diff options
Diffstat (limited to 'kernel/bpf/memalloc.c')
-rw-r--r-- | kernel/bpf/memalloc.c | 649 |
1 files changed, 649 insertions, 0 deletions
diff --git a/kernel/bpf/memalloc.c b/kernel/bpf/memalloc.c new file mode 100644 index 000000000..ace303a22 --- /dev/null +++ b/kernel/bpf/memalloc.c @@ -0,0 +1,649 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* Copyright (c) 2022 Meta Platforms, Inc. and affiliates. */ +#include <linux/mm.h> +#include <linux/llist.h> +#include <linux/bpf.h> +#include <linux/irq_work.h> +#include <linux/bpf_mem_alloc.h> +#include <linux/memcontrol.h> +#include <asm/local.h> + +/* Any context (including NMI) BPF specific memory allocator. + * + * Tracing BPF programs can attach to kprobe and fentry. Hence they + * run in unknown context where calling plain kmalloc() might not be safe. + * + * Front-end kmalloc() with per-cpu per-bucket cache of free elements. + * Refill this cache asynchronously from irq_work. + * + * CPU_0 buckets + * 16 32 64 96 128 196 256 512 1024 2048 4096 + * ... + * CPU_N buckets + * 16 32 64 96 128 196 256 512 1024 2048 4096 + * + * The buckets are prefilled at the start. + * BPF programs always run with migration disabled. + * It's safe to allocate from cache of the current cpu with irqs disabled. + * Free-ing is always done into bucket of the current cpu as well. + * irq_work trims extra free elements from buckets with kfree + * and refills them with kmalloc, so global kmalloc logic takes care + * of freeing objects allocated by one cpu and freed on another. + * + * Every allocated objected is padded with extra 8 bytes that contains + * struct llist_node. + */ +#define LLIST_NODE_SZ sizeof(struct llist_node) + +/* similar to kmalloc, but sizeof == 8 bucket is gone */ +static u8 size_index[24] __ro_after_init = { + 3, /* 8 */ + 3, /* 16 */ + 4, /* 24 */ + 4, /* 32 */ + 5, /* 40 */ + 5, /* 48 */ + 5, /* 56 */ + 5, /* 64 */ + 1, /* 72 */ + 1, /* 80 */ + 1, /* 88 */ + 1, /* 96 */ + 6, /* 104 */ + 6, /* 112 */ + 6, /* 120 */ + 6, /* 128 */ + 2, /* 136 */ + 2, /* 144 */ + 2, /* 152 */ + 2, /* 160 */ + 2, /* 168 */ + 2, /* 176 */ + 2, /* 184 */ + 2 /* 192 */ +}; + +static int bpf_mem_cache_idx(size_t size) +{ + if (!size || size > 4096) + return -1; + + if (size <= 192) + return size_index[(size - 1) / 8] - 1; + + return fls(size - 1) - 2; +} + +#define NUM_CACHES 11 + +struct bpf_mem_cache { + /* per-cpu list of free objects of size 'unit_size'. + * All accesses are done with interrupts disabled and 'active' counter + * protection with __llist_add() and __llist_del_first(). + */ + struct llist_head free_llist; + local_t active; + + /* Operations on the free_list from unit_alloc/unit_free/bpf_mem_refill + * are sequenced by per-cpu 'active' counter. But unit_free() cannot + * fail. When 'active' is busy the unit_free() will add an object to + * free_llist_extra. + */ + struct llist_head free_llist_extra; + + struct irq_work refill_work; + struct obj_cgroup *objcg; + int unit_size; + /* count of objects in free_llist */ + int free_cnt; + int low_watermark, high_watermark, batch; + int percpu_size; + + struct rcu_head rcu; + struct llist_head free_by_rcu; + struct llist_head waiting_for_gp; + atomic_t call_rcu_in_progress; +}; + +struct bpf_mem_caches { + struct bpf_mem_cache cache[NUM_CACHES]; +}; + +static struct llist_node notrace *__llist_del_first(struct llist_head *head) +{ + struct llist_node *entry, *next; + + entry = head->first; + if (!entry) + return NULL; + next = entry->next; + head->first = next; + return entry; +} + +static void *__alloc(struct bpf_mem_cache *c, int node) +{ + /* Allocate, but don't deplete atomic reserves