diff options
Diffstat (limited to '')
-rw-r--r-- | mm/slub.c | 6310 |
1 files changed, 6310 insertions, 0 deletions
diff --git a/mm/slub.c b/mm/slub.c new file mode 100644 index 000000000..157527d71 --- /dev/null +++ b/mm/slub.c @@ -0,0 +1,6310 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * SLUB: A slab allocator that limits cache line use instead of queuing + * objects in per cpu and per node lists. + * + * The allocator synchronizes using per slab locks or atomic operations + * and only uses a centralized lock to manage a pool of partial slabs. + * + * (C) 2007 SGI, Christoph Lameter + * (C) 2011 Linux Foundation, Christoph Lameter + */ + +#include <linux/mm.h> +#include <linux/swap.h> /* struct reclaim_state */ +#include <linux/module.h> +#include <linux/bit_spinlock.h> +#include <linux/interrupt.h> +#include <linux/swab.h> +#include <linux/bitops.h> +#include <linux/slab.h> +#include "slab.h" +#include <linux/proc_fs.h> +#include <linux/seq_file.h> +#include <linux/kasan.h> +#include <linux/kmsan.h> +#include <linux/cpu.h> +#include <linux/cpuset.h> +#include <linux/mempolicy.h> +#include <linux/ctype.h> +#include <linux/stackdepot.h> +#include <linux/debugobjects.h> +#include <linux/kallsyms.h> +#include <linux/kfence.h> +#include <linux/memory.h> +#include <linux/math64.h> +#include <linux/fault-inject.h> +#include <linux/stacktrace.h> +#include <linux/prefetch.h> +#include <linux/memcontrol.h> +#include <linux/random.h> +#include <kunit/test.h> +#include <linux/sort.h> + +#include <linux/debugfs.h> +#include <trace/events/kmem.h> + +#include "internal.h" + +/* + * Lock order: + * 1. slab_mutex (Global Mutex) + * 2. node->list_lock (Spinlock) + * 3. kmem_cache->cpu_slab->lock (Local lock) + * 4. slab_lock(slab) (Only on some arches) + * 5. object_map_lock (Only for debugging) + * + * slab_mutex + * + * The role of the slab_mutex is to protect the list of all the slabs + * and to synchronize major metadata changes to slab cache structures. + * Also synchronizes memory hotplug callbacks. + * + * slab_lock + * + * The slab_lock is a wrapper around the page lock, thus it is a bit + * spinlock. + * + * The slab_lock is only used on arches that do not have the ability + * to do a cmpxchg_double. It only protects: + * + * A. slab->freelist -> List of free objects in a slab + * B. slab->inuse -> Number of objects in use + * C. slab->objects -> Number of objects in slab + * D. slab->frozen -> frozen state + * + * Frozen slabs + * + * If a slab is frozen then it is exempt from list management. It is not + * on any list except per cpu partial list. The processor that froze the + * slab is the one who can perform list operations on the slab. Other + * processors may put objects onto the freelist but the processor that + * froze the slab is the only one that can retrieve the objects from the + * slab's freelist. + * + * list_lock + * + * The list_lock protects the partial and full list on each node and + * the partial slab counter. If taken then no new slabs may be added or + * removed from the lists nor make the number of partial slabs be modified. + * (Note that the total number of slabs is an atomic value that may be + * modified without taking the list lock). + * + * The list_lock is a centralized lock and thus we avoid taking it as + * much as possible. As long as SLUB does not have to handle partial + * slabs, operations can continue without any centralized lock. F.e. + * allocating a long series of objects that fill up slabs does not require + * the list lock. + * + * For debug caches, all allocations are forced to go through a list_lock + * protected region to serialize against concurrent validation. + * + * cpu_slab->lock local lock + * + * This locks protect slowpath manipulation of all kmem_cache_cpu fields + * except the stat counters. This is a percpu structure manipulated only by + * the local cpu, so the lock protects against being preempted or interrupted + * by an irq. Fast path operations rely on lockless operations instead. + * + * On PREEMPT_RT, the local lock neither disables interrupts nor preemption + * which means the lockless fastpath cannot be used as it might interfere with + * an in-progress slow path operations. In this case the local lock is always + * taken but it still utilizes the freelist for the common operations. + * + * lockless fastpaths + * + * The fast path allocation (slab_alloc_node()) and freeing (do_slab_free()) + * are fully lockless when satisfied from the percpu slab (and when + * cmpxchg_double is possible to use, otherwise slab_lock is taken). + * They also don't disable preemption or migration or irqs. They rely on + * the transaction id (tid) field to detect being preempted or moved to + * another cpu. + * + * irq, preemption, migration considerations + * + * Interrupts are disabled as part of list_lock or local_lock operations, or + * around the slab_lock operation, in order to make the slab allocator safe + * to use in the context of an irq. + * + * In addition, preemption (or migration on PREEMPT_RT) is disabled in the + * allocation slowpath, bulk allocation, and put_cpu_partial(), so that the + * local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer + * doesn't have to be revalidated in each section protected by the local lock. + * + * SLUB assigns one slab for allocation to each processor. + * Allocations only occur from these slabs called cpu slabs. + * + * Slabs with free elements are kept on a partial list and during regular + * operations no list for full slabs is used. If an object in a full slab is + * freed then the slab will show up again on the partial lists. + * We track full slabs for debugging purposes though because otherwise we + * cannot scan all objects. + * + * Slabs are freed when they become empty. Teardown and setup is + * minimal so we rely on the page allocators per cpu caches for + * fast frees and allocs. + * + * slab->frozen The slab is frozen and exempt from list processing. + * This means that the slab is dedicated to a purpose + * such as satisfying allocations for a specific + * processor. Objects may be freed in the slab while + * it is frozen but slab_free will then skip the usual + * list operations. It is up to the processor holding + * the slab to integrate the slab into the slab lists + * when the slab is no longer needed. + * + * One use of this flag is to mark slabs that are + * used for allocations. Then such a slab becomes a cpu + * slab. The cpu slab may be equipped with an additional + * freelist that allows lockless access to + * free objects in addition to the regular freelist + * that requires the slab lock. + * + * SLAB_DEBUG_FLAGS Slab requires special handling due to debug + * options set. This moves slab handling out of + * the fast path and disables lockless freelists. + */ + +/* + * We could simply use migrate_disable()/enable() but as long as it's a + * function call even on !PREEMPT_RT, use inline preempt_disable() there. + */ +#ifndef CONFIG_PREEMPT_RT +#define slub_get_cpu_ptr(var) get_cpu_ptr(var) +#define slub_put_cpu_ptr(var) put_cpu_ptr(var) +#define USE_LOCKLESS_FAST_PATH() (true) +#else +#define slub_get_cpu_ptr(var) \ +({ \ + migrate_disable(); \ + this_cpu_ptr(var); \ +}) +#define slub_put_cpu_ptr(var) \ +do { \ + (void)(var); \ + migrate_enable(); \ +} while (0) +#define USE_LOCKLESS_FAST_PATH() (false) +#endif + +#ifdef CONFIG_SLUB_DEBUG +#ifdef CONFIG_SLUB_DEBUG_ON +DEFINE_STATIC_KEY_TRUE(slub_debug_enabled); +#else +DEFINE_STATIC_KEY_FALSE(slub_debug_enabled); +#endif +#endif /* CONFIG_SLUB_DEBUG */ + +/* Structure holding parameters for get_partial() call chain */ +struct partial_context { + struct slab **slab; + gfp_t flags; + unsigned int orig_size; +}; + +static inline bool kmem_cache_debug(struct kmem_cache *s) +{ + return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS); +} + +static inline bool slub_debug_orig_size(struct kmem_cache *s) +{ + return (kmem_cache_debug_flags(s, SLAB_STORE_USER) && + (s->flags & SLAB_KMALLOC)); +} + +void *fixup_red_left(struct kmem_cache *s, void *p) +{ + if (kmem_cache_debug_flags(s, SLAB_RED_ZONE)) + p += s->red_left_pad; + + return p; +} + +static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) +{ +#ifdef CONFIG_SLUB_CPU_PARTIAL + return !kmem_cache_debug(s); +#else + return false; +#endif +} + +/* + * Issues still to be resolved: + * + * - Support PAGE_ALLOC_DEBUG. Should be easy to do. + * + * - Variable sizing of the per node arrays + */ + +/* Enable to log cmpxchg failures */ +#undef SLUB_DEBUG_CMPXCHG + +/* + * Minimum number of partial slabs. These will be left on the partial + * lists even if they are empty. kmem_cache_shrink may reclaim them. + */ +#define MIN_PARTIAL 5 + +/* + * Maximum number of desirable partial slabs. + * The existence of more partial slabs makes kmem_cache_shrink + * sort the partial list by the number of objects in use. + */ +#define MAX_PARTIAL 10 + +#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \ + SLAB_POISON | SLAB_STORE_USER) + +/* + * These debug flags cannot use CMPXCHG because there might be consistency + * issues when checking or reading debug information + */ +#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \ + SLAB_TRACE) + + +/* + * Debugging flags that require metadata to be stored in the slab. These get + * disabled when slub_debug=O is used and a cache's min order increases with + * metadata. + */ +#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) + +#define OO_SHIFT 16 +#define OO_MASK ((1 << OO_SHIFT) - 1) +#define MAX_OBJS_PER_PAGE 32767 /* since slab.objects is u15 */ + +/* Internal SLUB flags */ +/* Poison object */ +#define __OBJECT_POISON ((slab_flags_t __force)0x80000000U) +/* Use cmpxchg_double */ +#define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U) + +/* + * Tracking user of a slab. + */ +#define TRACK_ADDRS_COUNT 16 +struct track { + unsigned long addr; /* Called from address */ +#ifdef CONFIG_STACKDEPOT + depot_stack_handle_t handle; +#endif + int cpu; /* Was running on cpu */ + int pid; /* Pid context */ + unsigned long when; /* When did the operation occur */ +}; + +enum track_item { TRACK_ALLOC, TRACK_FREE }; + +#ifdef CONFIG_SYSFS +static int sysfs_slab_add(struct kmem_cache *); +static int sysfs_slab_alias(struct kmem_cache *, const char *); +#else +static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } +static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) + { return 0; } +#endif + +#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG) +static void debugfs_slab_add(struct kmem_cache *); +#else +static inline void debugfs_slab_add(struct kmem_cache *s) { } +#endif + +static inline void stat(const struct kmem_cache *s, enum stat_item si) +{ +#ifdef CONFIG_SLUB_STATS + /* + * The rmw is racy on a preemptible kernel but this is acceptable, so + * avoid this_cpu_add()'s irq-disable overhead. + */ + raw_cpu_inc(s->cpu_slab->stat[si]); +#endif +} + +/* + * Tracks for which NUMA nodes we have kmem_cache_nodes allocated. + * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily + * differ during memory hotplug/hotremove operations. + * Protected by slab_mutex. + */ +static nodemask_t slab_nodes; + +/* + * Workqueue used for flush_cpu_slab(). + */ +static struct workqueue_struct *flushwq; + +/******************************************************************** + * Core slab cache functions + *******************************************************************/ + +/* + * Returns freelist pointer (ptr). With hardening, this is obfuscated + * with an XOR of the address where the pointer is held and a per-cache + * random number. + */ +static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr, + unsigned long ptr_addr) +{ +#ifdef CONFIG_SLAB_FREELIST_HARDENED + /* + * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged. + * Normally, this doesn't cause any issues, as both set_freepointer() + * and get_freepointer() are called with a pointer with the same tag. + * However, there are some issues with CONFIG_SLUB_DEBUG code. For + * example, when __free_slub() iterates over objects in a cache, it + * passes untagged pointers to check_object(). check_object() in turns + * calls get_freepointer() with an untagged pointer, which causes the + * freepointer to be restored incorrectly. + */ + return (void *)((unsigned long)ptr ^ s->random ^ + swab((unsigned long)kasan_reset_tag((void *)ptr_addr))); +#else + return ptr; +#endif +} + +/* Returns the freelist pointer recorded at location ptr_addr. */ +static inline void *freelist_dereference(const struct kmem_cache *s, + void *ptr_addr) +{ + return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr), + (unsigned long)ptr_addr); +} + +static inline void *get_freepointer(struct kmem_cache *s, void *object) +{ + object = kasan_reset_tag(object); + return freelist_dereference(s, object + s->offset); +} + +static void prefetch_freepointer(const struct kmem_cache *s, void *object) +{ + prefetchw(object + s->offset); +} + +/* + * When running under KMSAN, get_freepointer_safe() may return an uninitialized + * pointer value in the case the current thread loses the race for the next + * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in + * slab_alloc_node() will fail, so the uninitialized value won't be used, but + * KMSAN will still check all arguments of cmpxchg because of imperfect + * handling of inline assembly. + * To work around this problem, we apply __no_kmsan_checks to ensure that + * get_freepointer_safe() returns initialized memory. + */ +__no_kmsan_checks +static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) +{ + unsigned long freepointer_addr; + void *p; + + if (!debug_pagealloc_enabled_static()) + return get_freepointer(s, object); + + object = kasan_reset_tag(object); + freepointer_addr = (unsigned long)object + s->offset; + copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p)); + return freelist_ptr(s, p, freepointer_addr); +} + +static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) +{ + unsigned long freeptr_addr = (unsigned long)object + s->offset; + +#ifdef CONFIG_SLAB_FREELIST_HARDENED + BUG_ON(object == fp); /* naive detection of double free or corruption */ +#endif + + freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr); + *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr); +} + +/* Loop over all objects in a slab */ +#define for_each_object(__p, __s, __addr, __objects) \ + for (__p = fixup_red_left(__s, __addr); \ + __p < (__addr) + (__objects) * (__s)->size; \ + __p += (__s)->size) + +static inline unsigned int order_objects(unsigned int order, unsigned int size) +{ + return ((unsigned int)PAGE_SIZE << order) / size; +} + +static inline struct kmem_cache_order_objects oo_make(unsigned int order, + unsigned int size) +{ + struct kmem_cache_order_objects x = { + (order << OO_SHIFT) + order_objects(order, size) + }; + + return x; +} + +static inline unsigned int oo_order(struct kmem_cache_order_objects x) +{ + return x.x >> OO_SHIFT; +} + +static inline unsigned int oo_objects(struct kmem_cache_order_objects x) +{ + return x.x & OO_MASK; +} + +#ifdef CONFIG_SLUB_CPU_PARTIAL +static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects) +{ + unsigned int nr_slabs; + + s->cpu_partial = nr_objects; + + /* + * We take the number of objects but actually limit the number of + * slabs on the per cpu partial list, in order to limit excessive + * growth of the list. For simplicity we assume that the slabs will + * be half-full. + */ + nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo)); + s->cpu_partial_slabs = nr_slabs; +} +#else +static inline void +slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects) +{ +} +#endif /* CONFIG_SLUB_CPU_PARTIAL */ + +/* + * Per slab locking using the pagelock + */ +static __always_inline void slab_lock(struct slab *slab) +{ + struct page *page = slab_page(slab); + + VM_BUG_ON_PAGE(PageTail(page), page); + bit_spin_lock(PG_locked, &page->flags); +} + +static __always_inline void slab_unlock(struct slab *slab) +{ + struct page *page = slab_page(slab); + + VM_BUG_ON_PAGE(PageTail(page), page); + __bit_spin_unlock(PG_locked, &page->flags); +} + +/* + * Interrupts must be disabled (for the fallback code to work right), typically + * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is + * part of bit_spin_lock(), is sufficient because the policy is not to allow any + * allocation/ free operation in hardirq context. Therefore nothing can + * interrupt the operation. + */ +static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct slab *slab, + void *freelist_old, unsigned long counters_old, + void *freelist_new, unsigned long counters_new, + const char *n) +{ + if (USE_LOCKLESS_FAST_PATH()) + lockdep_assert_irqs_disabled(); +#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ + defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) + if (s->flags & __CMPXCHG_DOUBLE) { + if (cmpxchg_double(&slab->freelist, &slab->counters, + freelist_old, counters_old, + freelist_new, counters_new)) + return true; + } else +#endif + { + slab_lock(slab); + if (slab->freelist == freelist_old && + slab->counters == counters_old) { + slab->freelist = freelist_new; + slab->counters = counters_new; + slab_unlock(slab); + return true; + } + slab_unlock(slab); + } + + cpu_relax(); + stat(s, CMPXCHG_DOUBLE_FAIL); + +#ifdef SLUB_DEBUG_CMPXCHG + pr_info("%s %s: cmpxchg double redo ", n, s->name); +#endif + + return false; +} + +static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct slab *slab, + void *freelist_old, unsigned long counters_old, + void *freelist_new, unsigned long counters_new, + const char *n) +{ +#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ + defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) + if (s->flags & __CMPXCHG_DOUBLE) { + if (cmpxchg_double(&slab->freelist, &slab->counters, + freelist_old, counters_old, + freelist_new, counters_new)) + return true; + } else +#endif + { + unsigned long flags; + + local_irq_save(flags); + slab_lock(slab); + if (slab->freelist == freelist_old && + slab->counters == counters_old) { + slab->freelist = freelist_new; + slab->counters = counters_new; + slab_unlock(slab); + local_irq_restore(flags); + return true; + } + slab_unlock(slab); + local_irq_restore(flags); + } + + cpu_relax(); + stat(s, CMPXCHG_DOUBLE_FAIL); + +#ifdef SLUB_DEBUG_CMPXCHG + pr_info("%s %s: cmpxchg double redo ", n, s->name); +#endif + + return false; +} + +#ifdef CONFIG_SLUB_DEBUG +static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)]; +static DEFINE_SPINLOCK(object_map_lock); + +static void __fill_map(unsigned long *obj_map, struct kmem_cache *s, + struct slab *slab) +{ + void *addr = slab_address(slab); + void *p; + + bitmap_zero(obj_map, slab->objects); + + for (p = slab->freelist; p; p = get_freepointer(s, p)) + set_bit(__obj_to_index(s, addr, p), obj_map); +} + +#if IS_ENABLED(CONFIG_KUNIT) +static bool slab_add_kunit_errors(void) +{ + struct kunit_resource *resource; + + if (likely(!current->kunit_test)) + return false; + + resource = kunit_find_named_resource(current->kunit_test, "slab_errors"); + if (!resource) + return false; + + (*(int *)resource->data)++; + kunit_put_resource(resource); + return true; +} +#else +static inline bool slab_add_kunit_errors(void) { return false; } +#endif + +static inline unsigned int size_from_object(struct kmem_cache *s) +{ + if (s->flags & SLAB_RED_ZONE) + return s->size - s->red_left_pad; + + return s->size; +} + +static inline void *restore_red_left(struct kmem_cache *s, void *p) +{ + if (s->flags & SLAB_RED_ZONE) + p -= s->red_left_pad; + + return p; +} + +/* + * Debug settings: + */ +#if defined(CONFIG_SLUB_DEBUG_ON) +static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS; +#else +static slab_flags_t slub_debug; +#endif + +static char *slub_debug_string; +static int disable_higher_order_debug; + +/* + * slub is about to manipulate internal object metadata. This memory lies + * outside the range of the allocated object, so accessing it would normally + * be reported by kasan as a bounds error. metadata_access_enable() is used + * to tell kasan that these accesses are OK. + */ +static inline void metadata_access_enable(void) +{ + kasan_disable_current(); +} + +static inline void metadata_access_disable(void) +{ + kasan_enable_current(); +} + +/* + * Object debugging + */ + +/* Verify that a pointer has an address that is valid within a slab page */ +static inline int check_valid_pointer(struct kmem_cache *s, + struct slab *slab, void *object) +{ + void *base; + + if (!object) + return 1; + + base = slab_address(slab); + object = kasan_reset_tag(object); + object = restore_red_left(s, object); + if (object < base || object >= base + slab->objects * s->size || + (object - base) % s->size) { + return 0; + } + + return 1; +} + +static void print_section(char *level, char *text, u8 *addr, + unsigned int length) +{ + metadata_access_enable(); + print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, + 16, 1, kasan_reset_tag((void *)addr), length, 1); + metadata_access_disable(); +} + +/* + * See comment in calculate_sizes(). + */ +static inline bool freeptr_outside_object(struct kmem_cache *s) +{ + return s->offset >= s->inuse; +} + +/* + * Return offset of the end of info block which is inuse + free pointer if + * not overlapping with object. + */ +static inline unsigned int get_info_end(struct kmem_cache *s) +{ + if (freeptr_outside_object(s)) + return s->inuse + sizeof(void *); + else + return s->inuse; +} + +static struct track *get_track(struct kmem_cache *s, void *object, + enum track_item alloc) +{ + struct track *p; + + p = object + get_info_end(s); + + return kasan_reset_tag(p + alloc); +} + +#ifdef CONFIG_STACKDEPOT +static noinline depot_stack_handle_t set_track_prepare(void) +{ + depot_stack_handle_t handle; + unsigned long entries[TRACK_ADDRS_COUNT]; + unsigned int nr_entries; + + nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3); + handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT); + + return handle; +} +#else +static inline depot_stack_handle_t set_track_prepare(void) +{ + return 0; +} +#endif + +static void set_track_update(struct kmem_cache *s, void *object, + enum track_item alloc, unsigned long addr, + depot_stack_handle_t handle) +{ + struct track *p = get_track(s, object, alloc); + +#ifdef CONFIG_STACKDEPOT + p->handle = handle; +#endif + p->addr = addr; + p->cpu = smp_processor_id(); + p->pid = current->pid; + p->when = jiffies; +} + +static __always_inline void set_track(struct kmem_cache *s, void *object, + enum track_item alloc, unsigned long addr) +{ + depot_stack_handle_t handle = set_track_prepare(); + + set_track_update(s, object, alloc, addr, handle); +} + +static void init_tracking(struct kmem_cache *s, void *object) +{ + struct track *p; + + if (!