diff options
Diffstat (limited to 'net/tls')
-rw-r--r-- | net/tls/Kconfig | 39 | ||||
-rw-r--r-- | net/tls/Makefile | 13 | ||||
-rw-r--r-- | net/tls/tls.h | 328 | ||||
-rw-r--r-- | net/tls/tls_device.c | 1487 | ||||
-rw-r--r-- | net/tls/tls_device_fallback.c | 513 | ||||
-rw-r--r-- | net/tls/tls_main.c | 1246 | ||||
-rw-r--r-- | net/tls/tls_proc.c | 56 | ||||
-rw-r--r-- | net/tls/tls_strp.c | 633 | ||||
-rw-r--r-- | net/tls/tls_sw.c | 2818 | ||||
-rw-r--r-- | net/tls/tls_toe.c | 141 | ||||
-rw-r--r-- | net/tls/trace.c | 10 | ||||
-rw-r--r-- | net/tls/trace.h | 202 |
12 files changed, 7486 insertions, 0 deletions
diff --git a/net/tls/Kconfig b/net/tls/Kconfig new file mode 100644 index 000000000..0cdc1f7b6 --- /dev/null +++ b/net/tls/Kconfig @@ -0,0 +1,39 @@ +# SPDX-License-Identifier: GPL-2.0-only +# +# TLS configuration +# +config TLS + tristate "Transport Layer Security support" + depends on INET + select CRYPTO + select CRYPTO_AES + select CRYPTO_GCM + select STREAM_PARSER + select NET_SOCK_MSG + default n + help + Enable kernel support for TLS protocol. This allows symmetric + encryption handling of the TLS protocol to be done in-kernel. + + If unsure, say N. + +config TLS_DEVICE + bool "Transport Layer Security HW offload" + depends on TLS + select SOCK_VALIDATE_XMIT + select SOCK_RX_QUEUE_MAPPING + default n + help + Enable kernel support for HW offload of the TLS protocol. + + If unsure, say N. + +config TLS_TOE + bool "Transport Layer Security TCP stack bypass" + depends on TLS + default n + help + Enable kernel support for legacy HW offload of the TLS protocol, + which is incompatible with the Linux networking stack semantics. + + If unsure, say N. diff --git a/net/tls/Makefile b/net/tls/Makefile new file mode 100644 index 000000000..e41c80048 --- /dev/null +++ b/net/tls/Makefile @@ -0,0 +1,13 @@ +# SPDX-License-Identifier: GPL-2.0-only +# +# Makefile for the TLS subsystem. +# + +CFLAGS_trace.o := -I$(src) + +obj-$(CONFIG_TLS) += tls.o + +tls-y := tls_main.o tls_sw.o tls_proc.o trace.o tls_strp.o + +tls-$(CONFIG_TLS_TOE) += tls_toe.o +tls-$(CONFIG_TLS_DEVICE) += tls_device.o tls_device_fallback.o diff --git a/net/tls/tls.h b/net/tls/tls.h new file mode 100644 index 000000000..0672acab2 --- /dev/null +++ b/net/tls/tls.h @@ -0,0 +1,328 @@ +/* + * Copyright (c) 2016 Tom Herbert <tom@herbertland.com> + * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. + * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. + * + * This software is available to you under a choice of one of two + * licenses. You may choose to be licensed under the terms of the GNU + * General Public License (GPL) Version 2, available from the file + * COPYING in the main directory of this source tree, or the + * OpenIB.org BSD license below: + * + * Redistribution and use in source and binary forms, with or + * without modification, are permitted provided that the following + * conditions are met: + * + * - Redistributions of source code must retain the above + * copyright notice, this list of conditions and the following + * disclaimer. + * + * - Redistributions in binary form must reproduce the above + * copyright notice, this list of conditions and the following + * disclaimer in the documentation and/or other materials + * provided with the distribution. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, + * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND + * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS + * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN + * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE + * SOFTWARE. + */ + +#ifndef _TLS_INT_H +#define _TLS_INT_H + +#include <asm/byteorder.h> +#include <linux/types.h> +#include <linux/skmsg.h> +#include <net/tls.h> + +#define TLS_PAGE_ORDER (min_t(unsigned int, PAGE_ALLOC_COSTLY_ORDER, \ + TLS_MAX_PAYLOAD_SIZE >> PAGE_SHIFT)) + +#define __TLS_INC_STATS(net, field) \ + __SNMP_INC_STATS((net)->mib.tls_statistics, field) +#define TLS_INC_STATS(net, field) \ + SNMP_INC_STATS((net)->mib.tls_statistics, field) +#define TLS_DEC_STATS(net, field) \ + SNMP_DEC_STATS((net)->mib.tls_statistics, field) + +/* TLS records are maintained in 'struct tls_rec'. It stores the memory pages + * allocated or mapped for each TLS record. After encryption, the records are + * stores in a linked list. + */ +struct tls_rec { + struct list_head list; + int tx_ready; + int tx_flags; + + struct sk_msg msg_plaintext; + struct sk_msg msg_encrypted; + + /* AAD | msg_plaintext.sg.data | sg_tag */ + struct scatterlist sg_aead_in[2]; + /* AAD | msg_encrypted.sg.data (data contains overhead for hdr & iv & tag) */ + struct scatterlist sg_aead_out[2]; + + char content_type; + struct scatterlist sg_content_type; + + struct sock *sk; + + char aad_space[TLS_AAD_SPACE_SIZE]; + u8 iv_data[MAX_IV_SIZE]; + struct aead_request aead_req; + u8 aead_req_ctx[]; +}; + +int __net_init tls_proc_init(struct net *net); +void __net_exit tls_proc_fini(struct net *net); + +struct tls_context *tls_ctx_create(struct sock *sk); +void tls_ctx_free(struct sock *sk, struct tls_context *ctx); +void update_sk_prot(struct sock *sk, struct tls_context *ctx); + +int wait_on_pending_writer(struct sock *sk, long *timeo); +int tls_sk_query(struct sock *sk, int optname, char __user *optval, + int __user *optlen); +int tls_sk_attach(struct sock *sk, int optname, char __user *optval, + unsigned int optlen); +void tls_err_abort(struct sock *sk, int err); + +int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx); +void tls_update_rx_zc_capable(struct tls_context *tls_ctx); +void tls_sw_strparser_arm(struct sock *sk, struct tls_context *ctx); +void tls_sw_strparser_done(struct tls_context *tls_ctx); +int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size); +int tls_sw_sendpage_locked(struct sock *sk, struct page *page, + int offset, size_t size, int flags); +int tls_sw_sendpage(struct sock *sk, struct page *page, + int offset, size_t size, int flags); +void tls_sw_cancel_work_tx(struct tls_context *tls_ctx); +void tls_sw_release_resources_tx(struct sock *sk); +void tls_sw_free_ctx_tx(struct tls_context *tls_ctx); +void tls_sw_free_resources_rx(struct sock *sk); +void tls_sw_release_resources_rx(struct sock *sk); +void tls_sw_free_ctx_rx(struct tls_context *tls_ctx); +int tls_sw_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, + int flags, int *addr_len); +bool tls_sw_sock_is_readable(struct sock *sk); +ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos, + struct pipe_inode_info *pipe, + size_t len, unsigned int flags); + +int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size); +int tls_device_sendpage(struct sock *sk, struct page *page, + int offset, size_t size, int flags); +int tls_tx_records(struct sock *sk, int flags); + +void tls_sw_write_space(struct sock *sk, struct tls_context *ctx); +void tls_device_write_space(struct sock *sk, struct tls_context *ctx); + +int tls_process_cmsg(struct sock *sk, struct msghdr *msg, + unsigned char *record_type); +int decrypt_skb(struct sock *sk, struct scatterlist *sgout); + +int tls_sw_fallback_init(struct sock *sk, + struct tls_offload_context_tx *offload_ctx, + struct tls_crypto_info *crypto_info); + +int tls_strp_dev_init(void); +void tls_strp_dev_exit(void); + +void tls_strp_done(struct tls_strparser *strp); +void tls_strp_stop(struct tls_strparser *strp); +int tls_strp_init(struct tls_strparser *strp, struct sock *sk); +void tls_strp_data_ready(struct tls_strparser *strp); + +void tls_strp_check_rcv(struct tls_strparser *strp); +void tls_strp_msg_done(struct tls_strparser *strp); + +int tls_rx_msg_size(struct tls_strparser *strp, struct sk_buff *skb); +void tls_rx_msg_ready(struct tls_strparser *strp); + +void tls_strp_msg_load(struct tls_strparser *strp, bool force_refresh); +int tls_strp_msg_cow(struct tls_sw_context_rx *ctx); +struct sk_buff *tls_strp_msg_detach(struct tls_sw_context_rx *ctx); +int tls_strp_msg_hold(struct tls_strparser *strp, struct sk_buff_head *dst); + +static inline struct tls_msg *tls_msg(struct sk_buff *skb) +{ + struct sk_skb_cb *scb = (struct sk_skb_cb *)skb->cb; + + return &scb->tls; +} + +static inline struct sk_buff *tls_strp_msg(struct tls_sw_context_rx *ctx) +{ + DEBUG_NET_WARN_ON_ONCE(!ctx->strp.msg_ready || !ctx->strp.anchor->len); + return ctx->strp.anchor; +} + +static inline bool tls_strp_msg_ready(struct tls_sw_context_rx *ctx) +{ + return ctx->strp.msg_ready; +} + +static inline bool tls_strp_msg_mixed_decrypted(struct tls_sw_context_rx *ctx) +{ + return ctx->strp.mixed_decrypted; +} + +#ifdef CONFIG_TLS_DEVICE +int tls_device_init(void); +void tls_device_cleanup(void); +int tls_set_device_offload(struct sock *sk, struct tls_context *ctx); +void tls_device_free_resources_tx(struct sock *sk); +int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx); +void tls_device_offload_cleanup_rx(struct sock *sk); +void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq); +int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx); +#else +static inline int tls_device_init(void) { return 0; } +static inline void tls_device_cleanup(void) {} + +static inline int +tls_set_device_offload(struct sock *sk, struct tls_context *ctx) +{ + return -EOPNOTSUPP; +} + +static inline void tls_device_free_resources_tx(struct sock *sk) {} + +static inline int +tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx) +{ + return -EOPNOTSUPP; +} + +static inline void tls_device_offload_cleanup_rx(struct sock *sk) {} +static inline void +tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq) {} + +static inline int +tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx) +{ + return 0; +} +#endif + +int tls_push_sg(struct sock *sk, struct tls_context *ctx, + struct scatterlist *sg, u16 first_offset, + int flags); +int tls_push_partial_record(struct sock *sk, struct tls_context *ctx, + int flags); +void tls_free_partial_record(struct sock *sk, struct tls_context *ctx); + +static inline bool tls_is_partially_sent_record(struct tls_context *ctx) +{ + return !!ctx->partially_sent_record; +} + +static inline bool tls_is_pending_open_record(struct tls_context *tls_ctx) +{ + return tls_ctx->pending_open_record_frags; +} + +static inline bool tls_bigint_increment(unsigned char *seq, int len) +{ + int i; + + for (i = len - 1; i >= 0; i--) { + ++seq[i]; + if (seq[i] != 0) + break; + } + + return (i == -1); +} + +static inline void tls_bigint_subtract(unsigned char *seq, int n) +{ + u64 rcd_sn; + __be64 *p; + + BUILD_BUG_ON(TLS_MAX_REC_SEQ_SIZE != 8); + + p = (__be64 *)seq; + rcd_sn = be64_to_cpu(*p); + *p = cpu_to_be64(rcd_sn - n); +} + +static inline void +tls_advance_record_sn(struct sock *sk, struct tls_prot_info *prot, + struct cipher_context *ctx) +{ + if (tls_bigint_increment(ctx->rec_seq, prot->rec_seq_size)) + tls_err_abort(sk, -EBADMSG); + + if (prot->version != TLS_1_3_VERSION && + prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305) + tls_bigint_increment(ctx->iv + prot->salt_size, + prot->iv_size); +} + +static inline void +tls_xor_iv_with_seq(struct tls_prot_info *prot, char *iv, char *seq) +{ + int i; + + if (prot->version == TLS_1_3_VERSION || + prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) { + for (i = 0; i < 8; i++) + iv[i + 4] ^= seq[i]; + } +} + +static inline void +tls_fill_prepend(struct tls_context *ctx, char *buf, size_t plaintext_len, + unsigned char record_type) +{ + struct tls_prot_info *prot = &ctx->prot_info; + size_t pkt_len, iv_size = prot->iv_size; + + pkt_len = plaintext_len + prot->tag_size; + if (prot->version != TLS_1_3_VERSION && + prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305) { + pkt_len += iv_size; + + memcpy(buf + TLS_NONCE_OFFSET, + ctx->tx.iv + prot->salt_size, iv_size); + } + + /* we cover nonce explicit here as well, so buf should be of + * size KTLS_DTLS_HEADER_SIZE + KTLS_DTLS_NONCE_EXPLICIT_SIZE + */ + buf[0] = prot->version == TLS_1_3_VERSION ? + TLS_RECORD_TYPE_DATA : record_type; + /* Note that VERSION must be TLS_1_2 for both TLS1.2 and TLS1.3 */ + buf[1] = TLS_1_2_VERSION_MINOR; + buf[2] = TLS_1_2_VERSION_MAJOR; + /* we can use IV for nonce explicit according to spec */ + buf[3] = pkt_len >> 8; + buf[4] = pkt_len & 0xFF; +} + +static inline +void tls_make_aad(char *buf, size_t size, char *record_sequence, + unsigned char record_type, struct tls_prot_info *prot) +{ + if (prot->version != TLS_1_3_VERSION) { + memcpy(buf, record_sequence, prot->rec_seq_size); + buf += 8; + } else { + size += prot->tag_size; + } + + buf[0] = prot->version == TLS_1_3_VERSION ? + TLS_RECORD_TYPE_DATA : record_type; + buf[1] = TLS_1_2_VERSION_MAJOR; + buf[2] = TLS_1_2_VERSION_MINOR; + buf[3] = size >> 8; + buf[4] = size & 0xFF; +} + +#endif diff --git a/net/tls/tls_device.c b/net/tls/tls_device.c new file mode 100644 index 000000000..184982788 --- /dev/null +++ b/net/tls/tls_device.c @@ -0,0 +1,1487 @@ +/* Copyright (c) 2018, Mellanox Technologies All rights reserved. + * + * This software is available to you under a choice of one of two + * licenses. You may choose to be licensed under the terms of the GNU + * General Public License (GPL) Version 2, available from the file + * COPYING in the main directory of this source tree, or the + * OpenIB.org BSD license below: + * + * Redistribution and use in source and binary forms, with or + * without modification, are permitted provided that the following + * conditions are met: + * + * - Redistributions of source code must retain the above + * copyright notice, this list of conditions and the following + * disclaimer. + * + * - Redistributions in binary form must reproduce the above + * copyright notice, this list of conditions and the following + * disclaimer in the documentation and/or other materials + * provided with the distribution. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, + * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND + * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS + * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN + * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE + * SOFTWARE. + */ + +#include <crypto/aead.h> +#include <linux/highmem.h> +#include <linux/module.h> +#include <linux/netdevice.h> +#include <net/dst.h> +#include <net/inet_connection_sock.h> +#include <net/tcp.h> +#include <net/tls.h> + +#include "tls.h" +#include "trace.h" + +/* device_offload_lock is used to synchronize tls_dev_add + * against NETDEV_DOWN notifications. + */ +static DECLARE_RWSEM(device_offload_lock); + +static struct workqueue_struct *destruct_wq __read_mostly; + +static LIST_HEAD(tls_device_list); +static LIST_HEAD(tls_device_down_list); +static DEFINE_SPINLOCK(tls_device_lock); + +static struct page *dummy_page; + +static void tls_device_free_ctx(struct tls_context *ctx) +{ + if (ctx->tx_conf == TLS_HW) { + kfree(tls_offload_ctx_tx(ctx)); + kfree(ctx->tx.rec_seq); + kfree(ctx->tx.iv); + } + + if (ctx->rx_conf == TLS_HW) + kfree(tls_offload_ctx_rx(ctx)); + + tls_ctx_free(NULL, ctx); +} + +static void tls_device_tx_del_task(struct work_struct *work) +{ + struct tls_offload_context_tx *offload_ctx = + container_of(work, struct tls_offload_context_tx, destruct_work); + struct tls_context *ctx = offload_ctx->ctx; + struct net_device *netdev; + + /* Safe, because this is the destroy flow, refcount is 0, so + * tls_device_down can't store this field in parallel. + */ + netdev = rcu_dereference_protected(ctx->netdev, + !refcount_read(&ctx->refcount)); + + netdev->tlsdev_ops->tls_dev_del(netdev, ctx, TLS_OFFLOAD_CTX_DIR_TX); + dev_put(netdev); + ctx->netdev = NULL; + tls_device_free_ctx(ctx); +} + +static void tls_device_queue_ctx_destruction(struct tls_context *ctx) +{ + struct net_device *netdev; + unsigned long flags; + bool async_cleanup; + + spin_lock_irqsave(&tls_device_lock, flags); + if (unlikely(!refcount_dec_and_test(&ctx->refcount))) { + spin_unlock_irqrestore(&tls_device_lock, flags); + return; + } + + list_del(&ctx->list); /* Remove from tls_device_list / tls_device_down_list */ + + /* Safe, because this is the destroy flow, refcount is 0, so + * tls_device_down can't store this field in parallel. + */ + netdev = rcu_dereference_protected(ctx->netdev, + !refcount_read(&ctx->refcount)); + + async_cleanup = netdev && ctx->tx_conf == TLS_HW; + if (async_cleanup) { + struct tls_offload_context_tx *offload_ctx = tls_offload_ctx_tx(ctx); + + /* queue_work inside the spinlock + * to make sure tls_device_down waits for that work. + */ + queue_work(destruct_wq, &offload_ctx->destruct_work); + } + spin_unlock_irqrestore(&tls_device_lock, flags); + + if (!async_cleanup) + tls_device_free_ctx(ctx); +} + +/* We assume that the socket is already connected */ +static struct net_device *get_netdev_for_sock(struct sock *sk) +{ + struct dst_entry *dst = sk_dst_get(sk); + struct net_device *netdev = NULL; + + if (likely(dst)) { + netdev = netdev_sk_get_lowest_dev(dst->dev, sk); + dev_hold(netdev); + } + + dst_release(dst); + + return netdev; +} + +static void destroy_record(struct tls_record_info *record) +{ + int i; + + for (i = 0; i < record->num_frags; i++) + __skb_frag_unref(&record->frags[i], false); + kfree(record); +} + +static void delete_all_records(struct tls_offload_context_tx *offload_ctx) +{ + struct tls_record_info *info, *temp; + + list_for_each_entry_safe(info, temp, &offload_ctx->records_list, list) { + list_del(&info->list); + destroy_record(info); + } + + offload_ctx->retransmit_hint = NULL; +} + +static void tls_icsk_clean_acked(struct sock *sk, u32 acked_seq) +{ + struct tls_context *tls_ctx = tls_get_ctx(sk); + struct tls_record_info *info, *temp; + struct tls_offload_context_tx *ctx; + u64 deleted_records = 0; + unsigned long flags; + + if (!tls_ctx) + return; + + ctx = tls_offload_ctx_tx(tls_ctx); + + spin_lock_irqsave(&ctx->lock, flags); + info = ctx->retransmit_hint; + if (info && !before(acked_seq, info->end_seq)) + ctx->retransmit_hint = NULL; + + list_for_each_entry_safe(info, temp, &ctx->records_list, list) { + if (before(acked_seq, info->end_seq)) + break; + list_del(&info->list); + + destroy_record(info); + deleted_records++; + } + + ctx->unacked_record_sn += deleted_records; + spin_unlock_irqrestore(&ctx->lock, flags); +} + +/* At this point, there should be no references on this + * socket and no in-flight SKBs associated with this + * socket, so it is safe to free all the resources. + */ +void tls_device_sk_destruct(struct sock *sk) +{ + struct tls_context *tls_ctx = tls_get_ctx(sk); + struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx); + + tls_ctx->sk_destruct(sk); + + if (tls_ctx->tx_conf == TLS_HW) { + if (ctx->open_record) + destroy_record(ctx->open_record); + delete_all_records(ctx); + crypto_free_aead(ctx->aead_send); + clean_acked_data_disable(inet_csk(sk)); + } + + tls_device_queue_ctx_destruction(tls_ctx); +} +EXPORT_SYMBOL_GPL(tls_device_sk_destruct); + +void tls_device_free_resources_tx(struct sock *sk) +{ + struct tls_context *tls_ctx = tls_get_ctx(sk); + + tls_free_partial_record(sk, tls_ctx); +} + +void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq) +{ + struct tls_context *tls_ctx = tls_get_ctx(sk); + + trace_tls_device_tx_resync_req(sk, got_seq, exp_seq); + WARN_ON(test_and_set_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags)); +} +EXPORT_SYMBOL_GPL(tls_offload_tx_resync_request); + +static void tls_device_resync_tx(struct sock *sk, struct tls_context *tls_ctx, + u32 seq) +{ + struct net_device *netdev; + struct sk_buff *skb; + int err = 0; + u8 *rcd_sn; + + skb = tcp_write_queue_tail(sk); + if (skb) + TCP_SKB_CB(skb)->eor = 1; + + rcd_sn = tls_ctx->tx.rec_seq; + + trace_tls_device_tx_resync_send(sk, seq, rcd_sn); + down_read(&device_offload_lock); + netdev = rcu_dereference_protected(tls_ctx->netdev, + lockdep_is_held(&device_offload_lock)); + if (netdev) + err = netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq, + rcd_sn, + TLS_OFFLOAD_CTX_DIR_TX); + up_read(&device_offload_lock); + if (err) + return; + + clear_bit_unlock(TLS_TX_SYNC_SCHED, &tls_ctx->flags); +} + +static void tls_append_frag(struct tls_record_info *record, + struct page_frag *pfrag, + int size) +{ + skb_frag_t *frag; + + frag = &record->frags[record->num_frags - 1]; + if (skb_frag_page(frag) == pfrag->page && + skb_frag_off(frag) + skb_frag_size(frag) == pfrag->offset) { + skb_frag_size_add(frag, size); + } else { + ++frag; + __skb_frag_set_page(frag, pfrag->page); + skb_frag_off_set(frag, pfrag->offset); + skb_frag_size_set(frag, size); + ++record->num_frags; + get_page(pfrag->page); + } + + pfrag->offset += size; + record->len += size; +} + +static int tls_push_record(struct sock *sk, + struct tls_context *ctx, + struct tls_offload_context_tx *offload_ctx, + struct tls_record_info *record, + int flags) +{ + struct tls_prot_info *prot = &ctx->prot_info; + struct tcp_sock *tp = tcp_sk(sk); + skb_frag_t *frag; + int i; + + record->end_seq = tp->write_seq + record->len; + list_add_tail_rcu(&record->list, &offload_ctx->records_list); + offload_ctx->open_record = NULL; + + if (test_bit(TLS_TX_SYNC_SCHED, &ctx->flags)) + tls_device_resync_tx(sk, ctx, tp->write_seq); + + tls_advance_record_sn(sk, prot, &ctx->tx); + + for (i = 0; i < record->num_frags; i++) { + frag = &record->frags[i]; + sg_unmark_end(&offload_ctx->sg_tx_data[i]); + sg_set_page(&offload_ctx->sg_tx_data[i], skb_frag_page(frag), + skb_frag_size(frag), skb_frag_off(frag)); + sk_mem_charge(sk, skb_frag_size(frag)); + get_page(skb_frag_page(frag)); + } + sg_mark_end(&offload_ctx->sg_tx_data[record->num_frags - 1]); + + /* all ready, send */ + return tls_push_sg(sk, ctx, offload_ctx->sg_tx_data, 0, flags); +} + +static void tls_device_record_close(struct sock *sk, + struct tls_context *ctx, + struct tls_record_info *record, + struct page_frag *pfrag, + unsigned char record_type) +{ + struct tls_prot_info *prot = &ctx->prot_info; + struct page_frag dummy_tag_frag; + + /* append tag + * device will fill in the tag, we just need to append a placeholder + * use socket memory to improve coalescing (re-using a single buffer + * increases frag count) + * if we can't allocate memory now use the dummy page + */ + if (unlikely(pfrag->size - pfrag->offset < prot->tag_size) && + !skb_page_frag_refill(prot->tag_size, pfrag, sk->sk_allocation)) { + dummy_tag_frag.page = dummy_page; + dummy_tag_frag.offset = 0; + pfrag = &dummy_tag_frag; + } + tls_append_frag(record, pfrag, prot->tag_size); + + /* fill prepend */ + tls_fill_prepend(ctx, skb_frag_address(&record->frags[0]), + record->len - prot->overhead_size, + record_type); +} + +static int tls_create_new_record(struct tls_offload_context_tx *offload_ctx, + struct page_frag *pfrag, + size_t prepend_size) +{ + struct tls_record_info *record; + skb_frag_t *frag; + + record = kmalloc(sizeof(*record), GFP_KERNEL); + if (!record) + return -ENOMEM; + + frag = &record->frags[0]; + __skb_frag_set_page(frag, pfrag->page); + skb_frag_off_set(frag, pfrag->offset); + skb_frag_size_set(frag, prepend_size); + + get_page(pfrag->page); + pfrag->offset += prepend_size; + + record->num_frags = 1; + record->len = prepend_size; + offload_ctx->open_record = record; + return 0; +} + +static int tls_do_allocation(struct sock *sk, + struct tls_offload_context_tx *offload_ctx, + struct page_frag *pfrag, + size_t prepend_size) +{ + int ret; + + if (!offload_ctx->open_record) { + if (unlikely(!skb_page_frag_refill(prepend_size, pfrag, + sk->sk_allocation))) { + READ_ONCE(sk->sk_prot)->enter_memory_pressure(sk); + sk_stream_moderate_sndbuf(sk); + return -ENOMEM; + } + + ret = tls_create_new_record(offload_ctx, pfrag, prepend_size); + if (ret) + return ret; + + if (pfrag->size > pfrag->offset) + return 0; + } + + if (!sk_page_frag_refill(sk, pfrag)) + return -ENOMEM; + + return 0; +} + +static int tls_device_copy_data(void *addr, size_t bytes, struct iov_iter *i) +{ + size_t pre_copy, nocache; + + pre_copy = ~((unsigned long)addr - 1) & (SMP_CACHE_BYTES - 1); + if (pre_copy) { + pre_copy = min(pre_copy, bytes); + if (copy_from_iter(addr, pre_copy, i) != pre_copy) + return -EFAULT; + bytes -= pre_copy; + addr += pre_copy; + } + + nocache = round_down(bytes, SMP_CACHE_BYTES); + if (copy_from_iter_nocache(addr, nocache, i) != nocache) + return -EFAULT; + bytes -= nocache; + addr += nocache; + + if (bytes && copy_from_iter(addr, bytes, i) != bytes) + return -EFAULT; + + return 0; +} + +union tls_iter_offset { + struct iov_iter *msg_iter; + int offset; +}; + +static int tls_push_data(struct sock *sk, + union tls_iter_offset iter_offset, + size_t size, int flags, + unsigned char record_type, + struct page *zc_page) +{ + struct tls_context *tls_ctx = tls_get_ctx(sk); + struct tls_prot_info *prot = &tls_ctx->prot_info; + struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx); + struct tls_record_info *record; + int tls_push_record_flags; + struct page_frag *pfrag; + size_t orig_size = size; + u32 max_open_record_len; + bool more = false; + bool done = false; + int copy, rc = 0; + long timeo; + + if (flags & + ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_SENDPAGE_NOTLAST)) + return -EOPNOTSUPP; + + if (unlikely(sk->sk_err)) + return -sk->sk_err; + + flags |= MSG_SENDPAGE_DECRYPTED; + tls_push_record_flags = flags | MSG_SENDPAGE_NOTLAST; + + timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); + if (tls_is_partially_sent_record(tls_ctx)) { + rc = tls_push_partial_record(sk, tls_ctx, flags); + if (rc < 0) + return rc; + } + + pfrag = sk_page_frag(sk); + + /* TLS_HEADER_SIZE is not counted as part of the TLS record, and + * we need to leave room for an authentication tag. + */ + max_open_record_len = TLS_MAX_PAYLOAD_SIZE + + prot->prepend_size; + do { + rc = tls_do_allocation(sk, ctx, pfrag, prot->prepend_size); + if (unlikely(rc)) { + rc = sk_stream_wait_memory(sk, &timeo); + if (!rc) + continue; + + record = ctx->open_record; + if (!record) + break; +handle_error: + if (record_type != TLS_RECORD_TYPE_DATA) { + /* avoid sending partial + * record with type != + * application_data + */ + size = orig_size; + destroy_record(record); + ctx->open_record = NULL; + } else if (record->len > prot->prepend_size) { + goto last_record; + } + + break; + } + + record = ctx->open_record; + + copy = min_t(size_t, size, max_open_record_len - record->len); + if (copy && zc_page) { + struct page_frag zc_pfrag; + + zc_pfrag.page = zc_page; + zc_pfrag.offset = iter_offset.offset; + zc_pfrag.size = copy; + tls_append_frag(record, &zc_pfrag, copy); + + iter_offset.offset += copy; + } else if (copy) { + copy = min_t(size_t, copy, pfrag->size - pfrag->offset); + + rc = tls_device_copy_data(page_address(pfrag->page) + + pfrag->offset, copy, + iter_offset.msg_iter); + if (rc) + goto handle_error; + tls_append_frag(record, pfrag, copy); + } + + size -= copy; + if (!size) { +last_record: + tls_push_record_flags = flags; + if (flags & (MSG_SENDPAGE_NOTLAST | MSG_MORE)) { + more = true; + break; + } + + done = true; + } + + if (done || record->len >= max_open_record_len || + (record->num_frags >= MAX_SKB_FRAGS - 1)) { + tls_device_record_close(sk, tls_ctx, record, + pfrag, record_type); + + rc = tls_push_record(sk, + tls_ctx, + ctx, + record, + tls_push_record_flags); + if (rc < 0) + break; + } + } while (!done); + + tls_ctx->pending_open_record_frags = more; + + if (orig_size - size > 0) + rc = orig_size - size; + + return rc; +} + +int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) +{ + unsigned char record_type = TLS_RECORD_TYPE_DATA; + struct tls_context *tls_ctx = tls_get_ctx(sk); + union tls_iter_offset iter; + int rc; + + mutex_lock(&tls_ctx->tx_lock); + lock_sock(sk); + + if (unlikely(msg->msg_controllen)) { + rc = tls_process_cmsg(sk, msg, &record_type); + if (rc) + goto out; + } + + iter.msg_iter = &msg->msg_iter; + rc = tls_push_data(sk, iter, size, msg->msg_flags, record_type, NULL); + +out: + release_sock(sk); + mutex_unlock(&tls_ctx->tx_lock); + return rc; +} + +int tls_device_sendpage(struct sock *sk, struct page *page, + int offset, size_t size, int flags) +{ + struct tls_context *tls_ctx = tls_get_ctx(sk); + union tls_iter_offset iter_offset; + struct iov_iter msg_iter; + char *kaddr; + struct kvec iov; + int rc; + + if (flags & MSG_SENDPAGE_NOTLAST) + flags |= MSG_MORE; + + mutex_lock(&tls_ctx->tx_lock); + lock_sock(sk); + + if (flags & MSG_OOB) { + rc = -EOPNOTSUPP; + goto out; + } + + if (tls_ctx->zerocopy_sendfile) { + iter_offset.offset = offset; + rc = tls_push_data(sk, iter_offset, size, + flags, TLS_RECORD_TYPE_DATA, page); + goto out; + } + + kaddr = kmap(page); + iov.iov_base = kaddr + offset; + iov.iov_len = size; + iov_iter_kvec(&msg_iter, ITER_SOURCE, &iov, 1, size); + iter_offset.msg_iter = &msg_iter; + rc = tls_push_data(sk, iter_offset, size, flags, TLS_RECORD_TYPE_DATA, + NULL); + kunmap(page); + +out: + release_sock(sk); + mutex_unlock(&tls_ctx->tx_lock); + return rc; +} + +struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context, + u32 seq, u64 *p_record_sn) +{ + u64 record_sn = context->hint_record_sn; + struct tls_record_info *info, *last; + + info = context->retransmit_hint; + if (!info || + before(seq, info->end_seq - info->len)) { + /* if retransmit_hint is irrelevant start + * from the beginning of the list + */ + info = list_first_entry_or_null(&context->records_list, + struct tls_record_info, list); + if (!info) + return NULL; + /* send the start_marker record if seq number is before the + * tls offload start marker sequence number. This record is + * required to handle TCP packets which are before TLS offload + * started. + * And if it's not start marker, look if this seq number + * belongs to the list. + */ + if (likely(!tls_record_is_start_marker(info))) { + /* we have the first record, get the last record to see + * if this seq number belongs to the list. + */ + last = list_last_entry(&context->records_list, + struct tls_record_info, list); + + if (!between(seq, tls_record_start_seq(info), + last->end_seq)) + return NULL; + } + record_sn = context->unacked_record_sn; + } + + /* We just need the _rcu for the READ_ONCE() */ + rcu_read_lock(); + list_for_each_entry_from_rcu(info, &context->records_list, list) { + if (before(seq, info->end_seq)) { + if (!context->retransmit_hint || + after(info->end_seq, + context->retransmit_hint->end_seq)) { + context->hint_record_sn = record_sn; + context->retransmit_hint = info; + } + *p_record_sn = record_sn; + goto exit_rcu_unlock; + } + record_sn++; + } + info = NULL; + +exit_rcu_unlock: + rcu_read_unlock(); + return info; +} +EXPORT_SYMBOL(tls_get_record); + +static int tls_device_push_pending_record(struct sock *sk, int flags) +{ + union tls_iter_offset iter; + struct iov_iter msg_iter; + + iov_iter_kvec(&msg_iter, ITER_SOURCE, NULL, 0, 0); + iter.msg_iter = &msg_iter; + return tls_push_data(sk, iter, 0, flags, TLS_RECORD_TYPE_DATA, NULL); +} + +void tls_device_write_space(struct sock *sk, struct tls_context *ctx) +{ + if (tls_is_partially_sent_record(ctx)) { + gfp_t sk_allocation = sk->sk_allocation; + + WARN_ON_ONCE(sk->sk_write_pending); + + sk->sk_allocation = GFP_ATOMIC; + tls_push_partial_record(sk, ctx, + MSG_DONTWAIT | MSG_NOSIGNAL | + MSG_SENDPAGE_DECRYPTED); + sk->sk_allocation = sk_allocation; + } +} + +static void tls_device_resync_rx(struct tls_context *tls_ctx, + struct sock *sk, u32 seq, u8 *rcd_sn) +{ + struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx); + struct net_device *netdev; + + trace_tls_device_rx_resync_send(sk, seq, rcd_sn, rx_ctx->resync_type); + rcu_read_lock(); + netdev = rcu_dereference(tls_ctx->netdev); + if (netdev) + netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq, rcd_sn, + TLS_OFFLOAD_CTX_DIR_RX); + rcu_read_unlock(); + TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICERESYNC); +} + +static bool +tls_device_rx_resync_async(struct tls_offload_resync_async *resync_async, + s64 resync_req, u32 *seq, u16 *rcd_delta) +{ + u32 is_async = resync_req & RESYNC_REQ_ASYNC; + u32 req_seq = resync_req >> 32; + u32 req_end = req_seq + ((resync_req >> 16) & 0xffff); + u16 i; + + *rcd_delta = 0; + + if (is_async) { + /* shouldn't get to wraparound: + * too long in async stage, something bad happened + */ + if (WARN_ON_ONCE(resync_async->rcd_delta == USHRT_MAX)) + return false; + + /* asynchronous stage: log all headers seq such that + * req_seq <= seq <= end_seq, and wait for real resync request + */ + if (before(*seq, req_seq)) + return false; + if (!after(*seq, req_end) && + resync_async->loglen < TLS_DEVICE_RESYNC_ASYNC_LOGMAX) + resync_async->log[resync_async->loglen++] = *seq; + + resync_async->rcd_delta++; + + return false; + } + + /* synchronous stage: check against the logged entries and + * proceed to check the next entries if no match was found + */ + for (i = 0; i < resync_async->loglen; i++) + if (req_seq == resync_async->log[i] && + atomic64_try_cmpxchg(&resync_async->req, &resync_req, 0)) { + *rcd_delta = resync_async->rcd_delta - i; + *seq = req_seq; + resync_async->loglen = 0; + resync_async->rcd_delta = 0; + return true; + } + + resync_async->loglen = 0; + resync_async->rcd_delta = 0; + + if (req_seq == *seq && + atomic64_try_cmpxchg(&resync_async->req, + &resync_req, 0)) + return true; + + return false; +} + +void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq) +{ + struct tls_context *tls_ctx = tls_get_ctx(sk); + struct tls_offload_context_rx *rx_ctx; + u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE]; + u32 sock_data, is_req_pending; + struct tls_prot_info *prot; + s64 resync_req; + u16 rcd_delta; + u32 req_seq; + + if (tls_ctx->rx_conf != TLS_HW) + return; + if (unlikely(test_bit(TLS_RX_DEV_DEGRADED, &tls_ctx->flags))) + return; + + prot = &tls_ctx->prot_info; + rx_ctx = tls_offload_ctx_rx(tls_ctx); + memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size); + + switch (rx_ctx->resync_type) { + case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ: + resync_req = atomic64_read(&rx_ctx->resync_req); + req_seq = resync_req >> 32; + seq += TLS_HEADER_SIZE - 1; + is_req_pending = resync_req; + + if (likely(!is_req_pending) || req_seq != seq || + !atomic64_try_cmpxchg(&rx_ctx->resync_req, &resync_req, 0)) + return; + break; + case TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT: + if (likely(!rx_ctx->resync_nh_do_now)) + return; + + /* head of next rec is already in, note that the sock_inq will + * include the currently parsed message when called from parser + */ + sock_data = tcp_inq(sk); + if (sock_data > rcd_len) { + trace_tls_device_rx_resync_nh_delay(sk, sock_data, + rcd_len); + return; + } + + rx_ctx->resync_nh_do_now = 0; + seq += rcd_len; + tls_bigint_increment(rcd_sn, prot->rec_seq_size); + break; + case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC: + resync_req = atomic64_read(&rx_ctx->resync_async->req); + is_req_pending = resync_req; + if (likely(!is_req_pending)) + return; + + if (!tls_device_rx_resync_async(rx_ctx->resync_async, + resync_req, &seq, &rcd_delta)) + return; + tls_bigint_subtract(rcd_sn, rcd_delta); + break; + } + + tls_device_resync_rx(tls_ctx, sk, seq, rcd_sn); +} + +static void tls_device_core_ctrl_rx_resync(struct tls_context *tls_ctx, + struct tls_offload_context_rx *ctx, + struct sock *sk, struct sk_buff *skb) +{ + struct strp_msg *rxm; + + /* device will request