <linux/kernel.h> +#include <linux/idr.h> +#include <linux/sort.h> +#include <linux/bpf_verifier.h> +#include <linux/btf.h> +#include <linux/btf_ids.h> +#include <linux/skmsg.h> +#include <linux/perf_event.h> +#include <linux/bsearch.h> +#include <linux/kobject.h> +#include <linux/sysfs.h> +#include <net/sock.h> +#include "../tools/lib/bpf/relo_core.h" + +/* BTF (BPF Type Format) is the meta data format which describes + * the data types of BPF program/map. Hence, it basically focus + * on the C programming language which the modern BPF is primary + * using. + * + * ELF Section: + * ~~~~~~~~~~~ + * The BTF data is stored under the ".BTF" ELF section + * + * struct btf_type: + * ~~~~~~~~~~~~~~~ + * Each 'struct btf_type' object describes a C data type. + * Depending on the type it is describing, a 'struct btf_type' + * object may be followed by more data. F.e. + * To describe an array, 'struct btf_type' is followed by + * 'struct btf_array'. + * + * 'struct btf_type' and any extra data following it are + * 4 bytes aligned. + * + * Type section: + * ~~~~~~~~~~~~~ + * The BTF type section contains a list of 'struct btf_type' objects. + * Each one describes a C type. Recall from the above section + * that a 'struct btf_type' object could be immediately followed by extra + * data in order to describe some particular C types. + * + * type_id: + * ~~~~~~~ + * Each btf_type object is identified by a type_id. The type_id + * is implicitly implied by the location of the btf_type object in + * the BTF type section. The first one has type_id 1. The second + * one has type_id 2...etc. Hence, an earlier btf_type has + * a smaller type_id. + * + * A btf_type object may refer to another btf_type object by using + * type_id (i.e. the "type" in the "struct btf_type"). + * + * NOTE that we cannot assume any reference-order. + * A btf_type object can refer to an earlier btf_type object + * but it can also refer to a later btf_type object. + * + * For example, to describe "const void *". A btf_type + * object describing "const" may refer to another btf_type + * object describing "void *". This type-reference is done + * by specifying type_id: + * + * [1] CONST (anon) type_id=2 + * [2] PTR (anon) type_id=0 + * + * The above is the btf_verifier debug log: + * - Each line started with "[?]" is a btf_type object + * - [?] is the type_id of the btf_type object. + * - CONST/PTR is the BTF_KIND_XXX + * - "(anon)" is the name of the type. It just + * happens that CONST and PTR has no name. + * - type_id=XXX is the 'u32 type' in btf_type + * + * NOTE: "void" has type_id 0 + * + * String section: + * ~~~~~~~~~~~~~~ + * The BTF string section contains the names used by the type section. + * Each string is referred by an "offset" from the beginning of the + * string section. + * + * Each string is '\0' terminated. + * + * The first character in the string section must be '\0' + * which is used to mean 'anonymous'. Some btf_type may not + * have a name. + */ + +/* BTF verification: + * + * To verify BTF data, two passes are needed. + * + * Pass #1 + * ~~~~~~~ + * The first pass is to collect all btf_type objects to + * an array: "btf->types". + * + * Depending on the C type that a btf_type is describing, + * a btf_type may be followed by extra data. We don't know + * how many btf_type is there, and more importantly we don't + * know where each btf_type is located in the type section. + * + * Without knowing the location of each type_id, most verifications + * cannot be done. e.g. an earlier btf_type may refer to a later + * btf_type (recall the "const void *" above), so we cannot + * check this type-reference in the first pass. + * + * In the first pass, it still does some verifications (e.g. + * checking the name is a valid offset to the string section). + * + * Pass #2 + * ~~~~~~~ + * The main focus is to resolve a btf_type that is referring + * to another type. + * + * We have to ensure the referring type: + * 1) does exist in the BTF (i.e. in btf->types[]) + * 2) does not cause a loop: + * struct A { + * struct B b; + * }; + * + * struct B { + * struct A a; + * }; + * + * btf_type_needs_resolve() decides if a btf_type needs + * to be resolved. + * + * The needs_resolve type implements the "resolve()" ops which + * essentially does a DFS and detects backedge. + * + * During resolve (or DFS), different C types have different + * "RESOLVED" conditions. + * + * When resolving a BTF_KIND_STRUCT, we need to resolve all its + * members because a member is always referring to another + * type. A struct's member can be treated as "RESOLVED" if + * it is referring to a BTF_KIND_PTR. Otherwise, the + * following valid C struct would be rejected: + * + * struct A { + * int m; + * struct A *a; + * }; + * + * When resolving a BTF_KIND_PTR, it needs to keep resolving if + * it is referring to another BTF_KIND_PTR. Otherwise, we cannot + * detect a pointer loop, e.g.: + * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR + + * ^ | + * +-----------------------------------------+ + * + */ + +#define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2) +#define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1) +#define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK) +#define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3) +#define BITS_ROUNDUP_BYTES(bits) \ + (BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits)) + +#define BTF_INFO_MASK 0x9f00ffff +#define BTF_INT_MASK 0x0fffffff +#define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE) +#define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET) + +/* 16MB for 64k structs and each has 16 members and + * a few MB spaces for the string section. + * The hard limit is S32_MAX. + */ +#define BTF_MAX_SIZE (16 * 1024 * 1024) + +#define for_each_member_from(i, from, struct_type, member) \ + for (i = from, member = btf_type_member(struct_type) + from; \ + i < btf_type_vlen(struct_type); \ + i++, member++) + +#define for_each_vsi_from(i, from, struct_type, member) \ + for (i = from, member = btf_type_var_secinfo(struct_type) + from; \ + i < btf_type_vlen(struct_type); \ + i++, member++) + +DEFINE_IDR(btf_idr); +DEFINE_SPINLOCK(btf_idr_lock); + +enum btf_kfunc_hook { + BTF_KFUNC_HOOK_XDP, + BTF_KFUNC_HOOK_TC, + BTF_KFUNC_HOOK_STRUCT_OPS, + BTF_KFUNC_HOOK_TRACING, + BTF_KFUNC_HOOK_SYSCALL, + BTF_KFUNC_HOOK_MAX, +}; + +enum { + BTF_KFUNC_SET_MAX_CNT = 256, + BTF_DTOR_KFUNC_MAX_CNT = 256, +}; + +struct btf_kfunc_set_tab { + struct btf_id_set8 *sets[BTF_KFUNC_HOOK_MAX]; +}; + +struct btf_id_dtor_kfunc_tab { + u32 cnt; + struct btf_id_dtor_kfunc dtors[]; +}; + +struct btf { + void *data; + struct btf_type **types; + u32 *resolved_ids; + u32 *resolved_sizes; + const char *strings; + void *nohdr_data; + struct btf_header hdr; + u32 nr_types; /* includes VOID for base BTF */ + u32 types_size; + u32 data_size; + refcount_t refcnt; + u32 id; + struct rcu_head rcu; + struct btf_kfunc_set_tab *kfunc_set_tab; + struct btf_id_dtor_kfunc_tab *dtor_kfunc_tab; + + /* split BTF support */ + struct btf *base_btf; + u32 start_id; /* first type ID in this BTF (0 for base BTF) */ + u32 start_str_off; /* first string offset (0 for base BTF) */ + char name[MODULE_NAME_LEN]; + bool kernel_btf; +}; + +enum verifier_phase { + CHECK_META, + CHECK_TYPE, +}; + +struct resolve_vertex { + const struct btf_type *t; + u32 type_id; + u16 next_member; +}; + +enum visit_state { + NOT_VISITED, + VISITED, + RESOLVED, +}; + +enum resolve_mode { + RESOLVE_TBD, /* To Be Determined */ + RESOLVE_PTR, /* Resolving for Pointer */ + RESOLVE_STRUCT_OR_ARRAY, /* Resolving for struct/union + * or array + */ +}; + +#define MAX_RESOLVE_DEPTH 32 + +struct btf_sec_info { + u32 off; + u32 len; +}; + +struct btf_verifier_env { + struct btf *btf; + u8 *visit_states; + struct resolve_vertex stack[MAX_RESOLVE_DEPTH]; + struct bpf_verifier_log log; + u32 log_type_id; + u32 top_stack; + enum verifier_phase phase; + enum resolve_mode resolve_mode; +}; + +static const char * const btf_kind_str[NR_BTF_KINDS] = { + [BTF_KIND_UNKN] = "UNKNOWN", + [BTF_KIND_INT] = "INT", + [BTF_KIND_PTR] = "PTR", + [BTF_KIND_ARRAY] = "ARRAY", + [BTF_KIND_STRUCT] = "STRUCT", + [BTF_KIND_UNION] = "UNION", + [BTF_KIND_ENUM] = "ENUM", + [BTF_KIND_FWD] = "FWD", + [BTF_KIND_TYPEDEF] = "TYPEDEF", + [BTF_KIND_VOLATILE] = "VOLATILE", + [BTF_KIND_CONST] = "CONST", + [BTF_KIND_RESTRICT] = "RESTRICT", + [BTF_KIND_FUNC] = "FUNC", + [BTF_KIND_FUNC_PROTO] = "FUNC_PROTO", + [BTF_KIND_VAR] = "VAR", + [BTF_KIND_DATASEC] = "DATASEC", + [BTF_KIND_FLOAT] = "FLOAT", + [BTF_KIND_DECL_TAG] = "DECL_TAG", + [BTF_KIND_TYPE_TAG] = "TYPE_TAG", + [BTF_KIND_ENUM64] = "ENUM64", +}; + +const char *btf_type_str(const struct btf_type *t) +{ + return btf_kind_str[BTF_INFO_KIND(t->info)]; +} + +/* Chunk size we use in safe copy of data to be shown. */ +#define BTF_SHOW_OBJ_SAFE_SIZE 32 + +/* + * This is the maximum size of a base type value (equivalent to a + * 128-bit int); if we are at the end of our safe buffer and have + * less than 16 bytes space we can't be assured of being able + * to copy the next type safely, so in such cases we will initiate + * a new copy. + */ +#define BTF_SHOW_OBJ_BASE_TYPE_SIZE 16 + +/* Type name size */ +#define BTF_SHOW_NAME_SIZE 80 + +/* + * Common data to all BTF show operations. Private show functions can add + * their own data to a structure containing a struct btf_show and consult it + * in the show callback. See btf_type_show() below. + * + * One challenge with showing nested data is we want to skip 0-valued + * data, but in order to figure out whether a nested object is all zeros + * we need to walk through it. As a result, we need to make two passes + * when handling structs, unions and arrays; the first path simply looks + * for nonzero data, while the second actually does the display. The first + * pass is signalled by show->state.depth_check being set, and if we + * encounter a non-zero value we set show->state.depth_to_show to + * the depth at which we encountered it. When we have completed the + * first pass, we will know if anything needs to be displayed if + * depth_to_show > depth. See btf_[struct,array]_show() for the + * implementation of this. + * + * Another problem is we want to ensure the data for display is safe to + * access. To support this, the anonymous "struct {} obj" tracks the data + * object and our safe copy of it. We copy portions of the data needed + * to the object "copy" buffer, but because its size is limited to + * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we + * traverse larger objects for display. + * + * The various data type show functions all start with a call to + * btf_show_start_type() which returns a pointer to the safe copy + * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the + * raw data itself). btf_show_obj_safe() is responsible for + * using copy_from_kernel_nofault() to update the safe data if necessary + * as we traverse the object's data. skbuff-like semantics are + * used: + * + * - obj.head points to the start of the toplevel object for display + * - obj.size is the size of the toplevel object + * - obj.data points to the current point in the original data at + * which our safe data starts. obj.data will advance as we copy + * portions of the data. + * + * In most cases a single copy will suffice, but larger data structures + * such as "struct task_struct" will require many copies. The logic in + * btf_show_obj_safe() handles the logic that determines if a new + * copy_from_kernel_nofault() is needed. + */ +struct btf_show { + u64 flags; + void *target; /* target of show operation (seq file, buffer) */ + void (*showfn)(struct btf_show *show, const char *fmt, va_list args); + const struct btf *btf; + /* below are used during iteration */ + struct { + u8 depth; + u8 depth_to_show; + u8 depth_check; + u8 array_member:1, + array_terminated:1; + u16 array_encoding; + u32 type_id; + int status; /* non-zero for error */ + const struct btf_type *type; + const struct btf_member *member; + char name[BTF_SHOW_NAME_SIZE]; /* space for member name/type */ + } state; + struct { + u32 size; + void *head; + void *data; + u8 safe[BTF_SHOW_OBJ_SAFE_SIZE]; + } obj; +}; + +struct btf_kind_operations { + s32 (*check_meta)(struct btf_verifier_env *env, + const struct btf_type *t, + u32 meta_left); + int (*resolve)(struct btf_verifier_env *env, + const struct resolve_vertex *v); + int (*check_member)(struct btf_verifier_env *env, + const struct btf_type *struct_type, + const struct btf_member *member, + const struct btf_type *member_type); + int (*check_kflag_member)(struct btf_verifier_env *env, + const struct btf_type *struct_type, + const struct btf_member *member, + const struct btf_type *member_type); + void (*log_details)(struct btf_verifier_env *env, + const struct btf_type *t); + void (*show)(const struct btf *btf, const struct btf_type *t, + u32 type_id, void *data, u8 bits_offsets, + struct btf_show *show); +}; + +static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS]; +static struct btf_type btf_void; + +static int btf_resolve(struct btf_verifier_env *env, + const struct btf_type *t, u32 type_id); + +static int btf_func_check(struct btf_verifier_env *env, + const struct btf_type *t); + +static bool btf_type_is_modifier(const struct btf_type *t) +{ + /* Some of them is not strictly a C modifier + * but they are grouped into the same bucket + * for BTF concern: + * A type (t) that refers to another + * type through t->type AND its size cannot + * be determined without following the t->type. + * + * ptr does not fall into this bucket + * because its size is always sizeof(void *). + */ + switch (BTF_INFO_KIND(t->info)) { + case BTF_KIND_TYPEDEF: + case BTF_KIND_VOLATILE: + case BTF_KIND_CONST: + case BTF_KIND_RESTRICT: + case BTF_KIND_TYPE_TAG: + return true; + } + + return false; +} + +bool btf_type_is_void(const struct btf_type *t) +{ + return t == &btf_void; +} + +static bool btf_type_is_fwd(const struct btf_type *t) +{ + return BTF_INFO_KIND(t->info) == BTF_KIND_FWD; +} + +static bool btf_type_nosize(const struct btf_type *t) +{ + return btf_type_is_void(t) || btf_type_is_fwd(t) || + btf_type_is_func(t) || btf_type_is_func_proto(t); +} + +static bool btf_type_nosize_or_null(const struct btf_type *t) +{ + return !t || btf_type_nosize(t); +} + +static bool __btf_type_is_struct(const struct btf_type *t) +{ + return BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT; +} + +static bool btf_type_is_array(const struct btf_type *t) +{ + return BTF_INFO_KIND(t->info) == BTF_KIND_ARRAY; +} + +static bool btf_type_is_datasec(const struct btf_type *t) +{ + return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC; +} + +static bool btf_type_is_decl_tag(const struct btf_type *t) +{ + return BTF_INFO_KIND(t->info) == BTF_KIND_DECL_TAG; +} + +static bool btf_type_is_decl_tag_target(const struct btf_type *t) +{ + return btf_type_is_func(t) || btf_type_is_struct(t) || + btf_type_is_var(t) || btf_type_is_typedef(t); +} + +u32 btf_nr_types(const struct btf *btf) +{ + u32 total = 0; + + while (btf) { + total += btf->nr_types; + btf = btf->base_btf; + } + + return total; +} + +s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind) +{ + const struct btf_type *t; + const char *tname; + u32 i, total; + + total = btf_nr_types(btf); + for (i = 1; i < total; i++) { + t = btf_type_by_id(btf, i); + if (BTF_INFO_KIND(t->info) != kind) + continue; + + tname = btf_name_by_offset(btf, t->name_off); + if (!strcmp(tname, name)) + return i; + } + + return -ENOENT; +} + +static s32 bpf_find_btf_id(const char *name, u32 kind, struct btf **btf_p) +{ + struct btf *btf; + s32 ret; + int id; + + btf = bpf_get_btf_vmlinux(); + if (IS_ERR(btf)) + return PTR_ERR(btf); + if (!btf) + return -EINVAL; + + ret = btf_find_by_name_kind(btf, name, kind); + /* ret is never zero, since btf_find_by_name_kind returns + * positive btf_id or negative error. + */ + if (ret > 0) { + btf_get(btf); + *btf_p = btf; + return ret; + } + + /* If name is not found in vmlinux's BTF then search in module's BTFs */ + spin_lock_bh(&btf_idr_lock); + idr_for_each_entry(&btf_idr, btf, id) { + if (!btf_is_module(btf)) + continue; + /* linear search could be slow hence unlock/lock + * the IDR to avoiding holding it for too long + */ + btf_get(btf); + spin_unlock_bh(&btf_idr_lock); + ret = btf_find_by_name_kind(btf, name, kind); + if (ret > 0) { + *btf_p = btf; + return ret; + } + btf_put(btf); + spin_lock_bh(&btf_idr_lock); + } + spin_unlock_bh(&btf_idr_lock); + return ret; +} + +const struct btf_type *btf_type_skip_modifiers(const struct btf *btf, + u32 id, u32 *res_id) +{ + const struct btf_type *t = btf_type_by_id(btf, id); + + while (btf_type_is_modifier(t)) { + id = t->type; + t = btf_type_by_id(btf, t->type); + } + + if (res_id) + *res_id = id; + + return t; +} + +const struct btf_type *btf_type_resolve_ptr(const struct btf *btf, + u32 id, u32 *res_id) +{ + const struct btf_type *t; + + t = btf_type_skip_modifiers(btf, id, NULL); + if (!btf_type_is_ptr(t)) + return NULL; + + return btf_type_skip_modifiers(btf, t->type, res_id); +} + +const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf, + u32 id, u32 *res_id) +{ + const struct btf_type *ptype; + + ptype = btf_type_resolve_ptr(btf, id, res_id); + if (ptype && btf_type_is_func_proto(ptype)) + return ptype; + + return NULL; +} + +/* Types that act only as a source, not sink or intermediate + * type when resolving. + */ +static bool btf_type_is_resolve_source_only(const struct btf_type *t) +{ + return btf_type_is_var(t) || + btf_type_is_decl_tag(t) || + btf_type_is_datasec(t); +} + +/* What types need to be resolved? + * + * btf_type_is_modifier() is an obvious one. + * + * btf_type_is_struct() because its member refers to + * another type (through member->type). + * + * btf_type_is_var() because the variable refers to + * another type. btf_type_is_datasec() holds multiple + * btf_type_is_var() types that need resolving. + * + * btf_type_is_array() because its element (array->type) + * refers to another type. Array can be thought of a + * special case of struct while array just has the same + * member-type repeated by array->nelems of times. + */ +static bool btf_type_needs_resolve(const struct btf_type *t) +{ + return btf_type_is_modifier(t) || + btf_type_is_ptr(t) || + btf_type_is_struct(t) || + btf_type_is_array(t) || + btf_type_is_var(t) || + btf_type_is_func(t) || + btf_type_is_decl_tag(t) || + btf_type_is_datasec(t); +} + +/* t->size can be used */ +static bool btf_type_has_size(const struct btf_type *t) +{ + switch (BTF_INFO_KIND(t->info)) { + case BTF_KIND_INT: + case BTF_KIND_STRUCT: + case BTF_KIND_UNION: + case BTF_KIND_ENUM: + case BTF_KIND_DATASEC: + case BTF_KIND_FLOAT: + case BTF_KIND_ENUM64: + return true; + } + + return false; +} + +static const char *btf_int_encoding_str(u8 encoding) +{ + if (encoding == 0) + return "(none)"; + else if (encoding == BTF_INT_SIGNED) + return "SIGNED"; + else if (encoding == BTF_INT_CHAR) + return "CHAR"; + else if (encoding == BTF_INT_BOOL) + return "BOOL"; + else + return "UNKN"; +} + +static u32 btf_type_int(const struct btf_type *t) +{ + return *(u32 *)(t + 1); +} + +static const struct btf_array *btf_type_array(const struct btf_type *t) +{ + return (const struct btf_array *)(t + 1); +} + +static const struct btf_enum *btf_type_enum(const struct btf_type *t) +{ + return (const struct btf_enum *)(t + 1); +} + +static const struct btf_var *btf_type_var(const struct btf_type *t) +{ + return (const struct btf_var *)(t + 1); +} + +static const struct btf_decl_tag *btf_type_decl_tag(const struct btf_type *t) +{ + return (const struct btf_decl_tag *)(t + 1); +} + +static const struct btf_enum64 *btf_type_enum64(const struct btf_type *t) +{ + return (const struct btf_enum64 *)(t + 1); +} + +static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t) +{ + return kind_ops[BTF_INFO_KIND(t->info)]; +} + +static bool btf_name_offset_valid(const struct btf *btf, u32 offset) +{ + if (!BTF_STR_OFFSET_VALID(offset)) + return false; + + while (offset < btf->start_str_off) + btf = btf->base_btf; + + offset -= btf->start_str_off; + return offset < btf->hdr.str_len; +} + +static bool __btf_name_char_ok(char c, bool first) +{ + if ((first ? !isalpha(c) : + !isalnum(c)) && + c != '_' && + c != '.') + return false; + return true; +} + +static const char *btf_str_by_offset(const struct btf *btf, u32 offset) +{ + while (offset < btf->start_str_off) + btf = btf->base_btf; + + offset -= btf->start_str_off; + if (offset < btf->hdr.str_len) + return &btf->strings[offset]; + + return NULL; +} + +static bool __btf_name_valid(const struct btf *btf, u32 offset) +{ + /* offset must be valid */ + const char *src = btf_str_by_offset(btf, offset); + const char *src_limit; + + if (!__btf_name_char_ok(*src, true)) + return false; + + /* set a limit on identifier length */ + src_limit = src + KSYM_NAME_LEN; + src++; + while (*src && src < src_limit) { + if (!__btf_name_char_ok(*src, false)) + return false; + src++; + } + + return !*src; +} + +static bool btf_name_valid_identifier(const struct btf *btf, u32 offset) +{ + return __btf_name_valid(btf, offset); +} + +static bool btf_name_valid_section(const struct btf *btf, u32 offset) +{ + return __btf_name_valid(btf, offset); +} + +static const char *__btf_name_by_offset(const struct btf *btf, u32 offset) +{ + const char *name; + + if (!offset) + return "(anon)"; + + name = btf_str_by_offset(btf, offset); + return name ?: "(invalid-name-offset)"; +} + +const char *btf_name_by_offset(const struct btf *btf, u32 offset) +{ + return btf_str_by_offset(btf, offset); +} + +const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id) +{ + while (type_id < btf->start_id) + btf = btf->base_btf; + + type_id -= btf->start_id; + if (type_id >= btf->nr_types) + return NULL; + return btf->types[type_id]; +} +EXPORT_SYMBOL_GPL(btf_type_by_id); + +/* + * Regular int is not a bit field and it must be either + * u8/u16/u32/u64 or __int128. + */ +static bool btf_type_int_is_regular(const struct btf_type *t) +{ + u8 nr_bits, nr_bytes; + u32 int_data; + + int_data = btf_type_int(t); + nr_bits = BTF_INT_BITS(int_data); + nr_bytes = BITS_ROUNDUP_BYTES(nr_bits); + if (BITS_PER_BYTE_MASKED(nr_bits) || + BTF_INT_OFFSET(int_data) || + (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) && + nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) && + nr_bytes != (2 * sizeof(u64)))) { + return false; + } + + return true; +} + +/* + * Check that given struct member is a regular int with expected + * offset and size. + */ +bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s, + const struct btf_member *m, + u32 expected_offset, u32 expected_size) +{ + const struct btf_type *t; + u32 id, int_data; + u8 nr_bits; + + id = m->type; + t = btf_type_id_size(btf, &id, NULL); + if (!t || !btf_type_is_int(t)) + return false; + + int_data = btf_type_int(t); + nr_bits = BTF_INT_BITS(int_data); + if (btf_type_kflag(s)) { + u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset); + u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset); + + /* if kflag set, int should be a regular int and + * bit offset should be at byte boundary. + */ + return !bitfield_size && + BITS_ROUNDUP_BYTES(bit_offset) == expected_offset && + BITS_ROUNDUP_BYTES(nr_bits) == expected_size; + } + + if (BTF_INT_OFFSET(int_data) || + BITS_PER_BYTE_MASKED(m->offset) || + BITS_ROUNDUP_BYTES(m->offset) != expected_offset || + BITS_PER_BYTE_MASKED(nr_bits) || + BITS_ROUNDUP_BYTES(nr_bits) != expected_size) + return false; + + return true; +} + +/* Similar to btf_type_skip_modifiers() but does not skip typedefs. */ +static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf, + u32 id) +{ + const struct btf_type *t = btf_type_by_id(btf, id); + + while (btf_type_is_modifier(t) && + BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) { + t = btf_type_by_id(btf, t->type); + } + + return t; +} + +#define BTF_SHOW_MAX_ITER 10 + +#define BTF_KIND_BIT(kind) (1ULL << kind) + +/* + * Populate show->state.name with type name information. + * Format of type name is + * + * [.member_name = ] (type_name) + */ +static const char *btf_show_name(struct btf_show *show) +{ + /* BTF_MAX_ITER array suffixes "[]" */ + const char *array_suffixes = "[][][][][][][][][][]"; + const char *array_suffix = &array_suffixes[strlen(array_suffixes)]; + /* BTF_MAX_ITER pointer suffixes "*" */ + const char *ptr_suffixes = "**********"; + const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)]; + const char *name = NULL, *prefix = "", *parens = ""; + const struct btf_member *m = show->state.member; + const struct btf_type *t; + const struct btf_array *array; + u32 id = show->state.type_id; + const char *member = NULL; + bool show_member = false; + u64 kinds = 0; + int i; + + show->state.name[0] = '\0'; + + /* + * Don't show type name if we're showing an array member; + * in that case we show the array type so don't need to repeat + * ourselves for each member. + */ + if (show->state.array_member) + return ""; + + /* Retrieve member name, if any. */ + if (m) { + member = btf_name_by_offset(show->btf, m->name_off); + show_member = strlen(member) > 0; + id = m->type; + } + + /* + * Start with type_id, as we have resolved the struct btf_type * + * via btf_modifier_show() past the parent typedef to the child + * struct, int etc it is defined as. In such cases, the type_id + * still represents the starting type while the struct btf_type * + * in our show->state points at the resolved type of the typedef. + */ + t = btf_type_by_id(show->btf, id); + if (!t) + return ""; + + /* + * The goal here is to build up the right number of pointer and + * array suffixes while ensuring the type name for a typedef + * is represented. Along the way we accumulate a list of + * BTF kinds we have encountered, since these will inform later + * display; for example, pointer types will not require an + * opening "{" for struct, we will just display the pointer value. + * + * We also want to accumulate the right number of pointer or array + * indices in the format string while iterating until we get to + * the typedef/pointee/array member target type. + * + * We start by pointing at the end of pointer and array suffix + * strings; as we accumulate