(s->flags & SLAB_STORE_USER)) + return; + + p = get_track(s, object, TRACK_ALLOC); + memset(p, 0, 2*sizeof(struct track)); +} + +static void print_track(const char *s, struct track *t, unsigned long pr_time) +{ + depot_stack_handle_t handle __maybe_unused; + + if (!t->addr) + return; + + pr_err("%s in %pS age=%lu cpu=%u pid=%d\n", + s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid); +#ifdef CONFIG_STACKDEPOT + handle = READ_ONCE(t->handle); + if (handle) + stack_depot_print(handle); + else + pr_err("object allocation/free stack trace missing\n"); +#endif +} + +void print_tracking(struct kmem_cache *s, void *object) +{ + unsigned long pr_time = jiffies; + if (!(s->flags & SLAB_STORE_USER)) + return; + + print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time); + print_track("Freed", get_track(s, object, TRACK_FREE), pr_time); +} + +static void print_slab_info(const struct slab *slab) +{ + struct folio *folio = (struct folio *)slab_folio(slab); + + pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n", + slab, slab->objects, slab->inuse, slab->freelist, + folio_flags(folio, 0)); +} + +/* + * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API + * family will round up the real request size to these fixed ones, so + * there could be an extra area than what is requested. Save the original + * request size in the meta data area, for better debug and sanity check. + */ +static inline void set_orig_size(struct kmem_cache *s, + void *object, unsigned int orig_size) +{ + void *p = kasan_reset_tag(object); + + if (!slub_debug_orig_size(s)) + return; + + p += get_info_end(s); + p += sizeof(struct track) * 2; + + *(unsigned int *)p = orig_size; +} + +static inline unsigned int get_orig_size(struct kmem_cache *s, void *object) +{ + void *p = kasan_reset_tag(object); + + if (!slub_debug_orig_size(s)) + return s->object_size; + + p += get_info_end(s); + p += sizeof(struct track) * 2; + + return *(unsigned int *)p; +} + +static void slab_bug(struct kmem_cache *s, char *fmt, ...) +{ + struct va_format vaf; + va_list args; + + va_start(args, fmt); + vaf.fmt = fmt; + vaf.va = &args; + pr_err("=============================================================================\n"); + pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf); + pr_err("-----------------------------------------------------------------------------\n\n"); + va_end(args); +} + +__printf(2, 3) +static void slab_fix(struct kmem_cache *s, char *fmt, ...) +{ + struct va_format vaf; + va_list args; + + if (slab_add_kunit_errors()) + return; + + va_start(args, fmt); + vaf.fmt = fmt; + vaf.va = &args; + pr_err("FIX %s: %pV\n", s->name, &vaf); + va_end(args); +} + +static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p) +{ + unsigned int off; /* Offset of last byte */ + u8 *addr = slab_address(slab); + + print_tracking(s, p); + + print_slab_info(slab); + + pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n", + p, p - addr, get_freepointer(s, p)); + + if (s->flags & SLAB_RED_ZONE) + print_section(KERN_ERR, "Redzone ", p - s->red_left_pad, + s->red_left_pad); + else if (p > addr + 16) + print_section(KERN_ERR, "Bytes b4 ", p - 16, 16); + + print_section(KERN_ERR, "Object ", p, + min_t(unsigned int, s->object_size, PAGE_SIZE)); + if (s->flags & SLAB_RED_ZONE) + print_section(KERN_ERR, "Redzone ", p + s->object_size, + s->inuse - s->object_size); + + off = get_info_end(s); + + if (s->flags & SLAB_STORE_USER) + off += 2 * sizeof(struct track); + + if (slub_debug_orig_size(s)) + off += sizeof(unsigned int); + + off += kasan_metadata_size(s); + + if (off != size_from_object(s)) + /* Beginning of the filler is the free pointer */ + print_section(KERN_ERR, "Padding ", p + off, + size_from_object(s) - off); + + dump_stack(); +} + +static void object_err(struct kmem_cache *s, struct slab *slab, + u8 *object, char *reason) +{ + if (slab_add_kunit_errors()) + return; + + slab_bug(s, "%s", reason); + print_trailer(s, slab, object); + add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); +} + +static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab, + void **freelist, void *nextfree) +{ + if ((s->flags & SLAB_CONSISTENCY_CHECKS) && + !check_valid_pointer(s, slab, nextfree) && freelist) { + object_err(s, slab, *freelist, "Freechain corrupt"); + *freelist = NULL; + slab_fix(s, "Isolate corrupted freechain"); + return true; + } + + return false; +} + +static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab, + const char *fmt, ...) +{ + va_list args; + char buf[100]; + + if (slab_add_kunit_errors()) + return; + + va_start(args, fmt); + vsnprintf(buf, sizeof(buf), fmt, args); + va_end(args); + slab_bug(s, "%s", buf); + print_slab_info(slab); + dump_stack(); + add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); +} + +static void init_object(struct kmem_cache *s, void *object, u8 val) +{ + u8 *p = kasan_reset_tag(object); + + if (s->flags & SLAB_RED_ZONE) + memset(p - s->red_left_pad, val, s->red_left_pad); + + if (s->flags & __OBJECT_POISON) { + memset(p, POISON_FREE, s->object_size - 1); + p[s->object_size - 1] = POISON_END; + } + + if (s->flags & SLAB_RED_ZONE) + memset(p + s->object_size, val, s->inuse - s->object_size); +} + +static void restore_bytes(struct kmem_cache *s, char *message, u8 data, + void *from, void *to) +{ + slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data); + memset(from, data, to - from); +} + +static int check_bytes_and_report(struct kmem_cache *s, struct slab *slab, + u8 *object, char *what, + u8 *start, unsigned int value, unsigned int bytes) +{ + u8 *fault; + u8 *end; + u8 *addr = slab_address(slab); + + metadata_access_enable(); + fault = memchr_inv(kasan_reset_tag(start), value, bytes); + metadata_access_disable(); + if (!fault) + return 1; + + end = start + bytes; + while (end > fault && end[-1] == value) + end--; + + if (slab_add_kunit_errors()) + goto skip_bug_print; + + slab_bug(s, "%s overwritten", what); + pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n", + fault, end - 1, fault - addr, + fault[0], value); + print_trailer(s, slab, object); + add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); + +skip_bug_print: + restore_bytes(s, what, value, fault, end); + return 0; +} + +/* + * Object layout: + * + * object address + * Bytes of the object to be managed. + * If the freepointer may overlay the object then the free + * pointer is at the middle of the object. + * + * Poisoning uses 0x6b (POISON_FREE) and the last byte is + * 0xa5 (POISON_END) + * + * object + s->object_size + * Padding to reach word boundary. This is also used for Redzoning. + * Padding is extended by another word if Redzoning is enabled and + * object_size == inuse. + * + * We fill with 0xbb (RED_INACTIVE) for inactive objects and with + * 0xcc (RED_ACTIVE) for objects in use. + * + * object + s->inuse + * Meta data starts here. + * + * A. Free pointer (if we cannot overwrite object on free) + * B. Tracking data for SLAB_STORE_USER + * C. Original request size for kmalloc object (SLAB_STORE_USER enabled) + * D. Padding to reach required alignment boundary or at minimum + * one word if debugging is on to be able to detect writes + * before the word boundary. + * + * Padding is done using 0x5a (POISON_INUSE) + * + * object + s->size + * Nothing is used beyond s->size. + * + * If slabcaches are merged then the object_size and inuse boundaries are mostly + * ignored. And therefore no slab options that rely on these boundaries + * may be used with merged slabcaches. + */ + +static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p) +{ + unsigned long off = get_info_end(s); /* The end of info */ + + if (s->flags & SLAB_STORE_USER) { + /* We also have user information there */ + off += 2 * sizeof(struct track); + + if (s->flags & SLAB_KMALLOC) + off += sizeof(unsigned int); + } + + off += kasan_metadata_size(s); + + if (size_from_object(s) == off) + return 1; + + return check_bytes_and_report(s, slab, p, "Object padding", + p + off, POISON_INUSE, size_from_object(s) - off); +} + +/* Check the pad bytes at the end of a slab page */ +static void slab_pad_check(struct kmem_cache *s, struct slab *slab) +{ + u8 *start; + u8 *fault; + u8 *end; + u8 *pad; + int length; + int remainder; + + if (!(s->flags & SLAB_POISON)) + return; + + start = slab_address(slab); + length = slab_size(slab); + end = start + length; + remainder = length % s->size; + if (!remainder) + return; + + pad = end - remainder; + metadata_access_enable(); + fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder); + metadata_access_disable(); + if (!fault) + return; + while (end > fault && end[-1] == POISON_INUSE) + end--; + + slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu", + fault, end - 1, fault - start); + print_section(KERN_ERR, "Padding ", pad, remainder); + + restore_bytes(s, "slab padding", POISON_INUSE, fault, end); +} + +static int check_object(struct kmem_cache *s, struct slab *slab, + void *object, u8 val) +{ + u8 *p = object; + u8 *endobject = object + s->object_size; + + if (s->flags & SLAB_RED_ZONE) { + if (!check_bytes_and_report(s, slab, object, "Left Redzone", + object - s->red_left_pad, val, s->red_left_pad)) + return 0; + + if (!check_bytes_and_report(s, slab, object, "Right Redzone", + endobject, val, s->inuse - s->object_size)) + return 0; + } else { + if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { + check_bytes_and_report(s, slab, p, "Alignment padding", + endobject, POISON_INUSE, + s->inuse - s->object_size); + } + } + + if (s->flags & SLAB_POISON) { + if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && + (!check_bytes_and_report(s, slab, p, "Poison", p, + POISON_FREE, s->object_size - 1) || + !check_bytes_and_report(s, slab, p, "End Poison", + p + s->object_size - 1, POISON_END, 1))) + return 0; + /* + * check_pad_bytes cleans up on its own. + */ + check_pad_bytes(s, slab, p); + } + + if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE) + /* + * Object and freepointer overlap. Cannot check + * freepointer while object is allocated. + */ + return 1; + + /* Check free pointer validity */ + if (!check_valid_pointer(s, slab, get_freepointer(s, p))) { + object_err(s, slab, p, "Freepointer corrupt"); + /* + * No choice but to zap it and thus lose the remainder + * of the free objects in this slab. May cause + * another error because the object count is now wrong. + */ + set_freepointer(s, p, NULL); + return 0; + } + return 1; +} + +static int check_slab(struct kmem_cache *s, struct slab *slab) +{ + int maxobj; + + if (!folio_test_slab(slab_folio(slab))) { + slab_err(s, slab, "Not a valid slab page"); + return 0; + } + + maxobj = order_objects(slab_order(slab), s->size); + if (slab->objects > maxobj) { + slab_err(s, slab, "objects %u > max %u", + slab->objects, maxobj); + return 0; + } + if (slab->inuse > slab->objects) { + slab_err(s, slab, "inuse %u > max %u", + slab->inuse, slab->objects); + return 0; + } + /* Slab_pad_check fixes things up after itself */ + slab_pad_check(s, slab); + return 1; +} + +/* + * Determine if a certain object in a slab is on the freelist. Must hold the + * slab lock to guarantee that the chains are in a consistent state. + */ +static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search) +{ + int nr = 0; + void *fp; + void *object = NULL; + int max_objects; + + fp = slab->freelist; + while (fp && nr <= slab->objects) { + if (fp == search) + return 1; + if (!check_valid_pointer(s, slab, fp)) { + if (object) { + object_err(s, slab, object, + "Freechain corrupt"); + set_freepointer(s, object, NULL); + } else { + slab_err(s, slab, "Freepointer corrupt"); + slab->freelist = NULL; + slab->inuse = slab->objects; + slab_fix(s, "Freelist cleared"); + return 0; + } + break; + } + object = fp; + fp = get_freepointer(s, object); + nr++; + } + + max_objects = order_objects(slab_order(slab), s->size); + if (max_objects > MAX_OBJS_PER_PAGE) + max_objects = MAX_OBJS_PER_PAGE; + + if (slab->objects != max_objects) { + slab_err(s, slab, "Wrong number of objects. Found %d but should be %d", + slab->objects, max_objects); + slab->objects = max_objects; + slab_fix(s, "Number of objects adjusted"); + } + if (slab->inuse != slab->objects - nr) { + slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d", + slab->inuse, slab->objects - nr); + slab->inuse = slab->objects - nr; + slab_fix(s, "Object count adjusted"); + } + return search == NULL; +} + +static void trace(struct kmem_cache *s, struct slab *slab, void *object, + int alloc) +{ + if (s->flags & SLAB_TRACE) { + pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", + s->name, + alloc ? "alloc" : "free", + object, slab->inuse, + slab->freelist); + + if (!alloc) + print_section(KERN_INFO, "Object ", (void *)object, + s->object_size); + + dump_stack(); + } +} + +/* + * Tracking of fully allocated slabs for debugging purposes. + */ +static void add_full(struct kmem_cache *s, + struct kmem_cache_node *n, struct slab *slab) +{ + if (!(s->flags & SLAB_STORE_USER)) + return; + + lockdep_assert_held(&n->list_lock); + list_add(&slab->slab_list, &n->full); +} + +static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab) +{ + if (!(s->flags & SLAB_STORE_USER)) + return; + + lockdep_assert_held(&n->list_lock); + list_del(&slab->slab_list); +} + +/* Tracking of the number of slabs for debugging purposes */ +static inline unsigned long slabs_node(struct kmem_cache *s, int node) +{ + struct kmem_cache_node *n = get_node(s, node); + + return atomic_long_read(&n->nr_slabs); +} + +static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) +{ + return atomic_long_read(&n->nr_slabs); +} + +static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) +{ + struct kmem_cache_node *n = get_node(s, node); + + /* + * May be called early in order to allocate a slab for the + * kmem_cache_node structure. Solve the chicken-egg + * dilemma by deferring the increment of the count during + * bootstrap (see early_kmem_cache_node_alloc). + */ + if (likely(n)) { + atomic_long_inc(&n->nr_slabs); + atomic_long_add(objects, &n->total_objects); + } +} +static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) +{ + struct kmem_cache_node *n = get_node(s, node); + + atomic_long_dec(&n->nr_slabs); + atomic_long_sub(objects, &n->total_objects); +} + +/* Object debug checks for alloc/free paths */ +static void setup_object_debug(struct kmem_cache *s, void *object) +{ + if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)) + return; + + init_object(s, object, SLUB_RED_INACTIVE); + init_tracking(s, object); +} + +static +void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) +{ + if (!kmem_cache_debug_flags(s, SLAB_POISON)) + return; + + metadata_access_enable(); + memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab)); + metadata_access_disable(); +} + +static inline int alloc_consistency_checks(struct kmem_cache *s, + struct slab *slab, void *object) +{ + if (!check_slab(s, slab)) + return 0; + + if (!check_valid_pointer(s, slab, object)) { + object_err(s, slab, object, "Freelist Pointer check fails"); + return 0; + } + + if (!check_object(s, slab, object, SLUB_RED_INACTIVE)) + return 0; + + return 1; +} + +static noinline int alloc_debug_processing(struct kmem_cache *s, + struct slab *slab, void *object, int orig_size) +{ + if (s->flags & SLAB_CONSISTENCY_CHECKS) { + if (!alloc_consistency_checks(s, slab, object)) + goto bad; + } + + /* Success. Perform special debug activities for allocs */ + trace(s, slab, object, 1); + set_orig_size(s, object, orig_size); + init_object(s, object, SLUB_RED_ACTIVE); + return 1; + +bad: + if (folio_test_slab(slab_folio(slab))) { + /* + * If this is a slab page then lets do the best we can + * to avoid issues in the future. Marking all objects + * as used avoids touching the remaining objects. + */ + slab_fix(s, "Marking all objects used"); + slab->inuse = slab->objects; + slab->freelist = NULL; + } + return 0; +} + +static inline int free_consistency_checks(struct kmem_cache *s, + struct slab *slab, void *object, unsigned long addr) +{ + if (!check_valid_pointer(s, slab, object)) { + slab_err(s, slab, "Invalid object pointer 0x%p", object); + return 0; + } + + if (on_freelist(s, slab, object)) { + object_err(s, slab, object, "Object already free"); + return 0; + } + + if (!check_object(s, slab, object, SLUB_RED_ACTIVE)) + return 0; + + if (unlikely(s != slab->slab_cache)) { + if (!folio_test_slab(slab_folio(slab))) { + slab_err(s, slab, "Attempt to free object(0x%p) outside of slab", + object); + } else if (!slab->slab_cache) { + pr_err("SLUB <none>: no slab for object 0x%p.