resyncs by itself based on stream scan */ + if (ctx->resync_type != TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT) + return; + /* already scheduled */ + if (ctx->resync_nh_do_now) + return; + /* seen decrypted fragments since last fully-failed record */ + if (ctx->resync_nh_reset) { + ctx->resync_nh_reset = 0; + ctx->resync_nh.decrypted_failed = 1; + ctx->resync_nh.decrypted_tgt = TLS_DEVICE_RESYNC_NH_START_IVAL; + return; + } + + if (++ctx->resync_nh.decrypted_failed <= ctx->resync_nh.decrypted_tgt) + return; + + /* doing resync, bump the next target in case it fails */ + if (ctx->resync_nh.decrypted_tgt < TLS_DEVICE_RESYNC_NH_MAX_IVAL) + ctx->resync_nh.decrypted_tgt *= 2; + else + ctx->resync_nh.decrypted_tgt += TLS_DEVICE_RESYNC_NH_MAX_IVAL; + + rxm = strp_msg(skb); + + /* head of next rec is already in, parser will sync for us */ + if (tcp_inq(sk) > rxm->full_len) { + trace_tls_device_rx_resync_nh_schedule(sk); + ctx->resync_nh_do_now = 1; + } else { + struct tls_prot_info *prot = &tls_ctx->prot_info; + u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE]; + + memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size); + tls_bigint_increment(rcd_sn, prot->rec_seq_size); + + tls_device_resync_rx(tls_ctx, sk, tcp_sk(sk)->copied_seq, + rcd_sn); + } +} + +static int +tls_device_reencrypt(struct sock *sk, struct tls_context *tls_ctx) +{ + struct tls_sw_context_rx *sw_ctx = tls_sw_ctx_rx(tls_ctx); + const struct tls_cipher_size_desc *cipher_sz; + int err, offset, copy, data_len, pos; + struct sk_buff *skb, *skb_iter; + struct scatterlist sg[1]; + struct strp_msg *rxm; + char *orig_buf, *buf; + + switch (tls_ctx->crypto_recv.info.cipher_type) { + case TLS_CIPHER_AES_GCM_128: + case TLS_CIPHER_AES_GCM_256: + break; + default: + return -EINVAL; + } + cipher_sz = &tls_cipher_size_desc[tls_ctx->crypto_recv.info.cipher_type]; + + rxm = strp_msg(tls_strp_msg(sw_ctx)); + orig_buf = kmalloc(rxm->full_len + TLS_HEADER_SIZE + cipher_sz->iv, + sk->sk_allocation); + if (!orig_buf) + return -ENOMEM; + buf = orig_buf; + + err = tls_strp_msg_cow(sw_ctx); + if (unlikely(err)) + goto free_buf; + + skb = tls_strp_msg(sw_ctx); + rxm = strp_msg(skb); + offset = rxm->offset; + + sg_init_table(sg, 1); + sg_set_buf(&sg[0], buf, + rxm->full_len + TLS_HEADER_SIZE + cipher_sz->iv); + err = skb_copy_bits(skb, offset, buf, TLS_HEADER_SIZE + cipher_sz->iv); + if (err) + goto free_buf; + + /* We are interested only in the decrypted data not the auth */ + err = decrypt_skb(sk, sg); + if (err != -EBADMSG) + goto free_buf; + else + err = 0; + + data_len = rxm->full_len - cipher_sz->tag; + + if (skb_pagelen(skb) > offset) { + copy = min_t(int, skb_pagelen(skb) - offset, data_len); + + if (skb->decrypted) { + err = skb_store_bits(skb, offset, buf, copy); + if (err) + goto free_buf; + } + + offset += copy; + buf += copy; + } + + pos = skb_pagelen(skb); + skb_walk_frags(skb, skb_iter) { + int frag_pos; + + /* Practically all frags must belong to msg if reencrypt + * is needed with current strparser and coalescing logic, + * but strparser may "get optimized", so let's be safe. + */ + if (pos + skb_iter->len <= offset) + goto done_with_frag; + if (pos >= data_len + rxm->offset) + break; + + frag_pos = offset - pos; + copy = min_t(int, skb_iter->len - frag_pos, + data_len + rxm->offset - offset); + + if (skb_iter->decrypted) { + err = skb_store_bits(skb_iter, frag_pos, buf, copy); + if (err) + goto free_buf; + } + + offset += copy; + buf += copy; +done_with_frag: + pos += skb_iter->len; + } + +free_buf: + kfree(orig_buf); + return err; +} + +int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx) +{ + struct tls_offload_context_rx *ctx = tls_offload_ctx_rx(tls_ctx); + struct tls_sw_context_rx *sw_ctx = tls_sw_ctx_rx(tls_ctx); + struct sk_buff *skb = tls_strp_msg(sw_ctx); + struct strp_msg *rxm = strp_msg(skb); + int is_decrypted, is_encrypted; + + if (!tls_strp_msg_mixed_decrypted(sw_ctx)) { + is_decrypted = skb->decrypted; + is_encrypted = !is_decrypted; + } else { + is_decrypted = 0; + is_encrypted = 0; + } + + trace_tls_device_decrypted(sk, tcp_sk(sk)->copied_seq - rxm->full_len, + tls_ctx->rx.rec_seq, rxm->full_len, + is_encrypted, is_decrypted); + + if (unlikely(test_bit(TLS_RX_DEV_DEGRADED, &tls_ctx->flags))) { + if (likely(is_encrypted || is_decrypted)) + return is_decrypted; + + /* After tls_device_down disables the offload, the next SKB will + * likely have initial fragments decrypted, and final ones not + * decrypted. We need to reencrypt that single SKB. + */ + return tls_device_reencrypt(sk, tls_ctx); + } + + /* Return immediately if the record is either entirely plaintext or + * entirely ciphertext. Otherwise handle reencrypt partially decrypted + * record. + */ + if (is_decrypted) { + ctx->resync_nh_reset = 1; + return is_decrypted; + } + if (is_encrypted) { + tls_device_core_ctrl_rx_resync(tls_ctx, ctx, sk, skb); + return 0; + } + + ctx->resync_nh_reset = 1; + return tls_device_reencrypt(sk, tls_ctx); +} + +static void tls_device_attach(struct tls_context *ctx, struct sock *sk, + struct net_device *netdev) +{ + if (sk->sk_destruct != tls_device_sk_destruct) { + refcount_set(&ctx->refcount, 1); + dev_hold(netdev); + RCU_INIT_POINTER(ctx->netdev, netdev); + spin_lock_irq(&tls_device_lock); + list_add_tail(&ctx->list, &tls_device_list); + spin_unlock_irq(&tls_device_lock); + + ctx->sk_destruct = sk->sk_destruct; + smp_store_release(&sk->sk_destruct, tls_device_sk_destruct); + } +} + +int tls_set_device_offload(struct sock *sk, struct tls_context *ctx) +{ + struct tls_context *tls_ctx = tls_get_ctx(sk); + struct tls_prot_info *prot = &tls_ctx->prot_info; + const struct tls_cipher_size_desc *cipher_sz; + struct tls_record_info *start_marker_record; + struct tls_offload_context_tx *offload_ctx; + struct tls_crypto_info *crypto_info; + struct net_device *netdev; + char *iv, *rec_seq; + struct sk_buff *skb; + __be64 rcd_sn; + int rc; + + if (!ctx) + return -EINVAL; + + if (ctx->priv_ctx_tx) + return -EEXIST; + + netdev = get_netdev_for_sock(sk); + if (!netdev) { + pr_err_ratelimited("%s: netdev not found\n", __func__); + return -EINVAL; + } + + if (!(netdev->features & NETIF_F_HW_TLS_TX)) { + rc = -EOPNOTSUPP; + goto release_netdev; + } + + crypto_info = &ctx->crypto_send.info; + if (crypto_info->version != TLS_1_2_VERSION) { + rc = -EOPNOTSUPP; + goto release_netdev; + } + + switch (crypto_info->cipher_type) { + case TLS_CIPHER_AES_GCM_128: + iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv; + rec_seq = + ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq; + break; + case TLS_CIPHER_AES_GCM_256: + iv = ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->iv; + rec_seq = + ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->rec_seq; + break; + default: + rc = -EINVAL; + goto release_netdev; + } + cipher_sz = &tls_cipher_size_desc[crypto_info->cipher_type]; + + /* Sanity-check the rec_seq_size for stack allocations */ + if (cipher_sz->rec_seq > TLS_MAX_REC_SEQ_SIZE) { + rc = -EINVAL; + goto release_netdev; + } + + prot->version = crypto_info->version; + prot->cipher_type = crypto_info->cipher_type; + prot->prepend_size = TLS_HEADER_SIZE + cipher_sz->iv; + prot->tag_size = cipher_sz->tag; + prot->overhead_size = prot->prepend_size + prot->tag_size; + prot->iv_size = cipher_sz->iv; + prot->salt_size = cipher_sz->salt; + ctx->tx.iv = kmalloc(cipher_sz->iv + cipher_sz->salt, GFP_KERNEL); + if (!ctx->tx.iv) { + rc = -ENOMEM; + goto release_netdev; + } + + memcpy(ctx->tx.iv + cipher_sz->salt, iv, cipher_sz->iv); + + prot->rec_seq_size = cipher_sz->rec_seq; + ctx->tx.rec_seq = kmemdup(rec_seq, cipher_sz->rec_seq, GFP_KERNEL); + if (!ctx->tx.rec_seq) { + rc = -ENOMEM; + goto free_iv; + } + + start_marker_record = kmalloc(sizeof(*start_marker_record), GFP_KERNEL); + if (!start_marker_record) { + rc = -ENOMEM; + goto free_rec_seq; + } + + offload_ctx = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_TX, GFP_KERNEL); + if (!offload_ctx) { + rc = -ENOMEM; + goto free_marker_record; + } + + rc = tls_sw_fallback_init(sk, offload_ctx, crypto_info); + if (rc) + goto free_offload_ctx; + + /* start at rec_seq - 1 to account for the start marker record */ + memcpy(&rcd_sn, ctx->tx.rec_seq, sizeof(rcd_sn)); + offload_ctx->unacked_record_sn = be64_to_cpu(rcd_sn) - 1; + + start_marker_record->end_seq = tcp_sk(sk)->write_seq; + start_marker_record->len = 0; + start_marker_record->num_frags = 0; + + INIT_WORK(&offload_ctx->destruct_work, tls_device_tx_del_task); + offload_ctx->ctx = ctx; + + INIT_LIST_HEAD(&offload_ctx->records_list); + list_add_tail(&start_marker_record->list, &offload_ctx->records_list); + spin_lock_init(&offload_ctx->lock); + sg_init_table(offload_ctx->sg_tx_data, + ARRAY_SIZE(offload_ctx->sg_tx_data)); + + clean_acked_data_enable(inet_csk(sk), &tls_icsk_clean_acked); + ctx->push_pending_record = tls_device_push_pending_record; + + /* TLS offload is greatly simplified if we don't send + * SKBs where only part of the payload needs to be encrypted. + * So mark the last skb in the write queue as end of record. + */ + skb = tcp_write_queue_tail(sk); + if (skb) + TCP_SKB_CB(skb)->eor = 1; + + /* Avoid offloading if the device is down + * We don't want to offload new flows after + * the NETDEV_DOWN event + * + * device_offload_lock is taken in tls_devices's NETDEV_DOWN + * handler thus protecting from the device going down before + * ctx was added to tls_device_list. + */ + down_read(&device_offload_lock); + if (!(netdev->flags & IFF_UP)) { + rc = -EINVAL; + goto release_lock; + } + + ctx->priv_ctx_tx = offload_ctx; + rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_TX, + &ctx->crypto_send.info, + tcp_sk(sk)->write_seq); + trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_TX, + tcp_sk(sk)->write_seq, rec_seq, rc); + if (rc) + goto release_lock; + + tls_device_attach(ctx, sk, netdev); + up_read(&device_offload_lock); + + /* following this assignment tls_is_sk_tx_device_offloaded + * will return true and the context might be accessed + * by the netdev's xmit function. + */ + smp_store_release(&sk->sk_validate_xmit_skb, tls_validate_xmit_skb); + dev_put(netdev); + + return 0; + +release_lock: + up_read(&device_offload_lock); + clean_acked_data_disable(inet_csk(sk)); + crypto_free_aead(offload_ctx->aead_send); +free_offload_ctx: + kfree(offload_ctx); + ctx->priv_ctx_tx = NULL; +free_marker_record: + kfree(start_marker_record); +free_rec_seq: + kfree(ctx->tx.rec_seq); +free_iv: + kfree(ctx->tx.iv); +release_netdev: + dev_put(netdev); + return rc; +} + +int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx) +{ + struct tls12_crypto_info_aes_gcm_128 *info; + struct tls_offload_context_rx *context; + struct net_device *netdev; + int rc = 0; + + if (ctx->crypto_recv.info.version != TLS_1_2_VERSION) + return -EOPNOTSUPP; + + netdev = get_netdev_for_sock(sk); + if (!netdev) { + pr_err_ratelimited("%s: netdev not found\n", __func__); + return -EINVAL; + } + + if (!(netdev->features & NETIF_F_HW_TLS_RX)) { + rc = -EOPNOTSUPP; + goto release_netdev; + } + + /* Avoid offloading if the device is down + * We don't want to offload new flows after + * the NETDEV_DOWN event + * + * device_offload_lock is taken in tls_devices's NETDEV_DOWN + * handler thus protecting from the device going down before + * ctx was added to tls_device_list. + */ + down_read(&device_offload_lock); + if (!(netdev->flags & IFF_UP)) { + rc = -EINVAL; + goto release_lock; + } + + context = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_RX, GFP_KERNEL); + if (!context) { + rc = -ENOMEM; + goto release_lock; + } + context->resync_nh_reset = 1; + + ctx->priv_ctx_rx = context; + rc = tls_set_sw_offload(sk, ctx, 0); + if (rc) + goto release_ctx; + + rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_RX, + &ctx->crypto_recv.info, + tcp_sk(sk)->copied_seq); + info = (void *)&ctx->crypto_recv.info; + trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_RX, + tcp_sk(sk)->copied_seq, info->rec_seq, rc); + if (rc) + goto free_sw_resources; + + tls_device_attach(ctx, sk, netdev); + up_read(&device_offload_lock); + + dev_put(netdev); + + return 0; + +free_sw_resources: + up_read(&device_offload_lock); + tls_sw_free_resources_rx(sk); + down_read(&device_offload_lock); +release_ctx: + ctx->priv_ctx_rx = NULL; +release_lock: + up_read(&device_offload_lock); +release_netdev: + dev_put(netdev); + return rc; +} + +void tls_device_offload_cleanup_rx(struct sock *sk) +{ + struct tls_context *tls_ctx = tls_get_ctx(sk); + struct net_device *netdev; + + down_read(&device_offload_lock); + netdev = rcu_dereference_protected(tls_ctx->netdev, + lockdep_is_held(&device_offload_lock)); + if (!netdev) + goto out; + + netdev->tlsdev_ops->tls_dev_del(netdev, tls_ctx, + TLS_OFFLOAD_CTX_DIR_RX); + + if (tls_ctx->tx_conf != TLS_HW) { + dev_put(netdev); + rcu_assign_pointer(tls_ctx->netdev, NULL); + } else { + set_bit(TLS_RX_DEV_CLOSED, &tls_ctx->flags); + } +out: + up_read(&device_offload_lock); + tls_sw_release_resources_rx(sk); +} + +static int tls_device_down(struct net_device *netdev) +{ + struct tls_context *ctx, *tmp; + unsigned long flags; + LIST_HEAD(list); + + /* Request a write lock to block new offload attempts */ + down_write(&device_offload_lock); + + spin_lock_irqsave(&tls_device_lock, flags); + list_for_each_entry_safe(ctx, tmp, &tls_device_list, list) { + struct net_device *ctx_netdev = + rcu_dereference_protected(ctx->netdev, + lockdep_is_held(&device_offload_lock)); + + if (ctx_netdev != netdev || + !refcount_inc_not_zero(&ctx->refcount)) + continue; + + list_move(&ctx->list, &list); + } + spin_unlock_irqrestore(&tls_device_lock, flags); + + list_for_each_entry_safe(ctx, tmp, &list, list) { + /* Stop offloaded TX and switch to the fallback. + * tls_is_sk_tx_device_offloaded will return false. + */ + WRITE_ONCE(ctx->sk->sk_validate_xmit_skb, tls_validate_xmit_skb_sw); + + /* Stop the RX and TX resync. + * tls_dev_resync must not be called after tls_dev_del. + */ + rcu_assign_pointer(ctx->netdev, NULL); + + /* Start skipping the RX resync logic completely. */ + set_bit(TLS_RX_DEV_DEGRADED, &ctx->flags); + + /* Sync with inflight packets. After this point: + * TX: no non-encrypted packets will be passed to the driver. + * RX: resync requests from the driver will be ignored. + */ + synchronize_net(); + + /* Release the offload context on the driver side. */ + if (ctx->tx_conf == TLS_HW) + netdev->tlsdev_ops->tls_dev_del(netdev, ctx, + TLS_OFFLOAD_CTX_DIR_TX); + if (ctx->rx_conf == TLS_HW && + !test_bit(TLS_RX_DEV_CLOSED, &ctx->flags)) + netdev->tlsdev_ops->tls_dev_del(netdev, ctx, + TLS_OFFLOAD_CTX_DIR_RX); + + dev_put(netdev); + + /* Move the context to a separate list for two reasons: + * 1. When the context is deallocated, list_del is called. + * 2. It's no longer an offloaded context, so we don't want to + * run offload-specific code on this context. + */ + spin_lock_irqsave(&tls_device_lock, flags); + list_move_tail(&ctx->list, &tls_device_down_list); + spin_unlock_irqrestore(&tls_device_lock, flags); + + /* Device contexts for RX and TX will be freed in on sk_destruct + * by tls_device_free_ctx. rx_conf and tx_conf stay in TLS_HW. + * Now release the ref taken above. + */ + if (refcount_dec_and_test(&ctx->refcount)) { + /* sk_destruct ran after tls_device_down took a ref, and + * it returned early. Complete the destruction here. + */ + list_del(&ctx->list); + tls_device_free_ctx(ctx); + } + } + + up_write(&device_offload_lock); + + flush_workqueue(destruct_wq); + + return NOTIFY_DONE; +} + +static int tls_dev_event(struct notifier_block *this, unsigned long event, + void *ptr) +{ + struct net_device *dev = netdev_notifier_info_to_dev(ptr); + + if (!dev->tlsdev_ops && + !(dev->features & (NETIF_F_HW_TLS_RX | NETIF_F_HW_TLS_TX))) + return NOTIFY_DONE; + + switch (event) { + case NETDEV_REGISTER: + case NETDEV_FEAT_CHANGE: + if (netif_is_bond_master(dev)) + return NOTIFY_DONE; + if ((dev->features & NETIF_F_HW_TLS_RX) && + !dev->tlsdev_ops->tls_dev_resync) + return NOTIFY_BAD; + + if (dev->tlsdev_ops && + dev->tlsdev_ops->tls_dev_add && + dev->tlsdev_ops->tls_dev_del) + return NOTIFY_DONE; + else + return NOTIFY_BAD; + case NETDEV_DOWN: + return tls_device_down(dev); + } + return NOTIFY_DONE; +} + +static struct notifier_block tls_dev_notifier = { + .notifier_call = tls_dev_event, +}; + +int __init tls_device_init(void) +{ + int err; + + dummy_page = alloc_page(GFP_KERNEL); + if (!dummy_page) + return -ENOMEM; + + destruct_wq = alloc_workqueue("ktls_device_destruct", 0, 0); + if (!destruct_wq) { + err = -ENOMEM; + goto err_free_dummy; + } + + err = register_netdevice_notifier(&tls_dev_notifier); + if (err) + goto err_destroy_wq; + + return 0; + +err_destroy_wq: + destroy_workqueue(destruct_wq); +err_free_dummy: + put_page(dummy_page); + return err; +} + +void __exit tls_device_cleanup(void) +{ + unregister_netdevice_notifier(&tls_dev_notifier); + destroy_workqueue(destruct_wq); + clean_acked_data_flush(); + put_page(dummy_page); +} diff --git a/net/tls/tls_device_fallback.c b/net/tls/tls_device_fallback.c new file mode 100644 index 000000000..7fbb1d0b6 --- /dev/null +++ b/net/tls/tls_device_fallback.c @@ -0,0 +1,513 @@ +/* Copyright (c) 2018, Mellanox Technologies All rights reserved. + * + * This software is available to you under a choice of one of two + * licenses. You may choose to be licensed under the terms of the GNU + * General Public License (GPL) Version 2, available from the file + * COPYING in the main directory of this source tree, or the + * OpenIB.org BSD license below: + * + * Redistribution and use in source and binary forms, with or + * without modification, are permitted provided that the following + * conditions are met: + * + * - Redistributions of source code must retain the above + * copyright notice, this list of conditions and the following + * disclaimer. + * + * - Redistributions in binary form must reproduce the above + * copyright notice, this list of conditions and the following + * disclaimer in the documentation and/or other materials + * provided with the distribution. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, + * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND + * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS + * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN + * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE + * SOFTWARE. + */ + +#include <net/tls.h> +#include <crypto/aead.h> +#include <crypto/scatterwalk.h> +#include <net/ip6_checksum.h> + +#include "tls.h" + +static void chain_to_walk(struct scatterlist *sg, struct scatter_walk *walk) +{ + struct scatterlist *src = walk->sg; + int diff = walk->offset - src->offset; + + sg_set_page(sg, sg_page(src), + src->length - diff, walk->offset); + + scatterwalk_crypto_chain(sg, sg_next(src), 2); +} + +static int tls_enc_record(struct aead_request *aead_req, + struct crypto_aead *aead, char *aad, + char *iv, __be64 rcd_sn, + struct scatter_walk *in, + struct scatter_walk *out, int *in_len, + struct tls_prot_info *prot) +{ + unsigned char buf[TLS_HEADER_SIZE + MAX_IV_SIZE]; + const struct tls_cipher_size_desc *cipher_sz; + struct scatterlist sg_in[3]; + struct scatterlist sg_out[3]; + unsigned int buf_size; + u16 len; + int rc; + + switch (prot->cipher_type) { + case TLS_CIPHER_AES_GCM_128: + case TLS_CIPHER_AES_GCM_256: + break; + default: + return -EINVAL; + } + cipher_sz = &tls_cipher_size_desc[prot->cipher_type]; + + buf_size = TLS_HEADER_SIZE + cipher_sz->iv; + len = min_t(int, *in_len, buf_size); + + scatterwalk_copychunks(buf, in, len, 0); + scatterwalk_copychunks(buf, out, len, 1); + + *in_len -= len; + if (!*in_len) + return 0; + + scatterwalk_pagedone(in, 0, 1); + scatterwalk_pagedone(out, 1, 1); + + len = buf[4] | (buf[3] << 8); + len -= cipher_sz->iv; + + tls_make_aad(aad, len - cipher_sz->tag, (char *)&rcd_sn, buf[0], prot); + + memcpy(iv + cipher_sz->salt, buf + TLS_HEADER_SIZE, cipher_sz->iv); + + sg_init_table(sg_in, ARRAY_SIZE(sg_in)); + sg_init_table(sg_out, ARRAY_SIZE(sg_out)); + sg_set_buf(sg_in, aad, TLS_AAD_SPACE_SIZE); + sg_set_buf(sg_out, aad, TLS_AAD_SPACE_SIZE); + chain_to_walk(sg_in + 1, in); + chain_to_walk(sg_out + 1, out); + + *in_len -= len; + if (*in_len < 0) { + *in_len += cipher_sz->tag; + /* the input buffer doesn't contain the entire record. + * trim len accordingly. The resulting authentication tag + * will contain garbage, but we don't care, so we won't + * include any of it in the output skb + * Note that we assume the output buffer length + * is larger then input buffer length + tag size + */ + if (*in_len < 0) + len += *in_len; + + *in_len = 0; + } + + if (*in_len) { + scatterwalk_copychunks(NULL, in, len, 2); + scatterwalk_pagedone(in, 0, 1); + scatterwalk_copychunks(NULL, out, len, 2); + scatterwalk_pagedone(out, 1, 1); + } + + len -= cipher_sz->tag; + aead_request_set_crypt(aead_req, sg_in, sg_out, len, iv); + + rc = crypto_aead_encrypt(aead_req); + + return rc; +} + +static void tls_init_aead_request(struct aead_request *aead_req, + struct crypto_aead *aead) +{ + aead_request_set_tfm(aead_req, aead); + aead_request_set_ad(aead_req, TLS_AAD_SPACE_SIZE); +} + +static struct aead_request *tls_alloc_aead_request(struct crypto_aead *aead, + gfp_t flags) +{ + unsigned int req_size = sizeof(struct aead_request) + + crypto_aead_reqsize(aead); + struct aead_request *aead_req; + + aead_req = kzalloc(req_size, flags); + if (aead_req) + tls_init_aead_request(aead_req, aead); + return aead_req; +} + +static int tls_enc_records(struct aead_request *aead_req, + struct crypto_aead *aead, struct scatterlist *sg_in, + struct scatterlist *sg_out, char *aad, char *iv, + u64 rcd_sn, int len, struct tls_prot_info *prot) +{ + struct scatter_walk out, in; + int rc; + + scatterwalk_start(&in, sg_in); + scatterwalk_start(&out, sg_out); + + do { + rc = tls_enc_record(aead_req, aead, aad, iv, + cpu_to_be64(rcd_sn), &in, &out, &len, prot); + rcd_sn++; + + } while (rc == 0 && len); + + scatterwalk_done(&in, 0, 0); + scatterwalk_done(&out, 1, 0); + + return rc; +} + +/* Can't use icsk->icsk_af_ops->send_check here because the ip addresses + * might have been changed by NAT. + */ +static void update_chksum(struct sk_buff *skb, int headln) +{ + struct tcphdr *th = tcp_hdr(skb); + int datalen = skb->len - headln; + const struct ipv6hdr *ipv6h; + const struct iphdr *iph; + + /* We only changed the payload so if we are using partial we don't + * need to update anything. + */ + if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) + return; + + skb->ip_summed = CHECKSUM_PARTIAL; + skb->csum_start = skb_transport_header(skb) - skb->head; + skb->csum_offset = offsetof(struct tcphdr, check); + + if (skb->sk->sk_family == AF_INET6) { + ipv6h = ipv6_hdr(skb); + th->check = ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr, + datalen, IPPROTO_TCP, 0); + } else { + iph = ip_hdr(skb); + th->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr, datalen, + IPPROTO_TCP, 0); + } +} + +static void complete_skb(struct sk_buff *nskb, struct sk_buff *skb, int headln) +{ + struct sock *sk = skb->sk; + int delta; + + skb_copy_header(nskb, skb); + + skb_put(nskb, skb->len); + memcpy(nskb->data, skb->data, headln); + + nskb->destructor = skb->destructor; + nskb->sk = sk; + skb->destructor = NULL; + skb->sk = NULL; + + update_chksum(nskb, headln); + + /* sock_efree means skb must gone through skb_orphan_partial() */ + if (nskb->destructor == sock_efree) + return; + + delta = nskb->truesize - skb->truesize; + if (likely(delta < 0)) + WARN_ON_ONCE(refcount_sub_and_test(-delta, &sk->sk_wmem_alloc)); + else if (delta) + refcount_add(delta, &sk->sk_wmem_alloc); +} + +/* This function may be called after the user socket is already + * closed so make sure we don't use anything freed during + * tls_sk_proto_close here + */ + +static int fill_sg_in(struct scatterlist *sg_in, + struct sk_buff *skb, + struct tls_offload_context_tx *ctx, + u64 *rcd_sn, + s32 *sync_size, + int *resync_sgs) +{ + int tcp_payload_offset = skb_tcp_all_headers(skb); + int payload_len = skb->len - tcp_payload_offset; + u32 tcp_seq = ntohl(tcp_hdr(skb)->seq); + struct tls_record_info *record; + unsigned long flags; + int remaining; + int i; + + spin_lock_irqsave(&ctx->lock, flags); + record = tls_get_record(ctx, tcp_seq, rcd_sn); + if (!record) { + spin_unlock_irqrestore(&ctx->lock, flags); + return -EINVAL; + } + + *sync_size = tcp_seq - tls_record_start_seq(record); + if (*sync_size < 0) { + int is_start_marker = tls_record_is_start_marker(record); + + spin_unlock_irqrestore(&ctx->lock, flags); + /* This should only occur if the relevant record was + * already acked. In that case it should be ok + * to drop the packet and avoid retransmission. + * + * There is a corner case where the packet contains + * both an acked and a non-acked record. + * We currently don't handle that case and rely + * on TCP to retranmit a packet that doesn't contain + * already acked payload. + */ + if (!is_start_marker) + *sync_size = 0; + return -EINVAL; + } + + remaining = *sync_size; + for (i = 0; remaining > 0; i++) { + skb_frag_t *frag = &record->frags[i]; + + __skb_frag_ref(frag); + sg_set_page(sg_in + i, skb_frag_page(frag), + skb_frag_size(frag), skb_frag_off(frag)); + + remaining -= skb_frag_size(frag); + + if (remaining < 0) + sg_in[i].length += remaining; + } + *resync_sgs = i; + + spin_unlock_irqrestore(&ctx->lock, flags); + if (skb_to_sgvec(skb, &sg_in[i], tcp_payload_offset, payload_len) < 0) + return -EINVAL; + + return 0; +} + +static void fill_sg_out(struct scatterlist sg_out[3], void *buf, + struct tls_context *tls_ctx, + struct sk_buff *nskb, + int tcp_payload_offset, + int payload_len, + int sync_size, + void *dummy_buf) +{ + const struct tls_cipher_size_desc *cipher_sz = + &tls_cipher_size_desc[tls_ctx->crypto_send.info.cipher_type]; + + sg_set_buf(&sg_out[0], dummy_buf, sync_size); + sg_set_buf(&sg_out[1], nskb->data + tcp_payload_offset, payload_len); + /* Add room for authentication tag produced by crypto */ + dummy_buf += sync_size; + sg_set_buf(&sg_out[2], dummy_buf, cipher_sz->tag); +} + +static struct sk_buff *tls_enc_skb(struct tls_context *tls_ctx, + struct scatterlist sg_out[3], + struct scatterlist *sg_in, + struct sk_buff *skb, + s32 sync_size, u64 rcd_sn) +{ + struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx); + int tcp_payload_offset = skb_tcp_all_headers(skb); + int payload_len = skb->len - tcp_payload_offset; + const struct tls_cipher_size_desc *cipher_sz; + void *buf, *iv, *aad, *dummy_buf, *salt; + struct aead_request *aead_req; + struct sk_buff *nskb = NULL; + int buf_len; + + aead_req = tls_alloc_aead_request(ctx->aead_send, GFP_ATOMIC); + if (!aead_req) + return NULL; + + switch (tls_ctx->crypto_send.info.cipher_type) { + case TLS_CIPHER_AES_GCM_128: + salt = tls_ctx->crypto_send.aes_gcm_128.salt; + break; + case TLS_CIPHER_AES_GCM_256: + salt = tls_ctx->crypto_send.aes_gcm_256.salt; + break; + default: + goto free_req; + } + cipher_sz = &tls_cipher_size_desc[tls_ctx->crypto_send.info.cipher_type]; + buf_len = cipher_sz->salt + cipher_sz->iv + TLS_AAD_SPACE_SIZE + + sync_size + cipher_sz->tag; + buf = kmalloc(buf_len, GFP_ATOMIC); + if (!buf) + goto free_req; + + iv = buf; + memcpy(iv, salt, cipher_sz->salt); + aad = buf + cipher_sz->salt + cipher_sz->iv; + dummy_buf = aad + TLS_AAD_SPACE_SIZE; + + nskb = alloc_skb(skb_headroom(skb) + skb->len, GFP_ATOMIC); + if (!nskb) + goto free_buf; + + skb_reserve(nskb, skb_headroom(skb)); + + fill_sg_out(sg_out, buf, tls_ctx, nskb, tcp_payload_offset, + payload_len, sync_size, dummy_buf); + + if (tls_enc_records(aead_req, ctx->aead_send, sg_in, sg_out, aad, iv, + rcd_sn, sync_size + payload_len, + &tls_ctx->prot_info) < 0) + goto free_nskb; + + complete_skb(nskb, skb, tcp_payload_offset); + + /* validate_xmit_skb_list assumes that if the skb wasn't segmented + * nskb->prev will point to the skb itself + */ + nskb->prev = nskb; + +free_buf: + kfree(buf); +free_req: + kfree(aead_req); + return nskb; +free_nskb: + kfree_skb(nskb); + nskb = NULL; + goto free_buf; +} + +static struct sk_buff *tls_sw_fallback(struct sock *sk, struct sk_buff *skb) +{ + int tcp_payload_offset = skb_tcp_all_headers(skb); + struct tls_context *tls_ctx = tls_get_ctx(sk); + struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx); + int payload_len = skb->len - tcp_payload_offset; + struct scatterlist *sg_in, sg_out[3]; + struct sk_buff *nskb = NULL; + int sg_in_max_elements; + int resync_sgs = 0; + s32 sync_size = 0; + u64 rcd_sn; + + /* worst case is: + * MAX_SKB_FRAGS in tls_record_info + * MAX_SKB_FRAGS + 1 in SKB head and frags. + */ + sg_in_max_elements = 2 * MAX_SKB_FRAGS + 1; + + if (!payload_len) + return skb; + + sg_in = kmalloc_array(sg_in_max_elements, sizeof(*sg_in), GFP_ATOMIC); + if (!sg_in) + goto free_orig; + + sg_init_table(sg_in, sg_in_max_elements); + sg_init_table(sg_out, ARRAY_SIZE(sg_out)); + + if (fill_sg_in(sg_in, skb, ctx, &rcd_sn, &sync_size, &resync_sgs)) { + /* bypass packets before kernel TLS socket option was set */ + if (sync_size < 0 && payload_len <= -sync_size) + nskb = skb_get(skb); + goto put_sg; + } + + nskb = tls_enc_skb(tls_ctx, sg_out, sg_in, skb, sync_size, rcd_sn); + +put_sg: + while (resync_sgs) + put_page(sg_page(&sg_in[--resync_sgs])); + kfree(sg_in); +free_orig: + if (nskb) + consume_skb(skb); + else + kfree_skb(skb); + return nskb; +} + +struct sk_buff *tls_validate_xmit_skb(struct sock *sk, + struct net_device *dev, + struct sk_buff *skb) +{ + if (dev == rcu_dereference_bh(tls_get_ctx(sk)->netdev) || + netif_is_bond_master(dev)) + return skb; + + return tls_sw_fallback(sk, skb); +} +EXPORT_SYMBOL_GPL(tls_validate_xmit_skb); + +struct sk_buff *tls_validate_xmit_skb_sw(struct sock *sk, + struct net_device *dev, + struct sk_buff *skb) +{ + return tls_sw_fallback(sk, skb); +} + +struct sk_buff *tls_encrypt_skb(struct sk_buff *skb) +{ + return tls_sw_fallback(skb->sk, skb); +} +EXPORT_SYMBOL_GPL(tls_encrypt_skb); + +int tls_sw_fallback_init(struct sock *sk, + struct tls_offload_context_tx *offload_ctx, + struct tls_crypto_info *crypto_info) +{ + const struct tls_cipher_size_desc *cipher_sz; + const u8 *key; + int rc; + + offload_ctx->aead_send = + crypto_alloc_aead("gcm(aes)", 0, CRYPTO_ALG_ASYNC); + if (IS_ERR(offload_ctx->aead_send)) { + rc = PTR_ERR(offload_ctx->aead_send); + pr_err_ratelimited("crypto_alloc_aead failed rc=%d\n", rc); + offload_ctx->aead_send = NULL; + goto err_out; + } + + switch (crypto_info->cipher_type) { + case TLS_CIPHER_AES_GCM_128: + key = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->key; + break; + case TLS_CIPHER_AES_GCM_256: + key = ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->key; + break; + default: + rc = -EINVAL; + goto free_aead; + } + cipher_sz = &tls_cipher_size_desc[crypto_info->cipher_type]; + + rc = crypto_aead_setkey(offload_ctx->aead_send, key, cipher_sz->key); + if (rc) + goto free_aead; + + rc = crypto_aead_setauthsize(offload_ctx->aead_send, cipher_sz->tag); + if (rc) + goto free_aead; + + return 0; +free_aead: + crypto_free_aead(offload_ctx->aead_send); +err_out: + return rc; +} diff --git a/net/tls/tls_main.c b/net/tls/tls_main.c new file mode 100644 index 000000000..338a443fa --- /dev/null +++ b/net/tls/tls_main.c @@ -0,0 +1,1246 @@ +/* + * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. + * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. + * + * This software is available to you under a choice of one of two + * licenses. You may choose to be licensed under the terms of the GNU + * General Public License (GPL) Version 2, available from the file + * COPYING in the main directory of this source tree, or the + * OpenIB.org BSD license below: + * + * Redistribution and use in source and binary forms, with or + * without modification, are permitted provided that the following + * conditions are met: + * + * - Redistributions of source code must retain the above + * copyright notice, this list of conditions and the following + * disclaimer. + * + * - Redistributions in binary form must reproduce the above + * copyright notice, this list of conditions and the following + * disclaimer in the documentation and/or other materials + * provided with the distribution. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, + * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND + * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS + * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN + * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE + * SOFTWARE. + */ + +#include <linux/module.h> + +#include <net/tcp.h> +#include <net/inet_common.h> +#include <linux/highmem.h> +#include <linux/netdevice.h> +#include <linux/sched/signal.h> +#include <linux/inetdevice.h> +#include <linux/inet_diag.h> + +#include <net/snmp.h> +#include <net/tls.h> +#include <net/tls_toe.h> + +#include "tls.h" + +MODULE_AUTHOR("Mellanox Technologies"); +MODULE_DESCRIPTION("Transport Layer Security Support"); +MODULE_LICENSE("Dual BSD/GPL"); +MODULE_ALIAS_TCP_ULP("tls"); + +enum { + TLSV4, + TLSV6, + TLS_NUM_PROTS, +}; + +#define CIPHER_SIZE_DESC(cipher) [cipher] = { \ + .iv = cipher ## _IV_SIZE, \ + .key = cipher ## _KEY_SIZE, \ + .salt = cipher ## _SALT_SIZE, \ + .tag = cipher ## _TAG_SIZE, \ + .rec_seq = cipher ## _REC_SEQ_SIZE, \ +} + +const struct tls_cipher_size_desc tls_cipher_size_desc[] = { + CIPHER_SIZE_DESC(TLS_CIPHER_AES_GCM_128), + CIPHER_SIZE_DESC(TLS_CIPHER_AES_GCM_256), + CIPHER_SIZE_DESC(TLS_CIPHER_AES_CCM_128), + CIPHER_SIZE_DESC(TLS_CIPHER_CHACHA20_POLY1305), + CIPHER_SIZE_DESC(TLS_CIPHER_SM4_GCM), + CIPHER_SIZE_DESC(TLS_CIPHER_SM4_CCM), +}; + +static const struct proto *saved_tcpv6_prot; +static DEFINE_MUTEX(tcpv6_prot_mutex); +static const struct proto *saved_tcpv4_prot; +static DEFINE_MUTEX(tcpv4_prot_mutex); +static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG]; +static struct proto_ops tls_proto_ops[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG]; +static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG], + const struct proto *base); + +void update_sk_prot(struct sock *sk, struct tls_context *ctx) +{ + int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4; + + WRITE_ONCE(sk->sk_prot, + &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf]); + WRITE_ONCE(sk->sk_socket->ops, + &tls_proto_ops[ip_ver][ctx->tx_conf][ctx->rx_conf]); +} + +int wait_on_pending_writer(struct sock *sk, long *timeo) +{ + DEFINE_WAIT_FUNC(wait, woken_wake_function); + int ret, rc = 0; + + add_wait_queue(sk_sleep(sk), &wait); + while (1) { + if (!