pointers and arrays we move the pointer + * or array string backwards so it will show the expected number of + * '*' or '[]' for the type. BTF_SHOW_MAX_ITER of nesting of pointers + * and/or arrays and typedefs are supported as a precaution. + * + * We also want to get typedef name while proceeding to resolve + * type it points to so that we can add parentheses if it is a + * "typedef struct" etc. + */ + for (i = 0; i < BTF_SHOW_MAX_ITER; i++) { + + switch (BTF_INFO_KIND(t->info)) { + case BTF_KIND_TYPEDEF: + if (!name) + name = btf_name_by_offset(show->btf, + t->name_off); + kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF); + id = t->type; + break; + case BTF_KIND_ARRAY: + kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY); + parens = "["; + if (!t) + return ""; + array = btf_type_array(t); + if (array_suffix > array_suffixes) + array_suffix -= 2; + id = array->type; + break; + case BTF_KIND_PTR: + kinds |= BTF_KIND_BIT(BTF_KIND_PTR); + if (ptr_suffix > ptr_suffixes) + ptr_suffix -= 1; + id = t->type; + break; + default: + id = 0; + break; + } + if (!id) + break; + t = btf_type_skip_qualifiers(show->btf, id); + } + /* We may not be able to represent this type; bail to be safe */ + if (i == BTF_SHOW_MAX_ITER) + return ""; + + if (!name) + name = btf_name_by_offset(show->btf, t->name_off); + + switch (BTF_INFO_KIND(t->info)) { + case BTF_KIND_STRUCT: + case BTF_KIND_UNION: + prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ? + "struct" : "union"; + /* if it's an array of struct/union, parens is already set */ + if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY)))) + parens = "{"; + break; + case BTF_KIND_ENUM: + case BTF_KIND_ENUM64: + prefix = "enum"; + break; + default: + break; + } + + /* pointer does not require parens */ + if (kinds & BTF_KIND_BIT(BTF_KIND_PTR)) + parens = ""; + /* typedef does not require struct/union/enum prefix */ + if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF)) + prefix = ""; + + if (!name) + name = ""; + + /* Even if we don't want type name info, we want parentheses etc */ + if (show->flags & BTF_SHOW_NONAME) + snprintf(show->state.name, sizeof(show->state.name), "%s", + parens); + else + snprintf(show->state.name, sizeof(show->state.name), + "%s%s%s(%s%s%s%s%s%s)%s", + /* first 3 strings comprise ".member = " */ + show_member ? "." : "", + show_member ? member : "", + show_member ? " = " : "", + /* ...next is our prefix (struct, enum, etc) */ + prefix, + strlen(prefix) > 0 && strlen(name) > 0 ? " " : "", + /* ...this is the type name itself */ + name, + /* ...suffixed by the appropriate '*', '[]' suffixes */ + strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix, + array_suffix, parens); + + return show->state.name; +} + +static const char *__btf_show_indent(struct btf_show *show) +{ + const char *indents = " "; + const char *indent = &indents[strlen(indents)]; + + if ((indent - show->state.depth) >= indents) + return indent - show->state.depth; + return indents; +} + +static const char *btf_show_indent(struct btf_show *show) +{ + return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show); +} + +static const char *btf_show_newline(struct btf_show *show) +{ + return show->flags & BTF_SHOW_COMPACT ? "" : "\n"; +} + +static const char *btf_show_delim(struct btf_show *show) +{ + if (show->state.depth == 0) + return ""; + + if ((show->flags & BTF_SHOW_COMPACT) && show->state.type && + BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION) + return "|"; + + return ","; +} + +__printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...) +{ + va_list args; + + if (!show->state.depth_check) { + va_start(args, fmt); + show->showfn(show, fmt, args); + va_end(args); + } +} + +/* Macros are used here as btf_show_type_value[s]() prepends and appends + * format specifiers to the format specifier passed in; these do the work of + * adding indentation, delimiters etc while the caller simply has to specify + * the type value(s) in the format specifier + value(s). + */ +#define btf_show_type_value(show, fmt, value) \ + do { \ + if ((value) != (__typeof__(value))0 || \ + (show->flags & BTF_SHOW_ZERO) || \ + show->state.depth == 0) { \ + btf_show(show, "%s%s" fmt "%s%s", \ + btf_show_indent(show), \ + btf_show_name(show), \ + value, btf_show_delim(show), \ + btf_show_newline(show)); \ + if (show->state.depth > show->state.depth_to_show) \ + show->state.depth_to_show = show->state.depth; \ + } \ + } while (0) + +#define btf_show_type_values(show, fmt, ...) \ + do { \ + btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show), \ + btf_show_name(show), \ + __VA_ARGS__, btf_show_delim(show), \ + btf_show_newline(show)); \ + if (show->state.depth > show->state.depth_to_show) \ + show->state.depth_to_show = show->state.depth; \ + } while (0) + +/* How much is left to copy to safe buffer after @data? */ +static int btf_show_obj_size_left(struct btf_show *show, void *data) +{ + return show->obj.head + show->obj.size - data; +} + +/* Is object pointed to by @data of @size already copied to our safe buffer? */ +static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size) +{ + return data >= show->obj.data && + (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE); +} + +/* + * If object pointed to by @data of @size falls within our safe buffer, return + * the equivalent pointer to the same safe data. Assumes + * copy_from_kernel_nofault() has already happened and our safe buffer is + * populated. + */ +static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size) +{ + if (btf_show_obj_is_safe(show, data, size)) + return show->obj.safe + (data - show->obj.data); + return NULL; +} + +/* + * Return a safe-to-access version of data pointed to by @data. + * We do this by copying the relevant amount of information + * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault(). + * + * If BTF_SHOW_UNSAFE is specified, just return data as-is; no + * safe copy is needed. + * + * Otherwise we need to determine if we have the required amount + * of data (determined by the @data pointer and the size of the + * largest base type we can encounter (represented by + * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures + * that we will be able to print some of the current object, + * and if more is needed a copy will be triggered. + * Some objects such as structs will not fit into the buffer; + * in such cases additional copies when we iterate over their + * members may be needed. + * + * btf_show_obj_safe() is used to return a safe buffer for + * btf_show_start_type(); this ensures that as we recurse into + * nested types we always have safe data for the given type. + * This approach is somewhat wasteful; it's possible for example + * that when iterating over a large union we'll end up copying the + * same data repeatedly, but the goal is safety not performance. + * We use stack data as opposed to per-CPU buffers because the + * iteration over a type can take some time, and preemption handling + * would greatly complicate use of the safe buffer. + */ +static void *btf_show_obj_safe(struct btf_show *show, + const struct btf_type *t, + void *data) +{ + const struct btf_type *rt; + int size_left, size; + void *safe = NULL; + + if (show->flags & BTF_SHOW_UNSAFE) + return data; + + rt = btf_resolve_size(show->btf, t, &size); + if (IS_ERR(rt)) { + show->state.status = PTR_ERR(rt); + return NULL; + } + + /* + * Is this toplevel object? If so, set total object size and + * initialize pointers. Otherwise check if we still fall within + * our safe object data. + */ + if (show->state.depth == 0) { + show->obj.size = size; + show->obj.head = data; + } else { + /* + * If the size of the current object is > our remaining + * safe buffer we _may_ need to do a new copy. However + * consider the case of a nested struct; it's size pushes + * us over the safe buffer limit, but showing any individual + * struct members does not. In such cases, we don't need + * to initiate a fresh copy yet; however we definitely need + * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left + * in our buffer, regardless of the current object size. + * The logic here is that as we resolve types we will + * hit a base type at some point, and we need to be sure + * the next chunk of data is safely available to display + * that type info safely. We cannot rely on the size of + * the current object here because it may be much larger + * than our current buffer (e.g. task_struct is 8k). + * All we want to do here is ensure that we can print the + * next basic type, which we can if either + * - the current type size is within the safe buffer; or + * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in + * the safe buffer. + */ + safe = __btf_show_obj_safe(show, data, + min(size, + BTF_SHOW_OBJ_BASE_TYPE_SIZE)); + } + + /* + * We need a new copy to our safe object, either because we haven't + * yet copied and are initializing safe data, or because the data + * we want falls outside the boundaries of the safe object. + */ + if (!safe) { + size_left = btf_show_obj_size_left(show, data); + if (size_left > BTF_SHOW_OBJ_SAFE_SIZE) + size_left = BTF_SHOW_OBJ_SAFE_SIZE; + show->state.status = copy_from_kernel_nofault(show->obj.safe, + data, size_left); + if (!show->state.status) { + show->obj.data = data; + safe = show->obj.safe; + } + } + + return safe; +} + +/* + * Set the type we are starting to show and return a safe data pointer + * to be used for showing the associated data. + */ +static void *btf_show_start_type(struct btf_show *show, + const struct btf_type *t, + u32 type_id, void *data) +{ + show->state.type = t; + show->state.type_id = type_id; + show->state.name[0] = '\0'; + + return btf_show_obj_safe(show, t, data); +} + +static void btf_show_end_type(struct btf_show *show) +{ + show->state.type = NULL; + show->state.type_id = 0; + show->state.name[0] = '\0'; +} + +static void *btf_show_start_aggr_type(struct btf_show *show, + const struct btf_type *t, + u32 type_id, void *data) +{ + void *safe_data = btf_show_start_type(show, t, type_id, data); + + if (!safe_data) + return safe_data; + + btf_show(show, "%s%s%s", btf_show_indent(show), + btf_show_name(show), + btf_show_newline(show)); + show->state.depth++; + return safe_data; +} + +static void btf_show_end_aggr_type(struct btf_show *show, + const char *suffix) +{ + show->state.depth--; + btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix, + btf_show_delim(show), btf_show_newline(show)); + btf_show_end_type(show); +} + +static void btf_show_start_member(struct btf_show *show, + const struct btf_member *m) +{ + show->state.member = m; +} + +static void btf_show_start_array_member(struct btf_show *show) +{ + show->state.array_member = 1; + btf_show_start_member(show, NULL); +} + +static void btf_show_end_member(struct btf_show *show) +{ + show->state.member = NULL; +} + +static void btf_show_end_array_member(struct btf_show *show) +{ + show->state.array_member = 0; + btf_show_end_member(show); +} + +static void *btf_show_start_array_type(struct btf_show *show, + const struct btf_type *t, + u32 type_id, + u16 array_encoding, + void *data) +{ + show->state.array_encoding = array_encoding; + show->state.array_terminated = 0; + return btf_show_start_aggr_type(show, t, type_id, data); +} + +static void btf_show_end_array_type(struct btf_show *show) +{ + show->state.array_encoding = 0; + show->state.array_terminated = 0; + btf_show_end_aggr_type(show, "]"); +} + +static void *btf_show_start_struct_type(struct btf_show *show, + const struct btf_type *t, + u32 type_id, + void *data) +{ + return btf_show_start_aggr_type(show, t, type_id, data); +} + +static void btf_show_end_struct_type(struct btf_show *show) +{ + btf_show_end_aggr_type(show, "}"); +} + +__printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log, + const char *fmt, ...) +{ + va_list args; + + va_start(args, fmt); + bpf_verifier_vlog(log, fmt, args); + va_end(args); +} + +__printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env, + const char *fmt, ...) +{ + struct bpf_verifier_log *log = &env->log; + va_list args; + + if (!bpf_verifier_log_needed(log)) + return; + + va_start(args, fmt); + bpf_verifier_vlog(log, fmt, args); + va_end(args); +} + +__printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env, + const struct btf_type *t, + bool log_details, + const char *fmt, ...) +{ + struct bpf_verifier_log *log = &env->log; + struct btf *btf = env->btf; + va_list args; + + if (!bpf_verifier_log_needed(log)) + return; + + /* btf verifier prints all types it is processing via + * btf_verifier_log_type(..., fmt = NULL). + * Skip those prints for in-kernel BTF verification. + */ + if (log->level == BPF_LOG_KERNEL && !fmt) + return; + + __btf_verifier_log(log, "[%u] %s %s%s", + env->log_type_id, + btf_type_str(t), + __btf_name_by_offset(btf, t->name_off), + log_details ? " " : ""); + + if (log_details) + btf_type_ops(t)->log_details(env, t); + + if (fmt && *fmt) { + __btf_verifier_log(log, " "); + va_start(args, fmt); + bpf_verifier_vlog(log, fmt, args); + va_end(args); + } + + __btf_verifier_log(log, "\n"); +} + +#define btf_verifier_log_type(env, t, ...) \ + __btf_verifier_log_type((env), (t), true, __VA_ARGS__) +#define btf_verifier_log_basic(env, t, ...) \ + __btf_verifier_log_type((env), (t), false, __VA_ARGS__) + +__printf(4, 5) +static void btf_verifier_log_member(struct btf_verifier_env *env, + const struct btf_type *struct_type, + const struct btf_member *member, + const char *fmt, ...) +{ + struct bpf_verifier_log *log = &env->log; + struct btf *btf = env->btf; + va_list args; + + if (!bpf_verifier_log_needed(log)) + return; + + if (log->level == BPF_LOG_KERNEL && !fmt) + return; + /* The CHECK_META phase already did a btf dump. + * + * If member is logged again, it must hit an error in + * parsing this member. It is useful to print out which + * struct this member belongs to. + */ + if (env->phase != CHECK_META) + btf_verifier_log_type(env, struct_type, NULL); + + if (btf_type_kflag(struct_type)) + __btf_verifier_log(log, + "\t%s type_id=%u bitfield_size=%u bits_offset=%u", + __btf_name_by_offset(btf, member->name_off), + member->type, + BTF_MEMBER_BITFIELD_SIZE(member->offset), + BTF_MEMBER_BIT_OFFSET(member->offset)); + else + __btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u", + __btf_name_by_offset(btf, member->name_off), + member->type, member->offset); + + if (fmt && *fmt) { + __btf_verifier_log(log, " "); + va_start(args, fmt); + bpf_verifier_vlog(log, fmt, args); + va_end(args); + } + + __btf_verifier_log(log, "\n"); +} + +__printf(4, 5) +static void btf_verifier_log_vsi(struct btf_verifier_env *env, + const struct btf_type *datasec_type, + const struct btf_var_secinfo *vsi, + const char *fmt, ...) +{ + struct bpf_verifier_log *log = &env->log; + va_list args; + + if (!bpf_verifier_log_needed(log)) + return; + if (log->level == BPF_LOG_KERNEL && !fmt) + return; + if (env->phase != CHECK_META) + btf_verifier_log_type(env, datasec_type, NULL); + + __btf_verifier_log(log, "\t type_id=%u offset=%u size=%u", + vsi->type, vsi->offset, vsi->size); + if (fmt && *fmt) { + __btf_verifier_log(log, " "); + va_start(args, fmt); + bpf_verifier_vlog(log, fmt, args); + va_end(args); + } + + __btf_verifier_log(log, "\n"); +} + +static void btf_verifier_log_hdr(struct btf_verifier_env *env, + u32 btf_data_size) +{ + struct bpf_verifier_log *log = &env->log; + const struct btf *btf = env->btf; + const struct btf_header *hdr; + + if (!bpf_verifier_log_needed(log)) + return; + + if (log->level == BPF_LOG_KERNEL) + return; + hdr = &btf->hdr; + __btf_verifier_log(log, "magic: 0x%x\n", hdr->magic); + __btf_verifier_log(log, "version: %u\n", hdr->version); + __btf_verifier_log(log, "flags: 0x%x\n", hdr->flags); + __btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len); + __btf_verifier_log(log, "type_off: %u\n", hdr->type_off); + __btf_verifier_log(log, "type_len: %u\n", hdr->type_len); + __btf_verifier_log(log, "str_off: %u\n", hdr->str_off); + __btf_verifier_log(log, "str_len: %u\n", hdr->str_len); + __btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size); +} + +static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t) +{ + struct btf *btf = env->btf; + + if (btf->types_size == btf->nr_types) { + /* Expand 'types' array */ + + struct btf_type **new_types; + u32 expand_by, new_size; + + if (btf->start_id + btf->types_size == BTF_MAX_TYPE) { + btf_verifier_log(env, "Exceeded max num of types"); + return -E2BIG; + } + + expand_by = max_t(u32, btf->types_size >> 2, 16); + new_size = min_t(u32, BTF_MAX_TYPE, + btf->types_size + expand_by); + + new_types = kvcalloc(new_size, sizeof(*new_types), + GFP_KERNEL | __GFP_NOWARN); + if (!new_types) + return -ENOMEM; + + if (btf->nr_types == 0) { + if (!btf->base_btf) { + /* lazily init VOID type */ + new_types[0] = &btf_void; + btf->nr_types++; + } + } else { + memcpy(new_types, btf->types, + sizeof(*btf->types) * btf->nr_types); + } + + kvfree(btf->types); + btf->types = new_types; + btf->types_size = new_size; + } + + btf->types[btf->nr_types++] = t; + + return 0; +} + +static int btf_alloc_id(struct btf *btf) +{ + int id; + + idr_preload(GFP_KERNEL); + spin_lock_bh(&btf_idr_lock); + id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC); + if (id > 0) + btf->id = id; + spin_unlock_bh(&btf_idr_lock); + idr_preload_end(); + + if (WARN_ON_ONCE(!id)) + return -ENOSPC; + + return id > 0 ? 0 : id; +} + +static void btf_free_id(struct btf *btf) +{ + unsigned long flags; + + /* + * In map-in-map, calling map_delete_elem() on outer + * map will call bpf_map_put on the inner map. + * It will then eventually call btf_free_id() + * on the inner map. Some of the map_delete_elem() + * implementation may have irq disabled, so + * we need to use the _irqsave() version instead + * of the _bh() version. + */ + spin_lock_irqsave(&btf_idr_lock, flags); + idr_remove(&btf_idr, btf->id); + spin_unlock_irqrestore(&btf_idr_lock, flags); +} + +static void btf_free_kfunc_set_tab(struct btf *btf) +{ + struct btf_kfunc_set_tab *tab = btf->kfunc_set_tab; + int hook; + + if (!tab) + return; + /* For module BTF, we directly assign the sets being registered, so + * there is nothing to free except kfunc_set_tab. + */ + if (btf_is_module(btf)) + goto free_tab; + for (hook = 0; hook < ARRAY_SIZE(tab->sets); hook++) + kfree(tab->sets[hook]); +free_tab: + kfree(tab); + btf->kfunc_set_tab = NULL; +} + +static void btf_free_dtor_kfunc_tab(struct btf *btf) +{ + struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab; + + if (!tab) + return; + kfree(tab); + btf->dtor_kfunc_tab = NULL; +} + +static void btf_free(struct btf *btf) +{ + btf_free_dtor_kfunc_tab(btf); + btf_free_kfunc_set_tab(btf); + kvfree(btf->types); + kvfree(btf->resolved_sizes); + kvfree(btf->resolved_ids); + kvfree(btf->data); + kfree(btf); +} + +static void btf_free_rcu(struct rcu_head *rcu) +{ + struct btf *btf = container_of(rcu, struct btf, rcu); + + btf_free(btf); +} + +void btf_get(struct btf *btf) +{ + refcount_inc(&btf->refcnt); +} + +void btf_put(struct btf *btf) +{ + if (btf && refcount_dec_and_test(&btf->refcnt)) { + btf_free_id(btf); + call_rcu(&btf->rcu, btf_free_rcu); + } +} + +static int env_resolve_init(struct btf_verifier_env *env) +{ + struct btf *btf = env->btf; + u32 nr_types = btf->nr_types; + u32 *resolved_sizes = NULL; + u32 *resolved_ids = NULL; + u8 *visit_states = NULL; + + resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes), + GFP_KERNEL | __GFP_NOWARN); + if (!resolved_sizes) + goto nomem; + + resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids), + GFP_KERNEL | __GFP_NOWARN); + if (!resolved_ids) + goto nomem; + + visit_states = kvcalloc(nr_types, sizeof(*visit_states), + GFP_KERNEL | __GFP_NOWARN); + if (!visit_states) + goto nomem; + + btf->resolved_sizes = resolved_sizes; + btf->resolved_ids = resolved_ids; + env->visit_states = visit_states; + + return 0; + +nomem: + kvfree(resolved_sizes); + kvfree(resolved_ids); + kvfree(visit_states); + return -ENOMEM; +} + +static void btf_verifier_env_free(struct btf_verifier_env *env) +{ + kvfree(env->visit_states); + kfree(env); +} + +static bool env_type_is_resolve_sink(const struct btf_verifier_env *env, + const struct btf_type *next_type) +{ + switch (env->resolve_mode) { + case RESOLVE_TBD: + /* int, enum or void is a sink */ + return !btf_type_needs_resolve(next_type); + case RESOLVE_PTR: + /* int, enum, void, struct, array, func or func_proto is a sink + * for ptr + */ + return !btf_type_is_modifier(next_type) && + !btf_type_is_ptr(next_type); + case RESOLVE_STRUCT_OR_ARRAY: + /* int, enum, void, ptr, func or func_proto is a sink + * for struct and array + */ + return !btf_type_is_modifier(next_type) && + !btf_type_is_array(next_type) && + !btf_type_is_struct(next_type); + default: + BUG(); + } +} + +static bool env_type_is_resolved(const struct btf_verifier_env *env, + u32 type_id) +{ + /* base BTF types should be resolved by now */ + if (type_id < env->btf->start_id) + return true; + + return env->visit_states[type_id - env->btf->start_id] == RESOLVED; +} + +static int env_stack_push(struct btf_verifier_env *env, + const struct btf_type *t, u32 type_id) +{ + const struct btf *btf = env->btf; + struct resolve_vertex *v; + + if (env->top_stack == MAX_RESOLVE_DEPTH) + return -E2BIG; + + if (type_id < btf->start_id + || env->visit_states[type_id - btf->start_id] != NOT_VISITED) + return -EEXIST; + + env->visit_states[type_id - btf->start_id] = VISITED; + + v = &env->stack[env->top_stack++]; + v->t = t; + v->type_id = type_id; + v->next_member = 0; + + if (env->resolve_mode == RESOLVE_TBD) { + if (btf_type_is_ptr(t)) + env->resolve_mode = RESOLVE_PTR; + else if (btf_type_is_struct(t) || btf_type_is_array(t)) + env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY; + } + + return 0; +} + +static void env_stack_set_next_member(struct btf_verifier_env *env, + u16 next_member) +{ + env->stack[env->top_stack - 1].next_member = next_member; +} + +static void env_stack_pop_resolved(struct btf_verifier_env *env, + u32 resolved_type_id, + u32 resolved_size) +{ + u32 type_id = env->stack[--(env->top_stack)].type_id; + struct btf *btf = env->btf; + + type_id -= btf->start_id; /* adjust to local type id */ + btf->resolved_sizes[type_id] = resolved_size; + btf->resolved_ids[type_id] = resolved_type_id; + env->visit_states[type_id] = RESOLVED; +} + +static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env) +{ + return env->top_stack ? &env->stack[env->top_stack - 1] : NULL; +} + +/* Resolve the size of a passed-in "type" + * + * type: is an array (e.g. u32 array[x][y]) + * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY, + * *type_size: (x * y * sizeof(u32)). Hence, *type_size always + * corresponds to the return type. + * *elem_type: u32 + * *elem_id: id of u32 + * *total_nelems: (x * y). Hence, individual elem size is + * (*type_size / *total_nelems) + * *type_id: id of type if it's changed within the function, 0 if not + * + * type: is not an array (e.g. const struct X) + * return type: type "struct X" + * *type_size: sizeof(struct X) + * *elem_type: same as return type ("struct X") + * *elem_id: 0 + * *total_nelems: 1 + * *type_id: id of type if it's changed within the function, 0 if not + */ +static const struct btf_type * +__btf_resolve_size(const struct btf *btf, const struct btf_type *type, + u32 *type_size, const struct btf_type **elem_type, + u32 *elem_id, u32 *total_nelems, u32 *type_id) +{ + const struct btf_type *array_type = NULL; + const struct btf_array *array = NULL; + u32 i, size, nelems = 1, id = 0; + + for (i = 0; i < MAX_RESOLVE_DEPTH; i++) { + switch (BTF_INFO_KIND(type->info)) { + /* type->size can be used */ + case BTF_KIND_INT: + case BTF_KIND_STRUCT: + case BTF_KIND_UNION: + case BTF_KIND_ENUM: + case BTF_KIND_FLOAT: + case BTF_KIND_ENUM64: + size = type->size; + goto resolved; + + case BTF_KIND_PTR: + size = sizeof(void *); + goto resolved; + + /* Modifiers */ + case BTF_KIND_TYPEDEF: + case BTF_KIND_VOLATILE: + case BTF_KIND_CONST: + case BTF_KIND_RESTRICT: + case BTF_KIND_TYPE_TAG: + id = type->type; + type = btf_type_by_id(btf, type->type); + break; + + case BTF_KIND_ARRAY: + if (!array_type) + array_type = type; + array = btf_type_array(type); + if (nelems && array->nelems > U32_MAX / nelems) + return ERR_PTR(-EINVAL); + nelems *= array->nelems; + type = btf_type_by_id(btf, array->type); + break; + + /* type without size */ + default: + return ERR_PTR(-EINVAL); + } + } + + return ERR_PTR(-EINVAL); + +resolved: + if (nelems && size > U32_MAX / nelems) + return ERR_PTR(-EINVAL); + + *type_size = nelems * size; + if (total_nelems) + *total_nelems = nelems; + if (elem_type) + *elem_type = type; + if (elem_id) + *elem_id = array ? array->type : 0; + if (type_id && id) + *type_id = id; + + return array_type ? : type; +} + +const struct btf_type * +btf_resolve_size(const struct btf *btf, const struct btf_type *type, + u32 *type_size) +{ + return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL); +} + +static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id) +{ + while (type_id < btf->start_id) + btf = btf->base_btf; + + return btf->resolved_ids[type_id - btf->start_id]; +} + +/* The input param "type_id" must point to a needs_resolve type */ +static const struct btf_type *btf_type_id_resolve(const struct btf *btf, + u32 *type_id) +{ + *type_id = btf_resolved_type_id(btf, *type_id); + return btf_type_by_id(btf, *type_id); +} + +static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id) +{ + while (type_id < btf->start_id) + btf = btf->base_btf; + + return btf->resolved_sizes[type_id - btf->start_id]; +} + +const struct btf_type *btf_type_id_size(const struct btf *btf, + u32 *type_id, u32 *ret_size) +{ + const struct btf_type *size_type; + u32 size_type_id = *type_id; + u32 size = 0; + + size_type = btf_type_by_id(btf, size_type_id); + if (btf_type_nosize_or_null(size_type)) + return NULL; + + if (btf_type_has_size(size_type)) { + size = size_type->size; + } else if (btf_type_is_array(size_type)) { + size = btf_resolved_type_size(btf, size_type_id); + } else if (btf_type_is_ptr(size_type)) { + size = sizeof(void *); + } else { + if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) && + !btf_type_is_var(size_type))) + return