\n", + object); + dump_stack(); + } else + object_err(s, slab, object, + "page slab pointer corrupt."); + return 0; + } + return 1; +} + +/* + * Parse a block of slub_debug options. Blocks are delimited by ';' + * + * @str: start of block + * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified + * @slabs: return start of list of slabs, or NULL when there's no list + * @init: assume this is initial parsing and not per-kmem-create parsing + * + * returns the start of next block if there's any, or NULL + */ +static char * +parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init) +{ + bool higher_order_disable = false; + + /* Skip any completely empty blocks */ + while (*str && *str == ';') + str++; + + if (*str == ',') { + /* + * No options but restriction on slabs. This means full + * debugging for slabs matching a pattern. + */ + *flags = DEBUG_DEFAULT_FLAGS; + goto check_slabs; + } + *flags = 0; + + /* Determine which debug features should be switched on */ + for (; *str && *str != ',' && *str != ';'; str++) { + switch (tolower(*str)) { + case '-': + *flags = 0; + break; + case 'f': + *flags |= SLAB_CONSISTENCY_CHECKS; + break; + case 'z': + *flags |= SLAB_RED_ZONE; + break; + case 'p': + *flags |= SLAB_POISON; + break; + case 'u': + *flags |= SLAB_STORE_USER; + break; + case 't': + *flags |= SLAB_TRACE; + break; + case 'a': + *flags |= SLAB_FAILSLAB; + break; + case 'o': + /* + * Avoid enabling debugging on caches if its minimum + * order would increase as a result. + */ + higher_order_disable = true; + break; + default: + if (init) + pr_err("slub_debug option '%c' unknown. skipped\n", *str); + } + } +check_slabs: + if (*str == ',') + *slabs = ++str; + else + *slabs = NULL; + + /* Skip over the slab list */ + while (*str && *str != ';') + str++; + + /* Skip any completely empty blocks */ + while (*str && *str == ';') + str++; + + if (init && higher_order_disable) + disable_higher_order_debug = 1; + + if (*str) + return str; + else + return NULL; +} + +static int __init setup_slub_debug(char *str) +{ + slab_flags_t flags; + slab_flags_t global_flags; + char *saved_str; + char *slab_list; + bool global_slub_debug_changed = false; + bool slab_list_specified = false; + + global_flags = DEBUG_DEFAULT_FLAGS; + if (*str++ != '=' || !*str) + /* + * No options specified. Switch on full debugging. + */ + goto out; + + saved_str = str; + while (str) { + str = parse_slub_debug_flags(str, &flags, &slab_list, true); + + if (!slab_list) { + global_flags = flags; + global_slub_debug_changed = true; + } else { + slab_list_specified = true; + if (flags & SLAB_STORE_USER) + stack_depot_want_early_init(); + } + } + + /* + * For backwards compatibility, a single list of flags with list of + * slabs means debugging is only changed for those slabs, so the global + * slub_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending + * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as + * long as there is no option specifying flags without a slab list. + */ + if (slab_list_specified) { + if (!global_slub_debug_changed) + global_flags = slub_debug; + slub_debug_string = saved_str; + } +out: + slub_debug = global_flags; + if (slub_debug & SLAB_STORE_USER) + stack_depot_want_early_init(); + if (slub_debug != 0 || slub_debug_string) + static_branch_enable(&slub_debug_enabled); + else + static_branch_disable(&slub_debug_enabled); + if ((static_branch_unlikely(&init_on_alloc) || + static_branch_unlikely(&init_on_free)) && + (slub_debug & SLAB_POISON)) + pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n"); + return 1; +} + +__setup("slub_debug", setup_slub_debug); + +/* + * kmem_cache_flags - apply debugging options to the cache + * @object_size: the size of an object without meta data + * @flags: flags to set + * @name: name of the cache + * + * Debug option(s) are applied to @flags. In addition to the debug + * option(s), if a slab name (or multiple) is specified i.e. + * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ... + * then only the select slabs will receive the debug option(s). + */ +slab_flags_t kmem_cache_flags(unsigned int object_size, + slab_flags_t flags, const char *name) +{ + char *iter; + size_t len; + char *next_block; + slab_flags_t block_flags; + slab_flags_t slub_debug_local = slub_debug; + + if (flags & SLAB_NO_USER_FLAGS) + return flags; + + /* + * If the slab cache is for debugging (e.g. kmemleak) then + * don't store user (stack trace) information by default, + * but let the user enable it via the command line below. + */ + if (flags & SLAB_NOLEAKTRACE) + slub_debug_local &= ~SLAB_STORE_USER; + + len = strlen(name); + next_block = slub_debug_string; + /* Go through all blocks of debug options, see if any matches our slab's name */ + while (next_block) { + next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false); + if (!iter) + continue; + /* Found a block that has a slab list, search it */ + while (*iter) { + char *end, *glob; + size_t cmplen; + + end = strchrnul(iter, ','); + if (next_block && next_block < end) + end = next_block - 1; + + glob = strnchr(iter, end - iter, '*'); + if (glob) + cmplen = glob - iter; + else + cmplen = max_t(size_t, len, (end - iter)); + + if (!strncmp(name, iter, cmplen)) { + flags |= block_flags; + return flags; + } + + if (!*end || *end == ';') + break; + iter = end + 1; + } + } + + return flags | slub_debug_local; +} +#else /* !CONFIG_SLUB_DEBUG */ +static inline void setup_object_debug(struct kmem_cache *s, void *object) {} +static inline +void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {} + +static inline int alloc_debug_processing(struct kmem_cache *s, + struct slab *slab, void *object, int orig_size) { return 0; } + +static inline void free_debug_processing( + struct kmem_cache *s, struct slab *slab, + void *head, void *tail, int bulk_cnt, + unsigned long addr) {} + +static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {} +static inline int check_object(struct kmem_cache *s, struct slab *slab, + void *object, u8 val) { return 1; } +static inline void set_track(struct kmem_cache *s, void *object, + enum track_item alloc, unsigned long addr) {} +static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, + struct slab *slab) {} +static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, + struct slab *slab) {} +slab_flags_t kmem_cache_flags(unsigned int object_size, + slab_flags_t flags, const char *name) +{ + return flags; +} +#define slub_debug 0 + +#define disable_higher_order_debug 0 + +static inline unsigned long slabs_node(struct kmem_cache *s, int node) + { return 0; } +static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) + { return 0; } +static inline void inc_slabs_node(struct kmem_cache *s, int node, + int objects) {} +static inline void dec_slabs_node(struct kmem_cache *s, int node, + int objects) {} + +static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab, + void **freelist, void *nextfree) +{ + return false; +} +#endif /* CONFIG_SLUB_DEBUG */ + +/* + * Hooks for other subsystems that check memory allocations. In a typical + * production configuration these hooks all should produce no code at all. + */ +static __always_inline bool slab_free_hook(struct kmem_cache *s, + void *x, bool init) +{ + kmemleak_free_recursive(x, s->flags); + kmsan_slab_free(s, x); + + debug_check_no_locks_freed(x, s->object_size); + + if (!(s->flags & SLAB_DEBUG_OBJECTS)) + debug_check_no_obj_freed(x, s->object_size); + + /* Use KCSAN to help debug racy use-after-free. */ + if (!(s->flags & SLAB_TYPESAFE_BY_RCU)) + __kcsan_check_access(x, s->object_size, + KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT); + + /* + * As memory initialization might be integrated into KASAN, + * kasan_slab_free and initialization memset's must be + * kept together to avoid discrepancies in behavior. + * + * The initialization memset's clear the object and the metadata, + * but don't touch the SLAB redzone. + */ + if (init) { + int rsize; + + if (!kasan_has_integrated_init()) + memset(kasan_reset_tag(x), 0, s->object_size); + rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0; + memset((char *)kasan_reset_tag(x) + s->inuse, 0, + s->size - s->inuse - rsize); + } + /* KASAN might put x into memory quarantine, delaying its reuse. */ + return kasan_slab_free(s, x, init); +} + +static inline bool slab_free_freelist_hook(struct kmem_cache *s, + void **head, void **tail, + int *cnt) +{ + + void *object; + void *next = *head; + void *old_tail = *tail ? *tail : *head; + + if (is_kfence_address(next)) { + slab_free_hook(s, next, false); + return true; + } + + /* Head and tail of the reconstructed freelist */ + *head = NULL; + *tail = NULL; + + do { + object = next; + next = get_freepointer(s, object); + + /* If object's reuse doesn't have to be delayed */ + if (!slab_free_hook(s, object, slab_want_init_on_free(s))) { + /* Move object to the new freelist */ + set_freepointer(s, object, *head); + *head = object; + if (!*tail) + *tail = object; + } else { + /* + * Adjust the reconstructed freelist depth + * accordingly if object's reuse is delayed. + */ + --(*cnt); + } + } while (object != old_tail); + + if (*head == *tail) + *tail = NULL; + + return *head != NULL; +} + +static void *setup_object(struct kmem_cache *s, void *object) +{ + setup_object_debug(s, object); + object = kasan_init_slab_obj(s, object); + if (unlikely(s->ctor)) { + kasan_unpoison_object_data(s, object); + s->ctor(object); + kasan_poison_object_data(s, object); + } + return object; +} + +/* + * Slab allocation and freeing + */ +static inline struct slab *alloc_slab_page(gfp_t flags, int node, + struct kmem_cache_order_objects oo) +{ + struct folio *folio; + struct slab *slab; + unsigned int order = oo_order(oo); + + if (node == NUMA_NO_NODE) + folio = (struct folio *)alloc_pages(flags, order); + else + folio = (struct folio *)__alloc_pages_node(node, flags, order); + + if (!folio) + return NULL; + + slab = folio_slab(folio); + __folio_set_slab(folio); + if (page_is_pfmemalloc(folio_page(folio, 0))) + slab_set_pfmemalloc(slab); + + return slab; +} + +#ifdef CONFIG_SLAB_FREELIST_RANDOM +/* Pre-initialize the random sequence cache */ +static int init_cache_random_seq(struct kmem_cache *s) +{ + unsigned int count = oo_objects(s->oo); + int err; + + /* Bailout if already initialised */ + if (s->random_seq) + return 0; + + err = cache_random_seq_create(s, count, GFP_KERNEL); + if (err) { + pr_err("SLUB: Unable to initialize free list for %s\n", + s->name); + return err; + } + + /* Transform to an offset on the set of pages */ + if (s->random_seq) { + unsigned int i; + + for (i = 0; i < count; i++) + s->random_seq[i] *= s->size; + } + return 0; +} + +/* Initialize each random sequence freelist per cache */ +static void __init init_freelist_randomization(void) +{ + struct kmem_cache *s; + + mutex_lock(&slab_mutex); + + list_for_each_entry(s, &slab_caches, list) + init_cache_random_seq(s); + + mutex_unlock(&slab_mutex); +} + +/* Get the next entry on the pre-computed freelist randomized */ +static void *next_freelist_entry(struct kmem_cache *s, struct slab *slab, + unsigned long *pos, void *start, + unsigned long page_limit, + unsigned long freelist_count) +{ + unsigned int idx; + + /* + * If the target page allocation failed, the number of objects on the + * page might be smaller than the usual size defined by the cache. + */ + do { + idx = s->random_seq[*pos]; + *pos += 1; + if (*pos >= freelist_count) + *pos = 0; + } while (unlikely(idx >= page_limit)); + + return (char *)start + idx; +} + +/* Shuffle the single linked freelist based on a random pre-computed sequence */ +static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab) +{ + void *start; + void *cur; + void *next; + unsigned long idx, pos, page_limit, freelist_count; + + if (slab->objects < 2 || !s->random_seq) + return false; + + freelist_count = oo_objects(s->oo); + pos = prandom_u32_max(freelist_count); + + page_limit = slab->objects * s->size; + start = fixup_red_left(s, slab_address(slab)); + + /* First entry is used as the base of the freelist */ + cur = next_freelist_entry(s, slab, &pos, start, page_limit, + freelist_count); + cur = setup_object(s, cur); + slab->freelist = cur; + + for (idx = 1; idx < slab->objects; idx++) { + next = next_freelist_entry(s, slab, &pos, start, page_limit, + freelist_count); + next = setup_object(s, next); + set_freepointer(s, cur, next); + cur = next; + } + set_freepointer(s, cur, NULL); + + return true; +} +#else +static inline int init_cache_random_seq(struct kmem_cache *s) +{ + return 0; +} +static inline void init_freelist_randomization(void) { } +static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab) +{ + return false; +} +#endif /* CONFIG_SLAB_FREELIST_RANDOM */ + +static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) +{ + struct slab *slab; + struct kmem_cache_order_objects oo = s->oo; + gfp_t alloc_gfp; + void *start, *p, *next; + int idx; + bool shuffle; + + flags &= gfp_allowed_mask; + + flags |= s->allocflags; + + /* + * Let the initial higher-order allocation fail under memory pressure + * so we fall-back to the minimum order allocation. + */ + alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; + if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min)) + alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM; + + slab = alloc_slab_page(alloc_gfp, node, oo); + if (unlikely(!slab)) { + oo = s->min; + alloc_gfp = flags; + /* + * Allocation may have failed due to fragmentation. + * Try a lower order alloc if possible + */ + slab = alloc_slab_page(alloc_gfp, node, oo); + if (unlikely(!slab)) + return NULL; + stat(s, ORDER_FALLBACK); + } + + slab->objects = oo_objects(oo); + slab->inuse = 0; + slab->frozen = 0; + + account_slab(slab, oo_order(oo), s, flags); + + slab->slab_cache = s; + + kasan_poison_slab(slab); + + start = slab_address(slab); + + setup_slab_debug(s, slab, start); + + shuffle = shuffle_freelist(s, slab); + + if (!shuffle) { + start = fixup_red_left(s, start); + start = setup_object(s, start); + slab->freelist = start; + for (idx = 0, p = start; idx < slab->objects - 1; idx++) { + next = p + s->size; + next = setup_object(s, next); + set_freepointer(s, p, next); + p = next; + } + set_freepointer(s, p, NULL); + } + + return slab; +} + +static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node) +{ + if (unlikely(flags & GFP_SLAB_BUG_MASK)) + flags = kmalloc_fix_flags(flags); + + WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO)); + + return allocate_slab(s, + flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); +} + +static void __free_slab(struct kmem_cache *s, struct slab *slab) +{ + struct folio *folio = slab_folio(slab); + int order = folio_order(folio); + int pages = 1 << order; + + if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) { + void *p; + + slab_pad_check(s, slab); + for_each_object(p, s, slab_address(slab), slab->objects) + check_object(s, slab, p, SLUB_RED_INACTIVE); + } + + __slab_clear_pfmemalloc(slab); + __folio_clear_slab(folio); + folio->mapping = NULL; + if (current->reclaim_state) + current->reclaim_state->reclaimed_slab += pages; + unaccount_slab(slab, order, s); + __free_pages(folio_page(folio, 0), order); +} + +static void rcu_free_slab(struct rcu_head *h) +{ + struct slab *slab = container_of(h, struct slab, rcu_head); + + __free_slab(slab->slab_cache, slab); +} + +static void free_slab(struct kmem_cache *s, struct slab *slab) +{ + if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) { + call_rcu(&slab->rcu_head, rcu_free_slab); + } else + __free_slab(s, slab); +} + +static void discard_slab(struct kmem_cache *s, struct slab *slab) +{ + dec_slabs_node(s, slab_nid(slab), slab->objects); + free_slab(s, slab); +} + +/* + * Management of partially allocated slabs. + */ +static inline void +__add_partial(struct kmem_cache_node *n, struct slab *slab, int tail) +{ + n->nr_partial++; + if (tail == DEACTIVATE_TO_TAIL) + list_add_tail(&slab->slab_list, &n->partial); + else + list_add(&slab->slab_list, &n->partial); +} + +static inline void add_partial(struct kmem_cache_node *n, + struct slab *slab, int tail) +{ + lockdep_assert_held(&n->list_lock); + __add_partial(n, slab, tail); +} + +static inline void remove_partial(struct kmem_cache_node *n, + struct slab *slab) +{ + lockdep_assert_held(&n->list_lock); + list_del(&slab->slab_list); + n->nr_partial--; +} + +/* + * Called only for kmem_cache_debug() caches instead of acquire_slab(), with a + * slab from the n->partial list. Remove only a single object from the slab, do + * the alloc_debug_processing() checks and leave the slab on the list, or move + * it to full list if it was the last free object. + */ +static void *alloc_single_from_partial(struct kmem_cache *s, + struct kmem_cache_node *n, struct slab *slab, int orig_size) +{ + void *object; + + lockdep_assert_held(&n->list_lock); + + object = slab->freelist; + slab->freelist = get_freepointer(s, object); + slab->inuse++; + + if (!alloc_debug_processing(s, slab, object, orig_size)) { + remove_partial(n, slab); + return NULL; + } + + if (slab->inuse == slab->objects) { + remove_partial(n, slab); + add_full(s, n, slab); + } + + return object; +} + +/* + * Called only for kmem_cache_debug() caches to allocate from a freshly + * allocated slab. Allocate a single object instead of whole freelist + * and put the slab to the partial (or full) list. + */ +static void *alloc_single_from_new_slab(struct kmem_cache *s, + struct slab *slab, int orig_size) +{ + int nid = slab_nid(slab); + struct kmem_cache_node *n = get_node(s, nid); + unsigned long flags; + void *object; + + + object = slab->freelist; + slab->freelist = get_freepointer(s, object); + slab->inuse = 1; + + if (!alloc_debug_processing(s, slab, object, orig_size)) + /* + * It's not really expected that this would fail on a + * freshly allocated slab, but a concurrent memory + * corruption in theory could cause that. + */ + return NULL; + + spin_lock_irqsave(&n->list_lock, flags); + + if (slab->inuse == slab->objects) + add_full(s, n, slab); + else + add_partial(n, slab, DEACTIVATE_TO_HEAD); + + inc_slabs_node(s, nid, slab->objects); + spin_unlock_irqrestore(&n->list_lock, flags); + + return object; +} + +/* + * Remove slab from the partial list, freeze it and + * return the pointer to the freelist. + * + * Returns a list of objects or NULL if it fails. + */ +static inline void *acquire_slab(struct kmem_cache *s, + struct kmem_cache_node *n, struct slab *slab, + int mode) +{ + void *freelist; + unsigned long counters; + struct slab new; + + lockdep_assert_held(&n->list_lock); + + /* + * Zap the freelist and set the frozen bit. + * The old freelist is the list of objects for the + * per cpu allocation list. + */ + freelist = slab->freelist; + counters = slab->counters; + new.counters = counters; + if (mode) { + new.inuse = slab->objects; + new.freelist = NULL; + } else { + new.freelist = freelist; + } + + VM_BUG_ON(new.frozen); + new.frozen = 1; + + if (!