*timeo) { + rc = -EAGAIN; + break; + } + + if (signal_pending(current)) { + rc = sock_intr_errno(*timeo); + break; + } + + ret = sk_wait_event(sk, timeo, + !READ_ONCE(sk->sk_write_pending), &wait); + if (ret) { + if (ret < 0) + rc = ret; + break; + } + } + remove_wait_queue(sk_sleep(sk), &wait); + return rc; +} + +int tls_push_sg(struct sock *sk, + struct tls_context *ctx, + struct scatterlist *sg, + u16 first_offset, + int flags) +{ + int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST; + int ret = 0; + struct page *p; + size_t size; + int offset = first_offset; + + size = sg->length - offset; + offset += sg->offset; + + ctx->in_tcp_sendpages = true; + while (1) { + if (sg_is_last(sg)) + sendpage_flags = flags; + + /* is sending application-limited? */ + tcp_rate_check_app_limited(sk); + p = sg_page(sg); +retry: + ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags); + + if (ret != size) { + if (ret > 0) { + offset += ret; + size -= ret; + goto retry; + } + + offset -= sg->offset; + ctx->partially_sent_offset = offset; + ctx->partially_sent_record = (void *)sg; + ctx->in_tcp_sendpages = false; + return ret; + } + + put_page(p); + sk_mem_uncharge(sk, sg->length); + sg = sg_next(sg); + if (!sg) + break; + + offset = sg->offset; + size = sg->length; + } + + ctx->in_tcp_sendpages = false; + + return 0; +} + +static int tls_handle_open_record(struct sock *sk, int flags) +{ + struct tls_context *ctx = tls_get_ctx(sk); + + if (tls_is_pending_open_record(ctx)) + return ctx->push_pending_record(sk, flags); + + return 0; +} + +int tls_process_cmsg(struct sock *sk, struct msghdr *msg, + unsigned char *record_type) +{ + struct cmsghdr *cmsg; + int rc = -EINVAL; + + for_each_cmsghdr(cmsg, msg) { + if (!CMSG_OK(msg, cmsg)) + return -EINVAL; + if (cmsg->cmsg_level != SOL_TLS) + continue; + + switch (cmsg->cmsg_type) { + case TLS_SET_RECORD_TYPE: + if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type))) + return -EINVAL; + + if (msg->msg_flags & MSG_MORE) + return -EINVAL; + + rc = tls_handle_open_record(sk, msg->msg_flags); + if (rc) + return rc; + + *record_type = *(unsigned char *)CMSG_DATA(cmsg); + rc = 0; + break; + default: + return -EINVAL; + } + } + + return rc; +} + +int tls_push_partial_record(struct sock *sk, struct tls_context *ctx, + int flags) +{ + struct scatterlist *sg; + u16 offset; + + sg = ctx->partially_sent_record; + offset = ctx->partially_sent_offset; + + ctx->partially_sent_record = NULL; + return tls_push_sg(sk, ctx, sg, offset, flags); +} + +void tls_free_partial_record(struct sock *sk, struct tls_context *ctx) +{ + struct scatterlist *sg; + + for (sg = ctx->partially_sent_record; sg; sg = sg_next(sg)) { + put_page(sg_page(sg)); + sk_mem_uncharge(sk, sg->length); + } + ctx->partially_sent_record = NULL; +} + +static void tls_write_space(struct sock *sk) +{ + struct tls_context *ctx = tls_get_ctx(sk); + + /* If in_tcp_sendpages call lower protocol write space handler + * to ensure we wake up any waiting operations there. For example + * if do_tcp_sendpages where to call sk_wait_event. + */ + if (ctx->in_tcp_sendpages) { + ctx->sk_write_space(sk); + return; + } + +#ifdef CONFIG_TLS_DEVICE + if (ctx->tx_conf == TLS_HW) + tls_device_write_space(sk, ctx); + else +#endif + tls_sw_write_space(sk, ctx); + + ctx->sk_write_space(sk); +} + +/** + * tls_ctx_free() - free TLS ULP context + * @sk: socket to with @ctx is attached + * @ctx: TLS context structure + * + * Free TLS context. If @sk is %NULL caller guarantees that the socket + * to which @ctx was attached has no outstanding references. + */ +void tls_ctx_free(struct sock *sk, struct tls_context *ctx) +{ + if (!ctx) + return; + + memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send)); + memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv)); + mutex_destroy(&ctx->tx_lock); + + if (sk) + kfree_rcu(ctx, rcu); + else + kfree(ctx); +} + +static void tls_sk_proto_cleanup(struct sock *sk, + struct tls_context *ctx, long timeo) +{ + if (unlikely(sk->sk_write_pending) && + !wait_on_pending_writer(sk, &timeo)) + tls_handle_open_record(sk, 0); + + /* We need these for tls_sw_fallback handling of other packets */ + if (ctx->tx_conf == TLS_SW) { + kfree(ctx->tx.rec_seq); + kfree(ctx->tx.iv); + tls_sw_release_resources_tx(sk); + TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW); + } else if (ctx->tx_conf == TLS_HW) { + tls_device_free_resources_tx(sk); + TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE); + } + + if (ctx->rx_conf == TLS_SW) { + tls_sw_release_resources_rx(sk); + TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW); + } else if (ctx->rx_conf == TLS_HW) { + tls_device_offload_cleanup_rx(sk); + TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE); + } +} + +static void tls_sk_proto_close(struct sock *sk, long timeout) +{ + struct inet_connection_sock *icsk = inet_csk(sk); + struct tls_context *ctx = tls_get_ctx(sk); + long timeo = sock_sndtimeo(sk, 0); + bool free_ctx; + + if (ctx->tx_conf == TLS_SW) + tls_sw_cancel_work_tx(ctx); + + lock_sock(sk); + free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW; + + if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE) + tls_sk_proto_cleanup(sk, ctx, timeo); + + write_lock_bh(&sk->sk_callback_lock); + if (free_ctx) + rcu_assign_pointer(icsk->icsk_ulp_data, NULL); + WRITE_ONCE(sk->sk_prot, ctx->sk_proto); + if (sk->sk_write_space == tls_write_space) + sk->sk_write_space = ctx->sk_write_space; + write_unlock_bh(&sk->sk_callback_lock); + release_sock(sk); + if (ctx->tx_conf == TLS_SW) + tls_sw_free_ctx_tx(ctx); + if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW) + tls_sw_strparser_done(ctx); + if (ctx->rx_conf == TLS_SW) + tls_sw_free_ctx_rx(ctx); + ctx->sk_proto->close(sk, timeout); + + if (free_ctx) + tls_ctx_free(sk, ctx); +} + +static int do_tls_getsockopt_conf(struct sock *sk, char __user *optval, + int __user *optlen, int tx) +{ + int rc = 0; + struct tls_context *ctx = tls_get_ctx(sk); + struct tls_crypto_info *crypto_info; + struct cipher_context *cctx; + int len; + + if (get_user(len, optlen)) + return -EFAULT; + + if (!optval || (len < sizeof(*crypto_info))) { + rc = -EINVAL; + goto out; + } + + if (!ctx) { + rc = -EBUSY; + goto out; + } + + /* get user crypto info */ + if (tx) { + crypto_info = &ctx->crypto_send.info; + cctx = &ctx->tx; + } else { + crypto_info = &ctx->crypto_recv.info; + cctx = &ctx->rx; + } + + if (!TLS_CRYPTO_INFO_READY(crypto_info)) { + rc = -EBUSY; + goto out; + } + + if (len == sizeof(*crypto_info)) { + if (copy_to_user(optval, crypto_info, sizeof(*crypto_info))) + rc = -EFAULT; + goto out; + } + + switch (crypto_info->cipher_type) { + case TLS_CIPHER_AES_GCM_128: { + struct tls12_crypto_info_aes_gcm_128 * + crypto_info_aes_gcm_128 = + container_of(crypto_info, + struct tls12_crypto_info_aes_gcm_128, + info); + + if (len != sizeof(*crypto_info_aes_gcm_128)) { + rc = -EINVAL; + goto out; + } + memcpy(crypto_info_aes_gcm_128->iv, + cctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, + TLS_CIPHER_AES_GCM_128_IV_SIZE); + memcpy(crypto_info_aes_gcm_128->rec_seq, cctx->rec_seq, + TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE); + if (copy_to_user(optval, + crypto_info_aes_gcm_128, + sizeof(*crypto_info_aes_gcm_128))) + rc = -EFAULT; + break; + } + case TLS_CIPHER_AES_GCM_256: { + struct tls12_crypto_info_aes_gcm_256 * + crypto_info_aes_gcm_256 = + container_of(crypto_info, + struct tls12_crypto_info_aes_gcm_256, + info); + + if (len != sizeof(*crypto_info_aes_gcm_256)) { + rc = -EINVAL; + goto out; + } + memcpy(crypto_info_aes_gcm_256->iv, + cctx->iv + TLS_CIPHER_AES_GCM_256_SALT_SIZE, + TLS_CIPHER_AES_GCM_256_IV_SIZE); + memcpy(crypto_info_aes_gcm_256->rec_seq, cctx->rec_seq, + TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE); + if (copy_to_user(optval, + crypto_info_aes_gcm_256, + sizeof(*crypto_info_aes_gcm_256))) + rc = -EFAULT; + break; + } + case TLS_CIPHER_AES_CCM_128: { + struct tls12_crypto_info_aes_ccm_128 *aes_ccm_128 = + container_of(crypto_info, + struct tls12_crypto_info_aes_ccm_128, info); + + if (len != sizeof(*aes_ccm_128)) { + rc = -EINVAL; + goto out; + } + memcpy(aes_ccm_128->iv, + cctx->iv + TLS_CIPHER_AES_CCM_128_SALT_SIZE, + TLS_CIPHER_AES_CCM_128_IV_SIZE); + memcpy(aes_ccm_128->rec_seq, cctx->rec_seq, + TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE); + if (copy_to_user(optval, aes_ccm_128, sizeof(*aes_ccm_128))) + rc = -EFAULT; + break; + } + case TLS_CIPHER_CHACHA20_POLY1305: { + struct tls12_crypto_info_chacha20_poly1305 *chacha20_poly1305 = + container_of(crypto_info, + struct tls12_crypto_info_chacha20_poly1305, + info); + + if (len != sizeof(*chacha20_poly1305)) { + rc = -EINVAL; + goto out; + } + memcpy(chacha20_poly1305->iv, + cctx->iv + TLS_CIPHER_CHACHA20_POLY1305_SALT_SIZE, + TLS_CIPHER_CHACHA20_POLY1305_IV_SIZE); + memcpy(chacha20_poly1305->rec_seq, cctx->rec_seq, + TLS_CIPHER_CHACHA20_POLY1305_REC_SEQ_SIZE); + if (copy_to_user(optval, chacha20_poly1305, + sizeof(*chacha20_poly1305))) + rc = -EFAULT; + break; + } + case TLS_CIPHER_SM4_GCM: { + struct tls12_crypto_info_sm4_gcm *sm4_gcm_info = + container_of(crypto_info, + struct tls12_crypto_info_sm4_gcm, info); + + if (len != sizeof(*sm4_gcm_info)) { + rc = -EINVAL; + goto out; + } + memcpy(sm4_gcm_info->iv, + cctx->iv + TLS_CIPHER_SM4_GCM_SALT_SIZE, + TLS_CIPHER_SM4_GCM_IV_SIZE); + memcpy(sm4_gcm_info->rec_seq, cctx->rec_seq, + TLS_CIPHER_SM4_GCM_REC_SEQ_SIZE); + if (copy_to_user(optval, sm4_gcm_info, sizeof(*sm4_gcm_info))) + rc = -EFAULT; + break; + } + case TLS_CIPHER_SM4_CCM: { + struct tls12_crypto_info_sm4_ccm *sm4_ccm_info = + container_of(crypto_info, + struct tls12_crypto_info_sm4_ccm, info); + + if (len != sizeof(*sm4_ccm_info)) { + rc = -EINVAL; + goto out; + } + memcpy(sm4_ccm_info->iv, + cctx->iv + TLS_CIPHER_SM4_CCM_SALT_SIZE, + TLS_CIPHER_SM4_CCM_IV_SIZE); + memcpy(sm4_ccm_info->rec_seq, cctx->rec_seq, + TLS_CIPHER_SM4_CCM_REC_SEQ_SIZE); + if (copy_to_user(optval, sm4_ccm_info, sizeof(*sm4_ccm_info))) + rc = -EFAULT; + break; + } + case TLS_CIPHER_ARIA_GCM_128: { + struct tls12_crypto_info_aria_gcm_128 * + crypto_info_aria_gcm_128 = + container_of(crypto_info, + struct tls12_crypto_info_aria_gcm_128, + info); + + if (len != sizeof(*crypto_info_aria_gcm_128)) { + rc = -EINVAL; + goto out; + } + memcpy(crypto_info_aria_gcm_128->iv, + cctx->iv + TLS_CIPHER_ARIA_GCM_128_SALT_SIZE, + TLS_CIPHER_ARIA_GCM_128_IV_SIZE); + memcpy(crypto_info_aria_gcm_128->rec_seq, cctx->rec_seq, + TLS_CIPHER_ARIA_GCM_128_REC_SEQ_SIZE); + if (copy_to_user(optval, + crypto_info_aria_gcm_128, + sizeof(*crypto_info_aria_gcm_128))) + rc = -EFAULT; + break; + } + case TLS_CIPHER_ARIA_GCM_256: { + struct tls12_crypto_info_aria_gcm_256 * + crypto_info_aria_gcm_256 = + container_of(crypto_info, + struct tls12_crypto_info_aria_gcm_256, + info); + + if (len != sizeof(*crypto_info_aria_gcm_256)) { + rc = -EINVAL; + goto out; + } + memcpy(crypto_info_aria_gcm_256->iv, + cctx->iv + TLS_CIPHER_ARIA_GCM_256_SALT_SIZE, + TLS_CIPHER_ARIA_GCM_256_IV_SIZE); + memcpy(crypto_info_aria_gcm_256->rec_seq, cctx->rec_seq, + TLS_CIPHER_ARIA_GCM_256_REC_SEQ_SIZE); + if (copy_to_user(optval, + crypto_info_aria_gcm_256, + sizeof(*crypto_info_aria_gcm_256))) + rc = -EFAULT; + break; + } + default: + rc = -EINVAL; + } + +out: + return rc; +} + +static int do_tls_getsockopt_tx_zc(struct sock *sk, char __user *optval, + int __user *optlen) +{ + struct tls_context *ctx = tls_get_ctx(sk); + unsigned int value; + int len; + + if (get_user(len, optlen)) + return -EFAULT; + + if (len != sizeof(value)) + return -EINVAL; + + value = ctx->zerocopy_sendfile; + if (copy_to_user(optval, &value, sizeof(value))) + return -EFAULT; + + return 0; +} + +static int do_tls_getsockopt_no_pad(struct sock *sk, char __user *optval, + int __user *optlen) +{ + struct tls_context *ctx = tls_get_ctx(sk); + int value, len; + + if (ctx->prot_info.version != TLS_1_3_VERSION) + return -EINVAL; + + if (get_user(len, optlen)) + return -EFAULT; + if (len < sizeof(value)) + return -EINVAL; + + value = -EINVAL; + if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW) + value = ctx->rx_no_pad; + if (value < 0) + return value; + + if (put_user(sizeof(value), optlen)) + return -EFAULT; + if (copy_to_user(optval, &value, sizeof(value))) + return -EFAULT; + + return 0; +} + +static int do_tls_getsockopt(struct sock *sk, int optname, + char __user *optval, int __user *optlen) +{ + int rc = 0; + + lock_sock(sk); + + switch (optname) { + case TLS_TX: + case TLS_RX: + rc = do_tls_getsockopt_conf(sk, optval, optlen, + optname == TLS_TX); + break; + case TLS_TX_ZEROCOPY_RO: + rc = do_tls_getsockopt_tx_zc(sk, optval, optlen); + break; + case TLS_RX_EXPECT_NO_PAD: + rc = do_tls_getsockopt_no_pad(sk, optval, optlen); + break; + default: + rc = -ENOPROTOOPT; + break; + } + + release_sock(sk); + + return rc; +} + +static int tls_getsockopt(struct sock *sk, int level, int optname, + char __user *optval, int __user *optlen) +{ + struct tls_context *ctx = tls_get_ctx(sk); + + if (level != SOL_TLS) + return ctx->sk_proto->getsockopt(sk, level, + optname, optval, optlen); + + return do_tls_getsockopt(sk, optname, optval, optlen); +} + +static int do_tls_setsockopt_conf(struct sock *sk, sockptr_t optval, + unsigned int optlen, int tx) +{ + struct tls_crypto_info *crypto_info; + struct tls_crypto_info *alt_crypto_info; + struct tls_context *ctx = tls_get_ctx(sk); + size_t optsize; + int rc = 0; + int conf; + + if (sockptr_is_null(optval) || (optlen < sizeof(*crypto_info))) + return -EINVAL; + + if (tx) { + crypto_info = &ctx->crypto_send.info; + alt_crypto_info = &ctx->crypto_recv.info; + } else { + crypto_info = &ctx->crypto_recv.info; + alt_crypto_info = &ctx->crypto_send.info; + } + + /* Currently we don't support set crypto info more than one time */ + if (TLS_CRYPTO_INFO_READY(crypto_info)) + return -EBUSY; + + rc = copy_from_sockptr(crypto_info, optval, sizeof(*crypto_info)); + if (rc) { + rc = -EFAULT; + goto err_crypto_info; + } + + /* check version */ + if (crypto_info->version != TLS_1_2_VERSION && + crypto_info->version != TLS_1_3_VERSION) { + rc = -EINVAL; + goto err_crypto_info; + } + + /* Ensure that TLS version and ciphers are same in both directions */ + if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) { + if (alt_crypto_info->version != crypto_info->version || + alt_crypto_info->cipher_type != crypto_info->cipher_type) { + rc = -EINVAL; + goto err_crypto_info; + } + } + + switch (crypto_info->cipher_type) { + case TLS_CIPHER_AES_GCM_128: + optsize = sizeof(struct tls12_crypto_info_aes_gcm_128); + break; + case TLS_CIPHER_AES_GCM_256: { + optsize = sizeof(struct tls12_crypto_info_aes_gcm_256); + break; + } + case TLS_CIPHER_AES_CCM_128: + optsize = sizeof(struct tls12_crypto_info_aes_ccm_128); + break; + case TLS_CIPHER_CHACHA20_POLY1305: + optsize = sizeof(struct tls12_crypto_info_chacha20_poly1305); + break; + case TLS_CIPHER_SM4_GCM: + optsize = sizeof(struct tls12_crypto_info_sm4_gcm); + break; + case TLS_CIPHER_SM4_CCM: + optsize = sizeof(struct tls12_crypto_info_sm4_ccm); + break; + case TLS_CIPHER_ARIA_GCM_128: + if (crypto_info->version != TLS_1_2_VERSION) { + rc = -EINVAL; + goto err_crypto_info; + } + optsize = sizeof(struct tls12_crypto_info_aria_gcm_128); + break; + case TLS_CIPHER_ARIA_GCM_256: + if (crypto_info->version != TLS_1_2_VERSION) { + rc = -EINVAL; + goto err_crypto_info; + } + optsize = sizeof(struct tls12_crypto_info_aria_gcm_256); + break; + default: + rc = -EINVAL; + goto err_crypto_info; + } + + if (optlen != optsize) { + rc = -EINVAL; + goto err_crypto_info; + } + + rc = copy_from_sockptr_offset(crypto_info + 1, optval, + sizeof(*crypto_info), + optlen - sizeof(*crypto_info)); + if (rc) { + rc = -EFAULT; + goto err_crypto_info; + } + + if (tx) { + rc = tls_set_device_offload(sk, ctx); + conf = TLS_HW; + if (!rc) { + TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXDEVICE); + TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE); + } else { + rc = tls_set_sw_offload(sk, ctx, 1); + if (rc) + goto err_crypto_info; + TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXSW); + TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW); + conf = TLS_SW; + } + } else { + rc = tls_set_device_offload_rx(sk, ctx); + conf = TLS_HW; + if (!rc) { + TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICE); + TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE); + } else { + rc = tls_set_sw_offload(sk, ctx, 0); + if (rc) + goto err_crypto_info; + TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXSW); + TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW); + conf = TLS_SW; + } + tls_sw_strparser_arm(sk, ctx); + } + + if (tx) + ctx->tx_conf = conf; + else + ctx->rx_conf = conf; + update_sk_prot(sk, ctx); + if (tx) { + ctx->sk_write_space = sk->sk_write_space; + sk->sk_write_space = tls_write_space; + } else { + struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(ctx); + + tls_strp_check_rcv(&rx_ctx->strp); + } + return 0; + +err_crypto_info: + memzero_explicit(crypto_info, sizeof(union tls_crypto_context)); + return rc; +} + +static int do_tls_setsockopt_tx_zc(struct sock *sk, sockptr_t optval, + unsigned int optlen) +{ + struct tls_context *ctx = tls_get_ctx(sk); + unsigned int value; + + if (sockptr_is_null(optval) || optlen != sizeof(value)) + return -EINVAL; + + if (copy_from_sockptr(&value, optval, sizeof(value))) + return -EFAULT; + + if (value > 1) + return -EINVAL; + + ctx->zerocopy_sendfile = value; + + return 0; +} + +static int do_tls_setsockopt_no_pad(struct sock *sk, sockptr_t optval, + unsigned int optlen) +{ + struct tls_context *ctx = tls_get_ctx(sk); + u32 val; + int rc; + + if (ctx->prot_info.version != TLS_1_3_VERSION || + sockptr_is_null(optval) || optlen < sizeof(val)) + return -EINVAL; + + rc = copy_from_sockptr(&val, optval, sizeof(val)); + if (rc) + return -EFAULT; + if (val > 1) + return -EINVAL; + rc = check_zeroed_sockptr(optval, sizeof(val), optlen - sizeof(val)); + if (rc < 1) + return rc == 0 ? -EINVAL : rc; + + lock_sock(sk); + rc = -EINVAL; + if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW) { + ctx->rx_no_pad = val; + tls_update_rx_zc_capable(ctx); + rc = 0; + } + release_sock(sk); + + return rc; +} + +static int do_tls_setsockopt(struct