NULL; + + size_type_id = btf_resolved_type_id(btf, size_type_id); + size_type = btf_type_by_id(btf, size_type_id); + if (btf_type_nosize_or_null(size_type)) + return NULL; + else if (btf_type_has_size(size_type)) + size = size_type->size; + else if (btf_type_is_array(size_type)) + size = btf_resolved_type_size(btf, size_type_id); + else if (btf_type_is_ptr(size_type)) + size = sizeof(void *); + else + return NULL; + } + + *type_id = size_type_id; + if (ret_size) + *ret_size = size; + + return size_type; +} + +static int btf_df_check_member(struct btf_verifier_env *env, + const struct btf_type *struct_type, + const struct btf_member *member, + const struct btf_type *member_type) +{ + btf_verifier_log_basic(env, struct_type, + "Unsupported check_member"); + return -EINVAL; +} + +static int btf_df_check_kflag_member(struct btf_verifier_env *env, + const struct btf_type *struct_type, + const struct btf_member *member, + const struct btf_type *member_type) +{ + btf_verifier_log_basic(env, struct_type, + "Unsupported check_kflag_member"); + return -EINVAL; +} + +/* Used for ptr, array struct/union and float type members. + * int, enum and modifier types have their specific callback functions. + */ +static int btf_generic_check_kflag_member(struct btf_verifier_env *env, + const struct btf_type *struct_type, + const struct btf_member *member, + const struct btf_type *member_type) +{ + if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) { + btf_verifier_log_member(env, struct_type, member, + "Invalid member bitfield_size"); + return -EINVAL; + } + + /* bitfield size is 0, so member->offset represents bit offset only. + * It is safe to call non kflag check_member variants. + */ + return btf_type_ops(member_type)->check_member(env, struct_type, + member, + member_type); +} + +static int btf_df_resolve(struct btf_verifier_env *env, + const struct resolve_vertex *v) +{ + btf_verifier_log_basic(env, v->t, "Unsupported resolve"); + return -EINVAL; +} + +static void btf_df_show(const struct btf *btf, const struct btf_type *t, + u32 type_id, void *data, u8 bits_offsets, + struct btf_show *show) +{ + btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info)); +} + +static int btf_int_check_member(struct btf_verifier_env *env, + const struct btf_type *struct_type, + const struct btf_member *member, + const struct btf_type *member_type) +{ + u32 int_data = btf_type_int(member_type); + u32 struct_bits_off = member->offset; + u32 struct_size = struct_type->size; + u32 nr_copy_bits; + u32 bytes_offset; + + if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) { + btf_verifier_log_member(env, struct_type, member, + "bits_offset exceeds U32_MAX"); + return -EINVAL; + } + + struct_bits_off += BTF_INT_OFFSET(int_data); + bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); + nr_copy_bits = BTF_INT_BITS(int_data) + + BITS_PER_BYTE_MASKED(struct_bits_off); + + if (nr_copy_bits > BITS_PER_U128) { + btf_verifier_log_member(env, struct_type, member, + "nr_copy_bits exceeds 128"); + return -EINVAL; + } + + if (struct_size < bytes_offset || + struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) { + btf_verifier_log_member(env, struct_type, member, + "Member exceeds struct_size"); + return -EINVAL; + } + + return 0; +} + +static int btf_int_check_kflag_member(struct btf_verifier_env *env, + const struct btf_type *struct_type, + const struct btf_member *member, + const struct btf_type *member_type) +{ + u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset; + u32 int_data = btf_type_int(member_type); + u32 struct_size = struct_type->size; + u32 nr_copy_bits; + + /* a regular int type is required for the kflag int member */ + if (!btf_type_int_is_regular(member_type)) { + btf_verifier_log_member(env, struct_type, member, + "Invalid member base type"); + return -EINVAL; + } + + /* check sanity of bitfield size */ + nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset); + struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset); + nr_int_data_bits = BTF_INT_BITS(int_data); + if (!nr_bits) { + /* Not a bitfield member, member offset must be at byte + * boundary. + */ + if (BITS_PER_BYTE_MASKED(struct_bits_off)) { + btf_verifier_log_member(env, struct_type, member, + "Invalid member offset"); + return -EINVAL; + } + + nr_bits = nr_int_data_bits; + } else if (nr_bits > nr_int_data_bits) { + btf_verifier_log_member(env, struct_type, member, + "Invalid member bitfield_size"); + return -EINVAL; + } + + bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); + nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off); + if (nr_copy_bits > BITS_PER_U128) { + btf_verifier_log_member(env, struct_type, member, + "nr_copy_bits exceeds 128"); + return -EINVAL; + } + + if (struct_size < bytes_offset || + struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) { + btf_verifier_log_member(env, struct_type, member, + "Member exceeds struct_size"); + return -EINVAL; + } + + return 0; +} + +static s32 btf_int_check_meta(struct btf_verifier_env *env, + const struct btf_type *t, + u32 meta_left) +{ + u32 int_data, nr_bits, meta_needed = sizeof(int_data); + u16 encoding; + + if (meta_left < meta_needed) { + btf_verifier_log_basic(env, t, + "meta_left:%u meta_needed:%u", + meta_left, meta_needed); + return -EINVAL; + } + + if (btf_type_vlen(t)) { + btf_verifier_log_type(env, t, "vlen != 0"); + return -EINVAL; + } + + if (btf_type_kflag(t)) { + btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); + return -EINVAL; + } + + int_data = btf_type_int(t); + if (int_data & ~BTF_INT_MASK) { + btf_verifier_log_basic(env, t, "Invalid int_data:%x", + int_data); + return -EINVAL; + } + + nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data); + + if (nr_bits > BITS_PER_U128) { + btf_verifier_log_type(env, t, "nr_bits exceeds %zu", + BITS_PER_U128); + return -EINVAL; + } + + if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) { + btf_verifier_log_type(env, t, "nr_bits exceeds type_size"); + return -EINVAL; + } + + /* + * Only one of the encoding bits is allowed and it + * should be sufficient for the pretty print purpose (i.e. decoding). + * Multiple bits can be allowed later if it is found + * to be insufficient. + */ + encoding = BTF_INT_ENCODING(int_data); + if (encoding && + encoding != BTF_INT_SIGNED && + encoding != BTF_INT_CHAR && + encoding != BTF_INT_BOOL) { + btf_verifier_log_type(env, t, "Unsupported encoding"); + return -ENOTSUPP; + } + + btf_verifier_log_type(env, t, NULL); + + return meta_needed; +} + +static void btf_int_log(struct btf_verifier_env *env, + const struct btf_type *t) +{ + int int_data = btf_type_int(t); + + btf_verifier_log(env, + "size=%u bits_offset=%u nr_bits=%u encoding=%s", + t->size, BTF_INT_OFFSET(int_data), + BTF_INT_BITS(int_data), + btf_int_encoding_str(BTF_INT_ENCODING(int_data))); +} + +static void btf_int128_print(struct btf_show *show, void *data) +{ + /* data points to a __int128 number. + * Suppose + * int128_num = *(__int128 *)data; + * The below formulas shows what upper_num and lower_num represents: + * upper_num = int128_num >> 64; + * lower_num = int128_num & 0xffffffffFFFFFFFFULL; + */ + u64 upper_num, lower_num; + +#ifdef __BIG_ENDIAN_BITFIELD + upper_num = *(u64 *)data; + lower_num = *(u64 *)(data + 8); +#else + upper_num = *(u64 *)(data + 8); + lower_num = *(u64 *)data; +#endif + if (upper_num == 0) + btf_show_type_value(show, "0x%llx", lower_num); + else + btf_show_type_values(show, "0x%llx%016llx", upper_num, + lower_num); +} + +static void btf_int128_shift(u64 *print_num, u16 left_shift_bits, + u16 right_shift_bits) +{ + u64 upper_num, lower_num; + +#ifdef __BIG_ENDIAN_BITFIELD + upper_num = print_num[0]; + lower_num = print_num[1]; +#else + upper_num = print_num[1]; + lower_num = print_num[0]; +#endif + + /* shake out un-needed bits by shift/or operations */ + if (left_shift_bits >= 64) { + upper_num = lower_num << (left_shift_bits - 64); + lower_num = 0; + } else { + upper_num = (upper_num << left_shift_bits) | + (lower_num >> (64 - left_shift_bits)); + lower_num = lower_num << left_shift_bits; + } + + if (right_shift_bits >= 64) { + lower_num = upper_num >> (right_shift_bits - 64); + upper_num = 0; + } else { + lower_num = (lower_num >> right_shift_bits) | + (upper_num << (64 - right_shift_bits)); + upper_num = upper_num >> right_shift_bits; + } + +#ifdef __BIG_ENDIAN_BITFIELD + print_num[0] = upper_num; + print_num[1] = lower_num; +#else + print_num[0] = lower_num; + print_num[1] = upper_num; +#endif +} + +static void btf_bitfield_show(void *data, u8 bits_offset, + u8 nr_bits, struct btf_show *show) +{ + u16 left_shift_bits, right_shift_bits; + u8 nr_copy_bytes; + u8 nr_copy_bits; + u64 print_num[2] = {}; + + nr_copy_bits = nr_bits + bits_offset; + nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits); + + memcpy(print_num, data, nr_copy_bytes); + +#ifdef __BIG_ENDIAN_BITFIELD + left_shift_bits = bits_offset; +#else + left_shift_bits = BITS_PER_U128 - nr_copy_bits; +#endif + right_shift_bits = BITS_PER_U128 - nr_bits; + + btf_int128_shift(print_num, left_shift_bits, right_shift_bits); + btf_int128_print(show, print_num); +} + + +static void btf_int_bits_show(const struct btf *btf, + const struct btf_type *t, + void *data, u8 bits_offset, + struct btf_show *show) +{ + u32 int_data = btf_type_int(t); + u8 nr_bits = BTF_INT_BITS(int_data); + u8 total_bits_offset; + + /* + * bits_offset is at most 7. + * BTF_INT_OFFSET() cannot exceed 128 bits. + */ + total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data); + data += BITS_ROUNDDOWN_BYTES(total_bits_offset); + bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset); + btf_bitfield_show(data, bits_offset, nr_bits, show); +} + +static void btf_int_show(const struct btf *btf, const struct btf_type *t, + u32 type_id, void *data, u8 bits_offset, + struct btf_show *show) +{ + u32 int_data = btf_type_int(t); + u8 encoding = BTF_INT_ENCODING(int_data); + bool sign = encoding & BTF_INT_SIGNED; + u8 nr_bits = BTF_INT_BITS(int_data); + void *safe_data; + + safe_data = btf_show_start_type(show, t, type_id, data); + if (!safe_data) + return; + + if (bits_offset || BTF_INT_OFFSET(int_data) || + BITS_PER_BYTE_MASKED(nr_bits)) { + btf_int_bits_show(btf, t, safe_data, bits_offset, show); + goto out; + } + + switch (nr_bits) { + case 128: + btf_int128_print(show, safe_data); + break; + case 64: + if (sign) + btf_show_type_value(show, "%lld", *(s64 *)safe_data); + else + btf_show_type_value(show, "%llu", *(u64 *)safe_data); + break; + case 32: + if (sign) + btf_show_type_value(show, "%d", *(s32 *)safe_data); + else + btf_show_type_value(show, "%u", *(u32 *)safe_data); + break; + case 16: + if (sign) + btf_show_type_value(show, "%d", *(s16 *)safe_data); + else + btf_show_type_value(show, "%u", *(u16 *)safe_data); + break; + case 8: + if (show->state.array_encoding == BTF_INT_CHAR) { + /* check for null terminator */ + if (show->state.array_terminated) + break; + if (*(char *)data == '\0') { + show->state.array_terminated = 1; + break; + } + if (isprint(*(char *)data)) { + btf_show_type_value(show, "'%c'", + *(char *)safe_data); + break; + } + } + if (sign) + btf_show_type_value(show, "%d", *(s8 *)safe_data); + else + btf_show_type_value(show, "%u", *(u8 *)safe_data); + break; + default: + btf_int_bits_show(btf, t, safe_data, bits_offset, show); + break; + } +out: + btf_show_end_type(show); +} + +static const struct btf_kind_operations int_ops = { + .check_meta = btf_int_check_meta, + .resolve = btf_df_resolve, + .check_member = btf_int_check_member, + .check_kflag_member = btf_int_check_kflag_member, + .log_details = btf_int_log, + .show = btf_int_show, +}; + +static int btf_modifier_check_member(struct btf_verifier_env *env, + const struct btf_type *struct_type, + const struct btf_member *member, + const struct btf_type *member_type) +{ + const struct btf_type *resolved_type; + u32 resolved_type_id = member->type; + struct btf_member resolved_member; + struct btf *btf = env->btf; + + resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL); + if (!resolved_type) { + btf_verifier_log_member(env, struct_type, member, + "Invalid member"); + return -EINVAL; + } + + resolved_member = *member; + resolved_member.type = resolved_type_id; + + return btf_type_ops(resolved_type)->check_member(env, struct_type, + &resolved_member, + resolved_type); +} + +static int btf_modifier_check_kflag_member(struct btf_verifier_env *env, + const struct btf_type *struct_type, + const struct btf_member *member, + const struct btf_type *member_type) +{ + const struct btf_type *resolved_type; + u32 resolved_type_id = member->type; + struct btf_member resolved_member; + struct btf *btf = env->btf; + + resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL); + if (!resolved_type) { + btf_verifier_log_member(env, struct_type, member, + "Invalid member"); + return -EINVAL; + } + + resolved_member = *member; + resolved_member.type = resolved_type_id; + + return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type, + &resolved_member, + resolved_type); +} + +static int btf_ptr_check_member(struct btf_verifier_env *env, + const struct btf_type *struct_type, + const struct btf_member *member, + const struct btf_type *member_type) +{ + u32 struct_size, struct_bits_off, bytes_offset; + + struct_size = struct_type->size; + struct_bits_off = member->offset; + bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); + + if (BITS_PER_BYTE_MASKED(struct_bits_off)) { + btf_verifier_log_member(env, struct_type, member, + "Member is not byte aligned"); + return -EINVAL; + } + + if (struct_size - bytes_offset < sizeof(void *)) { + btf_verifier_log_member(env, struct_type, member, + "Member exceeds struct_size"); + return -EINVAL; + } + + return 0; +} + +static int btf_ref_type_check_meta(struct btf_verifier_env *env, + const struct btf_type *t, + u32 meta_left) +{ + const char *value; + + if (btf_type_vlen(t)) { + btf_verifier_log_type(env, t, "vlen != 0"); + return -EINVAL; + } + + if (btf_type_kflag(t)) { + btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); + return -EINVAL; + } + + if (!BTF_TYPE_ID_VALID(t->type)) { + btf_verifier_log_type(env, t, "Invalid type_id"); + return -EINVAL; + } + + /* typedef/type_tag type must have a valid name, and other ref types, + * volatile, const, restrict, should have a null name. + */ + if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) { + if (!t->name_off || + !btf_name_valid_identifier(env->btf, t->name_off)) { + btf_verifier_log_type(env, t, "Invalid name"); + return -EINVAL; + } + } else if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPE_TAG) { + value = btf_name_by_offset(env->btf, t->name_off); + if (!value || !value[0]) { + btf_verifier_log_type(env, t, "Invalid name"); + return -EINVAL; + } + } else { + if (t->name_off) { + btf_verifier_log_type(env, t, "Invalid name"); + return -EINVAL; + } + } + + btf_verifier_log_type(env, t, NULL); + + return 0; +} + +static int btf_modifier_resolve(struct btf_verifier_env *env, + const struct resolve_vertex *v) +{ + const struct btf_type *t = v->t; + const struct btf_type *next_type; + u32 next_type_id = t->type; + struct btf *btf = env->btf; + + next_type = btf_type_by_id(btf, next_type_id); + if (!next_type || btf_type_is_resolve_source_only(next_type)) { + btf_verifier_log_type(env, v->t, "Invalid type_id"); + return -EINVAL; + } + + if (!env_type_is_resolve_sink(env, next_type) && + !env_type_is_resolved(env, next_type_id)) + return env_stack_push(env, next_type, next_type_id); + + /* Figure out the resolved next_type_id with size. + * They will be stored in the current modifier's + * resolved_ids and resolved_sizes such that it can + * save us a few type-following when we use it later (e.g. in + * pretty print). + */ + if (!btf_type_id_size(btf, &next_type_id, NULL)) { + if (env_type_is_resolved(env, next_type_id)) + next_type = btf_type_id_resolve(btf, &next_type_id); + + /* "typedef void new_void", "const void"...etc */ + if (!btf_type_is_void(next_type) && + !btf_type_is_fwd(next_type) && + !btf_type_is_func_proto(next_type)) { + btf_verifier_log_type(env, v->t, "Invalid type_id"); + return -EINVAL; + } + } + + env_stack_pop_resolved(env, next_type_id, 0); + + return 0; +} + +static int btf_var_resolve(struct btf_verifier_env *env, + const struct resolve_vertex *v) +{ + const struct btf_type *next_type; + const struct btf_type *t = v->t; + u32 next_type_id = t->type; + struct btf *btf = env->btf; + + next_type = btf_type_by_id(btf, next_type_id); + if (!next_type || btf_type_is_resolve_source_only(next_type)) { + btf_verifier_log_type(env, v->t, "Invalid type_id"); + return -EINVAL; + } + + if (!env_type_is_resolve_sink(env, next_type) && + !env_type_is_resolved(env, next_type_id)) + return env_stack_push(env, next_type, next_type_id); + + if (btf_type_is_modifier(next_type)) { + const struct btf_type *resolved_type; + u32 resolved_type_id; + + resolved_type_id = next_type_id; + resolved_type = btf_type_id_resolve(btf, &resolved_type_id); + + if (btf_type_is_ptr(resolved_type) && + !env_type_is_resolve_sink(env, resolved_type) && + !env_type_is_resolved(env, resolved_type_id)) + return env_stack_push(env, resolved_type, + resolved_type_id); + } + + /* We must resolve to something concrete at this point, no + * forward types or similar that would resolve to size of + * zero is allowed. + */ + if (!btf_type_id_size(btf, &next_type_id, NULL)) { + btf_verifier_log_type(env, v->t, "Invalid type_id"); + return -EINVAL; + } + + env_stack_pop_resolved(env, next_type_id, 0); + + return 0; +} + +static int btf_ptr_resolve(struct btf_verifier_env *env, + const struct resolve_vertex *v) +{ + const struct btf_type *next_type; + const struct btf_type *t = v->t; + u32 next_type_id = t->type; + struct btf *btf = env->btf; + + next_type = btf_type_by_id(btf, next_type_id); + if (!next_type || btf_type_is_resolve_source_only(next_type)) { + btf_verifier_log_type(env, v->t, "Invalid type_id"); + return -EINVAL; + } + + if (!env_type_is_resolve_sink(env, next_type) && + !env_type_is_resolved(env, next_type_id)) + return env_stack_push(env, next_type, next_type_id); + + /* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY, + * the modifier may have stopped resolving when it was resolved + * to a ptr (last-resolved-ptr). + * + * We now need to continue from the last-resolved-ptr to + * ensure the last-resolved-ptr will not referring back to + * the current ptr (t). + */ + if (btf_type_is_modifier(next_type)) { + const struct btf_type *resolved_type; + u32 resolved_type_id; + + resolved_type_id = next_type_id; + resolved_type = btf_type_id_resolve(btf, &resolved_type_id); + + if (btf_type_is_ptr(resolved_type) && + !env_type_is_resolve_sink(env, resolved_type) && + !env_type_is_resolved(env, resolved_type_id)) + return env_stack_push(env, resolved_type, + resolved_type_id); + } + + if (!btf_type_id_size(btf, &next_type_id, NULL)) { + if (env_type_is_resolved(env, next_type_id)) + next_type = btf_type_id_resolve(btf, &next_type_id); + + if (!btf_type_is_void(next_type) && + !btf_type_is_fwd(next_type) && + !btf_type_is_func_proto(next_type)) { + btf_verifier_log_type(env, v->t, "Invalid type_id"); + return -EINVAL; + } + } + + env_stack_pop_resolved(env, next_type_id, 0); + + return 0; +} + +static void btf_modifier_show(const struct btf *btf, + const struct btf_type *t, + u32 type_id, void *data, + u8 bits_offset, struct btf_show *show) +{ + if (btf->resolved_ids) + t = btf_type_id_resolve(btf, &type_id); + else + t = btf_type_skip_modifiers(btf, type_id, NULL); + + btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show); +} + +static void btf_var_show(const struct btf *btf, const struct btf_type *t, + u32 type_id, void *data, u8 bits_offset, + struct btf_show *show) +{ + t = btf_type_id_resolve(btf, &type_id); + + btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show); +} + +static void btf_ptr_show(const struct btf *btf, const struct btf_type *t, + u32 type_id, void *data, u8 bits_offset, + struct btf_show *show) +{ + void *safe_data; + + safe_data = btf_show_start_type(show, t, type_id, data); + if (!safe_data) + return; + + /* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */ + if (show->flags & BTF_SHOW_PTR_RAW) + btf_show_type_value(show, "0x%px", *(void **)safe_data); + else + btf_show_type_value(show, "0x%p", *(void **)safe_data); + btf_show_end_type(show); +} + +static void btf_ref_type_log(struct btf_verifier_env *env, + const struct btf_type *t) +{ + btf_verifier_log(env, "type_id=%u", t->type); +} + +static struct btf_kind_operations modifier_ops = { + .check_meta = btf_ref_type_check_meta, + .resolve = btf_modifier_resolve, + .check_member = btf_modifier_check_member, + .check_kflag_member = btf_modifier_check_kflag_member, + .log_details = btf_ref_type_log, + .show = btf_modifier_show, +}; + +static struct btf_kind_operations ptr_ops = { + .check_meta = btf_ref_type_check_meta, + .resolve = btf_ptr_resolve, + .check_member = btf_ptr_check_member, + .check_kflag_member = btf_generic_check_kflag_member, + .log_details = btf_ref_type_log, + .show = btf_ptr_show, +}; + +static s32 btf_fwd_check_meta(struct btf_verifier_env *env, + const struct btf_type *t, + u32 meta_left) +{ + if (btf_type_vlen(t)) { + btf_verifier_log_type(env, t, "vlen != 0"); + return -EINVAL; + } + + if (t->type) { + btf_verifier_log_type(env, t, "type != 0"); + return -EINVAL; + } + + /* fwd type must have a valid name */ + if (!t->name_off || + !btf_name_valid_identifier(env->btf, t->name_off)) { + btf_verifier_log_type(env, t, "Invalid name"); + return -EINVAL; + } + + btf_verifier_log_type(env, t, NULL); + + return 0; +} + +static void btf_fwd_type_log(struct btf_verifier_env *env, + const struct btf_type *t) +{ + btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct"); +} + +static struct btf_kind_operations fwd_ops = { + .check_meta = btf_fwd_check_meta, + .resolve = btf_df_resolve, + .check_member = btf_df_check_member, + .check_kflag_member = btf_df_check_kflag_member, + .log_details = btf_fwd_type_log, + .show = btf_df_show, +}; + +static int btf_array_check_member(struct btf_verifier_env *env, + const struct btf_type *struct_type, + const struct btf_member *member, + const struct btf_type *member_type) +{ + u32 struct_bits_off = member->offset; + u32 struct_size, bytes_offset; + u32 array_type_id, array_size; + struct btf *btf = env->btf; + + if (BITS_PER_BYTE_MASKED(struct_bits_off)) { + btf_verifier_log_member(env, struct_type, member, + "Member is not byte aligned"); + return -EINVAL; + } + + array_type_id = member->type; + btf_type_id_size(btf, &array_type_id, &array_size); + struct_size = struct_type->size; + bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); + if (struct_size - bytes_offset < array_size) { + btf_verifier_log_member(env, struct_type, member, + "Member exceeds struct_size"); + return -EINVAL; + } + + return 0; +} + +static s32 btf_array_check_meta(struct btf_verifier_env *env, + const struct btf_type *t, + u32 meta_left) +{ + const struct btf_array *array = btf_type_array(t); + u32 meta_needed = sizeof(*array); + + if (meta_left < meta_needed) { + btf_verifier_log_basic(env, t, + "meta_left:%u meta_needed:%u", + meta_left, meta_needed); + return -EINVAL; + } + + /* array type should not have a name */ + if (t->name_off) { + btf_verifier_log_type(env, t, "Invalid name"); + return -EINVAL; + } + + if (btf_type_vlen(t)) { + btf_verifier_log_type(env, t, "vlen != 0"); + return -EINVAL; + } + + if (btf_type_kflag(t)) { + btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); + return -EINVAL; + } + + if (t->size) { + btf_verifier_log_type(env, t, "size != 0"); + return -EINVAL; + } + + /* Array elem type and index type cannot be in type void, + * so !array->type and !array->index_type are not allowed. + */ + if (!array->type || !BTF_TYPE_ID_VALID(array->type)) { + btf_verifier_log_type(env, t, "Invalid elem"); + return -EINVAL; + } + + if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) { + btf_verifier_log_type(env, t, "Invalid index"); + return -EINVAL; + } + + btf_verifier_log_type(env, t, NULL); + + return meta_needed; +} + +static int btf_array_resolve(struct btf_verifier_env *env, + const struct resolve_vertex *v) +{ + const struct btf_array *array = btf_type_array(v->t); + const struct btf_type *elem_type, *index_type; + u32 elem_type_id, index_type_id; + struct btf *btf = env->btf; + u32 elem_size; + + /* Check array->index_type */ + index_type_id = array->index_type; + index_type = btf_type_by_id(btf, index_type_id); + if (btf_type_nosize_or_null(index_type) || + btf_type_is_resolve_source_only(index_type)) { + btf_verifier_log_type(env, v->t, "Invalid index"); + return -EINVAL; + } + + if (!env_type_is_resolve_sink(env, index_type) && + !env_type_is_resolved(env, index_type_id)) + return env_stack_push(env, index_type, index_type_id); + + index_type = btf_type_id_size(btf, &index_type_id, NULL); + if (!index_type || !btf_type_is_int(index_type) || + !btf_type_int_is_regular(index_type)) { + btf_verifier_log_type(env, v->t, "Invalid index"); + return -EINVAL; + } + + /* Check array->type */ + elem_type_id = array->type; + elem_type = btf_type_by_id(btf, elem_type_id); + if (btf_type_nosize_or_null(elem_type) || + btf_type_is_resolve_source_only(elem_type)) { + btf_verifier_log_type(env, v->t, + "Invalid elem"); + return -EINVAL; + } + + if (!env_type_is_resolve_sink(env, elem_type) && + !env_type_is_resolved(env, elem_type_id)) + return env_stack_push(env, elem_type, elem_type_id); + + elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); + if (!elem_type) { + btf_verifier_log_type(env, v->t, "Invalid elem"); + return -EINVAL; + } + + if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) { + btf_verifier_log_type(env, v->t, "Invalid array of int"); + return -EINVAL; + } + + if (array->nelems && elem_size > U32_MAX / array->nelems) { + btf_verifier_log_type(env, v->t, + "Array size overflows U32_MAX"); + return -EINVAL; + } + + env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems); + + return 0; +} + +static void btf_array_log(struct btf_verifier_env *env, + const struct btf_type *t) +{ + const struct btf_array *array = btf_type_array(t); + + btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u", + array->type, array->index_type, array->nelems); +} + +static