that typical + * GFP_ATOMIC would do. irq_work runs on this cpu and kmalloc + * will allocate from the current numa node which is what we + * want here. + */ + gfp_t flags = GFP_NOWAIT | __GFP_NOWARN | __GFP_ACCOUNT; + + if (c->percpu_size) { + void **obj = kmalloc_node(c->percpu_size, flags, node); + void *pptr = __alloc_percpu_gfp(c->unit_size, 8, flags); + + if (!obj || !pptr) { + free_percpu(pptr); + kfree(obj); + return NULL; + } + obj[1] = pptr; + return obj; + } + + return kmalloc_node(c->unit_size, flags | __GFP_ZERO, node); +} + +static struct mem_cgroup *get_memcg(const struct bpf_mem_cache *c) +{ +#ifdef CONFIG_MEMCG_KMEM + if (c->objcg) + return get_mem_cgroup_from_objcg(c->objcg); +#endif + +#ifdef CONFIG_MEMCG + return root_mem_cgroup; +#else + return NULL; +#endif +} + +/* Mostly runs from irq_work except __init phase. */ +static void alloc_bulk(struct bpf_mem_cache *c, int cnt, int node) +{ + struct mem_cgroup *memcg = NULL, *old_memcg; + unsigned long flags; + void *obj; + int i; + + memcg = get_memcg(c); + old_memcg = set_active_memcg(memcg); + for (i = 0; i < cnt; i++) { + obj = __alloc(c, node); + if (!obj) + break; + if (IS_ENABLED(CONFIG_PREEMPT_RT)) + /* In RT irq_work runs in per-cpu kthread, so disable + * interrupts to avoid preemption and interrupts and + * reduce the chance of bpf prog executing on this cpu + * when active counter is busy. + */ + local_irq_save(flags); + /* alloc_bulk runs from irq_work which will not preempt a bpf + * program that does unit_alloc/unit_free since IRQs are + * disabled there. There is no race to increment 'active' + * counter. It protects free_llist from corruption in case NMI + * bpf prog preempted this loop. + */ + WARN_ON_ONCE(local_inc_return(&c->active) != 1); + __llist_add(obj, &c->free_llist); + c->free_cnt++; + local_dec(&c->active); + if (IS_ENABLED(CONFIG_PREEMPT_RT)) + local_irq_restore(flags); + } + set_active_memcg(old_memcg); + mem_cgroup_put(memcg); +} + +static void free_one(struct bpf_mem_cache *c, void *obj) +{ + if (c->percpu_size) { + free_percpu(((void **)obj)[1]); + kfree(obj); + return; + } + + kfree(obj); +} + +static void __free_rcu(struct rcu_head *head) +{ + struct bpf_mem_cache *c = container_of(head, struct bpf_mem_cache, rcu); + struct llist_node *llnode = llist_del_all(&c->waiting_for_gp); + struct llist_node *pos, *t; + + llist_for_each_safe(pos, t, llnode) + free_one(c, pos); + atomic_set(&c->call_rcu_in_progress, 0); +} + +static void __free_rcu_tasks_trace(struct rcu_head *head) +{ + struct bpf_mem_cache *c = container_of(head, struct bpf_mem_cache, rcu); + + call_rcu(&c->rcu, __free_rcu); +} + +static void enque_to_free(struct bpf_mem_cache *c, void *obj) +{ + struct llist_node *llnode = obj; + + /* bpf_mem_cache is a per-cpu object. Freeing happens in irq_work. + * Nothing races to add to free_by_rcu list. + */ + __llist_add(llnode, &c->free_by_rcu); +} + +static void do_call_rcu(struct bpf_mem_cache *c) +{ + struct llist_node *llnode, *t; + + if (atomic_xchg(&c->call_rcu_in_progress, 1)) + return; + + WARN_ON_ONCE(!llist_empty(&c->waiting_for_gp)); + llist_for_each_safe(llnode, t, __llist_del_all(&c->free_by_rcu)) + /* There is no concurrent __llist_add(waiting_for_gp) access. + * It doesn't race with llist_del_all either. + * But there could be two concurrent llist_del_all(waiting_for_gp): + * from __free_rcu() and from drain_mem_cache(). + */ + __llist_add(llnode, &c->waiting_for_gp); + /* Use call_rcu_tasks_trace() to wait for sleepable progs to finish. + * Then use call_rcu() to wait for normal progs to finish + * and finally do free_one() on each element. + */ + call_rcu_tasks_trace(&c->rcu, __free_rcu_tasks_trace); +} + +static void free_bulk(struct bpf_mem_cache *c) +{ + struct llist_node *llnode, *t; + unsigned long flags; + int cnt; + + do { + if (IS_ENABLED(CONFIG_PREEMPT_RT)) + local_irq_save(flags); + WARN_ON_ONCE(local_inc_return(&c->active) != 1); + llnode = __llist_del_first(&c->free_llist); + if (llnode) + cnt = --c->free_cnt; + else + cnt = 0; + local_dec(&c->active); + if (IS_ENABLED(CONFIG_PREEMPT_RT)) + local_irq_restore(flags); + if (llnode) + enque_to_free(c, llnode); + } while (cnt > (c->high_watermark + c->low_watermark) / 2); + + /* and drain free_llist_extra */ + llist_for_each_safe(llnode, t, llist_del_all(&c->free_llist_extra)) + enque_to_free(c, llnode); + do_call_rcu(c); +} + +static void bpf_mem_refill(struct irq_work *work) +{ + struct bpf_mem_cache *c = container_of(work, struct bpf_mem_cache, refill_work); + int cnt; + + /* Racy access to free_cnt. It doesn't need to be 100% accurate */ + cnt = c->free_cnt; + if (cnt < c->low_watermark) + /* irq_work runs on this cpu and kmalloc will allocate + * from the current numa node which is what we want here. + */ + alloc_bulk(c, c->batch, NUMA_NO_NODE); + else if (cnt > c->high_watermark) + free_bulk(c); +} + +static void notrace irq_work_raise(struct bpf_mem_cache *c) +{ + irq_work_queue(&c->refill_work); +} + +/* For typical bpf map case that uses bpf_mem_cache_alloc and single bucket + * the freelist cache will be elem_size * 64 (or less) on each cpu. + * + * For bpf programs that don't have statically known allocation sizes and + * assuming (low_mark + high_mark) / 2 as an average number of elements per + * bucket and all buckets are used the total amount of memory in freelists + * on each cpu will be: + * 64*16 + 64*32 + 64*64 + 64*96 + 64*128 + 64*196 + 64*256 + 32*512 + 16*1024 + 8*2048 + 4*4096 + * == ~ 116 Kbyte using below heuristic. + * Initialized, but unused bpf allocator (not bpf map specific one) will + * consume ~ 11 Kbyte per cpu. + * Typical case will be between 11K and 116K closer to 11K. + * bpf progs can and should share bpf_mem_cache when possible. + */ + +static void prefill_mem_cache(struct bpf_mem_cache *c, int cpu) +{ + init_irq_work(&c->refill_work, bpf_mem_refill); + if (c->unit_size <= 256) { + c->low_watermark = 32; + c->high_watermark = 96; + } else { + /* When page_size == 4k, order-0 cache will have low_mark == 2 + * and high_mark == 6 with batch alloc of 3 individual pages at + * a time. + * 8k allocs and above low == 1, high == 3, batch == 1. + */ + c->low_watermark = max(32 * 256 / c->unit_size, 1); + c->high_watermark = max(96 * 256 / c->unit_size, 3); + } + c->batch = max((c->high_watermark - c->low_watermark) / 4 * 3, 1); + + /* To avoid consuming memory assume that 1st run of bpf + * prog won't be doing more than 4 map_update_elem from + * irq disabled region + */ + alloc_bulk(c, c->unit_size <= 256 ? 4 : 1, cpu_to_node(cpu)); +} + +/* When size != 0 bpf_mem_cache for each cpu. + * This is typical bpf hash map use case when all elements have equal size. + * + * When size == 0 allocate 11 bpf_mem_cache-s for each cpu, then rely on + * kmalloc/kfree. Max allocation size is 4096 in this case. + * This is bpf_dynptr and bpf_kptr use case. + */ +int bpf_mem_alloc_init(struct bpf_mem_alloc *ma, int size, bool percpu) +{ + static u16 sizes[NUM_CACHES] = {96, 192, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096}; + struct bpf_mem_caches *cc, __percpu *pcc; + struct bpf_mem_cache *c, __percpu *pc; + struct obj_cgroup *objcg = NULL; + int cpu, i, unit_size, percpu_size = 0; + + if (size) { + pc = __alloc_percpu_gfp(sizeof(*pc), 8, GFP_KERNEL); + if (!pc) + return -ENOMEM; + + if (percpu) + /* room for llist_node and per-cpu pointer */ + percpu_size = LLIST_NODE_SZ + sizeof(void *); + else + size += LLIST_NODE_SZ; /* room for llist_node */ + unit_size = size; + +#ifdef CONFIG_MEMCG_KMEM + objcg = get_obj_cgroup_from_current(); +#endif + for_each_possible_cpu(cpu) { + c = per_cpu_ptr(pc, cpu); + c->unit_size = unit_size; + c->objcg = objcg; + c->percpu_size = percpu_size; + prefill_mem_cache(c, cpu); + } + ma->cache = pc; + return 0; + } + + /* size == 0 && percpu is an invalid combination */ + if (WARN_ON_ONCE(percpu)) + return -EINVAL; + + pcc = __alloc_percpu_gfp(sizeof(*cc), 8, GFP_KERNEL); + if (!pcc) + return -ENOMEM; +#ifdef CONFIG_MEMCG_KMEM + objcg = get_obj_cgroup_from_current(); +#endif + for_each_possible_cpu(cpu) { + cc = per_cpu_ptr(pcc, cpu); + for (i = 0; i < NUM_CACHES; i++) { + c = &cc->cache[i]; + c->unit_size = sizes[i]; + c->objcg = objcg; + prefill_mem_cache(c, cpu); + } + } + ma->caches = pcc; + return 0; +} + +static void drain_mem_cache(struct bpf_mem_cache *c) +{ + struct llist_node *llnode, *t; + + /* No progs are using this bpf_mem_cache, but htab_map_free() called + * bpf_mem_cache_free() for all remaining elements and they can be in + * free_by_rcu or in waiting_for_gp lists, so drain those lists now. + * + * Except for waiting_for_gp list, there are no concurrent operations + * on these lists, so it is safe to use __llist_del_all(). + */ + llist_for_each_safe(llnode, t, __llist_del_all(&c->free_by_rcu)) + free_one(c, llnode); + llist_for_each_safe(llnode, t, llist_del_all(&c->waiting_for_gp)) + free_one(c, llnode); + llist_for_each_safe(llnode, t, __llist_del_all(&c->free_llist)) + free_one(c, llnode); + llist_for_each_safe(llnode, t, __llist_del_all(&c->free_llist_extra)) + free_one(c, llnode); +} + +static void free_mem_alloc_no_barrier(struct bpf_mem_alloc *ma) +{ + free_percpu(ma->cache); + free_percpu(ma->caches); + ma->cache = NULL; + ma->caches = NULL; +} + +static void free_mem_alloc(struct bpf_mem_alloc *ma) +{ + /* waiting_for_gp lists was drained, but __free_rcu might + * still execute. Wait for it now before we freeing percpu caches. + */ + rcu_barrier_tasks_trace(); + rcu_barrier(); + free_mem_alloc_no_barrier(ma); +} + +static void free_mem_alloc_deferred(struct work_struct *work) +{ + struct bpf_mem_alloc *ma = container_of(work, struct bpf_mem_alloc, work); + + free_mem_alloc(ma); + kfree(ma); +} + +static void destroy_mem_alloc(struct bpf_mem_alloc *ma, int rcu_in_progress) +{ + struct bpf_mem_alloc *copy; + + if (!rcu_in_progress) { + /* Fast path. No callbacks are pending, hence no need to do + * rcu_barrier-s. + */ + free_mem_alloc_no_barrier(ma); + return; + } + + copy = kmalloc(sizeof(*ma), GFP_KERNEL); + if (!copy) { + /* Slow path with inline barrier-s */ + free_mem_alloc(ma); + return; + } + + /* Defer barriers into worker to let the rest of map memory to be freed */ + copy->cache = ma->cache; + ma->cache = NULL; + copy->caches = ma->caches; + ma->caches = NULL; + INIT_WORK(©->work, free_mem_alloc_deferred); + queue_work(system_unbound_wq, ©->work); +} + +void bpf_mem_alloc_destroy(struct bpf_mem_alloc *ma) +{ + struct bpf_mem_caches *cc; + struct bpf_mem_cache *c; + int cpu, i, rcu_in_progress; + + if (ma->cache) { + rcu_in_progress = 0; + for_each_possible_cpu(cpu) { + c = per_cpu_ptr(ma->cache, cpu); + /* + * refill_work may be unfinished for PREEMPT_RT kernel + * in which irq work is invoked in a per-CPU RT thread. + * It is also possible for kernel with + * arch_irq_work_has_interrupt() being false and irq + * work is invoked in timer interrupt. So waiting for + * the completion