__cmpxchg_double_slab(s, slab, + freelist, counters, + new.freelist, new.counters, + "acquire_slab")) + return NULL; + + remove_partial(n, slab); + WARN_ON(!freelist); + return freelist; +} + +#ifdef CONFIG_SLUB_CPU_PARTIAL +static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain); +#else +static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab, + int drain) { } +#endif +static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags); + +/* + * Try to allocate a partial slab from a specific node. + */ +static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, + struct partial_context *pc) +{ + struct slab *slab, *slab2; + void *object = NULL; + unsigned long flags; + unsigned int partial_slabs = 0; + + /* + * Racy check. If we mistakenly see no partial slabs then we + * just allocate an empty slab. If we mistakenly try to get a + * partial slab and there is none available then get_partial() + * will return NULL. + */ + if (!n || !n->nr_partial) + return NULL; + + spin_lock_irqsave(&n->list_lock, flags); + list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) { + void *t; + + if (!pfmemalloc_match(slab, pc->flags)) + continue; + + if (kmem_cache_debug(s)) { + object = alloc_single_from_partial(s, n, slab, + pc->orig_size); + if (object) + break; + continue; + } + + t = acquire_slab(s, n, slab, object == NULL); + if (!t) + break; + + if (!object) { + *pc->slab = slab; + stat(s, ALLOC_FROM_PARTIAL); + object = t; + } else { + put_cpu_partial(s, slab, 0); + stat(s, CPU_PARTIAL_NODE); + partial_slabs++; + } +#ifdef CONFIG_SLUB_CPU_PARTIAL + if (!kmem_cache_has_cpu_partial(s) + || partial_slabs > s->cpu_partial_slabs / 2) + break; +#else + break; +#endif + + } + spin_unlock_irqrestore(&n->list_lock, flags); + return object; +} + +/* + * Get a slab from somewhere. Search in increasing NUMA distances. + */ +static void *get_any_partial(struct kmem_cache *s, struct partial_context *pc) +{ +#ifdef CONFIG_NUMA + struct zonelist *zonelist; + struct zoneref *z; + struct zone *zone; + enum zone_type highest_zoneidx = gfp_zone(pc->flags); + void *object; + unsigned int cpuset_mems_cookie; + + /* + * The defrag ratio allows a configuration of the tradeoffs between + * inter node defragmentation and node local allocations. A lower + * defrag_ratio increases the tendency to do local allocations + * instead of attempting to obtain partial slabs from other nodes. + * + * If the defrag_ratio is set to 0 then kmalloc() always + * returns node local objects. If the ratio is higher then kmalloc() + * may return off node objects because partial slabs are obtained + * from other nodes and filled up. + * + * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100 + * (which makes defrag_ratio = 1000) then every (well almost) + * allocation will first attempt to defrag slab caches on other nodes. + * This means scanning over all nodes to look for partial slabs which + * may be expensive if we do it every time we are trying to find a slab + * with available objects. + */ + if (!s->remote_node_defrag_ratio || + get_cycles() % 1024 > s->remote_node_defrag_ratio) + return NULL; + + do { + cpuset_mems_cookie = read_mems_allowed_begin(); + zonelist = node_zonelist(mempolicy_slab_node(), pc->flags); + for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) { + struct kmem_cache_node *n; + + n = get_node(s, zone_to_nid(zone)); + + if (n && cpuset_zone_allowed(zone, pc->flags) && + n->nr_partial > s->min_partial) { + object = get_partial_node(s, n, pc); + if (object) { + /* + * Don't check read_mems_allowed_retry() + * here - if mems_allowed was updated in + * parallel, that was a harmless race + * between allocation and the cpuset + * update + */ + return object; + } + } + } + } while (read_mems_allowed_retry(cpuset_mems_cookie)); +#endif /* CONFIG_NUMA */ + return NULL; +} + +/* + * Get a partial slab, lock it and return it. + */ +static void *get_partial(struct kmem_cache *s, int node, struct partial_context *pc) +{ + void *object; + int searchnode = node; + + if (node == NUMA_NO_NODE) + searchnode = numa_mem_id(); + + object = get_partial_node(s, get_node(s, searchnode), pc); + if (object || node != NUMA_NO_NODE) + return object; + + return get_any_partial(s, pc); +} + +#ifdef CONFIG_PREEMPTION +/* + * Calculate the next globally unique transaction for disambiguation + * during cmpxchg. The transactions start with the cpu number and are then + * incremented by CONFIG_NR_CPUS. + */ +#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) +#else +/* + * No preemption supported therefore also no need to check for + * different cpus. + */ +#define TID_STEP 1 +#endif + +static inline unsigned long next_tid(unsigned long tid) +{ + return tid + TID_STEP; +} + +#ifdef SLUB_DEBUG_CMPXCHG +static inline unsigned int tid_to_cpu(unsigned long tid) +{ + return tid % TID_STEP; +} + +static inline unsigned long tid_to_event(unsigned long tid) +{ + return tid / TID_STEP; +} +#endif + +static inline unsigned int init_tid(int cpu) +{ + return cpu; +} + +static inline void note_cmpxchg_failure(const char *n, + const struct kmem_cache *s, unsigned long tid) +{ +#ifdef SLUB_DEBUG_CMPXCHG + unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); + + pr_info("%s %s: cmpxchg redo ", n, s->name); + +#ifdef CONFIG_PREEMPTION + if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) + pr_warn("due to cpu change %d -> %d\n", + tid_to_cpu(tid), tid_to_cpu(actual_tid)); + else +#endif + if (tid_to_event(tid) != tid_to_event(actual_tid)) + pr_warn("due to cpu running other code. Event %ld->%ld\n", + tid_to_event(tid), tid_to_event(actual_tid)); + else + pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", + actual_tid, tid, next_tid(tid)); +#endif + stat(s, CMPXCHG_DOUBLE_CPU_FAIL); +} + +static void init_kmem_cache_cpus(struct kmem_cache *s) +{ + int cpu; + struct kmem_cache_cpu *c; + + for_each_possible_cpu(cpu) { + c = per_cpu_ptr(s->cpu_slab, cpu); + local_lock_init(&c->lock); + c->tid = init_tid(cpu); + } +} + +/* + * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist, + * unfreezes the slabs and puts it on the proper list. + * Assumes the slab has been already safely taken away from kmem_cache_cpu + * by the caller. + */ +static void deactivate_slab(struct kmem_cache *s, struct slab *slab, + void *freelist) +{ + enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE, M_FULL_NOLIST }; + struct kmem_cache_node *n = get_node(s, slab_nid(slab)); + int free_delta = 0; + enum slab_modes mode = M_NONE; + void *nextfree, *freelist_iter, *freelist_tail; + int tail = DEACTIVATE_TO_HEAD; + unsigned long flags = 0; + struct slab new; + struct slab old; + + if (slab->freelist) { + stat(s, DEACTIVATE_REMOTE_FREES); + tail = DEACTIVATE_TO_TAIL; + } + + /* + * Stage one: Count the objects on cpu's freelist as free_delta and + * remember the last object in freelist_tail for later splicing. + */ + freelist_tail = NULL; + freelist_iter = freelist; + while (freelist_iter) { + nextfree = get_freepointer(s, freelist_iter); + + /* + * If 'nextfree' is invalid, it is possible that the object at + * 'freelist_iter' is already corrupted. So isolate all objects + * starting at 'freelist_iter' by skipping them. + */ + if (freelist_corrupted(s, slab, &freelist_iter, nextfree)) + break; + + freelist_tail = freelist_iter; + free_delta++; + + freelist_iter = nextfree; + } + + /* + * Stage two: Unfreeze the slab while splicing the per-cpu + * freelist to the head of slab's freelist. + * + * Ensure that the slab is unfrozen while the list presence + * reflects the actual number of objects during unfreeze. + * + * We first perform cmpxchg holding lock and insert to list + * when it succeed. If there is mismatch then the slab is not + * unfrozen and number of objects in the slab may have changed. + * Then release lock and retry cmpxchg again. + */ +redo: + + old.freelist = READ_ONCE(slab->freelist); + old.counters = READ_ONCE(slab->counters); + VM_BUG_ON(!old.frozen); + + /* Determine target state of the slab */ + new.counters = old.counters; + if (freelist_tail) { + new.inuse -= free_delta; + set_freepointer(s, freelist_tail, old.freelist); + new.freelist = freelist; + } else + new.freelist = old.freelist; + + new.frozen = 0; + + if (!new.inuse && n->nr_partial >= s->min_partial) { + mode = M_FREE; + } else if (new.freelist) { + mode = M_PARTIAL; + /* + * Taking the spinlock removes the possibility that + * acquire_slab() will see a slab that is frozen + */ + spin_lock_irqsave(&n->list_lock, flags); + } else if (kmem_cache_debug_flags(s, SLAB_STORE_USER)) { + mode = M_FULL; + /* + * This also ensures that the scanning of full + * slabs from diagnostic functions will not see + * any frozen slabs. + */ + spin_lock_irqsave(&n->list_lock, flags); + } else { + mode = M_FULL_NOLIST; + } + + + if (!cmpxchg_double_slab(s, slab, + old.freelist, old.counters, + new.freelist, new.counters, + "unfreezing slab")) { + if (mode == M_PARTIAL || mode == M_FULL) + spin_unlock_irqrestore(&n->list_lock, flags); + goto redo; + } + + + if (mode == M_PARTIAL) { + add_partial(n, slab, tail); + spin_unlock_irqrestore(&n->list_lock, flags); + stat(s, tail); + } else if (mode == M_FREE) { + stat(s, DEACTIVATE_EMPTY); + discard_slab(s, slab); + stat(s, FREE_SLAB); + } else if (mode == M_FULL) { + add_full(s, n, slab); + spin_unlock_irqrestore(&n->list_lock, flags); + stat(s, DEACTIVATE_FULL); + } else if (mode == M_FULL_NOLIST) { + stat(s, DEACTIVATE_FULL); + } +} + +#ifdef CONFIG_SLUB_CPU_PARTIAL +static void __unfreeze_partials(struct kmem_cache *s, struct slab *partial_slab) +{ + struct kmem_cache_node *n = NULL, *n2 = NULL; + struct slab *slab, *slab_to_discard = NULL; + unsigned long flags = 0; + + while (partial_slab) { + struct slab new; + struct slab old; + + slab = partial_slab; + partial_slab = slab->next; + + n2 = get_node(s, slab_nid(slab)); + if (n != n2) { + if (n) + spin_unlock_irqrestore(&n->list_lock, flags); + + n = n2; + spin_lock_irqsave(&n->list_lock, flags); + } + + do { + + old.freelist = slab->freelist; + old.counters = slab->counters; + VM_BUG_ON(!old.frozen); + + new.counters = old.counters; + new.freelist = old.freelist; + + new.frozen = 0; + + } while (!__cmpxchg_double_slab(s, slab, + old.freelist, old.counters, + new.freelist, new.counters, + "unfreezing slab")); + + if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) { + slab->next = slab_to_discard; + slab_to_discard = slab; + } else { + add_partial(n, slab, DEACTIVATE_TO_TAIL); + stat(s, FREE_ADD_PARTIAL); + } + } + + if (n) + spin_unlock_irqrestore(&n->list_lock, flags); + + while (slab_to_discard) { + slab = slab_to_discard; + slab_to_discard = slab_to_discard->next; + + stat(s, DEACTIVATE_EMPTY); + discard_slab(s, slab); + stat(s, FREE_SLAB); + } +} + +/* + * Unfreeze all the cpu partial slabs. + */ +static void unfreeze_partials(struct kmem_cache *s) +{ + struct slab *partial_slab; + unsigned long flags; + + local_lock_irqsave(&s->cpu_slab->lock, flags); + partial_slab = this_cpu_read(s->cpu_slab->partial); + this_cpu_write(s->cpu_slab->partial, NULL); + local_unlock_irqrestore(&s->cpu_slab->lock, flags); + + if (partial_slab) + __unfreeze_partials(s, partial_slab); +} + +static void unfreeze_partials_cpu(struct kmem_cache *s, + struct kmem_cache_cpu *c) +{ + struct slab *partial_slab; + + partial_slab = slub_percpu_partial(c); + c->partial = NULL; + + if (partial_slab) + __unfreeze_partials(s, partial_slab); +} + +/* + * Put a slab that was just frozen (in __slab_free|get_partial_node) into a + * partial slab slot if available. + * + * If we did not find a slot then simply move all the partials to the + * per node partial list. + */ +static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain) +{ + struct slab *oldslab; + struct slab *slab_to_unfreeze = NULL; + unsigned long flags; + int slabs = 0; + + local_lock_irqsave(&s->cpu_slab->lock, flags); + + oldslab = this_cpu_read(s->cpu_slab->partial); + + if (oldslab) { + if (drain && oldslab->slabs >= s->cpu_partial_slabs) { + /* + * Partial array is full. Move the existing set to the + * per node partial list. Postpone the actual unfreezing + * outside of the critical section. + */ + slab_to_unfreeze = oldslab; + oldslab = NULL; + } else { + slabs = oldslab->slabs; + } + } + + slabs++; + + slab->slabs = slabs; + slab->next = oldslab; + + this_cpu_write(s->cpu_slab->partial, slab); + + local_unlock_irqrestore(&s->cpu_slab->lock, flags); + + if (slab_to_unfreeze) { + __unfreeze_partials(s, slab_to_unfreeze); + stat(s, CPU_PARTIAL_DRAIN); + } +} + +#else /* CONFIG_SLUB_CPU_PARTIAL */ + +static inline void unfreeze_partials(struct kmem_cache *s) { } +static inline void unfreeze_partials_cpu(struct kmem_cache *s, + struct kmem_cache_cpu *c) { } + +#endif /* CONFIG_SLUB_CPU_PARTIAL */ + +static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) +{ + unsigned long flags; + struct slab *slab; + void *freelist; + + local_lock_irqsave(&s->cpu_slab->lock, flags); + + slab = c->slab; + freelist = c->freelist; + + c->slab = NULL; + c->freelist = NULL; + c->tid = next_tid(c->tid); + + local_unlock_irqrestore(&s->cpu_slab->lock, flags); + + if (slab) { + deactivate_slab(s, slab, freelist); + stat(s, CPUSLAB_FLUSH); + } +} + +static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) +{ + struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); + void *freelist = c->freelist; + struct slab *slab = c->slab; + + c->slab = NULL; + c->freelist = NULL; + c->tid = next_tid(c->tid); + + if (slab) { + deactivate_slab(s, slab, freelist); + stat(s, CPUSLAB_FLUSH); + } + + unfreeze_partials_cpu(s, c); +} + +struct slub_flush_work { + struct work_struct work; + struct kmem_cache *s; + bool skip; +}; + +/* + * Flush cpu slab. + * + * Called from CPU work handler with migration disabled. + */ +static void flush_cpu_slab(struct work_struct *w) +{ + struct kmem_cache *s; + struct kmem_cache_cpu *c; + struct slub_flush_work *sfw; + + sfw = container_of(w, struct slub_flush_work, work); + + s = sfw->s; + c = this_cpu_ptr(s->cpu_slab); + + if (c->slab) + flush_slab(s, c); + + unfreeze_partials(s); +} + +static bool has_cpu_slab(int cpu, struct kmem_cache *s) +{ + struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); + + return c->slab || slub_percpu_partial(c); +} + +static DEFINE_MUTEX(flush_lock); +static DEFINE_PER_CPU(struct slub_flush_work, slub_flush); + +static void flush_all_cpus_locked(struct kmem_cache *s) +{ + struct slub_flush_work *sfw; + unsigned int cpu; + + lockdep_assert_cpus_held(); + mutex_lock(&flush_lock); + + for_each_online_cpu(cpu) { + sfw = &per_cpu(slub_flush, cpu); + if (!has_cpu_slab(cpu, s)) { + sfw->skip = true; + continue; + } + INIT_WORK(&sfw->work, flush_cpu_slab); + sfw->skip = false; + sfw->s = s; + queue_work_on(cpu, flushwq, &sfw->work); + } + + for_each_online_cpu(cpu) { + sfw = &per_cpu(slub_flush, cpu); + if (sfw->skip) + continue; + flush_work(&sfw->work); + } + + mutex_unlock(&flush_lock); +} + +static void flush_all(struct kmem_cache *s) +{ + cpus_read_lock(); + flush_all_cpus_locked(s); + cpus_read_unlock(); +} + +/* + * Use the cpu notifier to insure that the cpu slabs are flushed when + * necessary. + */ +static int slub_cpu_dead(unsigned int cpu) +{ + struct kmem_cache *s; + + mutex_lock(&slab_mutex); + list_for_each_entry(s, &slab_caches, list) + __flush_cpu_slab(s, cpu); + mutex_unlock(&slab_mutex); + return 0; +} + +/* + * Check if the objects in a per cpu structure fit numa + * locality expectations. + */ +static inline int node_match(struct slab *slab, int node) +{ +#ifdef CONFIG_NUMA + if (node != NUMA_NO_NODE && slab_nid(slab) != node) + return 0; +#endif + return 1; +} + +#ifdef CONFIG_SLUB_DEBUG +static int count_free(struct slab *slab) +{ + return slab->objects - slab->inuse; +} + +static inline unsigned long node_nr_objs(struct kmem_cache_node *n) +{ + return atomic_long_read(&n->total_objects); +} + +/* Supports checking bulk free of a constructed freelist */ +static noinline void free_debug_processing( + struct kmem_cache *s, struct slab *slab, + void *head, void *tail, int bulk_cnt, + unsigned long addr) +{ + struct kmem_cache_node *n = get_node(s, slab_nid(slab)); + struct slab *slab_free = NULL; + void *object = head; + int cnt = 0; + unsigned long flags; + bool checks_ok = false; + depot_stack_handle_t handle = 0; + + if (s->flags & SLAB_STORE_USER) + handle = set_track_prepare(); + + spin_lock_irqsave(&n->list_lock, flags); + + if (s->flags & SLAB_CONSISTENCY_CHECKS) { + if (!check_slab(s, slab)) + goto out; + } + + if (slab->inuse < bulk_cnt) { + slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n", + slab->inuse, bulk_cnt); + goto out; + } + +next_object: + + if (++cnt > bulk_cnt) + goto out_cnt; + + if (s->flags & SLAB_CONSISTENCY_CHECKS) { + if (!free_consistency_checks(s, slab, object, addr)) + goto out; + } + + if (s->flags & SLAB_STORE_USER) + set_track_update(s, object, TRACK_FREE, addr, handle); + trace(s, slab, object, 0); + /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */ + init_object(s, object, SLUB_RED_INACTIVE); + + /* Reached end of constructed freelist yet? */ + if (object != tail) { + object = get_freepointer(s, object); + goto next_object; + } + checks_ok = true; + +out_cnt: + if (cnt != bulk_cnt) + slab_err(s, slab, "Bulk free expected %d objects but found %d\n", + bulk_cnt, cnt); + +out: + if (checks_ok) { + void *prior = slab->freelist; + + /* Perform the actual freeing while we still hold the locks */ + slab->inuse -= cnt; + set_freepointer(s, tail, prior); + slab->freelist = head; + + /* + * If the slab is empty, and node's partial list is full, + * it should be discarded anyway no matter it's on full or + * partial list. + */ + if (slab->inuse == 0 && n->nr_partial >= s->min_partial) + slab_free = slab; + + if (!prior) { + /* was on full list */ + remove_full(s, n, slab); + if (!slab_free) { + add_partial(n, slab, DEACTIVATE_TO_TAIL); + stat(s, FREE_ADD_PARTIAL); + } + } else if (slab_free) { + remove_partial(n, slab); + stat(s, FREE_REMOVE_PARTIAL); + } + } + + if (slab_free) { + /* + * Update the counters while still holding n->list_lock to + * prevent spurious validation warnings + */ + dec_slabs_node(s, slab_nid(slab_free), slab_free->objects); + } + + spin_unlock_irqrestore(&n->list_lock, flags); + + if (!checks_ok) + slab_fix(s, "Object at 0x%p not freed", object); + + if (slab_free) { + stat(s, FREE_SLAB); + free_slab(s, slab_free); + } +} +#endif /* CONFIG_SLUB_DEBUG */ + +#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS) +static unsigned long count_partial(struct kmem_cache_node *n, + int (*get_count)(struct slab *)) +{ + unsigned long flags; + unsigned long x = 0; + struct slab *slab; + + spin_lock_irqsave(&n->list_lock, flags); + list_for_each_entry(slab, &n->partial, slab_list) + x += get_count(slab); + spin_unlock_irqrestore(&n->list_lock, flags); + return x; +} +#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */ + +static noinline void +slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) +{ +#ifdef CONFIG_SLUB_DEBUG + static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, + DEFAULT_RATELIMIT_BURST); + int node; + struct kmem_cache_node *n; + + if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) + return; + + pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", + nid, gfpflags, &gfpflags); + pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n", + s->name, s->object_size, s->size, oo_order(s->oo), + oo_order(s->min)); + + if (oo_order(s->min) > get_order(s->object_size)) + pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n", + s->name); + + for_each_kmem_cache_node(s, node, n) { + unsigned long nr_slabs; + unsigned long nr_objs; + unsigned long nr_free; + + nr_free = count_partial(n, count_free); + nr_slabs = node_nr_slabs(n); + nr_objs = node_nr_objs(n); + + pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", + node, nr_slabs, nr_objs, nr_free); + } +#endif +} + +static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags) +{ + if (unlikely(slab_test_pfmemalloc(slab))) + return gfp_pfmemalloc_allowed(gfpflags); + + return true; +} + +/* + * Check the slab->freelist and either transfer the freelist to the + * per cpu freelist or deactivate the slab. + * + * The slab is still frozen if the return value is not NULL. + * + * If this function returns NULL then the slab has been unfrozen. + */ +static inline void *get_freelist(struct kmem_cache *s, struct slab *slab) +{ + struct slab new; + unsigned long counters; + void *freelist; + + lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock)); + + do { + freelist = slab->freelist; + counters = slab->counters; + + new.counters = counters; + VM_BUG_ON(!new.frozen); + + new.inuse = slab->objects; + new.frozen = freelist != NULL; + + } while (!