void __btf_array_show(const struct btf *btf, const struct btf_type *t, + u32 type_id, void *data, u8 bits_offset, + struct btf_show *show) +{ + const struct btf_array *array = btf_type_array(t); + const struct btf_kind_operations *elem_ops; + const struct btf_type *elem_type; + u32 i, elem_size = 0, elem_type_id; + u16 encoding = 0; + + elem_type_id = array->type; + elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL); + if (elem_type && btf_type_has_size(elem_type)) + elem_size = elem_type->size; + + if (elem_type && btf_type_is_int(elem_type)) { + u32 int_type = btf_type_int(elem_type); + + encoding = BTF_INT_ENCODING(int_type); + + /* + * BTF_INT_CHAR encoding never seems to be set for + * char arrays, so if size is 1 and element is + * printable as a char, we'll do that. + */ + if (elem_size == 1) + encoding = BTF_INT_CHAR; + } + + if (!btf_show_start_array_type(show, t, type_id, encoding, data)) + return; + + if (!elem_type) + goto out; + elem_ops = btf_type_ops(elem_type); + + for (i = 0; i < array->nelems; i++) { + + btf_show_start_array_member(show); + + elem_ops->show(btf, elem_type, elem_type_id, data, + bits_offset, show); + data += elem_size; + + btf_show_end_array_member(show); + + if (show->state.array_terminated) + break; + } +out: + btf_show_end_array_type(show); +} + +static void btf_array_show(const struct btf *btf, const struct btf_type *t, + u32 type_id, void *data, u8 bits_offset, + struct btf_show *show) +{ + const struct btf_member *m = show->state.member; + + /* + * First check if any members would be shown (are non-zero). + * See comments above "struct btf_show" definition for more + * details on how this works at a high-level. + */ + if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) { + if (!show->state.depth_check) { + show->state.depth_check = show->state.depth + 1; + show->state.depth_to_show = 0; + } + __btf_array_show(btf, t, type_id, data, bits_offset, show); + show->state.member = m; + + if (show->state.depth_check != show->state.depth + 1) + return; + show->state.depth_check = 0; + + if (show->state.depth_to_show <= show->state.depth) + return; + /* + * Reaching here indicates we have recursed and found + * non-zero array member(s). + */ + } + __btf_array_show(btf, t, type_id, data, bits_offset, show); +} + +static struct btf_kind_operations array_ops = { + .check_meta = btf_array_check_meta, + .resolve = btf_array_resolve, + .check_member = btf_array_check_member, + .check_kflag_member = btf_generic_check_kflag_member, + .log_details = btf_array_log, + .show = btf_array_show, +}; + +static int btf_struct_check_member(struct btf_verifier_env *env, + const struct btf_type *struct_type, + const struct btf_member *member, + const struct btf_type *member_type) +{ + u32 struct_bits_off = member->offset; + u32 struct_size, bytes_offset; + + if (BITS_PER_BYTE_MASKED(struct_bits_off)) { + btf_verifier_log_member(env, struct_type, member, + "Member is not byte aligned"); + return -EINVAL; + } + + struct_size = struct_type->size; + bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); + if (struct_size - bytes_offset < member_type->size) { + btf_verifier_log_member(env, struct_type, member, + "Member exceeds struct_size"); + return -EINVAL; + } + + return 0; +} + +static s32 btf_struct_check_meta(struct btf_verifier_env *env, + const struct btf_type *t, + u32 meta_left) +{ + bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION; + const struct btf_member *member; + u32 meta_needed, last_offset; + struct btf *btf = env->btf; + u32 struct_size = t->size; + u32 offset; + u16 i; + + meta_needed = btf_type_vlen(t) * sizeof(*member); + if (meta_left < meta_needed) { + btf_verifier_log_basic(env, t, + "meta_left:%u meta_needed:%u", + meta_left, meta_needed); + return -EINVAL; + } + + /* struct type either no name or a valid one */ + if (t->name_off && + !btf_name_valid_identifier(env->btf, t->name_off)) { + btf_verifier_log_type(env, t, "Invalid name"); + return -EINVAL; + } + + btf_verifier_log_type(env, t, NULL); + + last_offset = 0; + for_each_member(i, t, member) { + if (!btf_name_offset_valid(btf, member->name_off)) { + btf_verifier_log_member(env, t, member, + "Invalid member name_offset:%u", + member->name_off); + return -EINVAL; + } + + /* struct member either no name or a valid one */ + if (member->name_off && + !btf_name_valid_identifier(btf, member->name_off)) { + btf_verifier_log_member(env, t, member, "Invalid name"); + return -EINVAL; + } + /* A member cannot be in type void */ + if (!member->type || !BTF_TYPE_ID_VALID(member->type)) { + btf_verifier_log_member(env, t, member, + "Invalid type_id"); + return -EINVAL; + } + + offset = __btf_member_bit_offset(t, member); + if (is_union && offset) { + btf_verifier_log_member(env, t, member, + "Invalid member bits_offset"); + return -EINVAL; + } + + /* + * ">" instead of ">=" because the last member could be + * "char a[0];" + */ + if (last_offset > offset) { + btf_verifier_log_member(env, t, member, + "Invalid member bits_offset"); + return -EINVAL; + } + + if (BITS_ROUNDUP_BYTES(offset) > struct_size) { + btf_verifier_log_member(env, t, member, + "Member bits_offset exceeds its struct size"); + return -EINVAL; + } + + btf_verifier_log_member(env, t, member, NULL); + last_offset = offset; + } + + return meta_needed; +} + +static int btf_struct_resolve(struct btf_verifier_env *env, + const struct resolve_vertex *v) +{ + const struct btf_member *member; + int err; + u16 i; + + /* Before continue resolving the next_member, + * ensure the last member is indeed resolved to a + * type with size info. + */ + if (v->next_member) { + const struct btf_type *last_member_type; + const struct btf_member *last_member; + u32 last_member_type_id; + + last_member = btf_type_member(v->t) + v->next_member - 1; + last_member_type_id = last_member->type; + if (WARN_ON_ONCE(!env_type_is_resolved(env, + last_member_type_id))) + return -EINVAL; + + last_member_type = btf_type_by_id(env->btf, + last_member_type_id); + if (btf_type_kflag(v->t)) + err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t, + last_member, + last_member_type); + else + err = btf_type_ops(last_member_type)->check_member(env, v->t, + last_member, + last_member_type); + if (err) + return err; + } + + for_each_member_from(i, v->next_member, v->t, member) { + u32 member_type_id = member->type; + const struct btf_type *member_type = btf_type_by_id(env->btf, + member_type_id); + + if (btf_type_nosize_or_null(member_type) || + btf_type_is_resolve_source_only(member_type)) { + btf_verifier_log_member(env, v->t, member, + "Invalid member"); + return -EINVAL; + } + + if (!env_type_is_resolve_sink(env, member_type) && + !env_type_is_resolved(env, member_type_id)) { + env_stack_set_next_member(env, i + 1); + return env_stack_push(env, member_type, member_type_id); + } + + if (btf_type_kflag(v->t)) + err = btf_type_ops(member_type)->check_kflag_member(env, v->t, + member, + member_type); + else + err = btf_type_ops(member_type)->check_member(env, v->t, + member, + member_type); + if (err) + return err; + } + + env_stack_pop_resolved(env, 0, 0); + + return 0; +} + +static void btf_struct_log(struct btf_verifier_env *env, + const struct btf_type *t) +{ + btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); +} + +enum btf_field_type { + BTF_FIELD_SPIN_LOCK, + BTF_FIELD_TIMER, + BTF_FIELD_KPTR, +}; + +enum { + BTF_FIELD_IGNORE = 0, + BTF_FIELD_FOUND = 1, +}; + +struct btf_field_info { + u32 type_id; + u32 off; + enum bpf_kptr_type type; +}; + +static int btf_find_struct(const struct btf *btf, const struct btf_type *t, + u32 off, int sz, struct btf_field_info *info) +{ + if (!__btf_type_is_struct(t)) + return BTF_FIELD_IGNORE; + if (t->size != sz) + return BTF_FIELD_IGNORE; + info->off = off; + return BTF_FIELD_FOUND; +} + +static int btf_find_kptr(const struct btf *btf, const struct btf_type *t, + u32 off, int sz, struct btf_field_info *info) +{ + enum bpf_kptr_type type; + u32 res_id; + + /* For PTR, sz is always == 8 */ + if (!btf_type_is_ptr(t)) + return BTF_FIELD_IGNORE; + t = btf_type_by_id(btf, t->type); + + if (!btf_type_is_type_tag(t)) + return BTF_FIELD_IGNORE; + /* Reject extra tags */ + if (btf_type_is_type_tag(btf_type_by_id(btf, t->type))) + return -EINVAL; + if (!strcmp("kptr", __btf_name_by_offset(btf, t->name_off))) + type = BPF_KPTR_UNREF; + else if (!strcmp("kptr_ref", __btf_name_by_offset(btf, t->name_off))) + type = BPF_KPTR_REF; + else + return -EINVAL; + + /* Get the base type */ + t = btf_type_skip_modifiers(btf, t->type, &res_id); + /* Only pointer to struct is allowed */ + if (!__btf_type_is_struct(t)) + return -EINVAL; + + info->type_id = res_id; + info->off = off; + info->type = type; + return BTF_FIELD_FOUND; +} + +static int btf_find_struct_field(const struct btf *btf, const struct btf_type *t, + const char *name, int sz, int align, + enum btf_field_type field_type, + struct btf_field_info *info, int info_cnt) +{ + const struct btf_member *member; + struct btf_field_info tmp; + int ret, idx = 0; + u32 i, off; + + for_each_member(i, t, member) { + const struct btf_type *member_type = btf_type_by_id(btf, + member->type); + + if (name && strcmp(__btf_name_by_offset(btf, member_type->name_off), name)) + continue; + + off = __btf_member_bit_offset(t, member); + if (off % 8) + /* valid C code cannot generate such BTF */ + return -EINVAL; + off /= 8; + if (off % align) + return -EINVAL; + + switch (field_type) { + case BTF_FIELD_SPIN_LOCK: + case BTF_FIELD_TIMER: + ret = btf_find_struct(btf, member_type, off, sz, + idx < info_cnt ? &info[idx] : &tmp); + if (ret < 0) + return ret; + break; + case BTF_FIELD_KPTR: + ret = btf_find_kptr(btf, member_type, off, sz, + idx < info_cnt ? &info[idx] : &tmp); + if (ret < 0) + return ret; + break; + default: + return -EFAULT; + } + + if (ret == BTF_FIELD_IGNORE) + continue; + if (idx >= info_cnt) + return -E2BIG; + ++idx; + } + return idx; +} + +static int btf_find_datasec_var(const struct btf *btf, const struct btf_type *t, + const char *name, int sz, int align, + enum btf_field_type field_type, + struct btf_field_info *info, int info_cnt) +{ + const struct btf_var_secinfo *vsi; + struct btf_field_info tmp; + int ret, idx = 0; + u32 i, off; + + for_each_vsi(i, t, vsi) { + const struct btf_type *var = btf_type_by_id(btf, vsi->type); + const struct btf_type *var_type = btf_type_by_id(btf, var->type); + + off = vsi->offset; + + if (name && strcmp(__btf_name_by_offset(btf, var_type->name_off), name)) + continue; + if (vsi->size != sz) + continue; + if (off % align) + return -EINVAL; + + switch (field_type) { + case BTF_FIELD_SPIN_LOCK: + case BTF_FIELD_TIMER: + ret = btf_find_struct(btf, var_type, off, sz, + idx < info_cnt ? &info[idx] : &tmp); + if (ret < 0) + return ret; + break; + case BTF_FIELD_KPTR: + ret = btf_find_kptr(btf, var_type, off, sz, + idx < info_cnt ? &info[idx] : &tmp); + if (ret < 0) + return ret; + break; + default: + return -EFAULT; + } + + if (ret == BTF_FIELD_IGNORE) + continue; + if (idx >= info_cnt) + return -E2BIG; + ++idx; + } + return idx; +} + +static int btf_find_field(const struct btf *btf, const struct btf_type *t, + enum btf_field_type field_type, + struct btf_field_info *info, int info_cnt) +{ + const char *name; + int sz, align; + + switch (field_type) { + case BTF_FIELD_SPIN_LOCK: + name = "bpf_spin_lock"; + sz = sizeof(struct bpf_spin_lock); + align = __alignof__(struct bpf_spin_lock); + break; + case BTF_FIELD_TIMER: + name = "bpf_timer"; + sz = sizeof(struct bpf_timer); + align = __alignof__(struct bpf_timer); + break; + case BTF_FIELD_KPTR: + name = NULL; + sz = sizeof(u64); + align = 8; + break; + default: + return -EFAULT; + } + + if (__btf_type_is_struct(t)) + return btf_find_struct_field(btf, t, name, sz, align, field_type, info, info_cnt); + else if (btf_type_is_datasec(t)) + return btf_find_datasec_var(btf, t, name, sz, align, field_type, info, info_cnt); + return -EINVAL; +} + +/* find 'struct bpf_spin_lock' in map value. + * return >= 0 offset if found + * and < 0 in case of error + */ +int btf_find_spin_lock(const struct btf *btf, const struct btf_type *t) +{ + struct btf_field_info info; + int ret; + + ret = btf_find_field(btf, t, BTF_FIELD_SPIN_LOCK, &info, 1); + if (ret < 0) + return ret; + if (!ret) + return -ENOENT; + return info.off; +} + +int btf_find_timer(const struct btf *btf, const struct btf_type *t) +{ + struct btf_field_info info; + int ret; + + ret = btf_find_field(btf, t, BTF_FIELD_TIMER, &info, 1); + if (ret < 0) + return ret; + if (!ret) + return -ENOENT; + return info.off; +} + +struct bpf_map_value_off *btf_parse_kptrs(const struct btf *btf, + const struct btf_type *t) +{ + struct btf_field_info info_arr[BPF_MAP_VALUE_OFF_MAX]; + struct bpf_map_value_off *tab; + struct btf *kernel_btf = NULL; + struct module *mod = NULL; + int ret, i, nr_off; + + ret = btf_find_field(btf, t, BTF_FIELD_KPTR, info_arr, ARRAY_SIZE(info_arr)); + if (ret < 0) + return ERR_PTR(ret); + if (!ret) + return NULL; + + nr_off = ret; + tab = kzalloc(offsetof(struct bpf_map_value_off, off[nr_off]), GFP_KERNEL | __GFP_NOWARN); + if (!tab) + return ERR_PTR(-ENOMEM); + + for (i = 0; i < nr_off; i++) { + const struct btf_type *t; + s32 id; + + /* Find type in map BTF, and use it to look up the matching type + * in vmlinux or module BTFs, by name and kind. + */ + t = btf_type_by_id(btf, info_arr[i].type_id); + id = bpf_find_btf_id(__btf_name_by_offset(btf, t->name_off), BTF_INFO_KIND(t->info), + &kernel_btf); + if (id < 0) { + ret = id; + goto end; + } + + /* Find and stash the function pointer for the destruction function that + * needs to be eventually invoked from the map free path. + */ + if (info_arr[i].type == BPF_KPTR_REF) { + const struct btf_type *dtor_func; + const char *dtor_func_name; + unsigned long addr; + s32 dtor_btf_id; + + /* This call also serves as a whitelist of allowed objects that + * can be used as a referenced pointer and be stored in a map at + * the same time. + */ + dtor_btf_id = btf_find_dtor_kfunc(kernel_btf, id); + if (dtor_btf_id < 0) { + ret = dtor_btf_id; + goto end_btf; + } + + dtor_func = btf_type_by_id(kernel_btf, dtor_btf_id); + if (!dtor_func) { + ret = -ENOENT; + goto end_btf; + } + + if (btf_is_module(kernel_btf)) { + mod = btf_try_get_module(kernel_btf); + if (!mod) { + ret = -ENXIO; + goto end_btf; + } + } + + /* We already verified dtor_func to be btf_type_is_func + * in register_btf_id_dtor_kfuncs. + */ + dtor_func_name = __btf_name_by_offset(kernel_btf, dtor_func->name_off); + addr = kallsyms_lookup_name(dtor_func_name); + if (!addr) { + ret = -EINVAL; + goto end_mod; + } + tab->off[i].kptr.dtor = (void *)addr; + } + + tab->off[i].offset = info_arr[i].off; + tab->off[i].type = info_arr[i].type; + tab->off[i].kptr.btf_id = id; + tab->off[i].kptr.btf = kernel_btf; + tab->off[i].kptr.module = mod; + } + tab->nr_off = nr_off; + return tab; +end_mod: + module_put(mod); +end_btf: + btf_put(kernel_btf); +end: + while (i--) { + btf_put(tab->off[i].kptr.btf); + if (tab->off[i].kptr.module) + module_put(tab->off[i].kptr.module); + } + kfree(tab); + return ERR_PTR(ret); +} + +static void __btf_struct_show(const struct btf *btf, const struct btf_type *t, + u32 type_id, void *data, u8 bits_offset, + struct btf_show *show) +{ + const struct btf_member *member; + void *safe_data; + u32 i; + + safe_data = btf_show_start_struct_type(show, t, type_id, data); + if (!safe_data) + return; + + for_each_member(i, t, member) { + const struct btf_type *member_type = btf_type_by_id(btf, + member->type); + const struct btf_kind_operations *ops; + u32 member_offset, bitfield_size; + u32 bytes_offset; + u8 bits8_offset; + + btf_show_start_member(show, member); + + member_offset = __btf_member_bit_offset(t, member); + bitfield_size = __btf_member_bitfield_size(t, member); + bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset); + bits8_offset = BITS_PER_BYTE_MASKED(member_offset); + if (bitfield_size) { + safe_data = btf_show_start_type(show, member_type, + member->type, + data + bytes_offset); + if (safe_data) + btf_bitfield_show(safe_data, + bits8_offset, + bitfield_size, show); + btf_show_end_type(show); + } else { + ops = btf_type_ops(member_type); + ops->show(btf, member_type, member->type, + data + bytes_offset, bits8_offset, show); + } + + btf_show_end_member(show); + } + + btf_show_end_struct_type(show); +} + +static void btf_struct_show(const struct btf *btf, const struct btf_type *t, + u32 type_id, void *data, u8 bits_offset, + struct btf_show *show) +{ + const struct btf_member *m = show->state.member; + + /* + * First check if any members would be shown (are non-zero). + * See comments above "struct btf_show" definition for more + * details on how this works at a high-level. + */ + if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) { + if (!show->state.depth_check) { + show->state.depth_check = show->state.depth + 1; + show->state.depth_to_show = 0; + } + __btf_struct_show(btf, t, type_id, data, bits_offset, show); + /* Restore saved member data here */ + show->state.member = m; + if (show->state.depth_check != show->state.depth + 1) + return; + show->state.depth_check = 0; + + if (show->state.depth_to_show <= show->state.depth) + return; + /* + * Reaching here indicates we have recursed and found + * non-zero child values. + */ + } + + __btf_struct_show(btf, t, type_id, data, bits_offset, show); +} + +static struct btf_kind_operations struct_ops = { + .check_meta = btf_struct_check_meta, + .resolve = btf_struct_resolve, + .check_member = btf_struct_check_member, + .check_kflag_member = btf_generic_check_kflag_member, + .log_details = btf_struct_log, + .show = btf_struct_show, +}; + +static int btf_enum_check_member(struct btf_verifier_env *env, + const struct btf_type *struct_type, + const struct btf_member *member, + const struct btf_type *member_type) +{ + u32 struct_bits_off = member->offset; + u32 struct_size, bytes_offset; + + if (BITS_PER_BYTE_MASKED(struct_bits_off)) { + btf_verifier_log_member(env, struct_type, member, + "Member is not byte aligned"); + return -EINVAL; + } + + struct_size = struct_type->size; + bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); + if (struct_size - bytes_offset < member_type->size) { + btf_verifier_log_member(env, struct_type, member, + "Member exceeds struct_size"); + return -EINVAL; + } + + return 0; +} + +static int btf_enum_check_kflag_member(struct btf_verifier_env *env, + const struct btf_type *struct_type, + const struct btf_member *member, + const struct btf_type *member_type) +{ + u32 struct_bits_off, nr_bits, bytes_end, struct_size; + u32 int_bitsize = sizeof(int) * BITS_PER_BYTE; + + struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset); + nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset); + if (!nr_bits) { + if (BITS_PER_BYTE_MASKED(struct_bits_off)) { + btf_verifier_log_member(env, struct_type, member, + "Member is not byte aligned"); + return -EINVAL; + } + + nr_bits = int_bitsize; + } else if (nr_bits > int_bitsize) { + btf_verifier_log_member(env, struct_type, member, + "Invalid member bitfield_size"); + return -EINVAL; + } + + struct_size = struct_type->size; + bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits); + if (struct_size < bytes_end) { + btf_verifier_log_member(env, struct_type, member, + "Member exceeds struct_size"); + return -EINVAL; + } + + return 0; +} + +static s32 btf_enum_check_meta(struct btf_verifier_env *env, + const struct btf_type *t, + u32 meta_left) +{ + const struct btf_enum *enums = btf_type_enum(t); + struct btf *btf = env->btf; + const char *fmt_str; + u16 i, nr_enums; + u32 meta_needed; + + nr_enums = btf_type_vlen(t); + meta_needed = nr_enums * sizeof(*enums); + + if (meta_left < meta_needed) { + btf_verifier_log_basic(env, t, + "meta_left:%u meta_needed:%u", + meta_left, meta_needed); + return -EINVAL; + } + + if (t->size > 8 || !is_power_of_2(t->size)) { + btf_verifier_log_type(env, t, "Unexpected size"); + return -EINVAL; + } + + /* enum type either no name or a valid one */ + if (t->name_off && + !btf_name_valid_identifier(env->btf, t->name_off)) { + btf_verifier_log_type(env, t, "Invalid name"); + return -EINVAL; + } + + btf_verifier_log_type(env, t, NULL); + + for (i = 0; i < nr_enums; i++) { + if (!btf_name_offset_valid(btf, enums[i].name_off)) { + btf_verifier_log(env, "\tInvalid name_offset:%u", + enums[i].name_off); + return -EINVAL; + } + + /* enum member must have a valid name */ + if (!enums[i].name_off || + !btf_name_valid_identifier(btf, enums[i].name_off)) { + btf_verifier_log_type(env, t, "Invalid name"); + return -EINVAL; + } + + if (env->log.level == BPF_LOG_KERNEL) + continue; + fmt_str = btf_type_kflag(t) ? "\t%s val=%d\n" : "\t%s val=%u\n"; + btf_verifier_log(env, fmt_str, + __btf_name_by_offset(btf, enums[i].name_off), + enums[i].val); + } + + return meta_needed; +} + +static void btf_enum_log(struct btf_verifier_env *env, + const struct btf_type *t) +{ + btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); +} + +static void btf_enum_show(const struct btf *btf, const struct btf_type *t, + u32 type_id, void *data, u8 bits_offset, + struct btf_show *show) +{ + const struct btf_enum *enums = btf_type_enum(t); + u32 i, nr_enums = btf_type_vlen(t); + void *safe_data; + int v; + + safe_data = btf_show_start_type(show, t, type_id, data); + if (!safe_data) + return; + + v = *(int *)safe_data; + + for (i = 0; i < nr_enums; i++) { + if (v != enums[i].val) + continue; + + btf_show_type_value(show, "%s", + __btf_name_by_offset(btf, + enums[i].name_off)); + + btf_show_end_type(show); + return; + } + + if (btf_type_kflag(t)) + btf_show_type_value(show, "%d", v); + else + btf_show_type_value(show, "%u", v); + btf_show_end_type(show); +} + +static struct btf_kind_operations enum_ops = { + .check_meta = btf_enum_check_meta, + .resolve = btf_df_resolve, + .check_member = btf_enum_check_member, + .check_kflag_member = btf_enum_check_kflag_member, + .log_details = btf_enum_log, + .show = btf_enum_show, +}; + +static s32 btf_enum64_check_meta(struct btf_verifier_env *env, + const struct btf_type *t, + u32 meta_left) +{ + const struct btf_enum64 *enums = btf_type_enum64(t); + struct btf *btf = env->btf; + const char *fmt_str; + u16 i, nr_enums; + u32 meta_needed; + + nr_enums = btf_type_vlen(t); + meta_needed = nr_enums * sizeof(*enums); + + if (meta_left < meta_needed) { + btf_verifier_log_basic(env, t, + "meta_left:%u meta_needed:%u", + meta_left, meta_needed); + return -EINVAL; + } + + if (t->size > 8 || !is_power_of_2(t->size)) { + btf_verifier_log_type(env, t, "Unexpected size"); + return -EINVAL; + } + + /* enum type either no name or a valid one */ + if (t->name_off && + !btf_name_valid_identifier(env->btf, t->name_off)) { + btf_verifier_log_type(env, t, "Invalid name"); + return -EINVAL; + } + + btf_verifier_log_type(env, t, NULL); + + for (i = 0; i < nr_enums; i++) { + if (!btf_name_offset_valid(btf, enums[i].name_off)) { + btf_verifier_log(env, "\tInvalid name_offset:%u", + enums[i].name_off); + return -EINVAL; + } + + /* enum member must have a valid name */ + if (!enums[i].name_off || + !btf_name_valid_identifier(btf, enums[i].name_off)) { + btf_verifier_log_type(env, t, "Invalid name"); + return -EINVAL; + } + + if (env->log.level == BPF_LOG_KERNEL) + continue; + + fmt_str = btf_type_kflag(t) ? "\t%s val=%lld\n" : "\t%s val=%llu\n"; + btf_verifier_log(env, fmt_str, + __btf_name_by_offset(btf, enums[i].name_off), + btf_enum64_value(enums + i)); + } + + return meta_needed; +} + +static void btf_enum64_show(const struct btf *btf, const struct btf_type *t, + u32 type_id, void *data, u8 bits_offset, + struct btf_show *show) +{ + const struct btf_enum64 *enums = btf_type_enum64(t); + u32 i, nr_enums = btf_type_vlen(t); + void *safe_data; + s64 v; + + safe_data = btf_show_start_type(show, t, type_id, data); + if (!safe_data) + return; + + v = *(u64 *)safe_data; + + for (i = 0; i < nr_enums; i++) { + if (v != btf_enum64_value(enums + i)) + continue; + + btf_show_type_value(show, "%s", + __btf_name_by_offset(btf, + enums[i].name_off)); + + btf_show_end_type(show); + return; + } + + if (btf_type_kflag(t)) + btf_show_type_value(show, "%lld", v); + else + btf_show_type_value(show, "%llu", v); + btf_show_end_type(show); +} + +static struct btf_kind_operations enum64_ops = { + .check_meta = btf_enum64_check_meta, + .resolve = btf_df_resolve, + .check_member = btf_enum_check_member, + .check_kflag_member = btf_enum_check_kflag_member, + .log_details = btf_enum_log, + .show = btf_enum64_show, +}; + +static s32 btf_func_proto_check_meta(struct btf_verifier_env *env, + const struct btf_type *t, + u32 meta_left) +{ + u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param); + + if (meta_left < meta_needed) { + btf_verifier_log_basic(env, t, + "meta_left:%u meta_needed:%u", + meta_left, meta_needed); + return -EINVAL; + } + + if (t->name_off) { + btf_verifier_log_type(env, t, "Invalid name"); + return -EINVAL; + } + + if (btf_type_kflag(t)) { + btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); + return -EINVAL; + } + + btf_verifier_log_type(env, t, NULL); + + return meta_needed; +} + +static void btf_func_proto_log(struct btf_verifier_env *env, + const struct btf_type *t) +{ + const struct btf_param *args = (const struct btf_param *)(t + 1); + u16 nr_args = btf_type_vlen(t), i; + + btf_verifier_log(env, "return=%u args=(", t->type); + if (!nr_args) { + btf_verifier_log(env, "void"); + goto done; + } + + if (nr_args == 1 && !args[0].type) { + /* Only one vararg */ + btf_verifier_log(env, "vararg"); + goto done; + } + + btf_verifier_log(env, "%u %s", args[0].type, + __btf_name_by_offset(env->btf, + args[0].name_off)); + for (i = 1; i < nr_args - 1; i++) + btf_verifier_log(env, ", %u %s", args[i].type, + __btf_name_by_offset(env->btf, + args[i].name_off)); + + if (nr_args > 1) { + const struct btf_param *last_arg = &args[nr_args - 1]; + + if (last_arg->type) + btf_verifier_log(env, ", %u %s", last_arg->type, + __btf_name_by_offset(env->btf, + last_arg->name_off)); + else + btf_verifier_log(env, ", vararg"); + } + +done: + btf_verifier_log(env, ")"); +} + +static struct btf_kind_operations func_proto_ops = { + .check_meta = btf_func_proto_check_meta, + .resolve = btf_df_resolve, + /* + * BTF_KIND_FUNC_PROTO cannot be directly referred by + * a struct's member. + * + * It should be a function pointer instead. + * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO) + * + * Hence, there is no btf_func_check_member(). + */ + .check_member = btf_df_check_member, + .check_kflag_member = btf_df_check_kflag_member, + .log_details = btf_func_proto_log, + .show = btf_df_show, +}; + +static s32 btf_func_check_meta(struct btf_verifier_env *env, + const struct btf_type *t, + u32 meta_left) +{ + if (!t->name_off || + !btf_name_valid_identifier(env->btf, t->name_off)) { + btf_verifier_log_type(env, t, "Invalid name"); + return -EINVAL; + } + + if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) { + btf_verifier_log_type(env, t, "Invalid func linkage"); + return -EINVAL; + } + + if (btf_type_kflag(t)) { + btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); + return -EINVAL; + } + + btf_verifier_log_type(env, t, NULL); + + return 0; +} + +static int btf_func_resolve(struct btf_verifier_env *env, + const struct resolve_vertex *v) +{ + const struct btf_type *t = v->t; + u32 next_type_id = t->type; + int err; + + err = btf_func_check(env, t); + if (err) + return err; + + env_stack_pop_resolved(env, next_type_id, 0); + return 0; +} + +static struct btf_kind_operations func_ops = { + .check_meta = btf_func_check_meta, + .resolve = btf_func_resolve, + .check_member = btf_df_check_member, + .check_kflag_member = btf_df_check_kflag_member, + .log_details = btf_ref_type_log, + .show = btf_df_show, +}; + +static s32 btf_var_check_meta(struct btf_verifier_env *env, + const struct btf_type *t, + u32 meta_left) +{ + const struct btf_var *var; + u32 meta_needed = sizeof(*var); + + if (meta_left < meta_needed) { + btf_verifier_log_basic(env, t, + "meta_left:%u meta_needed:%u", + meta_left, meta_needed); + return -EINVAL; + } + + if (btf_type_vlen(t)) { + btf_verifier_log_type(env, t, "vlen != 0"); + return -EINVAL; + } + + if (btf_type_kflag(t)) { + btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); + return -EINVAL; + } + + if (!t->name_off || + !