of irq work to ease the handling of + * concurrency. + */ + irq_work_sync(&c->refill_work); + drain_mem_cache(c); + rcu_in_progress += atomic_read(&c->call_rcu_in_progress); + } + /* objcg is the same across cpus */ + if (c->objcg) + obj_cgroup_put(c->objcg); + destroy_mem_alloc(ma, rcu_in_progress); + } + if (ma->caches) { + rcu_in_progress = 0; + for_each_possible_cpu(cpu) { + cc = per_cpu_ptr(ma->caches, cpu); + for (i = 0; i < NUM_CACHES; i++) { + c = &cc->cache[i]; + irq_work_sync(&c->refill_work); + drain_mem_cache(c); + rcu_in_progress += atomic_read(&c->call_rcu_in_progress); + } + } + if (c->objcg) + obj_cgroup_put(c->objcg); + destroy_mem_alloc(ma, rcu_in_progress); + } +} + +/* notrace is necessary here and in other functions to make sure + * bpf programs cannot attach to them and cause llist corruptions. + */ +static void notrace *unit_alloc(struct bpf_mem_cache *c) +{ + struct llist_node *llnode = NULL; + unsigned long flags; + int cnt = 0; + + /* Disable irqs to prevent the following race for majority of prog types: + * prog_A + * bpf_mem_alloc + * preemption or irq -> prog_B + * bpf_mem_alloc + * + * but prog_B could be a perf_event NMI prog. + * Use per-cpu 'active' counter to order free_list access between + * unit_alloc/unit_free/bpf_mem_refill. + */ + local_irq_save(flags); + if (local_inc_return(&c->active) == 1) { + llnode = __llist_del_first(&c->free_llist); + if (llnode) + cnt = --c->free_cnt; + } + local_dec(&c->active); + local_irq_restore(flags); + + WARN_ON(cnt < 0); + + if (cnt < c->low_watermark) + irq_work_raise(c); + return llnode; +} + +/* Though 'ptr' object could have been allocated on a different cpu + * add it to the free_llist of the current cpu. + * Let kfree() logic deal with it when it's later called from irq_work. + */ +static void notrace unit_free(struct bpf_mem_cache *c, void *ptr) +{ + struct llist_node *llnode = ptr - LLIST_NODE_SZ; + unsigned long flags; + int cnt = 0; + + BUILD_BUG_ON(LLIST_NODE_SZ > 8); + + local_irq_save(flags); + if (local_inc_return(&c->active) == 1) { + __llist_add(llnode, &c->free_llist); + cnt = ++c->free_cnt; + } else { + /* unit_free() cannot fail. Therefore add an object to atomic + * llist. free_bulk() will drain it. Though free_llist_extra is + * a per-cpu list we have to use atomic llist_add here, since + * it also can be interrupted by bpf nmi prog that does another + * unit_free() into the same free_llist_extra. + */ + llist_add(llnode, &c->free_llist_extra); + } + local_dec(&c->active); + local_irq_restore(flags); + + if (cnt > c->high_watermark) + /* free few objects from current cpu into global kmalloc pool */ + irq_work_raise(c); +} + +/* Called from BPF program or from sys_bpf syscall. + * In both cases migration is disabled. + */ +void notrace *bpf_mem_alloc(struct bpf_mem_alloc *ma, size_t size) +{ + int idx; + void *ret; + + if (!size) + return ZERO_SIZE_PTR; + + idx = bpf_mem_cache_idx(size + LLIST_NODE_SZ); + if (idx < 0) + return NULL; + + ret = unit_alloc(this_cpu_ptr(ma->caches)->cache + idx); + return !ret ? NULL : ret + LLIST_NODE_SZ; +} + +void notrace bpf_mem_free(struct bpf_mem_alloc *ma, void *ptr) +{ + int idx; + + if (!ptr) + return; + + idx = bpf_mem_cache_idx(ksize(ptr - LLIST_NODE_SZ)); + if (idx < 0) + return; + + unit_free(this_cpu_ptr(ma->caches)->cache + idx, ptr); +} + +void notrace *bpf_mem_cache_alloc(struct bpf_mem_alloc *ma) +{ + void *ret; + + ret = unit_alloc(this_cpu_ptr(ma->cache)); + return !ret ? NULL : ret + LLIST_NODE_SZ; +} + +void notrace bpf_mem_cache_free(struct bpf_mem_alloc *ma, void *ptr) +{ + if (!ptr) + return; + + unit_free(this_cpu_ptr(ma->cache), ptr); +} |