__cmpxchg_double_slab(s, slab, + freelist, counters, + NULL, new.counters, + "get_freelist")); + + return freelist; +} + +/* + * Slow path. The lockless freelist is empty or we need to perform + * debugging duties. + * + * Processing is still very fast if new objects have been freed to the + * regular freelist. In that case we simply take over the regular freelist + * as the lockless freelist and zap the regular freelist. + * + * If that is not working then we fall back to the partial lists. We take the + * first element of the freelist as the object to allocate now and move the + * rest of the freelist to the lockless freelist. + * + * And if we were unable to get a new slab from the partial slab lists then + * we need to allocate a new slab. This is the slowest path since it involves + * a call to the page allocator and the setup of a new slab. + * + * Version of __slab_alloc to use when we know that preemption is + * already disabled (which is the case for bulk allocation). + */ +static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, + unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size) +{ + void *freelist; + struct slab *slab; + unsigned long flags; + struct partial_context pc; + + stat(s, ALLOC_SLOWPATH); + +reread_slab: + + slab = READ_ONCE(c->slab); + if (!slab) { + /* + * if the node is not online or has no normal memory, just + * ignore the node constraint + */ + if (unlikely(node != NUMA_NO_NODE && + !node_isset(node, slab_nodes))) + node = NUMA_NO_NODE; + goto new_slab; + } +redo: + + if (unlikely(!node_match(slab, node))) { + /* + * same as above but node_match() being false already + * implies node != NUMA_NO_NODE + */ + if (!node_isset(node, slab_nodes)) { + node = NUMA_NO_NODE; + } else { + stat(s, ALLOC_NODE_MISMATCH); + goto deactivate_slab; + } + } + + /* + * By rights, we should be searching for a slab page that was + * PFMEMALLOC but right now, we are losing the pfmemalloc + * information when the page leaves the per-cpu allocator + */ + if (unlikely(!pfmemalloc_match(slab, gfpflags))) + goto deactivate_slab; + + /* must check again c->slab in case we got preempted and it changed */ + local_lock_irqsave(&s->cpu_slab->lock, flags); + if (unlikely(slab != c->slab)) { + local_unlock_irqrestore(&s->cpu_slab->lock, flags); + goto reread_slab; + } + freelist = c->freelist; + if (freelist) + goto load_freelist; + + freelist = get_freelist(s, slab); + + if (!freelist) { + c->slab = NULL; + c->tid = next_tid(c->tid); + local_unlock_irqrestore(&s->cpu_slab->lock, flags); + stat(s, DEACTIVATE_BYPASS); + goto new_slab; + } + + stat(s, ALLOC_REFILL); + +load_freelist: + + lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock)); + + /* + * freelist is pointing to the list of objects to be used. + * slab is pointing to the slab from which the objects are obtained. + * That slab must be frozen for per cpu allocations to work. + */ + VM_BUG_ON(!c->slab->frozen); + c->freelist = get_freepointer(s, freelist); + c->tid = next_tid(c->tid); + local_unlock_irqrestore(&s->cpu_slab->lock, flags); + return freelist; + +deactivate_slab: + + local_lock_irqsave(&s->cpu_slab->lock, flags); + if (slab != c->slab) { + local_unlock_irqrestore(&s->cpu_slab->lock, flags); + goto reread_slab; + } + freelist = c->freelist; + c->slab = NULL; + c->freelist = NULL; + c->tid = next_tid(c->tid); + local_unlock_irqrestore(&s->cpu_slab->lock, flags); + deactivate_slab(s, slab, freelist); + +new_slab: + + if (slub_percpu_partial(c)) { + local_lock_irqsave(&s->cpu_slab->lock, flags); + if (unlikely(c->slab)) { + local_unlock_irqrestore(&s->cpu_slab->lock, flags); + goto reread_slab; + } + if (unlikely(!slub_percpu_partial(c))) { + local_unlock_irqrestore(&s->cpu_slab->lock, flags); + /* we were preempted and partial list got empty */ + goto new_objects; + } + + slab = c->slab = slub_percpu_partial(c); + slub_set_percpu_partial(c, slab); + local_unlock_irqrestore(&s->cpu_slab->lock, flags); + stat(s, CPU_PARTIAL_ALLOC); + goto redo; + } + +new_objects: + + pc.flags = gfpflags; + pc.slab = &slab; + pc.orig_size = orig_size; + freelist = get_partial(s, node, &pc); + if (freelist) + goto check_new_slab; + + slub_put_cpu_ptr(s->cpu_slab); + slab = new_slab(s, gfpflags, node); + c = slub_get_cpu_ptr(s->cpu_slab); + + if (unlikely(!slab)) { + slab_out_of_memory(s, gfpflags, node); + return NULL; + } + + stat(s, ALLOC_SLAB); + + if (kmem_cache_debug(s)) { + freelist = alloc_single_from_new_slab(s, slab, orig_size); + + if (unlikely(!freelist)) + goto new_objects; + + if (s->flags & SLAB_STORE_USER) + set_track(s, freelist, TRACK_ALLOC, addr); + + return freelist; + } + + /* + * No other reference to the slab yet so we can + * muck around with it freely without cmpxchg + */ + freelist = slab->freelist; + slab->freelist = NULL; + slab->inuse = slab->objects; + slab->frozen = 1; + + inc_slabs_node(s, slab_nid(slab), slab->objects); + +check_new_slab: + + if (kmem_cache_debug(s)) { + /* + * For debug caches here we had to go through + * alloc_single_from_partial() so just store the tracking info + * and return the object + */ + if (s->flags & SLAB_STORE_USER) + set_track(s, freelist, TRACK_ALLOC, addr); + + return freelist; + } + + if (unlikely(!pfmemalloc_match(slab, gfpflags))) { + /* + * For !pfmemalloc_match() case we don't load freelist so that + * we don't make further mismatched allocations easier. + */ + deactivate_slab(s, slab, get_freepointer(s, freelist)); + return freelist; + } + +retry_load_slab: + + local_lock_irqsave(&s->cpu_slab->lock, flags); + if (unlikely(c->slab)) { + void *flush_freelist = c->freelist; + struct slab *flush_slab = c->slab; + + c->slab = NULL; + c->freelist = NULL; + c->tid = next_tid(c->tid); + + local_unlock_irqrestore(&s->cpu_slab->lock, flags); + + deactivate_slab(s, flush_slab, flush_freelist); + + stat(s, CPUSLAB_FLUSH); + + goto retry_load_slab; + } + c->slab = slab; + + goto load_freelist; +} + +/* + * A wrapper for ___slab_alloc() for contexts where preemption is not yet + * disabled. Compensates for possible cpu changes by refetching the per cpu area + * pointer. + */ +static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, + unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size) +{ + void *p; + +#ifdef CONFIG_PREEMPT_COUNT + /* + * We may have been preempted and rescheduled on a different + * cpu before disabling preemption. Need to reload cpu area + * pointer. + */ + c = slub_get_cpu_ptr(s->cpu_slab); +#endif + + p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size); +#ifdef CONFIG_PREEMPT_COUNT + slub_put_cpu_ptr(s->cpu_slab); +#endif + return p; +} + +/* + * If the object has been wiped upon free, make sure it's fully initialized by + * zeroing out freelist pointer. + */ +static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s, + void *obj) +{ + if (unlikely(slab_want_init_on_free(s)) && obj) + memset((void *)((char *)kasan_reset_tag(obj) + s->offset), + 0, sizeof(void *)); +} + +/* + * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) + * have the fastpath folded into their functions. So no function call + * overhead for requests that can be satisfied on the fastpath. + * + * The fastpath works by first checking if the lockless freelist can be used. + * If not then __slab_alloc is called for slow processing. + * + * Otherwise we can simply pick the next object from the lockless free list. + */ +static __always_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru, + gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) +{ + void *object; + struct kmem_cache_cpu *c; + struct slab *slab; + unsigned long tid; + struct obj_cgroup *objcg = NULL; + bool init = false; + + s = slab_pre_alloc_hook(s, lru, &objcg, 1, gfpflags); + if (!s) + return NULL; + + object = kfence_alloc(s, orig_size, gfpflags); + if (unlikely(object)) + goto out; + +redo: + /* + * Must read kmem_cache cpu data via this cpu ptr. Preemption is + * enabled. We may switch back and forth between cpus while + * reading from one cpu area. That does not matter as long + * as we end up on the original cpu again when doing the cmpxchg. + * + * We must guarantee that tid and kmem_cache_cpu are retrieved on the + * same cpu. We read first the kmem_cache_cpu pointer and use it to read + * the tid. If we are preempted and switched to another cpu between the + * two reads, it's OK as the two are still associated with the same cpu + * and cmpxchg later will validate the cpu. + */ + c = raw_cpu_ptr(s->cpu_slab); + tid = READ_ONCE(c->tid); + + /* + * Irqless object alloc/free algorithm used here depends on sequence + * of fetching cpu_slab's data. tid should be fetched before anything + * on c to guarantee that object and slab associated with previous tid + * won't be used with current tid. If we fetch tid first, object and + * slab could be one associated with next tid and our alloc/free + * request will be failed. In this case, we will retry. So, no problem. + */ + barrier(); + + /* + * The transaction ids are globally unique per cpu and per operation on + * a per cpu queue. Thus they can be guarantee that the cmpxchg_double + * occurs on the right processor and that there was no operation on the + * linked list in between. + */ + + object = c->freelist; + slab = c->slab; + + if (!USE_LOCKLESS_FAST_PATH() || + unlikely(!object || !slab || !node_match(slab, node))) { + object = __slab_alloc(s, gfpflags, node, addr, c, orig_size); + } else { + void *next_object = get_freepointer_safe(s, object); + + /* + * The cmpxchg will only match if there was no additional + * operation and if we are on the right processor. + * + * The cmpxchg does the following atomically (without lock + * semantics!) + * 1. Relocate first pointer to the current per cpu area. + * 2. Verify that tid and freelist have not been changed + * 3. If they were not changed replace tid and freelist + * + * Since this is without lock semantics the protection is only + * against code executing on this cpu *not* from access by + * other cpus. + */ + if (unlikely(!this_cpu_cmpxchg_double( + s->cpu_slab->freelist, s->cpu_slab->tid, + object, tid, + next_object, next_tid(tid)))) { + + note_cmpxchg_failure("slab_alloc", s, tid); + goto redo; + } + prefetch_freepointer(s, next_object); + stat(s, ALLOC_FASTPATH); + } + + maybe_wipe_obj_freeptr(s, object); + init = slab_want_init_on_alloc(gfpflags, s); + +out: + slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init); + + return object; +} + +static __always_inline void *slab_alloc(struct kmem_cache *s, struct list_lru *lru, + gfp_t gfpflags, unsigned long addr, size_t orig_size) +{ + return slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, addr, orig_size); +} + +static __always_inline +void *__kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru, + gfp_t gfpflags) +{ + void *ret = slab_alloc(s, lru, gfpflags, _RET_IP_, s->object_size); + + trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE); + + return ret; +} + +void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) +{ + return __kmem_cache_alloc_lru(s, NULL, gfpflags); +} +EXPORT_SYMBOL(kmem_cache_alloc); + +void *kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru, + gfp_t gfpflags) +{ + return __kmem_cache_alloc_lru(s, lru, gfpflags); +} +EXPORT_SYMBOL(kmem_cache_alloc_lru); + +void *__kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, + int node, size_t orig_size, + unsigned long caller) +{ + return slab_alloc_node(s, NULL, gfpflags, node, + caller, orig_size); +} + +void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) +{ + void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size); + + trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node); + + return ret; +} +EXPORT_SYMBOL(kmem_cache_alloc_node); + +/* + * Slow path handling. This may still be called frequently since objects + * have a longer lifetime than the cpu slabs in most processing loads. + * + * So we still attempt to reduce cache line usage. Just take the slab + * lock and free the item. If there is no additional partial slab + * handling required then we can return immediately. + */ +static void __slab_free(struct kmem_cache *s, struct slab *slab, + void *head, void *tail, int cnt, + unsigned long addr) + +{ + void *prior; + int was_frozen; + struct slab new; + unsigned long counters; + struct kmem_cache_node *n = NULL; + unsigned long flags; + + stat(s, FREE_SLOWPATH); + + if (kfence_free(head)) + return; + + if (kmem_cache_debug(s)) { + free_debug_processing(s, slab, head, tail, cnt, addr); + return; + } + + do { + if (unlikely(n)) { + spin_unlock_irqrestore(&n->list_lock, flags); + n = NULL; + } + prior = slab->freelist; + counters = slab->counters; + set_freepointer(s, tail, prior); + new.counters = counters; + was_frozen = new.frozen; + new.inuse -= cnt; + if ((!new.inuse || !prior) && !was_frozen) { + + if (kmem_cache_has_cpu_partial(s) && !prior) { + + /* + * Slab was on no list before and will be + * partially empty + * We can defer the list move and instead + * freeze it. + */ + new.frozen = 1; + + } else { /* Needs to be taken off a list */ + + n = get_node(s, slab_nid(slab)); + /* + * Speculatively acquire the list_lock. + * If the cmpxchg does not succeed then we may + * drop the list_lock without any processing. + * + * Otherwise the list_lock will synchronize with + * other processors updating the list of slabs. + */ + spin_lock_irqsave(&n->list_lock, flags); + + } + } + + } while (!cmpxchg_double_slab(s, slab, + prior, counters, + head, new.counters, + "__slab_free")); + + if (likely(!n)) { + + if (likely(was_frozen)) { + /* + * The list lock was not taken therefore no list + * activity can be necessary. + */ + stat(s, FREE_FROZEN); + } else if (new.frozen) { + /* + * If we just froze the slab then put it onto the + * per cpu partial list. + */ + put_cpu_partial(s, slab, 1); + stat(s, CPU_PARTIAL_FREE); + } + + return; + } + + if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) + goto slab_empty; + + /* + * Objects left in the slab. If it was not on the partial list before + * then add it. + */ + if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { + remove_full(s, n, slab); + add_partial(n, slab, DEACTIVATE_TO_TAIL); + stat(s, FREE_ADD_PARTIAL); + } + spin_unlock_irqrestore(&n->list_lock, flags); + return; + +slab_empty: + if (prior) { + /* + * Slab on the partial list. + */ + remove_partial(n, slab); + stat(s, FREE_REMOVE_PARTIAL); + } else { + /* Slab must be on the full list */ + remove_full(s, n, slab); + } + + spin_unlock_irqrestore(&n->list_lock, flags); + stat(s, FREE_SLAB); + discard_slab(s, slab); +} + +/* + * Fastpath with forced inlining to produce a kfree and kmem_cache_free that + * can perform fastpath freeing without additional function calls. + * + * The fastpath is only possible if we are freeing to the current cpu slab + * of this processor. This typically the case if we have just allocated + * the item before. + * + * If fastpath is not possible then fall back to __slab_free where we deal + * with all sorts of special processing. + * + * Bulk free of a freelist with several objects (all pointing to the + * same slab) possible by specifying head and tail ptr, plus objects + * count (cnt). Bulk free indicated by tail pointer being set. + */ +static __always_inline void do_slab_free(struct kmem_cache *s, + struct slab *slab, void *head, void *tail, + int cnt, unsigned long addr) +{ + void *tail_obj = tail ? : head; + struct kmem_cache_cpu *c; + unsigned long tid; + void **freelist; + +redo: + /* + * Determine the currently cpus per cpu slab. + * The cpu may change afterward. However that does not matter since + * data is retrieved via this pointer. If we are on the same cpu + * during the cmpxchg then the free will succeed. + */ + c = raw_cpu_ptr(s->cpu_slab); + tid = READ_ONCE(c->tid); + + /* Same with comment on barrier() in slab_alloc_node() */ + barrier(); + + if (unlikely(slab != c->slab)) { + __slab_free(s, slab, head, tail_obj, cnt, addr); + return; + } + + if (USE_LOCKLESS_FAST_PATH()) { + freelist = READ_ONCE(c->freelist); + + set_freepointer(s, tail_obj, freelist); + + if (unlikely(!this_cpu_cmpxchg_double( + s->cpu_slab->freelist, s->cpu_slab->tid, + freelist, tid, + head, next_tid(tid)))) { + + note_cmpxchg_failure("slab_free", s, tid); + goto redo; + } + } else { + /* Update the free list under the local lock */ + local_lock(&s->cpu_slab->lock); + c = this_cpu_ptr(s->cpu_slab); + if (unlikely(slab != c->slab)) { + local_unlock(&s->cpu_slab->lock); + goto redo; + } + tid = c->tid; + freelist = c->freelist; + + set_freepointer(s, tail_obj, freelist); + c->freelist = head; + c->tid = next_tid(tid); + + local_unlock(&s->cpu_slab->lock); + } + stat(s, FREE_FASTPATH); +} + +static __always_inline void slab_free(struct kmem_cache *s, struct slab *slab, + void *head, void *tail, void **p, int cnt, + unsigned long addr) +{ + memcg_slab_free_hook(s, slab, p, cnt); + /* + * With KASAN enabled slab_free_freelist_hook modifies the freelist + * to remove objects, whose reuse must be delayed. + */ + if (slab_free_freelist_hook(s, &head, &tail, &cnt)) + do_slab_free(s, slab, head, tail, cnt, addr); +} + +#ifdef CONFIG_KASAN_GENERIC +void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr) +{ + do_slab_free(cache, virt_to_slab(x), x, NULL, 1, addr); +} +#endif + +void __kmem_cache_free(struct kmem_cache *s, void *x, unsigned long caller) +{ + slab_free(s, virt_to_slab(x), x, NULL, &x, 1, caller); +} + +void kmem_cache_free(struct kmem_cache *s, void *x) +{ + s = cache_from_obj(s, x); + if (!s) + return; + trace_kmem_cache_free(_RET_IP_, x, s); + slab_free(s, virt_to_slab(x), x, NULL, &x, 1, _RET_IP_); +} +EXPORT_SYMBOL(kmem_cache_free); + +struct detached_freelist { + struct slab *slab; + void *tail; + void *freelist; + int cnt; + struct kmem_cache *s; +}; + +/* + * This function progressively scans the array with free objects (with + * a limited look ahead) and extract objects belonging to the same + * slab. It builds a detached freelist directly within the given + * slab/objects. This can happen without any need for + * synchronization, because the objects are owned by running process. + * The freelist is build up as a single linked list in the objects. + * The idea is, that this detached freelist can then be bulk + * transferred to the real freelist(s), but only requiring a single + * synchronization primitive. Look ahead in the array is limited due + * to performance reasons. + */ +static inline +int build_detached_freelist(struct kmem_cache *s, size_t size, + void **p, struct detached_freelist *df) +{ + int lookahead = 3; + void *object; + struct folio *folio; + size_t same; + + object = p[--size]; + folio = virt_to_folio(object); + if (!s) { + /* Handle kalloc'ed objects */ + if (unlikely(!folio_test_slab(folio))) { + free_large_kmalloc(folio, object); + df->slab = NULL; + return size; + } + /* Derive kmem_cache from object */ + df->slab = folio_slab(folio); + df->s = df->slab->slab_cache; + } else { + df->slab = folio_slab(folio); + df->s = cache_from_obj(s, object); /* Support for memcg */ + } + + /* Start new detached freelist */ + df->tail = object; + df->freelist = object; + df->cnt = 1; + + if (is_kfence_address(object)) + return size; + + set_freepointer(df->s, object, NULL); + + same = size; + while (size) { + object = p[--size]; + /* df->slab is always set at this point */ + if (df->slab == virt_to_slab(object)) { + /* Opportunity build freelist */ + set_freepointer(df->s, object, df->freelist); + df->freelist = object; + df->cnt++; + same--; + if (size != same) + swap(p[size], p[same]); + continue; + } + + /* Limit look ahead search */ + if (!