__btf_name_valid(env->btf, t->name_off)) { + btf_verifier_log_type(env, t, "Invalid name"); + return -EINVAL; + } + + /* A var cannot be in type void */ + if (!t->type || !BTF_TYPE_ID_VALID(t->type)) { + btf_verifier_log_type(env, t, "Invalid type_id"); + return -EINVAL; + } + + var = btf_type_var(t); + if (var->linkage != BTF_VAR_STATIC && + var->linkage != BTF_VAR_GLOBAL_ALLOCATED) { + btf_verifier_log_type(env, t, "Linkage not supported"); + return -EINVAL; + } + + btf_verifier_log_type(env, t, NULL); + + return meta_needed; +} + +static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t) +{ + const struct btf_var *var = btf_type_var(t); + + btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage); +} + +static const struct btf_kind_operations var_ops = { + .check_meta = btf_var_check_meta, + .resolve = btf_var_resolve, + .check_member = btf_df_check_member, + .check_kflag_member = btf_df_check_kflag_member, + .log_details = btf_var_log, + .show = btf_var_show, +}; + +static s32 btf_datasec_check_meta(struct btf_verifier_env *env, + const struct btf_type *t, + u32 meta_left) +{ + const struct btf_var_secinfo *vsi; + u64 last_vsi_end_off = 0, sum = 0; + u32 i, meta_needed; + + meta_needed = btf_type_vlen(t) * sizeof(*vsi); + if (meta_left < meta_needed) { + btf_verifier_log_basic(env, t, + "meta_left:%u meta_needed:%u", + meta_left, meta_needed); + return -EINVAL; + } + + if (!t->size) { + btf_verifier_log_type(env, t, "size == 0"); + return -EINVAL; + } + + if (btf_type_kflag(t)) { + btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); + return -EINVAL; + } + + if (!t->name_off || + !btf_name_valid_section(env->btf, t->name_off)) { + btf_verifier_log_type(env, t, "Invalid name"); + return -EINVAL; + } + + btf_verifier_log_type(env, t, NULL); + + for_each_vsi(i, t, vsi) { + /* A var cannot be in type void */ + if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) { + btf_verifier_log_vsi(env, t, vsi, + "Invalid type_id"); + return -EINVAL; + } + + if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) { + btf_verifier_log_vsi(env, t, vsi, + "Invalid offset"); + return -EINVAL; + } + + if (!vsi->size || vsi->size > t->size) { + btf_verifier_log_vsi(env, t, vsi, + "Invalid size"); + return -EINVAL; + } + + last_vsi_end_off = vsi->offset + vsi->size; + if (last_vsi_end_off > t->size) { + btf_verifier_log_vsi(env, t, vsi, + "Invalid offset+size"); + return -EINVAL; + } + + btf_verifier_log_vsi(env, t, vsi, NULL); + sum += vsi->size; + } + + if (t->size < sum) { + btf_verifier_log_type(env, t, "Invalid btf_info size"); + return -EINVAL; + } + + return meta_needed; +} + +static int btf_datasec_resolve(struct btf_verifier_env *env, + const struct resolve_vertex *v) +{ + const struct btf_var_secinfo *vsi; + struct btf *btf = env->btf; + u16 i; + + env->resolve_mode = RESOLVE_TBD; + for_each_vsi_from(i, v->next_member, v->t, vsi) { + u32 var_type_id = vsi->type, type_id, type_size = 0; + const struct btf_type *var_type = btf_type_by_id(env->btf, + var_type_id); + if (!var_type || !btf_type_is_var(var_type)) { + btf_verifier_log_vsi(env, v->t, vsi, + "Not a VAR kind member"); + return -EINVAL; + } + + if (!env_type_is_resolve_sink(env, var_type) && + !env_type_is_resolved(env, var_type_id)) { + env_stack_set_next_member(env, i + 1); + return env_stack_push(env, var_type, var_type_id); + } + + type_id = var_type->type; + if (!btf_type_id_size(btf, &type_id, &type_size)) { + btf_verifier_log_vsi(env, v->t, vsi, "Invalid type"); + return -EINVAL; + } + + if (vsi->size < type_size) { + btf_verifier_log_vsi(env, v->t, vsi, "Invalid size"); + return -EINVAL; + } + } + + env_stack_pop_resolved(env, 0, 0); + return 0; +} + +static void btf_datasec_log(struct btf_verifier_env *env, + const struct btf_type *t) +{ + btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); +} + +static void btf_datasec_show(const struct btf *btf, + const struct btf_type *t, u32 type_id, + void *data, u8 bits_offset, + struct btf_show *show) +{ + const struct btf_var_secinfo *vsi; + const struct btf_type *var; + u32 i; + + if (!btf_show_start_type(show, t, type_id, data)) + return; + + btf_show_type_value(show, "section (\"%s\") = {", + __btf_name_by_offset(btf, t->name_off)); + for_each_vsi(i, t, vsi) { + var = btf_type_by_id(btf, vsi->type); + if (i) + btf_show(show, ","); + btf_type_ops(var)->show(btf, var, vsi->type, + data + vsi->offset, bits_offset, show); + } + btf_show_end_type(show); +} + +static const struct btf_kind_operations datasec_ops = { + .check_meta = btf_datasec_check_meta, + .resolve = btf_datasec_resolve, + .check_member = btf_df_check_member, + .check_kflag_member = btf_df_check_kflag_member, + .log_details = btf_datasec_log, + .show = btf_datasec_show, +}; + +static s32 btf_float_check_meta(struct btf_verifier_env *env, + const struct btf_type *t, + u32 meta_left) +{ + if (btf_type_vlen(t)) { + btf_verifier_log_type(env, t, "vlen != 0"); + return -EINVAL; + } + + if (btf_type_kflag(t)) { + btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); + return -EINVAL; + } + + if (t->size != 2 && t->size != 4 && t->size != 8 && t->size != 12 && + t->size != 16) { + btf_verifier_log_type(env, t, "Invalid type_size"); + return -EINVAL; + } + + btf_verifier_log_type(env, t, NULL); + + return 0; +} + +static int btf_float_check_member(struct btf_verifier_env *env, + const struct btf_type *struct_type, + const struct btf_member *member, + const struct btf_type *member_type) +{ + u64 start_offset_bytes; + u64 end_offset_bytes; + u64 misalign_bits; + u64 align_bytes; + u64 align_bits; + + /* Different architectures have different alignment requirements, so + * here we check only for the reasonable minimum. This way we ensure + * that types after CO-RE can pass the kernel BTF verifier. + */ + align_bytes = min_t(u64, sizeof(void *), member_type->size); + align_bits = align_bytes * BITS_PER_BYTE; + div64_u64_rem(member->offset, align_bits, &misalign_bits); + if (misalign_bits) { + btf_verifier_log_member(env, struct_type, member, + "Member is not properly aligned"); + return -EINVAL; + } + + start_offset_bytes = member->offset / BITS_PER_BYTE; + end_offset_bytes = start_offset_bytes + member_type->size; + if (end_offset_bytes > struct_type->size) { + btf_verifier_log_member(env, struct_type, member, + "Member exceeds struct_size"); + return -EINVAL; + } + + return 0; +} + +static void btf_float_log(struct btf_verifier_env *env, + const struct btf_type *t) +{ + btf_verifier_log(env, "size=%u", t->size); +} + +static const struct btf_kind_operations float_ops = { + .check_meta = btf_float_check_meta, + .resolve = btf_df_resolve, + .check_member = btf_float_check_member, + .check_kflag_member = btf_generic_check_kflag_member, + .log_details = btf_float_log, + .show = btf_df_show, +}; + +static s32 btf_decl_tag_check_meta(struct btf_verifier_env *env, + const struct btf_type *t, + u32 meta_left) +{ + const struct btf_decl_tag *tag; + u32 meta_needed = sizeof(*tag); + s32 component_idx; + const char *value; + + if (meta_left < meta_needed) { + btf_verifier_log_basic(env, t, + "meta_left:%u meta_needed:%u", + meta_left, meta_needed); + return -EINVAL; + } + + value = btf_name_by_offset(env->btf, t->name_off); + if (!value || !value[0]) { + btf_verifier_log_type(env, t, "Invalid value"); + return -EINVAL; + } + + if (btf_type_vlen(t)) { + btf_verifier_log_type(env, t, "vlen != 0"); + return -EINVAL; + } + + if (btf_type_kflag(t)) { + btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); + return -EINVAL; + } + + component_idx = btf_type_decl_tag(t)->component_idx; + if (component_idx < -1) { + btf_verifier_log_type(env, t, "Invalid component_idx"); + return -EINVAL; + } + + btf_verifier_log_type(env, t, NULL); + + return meta_needed; +} + +static int btf_decl_tag_resolve(struct btf_verifier_env *env, + const struct resolve_vertex *v) +{ + const struct btf_type *next_type; + const struct btf_type *t = v->t; + u32 next_type_id = t->type; + struct btf *btf = env->btf; + s32 component_idx; + u32 vlen; + + next_type = btf_type_by_id(btf, next_type_id); + if (!next_type || !btf_type_is_decl_tag_target(next_type)) { + btf_verifier_log_type(env, v->t, "Invalid type_id"); + return -EINVAL; + } + + if (!env_type_is_resolve_sink(env, next_type) && + !env_type_is_resolved(env, next_type_id)) + return env_stack_push(env, next_type, next_type_id); + + component_idx = btf_type_decl_tag(t)->component_idx; + if (component_idx != -1) { + if (btf_type_is_var(next_type) || btf_type_is_typedef(next_type)) { + btf_verifier_log_type(env, v->t, "Invalid component_idx"); + return -EINVAL; + } + + if (btf_type_is_struct(next_type)) { + vlen = btf_type_vlen(next_type); + } else { + /* next_type should be a function */ + next_type = btf_type_by_id(btf, next_type->type); + vlen = btf_type_vlen(next_type); + } + + if ((u32)component_idx >= vlen) { + btf_verifier_log_type(env, v->t, "Invalid component_idx"); + return -EINVAL; + } + } + + env_stack_pop_resolved(env, next_type_id, 0); + + return 0; +} + +static void btf_decl_tag_log(struct btf_verifier_env *env, const struct btf_type *t) +{ + btf_verifier_log(env, "type=%u component_idx=%d", t->type, + btf_type_decl_tag(t)->component_idx); +} + +static const struct btf_kind_operations decl_tag_ops = { + .check_meta = btf_decl_tag_check_meta, + .resolve = btf_decl_tag_resolve, + .check_member = btf_df_check_member, + .check_kflag_member = btf_df_check_kflag_member, + .log_details = btf_decl_tag_log, + .show = btf_df_show, +}; + +static int btf_func_proto_check(struct btf_verifier_env *env, + const struct btf_type *t) +{ + const struct btf_type *ret_type; + const struct btf_param *args; + const struct btf *btf; + u16 nr_args, i; + int err; + + btf = env->btf; + args = (const struct btf_param *)(t + 1); + nr_args = btf_type_vlen(t); + + /* Check func return type which could be "void" (t->type == 0) */ + if (t->type) { + u32 ret_type_id = t->type; + + ret_type = btf_type_by_id(btf, ret_type_id); + if (!ret_type) { + btf_verifier_log_type(env, t, "Invalid return type"); + return -EINVAL; + } + + if (btf_type_is_resolve_source_only(ret_type)) { + btf_verifier_log_type(env, t, "Invalid return type"); + return -EINVAL; + } + + if (btf_type_needs_resolve(ret_type) && + !env_type_is_resolved(env, ret_type_id)) { + err = btf_resolve(env, ret_type, ret_type_id); + if (err) + return err; + } + + /* Ensure the return type is a type that has a size */ + if (!btf_type_id_size(btf, &ret_type_id, NULL)) { + btf_verifier_log_type(env, t, "Invalid return type"); + return -EINVAL; + } + } + + if (!nr_args) + return 0; + + /* Last func arg type_id could be 0 if it is a vararg */ + if (!args[nr_args - 1].type) { + if (args[nr_args - 1].name_off) { + btf_verifier_log_type(env, t, "Invalid arg#%u", + nr_args); + return -EINVAL; + } + nr_args--; + } + + err = 0; + for (i = 0; i < nr_args; i++) { + const struct btf_type *arg_type; + u32 arg_type_id; + + arg_type_id = args[i].type; + arg_type = btf_type_by_id(btf, arg_type_id); + if (!arg_type) { + btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); + err = -EINVAL; + break; + } + + if (btf_type_is_resolve_source_only(arg_type)) { + btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); + return -EINVAL; + } + + if (args[i].name_off && + (!btf_name_offset_valid(btf, args[i].name_off) || + !btf_name_valid_identifier(btf, args[i].name_off))) { + btf_verifier_log_type(env, t, + "Invalid arg#%u", i + 1); + err = -EINVAL; + break; + } + + if (btf_type_needs_resolve(arg_type) && + !env_type_is_resolved(env, arg_type_id)) { + err = btf_resolve(env, arg_type, arg_type_id); + if (err) + break; + } + + if (!btf_type_id_size(btf, &arg_type_id, NULL)) { + btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); + err = -EINVAL; + break; + } + } + + return err; +} + +static int btf_func_check(struct btf_verifier_env *env, + const struct btf_type *t) +{ + const struct btf_type *proto_type; + const struct btf_param *args; + const struct btf *btf; + u16 nr_args, i; + + btf = env->btf; + proto_type = btf_type_by_id(btf, t->type); + + if (!proto_type || !btf_type_is_func_proto(proto_type)) { + btf_verifier_log_type(env, t, "Invalid type_id"); + return -EINVAL; + } + + args = (const struct btf_param *)(proto_type + 1); + nr_args = btf_type_vlen(proto_type); + for (i = 0; i < nr_args; i++) { + if (!args[i].name_off && args[i].type) { + btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); + return -EINVAL; + } + } + + return 0; +} + +static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = { + [BTF_KIND_INT] = &int_ops, + [BTF_KIND_PTR] = &ptr_ops, + [BTF_KIND_ARRAY] = &array_ops, + [BTF_KIND_STRUCT] = &struct_ops, + [BTF_KIND_UNION] = &struct_ops, + [BTF_KIND_ENUM] = &enum_ops, + [BTF_KIND_FWD] = &fwd_ops, + [BTF_KIND_TYPEDEF] = &modifier_ops, + [BTF_KIND_VOLATILE] = &modifier_ops, + [BTF_KIND_CONST] = &modifier_ops, + [BTF_KIND_RESTRICT] = &modifier_ops, + [BTF_KIND_FUNC] = &func_ops, + [BTF_KIND_FUNC_PROTO] = &func_proto_ops, + [BTF_KIND_VAR] = &var_ops, + [BTF_KIND_DATASEC] = &datasec_ops, + [BTF_KIND_FLOAT] = &float_ops, + [BTF_KIND_DECL_TAG] = &decl_tag_ops, + [BTF_KIND_TYPE_TAG] = &modifier_ops, + [BTF_KIND_ENUM64] = &enum64_ops, +}; + +static s32 btf_check_meta(struct btf_verifier_env *env, + const struct btf_type *t, + u32 meta_left) +{ + u32 saved_meta_left = meta_left; + s32 var_meta_size; + + if (meta_left < sizeof(*t)) { + btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu", + env->log_type_id, meta_left, sizeof(*t)); + return -EINVAL; + } + meta_left -= sizeof(*t); + + if (t->info & ~BTF_INFO_MASK) { + btf_verifier_log(env, "[%u] Invalid btf_info:%x", + env->log_type_id, t->info); + return -EINVAL; + } + + if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX || + BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) { + btf_verifier_log(env, "[%u] Invalid kind:%u", + env->log_type_id, BTF_INFO_KIND(t->info)); + return -EINVAL; + } + + if (!btf_name_offset_valid(env->btf, t->name_off)) { + btf_verifier_log(env, "[%u] Invalid name_offset:%u", + env->log_type_id, t->name_off); + return -EINVAL; + } + + var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left); + if (var_meta_size < 0) + return var_meta_size; + + meta_left -= var_meta_size; + + return saved_meta_left - meta_left; +} + +static int btf_check_all_metas(struct btf_verifier_env *env) +{ + struct btf *btf = env->btf; + struct btf_header *hdr; + void *cur, *end; + + hdr = &btf->hdr; + cur = btf->nohdr_data + hdr->type_off; + end = cur + hdr->type_len; + + env->log_type_id = btf->base_btf ? btf->start_id : 1; + while (cur < end) { + struct btf_type *t = cur; + s32 meta_size; + + meta_size = btf_check_meta(env, t, end - cur); + if (meta_size < 0) + return meta_size; + + btf_add_type(env, t); + cur += meta_size; + env->log_type_id++; + } + + return 0; +} + +static bool btf_resolve_valid(struct btf_verifier_env *env, + const struct btf_type *t, + u32 type_id) +{ + struct btf *btf = env->btf; + + if (!env_type_is_resolved(env, type_id)) + return false; + + if (btf_type_is_struct(t) || btf_type_is_datasec(t)) + return !btf_resolved_type_id(btf, type_id) && + !btf_resolved_type_size(btf, type_id); + + if (btf_type_is_decl_tag(t) || btf_type_is_func(t)) + return btf_resolved_type_id(btf, type_id) && + !btf_resolved_type_size(btf, type_id); + + if (btf_type_is_modifier(t) || btf_type_is_ptr(t) || + btf_type_is_var(t)) { + t = btf_type_id_resolve(btf, &type_id); + return t && + !btf_type_is_modifier(t) && + !btf_type_is_var(t) && + !btf_type_is_datasec(t); + } + + if (btf_type_is_array(t)) { + const struct btf_array *array = btf_type_array(t); + const struct btf_type *elem_type; + u32 elem_type_id = array->type; + u32 elem_size; + + elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); + return elem_type && !btf_type_is_modifier(elem_type) && + (array->nelems * elem_size == + btf_resolved_type_size(btf, type_id)); + } + + return false; +} + +static int btf_resolve(struct btf_verifier_env *env, + const struct btf_type *t, u32 type_id) +{ + u32 save_log_type_id = env->log_type_id; + const struct resolve_vertex *v; + int err = 0; + + env->resolve_mode = RESOLVE_TBD; + env_stack_push(env, t, type_id); + while (!err && (v = env_stack_peak(env))) { + env->log_type_id = v->type_id; + err = btf_type_ops(v->t)->resolve(env, v); + } + + env->log_type_id = type_id; + if (err == -E2BIG) { + btf_verifier_log_type(env, t, + "Exceeded max resolving depth:%u", + MAX_RESOLVE_DEPTH); + } else if (err == -EEXIST) { + btf_verifier_log_type(env, t, "Loop detected"); + } + + /* Final sanity check */ + if (!err && !btf_resolve_valid(env, t, type_id)) { + btf_verifier_log_type(env, t, "Invalid resolve state"); + err = -EINVAL; + } + + env->log_type_id = save_log_type_id; + return err; +} + +static int btf_check_all_types(struct btf_verifier_env *env) +{ + struct btf *btf = env->btf; + const struct btf_type *t; + u32 type_id, i; + int err; + + err = env_resolve_init(env); + if (err) + return err; + + env->phase++; + for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) { + type_id = btf->start_id + i; + t = btf_type_by_id(btf, type_id); + + env->log_type_id = type_id; + if (btf_type_needs_resolve(t) && + !env_type_is_resolved(env, type_id)) { + err = btf_resolve(env, t, type_id); + if (err) + return err; + } + + if (btf_type_is_func_proto(t)) { + err = btf_func_proto_check(env, t); + if (err) + return err; + } + } + + return 0; +} + +static int btf_parse_type_sec(struct btf_verifier_env *env) +{ + const struct btf_header *hdr = &env->btf->hdr; + int err; + + /* Type section must align to 4 bytes */ + if (hdr->type_off & (sizeof(u32) - 1)) { + btf_verifier_log(env, "Unaligned type_off"); + return -EINVAL; + } + + if (!env->btf->base_btf && !hdr->type_len) { + btf_verifier_log(env, "No type found"); + return -EINVAL; + } + + err = btf_check_all_metas(env); + if (err) + return err; + + return btf_check_all_types(env); +} + +static int btf_parse_str_sec(struct btf_verifier_env *env) +{ + const struct btf_header *hdr; + struct btf *btf = env->btf; + const char *start, *end; + + hdr = &btf->hdr; + start = btf->nohdr_data + hdr->str_off; + end = start + hdr->str_len; + + if (end != btf->data + btf->data_size) { + btf_verifier_log(env, "String section is not at the end"); + return -EINVAL; + } + + btf->strings = start; + + if (btf->base_btf && !hdr->str_len) + return 0; + if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) { + btf_verifier_log(env, "Invalid string section"); + return -EINVAL; + } + if (!btf->base_btf && start[0]) { + btf_verifier_log(env, "Invalid string section"); + return -EINVAL; + } + + return 0; +} + +static const size_t btf_sec_info_offset[] = { + offsetof(struct btf_header, type_off), + offsetof(struct btf_header, str_off), +}; + +static int btf_sec_info_cmp(const void *a, const void *b) +{ + const struct btf_sec_info *x = a; + const struct btf_sec_info *y = b; + + return (int)(x->off - y->off) ? : (int)(x->len - y->len); +} + +static int btf_check_sec_info(struct btf_verifier_env *env, + u32 btf_data_size) +{ + struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)]; + u32 total, expected_total, i; + const struct btf_header *hdr; + const struct btf *btf; + + btf = env->btf; + hdr = &btf->hdr; + + /* Populate the secs from hdr */ + for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) + secs[i] = *(struct btf_sec_info *)((void *)hdr + + btf_sec_info_offset[i]); + + sort(secs, ARRAY_SIZE(btf_sec_info_offset), + sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL); + + /* Check for gaps and overlap among sections */ + total = 0; + expected_total = btf_data_size - hdr->hdr_len; + for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) { + if (expected_total < secs[i].off) { + btf_verifier_log(env, "Invalid section offset"); + return -EINVAL; + } + if (total < secs[i].off) { + /* gap */ + btf_verifier_log(env, "Unsupported section found"); + return -EINVAL; + } + if (total > secs[i].off) { + btf_verifier_log(env, "Section overlap found"); + return -EINVAL; + } + if (expected_total - total < secs[i].len) { + btf_verifier_log(env, + "Total section length too long"); + return -EINVAL; + } + total += secs[i].len; + } + + /* There is data other than hdr and known sections */ + if (expected_total != total) { + btf_verifier_log(env, "Unsupported section found"); + return -EINVAL; + } + + return 0; +} + +static int btf_parse_hdr(struct btf_verifier_env *env) +{ + u32 hdr_len, hdr_copy, btf_data_size; + const struct btf_header *hdr; + struct btf *btf; + + btf = env->btf; + btf_data_size = btf->data_size; + + if (btf_data_size < offsetofend(struct btf_header, hdr_len)) { + btf_verifier_log(env, "hdr_len not found"); + return -EINVAL; + } + + hdr = btf->data; + hdr_len = hdr->hdr_len; + if (btf_data_size < hdr_len) { + btf_verifier_log(env, "btf_header not found"); + return -EINVAL; + } + + /* Ensure the unsupported header fields are zero */ + if (hdr_len > sizeof(btf->hdr)) { + u8 *expected_zero = btf->data + sizeof(btf->hdr); + u8 *end = btf->data + hdr_len; + + for (; expected_zero < end; expected_zero++) { + if (*expected_zero) { + btf_verifier_log(env, "Unsupported btf_header"); + return -E2BIG; + } + } + } + + hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr)); + memcpy(&btf->hdr, btf->data, hdr_copy); + + hdr = &btf->hdr; + + btf_verifier_log_hdr(env, btf_data_size); + + if (hdr->magic != BTF_MAGIC) { + btf_verifier_log(env, "Invalid magic"); + return -EINVAL; + } + + if (hdr->version != BTF_VERSION) { + btf_verifier_log(env, "Unsupported version"); + return -ENOTSUPP; + } + + if (hdr->flags) { + btf_verifier_log(env, "Unsupported flags"); + return -ENOTSUPP; + } + + if (!btf->base_btf && btf_data_size == hdr->hdr_len) { + btf_verifier_log(env, "No data"); + return -EINVAL; + } + + return btf_check_sec_info(env, btf_data_size); +} + +static int btf_check_type_tags(struct btf_verifier_env *env, + struct btf *btf, int start_id) +{ + int i, n, good_id = start_id - 1; + bool in_tags; + + n = btf_nr_types(btf); + for (i = start_id; i < n; i++) { + const struct btf_type *t; + int chain_limit = 32; + u32 cur_id = i; + + t = btf_type_by_id(btf, i); + if (!t) + return -EINVAL; + if (!btf_type_is_modifier(t)) + continue; + + cond_resched(); + + in_tags = btf_type_is_type_tag(t); + while (btf_type_is_modifier(t)) { + if (!chain_limit--) { + btf_verifier_log(env, "Max chain length or cycle detected"); + return -ELOOP; + } + if (btf_type_is_type_tag(t)) { + if (!in_tags) { + btf_verifier_log(env, "Type tags don't precede modifiers"); + return -EINVAL; + } + } else if (in_tags) { + in_tags = false; + } + if (cur_id <= good_id) + break; + /* Move to next type */ + cur_id = t->type; + t = btf_type_by_id(btf, cur_id); + if (!t) + return -EINVAL; + } + good_id = i; + } + return 0; +} + +static struct btf *btf_parse(bpfptr_t btf_data, u32 btf_data_size, + u32 log_level, char __user *log_ubuf, u32 log_size) +{ + struct btf_verifier_env *env = NULL; + struct bpf_verifier_log *log; + struct btf *btf = NULL; + u8 *data; + int err; + + if (btf_data_size > BTF_MAX_SIZE) + return ERR_PTR(-E2BIG); + + env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); + if (!env) + return ERR_PTR(-ENOMEM); + + log = &env->log; + if (log_level || log_ubuf || log_size) { + /* user requested verbose verifier output + * and supplied buffer to store the verification trace + */ + log->level = log_level; + log->ubuf = log_ubuf; + log->len_total = log_size; + + /* log attributes have to be sane */ + if (!bpf_verifier_log_attr_valid(log)) { + err = -EINVAL; + goto errout; + } + } + + btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); + if (!btf) { + err = -ENOMEM; + goto errout; + } + env->btf = btf; + + data = kvmalloc(btf_data_size, GFP_KERNEL | __GFP_NOWARN); + if (!data) { + err = -ENOMEM; + goto errout; + } + + btf->data = data; + btf->data_size = btf_data_size; + + if (copy_from_bpfptr(data, btf_data, btf_data_size)) { + err = -EFAULT; + goto errout; + } + + err = btf_parse_hdr(env); + if (err) + goto errout; + + btf->nohdr_data = btf->data + btf->hdr.hdr_len; + + err = btf_parse_str_sec(env); + if (err) + goto errout; + + err = btf_parse_type_sec(env); + if (err) + goto errout; + + err = btf_check_type_tags(env, btf, 1); + if (err) + goto errout; + + if (log->level && bpf_verifier_log_full(log)) { + err = -ENOSPC; + goto errout; + } + + btf_verifier_env_free(env); + refcount_set(&btf->refcnt, 1); + return btf; + +errout: + btf_verifier_env_free(env); + if (btf) + btf_free(btf); + return ERR_PTR(err); +} + +extern char __weak __start_BTF[]; +extern char __weak __stop_BTF[]; +extern struct btf *btf_vmlinux; + +#define BPF_MAP_TYPE(_id, _ops) +#define BPF_LINK_TYPE(_id, _name) +static union { + struct bpf_ctx_convert { +#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ + prog_ctx_type _id##_prog; \ + kern_ctx_type _id##_kern; +#include <linux/bpf_types.h> +#undef BPF_PROG_TYPE + } *__t; + /* 't' is written once under lock. Read many times. */ + const struct btf_type *t; +} bpf_ctx_convert; +enum { +#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ + __ctx_convert##_id, +#include <linux/bpf_types.h> +#undef BPF_PROG_TYPE + __ctx_convert_unused, /* to avoid empty enum in extreme .config */ +}; +static u8 bpf_ctx_convert_map[] = { +#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ + [_id] = __ctx_convert##_id, +#include <linux/bpf_types.h> +#undef BPF_PROG_TYPE + 0, /* avoid empty array */ +}; +#undef BPF_MAP_TYPE +#undef BPF_LINK_TYPE + +static const struct btf_member * +btf_get_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf, + const struct btf_type *t, enum bpf_prog_type prog_type, + int arg) +{ + const struct btf_type *conv_struct; + const struct btf_type *ctx_struct; + const struct btf_member *ctx_type; + const char *tname, *ctx_tname; + + conv_struct = bpf_ctx_convert.t; + if (!conv_struct) { + bpf_log(log, "btf_vmlinux is malformed\n"); + return NULL; + } + t = btf_type_by_id(btf, t->type); + while (btf_type_is_modifier(t)) + t = btf_type_by_id(btf, t->type); + if (!btf_type_is_struct(t)) { + /* Only pointer to struct is supported for now. + * That means that BPF_PROG_TYPE_TRACEPOINT with BTF + * is not supported yet. + * BPF_PROG_TYPE_RAW_TRACEPOINT is fine. + */ + return NULL; + } + tname = btf_name_by_offset(btf, t->name_off); + if (!tname) { + bpf_log(log, "arg#%d struct doesn't have a name\n", arg); + return NULL; + } + /* prog_type is valid bpf program type. No need for bounds check. */ + ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2; + /* ctx_struct is a pointer to prog_ctx_type in vmlinux. + * Like 'struct __sk_buff' + */ + ctx_struct = btf_type_by_id(btf_vmlinux, ctx_type->type); + if (!ctx_struct) + /* should not happen */ + return NULL; +again: + ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_struct->name_off); + if (!ctx_tname) { + /* should not happen */ + bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n"); + return NULL; + } + /* only compare that prog's ctx type name is the same as + * kernel expects. No need to compare field by field. + * It's ok for bpf prog to do: + * struct __sk_buff {}; + * int socket_filter_bpf_prog(struct __sk_buff *skb) + * { // no fields of skb are ever used } + */ + if (strcmp(ctx_tname, tname)) { + /* bpf_user_pt_regs_t is a typedef, so resolve it to + * underlying struct and check name again + */ + if (!btf_type_is_modifier(ctx_struct)) + return NULL; + while (btf_type_is_modifier(ctx_struct)) + ctx_struct = btf_type_by_id(btf_vmlinux, ctx_struct->type); + goto again; + } + return ctx_type; +} + +static int btf_translate_to_vmlinux(struct bpf_verifier_log *log, + struct btf *btf, + const struct btf_type *t, + enum bpf_prog_type prog_type, + int arg) +{ + const struct btf_member *prog_ctx_type, *kern_ctx_type; + + prog_ctx_type = btf_get_prog_ctx_type(log, btf, t, prog_type, arg); + if (!prog_ctx_type) + return -ENOENT; + kern_ctx_type = prog_ctx_type + 1; + return kern_ctx_type->type; +} + +BTF_ID_LIST(bpf_ctx_convert_btf_id) +BTF_ID(struct, bpf_ctx_convert) + +struct btf *btf_parse_vmlinux(void) +{ + struct btf_verifier_env *env = NULL; + struct bpf_verifier_log *log; + struct btf *btf = NULL; + int err; + + env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); + if (!env) + return ERR_PTR(-ENOMEM); + + log = &env->log; + log->level = BPF_LOG_KERNEL; + + btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); + if (!btf) { + err = -ENOMEM; + goto errout; + } + env->btf = btf; + + btf->data = __start_BTF; + btf->data_size = __stop_BTF - __start_BTF; + btf->kernel_btf = true; + snprintf(btf->name, sizeof(btf->name), "vmlinux"); + + err = btf_parse_hdr(env); + if (err) + goto errout; + + btf->nohdr_data = btf->data + btf->hdr.hdr_len; + + err = btf_parse_str_sec(env); + if (err) + goto errout; + + err = btf_check_all_metas(env); + if (err) + goto errout; + + err = btf_check_type_tags(env, btf, 1); + if (err) + goto errout; + + /* btf_parse_vmlinux() runs under bpf_verifier_lock */ + bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]); + + bpf_struct_ops_init(btf, log); + + refcount_set(&btf->refcnt, 1); + + err = btf_alloc_id(btf); + if (err) + goto errout; + + btf_verifier_env_free(env); + return btf; + +errout: + btf_verifier_env_free(env); + if (btf) { + kvfree(btf->types); + kfree(btf); + } + return ERR_PTR(err); +} + +#ifdef CONFIG_DEBUG_INFO_BTF_MODULES + +static struct btf *btf_parse_module(const char *module_name, const void *data, unsigned int data_size) +{ + struct btf_verifier_env *env = NULL; + struct bpf_verifier_log *log; + struct btf *btf = NULL, *base_btf; + int err; + + base_btf = bpf_get_btf_vmlinux(); + if (IS_ERR(base_btf)) + return base_btf; + if (!base_btf) + return ERR_PTR(-EINVAL); + + env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); + if (!env) + return ERR_PTR(-ENOMEM); + + log = &env->log; + log->level = BPF_LOG_KERNEL; + + btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); + if (!btf) { + err = -ENOMEM; + goto errout; + } + env->btf = btf; + + btf->base_btf = base_btf; + btf->start_id = base_btf->nr_types; + btf->start_str_off = base_btf->hdr.str_len; + btf->kernel_btf = true; + snprintf(btf->name, sizeof(btf->name), "%s", module_name); + + btf->data = kvmalloc(data_size, GFP_KERNEL | __GFP_NOWARN); + if (!btf->data) { + err = -ENOMEM; + goto errout; + } + memcpy(btf->data, data, data_size); + btf->data_size = data_size; + + err = btf_parse_hdr(env); + if (err) + goto errout; + + btf->nohdr_data = btf->data + btf->hdr.hdr_len; + + err = btf_parse_str_sec(env); + if (err) + goto errout; + + err = btf_check_all_metas(env); + if (err) + goto errout; + + err = btf_check_type_tags(env, btf, btf_nr_types(base_btf)); + if (err) + goto errout; + + btf_verifier_env_free(env); + refcount_set(&btf->refcnt, 1); + return btf; + +errout: + btf_verifier_env_free(env); + if (btf) { + kvfree(btf->data); + kvfree(btf->types); + kfree(btf); + } + return ERR_PTR(err); +} + +#endif /* CONFIG_DEBUG_INFO_BTF_MODULES */ + +struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog) +{ + struct bpf_prog *tgt_prog = prog->aux->dst_prog; + + if (tgt_prog) + return tgt_prog->aux->btf; + else + return prog->aux->attach_btf; +} + +static bool is_int_ptr(struct btf *btf, const struct btf_type *t) +{ + /* skip modifiers */ + t = btf_type_skip_modifiers(btf, t->type, NULL); + + return btf_type_is_int(t); +} + +static u32 get_ctx_arg_idx(struct btf *btf, const struct btf_type *func_proto, + int off) +{ + const struct btf_param *args; + const struct btf_type *t; + u32 offset = 0, nr_args; + int i; + + if (!func_proto) + return off / 8; + + nr_args = btf_type_vlen(func_proto); + args = (const struct btf_param *)(func_proto + 1); + for (i = 0; i < nr_args; i++) { + t = btf_type_skip_modifiers(btf, args[i].type, NULL); + offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8); + if (off < offset) + return i; + } + + t = btf_type_skip_modifiers(btf, func_proto->type, NULL); + offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8); + if (off < offset) + return nr_args; + + return nr_args + 1; +} + +bool btf_ctx_access(int off, int size, enum bpf_access_type type, + const struct bpf_prog *prog, + struct bpf_insn_access_aux *info) +{ + const struct btf_type *t = prog->aux->attach_func_proto; + struct bpf_prog *tgt_prog = prog->aux->dst_prog; + struct btf *btf = bpf_prog_get_target_btf(prog); + const char *tname = prog->aux->attach_func_name; + struct bpf_verifier_log *log = info->log; + const struct btf_param *args; + const char *tag_value; + u32 nr_args, arg; + int i, ret; + + if (off % 8) { + bpf_log(log, "func '%s' offset %d is not multiple of 8\n", + tname, off); + return false; + } + arg = get_ctx_arg_idx(btf, t, off); + args = (const struct btf_param *)(t + 1); + /* if (t == NULL) Fall back to default BPF prog with + * MAX_BPF_FUNC_REG_ARGS u64 arguments. + */ + nr_args = t ? btf_type_vlen(t) : MAX_BPF_FUNC_REG_ARGS; + if (prog->aux->attach_btf_trace) { + /* skip first 'void *__data' argument in btf_trace_##name typedef */ + args++; + nr_args--; + } + + if (arg > nr_args) { + bpf_log(log, "func '%s' doesn't have %d-th argument\n", + tname, arg + 1); + return false; + } + + if (arg == nr_args) { + switch (prog->expected_attach_type) { + case BPF_LSM_CGROUP: + case BPF_LSM_MAC: + case BPF_TRACE_FEXIT: + /* When LSM programs are attached to void LSM hooks + * they use FEXIT trampolines and when attached to + * int LSM hooks, they use MODIFY_RETURN trampolines. + * + * While the LSM programs are BPF_MODIFY_RETURN-like + * the check: + * + * if (ret_type != 'int') + * return -EINVAL; + * + * is _not_ done here. This is still safe as LSM hooks + * have only void and int return types. + */ + if (!t) + return true; + t = btf_type_by_id(btf, t->type); + break; + case BPF_MODIFY_RETURN: + /* For now the BPF_MODIFY_RETURN can only be attached to + * functions that return an int. + */ + if (!t) + return false; + + t = btf_type_skip_modifiers(btf, t->type, NULL); + if (!btf_type_is_small_int(t)) { + bpf_log(log, + "ret type %s not allowed for fmod_ret\n", + btf_type_str(t)); + return false; + } + break; + default: + bpf_log(log, "func '%s' doesn't have %d-th argument\n", + tname, arg + 1); + return false; + } + } else { + if (!t) + /* Default prog with MAX_BPF_FUNC_REG_ARGS args */ + return true; + t = btf_type_by_id(btf, args[arg].type); + } + + /* skip modifiers */ + while (btf_type_is_modifier(t)) + t = btf_type_by_id(btf, t->type); + if (btf_type_is_small_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t)) + /* accessing a scalar */ + return true; + if (!btf_type_is_ptr(t)) { + bpf_log(log, + "func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n", + tname, arg, + __btf_name_by_offset(btf, t->name_off), + btf_type_str(t)); + return false; + } + + /* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */ + for (i = 0; i < prog->aux->ctx_arg_info_size; i++) { + const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i]; + u32 type, flag; + + type = base_type(ctx_arg_info->reg_type); + flag = type_flag(ctx_arg_info->reg_type); + if (ctx_arg_info->offset == off && type == PTR_TO_BUF && + (flag & PTR_MAYBE_NULL)) { + info->reg_type = ctx_arg_info->reg_type; + return true; + } + } + + if (t->type == 0) + /* This is a pointer to void. + * It is the same as scalar from the verifier safety pov. + * No further pointer walking is allowed. + */ + return true; + + if (is_int_ptr(btf, t)) + return true; + + /* this is a pointer to another type */ + for (i = 0; i < prog->aux->ctx_arg_info_size; i++) { + const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i]; + + if (ctx_arg_info->offset == off) { + if (!ctx_arg_info->btf_id) { + bpf_log(log,"invalid btf_id for context argument offset %u\n", off); + return false; + } + + info->reg_type = ctx_arg_info->reg_type; + info->btf = btf_vmlinux; + info->btf_id = ctx_arg_info->btf_id; + return true; + } + } + + info->reg_type = PTR_TO_BTF_ID; + if (tgt_prog) { + enum bpf_prog_type tgt_type; + + if (tgt_prog->type == BPF_PROG_TYPE_EXT) + tgt_type = tgt_prog->aux->saved_dst_prog_type; + else + tgt_type = tgt_prog->type; + + ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg); + if (ret > 0) { + info->btf = btf_vmlinux; + info->btf_id = ret; + return true; + } else { + return false; + } + } + + info->btf = btf; + info->btf_id = t->type; + t = btf_type_by_id(btf, t->type); + + if (btf_type_is_type_tag(t)) { + tag_value = __btf_name_by_offset(btf, t->name_off); + if (strcmp(tag_value, "user") == 0) + info->reg_type |= MEM_USER; + if (strcmp(tag_value, "percpu") == 0) + info->reg_type |= MEM_PERCPU; + } + + /* skip modifiers */ + while (btf_type_is_modifier(t)) { + info->btf_id = t->type; + t = btf_type_by_id(btf, t->type); + } + if (!btf_type_is_struct(t)) { + bpf_log(log, + "func '%s' arg%d type %s is not a struct\n", + tname, arg, btf_type_str(t)); + return false; + } + bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n", + tname, arg, info->btf_id, btf_type_str(t), + __btf_name_by_offset(btf, t->name_off)); + return true; +} + +enum bpf_struct_walk_result { + /* < 0 error */ + WALK_SCALAR = 0, + WALK_PTR, + WALK_STRUCT, +}; + +static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf, + const struct btf_type *t, int off, int size, + u32 *next_btf_id, enum bpf_type_flag *flag) +{ + u32 i, moff, mtrue_end, msize = 0, total_nelems = 0; + const struct btf_type *mtype, *elem_type = NULL; + const struct btf_member *member; + const char *tname, *mname, *tag_value; + u32 vlen, elem_id, mid; + +again: + tname = __btf_name_by_offset(btf, t->name_off); + if (!btf_type_is_struct(t)) { + bpf_log(log, "Type '%s' is not a struct\n", tname); + return -EINVAL; + } + + vlen = btf_type_vlen(t); + if (off + size > t->size) { + /* If the last element is a variable size array, we may + * need to relax the rule. + */ + struct btf_array *array_elem; + + if (vlen == 0) + goto error; + + member = btf_type_member(t) + vlen - 1; + mtype = btf_type_skip_modifiers(btf, member->type, + NULL); + if (!btf_type_is_array(mtype)) + goto error; + + array_elem = (struct btf_array *)(mtype + 1); + if (array_elem->nelems != 0) + goto error; + + moff = __btf_member_bit_offset(t, member) / 8; + if (off < moff) + goto error; + + /* Only allow structure for now, can be relaxed for + * other types later. + */ + t = btf_type_skip_modifiers(btf, array_elem->type, + NULL); + if (!btf_type_is_struct(t)) + goto error; + + off = (off - moff) % t->size; + goto again; + +error: + bpf_log(log, "access beyond struct %s at off %u size %u\n", + tname, off, size); + return -EACCES; + } + + for_each_member(i, t, member) { + /* offset of the field in bytes */ + moff = __btf_member_bit_offset(t, member) / 8; + if (off + size <= moff) + /* won't find anything, field is already too far */ + break; + + if (__btf_member_bitfield_size(t, member)) { + u32 end_bit = __btf_member_bit_offset(t, member) + + __btf_member_bitfield_size(t, member); + + /* off <= moff instead of off == moff because clang + * does not generate a BTF member for anonymous + * bitfield like the ":16" here: + * struct { + * int :16; + * int x:8; + * }; + */ + if (off <= moff && + BITS_ROUNDUP_BYTES(end_bit) <= off + size) + return WALK_SCALAR; + + /* off may be accessing a following member + * + * or + * + * Doing partial access at either end of this + * bitfield. Continue on this case also to + * treat it as not accessing this bitfield + * and eventually error out as field not + * found to keep it simple. + * It could be relaxed if there was a legit + * partial access case later. + */ + continue; + } + + /* In case of "off" is pointing to holes of a struct */ + if (off < moff) + break; + + /* type of the field */ + mid = member->type; + mtype = btf_type_by_id(btf, member->type); + mname = __btf_name_by_offset(btf, member->name_off); + + mtype = __btf_resolve_size(btf, mtype, &msize, + &elem_type, &elem_id, &total_nelems, + &mid); + if (IS_ERR(mtype)) { + bpf_log(log, "field %s doesn't have size\n", mname); + return -EFAULT; + } + + mtrue_end = moff + msize; + if (off >= mtrue_end) + /* no overlap with member, keep iterating */ + continue; + + if (btf_type_is_array(mtype)) { + u32 elem_idx; + + /* __btf_resolve_size() above helps to + * linearize a multi-dimensional array. + * + * The logic here is treating an array + * in a struct as the following way: + * + * struct outer { + * struct inner array[2][2]; + * }; + * + * looks like: + * + * struct outer { + * struct inner array_elem0; + * struct inner array_elem1; + * struct inner array_elem2; + * struct inner array_elem3; + * }; + * + * When accessing outer->array[1][0], it moves + * moff to "array_elem2", set mtype to + * "struct inner", and msize also becomes + * sizeof(struct inner). Then most of the + * remaining logic will fall through without + * caring the current member is an array or + * not. + * + * Unlike mtype/msize/moff, mtrue_end does not + * change. The naming difference ("_true") tells + * that it is not always corresponding to + * the current mtype/msize/moff. + * It is the true end of the current + * member (i.e. array in this case). That + * will allow an int array to be accessed like + * a scratch space, + * i.e. allow access beyond the size of + * the array's element as long as it is + * within the mtrue_end boundary. + */ + + /* skip empty array */ + if (moff == mtrue_end) + continue; + + msize /= total_nelems; + elem_idx = (off - moff) / msize; + moff += elem_idx * msize; + mtype = elem_type; + mid = elem_id; + } + + /* the 'off' we're looking for is either equal to start + * of this field or inside of this struct + */ + if (btf_type_is_struct(mtype)) { + /* our field must be inside that union or struct */ + t = mtype; + + /* return if the offset matches the member offset */ + if (off == moff) { + *next_btf_id = mid; + return WALK_STRUCT; + } + + /* adjust offset we're looking for */ + off -= moff; + goto again; + } + + if (btf_type_is_ptr(mtype)) { + const struct btf_type *stype, *t; + enum bpf_type_flag tmp_flag = 0; + u32 id; + + if (msize != size || off != moff) { + bpf_log(log, + "cannot access ptr member %s with moff %u in struct %s with off %u size %u\n", + mname, moff, tname, off, size); + return -EACCES; + } + + /* check type tag */ + t = btf_type_by_id(btf, mtype->type); + if (btf_type_is_type_tag(t)) { + tag_value = __btf_name_by_offset(btf, t->name_off); + /* check __user tag */ + if (strcmp(tag_value, "user") == 0) + tmp_flag = MEM_USER; + /* check __percpu tag */ + if (strcmp(tag_value, "percpu") == 0) + tmp_flag = MEM_PERCPU; + } + + stype = btf_type_skip_modifiers(btf, mtype->type, &id); + if (btf_type_is_struct(stype)) { + *next_btf_id = id; + *flag = tmp_flag; + return WALK_PTR; + } + } + + /* Allow more flexible access within an int as long as + * it is within mtrue_end. + * Since mtrue_end could be the end of an array, + * that also allows using an array of int as a scratch + * space. e.g. skb->cb[]. + */ + if (off + size > mtrue_end && !(*flag & PTR_UNTRUSTED)) { + bpf_log(log, + "access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n", + mname, mtrue_end, tname, off, size); + return -EACCES; + } + + return WALK_SCALAR; + } + bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off); + return -EINVAL; +} + +int btf_struct_access(struct bpf_verifier_log *log, const struct btf *btf, + const struct btf_type *t, int off, int size, + enum bpf_access_type atype __maybe_unused, + u32 *next_btf_id, enum bpf_type_flag *flag) +{ + enum bpf_type_flag tmp_flag = 0; + int err; + u32 id; + + do { + err = btf_struct_walk(log, btf, t, off, size, &id, &tmp_flag); + + switch (err) { + case WALK_PTR: + /* If we found the pointer or scalar on t+off, + * we're done. + */ + *next_btf_id = id; + *flag = tmp_flag; + return PTR_TO_BTF_ID; + case WALK_SCALAR: + return SCALAR_VALUE; + case WALK_STRUCT: + /* We found nested struct, so continue the search + * by diving in it. At this point the offset is + * aligned with the new type, so set it to 0. + */ + t = btf_type_by_id(btf, id); + off = 0; + break; + default: + /* It's either error or unknown return value.. + * scream and leave. + */ + if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value")) + return -EINVAL; + return err; + } + } while (t); + + return -EINVAL; +} + +/* Check that two BTF types, each specified as an BTF object + id, are exactly + * the same. Trivial ID check is not enough due to module BTFs, because we can + * end up with two different module BTFs, but IDs point to the common type in + * vmlinux BTF. + */ +static bool btf_types_are_same(const struct btf *btf1, u32 id1, + const struct btf *btf2, u32 id2) +{ + if (id1 != id2) + return false; + if (btf1 == btf2) + return true; + return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2); +} + +bool btf_struct_ids_match(struct bpf_verifier_log *log, + const struct btf *btf, u32 id, int off, + const struct btf *need_btf, u32 need_type_id, + bool strict) +{ + const struct btf_type *type; + enum bpf_type_flag flag; + int err; + + /* Are we already done? */ + if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id)) + return true; + /* In case of strict type match, we do not walk struct, the top level + * type match must succeed. When strict is true, off should have already + * been 0. + */ + if (strict) + return false; +again: + type = btf_type_by_id(btf, id); + if (!type) + return false; + err = btf_struct_walk(log, btf, type, off, 1, &id, &flag); + if (err != WALK_STRUCT) + return false; + + /* We found nested struct object. If it matches + * the requested ID, we're done. Otherwise let's + * continue the search with offset 0 in the new + * type. + */ + if (!btf_types_are_same(btf, id, need_btf, need_type_id)) { + off = 0; + goto again; + } + + return true; +} + +static int __get_type_size(struct btf *btf, u32 btf_id, + const struct btf_type **ret_type) +{ + const struct btf_type *t; + + *ret_type = btf_type_by_id(btf, 0); + if (!btf_id) + /* void */ + return 0; + t = btf_type_by_id(btf, btf_id); + while (t && btf_type_is_modifier(t)) + t = btf_type_by_id(btf, t->type); + if (!t) + return -EINVAL; + *ret_type = t; + if (btf_type_is_ptr(t)) + /* kernel size of pointer. Not BPF's size of pointer*/ + return sizeof(void *); + if (btf_type_is_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t)) + return t->size; + return -EINVAL; +} + +int btf_distill_func_proto(struct bpf_verifier_log *log, + struct btf *btf, + const struct btf_type *func, + const char *tname, + struct btf_func_model *m) +{ + const struct btf_param *args; + const struct btf_type *t; + u32 i, nargs; + int ret; + + if (!func) { + /* BTF function prototype doesn't match the verifier types. + * Fall back to MAX_BPF_FUNC_REG_ARGS u64 args. + */ + for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { + m->arg_size[i] = 8; + m->arg_flags[i] = 0; + } + m->ret_size = 8; + m->nr_args = MAX_BPF_FUNC_REG_ARGS; + return 0; + } + args = (const struct btf_param *)(func + 1); + nargs = btf_type_vlen(func); + if (nargs > MAX_BPF_FUNC_ARGS) { + bpf_log(log, + "The function %s has %d arguments. Too many.\n", + tname, nargs); + return -EINVAL; + } + ret = __get_type_size(btf, func->type, &t); + if (ret < 0 || __btf_type_is_struct(t)) { + bpf_log(log, + "The function %s return type %s is unsupported.\n", + tname, btf_type_str(t)); + return -EINVAL; + } + m->ret_size = ret; + + for (i = 0; i < nargs; i++) { + if (i == nargs - 1 && args[i].type == 0) { + bpf_log(log, + "The function %s with variable args is unsupported.\n", + tname); + return -EINVAL; + } + ret = __get_type_size(btf, args[i].type, &t); + + /* No support of struct argument size greater than 16 bytes */ + if (ret < 0 || ret > 16) { + bpf_log(log, + "The function %s arg%d type %s is unsupported.\n", + tname, i, btf_type_str(t)); + return -EINVAL; + } + if (ret == 0) { + bpf_log(log, + "The function %s has malformed void argument.