--lookahead) + break; + } + + return same; +} + +/* Note that interrupts must be enabled when calling this function. */ +void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) +{ + if (!size) + return; + + do { + struct detached_freelist df; + + size = build_detached_freelist(s, size, p, &df); + if (!df.slab) + continue; + + slab_free(df.s, df.slab, df.freelist, df.tail, &p[size], df.cnt, + _RET_IP_); + } while (likely(size)); +} +EXPORT_SYMBOL(kmem_cache_free_bulk); + +/* Note that interrupts must be enabled when calling this function. */ +int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, + void **p) +{ + struct kmem_cache_cpu *c; + int i; + struct obj_cgroup *objcg = NULL; + + /* memcg and kmem_cache debug support */ + s = slab_pre_alloc_hook(s, NULL, &objcg, size, flags); + if (unlikely(!s)) + return false; + /* + * Drain objects in the per cpu slab, while disabling local + * IRQs, which protects against PREEMPT and interrupts + * handlers invoking normal fastpath. + */ + c = slub_get_cpu_ptr(s->cpu_slab); + local_lock_irq(&s->cpu_slab->lock); + + for (i = 0; i < size; i++) { + void *object = kfence_alloc(s, s->object_size, flags); + + if (unlikely(object)) { + p[i] = object; + continue; + } + + object = c->freelist; + if (unlikely(!object)) { + /* + * We may have removed an object from c->freelist using + * the fastpath in the previous iteration; in that case, + * c->tid has not been bumped yet. + * Since ___slab_alloc() may reenable interrupts while + * allocating memory, we should bump c->tid now. + */ + c->tid = next_tid(c->tid); + + local_unlock_irq(&s->cpu_slab->lock); + + /* + * Invoking slow path likely have side-effect + * of re-populating per CPU c->freelist + */ + p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE, + _RET_IP_, c, s->object_size); + if (unlikely(!p[i])) + goto error; + + c = this_cpu_ptr(s->cpu_slab); + maybe_wipe_obj_freeptr(s, p[i]); + + local_lock_irq(&s->cpu_slab->lock); + + continue; /* goto for-loop */ + } + c->freelist = get_freepointer(s, object); + p[i] = object; + maybe_wipe_obj_freeptr(s, p[i]); + } + c->tid = next_tid(c->tid); + local_unlock_irq(&s->cpu_slab->lock); + slub_put_cpu_ptr(s->cpu_slab); + + /* + * memcg and kmem_cache debug support and memory initialization. + * Done outside of the IRQ disabled fastpath loop. + */ + slab_post_alloc_hook(s, objcg, flags, size, p, + slab_want_init_on_alloc(flags, s)); + return i; +error: + slub_put_cpu_ptr(s->cpu_slab); + slab_post_alloc_hook(s, objcg, flags, i, p, false); + kmem_cache_free_bulk(s, i, p); + return 0; +} +EXPORT_SYMBOL(kmem_cache_alloc_bulk); + + +/* + * Object placement in a slab is made very easy because we always start at + * offset 0. If we tune the size of the object to the alignment then we can + * get the required alignment by putting one properly sized object after + * another. + * + * Notice that the allocation order determines the sizes of the per cpu + * caches. Each processor has always one slab available for allocations. + * Increasing the allocation order reduces the number of times that slabs + * must be moved on and off the partial lists and is therefore a factor in + * locking overhead. + */ + +/* + * Minimum / Maximum order of slab pages. This influences locking overhead + * and slab fragmentation. A higher order reduces the number of partial slabs + * and increases the number of allocations possible without having to + * take the list_lock. + */ +static unsigned int slub_min_order; +static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; +static unsigned int slub_min_objects; + +/* + * Calculate the order of allocation given an slab object size. + * + * The order of allocation has significant impact on performance and other + * system components. Generally order 0 allocations should be preferred since + * order 0 does not cause fragmentation in the page allocator. Larger objects + * be problematic to put into order 0 slabs because there may be too much + * unused space left. We go to a higher order if more than 1/16th of the slab + * would be wasted. + * + * In order to reach satisfactory performance we must ensure that a minimum + * number of objects is in one slab. Otherwise we may generate too much + * activity on the partial lists which requires taking the list_lock. This is + * less a concern for large slabs though which are rarely used. + * + * slub_max_order specifies the order where we begin to stop considering the + * number of objects in a slab as critical. If we reach slub_max_order then + * we try to keep the page order as low as possible. So we accept more waste + * of space in favor of a small page order. + * + * Higher order allocations also allow the placement of more objects in a + * slab and thereby reduce object handling overhead. If the user has + * requested a higher minimum order then we start with that one instead of + * the smallest order which will fit the object. + */ +static inline unsigned int calc_slab_order(unsigned int size, + unsigned int min_objects, unsigned int max_order, + unsigned int fract_leftover) +{ + unsigned int min_order = slub_min_order; + unsigned int order; + + if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE) + return get_order(size * MAX_OBJS_PER_PAGE) - 1; + + for (order = max(min_order, (unsigned int)get_order(min_objects * size)); + order <= max_order; order++) { + + unsigned int slab_size = (unsigned int)PAGE_SIZE << order; + unsigned int rem; + + rem = slab_size % size; + + if (rem <= slab_size / fract_leftover) + break; + } + + return order; +} + +static inline int calculate_order(unsigned int size) +{ + unsigned int order; + unsigned int min_objects; + unsigned int max_objects; + unsigned int nr_cpus; + + /* + * Attempt to find best configuration for a slab. This + * works by first attempting to generate a layout with + * the best configuration and backing off gradually. + * + * First we increase the acceptable waste in a slab. Then + * we reduce the minimum objects required in a slab. + */ + min_objects = slub_min_objects; + if (!min_objects) { + /* + * Some architectures will only update present cpus when + * onlining them, so don't trust the number if it's just 1. But + * we also don't want to use nr_cpu_ids always, as on some other + * architectures, there can be many possible cpus, but never + * onlined. Here we compromise between trying to avoid too high + * order on systems that appear larger than they are, and too + * low order on systems that appear smaller than they are. + */ + nr_cpus = num_present_cpus(); + if (nr_cpus <= 1) + nr_cpus = nr_cpu_ids; + min_objects = 4 * (fls(nr_cpus) + 1); + } + max_objects = order_objects(slub_max_order, size); + min_objects = min(min_objects, max_objects); + + while (min_objects > 1) { + unsigned int fraction; + + fraction = 16; + while (fraction >= 4) { + order = calc_slab_order(size, min_objects, + slub_max_order, fraction); + if (order <= slub_max_order) + return order; + fraction /= 2; + } + min_objects--; + } + + /* + * We were unable to place multiple objects in a slab. Now + * lets see if we can place a single object there. + */ + order = calc_slab_order(size, 1, slub_max_order, 1); + if (order <= slub_max_order) + return order; + + /* + * Doh this slab cannot be placed using slub_max_order. + */ + order = calc_slab_order(size, 1, MAX_ORDER, 1); + if (order < MAX_ORDER) + return order; + return -ENOSYS; +} + +static void +init_kmem_cache_node(struct kmem_cache_node *n) +{ + n->nr_partial = 0; + spin_lock_init(&n->list_lock); + INIT_LIST_HEAD(&n->partial); +#ifdef CONFIG_SLUB_DEBUG + atomic_long_set(&n->nr_slabs, 0); + atomic_long_set(&n->total_objects, 0); + INIT_LIST_HEAD(&n->full); +#endif +} + +static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) +{ + BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < + KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu)); + + /* + * Must align to double word boundary for the double cmpxchg + * instructions to work; see __pcpu_double_call_return_bool(). + */ + s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), + 2 * sizeof(void *)); + + if (!s->cpu_slab) + return 0; + + init_kmem_cache_cpus(s); + + return 1; +} + +static struct kmem_cache *kmem_cache_node; + +/* + * No kmalloc_node yet so do it by hand. We know that this is the first + * slab on the node for this slabcache. There are no concurrent accesses + * possible. + * + * Note that this function only works on the kmem_cache_node + * when allocating for the kmem_cache_node. This is used for bootstrapping + * memory on a fresh node that has no slab structures yet. + */ +static void early_kmem_cache_node_alloc(int node) +{ + struct slab *slab; + struct kmem_cache_node *n; + + BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); + + slab = new_slab(kmem_cache_node, GFP_NOWAIT, node); + + BUG_ON(!slab); + inc_slabs_node(kmem_cache_node, slab_nid(slab), slab->objects); + if (slab_nid(slab) != node) { + pr_err("SLUB: Unable to allocate memory from node %d\n", node); + pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); + } + + n = slab->freelist; + BUG_ON(!n); +#ifdef CONFIG_SLUB_DEBUG + init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); + init_tracking(kmem_cache_node, n); +#endif + n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false); + slab->freelist = get_freepointer(kmem_cache_node, n); + slab->inuse = 1; + kmem_cache_node->node[node] = n; + init_kmem_cache_node(n); + inc_slabs_node(kmem_cache_node, node, slab->objects); + + /* + * No locks need to be taken here as it has just been + * initialized and there is no concurrent access. + */ + __add_partial(n, slab, DEACTIVATE_TO_HEAD); +} + +static void free_kmem_cache_nodes(struct kmem_cache *s) +{ + int node; + struct kmem_cache_node *n; + + for_each_kmem_cache_node(s, node, n) { + s->node[node] = NULL; + kmem_cache_free(kmem_cache_node, n); + } +} + +void __kmem_cache_release(struct kmem_cache *s) +{ + cache_random_seq_destroy(s); + free_percpu(s->cpu_slab); + free_kmem_cache_nodes(s); +} + +static int init_kmem_cache_nodes(struct kmem_cache *s) +{ + int node; + + for_each_node_mask(node, slab_nodes) { + struct kmem_cache_node *n; + + if (slab_state == DOWN) { + early_kmem_cache_node_alloc(node); + continue; + } + n = kmem_cache_alloc_node(kmem_cache_node, + GFP_KERNEL, node); + + if (!n) { + free_kmem_cache_nodes(s); + return 0; + } + + init_kmem_cache_node(n); + s->node[node] = n; + } + return 1; +} + +static void set_cpu_partial(struct kmem_cache *s) +{ +#ifdef CONFIG_SLUB_CPU_PARTIAL + unsigned int nr_objects; + + /* + * cpu_partial determined the maximum number of objects kept in the + * per cpu partial lists of a processor. + * + * Per cpu partial lists mainly contain slabs that just have one + * object freed. If they are used for allocation then they can be + * filled up again with minimal effort. The slab will never hit the + * per node partial lists and therefore no locking will be required. + * + * For backwards compatibility reasons, this is determined as number + * of objects, even though we now limit maximum number of pages, see + * slub_set_cpu_partial() + */ + if (!kmem_cache_has_cpu_partial(s)) + nr_objects = 0; + else if (s->size >= PAGE_SIZE) + nr_objects = 6; + else if (s->size >= 1024) + nr_objects = 24; + else if (s->size >= 256) + nr_objects = 52; + else + nr_objects = 120; + + slub_set_cpu_partial(s, nr_objects); +#endif +} + +/* + * calculate_sizes() determines the order and the distribution of data within + * a slab object. + */ +static int calculate_sizes(struct kmem_cache *s) +{ + slab_flags_t flags = s->flags; + unsigned int size = s->object_size; + unsigned int order; + + /* + * Round up object size to the next word boundary. We can only + * place the free pointer at word boundaries and this determines + * the possible location of the free pointer. + */ + size = ALIGN(size, sizeof(void *)); + +#ifdef CONFIG_SLUB_DEBUG + /* + * Determine if we can poison the object itself. If the user of + * the slab may touch the object after free or before allocation + * then we should never poison the object itself. + */ + if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) && + !s->ctor) + s->flags |= __OBJECT_POISON; + else + s->flags &= ~__OBJECT_POISON; + + + /* + * If we are Redzoning then check if there is some space between the + * end of the object and the free pointer. If not then add an + * additional word to have some bytes to store Redzone information. + */ + if ((flags & SLAB_RED_ZONE) && size == s->object_size) + size += sizeof(void *); +#endif + + /* + * With that we have determined the number of bytes in actual use + * by the object and redzoning. + */ + s->inuse = size; + + if ((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) || + ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) || + s->ctor) { + /* + * Relocate free pointer after the object if it is not + * permitted to overwrite the first word of the object on + * kmem_cache_free. + * + * This is the case if we do RCU, have a constructor or + * destructor, are poisoning the objects, or are + * redzoning an object smaller than sizeof(void *). + * + * The assumption that s->offset >= s->inuse means free + * pointer is outside of the object is used in the + * freeptr_outside_object() function. If that is no + * longer true, the function needs to be modified. + */ + s->offset = size; + size += sizeof(void *); + } else { + /* + * Store freelist pointer near middle of object to keep + * it away from the edges of the object to avoid small + * sized over/underflows from neighboring allocations. + */ + s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *)); + } + +#ifdef CONFIG_SLUB_DEBUG + if (flags & SLAB_STORE_USER) { + /* + * Need to store information about allocs and frees after + * the object. + */ + size += 2 * sizeof(struct track); + + /* Save the original kmalloc request size */ + if (flags & SLAB_KMALLOC) + size += sizeof(unsigned int); + } +#endif + + kasan_cache_create(s, &size, &s->flags); +#ifdef CONFIG_SLUB_DEBUG + if (flags & SLAB_RED_ZONE) { + /* + * Add some empty padding so that we can catch + * overwrites from earlier objects rather than let + * tracking information or the free pointer be + * corrupted if a user writes before the start + * of the object. + */ + size += sizeof(void *); + + s->red_left_pad = sizeof(void *); + s->red_left_pad = ALIGN(s->red_left_pad, s->align); + size += s->red_left_pad; + } +#endif + + /* + * SLUB stores one object immediately after another beginning from + * offset 0. In order to align the objects we have to simply size + * each object to conform to the alignment. + */ + size = ALIGN(size, s->align); + s->size = size; + s->reciprocal_size = reciprocal_value(size); + order = calculate_order(size); + + if ((int)order < 0) + return 0; + + s->allocflags = 0; + if (order) + s->allocflags |= __GFP_COMP; + + if (s->flags & SLAB_CACHE_DMA) + s->allocflags |= GFP_DMA; + + if (s->flags & SLAB_CACHE_DMA32) + s->allocflags |= GFP_DMA32; + + if (s->flags & SLAB_RECLAIM_ACCOUNT) + s->allocflags |= __GFP_RECLAIMABLE; + + /* + * Determine the number of objects per slab + */ + s->oo = oo_make(order, size); + s->min = oo_make(get_order(size), size); + + return !!oo_objects(s->oo); +} + +static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags) +{ + s->flags = kmem_cache_flags(s->size, flags, s->name); +#ifdef CONFIG_SLAB_FREELIST_HARDENED + s->random = get_random_long(); +#endif + + if (!calculate_sizes(s)) + goto error; + if (disable_higher_order_debug) { + /* + * Disable debugging flags that store metadata if the min slab + * order increased. + */ + if (get_order(s->size) > get_order(s->object_size)) { + s->flags &= ~DEBUG_METADATA_FLAGS; + s->offset = 0; + if (!calculate_sizes(s)) + goto error; + } + } + +#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ + defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) + if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0) + /* Enable fast mode */ + s->flags |= __CMPXCHG_DOUBLE; +#endif + + /* + * The larger the object size is, the more slabs we want on the partial + * list to avoid pounding the page allocator excessively. + */ + s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2); + s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial); + + set_cpu_partial(s); + +#ifdef CONFIG_NUMA + s->remote_node_defrag_ratio = 1000; +#endif + + /* Initialize the pre-computed randomized freelist if slab is up */ + if (slab_state >= UP) { + if (init_cache_random_seq(s)) + goto error; + } + + if (!init_kmem_cache_nodes(s)) + goto error; + + if (alloc_kmem_cache_cpus(s)) + return 0; + +error: + __kmem_cache_release(s); + return -EINVAL; +} + +static void list_slab_objects(struct kmem_cache *s, struct slab *slab, + const char *text) +{ +#ifdef CONFIG_SLUB_DEBUG + void *addr = slab_address(slab); + void *p; + + slab_err(s, slab, text, s->name); + + spin_lock(&object_map_lock); + __fill_map(object_map, s, slab); + + for_each_object(p, s, addr, slab->objects) { + + if (!test_bit(__obj_to_index(s, addr, p), object_map)) { + pr_err("Object 0x%p @offset=%tu\n", p, p - addr); + print_tracking(s, p); + } + } + spin_unlock(&object_map_lock); +#endif +} + +/* + * Attempt to free all partial slabs on a node. + * This is called from __kmem_cache_shutdown(). We must take list_lock + * because sysfs file might still access partial list after the shutdowning. + */ +static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) +{ + LIST_HEAD(discard); + struct slab *slab, *h; + + BUG_ON(irqs_disabled()); + spin_lock_irq(&n->list_lock); + list_for_each_entry_safe(slab, h, &n->partial, slab_list) { + if (!slab->inuse) { + remove_partial(n, slab); + list_add(&slab->slab_list, &discard); + } else { + list_slab_objects(s, slab, + "Objects remaining in %s on __kmem_cache_shutdown()"); + } + } + spin_unlock_irq(&n->list_lock); + + list_for_each_entry_safe(slab, h, &discard, slab_list) + discard_slab(s, slab); +} + +bool __kmem_cache_empty(struct kmem_cache *s) +{ + int node; + struct kmem_cache_node *n; + + for_each_kmem_cache_node(s, node, n) + if (n->nr_partial || slabs_node(s, node)) + return false; + return true; +} + +/* + * Release all resources used by a slab cache. + */ +int __kmem_cache_shutdown(struct kmem_cache *s) +{ + int node; + struct kmem_cache_node *n; + + flush_all_cpus_locked(s); + /* Attempt to free all objects */ + for_each_kmem_cache_node(s, node, n) { + free_partial(s, n); + if (n->nr_partial || slabs_node(s, node)) + return 1; + } + return 0; +} + +#ifdef CONFIG_PRINTK +void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab) +{ + void *base; + int __maybe_unused i; + unsigned int objnr; + void *objp; + void *objp0; + struct kmem_cache *s = slab->slab_cache; + struct track __maybe_unused *trackp; + + kpp->kp_ptr = object; + kpp->kp_slab = slab; + kpp->kp_slab_cache = s; + base = slab_address(slab); + objp0 = kasan_reset_tag(object); +#ifdef CONFIG_SLUB_DEBUG + objp = restore_red_left(s, objp0); +#else + objp = objp0; +#endif + objnr = obj_to_index(s, slab, objp); + kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp); + objp = base + s->size * objnr; + kpp->kp_objp = objp; + if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size + || (objp - base) % s->size) || + !(s->flags & SLAB_STORE_USER)) + return; +#ifdef CONFIG_SLUB_DEBUG + objp = fixup_red_left(s, objp); + trackp = get_track(s, objp, TRACK_ALLOC); + kpp->kp_ret = (void *)trackp->addr; +#ifdef CONFIG_STACKDEPOT + { + depot_stack_handle_t handle; + unsigned long *entries; + unsigned int nr_entries; + + handle = READ_ONCE(trackp->handle); + if (handle) { + nr_entries = stack_depot_fetch(handle, &entries); + for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++) + kpp->kp_stack[i] = (void *)entries[i]; + } + + trackp = get_track(s, objp, TRACK_FREE); + handle = READ_ONCE(trackp->handle); + if (handle) { + nr_entries = stack_depot_fetch(handle, &entries); + for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++) + kpp->kp_free_stack[i] = (void *)entries[i]; + } + } +#endif +#endif +} +#endif + +/******************************************************************** + * Kmalloc subsystem + *******************************************************************/ + +static int __init setup_slub_min_order(char *str) +{ + get_option(&str, (int *)&slub_min_order); + + return 1; +} + +__setup("slub_min_order=", setup_slub_min_order); + +static int __init setup_slub_max_order(char *str) +{ + get_option(&str, (int *)&slub_max_order); + slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1); + + return 1; +} + +__setup("slub_max_order=", setup_slub_max_order); + +static int __init setup_slub_min_objects(char *str) +{ + get_option(&str, (int *)&slub_min_objects); + + return 1; +} + +__setup("slub_min_objects=", setup_slub_min_objects); + +#ifdef CONFIG_HARDENED_USERCOPY +/* + * Rejects incorrectly sized objects and objects that are to be copied + * to/from userspace but do not fall entirely within the containing slab + * cache's usercopy region. + * + * Returns NULL if check passes, otherwise const char * to name of cache + * to indicate an error. + */ +void __check_heap_object(const void *ptr, unsigned long n, + const struct slab *slab, bool to_user) +{ + struct kmem_cache *s; + unsigned int offset; + bool is_kfence = is_kfence_address(ptr); + + ptr = kasan_reset_tag(ptr); + + /* Find object and usable object size. */ + s = slab->slab_cache; + + /* Reject impossible pointers. */ + if (ptr < slab_address(slab)) + usercopy_abort("SLUB object not in SLUB page?!", NULL, + to_user, 0, n); + + /* Find offset within object. */ + if (is_kfence) + offset = ptr - kfence_object_start(ptr); + else + offset = (ptr - slab_address(slab)) % s->size; + + /* Adjust for redzone and reject if within the redzone. */ + if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) { + if (offset < s->red_left_pad) + usercopy_abort("SLUB object in left red zone", + s->name, to_user, offset, n); + offset -= s->red_left_pad; + } + + /* Allow address range falling entirely within usercopy region. */ + if (offset >= s->useroffset && + offset - s->useroffset <= s->usersize && + n <= s->useroffset - offset + s->usersize) + return; + + usercopy_abort("SLUB object", s->name, to_user, offset, n); +} +#endif /* CONFIG_HARDENED_USERCOPY */ + +#define SHRINK_PROMOTE_MAX 32 + +/* + * kmem_cache_shrink discards empty slabs and promotes the slabs filled + * up most to the head of the partial lists. New allocations will then + * fill those up and thus they can be removed from the partial lists. + * + * The slabs with the least items are placed last. This results in them + * being allocated from last increasing the chance that the last objects + * are freed in them. + */ +static int __kmem_cache_do_shrink(struct kmem_cache *s) +{ + int node; + int i; + struct kmem_cache_node *n; + struct slab *slab; + struct slab *t; + struct list_head discard; + struct list_head promote[SHRINK_PROMOTE_MAX]; + unsigned long flags; + int ret = 0; + + for_each_kmem_cache_node(s, node, n) { + INIT_LIST_HEAD(&discard); + for (i = 0; i < SHRINK_PROMOTE_MAX; i++) + INIT_LIST_HEAD(promote + i); + + spin_lock_irqsave(&n->list_lock, flags); + + /* + * Build lists of slabs to discard or promote. + * + * Note that concurrent frees may occur while we hold the + * list_lock. slab->inuse here is the upper limit. + */ + list_for_each_entry_safe(slab, t, &n->partial, slab_list) { + int free = slab->objects - slab->inuse; + + /* Do not reread slab->inuse */ + barrier(); + + /* We do not keep full slabs on the list */ + BUG_ON(free <= 0); + + if (free == slab->objects) { + list_move(&slab->slab_list, &discard); + n->nr_partial--; + dec_slabs_node(s, node, slab->objects); + } else if (free <= SHRINK_PROMOTE_MAX) + list_move(&slab->slab_list, promote + free - 1); + } + + /* + * Promote the slabs filled up most to the head of the + * partial list. + */ + for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) + list_splice(promote + i, &n->partial); + + spin_unlock_irqrestore(&n->list_lock, flags); + + /* Release empty slabs */ + list_for_each_entry_safe(slab, t, &discard, slab_list) + free_slab(s, slab); + + if (slabs_node(s, node)) + ret = 1; + } + + return ret; +} + +int __kmem_cache_shrink(struct kmem_cache *s) +{ + flush_all(s); + return __kmem_cache_do_shrink(s); +} + +static int slab_mem_going_offline_callback(void *arg) +{ + struct kmem_cache *s; + + mutex_lock(&slab_mutex); + list_for_each_entry(s, &slab_caches, list) { + flush_all_cpus_locked(s); + __kmem_cache_do_shrink(s); + } + mutex_unlock(&slab_mutex); + + return 0; +} + +static void slab_mem_offline_callback(void *arg) +{ + struct memory_notify *marg = arg; + int offline_node; + + offline_node = marg->status_change_nid_normal; + + /* + * If the node still has available memory. we need kmem_cache_node + * for it yet. + */ + if (offline_node < 0) + return; + + mutex_lock(&slab_mutex); + node_clear(offline_node, slab_nodes); + /* + * We no longer free kmem_cache_node structures here, as it would be + * racy with all get_node() users, and infeasible to protect them with + * slab_mutex. + */ + mutex_unlock(&slab_mutex); +} + +static int slab_mem_going_online_callback(void *arg) +{ + struct kmem_cache_node *n; + struct kmem_cache *s; + struct memory_notify *marg = arg; + int nid = marg->status_change_nid_normal; + int ret = 0; + + /* + * If the node's memory is already available, then kmem_cache_node is + * already created. Nothing to do. + */ + if (nid < 0) + return 0; + + /* + * We are bringing a node online. No memory is available yet. We must + * allocate a kmem_cache_node structure in order to bring the node + * online. + */ + mutex_lock(&slab_mutex); + list_for_each_entry(s, &slab_caches, list) { + /* + * The structure may already exist if the node was previously + * onlined and offlined. + */ + if (get_node(s, nid)) + continue; + /* + * XXX: kmem_cache_alloc_node will fallback to other nodes + * since memory is not yet available from the node that + * is brought up. + */ + n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); + if (!n) { + ret = -ENOMEM; + goto out; + } + init_kmem_cache_node(n); + s->node[nid] = n; + } + /* + * Any cache created after this point will also have kmem_cache_node + * initialized for the new node. + */ + node_set(nid, slab_nodes); +out: + mutex_unlock(&slab_mutex); + return ret; +} + +static int slab_memory_callback(struct notifier_block *self, + unsigned long action, void *arg) +{ + int ret = 0; + + switch (action) { + case MEM_GOING_ONLINE: + ret = slab_mem_going_online_callback(arg); + break; + case MEM_GOING_OFFLINE: + ret = slab_mem_going_offline_callback(arg); + break; + case MEM_OFFLINE: + case MEM_CANCEL_ONLINE: + slab_mem_offline_callback(arg); + break; + case MEM_ONLINE: + case MEM_CANCEL_OFFLINE: + break; + } + if (ret) + ret = notifier_from_errno(ret); + else + ret = NOTIFY_OK; + return ret; +} + +static struct notifier_block slab_memory_callback_nb = { + .notifier_call = slab_memory_callback, + .priority = SLAB_CALLBACK_PRI, +}; + +/******************************************************************** + * Basic setup of slabs + *******************************************************************/ + +/* + * Used for early kmem_cache structures that were allocated using + * the page allocator. Allocate them properly then fix up the pointers + * that may be pointing to the wrong kmem_cache structure. + */ + +static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) +{ + int node; + struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); + struct kmem_cache_node *n; + + memcpy(s, static_cache, kmem_cache->object_size); + + /* + * This runs very early, and only the boot processor is supposed to be + * up. Even if it weren't true, IRQs are not up so we couldn't fire + * IPIs around. + */ + __flush_cpu_slab(s, smp_processor_id()); + for_each_kmem_cache_node(s, node, n) { + struct slab *p; + + list_for_each_entry(p, &n->partial, slab_list) + p->slab_cache = s; + +#ifdef CONFIG_SLUB_DEBUG + list_for_each_entry(p, &n->full, slab_list) + p->slab_cache = s; +#endif + } + list_add(&s->list, &slab_caches); + return s; +} + +void __init kmem_cache_init(void) +{ + static __initdata struct kmem_cache boot_kmem_cache, + boot_kmem_cache_node; + int node; + + if (debug_guardpage_minorder()) + slub_max_order = 0; + + /* Print slub debugging pointers without hashing */ + if (__slub_debug_enabled()) + no_hash_pointers_enable(NULL); + + kmem_cache_node = &boot_kmem_cache_node; + kmem_cache = &boot_kmem_cache; + + /* + * Initialize the nodemask for which we will allocate per node + * structures. Here we don't need taking slab_mutex yet. + */ + for_each_node_state(node, N_NORMAL_MEMORY) + node_set(node, slab_nodes); + + create_boot_cache(kmem_cache_node, "kmem_cache_node", + sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0); + + register_hotmemory_notifier(&slab_memory_callback_nb); + + /* Able to allocate the per node structures */ + slab_state = PARTIAL; + + create_boot_cache(kmem_cache, "kmem_cache", + offsetof(struct kmem_cache, node) + + nr_node_ids * sizeof(struct kmem_cache_node *), + SLAB_HWCACHE_ALIGN, 0, 0); + + kmem_cache = bootstrap(&boot_kmem_cache); + kmem_cache_node = bootstrap(&boot_kmem_cache_node); + + /* Now we can use the kmem_cache to allocate kmalloc slabs */ + setup_kmalloc_cache_index_table(); + create_kmalloc_caches(0); + + /* Setup random freelists for each cache */ + init_freelist_randomization(); + + cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL, + slub_cpu_dead); + + pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n", + cache_line_size(), + slub_min_order, slub_max_order, slub_min_objects, + nr_cpu_ids, nr_node_ids); +} + +void __init kmem_cache_init_late(void) +{ + flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0); + WARN_ON(!flushwq); +} + +struct kmem_cache * +__kmem_cache_alias(const char *name, unsigned int size, unsigned int align, + slab_flags_t flags, void (*ctor)(void *)) +{ + struct kmem_cache *s; + + s = find_mergeable(size, align, flags, name, ctor); + if (s) { + if (sysfs_slab_alias(s, name)) + return NULL; + + s->refcount++; + + /* + * Adjust the object sizes so that we clear + * the complete object on kzalloc. + */ + s->object_size = max(s->object_size, size); + s->inuse = max(s->inuse, ALIGN(size, sizeof(void *))); + } + + return s; +} + +int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags) +{ + int err; + + err = kmem_cache_open(s, flags); + if (err) + return err; + + /* Mutex is not taken during early boot */ + if (slab_state <= UP) + return 0; + + err = sysfs_slab_add(s); + if (err) { + __kmem_cache_release(s); + return err; + } + + if (s->flags & SLAB_STORE_USER) + debugfs_slab_add(s); + + return 0; +} + +#ifdef CONFIG_SYSFS +static int count_inuse(struct slab *slab) +{ + return slab->inuse; +} + +static int count_total(struct slab *slab) +{ + return slab->objects; +} +#endif + +#ifdef CONFIG_SLUB_DEBUG +static void validate_slab(struct kmem_cache *s, struct slab *slab, + unsigned long *obj_map) +{ + void *p; + void *addr = slab_address(slab); + + if (!check_slab(s, slab) || !on_freelist(s, slab, NULL)) + return; + + /* Now we know that a valid freelist exists */ + __fill_map(obj_map, s, slab); + for_each_object(p, s, addr, slab->objects) { + u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ? + SLUB_RED_INACTIVE : SLUB_RED_ACTIVE; + + if (!check_object(s, slab, p, val)) + break; + } +} + +static int validate_slab_node(struct kmem_cache *s, + struct kmem_cache_node *n, unsigned long *obj_map) +{ + unsigned long count = 0; + struct slab *slab; + unsigned long flags; + + spin_lock_irqsave(&n->list_lock, flags); + + list_for_each_entry(slab, &n->partial, slab_list) { + validate_slab(s, slab, obj_map); + count++; + } + if (count != n->nr_partial) { + pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", + s->name, count, n->nr_partial); + slab_add_kunit_errors(); + } + + if (!(s->flags & SLAB_STORE_USER)) + goto out; + + list_for_each_entry(slab, &n->full, slab_list) { + validate_slab(s, slab, obj_map); + count++; + } + if (count != atomic_long_read(&n->nr_slabs)) { + pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", + s->name, count, atomic_long_read(&n->nr_slabs)); + slab_add_kunit_errors(); + } + +out: + spin_unlock_irqrestore(&n->list_lock, flags); + return count; +} + +long validate_slab_cache(struct kmem_cache *s) +{ + int node; + unsigned long count = 0; + struct kmem_cache_node *n; + unsigned long *obj_map; + + obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL); + if (!obj_map) + return -ENOMEM; + + flush_all(s); + for_each_kmem_cache_node(s, node, n) + count += validate_slab_node(s, n, obj_map); + + bitmap_free(obj_map); + + return count; +} +EXPORT_SYMBOL(validate_slab_cache); + +#ifdef CONFIG_DEBUG_FS +/* + * Generate lists of code addresses where slabcache objects are allocated + * and freed. + */ + +struct location { + depot_stack_handle_t handle; + unsigned long count; + unsigned long addr; + unsigned long waste; + long long sum_time; + long min_time; + long max_time; + long min_pid; + long max_pid; + DECLARE_BITMAP(cpus, NR_CPUS); + nodemask_t nodes; +}; + +struct loc_track { + unsigned long max; + unsigned long count; + struct location *loc; + loff_t idx; +}; + +static struct dentry *slab_debugfs_root; + +static void free_loc_track(struct loc_track *t) +{ + if (t->max) + free_pages((unsigned long)t->loc, + get_order(sizeof(struct location) * t->max)); +} + +static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) +{ + struct location *l; + int order; + + order = get_order(sizeof(struct location) * max); + + l = (void *)__get_free_pages(flags, order); + if (!l) + return 0; + + if (t->count) { + memcpy(l, t->loc, sizeof(struct location) * t->count); + free_loc_track(t); + } + t->max = max; + t->loc = l; + return 1; +} + +static int add_location(struct loc_track *t, struct kmem_cache *s, + const struct track *track, + unsigned int orig_size) +{ + long start, end, pos; + struct location *l; + unsigned long caddr, chandle, cwaste; + unsigned long age = jiffies - track->when; + depot_stack_handle_t handle = 0; + unsigned int waste = s->object_size - orig_size; + +#ifdef CONFIG_STACKDEPOT + handle = READ_ONCE(track->handle); +#endif + start = -1; + end = t->count; + + for ( ; ; ) { + pos = start + (end - start + 1) / 2; + + /* + * There is nothing at "end". If we end up there + * we need to add something to before end. + */ + if (pos == end) + break; + + l = &t->loc[pos]; + caddr = l->addr; + chandle = l->handle; + cwaste = l->waste; + if ((track->addr == caddr) && (handle == chandle) && + (waste == cwaste)) { + + l->count++; + if (track->when) { + l->sum_time += age; + if (age < l->min_time) + l->min_time = age; + if (age > l->max_time) + l->max_time = age; + + if (track->pid < l->min_pid) + l->min_pid = track->pid; + if (track->pid > l->max_pid) + l->max_pid = track->pid; + + cpumask_set_cpu(track->cpu, + to_cpumask(l->cpus)); + } + node_set(page_to_nid(virt_to_page(track)), l->nodes); + return 1; + } + + if (track->addr < caddr) + end = pos; + else if (track->addr == caddr && handle < chandle) + end = pos; + else if (track->addr == caddr && handle == chandle && + waste < cwaste) + end = pos; + else + start = pos; + } + + /* + * Not found. Insert new tracking element. + */ + if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) + return 0; + + l = t->loc + pos; + if (pos < t->count) + memmove(l + 1, l, + (t->count - pos) * sizeof(struct location)); + t->count++; + l->count = 1; + l->addr = track->addr; + l->sum_time = age; + l->min_time = age; + l->max_time = age; + l->min_pid = track->pid; + l->max_pid = track->pid; + l->handle = handle; + l->waste = waste; + cpumask_clear(to_cpumask(l->cpus)); + cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); + nodes_clear(l->nodes); + node_set(page_to_nid(virt_to_page(track)), l->nodes); + return 1; +} + +static void process_slab(struct loc_track *t, struct kmem_cache *s, + struct slab *slab, enum track_item alloc, + unsigned long *obj_map) +{ + void *addr = slab_address(slab); + bool is_alloc = (alloc == TRACK_ALLOC); + void *p; + + __fill_map(obj_map, s, slab); + + for_each_object(p, s, addr, slab->objects) + if (!test_bit(__obj_to_index(s, addr, p), obj_map)) + add_location(t, s, get_track(s, p, alloc), + is_alloc ? get_orig_size(s, p) : + s->object_size); +} +#endif /* CONFIG_DEBUG_FS */ +#endif /* CONFIG_SLUB_DEBUG */ + +#ifdef CONFIG_SYSFS +enum slab_stat_type { + SL_ALL, /* All slabs */ + SL_PARTIAL, /* Only partially allocated slabs */ + SL_CPU, /* Only slabs used for cpu caches */ + SL_OBJECTS, /* Determine allocated objects not slabs */ + SL_TOTAL /* Determine object capacity not slabs */ +}; + +#define SO_ALL (1 << SL_ALL) +#define SO_PARTIAL (1 << SL_PARTIAL) +#define SO_CPU (1 << SL_CPU) +#define SO_OBJECTS (1 << SL_OBJECTS) +#define SO_TOTAL (1 << SL_TOTAL) + +static ssize_t show_slab_objects(struct kmem_cache *s, + char *buf, unsigned long flags) +{ + unsigned long total = 0; + int node; + int x; + unsigned long *nodes; + int len = 0; + + nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL); + if (!nodes) + return -ENOMEM; + + if (flags & SO_CPU) { + int cpu; + + for_each_possible_cpu(cpu) { + struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, + cpu); + int node; + struct slab *slab; + + slab = READ_ONCE(c->slab); + if (!slab) + continue; + + node = slab_nid(slab); + if (flags & SO_TOTAL) + x = slab->objects; + else if (flags & SO_OBJECTS) + x = slab->inuse; + else + x = 1; + + total += x; + nodes[node] += x; + +#ifdef CONFIG_SLUB_CPU_PARTIAL + slab = slub_percpu_partial_read_once(c); + if (slab) { + node = slab_nid(slab); + if (flags & SO_TOTAL) + WARN_ON_ONCE(1); + else if (flags & SO_OBJECTS) + WARN_ON_ONCE(1); + else + x = slab->slabs; + total += x; + nodes[node] += x; + } +#endif + } + } + + /* + * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex" + * already held which will conflict with an existing lock order: + * + * mem_hotplug_lock->slab_mutex->kernfs_mutex + * + * We don't really need mem_hotplug_lock (to hold off + * slab_mem_going_offline_callback) here because slab's memory hot + * unplug code doesn't destroy the kmem_cache->node[] data. + */ + +#ifdef CONFIG_SLUB_DEBUG + if (flags & SO_ALL) { + struct kmem_cache_node *n; + + for_each_kmem_cache_node(s, node, n) { + + if (flags & SO_TOTAL) + x = atomic_long_read(&n->total_objects); + else if (flags & SO_OBJECTS) + x = atomic_long_read(&n->total_objects) - + count_partial(n, count_free); + else + x = atomic_long_read(&n->nr_slabs); + total += x; + nodes[node] += x; + } + + } else +#endif + if (flags & SO_PARTIAL) { + struct kmem_cache_node *n; + + for_each_kmem_cache_node(s, node, n) { + if (flags & SO_TOTAL) + x = count_partial(n, count_total); + else if (flags & SO_OBJECTS) + x = count_partial(n, count_inuse); + else + x = n->nr_partial; + total += x; + nodes[node] += x; + } + } + + len += sysfs_emit_at(buf, len, "%lu", total); +#ifdef CONFIG_NUMA + for (node = 0; node < nr_node_ids; node++) { + if (nodes[node]) + len += sysfs_emit_at(buf, len, " N%d=%lu", + node, nodes[node]); + } +#endif + len += sysfs_emit_at(buf, len, "\n"); + kfree(nodes); + + return len; +} + +#define to_slab_attr(n) container_of(n, struct slab_attribute, attr) +#define to_slab(n) container_of(n, struct kmem_cache, kobj) + +struct slab_attribute { + struct attribute attr; + ssize_t (*show)(struct kmem_cache *s, char *buf); + ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); +}; + +#define SLAB_ATTR_RO(_name) \ + static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400) + +#define SLAB_ATTR(_name) \ + static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600) + +static ssize_t slab_size_show(struct kmem_cache *s, char *buf) +{ + return sysfs_emit(buf, "%u\n", s->size); +} +SLAB_ATTR_RO(slab_size); + +static ssize_t align_show(struct kmem_cache *s, char *buf) +{ + return sysfs_emit(buf, "%u\n", s->align); +} +SLAB_ATTR_RO(align); + +static ssize_t object_size_show(struct kmem_cache *s, char *buf) +{ + return sysfs_emit(buf, "%u\n", s->object_size); +} +SLAB_ATTR_RO(object_size); + +static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) +{ + return sysfs_emit(buf, "%u\n", oo_objects(s->oo)); +} +SLAB_ATTR_RO(objs_per_slab); + +static ssize_t order_show(struct kmem_cache *s, char *buf) +{ + return sysfs_emit(buf, "%u\n", oo_order(s->oo)); +} +SLAB_ATTR_RO(order); + +static ssize_t min_partial_show(struct kmem_cache *s, char *buf) +{ + return sysfs_emit(buf, "%lu\n", s->min_partial); +} + +static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, + size_t length) +{ + unsigned long min; + int err; + + err = kstrtoul(buf, 10, &min); + if (err) + return err; + + s->min_partial = min; + return length; +} +SLAB_ATTR(min_partial); + +static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) +{ + unsigned int nr_partial = 0; +#ifdef CONFIG_SLUB_CPU_PARTIAL + nr_partial = s->cpu_partial; +#endif + + return sysfs_emit(buf, "%u\n", nr_partial); +} + +static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, + size_t length) +{ + unsigned int objects; + int err; + + err = kstrtouint(buf, 10, &objects); + if (err) + return err; + if (objects && !kmem_cache_has_cpu_partial(s)) + return -EINVAL; + + slub_set_cpu_partial(s, objects); + flush_all(s); + return length; +} +SLAB_ATTR(cpu_partial); + +static ssize_t ctor_show(struct kmem_cache *s, char *buf) +{ + if (!s->ctor) + return 0; + return sysfs_emit(buf, "%pS\n", s->ctor); +} +SLAB_ATTR_RO(ctor); + +static ssize_t aliases_show(struct kmem_cache *s, char *buf) +{ + return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); +} +SLAB_ATTR_RO(aliases); + +static ssize_t partial_show(struct kmem_cache *s, char *buf) +{ + return show_slab_objects(s, buf, SO_PARTIAL); +} +SLAB_ATTR_RO(partial); + +static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) +{ + return show_slab_objects(s, buf, SO_CPU); +} +SLAB_ATTR_RO(cpu_slabs); + +static ssize_t objects_show(struct kmem_cache *s, char *buf) +{ + return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); +} +SLAB_ATTR_RO(objects); + +static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) +{ + return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); +} +SLAB_ATTR_RO(objects_partial); + +static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) +{ + int objects = 0; + int slabs = 0; + int cpu __maybe_unused; + int len = 0; + +#ifdef CONFIG_SLUB_CPU_PARTIAL + for_each_online_cpu(cpu) { + struct slab *slab; + + slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); + + if (slab) + slabs += slab->slabs; + } +#endif + + /* Approximate half-full slabs, see slub_set_cpu_partial() */ + objects = (slabs * oo_objects(s->oo)) / 2; + len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs); + +#if defined(CONFIG_SLUB_CPU_PARTIAL) && defined(CONFIG_SMP) + for_each_online_cpu(cpu) { + struct slab *slab; + + slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); + if (slab) { + slabs = READ_ONCE(slab->slabs); + objects = (slabs * oo_objects(s->oo)) / 2; + len += sysfs_emit_at(buf, len, " C%d=%d(%d)", + cpu, objects, slabs); + } + } +#endif + len += sysfs_emit_at(buf, len, "\n"); + + return len; +} +SLAB_ATTR_RO(slabs_cpu_partial); + +static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) +{ + return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); +} +SLAB_ATTR_RO(reclaim_account); + +static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) +{ + return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); +} +SLAB_ATTR_RO(hwcache_align); + +#ifdef CONFIG_ZONE_DMA +static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) +{ + return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); +} +SLAB_ATTR_RO(cache_dma); +#endif + +static ssize_t usersize_show(struct kmem_cache *s, char *buf) +{ + return sysfs_emit(buf, "%u\n", s->usersize); +} +SLAB_ATTR_RO(usersize); + +static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) +{ + return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU)); +} +SLAB_ATTR_RO(destroy_by_rcu); + +#ifdef CONFIG_SLUB_DEBUG +static ssize_t slabs_show(struct kmem_cache *s, char *buf) +{ + return show_slab_objects(s, buf, SO_ALL); +} +SLAB_ATTR_RO(slabs); + +static ssize_t total_objects_show(struct kmem_cache *s, char *buf) +{ + return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); +} +SLAB_ATTR_RO(total_objects); + +static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) +{ + return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS)); +} +SLAB_ATTR_RO(sanity_checks); + +static ssize_t trace_show(struct kmem_cache *s, char *buf) +{ + return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE)); +} +SLAB_ATTR_RO(trace); + +static ssize_t red_zone_show(struct kmem_cache *s, char *buf) +{ + return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); +} + +SLAB_ATTR_RO(red_zone); + +static ssize_t poison_show(struct kmem_cache *s, char *buf) +{ + return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON)); +} + +SLAB_ATTR_RO(poison); + +static ssize_t store_user_show(struct kmem_cache *s, char *buf) +{ + return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); +} + +SLAB_ATTR_RO(store_user); + +static ssize_t validate_show(struct kmem_cache *s, char *buf) +{ + return 0; +} + +static ssize_t validate_store(struct kmem_cache *s, + const char *buf, size_t length) +{ + int ret = -EINVAL; + + if (buf[0] == '1' && kmem_cache_debug(s)) { + ret = validate_slab_cache(s); + if (ret >= 0) + ret = length; + } + return ret; +} +SLAB_ATTR(validate); + +#endif /* CONFIG_SLUB_DEBUG */ + +#ifdef CONFIG_FAILSLAB +static ssize_t failslab_show(struct kmem_cache *s, char *buf) +{ + return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); +} +SLAB_ATTR_RO(failslab); +#endif + +static ssize_t shrink_show(struct kmem_cache *s, char *buf) +{ + return 0; +} + +static ssize_t shrink_store(struct kmem_cache *s, + const char *buf, size_t length) +{ + if (buf[0] == '1') + kmem_cache_shrink(s); + else + return -EINVAL; + return length; +} +SLAB_ATTR(shrink); + +#ifdef CONFIG_NUMA +static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) +{ + return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10); +} + +static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, + const char *buf, size_t length) +{ + unsigned int ratio; + int err; + + err = kstrtouint(buf, 10, &ratio); + if (err) + return err; + if (ratio > 100) + return -ERANGE; + + s->remote_node_defrag_ratio = ratio * 10; + + return length; +} +SLAB_ATTR(remote_node_defrag_ratio); +#endif + +#ifdef CONFIG_SLUB_STATS +static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) +{ + unsigned long sum = 0; + int cpu; + int len = 0; + int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL); + + if (!data) + return -ENOMEM; + + for_each_online_cpu(cpu) { + unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; + + data[cpu] = x; + sum += x; + } + + len += sysfs_emit_at(buf, len, "%lu", sum); + +#ifdef CONFIG_SMP + for_each_online_cpu(cpu) { + if (data[cpu]) + len += sysfs_emit_at(buf, len, " C%d=%u", + cpu, data[cpu]); + } +#endif + kfree(data); + len += sysfs_emit_at(buf, len, "\n"); + + return len; +} + +static void clear_stat(struct kmem_cache *s, enum stat_item si) +{ + int cpu; + + for_each_online_cpu(cpu) + per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; +} + +#define STAT_ATTR(si, text) \ +static ssize_t text##_show(struct kmem_cache *s, char *buf) \ +{ \ + return show_stat(s, buf, si); \ +} \ +static ssize_t text##_store(struct kmem_cache *s, \ + const char *buf, size_t length) \ +{ \ + if (buf[0] != '0') \ + return -EINVAL; \ + clear_stat(s, si); \ + return length; \ +} \ +SLAB_ATTR(text); \ + +STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); +STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); +STAT_ATTR(FREE_FASTPATH, free_fastpath); +STAT_ATTR(FREE_SLOWPATH, free_slowpath); +STAT_ATTR(FREE_FROZEN, free_frozen); +STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); +STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); +STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); +STAT_ATTR(ALLOC_SLAB, alloc_slab); +STAT_ATTR(ALLOC_REFILL, alloc_refill); +STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); +STAT_ATTR(FREE_SLAB, free_slab); +STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); +STAT_ATTR(DEACTIVATE_FULL, deactivate_full); +STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); +STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); +STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); +STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); +STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); +STAT_ATTR(ORDER_FALLBACK, order_fallback); +STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); +STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); +STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); +STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); +STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); +STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); +#endif /* CONFIG_SLUB_STATS */ + +#ifdef CONFIG_KFENCE +static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf) +{ + return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE)); +} + +static ssize_t skip_kfence_store(struct kmem_cache *s, + const char *buf, size_t length) +{ + int ret = length; + + if (buf[0] == '0') + s->flags &= ~SLAB_SKIP_KFENCE; + else if (buf[0] == '1') + s->flags |= SLAB_SKIP_KFENCE; + else + ret = -EINVAL; + + return ret; +} +SLAB_ATTR(skip_kfence); +#endif + +static struct attribute *slab_attrs[] = { + &slab_size_attr.attr, + &object_size_attr.attr, + &objs_per_slab_attr.attr, + &order_attr.attr, + &min_partial_attr.attr, + &cpu_partial_attr.attr, + &objects_attr.attr, + &objects_partial_attr.attr, + &partial_attr.attr, + &cpu_slabs_attr.attr, + &ctor_attr.attr, + &aliases_attr.attr, + &align_attr.attr, + &hwcache_align_attr.attr, + &reclaim_account_attr.attr, + &destroy_by_rcu_attr.attr, + &shrink_attr.attr, + &slabs_cpu_partial_attr.attr, +#ifdef CONFIG_SLUB_DEBUG + &total_objects_attr.attr, + &slabs_attr.attr, + &sanity_checks_attr.attr, + &trace_attr.attr, + &red_zone_attr.attr, + &poison_attr.attr, + &store_user_attr.attr, + &validate_attr.attr, +#endif +#ifdef CONFIG_ZONE_DMA + &cache_dma_attr.attr, +#endif +#ifdef CONFIG_NUMA + &remote_node_defrag_ratio_attr.attr, +#endif +#ifdef CONFIG_SLUB_STATS + &alloc_fastpath_attr.attr, + &alloc_slowpath_attr.attr, + &free_fastpath_attr.attr, + &free_slowpath_attr.attr, + &free_frozen_attr.attr, + &free_add_partial_attr.attr, + &free_remove_partial_attr.attr, + &alloc_from_partial_attr.attr, + &alloc_slab_attr.attr, + &alloc_refill_attr.attr, + &alloc_node_mismatch_attr.attr, + &free_slab_attr.attr, + &cpuslab_flush_attr.attr, + &deactivate_full_attr.attr, + &deactivate_empty_attr.attr, + &deactivate_to_head_attr.attr, + &deactivate_to_tail_attr.attr, + &deactivate_remote_frees_attr.attr, + &deactivate_bypass_attr.attr, + &order_fallback_attr.attr, + &cmpxchg_double_fail_attr.attr, + &cmpxchg_double_cpu_fail_attr.attr, + &cpu_partial_alloc_attr.attr, + &cpu_partial_free_attr.attr, + &cpu_partial_node_attr.attr, + &cpu_partial_drain_attr.attr, +#endif +#ifdef CONFIG_FAILSLAB + &failslab_attr.attr, +#endif + &usersize_attr.attr, +#ifdef CONFIG_KFENCE + &skip_kfence_attr.attr, +#endif + + NULL +}; + +static const struct attribute_group slab_attr_group = { + .attrs = slab_attrs, +}; + +static ssize_t slab_attr_show(struct kobject *kobj, + struct attribute *attr, + char *buf) +{ + struct slab_attribute *attribute; + struct kmem_cache *s; + + attribute = to_slab_attr(attr); + s = to_slab(kobj); + + if (!attribute->show) + return -EIO; + + return attribute->show(s, buf); +} + +static ssize_t slab_attr_store(struct kobject *kobj, + struct attribute *attr, + const char *buf, size_t len) +{ + struct slab_attribute *attribute; + struct kmem_cache *s; + + attribute = to_slab_attr(attr); + s = to_slab(kobj); + + if (!attribute->store) + return -EIO; + + return attribute->store(s, buf, len); +} + +static void kmem_cache_release(struct kobject *k) +{ + slab_kmem_cache_release(to_slab(k)); +} + +static const struct sysfs_ops slab_sysfs_ops = { + .show = slab_attr_show, + .store = slab_attr_store, +}; + +static struct kobj_type slab_ktype = { + .sysfs_ops = &slab_sysfs_ops, + .release = kmem_cache_release, +}; + +static struct kset *slab_kset; + +static inline struct kset *cache_kset(struct kmem_cache *s) +{ + return slab_kset; +} + +#define ID_STR_LENGTH 32 + +/* Create a unique string id for a slab cache: + * + * Format :[flags-]size + */ +static char *create_unique_id(struct kmem_cache *s) +{ + char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); + char *p = name; + + if (!name) + return ERR_PTR(-ENOMEM); + + *p++ = ':'; + /* + * First flags affecting slabcache operations. We will only + * get here for aliasable slabs so we do not need to support + * too many flags. The flags here must cover all flags that + * are matched during merging to guarantee that the id is + * unique. + */ + if (s->flags & SLAB_CACHE_DMA) + *p++ = 'd'; + if (s->flags & SLAB_CACHE_DMA32) + *p++ = 'D'; + if (s->flags & SLAB_RECLAIM_ACCOUNT) + *p++ = 'a'; + if (s->flags & SLAB_CONSISTENCY_CHECKS) + *p++ = 'F'; + if (s->flags & SLAB_ACCOUNT) + *p++ = 'A'; + if (p != name + 1) + *p++ = '-'; + p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size); + + if (WARN_ON(p > name + ID_STR_LENGTH - 1)) { + kfree(name); + return ERR_PTR(-EINVAL); + } + kmsan_unpoison_memory(name, p - name); + return name; +} + +static int sysfs_slab_add(struct kmem_cache *s) +{ + int err; + const char *name; + struct kset *kset = cache_kset(s); + int unmergeable = slab_unmergeable(s); + + if (!kset) { + kobject_init(&s->kobj, &slab_ktype); + return 0; + } + + if (!unmergeable && disable_higher_order_debug && + (slub_debug & DEBUG_METADATA_FLAGS)) + unmergeable = 1; + + if (unmergeable) { + /* + * Slabcache can never be merged so we can use the name proper. + * This is typically the case for debug situations. In that + * case we can catch duplicate names easily. + */ + sysfs_remove_link(&slab_kset->kobj, s->name); + name = s->name; + } else { + /* + * Create a unique name for the slab as a target + * for the symlinks. + */ + name = create_unique_id(s); + if (IS_ERR(name)) + return PTR_ERR(name); + } + + s->kobj.kset = kset; + err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); + if (err) + goto out; + + err = sysfs_create_group(&s->kobj, &slab_attr_group); + if (err) + goto out_del_kobj; + + if (!unmergeable) { + /* Setup first alias */ + sysfs_slab_alias(s, s->name); + } +out: + if (!unmergeable) + kfree(name); + return err; +out_del_kobj: + kobject_del(&s->kobj); + goto out; +} + +void sysfs_slab_unlink(struct kmem_cache *s) +{ + if (slab_state >= FULL) + kobject_del(&s->kobj); +} + +void sysfs_slab_release(struct kmem_cache *s) +{ + if (slab_state >= FULL) + kobject_put(&s->kobj); +} + +/* + * Need to buffer aliases during bootup until sysfs becomes + * available lest we lose that information. + */ +struct saved_alias { + struct kmem_cache *s; + const char *name; + struct saved_alias *next; +}; + +static struct saved_alias *alias_list; + +static int sysfs_slab_alias(struct kmem_cache *s, const char *name) +{ + struct saved_alias *al; + + if (slab_state == FULL) { + /* + * If we have a leftover link then remove it. + */ + sysfs_remove_link(&slab_kset->kobj, name); + return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); + } + + al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); + if (!al) + return -ENOMEM; + + al->s = s; + al->name = name; + al->next = alias_list; + alias_list = al; + kmsan_unpoison_memory(al, sizeof(*al)); + return 0; +} + +static int __init slab_sysfs_init(void) +{ + struct kmem_cache *s; + int err; + + mutex_lock(&slab_mutex); + + slab_kset = kset_create_and_add("slab", NULL, kernel_kobj); + if (!slab_kset) { + mutex_unlock(&slab_mutex); + pr_err("Cannot register slab subsystem.\n"); + return -ENOSYS; + } + + slab_state = FULL; + + list_for_each_entry(s, &slab_caches, list) { + err = sysfs_slab_add(s); + if (err) + pr_err("SLUB: Unable to add boot slab %s to sysfs\n", + s->name); + } + + while (alias_list) { + struct saved_alias *al = alias_list; + + alias_list = alias_list->next; + err = sysfs_slab_alias(al->s, al->name); + if (err) + pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", + al->name); + kfree(al); + } + + mutex_unlock(&slab_mutex); + return 0; +} + +__initcall(slab_sysfs_init); +#endif /* CONFIG_SYSFS */ + +#if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS) +static int slab_debugfs_show(struct seq_file *seq, void *v) +{ + struct loc_track *t = seq->private; + struct location *l; + unsigned long idx; + + idx = (unsigned long) t->idx; + if (idx < t->count) { + l = &t->loc[idx]; + + seq_printf(seq, "%7ld ", l->count); + + if (l->addr) + seq_printf(seq, "%pS", (void *)l->addr); + else + seq_puts(seq, "<not-available>"); + + if (l->waste) + seq_printf(seq, " waste=%lu/%lu", + l->count * l->waste, l->waste); + + if (l->sum_time != l->min_time) { + seq_printf(seq, " age=%ld/%llu/%ld", + l->min_time, div_u64(l->sum_time, l->count), + l->max_time); + } else + seq_printf(seq, " age=%ld", l->min_time); + + if (l->min_pid != l->max_pid) + seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid); + else + seq_printf(seq, " pid=%ld", + l->min_pid); + + if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus))) + seq_printf(seq, " cpus=%*pbl", + cpumask_pr_args(to_cpumask(l->cpus))); + + if (nr_online_nodes > 1 && !nodes_empty(l->nodes)) + seq_printf(seq, " nodes=%*pbl", + nodemask_pr_args(&l->nodes)); + +#ifdef CONFIG_STACKDEPOT + { + depot_stack_handle_t handle; + unsigned long *entries; + unsigned int nr_entries, j; + + handle = READ_ONCE(l->handle); + if (handle) { + nr_entries = stack_depot_fetch(handle, &entries); + seq_puts(seq, "\n"); + for (j = 0; j < nr_entries; j++) + seq_printf(seq, " %pS\n", (void *)entries[j]); + } + } +#endif + seq_puts(seq, "\n"); + } + + if (!idx && !t->count) + seq_puts(seq, "No data\n"); + + return 0; +} + +static void slab_debugfs_stop(struct seq_file *seq, void *v) +{ +} + +static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos) +{ + struct loc_track *t = seq->private; + + t->idx = ++(*ppos); + if (*ppos <= t->count) + return ppos; + + return NULL; +} + +static int cmp_loc_by_count(const void *a, const void *b, const void *data) +{ + struct location *loc1 = (struct location *)a; + struct location *loc2 = (struct location *)b; + + if (loc1->count > loc2->count) + return -1; + else + return 1; +} + +static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos) +{ + struct loc_track *t = seq->private; + + t->idx = *ppos; + return ppos; +} + +static const struct seq_operations slab_debugfs_sops = { + .start = slab_debugfs_start, + .next = slab_debugfs_next, + .stop = slab_debugfs_stop, + .show = slab_debugfs_show, +}; + +static int slab_debug_trace_open(struct inode *inode, struct file *filep) +{ + + struct kmem_cache_node *n; + enum track_item alloc; + int node; + struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops, + sizeof(struct loc_track)); + struct kmem_cache *s = file_inode(filep)->i_private; + unsigned long *obj_map; + + if (!t) + return -ENOMEM; + + obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL); + if (!obj_map) { + seq_release_private(inode, filep); + return -ENOMEM; + } + + if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0) + alloc = TRACK_ALLOC; + else + alloc = TRACK_FREE; + + if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) { + bitmap_free(obj_map); + seq_release_private(inode, filep); + return -ENOMEM; + } + + for_each_kmem_cache_node(s, node, n) { + unsigned long flags; + struct slab *slab; + + if (!atomic_long_read(&n->nr_slabs)) + continue; + + spin_lock_irqsave(&n->list_lock, flags); + list_for_each_entry(slab, &n->partial, slab_list) + process_slab(t, s, slab, alloc, obj_map); + list_for_each_entry(slab, &n->full, slab_list) + process_slab(t, s, slab, alloc, obj_map); + spin_unlock_irqrestore(&n->list_lock, flags); + } + + /* Sort locations by count */ + sort_r(t->loc, t->count, sizeof(struct location), + cmp_loc_by_count, NULL, NULL); + + bitmap_free(obj_map); + return 0; +} + +static int slab_debug_trace_release(struct inode *inode, struct file *file) +{ + struct seq_file *seq = file->private_data; + struct loc_track *t = seq->private; + + free_loc_track(t); + return seq_release_private(inode, file); +} + +static const struct file_operations slab_debugfs_fops = { + .open = slab_debug_trace_open, + .read = seq_read, + .llseek = seq_lseek, + .release = slab_debug_trace_release, +}; + +static void debugfs_slab_add(struct kmem_cache *s) +{ + struct dentry *slab_cache_dir; + + if (unlikely(!slab_debugfs_root)) + return; + + slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root); + + debugfs_create_file("alloc_traces", 0400, + slab_cache_dir, s, &slab_debugfs_fops); + + debugfs_create_file("free_traces", 0400, + slab_cache_dir, s, &slab_debugfs_fops); +} + +void debugfs_slab_release(struct kmem_cache *s) +{ + debugfs_remove_recursive(debugfs_lookup(s->name, slab_debugfs_root)); +} + +static int __init slab_debugfs_init(void) +{ + struct kmem_cache *s; + + slab_debugfs_root = debugfs_create_dir("slab", NULL); + + list_for_each_entry(s, &slab_caches, list) + if (s->flags & SLAB_STORE_USER) + debugfs_slab_add(s); + + return 0; + +} +__initcall(slab_debugfs_init); +#endif +/* + * The /proc/slabinfo ABI + */ +#ifdef CONFIG_SLUB_DEBUG +void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) +{ + unsigned long nr_slabs = 0; + unsigned long nr_objs = 0; + unsigned long nr_free = 0; + int node; + struct kmem_cache_node *n; + + for_each_kmem_cache_node(s, node, n) { + nr_slabs += node_nr_slabs(n); + nr_objs += node_nr_objs(n); + nr_free += count_partial(n, count_free); + } + + sinfo->active_objs = nr_objs - nr_free; + sinfo->num_objs = nr_objs; + sinfo->active_slabs = nr_slabs; + sinfo->num_slabs = nr_slabs; + sinfo->objects_per_slab = oo_objects(s->oo); + sinfo->cache_order = oo_order(s->oo); +} + +void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s) +{ +} + +ssize_t slabinfo_write(struct file *file, const char __user *buffer, + size_t count, loff_t *ppos) +{ + return -EIO; +} +#endif /* CONFIG_SLUB_DEBUG */ |