\n", + tname); + return -EINVAL; + } + m->arg_size[i] = ret; + m->arg_flags[i] = __btf_type_is_struct(t) ? BTF_FMODEL_STRUCT_ARG : 0; + } + m->nr_args = nargs; + return 0; +} + +/* Compare BTFs of two functions assuming only scalars and pointers to context. + * t1 points to BTF_KIND_FUNC in btf1 + * t2 points to BTF_KIND_FUNC in btf2 + * Returns: + * EINVAL - function prototype mismatch + * EFAULT - verifier bug + * 0 - 99% match. The last 1% is validated by the verifier. + */ +static int btf_check_func_type_match(struct bpf_verifier_log *log, + struct btf *btf1, const struct btf_type *t1, + struct btf *btf2, const struct btf_type *t2) +{ + const struct btf_param *args1, *args2; + const char *fn1, *fn2, *s1, *s2; + u32 nargs1, nargs2, i; + + fn1 = btf_name_by_offset(btf1, t1->name_off); + fn2 = btf_name_by_offset(btf2, t2->name_off); + + if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) { + bpf_log(log, "%s() is not a global function\n", fn1); + return -EINVAL; + } + if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) { + bpf_log(log, "%s() is not a global function\n", fn2); + return -EINVAL; + } + + t1 = btf_type_by_id(btf1, t1->type); + if (!t1 || !btf_type_is_func_proto(t1)) + return -EFAULT; + t2 = btf_type_by_id(btf2, t2->type); + if (!t2 || !btf_type_is_func_proto(t2)) + return -EFAULT; + + args1 = (const struct btf_param *)(t1 + 1); + nargs1 = btf_type_vlen(t1); + args2 = (const struct btf_param *)(t2 + 1); + nargs2 = btf_type_vlen(t2); + + if (nargs1 != nargs2) { + bpf_log(log, "%s() has %d args while %s() has %d args\n", + fn1, nargs1, fn2, nargs2); + return -EINVAL; + } + + t1 = btf_type_skip_modifiers(btf1, t1->type, NULL); + t2 = btf_type_skip_modifiers(btf2, t2->type, NULL); + if (t1->info != t2->info) { + bpf_log(log, + "Return type %s of %s() doesn't match type %s of %s()\n", + btf_type_str(t1), fn1, + btf_type_str(t2), fn2); + return -EINVAL; + } + + for (i = 0; i < nargs1; i++) { + t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL); + t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL); + + if (t1->info != t2->info) { + bpf_log(log, "arg%d in %s() is %s while %s() has %s\n", + i, fn1, btf_type_str(t1), + fn2, btf_type_str(t2)); + return -EINVAL; + } + if (btf_type_has_size(t1) && t1->size != t2->size) { + bpf_log(log, + "arg%d in %s() has size %d while %s() has %d\n", + i, fn1, t1->size, + fn2, t2->size); + return -EINVAL; + } + + /* global functions are validated with scalars and pointers + * to context only. And only global functions can be replaced. + * Hence type check only those types. + */ + if (btf_type_is_int(t1) || btf_is_any_enum(t1)) + continue; + if (!btf_type_is_ptr(t1)) { + bpf_log(log, + "arg%d in %s() has unrecognized type\n", + i, fn1); + return -EINVAL; + } + t1 = btf_type_skip_modifiers(btf1, t1->type, NULL); + t2 = btf_type_skip_modifiers(btf2, t2->type, NULL); + if (!btf_type_is_struct(t1)) { + bpf_log(log, + "arg%d in %s() is not a pointer to context\n", + i, fn1); + return -EINVAL; + } + if (!btf_type_is_struct(t2)) { + bpf_log(log, + "arg%d in %s() is not a pointer to context\n", + i, fn2); + return -EINVAL; + } + /* This is an optional check to make program writing easier. + * Compare names of structs and report an error to the user. + * btf_prepare_func_args() already checked that t2 struct + * is a context type. btf_prepare_func_args() will check + * later that t1 struct is a context type as well. + */ + s1 = btf_name_by_offset(btf1, t1->name_off); + s2 = btf_name_by_offset(btf2, t2->name_off); + if (strcmp(s1, s2)) { + bpf_log(log, + "arg%d %s(struct %s *) doesn't match %s(struct %s *)\n", + i, fn1, s1, fn2, s2); + return -EINVAL; + } + } + return 0; +} + +/* Compare BTFs of given program with BTF of target program */ +int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog, + struct btf *btf2, const struct btf_type *t2) +{ + struct btf *btf1 = prog->aux->btf; + const struct btf_type *t1; + u32 btf_id = 0; + + if (!prog->aux->func_info) { + bpf_log(log, "Program extension requires BTF\n"); + return -EINVAL; + } + + btf_id = prog->aux->func_info[0].type_id; + if (!btf_id) + return -EFAULT; + + t1 = btf_type_by_id(btf1, btf_id); + if (!t1 || !btf_type_is_func(t1)) + return -EFAULT; + + return btf_check_func_type_match(log, btf1, t1, btf2, t2); +} + +static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = { +#ifdef CONFIG_NET + [PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK], + [PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], + [PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP], +#endif +}; + +/* Returns true if struct is composed of scalars, 4 levels of nesting allowed */ +static bool __btf_type_is_scalar_struct(struct bpf_verifier_log *log, + const struct btf *btf, + const struct btf_type *t, int rec) +{ + const struct btf_type *member_type; + const struct btf_member *member; + u32 i; + + if (!btf_type_is_struct(t)) + return false; + + for_each_member(i, t, member) { + const struct btf_array *array; + + member_type = btf_type_skip_modifiers(btf, member->type, NULL); + if (btf_type_is_struct(member_type)) { + if (rec >= 3) { + bpf_log(log, "max struct nesting depth exceeded\n"); + return false; + } + if (!__btf_type_is_scalar_struct(log, btf, member_type, rec + 1)) + return false; + continue; + } + if (btf_type_is_array(member_type)) { + array = btf_type_array(member_type); + if (!array->nelems) + return false; + member_type = btf_type_skip_modifiers(btf, array->type, NULL); + if (!btf_type_is_scalar(member_type)) + return false; + continue; + } + if (!btf_type_is_scalar(member_type)) + return false; + } + return true; +} + +static bool is_kfunc_arg_mem_size(const struct btf *btf, + const struct btf_param *arg, + const struct bpf_reg_state *reg) +{ + int len, sfx_len = sizeof("__sz") - 1; + const struct btf_type *t; + const char *param_name; + + t = btf_type_skip_modifiers(btf, arg->type, NULL); + if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) + return false; + + /* In the future, this can be ported to use BTF tagging */ + param_name = btf_name_by_offset(btf, arg->name_off); + if (str_is_empty(param_name)) + return false; + len = strlen(param_name); + if (len < sfx_len) + return false; + param_name += len - sfx_len; + if (strncmp(param_name, "__sz", sfx_len)) + return false; + + return true; +} + +static bool btf_is_kfunc_arg_mem_size(const struct btf *btf, + const struct btf_param *arg, + const struct bpf_reg_state *reg, + const char *name) +{ + int len, target_len = strlen(name); + const struct btf_type *t; + const char *param_name; + + t = btf_type_skip_modifiers(btf, arg->type, NULL); + if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) + return false; + + param_name = btf_name_by_offset(btf, arg->name_off); + if (str_is_empty(param_name)) + return false; + len = strlen(param_name); + if (len != target_len) + return false; + if (strcmp(param_name, name)) + return false; + + return true; +} + +static int btf_check_func_arg_match(struct bpf_verifier_env *env, + const struct btf *btf, u32 func_id, + struct bpf_reg_state *regs, + bool ptr_to_mem_ok, + struct bpf_kfunc_arg_meta *kfunc_meta, + bool processing_call) +{ + enum bpf_prog_type prog_type = resolve_prog_type(env->prog); + bool rel = false, kptr_get = false, trusted_args = false; + bool sleepable = false; + struct bpf_verifier_log *log = &env->log; + u32 i, nargs, ref_id, ref_obj_id = 0; + bool is_kfunc = btf_is_kernel(btf); + const char *func_name, *ref_tname; + const struct btf_type *t, *ref_t; + const struct btf_param *args; + int ref_regno = 0, ret; + + t = btf_type_by_id(btf, func_id); + if (!t || !btf_type_is_func(t)) { + /* These checks were already done by the verifier while loading + * struct bpf_func_info or in add_kfunc_call(). + */ + bpf_log(log, "BTF of func_id %u doesn't point to KIND_FUNC\n", + func_id); + return -EFAULT; + } + func_name = btf_name_by_offset(btf, t->name_off); + + t = btf_type_by_id(btf, t->type); + if (!t || !btf_type_is_func_proto(t)) { + bpf_log(log, "Invalid BTF of func %s\n", func_name); + return -EFAULT; + } + args = (const struct btf_param *)(t + 1); + nargs = btf_type_vlen(t); + if (nargs > MAX_BPF_FUNC_REG_ARGS) { + bpf_log(log, "Function %s has %d > %d args\n", func_name, nargs, + MAX_BPF_FUNC_REG_ARGS); + return -EINVAL; + } + + if (is_kfunc && kfunc_meta) { + /* Only kfunc can be release func */ + rel = kfunc_meta->flags & KF_RELEASE; + kptr_get = kfunc_meta->flags & KF_KPTR_GET; + trusted_args = kfunc_meta->flags & KF_TRUSTED_ARGS; + sleepable = kfunc_meta->flags & KF_SLEEPABLE; + } + + /* check that BTF function arguments match actual types that the + * verifier sees. + */ + for (i = 0; i < nargs; i++) { + enum bpf_arg_type arg_type = ARG_DONTCARE; + u32 regno = i + 1; + struct bpf_reg_state *reg = ®s[regno]; + bool obj_ptr = false; + + t = btf_type_skip_modifiers(btf, args[i].type, NULL); + if (btf_type_is_scalar(t)) { + if (is_kfunc && kfunc_meta) { + bool is_buf_size = false; + + /* check for any const scalar parameter of name "rdonly_buf_size" + * or "rdwr_buf_size" + */ + if (btf_is_kfunc_arg_mem_size(btf, &args[i], reg, + "rdonly_buf_size")) { + kfunc_meta->r0_rdonly = true; + is_buf_size = true; + } else if (btf_is_kfunc_arg_mem_size(btf, &args[i], reg, + "rdwr_buf_size")) + is_buf_size = true; + + if (is_buf_size) { + if (kfunc_meta->r0_size) { + bpf_log(log, "2 or more rdonly/rdwr_buf_size parameters for kfunc"); + return -EINVAL; + } + + if (!tnum_is_const(reg->var_off)) { + bpf_log(log, "R%d is not a const\n", regno); + return -EINVAL; + } + + kfunc_meta->r0_size = reg->var_off.value; + ret = mark_chain_precision(env, regno); + if (ret) + return ret; + } + } + + if (reg->type == SCALAR_VALUE) + continue; + bpf_log(log, "R%d is not a scalar\n", regno); + return -EINVAL; + } + + if (!btf_type_is_ptr(t)) { + bpf_log(log, "Unrecognized arg#%d type %s\n", + i, btf_type_str(t)); + return -EINVAL; + } + + /* These register types have special constraints wrt ref_obj_id + * and offset checks. The rest of trusted args don't. + */ + obj_ptr = reg->type == PTR_TO_CTX || reg->type == PTR_TO_BTF_ID || + reg2btf_ids[base_type(reg->type)]; + + /* Check if argument must be a referenced pointer, args + i has + * been verified to be a pointer (after skipping modifiers). + * PTR_TO_CTX is ok without having non-zero ref_obj_id. + */ + if (is_kfunc && trusted_args && (obj_ptr && reg->type != PTR_TO_CTX) && !reg->ref_obj_id) { + bpf_log(log, "R%d must be referenced\n", regno); + return -EINVAL; + } + + ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id); + ref_tname = btf_name_by_offset(btf, ref_t->name_off); + + /* Trusted args have the same offset checks as release arguments */ + if ((trusted_args && obj_ptr) || (rel && reg->ref_obj_id)) + arg_type |= OBJ_RELEASE; + ret = check_func_arg_reg_off(env, reg, regno, arg_type); + if (ret < 0) + return ret; + + if (is_kfunc && reg->ref_obj_id) { + /* Ensure only one argument is referenced PTR_TO_BTF_ID */ + if (ref_obj_id) { + bpf_log(log, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", + regno, reg->ref_obj_id, ref_obj_id); + return -EFAULT; + } + ref_regno = regno; + ref_obj_id = reg->ref_obj_id; + } + + /* kptr_get is only true for kfunc */ + if (i == 0 && kptr_get) { + struct bpf_map_value_off_desc *off_desc; + + if (reg->type != PTR_TO_MAP_VALUE) { + bpf_log(log, "arg#0 expected pointer to map value\n"); + return -EINVAL; + } + + /* check_func_arg_reg_off allows var_off for + * PTR_TO_MAP_VALUE, but we need fixed offset to find + * off_desc. + */ + if (!tnum_is_const(reg->var_off)) { + bpf_log(log, "arg#0 must have constant offset\n"); + return -EINVAL; + } + + off_desc = bpf_map_kptr_off_contains(reg->map_ptr, reg->off + reg->var_off.value); + if (!off_desc || off_desc->type != BPF_KPTR_REF) { + bpf_log(log, "arg#0 no referenced kptr at map value offset=%llu\n", + reg->off + reg->var_off.value); + return -EINVAL; + } + + if (!btf_type_is_ptr(ref_t)) { + bpf_log(log, "arg#0 BTF type must be a double pointer\n"); + return -EINVAL; + } + + ref_t = btf_type_skip_modifiers(btf, ref_t->type, &ref_id); + ref_tname = btf_name_by_offset(btf, ref_t->name_off); + + if (!btf_type_is_struct(ref_t)) { + bpf_log(log, "kernel function %s args#%d pointer type %s %s is not supported\n", + func_name, i, btf_type_str(ref_t), ref_tname); + return -EINVAL; + } + if (!btf_struct_ids_match(log, btf, ref_id, 0, off_desc->kptr.btf, + off_desc->kptr.btf_id, true)) { + bpf_log(log, "kernel function %s args#%d expected pointer to %s %s\n", + func_name, i, btf_type_str(ref_t), ref_tname); + return -EINVAL; + } + /* rest of the arguments can be anything, like normal kfunc */ + } else if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) { + /* If function expects ctx type in BTF check that caller + * is passing PTR_TO_CTX. + */ + if (reg->type != PTR_TO_CTX) { + bpf_log(log, + "arg#%d expected pointer to ctx, but got %s\n", + i, btf_type_str(t)); + return -EINVAL; + } + } else if (is_kfunc && (reg->type == PTR_TO_BTF_ID || + (reg2btf_ids[base_type(reg->type)] && !type_flag(reg->type)))) { + const struct btf_type *reg_ref_t; + const struct btf *reg_btf; + const char *reg_ref_tname; + u32 reg_ref_id; + + if (!btf_type_is_struct(ref_t)) { + bpf_log(log, "kernel function %s args#%d pointer type %s %s is not supported\n", + func_name, i, btf_type_str(ref_t), + ref_tname); + return -EINVAL; + } + + if (reg->type == PTR_TO_BTF_ID) { + reg_btf = reg->btf; + reg_ref_id = reg->btf_id; + } else { + reg_btf = btf_vmlinux; + reg_ref_id = *reg2btf_ids[base_type(reg->type)]; + } + + reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, + ®_ref_id); + reg_ref_tname = btf_name_by_offset(reg_btf, + reg_ref_t->name_off); + if (!btf_struct_ids_match(log, reg_btf, reg_ref_id, + reg->off, btf, ref_id, + trusted_args || (rel && reg->ref_obj_id))) { + bpf_log(log, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n", + func_name, i, + btf_type_str(ref_t), ref_tname, + regno, btf_type_str(reg_ref_t), + reg_ref_tname); + return -EINVAL; + } + } else if (ptr_to_mem_ok && processing_call) { + const struct btf_type *resolve_ret; + u32 type_size; + + if (is_kfunc) { + bool arg_mem_size = i + 1 < nargs && is_kfunc_arg_mem_size(btf, &args[i + 1], ®s[regno + 1]); + bool arg_dynptr = btf_type_is_struct(ref_t) && + !strcmp(ref_tname, + stringify_struct(bpf_dynptr_kern)); + + /* Permit pointer to mem, but only when argument + * type is pointer to scalar, or struct composed + * (recursively) of scalars. + * When arg_mem_size is true, the pointer can be + * void *. + * Also permit initialized local dynamic pointers. + */ + if (!btf_type_is_scalar(ref_t) && + !__btf_type_is_scalar_struct(log, btf, ref_t, 0) && + !arg_dynptr && + (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) { + bpf_log(log, + "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n", + i, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : ""); + return -EINVAL; + } + + if (arg_dynptr) { + if (reg->type != PTR_TO_STACK) { + bpf_log(log, "arg#%d pointer type %s %s not to stack\n", + i, btf_type_str(ref_t), + ref_tname); + return -EINVAL; + } + + if (!is_dynptr_reg_valid_init(env, reg)) { + bpf_log(log, + "arg#%d pointer type %s %s must be valid and initialized\n", + i, btf_type_str(ref_t), + ref_tname); + return -EINVAL; + } + + if (!is_dynptr_type_expected(env, reg, + ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL)) { + bpf_log(log, + "arg#%d pointer type %s %s points to unsupported dynamic pointer type\n", + i, btf_type_str(ref_t), + ref_tname); + return -EINVAL; + } + + continue; + } + + /* Check for mem, len pair */ + if (arg_mem_size) { + if (check_kfunc_mem_size_reg(env, ®s[regno + 1], regno + 1)) { + bpf_log(log, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", + i, i + 1); + return -EINVAL; + } + i++; + continue; + } + } + + resolve_ret = btf_resolve_size(btf, ref_t, &type_size); + if (IS_ERR(resolve_ret)) { + bpf_log(log, + "arg#%d reference type('%s %s') size cannot be determined: %ld\n", + i, btf_type_str(ref_t), ref_tname, + PTR_ERR(resolve_ret)); + return -EINVAL; + } + + if (check_mem_reg(env, reg, regno, type_size)) + return -EINVAL; + } else { + bpf_log(log, "reg type unsupported for arg#%d %sfunction %s#%d\n", i, + is_kfunc ? "kernel " : "", func_name, func_id); + return -EINVAL; + } + } + + /* Either both are set, or neither */ + WARN_ON_ONCE((ref_obj_id && !ref_regno) || (!ref_obj_id && ref_regno)); + /* We already made sure ref_obj_id is set only for one argument. We do + * allow (!rel && ref_obj_id), so that passing such referenced + * PTR_TO_BTF_ID to other kfuncs works. Note that rel is only true when + * is_kfunc is true. + */ + if (rel && !ref_obj_id) { + bpf_log(log, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n", + func_name); + return -EINVAL; + } + + if (sleepable && !env->prog->aux->sleepable) { + bpf_log(log, "kernel function %s is sleepable but the program is not\n", + func_name); + return -EINVAL; + } + + if (kfunc_meta && ref_obj_id) + kfunc_meta->ref_obj_id = ref_obj_id; + + /* returns argument register number > 0 in case of reference release kfunc */ + return rel ? ref_regno : 0; +} + +/* Compare BTF of a function declaration with given bpf_reg_state. + * Returns: + * EFAULT - there is a verifier bug. Abort verification. + * EINVAL - there is a type mismatch or BTF is not available. + * 0 - BTF matches with what bpf_reg_state expects. + * Only PTR_TO_CTX and SCALAR_VALUE states are recognized. + */ +int btf_check_subprog_arg_match(struct bpf_verifier_env *env, int subprog, + struct bpf_reg_state *regs) +{ + struct bpf_prog *prog = env->prog; + struct btf *btf = prog->aux->btf; + bool is_global; + u32 btf_id; + int err; + + if (!prog->aux->func_info) + return -EINVAL; + + btf_id = prog->aux->func_info[subprog].type_id; + if (!btf_id) + return -EFAULT; + + if (prog->aux->func_info_aux[subprog].unreliable) + return -EINVAL; + + is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL; + err = btf_check_func_arg_match(env, btf, btf_id, regs, is_global, NULL, false); + + /* Compiler optimizations can remove arguments from static functions + * or mismatched type can be passed into a global function. + * In such cases mark the function as unreliable from BTF point of view. + */ + if (err) + prog->aux->func_info_aux[subprog].unreliable = true; + return err; +} + +/* Compare BTF of a function call with given bpf_reg_state. + * Returns: + * EFAULT - there is a verifier bug. Abort verification. + * EINVAL - there is a type mismatch or BTF is not available. + * 0 - BTF matches with what bpf_reg_state expects. + * Only PTR_TO_CTX and SCALAR_VALUE states are recognized. + * + * NOTE: the code is duplicated from btf_check_subprog_arg_match() + * because btf_check_func_arg_match() is still doing both. Once that + * function is split in 2, we can call from here btf_check_subprog_arg_match() + * first, and then treat the calling part in a new code path. + */ +int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog, + struct bpf_reg_state *regs) +{ + struct bpf_prog *prog = env->prog; + struct btf *btf = prog->aux->btf; + bool is_global; + u32 btf_id; + int err; + + if (!prog->aux->func_info) + return -EINVAL; + + btf_id = prog->aux->func_info[subprog].type_id; + if (!btf_id) + return -EFAULT; + + if (prog->aux->func_info_aux[subprog].unreliable) + return -EINVAL; + + is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL; + err = btf_check_func_arg_match(env, btf, btf_id, regs, is_global, NULL, true); + + /* Compiler optimizations can remove arguments from static functions + * or mismatched type can be passed into a global function. + * In such cases mark the function as unreliable from BTF point of view. + */ + if (err) + prog->aux->func_info_aux[subprog].unreliable = true; + return err; +} + +int btf_check_kfunc_arg_match(struct bpf_verifier_env *env, + const struct btf *btf, u32 func_id, + struct bpf_reg_state *regs, + struct bpf_kfunc_arg_meta *meta) +{ + return btf_check_func_arg_match(env, btf, func_id, regs, true, meta, true); +} + +/* Convert BTF of a function into bpf_reg_state if possible + * Returns: + * EFAULT - there is a verifier bug. Abort verification. + * EINVAL - cannot convert BTF. + * 0 - Successfully converted BTF into bpf_reg_state + * (either PTR_TO_CTX or SCALAR_VALUE). + */ +int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog, + struct bpf_reg_state *regs) +{ + struct bpf_verifier_log *log = &env->log; + struct bpf_prog *prog = env->prog; + enum bpf_prog_type prog_type = prog->type; + struct btf *btf = prog->aux->btf; + const struct btf_param *args; + const struct btf_type *t, *ref_t; + u32 i, nargs, btf_id; + const char *tname; + + if (!prog->aux->func_info || + prog->aux->func_info_aux[subprog].linkage != BTF_FUNC_GLOBAL) { + bpf_log(log, "Verifier bug\n"); + return -EFAULT; + } + + btf_id = prog->aux->func_info[subprog].type_id; + if (!btf_id) { + bpf_log(log, "Global functions need valid BTF\n"); + return -EFAULT; + } + + t = btf_type_by_id(btf, btf_id); + if (!t || !btf_type_is_func(t)) { + /* These checks were already done by the verifier while loading + * struct bpf_func_info + */ + bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n", + subprog); + return -EFAULT; + } + tname = btf_name_by_offset(btf, t->name_off); + + if (log->level & BPF_LOG_LEVEL) + bpf_log(log, "Validating %s() func#%d...\n", + tname, subprog); + + if (prog->aux->func_info_aux[subprog].unreliable) { + bpf_log(log, "Verifier bug in function %s()\n", tname); + return -EFAULT; + } + if (prog_type == BPF_PROG_TYPE_EXT) + prog_type = prog->aux->dst_prog->type; + + t = btf_type_by_id(btf, t->type); + if (!t || !btf_type_is_func_proto(t)) { + bpf_log(log, "Invalid type of function %s()\n", tname); + return -EFAULT; + } + args = (const struct btf_param *)(t + 1); + nargs = btf_type_vlen(t); + if (nargs > MAX_BPF_FUNC_REG_ARGS) { + bpf_log(log, "Global function %s() with %d > %d args. Buggy compiler.\n", + tname, nargs, MAX_BPF_FUNC_REG_ARGS); + return -EINVAL; + } + /* check that function returns int */ + t = btf_type_by_id(btf, t->type); + while (btf_type_is_modifier(t)) + t = btf_type_by_id(btf, t->type); + if (!btf_type_is_int(t) && !btf_is_any_enum(t)) { + bpf_log(log, + "Global function %s() doesn't return scalar. Only those are supported.\n", + tname); + return -EINVAL; + } + /* Convert BTF function arguments into verifier types. + * Only PTR_TO_CTX and SCALAR are supported atm. + */ + for (i = 0; i < nargs; i++) { + struct bpf_reg_state *reg = ®s[i + 1]; + + t = btf_type_by_id(btf, args[i].type); + while (btf_type_is_modifier(t)) + t = btf_type_by_id(btf, t->type); + if (btf_type_is_int(t) || btf_is_any_enum(t)) { + reg->type = SCALAR_VALUE; + continue; + } + if (btf_type_is_ptr(t)) { + if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) { + reg->type = PTR_TO_CTX; + continue; + } + + t = btf_type_skip_modifiers(btf, t->type, NULL); + + ref_t = btf_resolve_size(btf, t, ®->mem_size); + if (IS_ERR(ref_t)) { + bpf_log(log, + "arg#%d reference type('%s %s') size cannot be determined: %ld\n", + i, btf_type_str(t), btf_name_by_offset(btf, t->name_off), + PTR_ERR(ref_t)); + return -EINVAL; + } + + reg->type = PTR_TO_MEM | PTR_MAYBE_NULL; + reg->id = ++env->id_gen; + + continue; + } + bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n", + i, btf_type_str(t), tname); + return -EINVAL; + } + return 0; +} + +static void btf_type_show(const struct btf *btf, u32 type_id, void *obj, + struct btf_show *show) +{ + const struct btf_type *t = btf_type_by_id(btf, type_id); + + show->btf = btf; + memset(&show->state, 0, sizeof(show->state)); + memset(&show->obj, 0, sizeof(show->obj)); + + btf_type_ops(t)->show(btf, t, type_id, obj, 0, show); +} + +static void btf_seq_show(struct btf_show *show, const char *fmt, + va_list args) +{ + seq_vprintf((struct seq_file *)show->target, fmt, args); +} + +int btf_type_seq_show_flags(const struct btf *btf, u32 type_id, + void *obj, struct seq_file *m, u64 flags) +{ + struct btf_show sseq; + + sseq.target = m; + sseq.showfn = btf_seq_show; + sseq.flags = flags; + + btf_type_show(btf, type_id, obj, &sseq); + + return sseq.state.status; +} + +void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj, + struct seq_file *m) +{ + (void) btf_type_seq_show_flags(btf, type_id, obj, m, + BTF_SHOW_NONAME | BTF_SHOW_COMPACT | + BTF_SHOW_ZERO | BTF_SHOW_UNSAFE); +} + +struct btf_show_snprintf { + struct btf_show show; + int len_left; /* space left in string */ + int len; /* length we would have written */ +}; + +static void btf_snprintf_show(struct btf_show *show, const char *fmt, + va_list args) +{ + struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show; + int len; + + len = vsnprintf(show->target, ssnprintf->len_left, fmt, args); + + if (len < 0) { + ssnprintf->len_left = 0; + ssnprintf->len = len; + } else if (len >= ssnprintf->len_left) { + /* no space, drive on to get length we would have written */ + ssnprintf->len_left = 0; + ssnprintf->len += len; + } else { + ssnprintf->len_left -= len; + ssnprintf->len += len; + show->target += len; + } +} + +int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj, + char *buf, int len, u64 flags) +{ + struct btf_show_snprintf ssnprintf; + + ssnprintf.show.target = buf; + ssnprintf.show.flags = flags; + ssnprintf.show.showfn = btf_snprintf_show; + ssnprintf.len_left = len; + ssnprintf.len = 0; + + btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf); + + /* If we encountered an error, return it. */ + if (ssnprintf.show.state.status) + return ssnprintf.show.state.status; + + /* Otherwise return length we would have written */ + return ssnprintf.len; +} + +#ifdef CONFIG_PROC_FS +static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp) +{ + const struct btf *btf = filp->private_data; + + seq_printf(m, "btf_id:\t%u\n", btf->id); +} +#endif + +static int btf_release(struct inode *inode, struct file *filp) +{ + btf_put(filp->private_data); + return 0; +} + +const struct file_operations btf_fops = { +#ifdef CONFIG_PROC_FS + .show_fdinfo = bpf_btf_show_fdinfo, +#endif + .release = btf_release, +}; + +static int __btf_new_fd(struct btf *btf) +{ + return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC); +} + +int btf_new_fd(const union bpf_attr *attr, bpfptr_t uattr) +{ + struct btf *btf; + int ret; + + btf = btf_parse(make_bpfptr(attr->btf, uattr.is_kernel), + attr->btf_size, attr->btf_log_level, + u64_to_user_ptr(attr->btf_log_buf), + attr->btf_log_size); + if (IS_ERR(btf)) + return PTR_ERR(btf); + + ret = btf_alloc_id(btf); + if (ret) { + btf_free(btf); + return ret; + } + + /* + * The BTF ID is published to the userspace. + * All BTF free must go through call_rcu() from + * now on (i.e. free by calling btf_put()). + */ + + ret = __btf_new_fd(btf); + if (ret < 0) + btf_put(btf); + + return ret; +} + +struct btf *btf_get_by_fd(int fd) +{ + struct btf *btf; + struct fd f; + + f = fdget(fd); + + if (!f.file) + return ERR_PTR(-EBADF); + + if (f.file->f_op != &btf_fops) { + fdput(f); + return ERR_PTR(-EINVAL); + } + + btf = f.file->private_data; + refcount_inc(&btf->refcnt); + fdput(f); + + return btf; +} + +int btf_get_info_by_fd(const struct btf *btf, + const union bpf_attr *attr, + union bpf_attr __user *uattr) +{ + struct bpf_btf_info __user *uinfo; + struct bpf_btf_info info; + u32 info_copy, btf_copy; + void __user *ubtf; + char __user *uname; + u32 uinfo_len, uname_len, name_len; + int ret = 0; + + uinfo = u64_to_user_ptr(attr->info.info); + uinfo_len = attr->info.info_len; + + info_copy = min_t(u32, uinfo_len, sizeof(info)); + memset(&info, 0, sizeof(info)); + if (copy_from_user(&info, uinfo, info_copy)) + return -EFAULT; + + info.id = btf->id; + ubtf = u64_to_user_ptr(info.btf); + btf_copy = min_t(u32, btf->data_size, info.btf_size); + if (copy_to_user(ubtf, btf->data, btf_copy)) + return -EFAULT; + info.btf_size = btf->data_size; + + info.kernel_btf = btf->kernel_btf; + + uname = u64_to_user_ptr(info.name); + uname_len = info.name_len; + if (!uname ^ !uname_len) + return -EINVAL; + + name_len = strlen(btf->name); + info.name_len = name_len; + + if (uname) { + if (uname_len >= name_len + 1) { + if (copy_to_user(uname, btf->name, name_len + 1)) + return -EFAULT; + } else { + char zero = '\0'; + + if (copy_to_user(uname, btf->name, uname_len - 1)) + return -EFAULT; + if (put_user(zero, uname + uname_len - 1)) + return -EFAULT; + /* let user-space know about too short buffer */ + ret = -ENOSPC; + } + } + + if (copy_to_user(uinfo, &info, info_copy) || + put_user(info_copy, &uattr->info.info_len)) + return -EFAULT; + + return ret; +} + +int btf_get_fd_by_id(u32 id) +{ + struct btf *btf; + int fd; + + rcu_read_lock(); + btf = idr_find(&btf_idr, id); + if (!btf || !refcount_inc_not_zero(&btf->refcnt)) + btf = ERR_PTR(-ENOENT); + rcu_read_unlock(); + + if (IS_ERR(btf)) + return PTR_ERR(btf); + + fd = __btf_new_fd(btf); + if (fd < 0) + btf_put(btf); + + return fd; +} + +u32 btf_obj_id(const struct btf *btf) +{ + return btf->id; +} + +bool btf_is_kernel(const struct btf *btf) +{ + return btf->kernel_btf; +} + +bool btf_is_module(const struct btf *btf) +{ + return btf->kernel_btf && strcmp(btf->name, "vmlinux") != 0; +} + +static int btf_id_cmp_func(const void *a, const void *b) +{ + const int *pa = a, *pb = b; + + return *pa - *pb; +} + +bool btf_id_set_contains(const struct btf_id_set *set, u32 id) +{ + return bsearch(&id, set->ids, set->cnt, sizeof(u32), btf_id_cmp_func) != NULL; +} + +static void *btf_id_set8_contains(const struct btf_id_set8 *set, u32 id) +{ + return bsearch(&id, set->pairs, set->cnt, sizeof(set->pairs[0]), btf_id_cmp_func); +} + +enum { + BTF_MODULE_F_LIVE = (1 << 0), +}; + +#ifdef CONFIG_DEBUG_INFO_BTF_MODULES +struct btf_module { + struct list_head list; + struct module *module; + struct btf *btf; + struct bin_attribute *sysfs_attr; + int flags; +}; + +static LIST_HEAD(btf_modules); +static DEFINE_MUTEX(btf_module_mutex); + +static ssize_t +btf_module_read(struct file *file, struct kobject *kobj, + struct bin_attribute *bin_attr, + char *buf, loff_t off, size_t len) +{ + const struct btf *btf = bin_attr->private; + + memcpy(buf, btf->data + off, len); + return len; +} + +static void purge_cand_cache(struct btf *btf); + +static int btf_module_notify(struct notifier_block *nb, unsigned long op, + void *module) +{ + struct btf_module *btf_mod, *tmp; + struct module *mod = module; + struct btf *btf; + int err = 0; + + if (mod->btf_data_size == 0 || + (op != MODULE_STATE_COMING && op != MODULE_STATE_LIVE && + op != MODULE_STATE_GOING)) + goto out; + + switch (op) { + case MODULE_STATE_COMING: + btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL); + if (!btf_mod) { + err = -ENOMEM; + goto out; + } + btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size); + if (IS_ERR(btf)) { + pr_warn("failed to validate module [%s] BTF: %ld\n", + mod->name, PTR_ERR(btf)); + kfree(btf_mod); + if (!IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) + err = PTR_ERR(btf); + goto out; + } + err = btf_alloc_id(btf); + if (err) { + btf_free(btf); + kfree(btf_mod); + goto out; + } + + purge_cand_cache(NULL); + mutex_lock(&btf_module_mutex); + btf_mod->module = module; + btf_mod->btf = btf; + list_add(&btf_mod->list, &btf_modules); + mutex_unlock(&btf_module_mutex); + + if (IS_ENABLED(CONFIG_SYSFS)) { + struct bin_attribute *attr; + + attr = kzalloc(sizeof(*attr), GFP_KERNEL); + if (!attr) + goto out; + + sysfs_bin_attr_init(attr); + attr->attr.name = btf->name; + attr->attr.mode = 0444; + attr->size = btf->data_size; + attr->private = btf; + attr->read = btf_module_read; + + err = sysfs_create_bin_file(btf_kobj, attr); + if (err) { + pr_warn("failed to register module [%s] BTF in sysfs: %d\n", + mod->name, err); + kfree(attr); + err = 0; + goto out; + } + + btf_mod->sysfs_attr = attr; + } + + break; + case MODULE_STATE_LIVE: + mutex_lock(&btf_module_mutex); + list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { + if (btf_mod->module != module) + continue; + + btf_mod->flags |= BTF_MODULE_F_LIVE; + break; + } + mutex_unlock(&btf_module_mutex); + break; + case MODULE_STATE_GOING: + mutex_lock(&btf_module_mutex); + list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { + if (btf_mod->module != module) + continue; + + list_del(&btf_mod->list); + if (btf_mod->sysfs_attr) + sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr); + purge_cand_cache(btf_mod->btf); + btf_put(btf_mod->btf); + kfree(btf_mod->sysfs_attr); + kfree(btf_mod); + break; + } + mutex_unlock(&btf_module_mutex); + break; + } +out: + return notifier_from_errno(err); +} + +static struct notifier_block btf_module_nb = { + .notifier_call = btf_module_notify, +}; + +static int __init btf_module_init(void) +{ + register_module_notifier(&btf_module_nb); + return 0; +} + +fs_initcall(btf_module_init); +#endif /* CONFIG_DEBUG_INFO_BTF_MODULES */ + +struct module *btf_try_get_module(const struct btf *btf) +{ + struct module *res = NULL; +#ifdef CONFIG_DEBUG_INFO_BTF_MODULES + struct btf_module *btf_mod, *tmp; + + mutex_lock(&btf_module_mutex); + list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { + if (btf_mod->btf != btf) + continue; + + /* We must only consider module whose __init routine has + * finished, hence we must check for BTF_MODULE_F_LIVE flag, + * which is set from the notifier callback for + * MODULE_STATE_LIVE. + */ + if ((btf_mod->flags & BTF_MODULE_F_LIVE) && try_module_get(btf_mod->module)) + res = btf_mod->module; + + break; + } + mutex_unlock(&btf_module_mutex); +#endif + + return res; +} + +/* Returns struct btf corresponding to the struct module. + * This function can return NULL or ERR_PTR. + */ +static struct btf *btf_get_module_btf(const struct module *module) +{ +#ifdef CONFIG_DEBUG_INFO_BTF_MODULES + struct btf_module *btf_mod, *tmp; +#endif + struct btf *btf = NULL; + + if (!module) { + btf = bpf_get_btf_vmlinux(); + if (!IS_ERR_OR_NULL(btf)) + btf_get(btf); + return btf; + } + +#ifdef CONFIG_DEBUG_INFO_BTF_MODULES + mutex_lock(&btf_module_mutex); + list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { + if (btf_mod->module != module) + continue; + + btf_get(btf_mod->btf); + btf = btf_mod->btf; + break; + } + mutex_unlock(&btf_module_mutex); +#endif + + return btf; +} + +BPF_CALL_4(bpf_btf_find_by_name_kind, char *, name, int, name_sz, u32, kind, int, flags) +{ + struct btf *btf = NULL; + int btf_obj_fd = 0; + long ret; + + if (flags) + return -EINVAL; + + if (name_sz <= 1 || name[name_sz - 1]) + return -EINVAL; + + ret = bpf_find_btf_id(name, kind, &btf); + if (ret > 0 && btf_is_module(btf)) { + btf_obj_fd = __btf_new_fd(btf); + if (btf_obj_fd < 0) { + btf_put(btf); + return btf_obj_fd; + } + return ret | (((u64)btf_obj_fd) << 32); + } + if (ret > 0) + btf_put(btf); + return ret; +} + +const struct bpf_func_proto bpf_btf_find_by_name_kind_proto = { + .func = bpf_btf_find_by_name_kind, + .gpl_only = false, + .ret_type = RET_INTEGER, + .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, + .arg2_type = ARG_CONST_SIZE, + .arg3_type = ARG_ANYTHING, + .arg4_type = ARG_ANYTHING, +}; + +BTF_ID_LIST_GLOBAL(btf_tracing_ids, MAX_BTF_TRACING_TYPE) +#define BTF_TRACING_TYPE(name, type) BTF_ID(struct, type) +BTF_TRACING_TYPE_xxx +#undef BTF_TRACING_TYPE + +/* Kernel Function (kfunc) BTF ID set registration API */ + +static int btf_populate_kfunc_set(struct btf *btf, enum btf_kfunc_hook hook, + struct btf_id_set8 *add_set) +{ + bool vmlinux_set = !btf_is_module(btf); + struct btf_kfunc_set_tab *tab; + struct btf_id_set8 *set; + u32 set_cnt; + int ret; + + if (hook >= BTF_KFUNC_HOOK_MAX) { + ret = -EINVAL; + goto end; + } + + if (!add_set->cnt) + return 0; + + tab = btf->kfunc_set_tab; + if (!tab) { + tab = kzalloc(sizeof(*tab), GFP_KERNEL | __GFP_NOWARN); + if (!tab) + return -ENOMEM; + btf->kfunc_set_tab = tab; + } + + set = tab->sets[hook]; + /* Warn when register_btf_kfunc_id_set is called twice for the same hook + * for module sets. + */ + if (WARN_ON_ONCE(set && !vmlinux_set)) { + ret = -EINVAL; + goto end; + } + + /* We don't need to allocate, concatenate, and sort module sets, because + * only one is allowed per hook. Hence, we can directly assign the + * pointer and return. + */ + if (!vmlinux_set) { + tab->sets[hook] = add_set; + return 0; + } + + /* In case of vmlinux sets, there may be more than one set being + * registered per hook. To create a unified set, we allocate a new set + * and concatenate all individual sets being registered. While each set + * is individually sorted, they may become unsorted when concatenated, + * hence re-sorting the final set again is required to make binary + * searching the set using btf_id_set8_contains function work. + */ + set_cnt = set ? set->cnt : 0; + + if (set_cnt > U32_MAX - add_set->cnt) { + ret = -EOVERFLOW; + goto end; + } + + if (set_cnt + add_set->cnt > BTF_KFUNC_SET_MAX_CNT) { + ret = -E2BIG; + goto end; + } + + /* Grow set */ + set = krealloc(tab->sets[hook], + offsetof(struct btf_id_set8, pairs[set_cnt + add_set->cnt]), + GFP_KERNEL | __GFP_NOWARN); + if (!set) { + ret = -ENOMEM; + goto end; + } + + /* For newly allocated set, initialize set->cnt to 0 */ + if (!tab->sets[hook]) + set->cnt = 0; + tab->sets[hook] = set; + + /* Concatenate the two sets */ + memcpy(set->pairs + set->cnt, add_set->pairs, add_set->cnt * sizeof(set->pairs[0])); + set->cnt += add_set->cnt; + + sort(set->pairs, set->cnt, sizeof(set->pairs[0]), btf_id_cmp_func, NULL); + + return 0; +end: + btf_free_kfunc_set_tab(btf); + return ret; +} + +static u32 *__btf_kfunc_id_set_contains(const struct btf *btf, + enum btf_kfunc_hook hook, + u32 kfunc_btf_id) +{ + struct btf_id_set8 *set; + u32 *id; + + if (hook >= BTF_KFUNC_HOOK_MAX) + return NULL; + if (!btf->kfunc_set_tab) + return NULL; + set = btf->kfunc_set_tab->sets[hook]; + if (!set) + return NULL; + id = btf_id_set8_contains(set, kfunc_btf_id); + if (!id) + return NULL; + /* The flags for BTF ID are located next to it */ + return id + 1; +} + +static int bpf_prog_type_to_kfunc_hook(enum bpf_prog_type prog_type) +{ + switch (prog_type) { + case BPF_PROG_TYPE_XDP: + return BTF_KFUNC_HOOK_XDP; + case BPF_PROG_TYPE_SCHED_CLS: + return BTF_KFUNC_HOOK_TC; + case BPF_PROG_TYPE_STRUCT_OPS: + return BTF_KFUNC_HOOK_STRUCT_OPS; + case BPF_PROG_TYPE_TRACING: + case BPF_PROG_TYPE_LSM: + return BTF_KFUNC_HOOK_TRACING; + case BPF_PROG_TYPE_SYSCALL: + return BTF_KFUNC_HOOK_SYSCALL; + default: + return BTF_KFUNC_HOOK_MAX; + } +} + +/* Caution: + * Reference to the module (obtained using btf_try_get_module) corresponding to + * the struct btf *MUST* be held when calling this function from verifier + * context. This is usually true as we stash references in prog's kfunc_btf_tab; + * keeping the reference for the duration of the call provides the necessary + * protection for looking up a well-formed btf->kfunc_set_tab. + */ +u32 *btf_kfunc_id_set_contains(const struct btf *btf, + enum bpf_prog_type prog_type, + u32 kfunc_btf_id) +{ + enum btf_kfunc_hook hook; + + hook = bpf_prog_type_to_kfunc_hook(prog_type); + return __btf_kfunc_id_set_contains(btf, hook, kfunc_btf_id); +} + +/* This function must be invoked only from initcalls/module init functions */ +int register_btf_kfunc_id_set(enum bpf_prog_type prog_type, + const struct btf_kfunc_id_set *kset) +{ + enum btf_kfunc_hook hook; + struct btf *btf; + int ret; + + btf = btf_get_module_btf(kset->owner); + if (!btf) { + if (!kset->owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { + pr_err("missing vmlinux BTF, cannot register kfuncs\n"); + return -ENOENT; + } + if (kset->owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)) + pr_warn("missing module BTF, cannot register kfuncs\n"); + return 0; + } + if (IS_ERR(btf)) + return PTR_ERR(btf); + + hook = bpf_prog_type_to_kfunc_hook(prog_type); + ret = btf_populate_kfunc_set(btf, hook, kset->set); + btf_put(btf); + return ret; +} +EXPORT_SYMBOL_GPL(register_btf_kfunc_id_set); + +s32 btf_find_dtor_kfunc(struct btf *btf, u32 btf_id) +{ + struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab; + struct btf_id_dtor_kfunc *dtor; + + if (!tab) + return -ENOENT; + /* Even though the size of tab->dtors[0] is > sizeof(u32), we only need + * to compare the first u32 with btf_id, so we can reuse btf_id_cmp_func. + */ + BUILD_BUG_ON(offsetof(struct btf_id_dtor_kfunc, btf_id) != 0); + dtor = bsearch(&btf_id, tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func); + if (!dtor) + return -ENOENT; + return dtor->kfunc_btf_id; +} + +static int btf_check_dtor_kfuncs(struct btf *btf, const struct btf_id_dtor_kfunc *dtors, u32 cnt) +{ + const struct btf_type *dtor_func, *dtor_func_proto, *t; + const struct btf_param *args; + s32 dtor_btf_id; + u32 nr_args, i; + + for (i = 0; i < cnt; i++) { + dtor_btf_id = dtors[i].kfunc_btf_id; + + dtor_func = btf_type_by_id(btf, dtor_btf_id); + if (!dtor_func || !btf_type_is_func(dtor_func)) + return -EINVAL; + + dtor_func_proto = btf_type_by_id(btf, dtor_func->type); + if (!dtor_func_proto || !btf_type_is_func_proto(dtor_func_proto)) + return -EINVAL; + + /* Make sure the prototype of the destructor kfunc is 'void func(type *)' */ + t = btf_type_by_id(btf, dtor_func_proto->type); + if (!t || !btf_type_is_void(t)) + return -EINVAL; + + nr_args = btf_type_vlen(dtor_func_proto); + if (nr_args != 1) + return -EINVAL; + args = btf_params(dtor_func_proto); + t = btf_type_by_id(btf, args[0].type); + /* Allow any pointer type, as width on targets Linux supports + * will be same for all pointer types (i.e. sizeof(void *)) + */ + if (!t || !btf_type_is_ptr(t)) + return -EINVAL; + } + return 0; +} + +/* This function must be invoked only from initcalls/module init functions */ +int register_btf_id_dtor_kfuncs(const struct btf_id_dtor_kfunc *dtors, u32 add_cnt, + struct module *owner) +{ + struct btf_id_dtor_kfunc_tab *tab; + struct btf *btf; + u32 tab_cnt; + int ret; + + btf = btf_get_module_btf(owner); + if (!btf) { + if (!owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { + pr_err("missing vmlinux BTF, cannot register dtor kfuncs\n"); + return -ENOENT; + } + if (owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)) { + pr_err("missing module BTF, cannot register dtor kfuncs\n"); + return -ENOENT; + } + return 0; + } + if (IS_ERR(btf)) + return PTR_ERR(btf); + + if (add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) { + pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT); + ret = -E2BIG; + goto end; + } + + /* Ensure that the prototype of dtor kfuncs being registered is sane */ + ret = btf_check_dtor_kfuncs(btf, dtors, add_cnt); + if (ret < 0) + goto end; + + tab = btf->dtor_kfunc_tab; + /* Only one call allowed for modules */ + if (WARN_ON_ONCE(tab && btf_is_module(btf))) { + ret = -EINVAL; + goto end; + } + + tab_cnt = tab ? tab->cnt : 0; + if (tab_cnt > U32_MAX - add_cnt) { + ret = -EOVERFLOW; + goto end; + } + if (tab_cnt + add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) { + pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT); + ret = -E2BIG; + goto end; + } + + tab = krealloc(btf->dtor_kfunc_tab, + offsetof(struct btf_id_dtor_kfunc_tab, dtors[tab_cnt + add_cnt]), + GFP_KERNEL | __GFP_NOWARN); + if (!tab) { + ret = -ENOMEM; + goto end; + } + + if (!btf->dtor_kfunc_tab) + tab->cnt = 0; + btf->dtor_kfunc_tab = tab; + + memcpy(tab->dtors + tab->cnt, dtors, add_cnt * sizeof(tab->dtors[0])); + tab->cnt += add_cnt; + + sort(tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func, NULL); + +end: + if (ret) + btf_free_dtor_kfunc_tab(btf); + btf_put(btf); + return ret; +} +EXPORT_SYMBOL_GPL(register_btf_id_dtor_kfuncs); + +#define MAX_TYPES_ARE_COMPAT_DEPTH 2 + +/* Check local and target types for compatibility. This check is used for + * type-based CO-RE relocations and follow slightly different rules than + * field-based relocations. This function assumes that root types were already + * checked for name match. Beyond that initial root-level name check, names + * are completely ignored. Compatibility rules are as follows: + * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs/ENUM64s are considered compatible, but + * kind should match for local and target types (i.e., STRUCT is not + * compatible with UNION); + * - for ENUMs/ENUM64s, the size is ignored; + * - for INT, size and signedness are ignored; + * - for ARRAY, dimensionality is ignored, element types are checked for + * compatibility recursively; + * - CONST/VOLATILE/RESTRICT modifiers are ignored; + * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; + * - FUNC_PROTOs are compatible if they have compatible signature: same + * number of input args and compatible return and argument types. + * These rules are not set in stone and probably will be adjusted as we get + * more experience with using BPF CO-RE relocations. + */ +int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, + const struct btf *targ_btf, __u32 targ_id) +{ + return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, + MAX_TYPES_ARE_COMPAT_DEPTH); +} + +#define MAX_TYPES_MATCH_DEPTH 2 + +int bpf_core_types_match(const struct btf *local_btf, u32 local_id, + const struct btf *targ_btf, u32 targ_id) +{ + return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, + MAX_TYPES_MATCH_DEPTH); +} + +static bool bpf_core_is_flavor_sep(const char *s) +{ + /* check X___Y name pattern, where X and Y are not underscores */ + return s[0] != '_' && /* X */ + s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ + s[4] != '_'; /* Y */ +} + +size_t bpf_core_essential_name_len(const char *name) +{ + size_t n = strlen(name); + int i; + + for (i = n - 5; i >= 0; i--) { + if (bpf_core_is_flavor_sep(name + i)) + return i + 1; + } + return n; +} + +struct bpf_cand_cache { + const char *name; + u32 name_len; + u16 kind; + u16 cnt; + struct { + const struct btf *btf; + u32 id; + } cands[]; +}; + +static void bpf_free_cands(struct bpf_cand_cache *cands) +{ + if (!cands->cnt) + /* empty candidate array was allocated on stack */ + return; + kfree(cands); +} + +static void bpf_free_cands_from_cache(struct bpf_cand_cache *cands) +{ + kfree(cands->name); + kfree(cands); +} + +#define VMLINUX_CAND_CACHE_SIZE 31 +static struct bpf_cand_cache *vmlinux_cand_cache[VMLINUX_CAND_CACHE_SIZE]; + +#define MODULE_CAND_CACHE_SIZE 31 +static struct bpf_cand_cache *module_cand_cache[MODULE_CAND_CACHE_SIZE]; + +static DEFINE_MUTEX(cand_cache_mutex); + +static void __print_cand_cache(struct bpf_verifier_log *log, + struct bpf_cand_cache **cache, + int cache_size) +{ + struct bpf_cand_cache *cc; + int i, j; + + for (i = 0; i < cache_size; i++) { + cc = cache[i]; + if (!cc) + continue; + bpf_log(log, "[%d]%s(", i, cc->name); + for (j = 0; j < cc->cnt; j++) { + bpf_log(log, "%d", cc->cands[j].id); + if (j < cc->cnt - 1) + bpf_log(log, " "); + } + bpf_log(log, "), "); + } +} + +static void print_cand_cache(struct bpf_verifier_log *log) +{ + mutex_lock(&cand_cache_mutex); + bpf_log(log, "vmlinux_cand_cache:"); + __print_cand_cache(log, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE); + bpf_log(log, "\nmodule_cand_cache:"); + __print_cand_cache(log, module_cand_cache, MODULE_CAND_CACHE_SIZE); + bpf_log(log, "\n"); + mutex_unlock(&cand_cache_mutex); +} + +static u32 hash_cands(struct bpf_cand_cache *cands) +{ + return jhash(cands->name, cands->name_len, 0); +} + +static struct bpf_cand_cache *check_cand_cache(struct bpf_cand_cache *cands, + struct bpf_cand_cache **cache, + int cache_size) +{ + struct bpf_cand_cache *cc = cache[hash_cands(cands) % cache_size]; + + if (cc && cc->name_len == cands->name_len && + !strncmp(cc->name, cands->name, cands->name_len)) + return cc; + return NULL; +} + +static size_t sizeof_cands(int cnt) +{ + return offsetof(struct bpf_cand_cache, cands[cnt]); +} + +static struct bpf_cand_cache *populate_cand_cache(struct bpf_cand_cache *cands, + struct bpf_cand_cache **cache, + int cache_size) +{ + struct bpf_cand_cache **cc = &cache[hash_cands(cands) % cache_size], *new_cands; + + if (*cc) { + bpf_free_cands_from_cache(*cc); + *cc = NULL; + } + new_cands = kmemdup(cands, sizeof_cands(cands->cnt), GFP_KERNEL); + if (!new_cands) { + bpf_free_cands(cands); + return ERR_PTR(-ENOMEM); + } + /* strdup the name, since it will stay in cache. + * the cands->name points to strings in prog's BTF and the prog can be unloaded. + */ + new_cands->name = kmemdup_nul(cands->name, cands->name_len, GFP_KERNEL); + bpf_free_cands(cands); + if (!new_cands->name) { + kfree(new_cands); + return ERR_PTR(-ENOMEM); + } + *cc = new_cands; + return new_cands; +} + +#ifdef CONFIG_DEBUG_INFO_BTF_MODULES +static void __purge_cand_cache(struct btf *btf, struct bpf_cand_cache **cache, + int cache_size) +{ + struct bpf_cand_cache *cc; + int i, j; + + for (i = 0; i < cache_size; i++) { + cc = cache[i]; + if (!cc) + continue; + if (!btf) { + /* when new module is loaded purge all of module_cand_cache, + * since new module might have candidates with the name + * that matches cached cands. + */ + bpf_free_cands_from_cache(cc); + cache[i] = NULL; + continue; + } + /* when module is unloaded purge cache entries + * that match module's btf + */ + for (j = 0; j < cc->cnt; j++) + if (cc->cands[j].btf == btf) { + bpf_free_cands_from_cache(cc); + cache[i] = NULL; + break; + } + } + +} + +static void purge_cand_cache(struct btf *btf) +{ + mutex_lock(&cand_cache_mutex); + __purge_cand_cache(btf, module_cand_cache, MODULE_CAND_CACHE_SIZE); + mutex_unlock(&cand_cache_mutex); +} +#endif + +static struct bpf_cand_cache * +bpf_core_add_cands(struct bpf_cand_cache *cands, const struct btf *targ_btf, + int targ_start_id) +{ + struct bpf_cand_cache *new_cands; + const struct btf_type *t; + const char *targ_name; + size_t targ_essent_len; + int n, i; + + n = btf_nr_types(targ_btf); + for (i = targ_start_id; i < n; i++) { + t = btf_type_by_id(targ_btf, i); + if (btf_kind(t) != cands->kind) + continue; + + targ_name = btf_name_by_offset(targ_btf, t->name_off); + if (!targ_name) + continue; + + /* the resched point is before strncmp to make sure that search + * for non-existing name will have a chance to schedule(). + */ + cond_resched(); + + if (strncmp(cands->name, targ_name, cands->name_len) != 0) + continue; + + targ_essent_len = bpf_core_essential_name_len(targ_name); + if (targ_essent_len != cands->name_len) + continue; + + /* most of the time there is only one candidate for a given kind+name pair */ + new_cands = kmalloc(sizeof_cands(cands->cnt + 1), GFP_KERNEL); + if (!new_cands) { + bpf_free_cands(cands); + return ERR_PTR(-ENOMEM); + } + + memcpy(new_cands, cands, sizeof_cands(cands->cnt)); + bpf_free_cands(cands); + cands = new_cands; + cands->cands[cands->cnt].btf = targ_btf; + cands->cands[cands->cnt].id = i; + cands->cnt++; + } + return cands; +} + +static struct bpf_cand_cache * +bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id) +{ + struct bpf_cand_cache *cands, *cc, local_cand = {}; + const struct btf *local_btf = ctx->btf; + const struct btf_type *local_type; + const struct btf *main_btf; + size_t local_essent_len; + struct btf *mod_btf; + const char *name; + int id; + + main_btf = bpf_get_btf_vmlinux(); + if (IS_ERR(main_btf)) + return ERR_CAST(main_btf); + if (!main_btf) + return ERR_PTR(-EINVAL); + + local_type = btf_type_by_id(local_btf, local_type_id); + if (!local_type) + return ERR_PTR(-EINVAL); + + name = btf_name_by_offset(local_btf, local_type->name_off); + if (str_is_empty(name)) + return ERR_PTR(-EINVAL); + local_essent_len = bpf_core_essential_name_len(name); + + cands = &local_cand; + cands->name = name; + cands->kind = btf_kind(local_type); + cands->name_len = local_essent_len; + + cc = check_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE); + /* cands is a pointer to stack here */ + if (cc) { + if (cc->cnt) + return cc; + goto check_modules; + } + + /* Attempt to find target candidates in vmlinux BTF first */ + cands = bpf_core_add_cands(cands, main_btf, 1); + if (IS_ERR(cands)) + return ERR_CAST(cands); + + /* cands is a pointer to kmalloced memory here if cands->cnt > 0 */ + + /* populate cache even when cands->cnt == 0 */ + cc = populate_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE); + if (IS_ERR(cc)) + return ERR_CAST(cc); + + /* if vmlinux BTF has any candidate, don't go for module BTFs */ + if (cc->cnt) + return cc; + +check_modules: + /* cands is a pointer to stack here and cands->cnt == 0 */ + cc = check_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE); + if (cc) + /* if cache has it return it even if cc->cnt == 0 */ + return cc; + + /* If candidate is not found in vmlinux's BTF then search in module's BTFs */ + spin_lock_bh(&btf_idr_lock); + idr_for_each_entry(&btf_idr, mod_btf, id) { + if (!btf_is_module(mod_btf)) + continue; + /* linear search could be slow hence unlock/lock + * the IDR to avoiding holding it for too long + */ + btf_get(mod_btf); + spin_unlock_bh(&btf_idr_lock); + cands = bpf_core_add_cands(cands, mod_btf, btf_nr_types(main_btf)); + btf_put(mod_btf); + if (IS_ERR(cands)) + return ERR_CAST(cands); + spin_lock_bh(&btf_idr_lock); + } + spin_unlock_bh(&btf_idr_lock); + /* cands is a pointer to kmalloced memory here if cands->cnt > 0 + * or pointer to stack if cands->cnd == 0. + * Copy it into the cache even when cands->cnt == 0 and + * return the result. + */ + return populate_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE); +} + +int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo, + int relo_idx, void *insn) +{ + bool need_cands = relo->kind != BPF_CORE_TYPE_ID_LOCAL; + struct bpf_core_cand_list cands = {}; + struct bpf_core_relo_res targ_res; + struct bpf_core_spec *specs; + int err; + + /* ~4k of temp memory necessary to convert LLVM spec like "0:1:0:5" + * into arrays of btf_ids of struct fields and array indices. + */ + specs = kcalloc(3, sizeof(*specs), GFP_KERNEL); + if (!specs) + return -ENOMEM; + + if (need_cands) { + struct bpf_cand_cache *cc; + int i; + + mutex_lock(&cand_cache_mutex); + cc = bpf_core_find_cands(ctx, relo->type_id); + if (IS_ERR(cc)) { + bpf_log(ctx->log, "target candidate search failed for %d\n", + relo->type_id); + err = PTR_ERR(cc); + goto out; + } + if (cc->cnt) { + cands.cands = kcalloc(cc->cnt, sizeof(*cands.cands), GFP_KERNEL); + if (!cands.cands) { + err = -ENOMEM; + goto out; + } + } + for (i = 0; i < cc->cnt; i++) { + bpf_log(ctx->log, + "CO-RE relocating %s %s: found target candidate [%d]\n", + btf_kind_str[cc->kind], cc->name, cc->cands[i].id); + cands.cands[i].btf = cc->cands[i].btf; + cands.cands[i].id = cc->cands[i].id; + } + cands.len = cc->cnt; + /* cand_cache_mutex needs to span the cache lookup and + * copy of btf pointer into bpf_core_cand_list, + * since module can be unloaded while bpf_core_calc_relo_insn + * is working with module's btf. + */ + } + + err = bpf_core_calc_relo_insn((void *)ctx->log, relo, relo_idx, ctx->btf, &cands, specs, + &targ_res); + if (err) + goto out; + + err = bpf_core_patch_insn((void *)ctx->log, insn, relo->insn_off / 8, relo, relo_idx, + &targ_res); + +out: + kfree(specs); + if (need_cands) { + kfree(cands.cands); + mutex_unlock(&cand_cache_mutex); + if (ctx->log->level & BPF_LOG_LEVEL2) + print_cand_cache(ctx->log); + } + return err; +} |