sock *sk, int optname, sockptr_t optval, + unsigned int optlen) +{ + int rc = 0; + + switch (optname) { + case TLS_TX: + case TLS_RX: + lock_sock(sk); + rc = do_tls_setsockopt_conf(sk, optval, optlen, + optname == TLS_TX); + release_sock(sk); + break; + case TLS_TX_ZEROCOPY_RO: + lock_sock(sk); + rc = do_tls_setsockopt_tx_zc(sk, optval, optlen); + release_sock(sk); + break; + case TLS_RX_EXPECT_NO_PAD: + rc = do_tls_setsockopt_no_pad(sk, optval, optlen); + break; + default: + rc = -ENOPROTOOPT; + break; + } + return rc; +} + +static int tls_setsockopt(struct sock *sk, int level, int optname, + sockptr_t optval, unsigned int optlen) +{ + struct tls_context *ctx = tls_get_ctx(sk); + + if (level != SOL_TLS) + return ctx->sk_proto->setsockopt(sk, level, optname, optval, + optlen); + + return do_tls_setsockopt(sk, optname, optval, optlen); +} + +struct tls_context *tls_ctx_create(struct sock *sk) +{ + struct inet_connection_sock *icsk = inet_csk(sk); + struct tls_context *ctx; + + ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC); + if (!ctx) + return NULL; + + mutex_init(&ctx->tx_lock); + rcu_assign_pointer(icsk->icsk_ulp_data, ctx); + ctx->sk_proto = READ_ONCE(sk->sk_prot); + ctx->sk = sk; + return ctx; +} + +static void build_proto_ops(struct proto_ops ops[TLS_NUM_CONFIG][TLS_NUM_CONFIG], + const struct proto_ops *base) +{ + ops[TLS_BASE][TLS_BASE] = *base; + + ops[TLS_SW ][TLS_BASE] = ops[TLS_BASE][TLS_BASE]; + ops[TLS_SW ][TLS_BASE].sendpage_locked = tls_sw_sendpage_locked; + + ops[TLS_BASE][TLS_SW ] = ops[TLS_BASE][TLS_BASE]; + ops[TLS_BASE][TLS_SW ].splice_read = tls_sw_splice_read; + + ops[TLS_SW ][TLS_SW ] = ops[TLS_SW ][TLS_BASE]; + ops[TLS_SW ][TLS_SW ].splice_read = tls_sw_splice_read; + +#ifdef CONFIG_TLS_DEVICE + ops[TLS_HW ][TLS_BASE] = ops[TLS_BASE][TLS_BASE]; + ops[TLS_HW ][TLS_BASE].sendpage_locked = NULL; + + ops[TLS_HW ][TLS_SW ] = ops[TLS_BASE][TLS_SW ]; + ops[TLS_HW ][TLS_SW ].sendpage_locked = NULL; + + ops[TLS_BASE][TLS_HW ] = ops[TLS_BASE][TLS_SW ]; + + ops[TLS_SW ][TLS_HW ] = ops[TLS_SW ][TLS_SW ]; + + ops[TLS_HW ][TLS_HW ] = ops[TLS_HW ][TLS_SW ]; + ops[TLS_HW ][TLS_HW ].sendpage_locked = NULL; +#endif +#ifdef CONFIG_TLS_TOE + ops[TLS_HW_RECORD][TLS_HW_RECORD] = *base; +#endif +} + +static void tls_build_proto(struct sock *sk) +{ + int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4; + struct proto *prot = READ_ONCE(sk->sk_prot); + + /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */ + if (ip_ver == TLSV6 && + unlikely(prot != smp_load_acquire(&saved_tcpv6_prot))) { + mutex_lock(&tcpv6_prot_mutex); + if (likely(prot != saved_tcpv6_prot)) { + build_protos(tls_prots[TLSV6], prot); + build_proto_ops(tls_proto_ops[TLSV6], + sk->sk_socket->ops); + smp_store_release(&saved_tcpv6_prot, prot); + } + mutex_unlock(&tcpv6_prot_mutex); + } + + if (ip_ver == TLSV4 && + unlikely(prot != smp_load_acquire(&saved_tcpv4_prot))) { + mutex_lock(&tcpv4_prot_mutex); + if (likely(prot != saved_tcpv4_prot)) { + build_protos(tls_prots[TLSV4], prot); + build_proto_ops(tls_proto_ops[TLSV4], + sk->sk_socket->ops); + smp_store_release(&saved_tcpv4_prot, prot); + } + mutex_unlock(&tcpv4_prot_mutex); + } +} + +static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG], + const struct proto *base) +{ + prot[TLS_BASE][TLS_BASE] = *base; + prot[TLS_BASE][TLS_BASE].setsockopt = tls_setsockopt; + prot[TLS_BASE][TLS_BASE].getsockopt = tls_getsockopt; + prot[TLS_BASE][TLS_BASE].close = tls_sk_proto_close; + + prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE]; + prot[TLS_SW][TLS_BASE].sendmsg = tls_sw_sendmsg; + prot[TLS_SW][TLS_BASE].sendpage = tls_sw_sendpage; + + prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE]; + prot[TLS_BASE][TLS_SW].recvmsg = tls_sw_recvmsg; + prot[TLS_BASE][TLS_SW].sock_is_readable = tls_sw_sock_is_readable; + prot[TLS_BASE][TLS_SW].close = tls_sk_proto_close; + + prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE]; + prot[TLS_SW][TLS_SW].recvmsg = tls_sw_recvmsg; + prot[TLS_SW][TLS_SW].sock_is_readable = tls_sw_sock_is_readable; + prot[TLS_SW][TLS_SW].close = tls_sk_proto_close; + +#ifdef CONFIG_TLS_DEVICE + prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE]; + prot[TLS_HW][TLS_BASE].sendmsg = tls_device_sendmsg; + prot[TLS_HW][TLS_BASE].sendpage = tls_device_sendpage; + + prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW]; + prot[TLS_HW][TLS_SW].sendmsg = tls_device_sendmsg; + prot[TLS_HW][TLS_SW].sendpage = tls_device_sendpage; + + prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW]; + + prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW]; + + prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW]; +#endif +#ifdef CONFIG_TLS_TOE + prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base; + prot[TLS_HW_RECORD][TLS_HW_RECORD].hash = tls_toe_hash; + prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash = tls_toe_unhash; +#endif +} + +static int tls_init(struct sock *sk) +{ + struct tls_context *ctx; + int rc = 0; + + tls_build_proto(sk); + +#ifdef CONFIG_TLS_TOE + if (tls_toe_bypass(sk)) + return 0; +#endif + + /* The TLS ulp is currently supported only for TCP sockets + * in ESTABLISHED state. + * Supporting sockets in LISTEN state will require us + * to modify the accept implementation to clone rather then + * share the ulp context. + */ + if (sk->sk_state != TCP_ESTABLISHED) + return -ENOTCONN; + + /* allocate tls context */ + write_lock_bh(&sk->sk_callback_lock); + ctx = tls_ctx_create(sk); + if (!ctx) { + rc = -ENOMEM; + goto out; + } + + ctx->tx_conf = TLS_BASE; + ctx->rx_conf = TLS_BASE; + update_sk_prot(sk, ctx); +out: + write_unlock_bh(&sk->sk_callback_lock); + return rc; +} + +static void tls_update(struct sock *sk, struct proto *p, + void (*write_space)(struct sock *sk)) +{ + struct tls_context *ctx; + + WARN_ON_ONCE(sk->sk_prot == p); + + ctx = tls_get_ctx(sk); + if (likely(ctx)) { + ctx->sk_write_space = write_space; + ctx->sk_proto = p; + } else { + /* Pairs with lockless read in sk_clone_lock(). */ + WRITE_ONCE(sk->sk_prot, p); + sk->sk_write_space = write_space; + } +} + +static u16 tls_user_config(struct tls_context *ctx, bool tx) +{ + u16 config = tx ? ctx->tx_conf : ctx->rx_conf; + + switch (config) { + case TLS_BASE: + return TLS_CONF_BASE; + case TLS_SW: + return TLS_CONF_SW; + case TLS_HW: + return TLS_CONF_HW; + case TLS_HW_RECORD: + return TLS_CONF_HW_RECORD; + } + return 0; +} + +static int tls_get_info(const struct sock *sk, struct sk_buff *skb) +{ + u16 version, cipher_type; + struct tls_context *ctx; + struct nlattr *start; + int err; + + start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS); + if (!start) + return -EMSGSIZE; + + rcu_read_lock(); + ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data); + if (!ctx) { + err = 0; + goto nla_failure; + } + version = ctx->prot_info.version; + if (version) { + err = nla_put_u16(skb, TLS_INFO_VERSION, version); + if (err) + goto nla_failure; + } + cipher_type = ctx->prot_info.cipher_type; + if (cipher_type) { + err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type); + if (err) + goto nla_failure; + } + err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true)); + if (err) + goto nla_failure; + + err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false)); + if (err) + goto nla_failure; + + if (ctx->tx_conf == TLS_HW && ctx->zerocopy_sendfile) { + err = nla_put_flag(skb, TLS_INFO_ZC_RO_TX); + if (err) + goto nla_failure; + } + if (ctx->rx_no_pad) { + err = nla_put_flag(skb, TLS_INFO_RX_NO_PAD); + if (err) + goto nla_failure; + } + + rcu_read_unlock(); + nla_nest_end(skb, start); + return 0; + +nla_failure: + rcu_read_unlock(); + nla_nest_cancel(skb, start); + return err; +} + +static size_t tls_get_info_size(const struct sock *sk) +{ + size_t size = 0; + + size += nla_total_size(0) + /* INET_ULP_INFO_TLS */ + nla_total_size(sizeof(u16)) + /* TLS_INFO_VERSION */ + nla_total_size(sizeof(u16)) + /* TLS_INFO_CIPHER */ + nla_total_size(sizeof(u16)) + /* TLS_INFO_RXCONF */ + nla_total_size(sizeof(u16)) + /* TLS_INFO_TXCONF */ + nla_total_size(0) + /* TLS_INFO_ZC_RO_TX */ + nla_total_size(0) + /* TLS_INFO_RX_NO_PAD */ + 0; + + return size; +} + +static int __net_init tls_init_net(struct net *net) +{ + int err; + + net->mib.tls_statistics = alloc_percpu(struct linux_tls_mib); + if (!net->mib.tls_statistics) + return -ENOMEM; + + err = tls_proc_init(net); + if (err) + goto err_free_stats; + + return 0; +err_free_stats: + free_percpu(net->mib.tls_statistics); + return err; +} + +static void __net_exit tls_exit_net(struct net *net) +{ + tls_proc_fini(net); + free_percpu(net->mib.tls_statistics); +} + +static struct pernet_operations tls_proc_ops = { + .init = tls_init_net, + .exit = tls_exit_net, +}; + +static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = { + .name = "tls", + .owner = THIS_MODULE, + .init = tls_init, + .update = tls_update, + .get_info = tls_get_info, + .get_info_size = tls_get_info_size, +}; + +static int __init tls_register(void) +{ + int err; + + err = register_pernet_subsys(&tls_proc_ops); + if (err) + return err; + + err = tls_strp_dev_init(); + if (err) + goto err_pernet; + + err = tls_device_init(); + if (err) + goto err_strp; + + tcp_register_ulp(&tcp_tls_ulp_ops); + + return 0; +err_strp: + tls_strp_dev_exit(); +err_pernet: + unregister_pernet_subsys(&tls_proc_ops); + return err; +} + +static void __exit tls_unregister(void) +{ + tcp_unregister_ulp(&tcp_tls_ulp_ops); + tls_strp_dev_exit(); + tls_device_cleanup(); + unregister_pernet_subsys(&tls_proc_ops); +} + +module_init(tls_register); +module_exit(tls_unregister); diff --git a/net/tls/tls_proc.c b/net/tls/tls_proc.c new file mode 100644 index 000000000..68982728f --- /dev/null +++ b/net/tls/tls_proc.c @@ -0,0 +1,56 @@ +// SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause) +/* Copyright (C) 2019 Netronome Systems, Inc. */ + +#include <linux/proc_fs.h> +#include <linux/seq_file.h> +#include <net/snmp.h> +#include <net/tls.h> + +#include "tls.h" + +#ifdef CONFIG_PROC_FS +static const struct snmp_mib tls_mib_list[] = { + SNMP_MIB_ITEM("TlsCurrTxSw", LINUX_MIB_TLSCURRTXSW), + SNMP_MIB_ITEM("TlsCurrRxSw", LINUX_MIB_TLSCURRRXSW), + SNMP_MIB_ITEM("TlsCurrTxDevice", LINUX_MIB_TLSCURRTXDEVICE), + SNMP_MIB_ITEM("TlsCurrRxDevice", LINUX_MIB_TLSCURRRXDEVICE), + SNMP_MIB_ITEM("TlsTxSw", LINUX_MIB_TLSTXSW), + SNMP_MIB_ITEM("TlsRxSw", LINUX_MIB_TLSRXSW), + SNMP_MIB_ITEM("TlsTxDevice", LINUX_MIB_TLSTXDEVICE), + SNMP_MIB_ITEM("TlsRxDevice", LINUX_MIB_TLSRXDEVICE), + SNMP_MIB_ITEM("TlsDecryptError", LINUX_MIB_TLSDECRYPTERROR), + SNMP_MIB_ITEM("TlsRxDeviceResync", LINUX_MIB_TLSRXDEVICERESYNC), + SNMP_MIB_ITEM("TlsDecryptRetry", LINUX_MIB_TLSDECRYPTRETRY), + SNMP_MIB_ITEM("TlsRxNoPadViolation", LINUX_MIB_TLSRXNOPADVIOL), + SNMP_MIB_SENTINEL +}; + +static int tls_statistics_seq_show(struct seq_file *seq, void *v) +{ + unsigned long buf[LINUX_MIB_TLSMAX] = {}; + struct net *net = seq->private; + int i; + + snmp_get_cpu_field_batch(buf, tls_mib_list, net->mib.tls_statistics); + for (i = 0; tls_mib_list[i].name; i++) + seq_printf(seq, "%-32s\t%lu\n", tls_mib_list[i].name, buf[i]); + + return 0; +} +#endif + +int __net_init tls_proc_init(struct net *net) +{ +#ifdef CONFIG_PROC_FS + if (!proc_create_net_single("tls_stat", 0444, net->proc_net, + tls_statistics_seq_show, NULL)) + return -ENOMEM; +#endif /* CONFIG_PROC_FS */ + + return 0; +} + +void __net_exit tls_proc_fini(struct net *net) +{ + remove_proc_entry("tls_stat", net->proc_net); +} diff --git a/net/tls/tls_strp.c b/net/tls/tls_strp.c new file mode 100644 index 000000000..f37f4a0fc --- /dev/null +++ b/net/tls/tls_strp.c @@ -0,0 +1,633 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* Copyright (c) 2016 Tom Herbert <tom@herbertland.com> */ + +#include <linux/skbuff.h> +#include <linux/workqueue.h> +#include <net/strparser.h> +#include <net/tcp.h> +#include <net/sock.h> +#include <net/tls.h> + +#include "tls.h" + +static struct workqueue_struct *tls_strp_wq; + +static void tls_strp_abort_strp(struct tls_strparser *strp, int err) +{ + if (strp->stopped) + return; + + strp->stopped = 1; + + /* Report an error on the lower socket */ + WRITE_ONCE(strp->sk->sk_err, -err); + /* Paired with smp_rmb() in tcp_poll() */ + smp_wmb(); + sk_error_report(strp->sk); +} + +static void tls_strp_anchor_free(struct tls_strparser *strp) +{ + struct skb_shared_info *shinfo = skb_shinfo(strp->anchor); + + DEBUG_NET_WARN_ON_ONCE(atomic_read(&shinfo->dataref) != 1); + if (!strp->copy_mode) + shinfo->frag_list = NULL; + consume_skb(strp->anchor); + strp->anchor = NULL; +} + +static struct sk_buff * +tls_strp_skb_copy(struct tls_strparser *strp, struct sk_buff *in_skb, + int offset, int len) +{ + struct sk_buff *skb; + int i, err; + + skb = alloc_skb_with_frags(0, len, TLS_PAGE_ORDER, + &err, strp->sk->sk_allocation); + if (!skb) + return NULL; + + for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { + skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; + + WARN_ON_ONCE(skb_copy_bits(in_skb, offset, + skb_frag_address(frag), + skb_frag_size(frag))); + offset += skb_frag_size(frag); + } + + skb->len = len; + skb->data_len = len; + skb_copy_header(skb, in_skb); + return skb; +} + +/* Create a new skb with the contents of input copied to its page frags */ +static struct sk_buff *tls_strp_msg_make_copy(struct tls_strparser *strp) +{ + struct strp_msg *rxm; + struct sk_buff *skb; + + skb = tls_strp_skb_copy(strp, strp->anchor, strp->stm.offset, + strp->stm.full_len); + if (!skb) + return NULL; + + rxm = strp_msg(skb); + rxm->offset = 0; + return skb; +} + +/* Steal the input skb, input msg is invalid after calling this function */ +struct sk_buff *tls_strp_msg_detach(struct tls_sw_context_rx *ctx) +{ + struct tls_strparser *strp = &ctx->strp; + +#ifdef CONFIG_TLS_DEVICE + DEBUG_NET_WARN_ON_ONCE(!strp->anchor->decrypted); +#else + /* This function turns an input into an output, + * that can only happen if we have offload. + */ + WARN_ON(1); +#endif + + if (strp->copy_mode) { + struct sk_buff *skb; + + /* Replace anchor with an empty skb, this is a little + * dangerous but __tls_cur_msg() warns on empty skbs + * so hopefully we'll catch abuses. + */ + skb = alloc_skb(0, strp->sk->sk_allocation); + if (!skb) + return NULL; + + swap(strp->anchor, skb); + return skb; + } + + return tls_strp_msg_make_copy(strp); +} + +/* Force the input skb to be in copy mode. The data ownership remains + * with the input skb itself (meaning unpause will wipe it) but it can + * be modified. + */ +int tls_strp_msg_cow(struct tls_sw_context_rx *ctx) +{ + struct tls_strparser *strp = &ctx->strp; + struct sk_buff *skb; + + if (strp->copy_mode) + return 0; + + skb = tls_strp_msg_make_copy(strp); + if (!skb) + return -ENOMEM; + + tls_strp_anchor_free(strp); + strp->anchor = skb; + + tcp_read_done(strp->sk, strp->stm.full_len); + strp->copy_mode = 1; + + return 0; +} + +/* Make a clone (in the skb sense) of the input msg to keep a reference + * to the underlying data. The reference-holding skbs get placed on + * @dst. + */ +int tls_strp_msg_hold(struct tls_strparser *strp, struct sk_buff_head *dst) +{ + struct skb_shared_info *shinfo = skb_shinfo(strp->anchor); + + if (strp->copy_mode) { + struct sk_buff *skb; + + WARN_ON_ONCE(!shinfo->nr_frags); + + /* We can't skb_clone() the anchor, it gets wiped by unpause */ + skb = alloc_skb(0, strp->sk->sk_allocation); + if (!skb) + return -ENOMEM; + + __skb_queue_tail(dst, strp->anchor); + strp->anchor = skb; + } else { + struct sk_buff *iter, *clone; + int chunk, len, offset; + + offset = strp->stm.offset; + len = strp->stm.full_len; + iter = shinfo->frag_list; + + while (len > 0) { + if (iter->len <= offset) { + offset -= iter->len; + goto next; + } + + chunk = iter->len - offset; + offset = 0; + + clone = skb_clone(iter, strp->sk->sk_allocation); + if (!clone) + return -ENOMEM; + __skb_queue_tail(dst, clone); + + len -= chunk; +next: + iter = iter->next; + } + } + + return 0; +} + +static void tls_strp_flush_anchor_copy(struct tls_strparser *strp) +{ + struct skb_shared_info *shinfo = skb_shinfo(strp->anchor); + int i; + + DEBUG_NET_WARN_ON_ONCE(atomic_read(&shinfo->dataref) != 1); + + for (i = 0; i < shinfo->nr_frags; i++) + __skb_frag_unref(&shinfo->frags[i], false); + shinfo->nr_frags = 0; + if (strp->copy_mode) { + kfree_skb_list(shinfo->frag_list); + shinfo->frag_list = NULL; + } + strp->copy_mode = 0; + strp->mixed_decrypted = 0; +} + +static int tls_strp_copyin_frag(struct tls_strparser *strp, struct sk_buff *skb, + struct sk_buff *in_skb, unsigned int offset, + size_t in_len) +{ + size_t len, chunk; + skb_frag_t *frag; + int sz; + + frag = &skb_shinfo(skb)->frags[skb->len / PAGE_SIZE]; + + len = in_len; + /* First make sure we got the header */ + if (!strp->stm.full_len) { + /* Assume one page is more than enough for headers */ + chunk = min_t(size_t, len, PAGE_SIZE - skb_frag_size(frag)); + WARN_ON_ONCE(skb_copy_bits(in_skb, offset, + skb_frag_address(frag) + + skb_frag_size(frag), + chunk)); + + skb->len += chunk; + skb->data_len += chunk; + skb_frag_size_add(frag, chunk); + + sz = tls_rx_msg_size(strp, skb); + if (sz < 0) + return sz; + + /* We may have over-read, sz == 0 is guaranteed under-read */ + if (unlikely(sz && sz < skb->len)) { + int over = skb->len - sz; + + WARN_ON_ONCE(over > chunk); + skb->len -= over; + skb->data_len -= over; + skb_frag_size_add(frag, -over); + + chunk -= over; + } + + frag++; + len -= chunk; + offset += chunk; + + strp->stm.full_len = sz; + if (!strp->stm.full_len) + goto read_done; + } + + /* Load up more data */ + while (len && strp->stm.full_len > skb->len) { + chunk = min_t(size_t, len, strp->stm.full_len - skb->len); + chunk = min_t(size_t, chunk, PAGE_SIZE - skb_frag_size(frag)); + WARN_ON_ONCE(skb_copy_bits(in_skb, offset, + skb_frag_address(frag) + + skb_frag_size(frag), + chunk)); + + skb->len += chunk; + skb->data_len += chunk; + skb_frag_size_add(frag, chunk); + frag++; + len -= chunk; + offset += chunk; + } + +read_done: + return in_len - len; +} + +static int tls_strp_copyin_skb(struct tls_strparser *strp, struct sk_buff *skb, + struct sk_buff *in_skb, unsigned int offset, + size_t in_len) +{ + struct sk_buff *nskb, *first, *last; + struct skb_shared_info *shinfo; + size_t chunk; + int sz; + + if (strp->stm.full_len) + chunk = strp->stm.full_len - skb->len; + else + chunk = TLS_MAX_PAYLOAD_SIZE + PAGE_SIZE; + chunk = min(chunk, in_len); + + nskb = tls_strp_skb_copy(strp, in_skb, offset, chunk); + if (!nskb) + return -ENOMEM; + + shinfo = skb_shinfo(skb); + if (!shinfo->frag_list) { + shinfo->frag_list = nskb; + nskb->prev = nskb; + } else { + first = shinfo->frag_list; + last = first->prev; + last->next = nskb; + first->prev = nskb; + } + + skb->len += chunk; + skb->data_len += chunk; + + if (!strp->stm.full_len) { + sz = tls_rx_msg_size(strp, skb); + if (sz < 0) + return sz; + + /* We may have over-read, sz == 0 is guaranteed under-read */ + if (unlikely(sz && sz < skb->len)) { + int over = skb->len - sz; + + WARN_ON_ONCE(over > chunk); + skb->len -= over; + skb->data_len -= over; + __pskb_trim(nskb, nskb->len - over); + + chunk -= over; + } + + strp->stm.full_len = sz; + } + + return chunk; +} + +static int tls_strp_copyin(read_descriptor_t *desc, struct sk_buff *in_skb, + unsigned int offset, size_t in_len) +{ + struct tls_strparser *strp = (struct tls_strparser *)desc->arg.data; + struct sk_buff *skb; + int ret; + + if (strp->msg_ready) + return 0; + + skb = strp->anchor; + if (!skb->len) + skb_copy_decrypted(skb, in_skb); + else + strp->mixed_decrypted |= !!skb_cmp_decrypted(skb, in_skb); + + if (IS_ENABLED(CONFIG_TLS_DEVICE) && strp->mixed_decrypted) + ret = tls_strp_copyin_skb(strp, skb, in_skb, offset, in_len); + else + ret = tls_strp_copyin_frag(strp, skb, in_skb, offset, in_len); + if (ret < 0) { + desc->error = ret; + ret = 0; + } + + if (strp->stm.full_len && strp->stm.full_len == skb->len) { + desc->count = 0; + + strp->msg_ready = 1; + tls_rx_msg_ready(strp); + } + + return ret; +} + +static int tls_strp_read_copyin(struct tls_strparser *strp) +{ + struct socket *sock = strp->sk->sk_socket; + read_descriptor_t desc; + + desc.arg.data = strp; + desc.error = 0; + desc.count = 1; /* give more than one skb per call */ + + /* sk should be locked here, so okay to do read_sock */ + sock->ops->read_sock(strp->sk, &desc, tls_strp_copyin); + + return desc.error; +} + +static int tls_strp_read_copy(struct tls_strparser *strp, bool qshort) +{ + struct skb_shared_info *shinfo; + struct page *page; + int need_spc, len; + + /* If the rbuf is small or rcv window has collapsed to 0 we need + * to read the data out. Otherwise the connection will stall. + * Without pressure threshold of INT_MAX will never be ready. + */ + if (likely(qshort && !tcp_epollin_ready(strp->sk, INT_MAX))) + return 0; + + shinfo = skb_shinfo(strp->anchor); + shinfo->frag_list = NULL; + + /* If we don't know the length go max plus page for cipher overhead */ + need_spc = strp->stm.full_len ?: TLS_MAX_PAYLOAD_SIZE + PAGE_SIZE; + + for (len = need_spc; len > 0; len -= PAGE_SIZE) { + page = alloc_page(strp->sk->sk_allocation); + if (!page) { + tls_strp_flush_anchor_copy(strp); + return -ENOMEM; + } + + skb_fill_page_desc(strp->anchor, shinfo->nr_frags++, + page, 0, 0); + } + + strp->copy_mode = 1; + strp->stm.offset = 0; + + strp->anchor->len = 0; + strp->anchor->data_len = 0; + strp->anchor->truesize = round_up(need_spc, PAGE_SIZE); + + tls_strp_read_copyin(strp); + + return 0; +} + +static bool tls_strp_check_queue_ok(struct tls_strparser *strp) +{ + unsigned int len = strp->stm.offset + strp->stm.full_len; + struct sk_buff *first, *skb; + u32 seq; + + first = skb_shinfo(strp->anchor)->frag_list; + skb = first; + seq = TCP_SKB_CB(first)->seq; + + /* Make sure there's no duplicate data in the queue, + * and the decrypted status matches. + */ + while (skb->len < len) { + seq += skb->len; + len -= skb->len; + skb = skb->next; + + if (TCP_SKB_CB(skb)->seq != seq) + return false; + if (skb_cmp_decrypted(first, skb)) + return false; + } + + return true; +} + +static void tls_strp_load_anchor_with_queue(struct tls_strparser *strp, int len) +{ + struct tcp_sock *tp = tcp_sk(strp->sk); + struct sk_buff *first; + u32 offset; + + first = tcp_recv_skb(strp->sk, tp->copied_seq, &offset); + if (WARN_ON_ONCE(!first)) + return; + + /* Bestow the state onto the anchor */ + strp->anchor->len = offset + len; + strp->anchor->data_len = offset + len; + strp->anchor->truesize = offset + len; + + skb_shinfo(strp->anchor)->frag_list = first; + + skb_copy_header(strp->anchor, first); + strp->anchor->destructor = NULL; + + strp->stm.offset = offset; +} + +void tls_strp_msg_load(struct tls_strparser *strp, bool force_refresh) +{ + struct strp_msg *rxm; + struct tls_msg *tlm; + + DEBUG_NET_WARN_ON_ONCE(!strp->msg_ready); + DEBUG_NET_WARN_ON_ONCE(!strp->stm.full_len); + + if (!strp->copy_mode && force_refresh) { + if (WARN_ON(tcp_inq(strp->sk) < strp->stm.full_len)) + return; + + tls_strp_load_anchor_with_queue(strp, strp->stm.full_len); + } + + rxm = strp_msg(strp->anchor); + rxm->full_len = strp->stm.full_len; + rxm->offset = strp->stm.offset; + tlm = tls_msg(strp->anchor); + tlm->control = strp->mark; +} + +/* Called with lock held on lower socket */ +static int tls_strp_read_sock(struct tls_strparser *strp) +{ + int sz, inq; + + inq = tcp_inq(strp->sk); + if (inq < 1) + return 0; + + if (unlikely(strp->copy_mode)) + return tls_strp_read_copyin(strp); + + if (inq < strp->stm.full_len) + return tls_strp_read_copy(strp, true); + + if (!strp->stm.full_len) { + tls_strp_load_anchor_with_queue(strp, inq); + + sz = tls_rx_msg_size(strp, strp->anchor); + if (sz < 0) { + tls_strp_abort_strp(strp, sz); + return sz; + } + + strp->stm.full_len = sz; + + if (!strp->stm.full_len || inq < strp->stm.full_len) + return tls_strp_read_copy(strp, true); + } + + if (!tls_strp_check_queue_ok(strp)) + return tls_strp_read_copy(strp, false); + + strp->msg_ready = 1; + tls_rx_msg_ready(strp); + + return 0; +} + +void tls_strp_check_rcv(struct tls_strparser *strp) +{ + if (unlikely(strp->stopped) || strp->msg_ready) + return; + + if (tls_strp_read_sock(strp) == -ENOMEM) + queue_work(tls_strp_wq, &strp->work); +} + +/* Lower sock lock held */ +void tls_strp_data_ready(struct tls_strparser *strp) +{ + /* This check is needed to synchronize with do_tls_strp_work. + * do_tls_strp_work acquires a process lock (lock_sock) whereas + * the lock held here is bh_lock_sock. The two locks can be + * held by different threads at the same time, but bh_lock_sock + * allows a thread in BH context to safely check if the process + * lock is held. In this case, if the lock is held, queue work. + */ + if (sock_owned_by_user_nocheck(strp->sk)) { + queue_work(tls_strp_wq, &strp->work); + return; + } + + tls_strp_check_rcv(strp); +} + +static void tls_strp_work(struct work_struct *w) +{ + struct tls_strparser *strp = + container_of(w, struct tls_strparser, work); + + lock_sock(strp->sk); + tls_strp_check_rcv(strp); + release_sock(strp->sk); +} + +void tls_strp_msg_done(struct tls_strparser *strp) +{ + WARN_ON(!strp->stm.full_len); + + if (likely(!strp->copy_mode)) + tcp_read_done(strp->sk, strp->stm.full_len); + else + tls_strp_flush_anchor_copy(strp); + + strp->msg_ready = 0; + memset(&strp->stm, 0, sizeof(strp->stm)); + + tls_strp_check_rcv(strp); +} + +void tls_strp_stop(struct tls_strparser *strp) +{ + strp->stopped = 1; +} + +int tls_strp_init(struct tls_strparser *strp, struct sock *sk) +{ + memset(strp, 0, sizeof(*strp)); + + strp->sk = sk; + + strp->anchor = alloc_skb(0, GFP_KERNEL); + if (!strp->anchor) + return -ENOMEM; + + INIT_WORK(&strp->work, tls_strp_work); + + return 0; +} + +/* strp must already be stopped so that tls_strp_recv will no longer be called. + * Note that tls_strp_done is not called with the lower socket held. + */ +void tls_strp_done(struct tls_strparser *strp) +{ + WARN_ON(!strp->stopped); + + cancel_work_sync(&strp->work); + tls_strp_anchor_free(strp); +} + +int __init tls_strp_dev_init(void) +{ + tls_strp_wq = create_workqueue("tls-strp"); + if (unlikely(!tls_strp_wq)) + return -ENOMEM; + + return 0; +} + +void tls_strp_dev_exit(void) +{ + destroy_workqueue(tls_strp_wq); +} diff --git a/net/tls/tls_sw.c b/net/tls/tls_sw.c new file mode 100644 index 000000000..0323040d3 --- /dev/null +++ b/net/tls/tls_sw.c @@ -0,0 +1,2818 @@ +/* + * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. + * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. + * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved. + * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved. + * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved. + * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io + * + * This software is available to you under a choice of one of two + * licenses. You may choose to be licensed under the terms of the GNU + * General Public License (GPL) Version 2, available from the file + * COPYING in the main directory of this source tree, or the + * OpenIB.org BSD license below: + * + * Redistribution and use in source and binary forms, with or + * without modification, are permitted provided that the following + * conditions are met: + * + * - Redistributions of source code must retain the above + * copyright notice, this list of conditions and the following + * disclaimer. + * + * - Redistributions in binary form must reproduce the above + * copyright notice, this list of conditions and the following + * disclaimer in the documentation and/or other materials + * provided with the distribution. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, + * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND + * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS + * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN + * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE + * SOFTWARE. + */ + +#include <linux/bug.h> +#include <linux/sched/signal.h> +#include <linux/module.h> +#include <linux/kernel.h> +#include <linux/splice.h> +#include <crypto/aead.h> + +#include <net/strparser.h> +#include <net/tls.h> + +#include "tls.h" + +struct tls_decrypt_arg { + struct_group(inargs, + bool zc; + bool async; + u8 tail; + ); + + struct sk_buff *skb; +}; + +struct tls_decrypt_ctx { + struct sock *sk; + u8 iv[MAX_IV_SIZE]; + u8 aad[TLS_MAX_AAD_SIZE]; + u8 tail; + struct scatterlist sg[]; +}; + +noinline void tls_err_abort(struct sock *sk, int err) +{ + WARN_ON_ONCE(err >= 0); + /* sk->sk_err should contain a positive error code. */ + WRITE_ONCE(sk->sk_err, -err); + /* Paired with smp_rmb() in tcp_poll() */ + smp_wmb(); + sk_error_report(sk); +} + +static int __skb_nsg(struct sk_buff *skb, int offset, int len, + unsigned int recursion_level) +{ + int start = skb_headlen(skb); + int i, chunk = start - offset; + struct sk_buff *frag_iter; + int elt = 0; + + if (unlikely(recursion_level >= 24)) + return -EMSGSIZE; + + if (chunk > 0) { + if (chunk > len) + chunk = len; + elt++; + len -= chunk; + if (len == 0) + return elt; + offset += chunk; + } + + for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { + int end; + + WARN_ON(start > offset + len); + + end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); + chunk = end - offset; + if (chunk > 0) { + if (chunk > len) + chunk = len; + elt++; + len -= chunk; + if (len == 0) + return elt; + offset += chunk; + } + start = end; + } + + if (unlikely(skb_has_frag_list(skb))) { + skb_walk_frags(skb, frag_iter) { + int end, ret; + + WARN_ON(start > offset + len); + + end = start + frag_iter->len; + chunk = end - offset; + if (chunk > 0) { + if (chunk > len) + chunk = len; + ret = __skb_nsg(frag_iter, offset - start, chunk, + recursion_level + 1); + if (unlikely(ret < 0)) + return ret; + elt += ret; + len -= chunk; + if (len == 0) + return elt; + offset += chunk; + } + start = end; + } + } + BUG_ON(len); + return elt; +} + +/* Return the number of scatterlist elements required to completely map the + * skb, or -EMSGSIZE if the recursion depth is exceeded. + */ +static int skb_nsg(struct sk_buff *skb, int offset, int len) +{ + return __skb_nsg(skb, offset, len, 0); +} + +static int tls_padding_length(struct tls_prot_info *prot, struct sk_buff *skb, + struct tls_decrypt_arg *darg) +{ + struct strp_msg *rxm = strp_msg(skb); + struct tls_msg *tlm = tls_msg(skb); + int sub = 0; + + /* Determine zero-padding length */ + if (prot->version == TLS_1_3_VERSION) { + int offset = rxm->full_len - TLS_TAG_SIZE - 1; + char content_type = darg->zc ? darg->tail : 0; + int err; + + while (content_type == 0) { + if (offset < prot->prepend_size) + return -EBADMSG; + err = skb_copy_bits(skb, rxm->offset + offset, + &content_type, 1); + if (err) + return err; + if (content_type) + break; + sub++; + offset--; + } + tlm->control = content_type; + } + return sub; +} + +static void tls_decrypt_done(crypto_completion_data_t *data, int err) +{ + struct aead_request *aead_req = crypto_get_completion_data(data); + struct crypto_aead *aead = crypto_aead_reqtfm(aead_req); + struct scatterlist *sgout = aead_req->dst; + struct scatterlist *sgin = aead_req->src; + struct tls_sw_context_rx *ctx; + struct tls_decrypt_ctx *dctx; + struct tls_context *tls_ctx; + struct scatterlist *sg; + unsigned int pages; + struct sock *sk; + int aead_size; + + aead_size = sizeof(*aead_req) + crypto_aead_reqsize(aead); + aead_size = ALIGN(aead_size, __alignof__(*dctx)); + dctx = (void *)((u8 *)aead_req + aead_size); + + sk = dctx->sk; + tls_ctx = tls_get_ctx(sk); + ctx = tls_sw_ctx_rx(tls_ctx); + + /* Propagate if there was an err */ + if (err) { + if (err == -EBADMSG) + TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR); + ctx->async_wait.err = err; + tls_err_abort(sk, err); + } + + /* Free the destination pages if skb was not decrypted inplace */ + if (sgout != sgin) { + /* Skip the first S/G entry as it points to AAD */ + for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) { + if (!sg) + break; + put_page(sg_page(sg)); + } + } + + kfree(aead_req); + + spin_lock_bh(&ctx->decrypt_compl_lock); + if (!atomic_dec_return(&ctx->decrypt_pending)) + complete(&ctx->async_wait.completion); + spin_unlock_bh(&ctx->decrypt_compl_lock); +} + +static int tls_do_decryption(struct sock *sk, + struct scatterlist *sgin, + struct scatterlist *sgout, + char *iv_recv, + size_t data_len, + struct aead_request *aead_req, + struct tls_decrypt_arg *darg) +{ + struct tls_context *tls_ctx = tls_get_ctx(sk); + struct tls_prot_info *prot = &tls_ctx->prot_info; + struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); + int ret; + + aead_request_set_tfm(aead_req, ctx->aead_recv); + aead_request_set_ad(aead_req, prot->aad_size); + aead_request_set_crypt(aead_req, sgin, sgout, + data_len + prot->tag_size, + (u8 *)iv_recv); + + if (darg->async) { + aead_request_set_callback(aead_req, + CRYPTO_TFM_REQ_MAY_BACKLOG, + tls_decrypt_done, aead_req); + atomic_inc(&ctx->decrypt_pending); + } else { + aead_request_set_callback(aead_req, + CRYPTO_TFM_REQ_MAY_BACKLOG, + crypto_req_done, &ctx->async_wait); + } + + ret = crypto_aead_decrypt(aead_req); + if (ret == -EINPROGRESS) { + if (darg->async) + return 0; + + ret = crypto_wait_req(ret, &ctx->async_wait); + } + darg->async = false; + + return ret; +} + +static void tls_trim_both_msgs(struct sock *sk, int target_size) +{ + struct tls_context *tls_ctx = tls_get_ctx(sk); + struct tls_prot_info *prot = &tls_ctx->prot_info; + struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); + struct tls_rec *rec = ctx->open_rec; + + sk_msg_trim(sk, &rec->msg_plaintext, target_size); + if (target_size > 0) + target_size += prot->overhead_size; + sk_msg_trim(sk, &rec->msg_encrypted, target_size); +} + +static int tls_alloc_encrypted_msg(struct sock *sk, int len) +{ + struct tls_context *tls_ctx = tls_get_ctx(sk); + struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); + struct tls_rec *rec = ctx->open_rec; + struct sk_msg *msg_en = &rec->msg_encrypted; + + return sk_msg_alloc(sk, msg_en, len, 0); +} + +static int tls_clone_plaintext_msg(struct sock *sk, int required) +{ + struct tls_context *tls_ctx = tls_get_ctx(sk); + struct tls_prot_info *prot = &tls_ctx->prot_info; + struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); + struct tls_rec *rec = ctx->open_rec; + struct sk_msg *msg_pl = &rec->msg_plaintext; + struct sk_msg *msg_en = &rec->msg_encrypted; + int skip, len; + + /* We add page references worth len bytes from encrypted sg + * at the end of plaintext sg. It is guaranteed that msg_en + * has enough required room (ensured by caller). + */ + len = required - msg_pl->sg.size; + + /* Skip initial bytes in msg_en's data to be able to use + * same offset of both plain and encrypted data. + */ + skip = prot->prepend_size + msg_pl->sg.size; + + return sk_msg_clone(sk, msg_pl, msg_en, skip, len); +} + +static struct tls_rec *tls_get_rec(struct sock *sk) +{ + struct tls_context *tls_ctx = tls_get_ctx(sk); + struct tls_prot_info *prot = &tls_ctx->prot_info; + struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); + struct sk_msg *msg_pl, *msg_en; + struct tls_rec *rec; + int mem_size; + + mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send); + + rec = kzalloc(mem_size, sk->sk_allocation); + if (!rec) + return NULL; + + msg_pl = &rec->msg_plaintext; + msg_en = &rec->msg_encrypted; + + sk_msg_init(msg_pl); + sk_msg_init(msg_en); + + sg_init_table(rec->sg_aead_in, 2); + sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size); + sg_unmark_end(&rec->sg_aead_in[1]); + + sg_init_table(rec->sg_aead_out, 2); + sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size); + sg_unmark_end(&rec->sg_aead_out[1]); + + rec->sk = sk; + + return rec; +} + +static void tls_free_rec(struct sock *sk, struct tls_rec *rec) +{ + sk_msg_free(sk, &rec->msg_encrypted); + sk_msg_free(sk, &rec->msg_plaintext); + kfree(rec); +} + +static void tls_free_open_rec(struct sock *sk) +{ + struct tls_context *tls_ctx = tls_get_ctx(sk); + struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); + struct tls_rec *rec = ctx->open_rec; + + if (rec) { + tls_free_rec(sk, rec); + ctx->open_rec = NULL; + } +} + +int tls_tx_records(struct sock *sk, int flags) +{ + struct tls_context *tls_ctx = tls_get_ctx(sk); + struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); + struct tls_rec *rec, *tmp; + struct sk_msg *msg_en; + int tx_flags, rc = 0; + + if (tls_is_partially_sent_record(tls_ctx)) { + rec = list_first_entry(&ctx->tx_list, + struct tls_rec, list); + + if (flags == -1) + tx_flags = rec->tx_flags; + else + tx_flags = flags; + + rc = tls_push_partial_record(sk, tls_ctx, tx_flags); + if (rc) + goto tx_err; + + /* Full record has been transmitted. + * Remove the head of tx_list + */ + list_del(&rec->list); + sk_msg_free(sk, &rec->msg_plaintext); + kfree(rec); + } + + /* Tx all ready records */ + list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) { + if (READ_ONCE(rec->tx_ready)) { + if (flags == -1) + tx_flags = rec->tx_flags; + else + tx_flags = flags; + + msg_en = &rec->msg_encrypted; + rc = tls_push_sg(sk, tls_ctx, + &msg_en->sg.data[msg_en->sg.curr], + 0, tx_flags); + if (rc) + goto tx_err; + + list_del(&rec->list); + sk_msg_free(sk, &rec->msg_plaintext); + kfree(rec); + } else { + break; + } + } + +tx_err: + if (rc < 0 && rc != -EAGAIN) + tls_err_abort(sk, -EBADMSG); + + return rc; +} + +static void tls_encrypt_done(crypto_completion_data_t *data, int err) +{ + struct aead_request *aead_req = crypto_get_completion_data(data); + struct tls_sw_context_tx *ctx; + struct tls_context *tls_ctx; + struct tls_prot_info *prot; + struct scatterlist *sge; + struct sk_msg *msg_en; + struct tls_rec *rec; + bool ready = false; + struct sock *sk; + int pending; + + rec = container_of(aead_req, struct tls_rec, aead_req); + msg_en = &rec->msg_encrypted; + + sk = rec->sk; + tls_ctx = tls_get_ctx(sk); + prot = &tls_ctx->prot_info; + ctx = tls_sw_ctx_tx(tls_ctx); + + sge = sk_msg_elem(msg_en, msg_en->sg.curr); + sge->offset -= prot->prepend_size; + sge->length += prot->prepend_size; + + /* Check if error is previously set on socket */ + if (err || sk->sk_err) { + rec = NULL; + + /* If err is already set on socket, return the same code */ + if (sk->sk_err) { + ctx->async_wait.err = -sk->sk_err; + } else { + ctx->async_wait.err = err; + tls_err_abort(sk, err); + } + } + + if (rec) { + struct tls_rec *first_rec; + + /* Mark the record as ready for transmission */ + smp_store_mb(rec->tx_ready, true); + + /* If received record is at head of tx_list, schedule tx */ + first_rec = list_first_entry(&ctx->tx_list, + struct tls_rec, list); + if (rec == first_rec) + ready = true; + } + + spin_lock_bh(&ctx->encrypt_compl_lock); + pending = atomic_dec_return(&ctx->encrypt_pending); + + if (!pending && ctx->async_notify) + complete(&ctx->async_wait.completion); + spin_unlock_bh(&ctx->encrypt_compl_lock); + + if (!ready) + return; + + /* Schedule the transmission */ + if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) + schedule_delayed_work(&ctx->tx_work.work, 1); +} + +static int tls_do_encryption(struct sock *sk, + struct tls_context *tls_ctx, + struct tls_sw_context_tx *ctx, + struct aead_request *aead_req, + size_t data_len, u32 start) +{ + struct tls_prot_info *prot = &tls_ctx->prot_info; + struct tls_rec *rec = ctx->open_rec; + struct sk_msg *msg_en = &rec->msg_encrypted; + struct scatterlist *sge = sk_msg_elem(msg_en, start); + int rc, iv_offset = 0; + + /* For CCM based ciphers, first byte of IV is a constant */ + switch (prot->cipher_type) { + case TLS_CIPHER_AES_CCM_128: + rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE; + iv_offset = 1; + break; + case TLS_CIPHER_SM4_CCM: + rec->iv_data[0] = TLS_SM4_CCM_IV_B0_BYTE; + iv_offset = 1; + break; + } + + memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv, + prot->iv_size + prot->salt_size); + + tls_xor_iv_with_seq(prot, rec->iv_data + iv_offset, + tls_ctx->tx.rec_seq); + + sge->offset += prot->prepend_size; + sge->length -= prot->prepend_size; + + msg_en->sg.curr = start; + + aead_request_set_tfm(aead_req, ctx->aead_send); + aead_request_set_ad(aead_req, prot->aad_size); + aead_request_set_crypt(aead_req, rec->sg_aead_in, + rec->sg_aead_out, + data_len, rec->iv_data); + + aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG, + tls_encrypt_done, aead_req); + + /* Add the record in tx_list */ + list_add_tail((struct list_head *)&rec->list, &ctx->tx_list); + atomic_inc(&ctx->encrypt_pending); + + rc = crypto_aead_encrypt(aead_req); + if (!rc || rc != -EINPROGRESS) { + atomic_dec(&ctx->encrypt_pending); + sge->offset -= prot->prepend_size; + sge->length += prot->prepend_size; + } + + if (!rc) { + WRITE_ONCE(rec->tx_ready, true); + } else if (rc != -EINPROGRESS) { + list_del(&rec->list); + return rc; + } + + /* Unhook the record from context if encryption is not failure */ + ctx->open_rec = NULL; + tls_advance_record_sn(sk, prot, &tls_ctx->tx); + return rc; +} + +static int tls_split_open_record(struct sock *sk, struct tls_rec *from, + struct tls_rec **to, struct sk_msg *msg_opl, + struct sk_msg *msg_oen, u32 split_point, + u32 tx_overhead_size, u32 *orig_end) +{ + u32 i, j, bytes = 0, apply = msg_opl->apply_bytes; + struct scatterlist *sge, *osge, *nsge; + u32 orig_size = msg_opl->sg.size; + struct scatterlist tmp = { }; + struct sk_msg *msg_npl; + struct tls_rec *new; + int ret; + + new = tls_get_rec(sk); + if (!new) + return -ENOMEM; + ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size + + tx_overhead_size, 0); + if (ret < 0) { + tls_free_rec(sk, new); + return ret; + } + + *orig_end = msg_opl->sg.end; + i = msg_opl->sg.start; + sge = sk_msg_elem(msg_opl, i); + while (apply && sge->length) { + if (sge->length > apply) { + u32 len = sge->length - apply; + + get_page(sg_page(sge)); + sg_set_page(&tmp, sg_page(sge), len, + sge->offset + apply); + sge->length = apply; + bytes += apply; + apply = 0; + } else { + apply -= sge->length; + bytes += sge->length; + } + + sk_msg_iter_var_next(i); + if (i == msg_opl->sg.end) + break; + sge = sk_msg_elem(msg_opl, i); + } + + msg_opl->sg.end = i; + msg_opl->sg.curr = i; + msg_opl->sg.copybreak = 0; + msg_opl->apply_bytes = 0; + msg_opl->sg.size = bytes; + + msg_npl = &new->msg_plaintext; + msg_npl->apply_bytes = apply; + msg_npl->sg.size = orig_size - bytes; + + j = msg_npl->sg.start; + nsge = sk_msg_elem(msg_npl, j); + if (tmp.length) { + memcpy(nsge, &tmp, sizeof(*nsge)); + sk_msg_iter_var_next(j); + nsge = sk_msg_elem(msg_npl, j); + } + + osge = sk_msg_elem(msg_opl, i); + while (osge->length) { + memcpy(nsge, osge, sizeof(*nsge)); + sg_unmark_end(nsge); + sk_msg_iter_var_next(i); + sk_msg_iter_var_next(j); + if (i == *orig_end) + break; + osge = sk_msg_elem(msg_opl, i); + nsge = sk_msg_elem(msg_npl, j); + } + + msg_npl->sg.end = j; + msg_npl->sg.curr = j; + msg_npl->sg.copybreak = 0; + + *to = new; + return 0; +} + +static void tls_merge_open_record(struct sock *sk, struct tls_rec *to, + struct tls_rec *from, u32 orig_end) +{ + struct sk_msg *msg_npl = &from->msg_plaintext; + struct sk_msg *msg_opl = &to->msg_plaintext; + struct scatterlist *osge, *nsge; + u32 i, j; + + i = msg_opl->sg.end; + sk_msg_iter_var_prev(i); + j = msg_npl->sg.start; + + osge = sk_msg_elem(msg_opl, i); + nsge = sk_msg_elem(msg_npl, j); + + if (sg_page(osge) == sg_page(nsge) && + osge->offset + osge->length == nsge->offset) { + osge->length += nsge->length; + put_page(sg_page(nsge)); + } + + msg_opl->sg.end = orig_end; + msg_opl->sg.curr = orig_end; + msg_opl->sg.copybreak = 0; + msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size; + msg_opl->sg.size += msg_npl->sg.size; + + sk_msg_free(sk, &to->msg_encrypted); + sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted); + + kfree(from); +} + +static int tls_push_record(struct sock *sk, int flags, + unsigned char record_type) +{ + struct tls_context *tls_ctx = tls_get_ctx(sk); + struct tls_prot_info *prot = &tls_ctx->prot_info; + struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); + struct tls_rec *rec = ctx->open_rec, *tmp = NULL; + u32 i, split_point, orig_end; + struct sk_msg *msg_pl, *msg_en; + struct aead_request *req; + bool split; + int rc; + + if (!rec) + return 0; + + msg_pl = &rec->msg_plaintext; + msg_en = &rec->msg_encrypted; + + split_point = msg_pl->apply_bytes; + split = split_point && split_point < msg_pl->sg.size; + if (unlikely((!split && + msg_pl->sg.size + + prot->overhead_size > msg_en->sg.size) || + (split && + split_point + + prot->overhead_size > msg_en->sg.size))) { + split = true; + split_point = msg_en->sg.size; + } + if (split) { + rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en, + split_point, prot->overhead_size, + &orig_end); + if (rc < 0) + return rc; + /* This can happen if above tls_split_open_record allocates + * a single large encryption buffer instead of two smaller + * ones. In this case adjust pointers and continue without + * split. + */ + if (!msg_pl->sg.size) { + tls_merge_open_record(sk, rec, tmp, orig_end); + msg_pl = &rec->msg_plaintext; + msg_en = &rec->msg_encrypted; + split = false; + } + sk_msg_trim(sk, msg_en, msg_pl->sg.size + + prot->overhead_size); + } + + rec->tx_flags = flags; + req = &rec->aead_req; + + i = msg_pl->sg.end; + sk_msg_iter_var_prev(i); + + rec->content_type = record_type; + if (prot->version == TLS_1_3_VERSION) { + /* Add content type to end of message. No padding added */ + sg_set_buf(&rec->sg_content_type, &rec->content_type, 1); + sg_mark_end(&rec->sg_content_type); + sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1, + &rec->sg_content_type); + } else { + sg_mark_end(sk_msg_elem(msg_pl, i)); + } + + if (msg_pl->sg.end < msg_pl->sg.start) { + sg_chain(&msg_pl->sg.data[msg_pl->sg.start], + MAX_SKB_FRAGS - msg_pl->sg.start + 1, + msg_pl->sg.data); + } + + i = msg_pl->sg.start; + sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]); + + i = msg_en->sg.end; + sk_msg_iter_var_prev(i); + sg_mark_end(sk_msg_elem(msg_en, i)); + + i = msg_en->sg.start; + sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]); + + tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size, + tls_ctx->tx.rec_seq, record_type, prot); + + tls_fill_prepend(tls_ctx, + page_address(sg_page(&msg_en->sg.data[i])) + + msg_en->sg.data[i].offset, + msg_pl->sg.size + prot->tail_size, + record_type); + + tls_ctx->pending_open_record_frags = false; + + rc = tls_do_encryption(sk, tls_ctx, ctx, req, + msg_pl->sg.size + prot->tail_size, i); + if (rc < 0) { + if (rc != -EINPROGRESS) { + tls_err_abort(sk, -EBADMSG); + if (split) { + tls_ctx->pending_open_record_frags = true; + tls_merge_open_record(sk, rec, tmp, orig_end); + } + } + ctx->async_capable = 1; + return rc; + } else if (split) { + msg_pl = &tmp->msg_plaintext; + msg_en = &tmp->msg_encrypted; + sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size); + tls_ctx->pending_open_record_frags = true; + ctx->open_rec = tmp; + } + + return tls_tx_records(sk, flags); +} + +static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk, + bool full_record, u8 record_type, + ssize_t *copied, int flags) +{ + struct tls_context *tls_ctx = tls_get_ctx(sk); + struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); + struct sk_msg msg_redir = { }; + struct sk_psock *psock; + struct sock *sk_redir; + struct tls_rec *rec; + bool enospc, policy, redir_ingress; + int err = 0, send; + u32 delta = 0; + + policy = !(flags & MSG_SENDPAGE_NOPOLICY); + psock = sk_psock_get(sk); + if (!psock || !policy) { + err = tls_push_record(sk, flags, record_type); + if (err && err != -EINPROGRESS && sk->sk_err == EBADMSG) { + *copied -= sk_msg_free(sk, msg); + tls_free_open_rec(sk); + err = -sk->sk_err; + } + if (psock) + sk_psock_put(sk, psock); + return err; + } +more_data: + enospc = sk_msg_full(msg); + if (psock->eval == __SK_NONE) { + delta = msg->sg.size; + psock->eval = sk_psock_msg_verdict(sk, psock, msg); + delta -= msg->sg.size; + } + if (msg->cork_bytes && msg->cork_bytes > msg->sg.size && + !enospc && !full_record) { + err = -ENOSPC; + goto out_err; + } + msg->cork_bytes = 0; + send = msg->sg.size; + if (msg->apply_bytes && msg->apply_bytes < send) + send = msg->apply_bytes; + + switch (psock->eval) { + case __SK_PASS: + err = tls_push_record(sk, flags, record_type); + if (err && err != -EINPROGRESS && sk->sk_err == EBADMSG) { + *copied -= sk_msg_free(sk, msg); + tls_free_open_rec(sk); + err = -sk->sk_err; + goto out_err; + } + break; + case __SK_REDIRECT: + redir_ingress = psock->redir_ingress; + sk_redir = psock->sk_redir; + memcpy(&msg_redir, msg, sizeof(*msg)); + if (msg->apply_bytes < send) + msg->apply_bytes = 0; + else + msg->apply_bytes -= send; + sk_msg_return_zero(sk, msg, send); + msg->sg.size -= send; + release_sock(sk); + err = tcp_bpf_sendmsg_redir(sk_redir, redir_ingress, + &msg_redir, send, flags); + lock_sock(sk); + if (err < 0) { + *copied -= sk_msg_free_nocharge(sk, &msg_redir); + msg->sg.size = 0; + } + if (msg->sg.size == 0) + tls_free_open_rec(sk); + break; + case __SK_DROP: + default: + sk_msg_free_partial(sk, msg, send); + if (msg->apply_bytes < send) + msg->apply_bytes = 0; + else + msg->apply_bytes -= send; + if (msg->sg.size == 0) + tls_free_open_rec(sk); + *copied -= (send + delta); + err = -EACCES; + } + + if (likely(!err)) { + bool reset_eval = !ctx->open_rec; + + rec = ctx->open_rec; + if (rec) { + msg = &rec->msg_plaintext; + if (!msg->apply_bytes) + reset_eval = true; + } + if (reset_eval) { + psock->eval = __SK_NONE; + if (psock->sk_redir) { + sock_put(psock->sk_redir); + psock->sk_redir = NULL; + } + } + if (rec) + goto more_data; + } + out_err: + sk_psock_put(sk, psock); + return err; +} + +static int tls_sw_push_pending_record(struct sock *sk, int flags) +{ + struct tls_context *tls_ctx = tls_get_ctx(sk); + struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); + struct tls_rec *rec = ctx->open_rec; + struct sk_msg *msg_pl; + size_t copied; + + if (!rec) + return 0; + + msg_pl = &rec->msg_plaintext; + copied = msg_pl->sg.size; + if (!copied) + return 0; + + return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA, + &copied, flags); +} + +int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) +{ + long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); + struct tls_context *tls_ctx = tls_get_ctx(sk); + struct tls_prot_info *prot = &tls_ctx->prot_info; + struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); + bool async_capable = ctx->async_capable; + unsigned char record_type = TLS_RECORD_TYPE_DATA; + bool is_kvec = iov_iter_is_kvec(&msg->msg_iter); + bool eor = !(msg->msg_flags & MSG_MORE); + size_t try_to_copy; + ssize_t copied = 0; + struct sk_msg *msg_pl, *msg_en; + struct tls_rec *rec; + int required_size; + int num_async = 0; + bool full_record; + int record_room; + int num_zc = 0; + int orig_size; + int ret = 0; + int pending; + + if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | + MSG_CMSG_COMPAT)) + return -EOPNOTSUPP; + + ret = mutex_lock_interruptible(&tls_ctx->tx_lock); + if (ret) + return ret; + lock_sock(sk); + + if (unlikely(msg->msg_controllen)) { + ret = tls_process_cmsg(sk, msg, &record_type); + if (ret) { + if (ret == -EINPROGRESS) + num_async++; + else if (ret != -EAGAIN) + goto send_end; + } + } + + while (msg_data_left(msg)) { + if (sk->sk_err) { + ret = -sk->sk_err; + goto send_end; + } + + if (ctx->open_rec) + rec = ctx->open_rec; + else + rec = ctx->open_rec = tls_get_rec(sk); + if (!rec) { + ret = -ENOMEM; + goto send_end; + } + + msg_pl = &rec->msg_plaintext; + msg_en = &rec->msg_encrypted; + + orig_size = msg_pl->sg.size; + full_record = false; + try_to_copy = msg_data_left(msg); + record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size; + if (try_to_copy >= record_room) { + try_to_copy = record_room; + full_record = true; + } + + required_size = msg_pl->sg.size + try_to_copy + + prot->overhead_size; + + if (!sk_stream_memory_free(sk)) + goto wait_for_sndbuf; + +alloc_encrypted: + ret = tls_alloc_encrypted_msg(sk, required_size); + if (ret) { + if (ret != -ENOSPC) + goto wait_for_memory; + + /* Adjust try_to_copy according to the amount that was + * actually allocated. The difference is due + * to max sg elements limit + */ + try_to_copy -= required_size - msg_en->sg.size; + full_record = true; + } + + if (!is_kvec && (full_record || eor) && !async_capable) { + u32 first = msg_pl->sg.end; + + ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter, + msg_pl, try_to_copy); + if (ret) + goto fallback_to_reg_send; + + num_zc++; + copied += try_to_copy; + + sk_msg_sg_copy_set(msg_pl, first); + ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, + record_type, &copied, + msg->msg_flags); + if (ret) { + if (ret == -EINPROGRESS) + num_async++; + else if (ret == -ENOMEM) + goto wait_for_memory; + else if (ctx->open_rec && ret == -ENOSPC) + goto rollback_iter; + else if (ret != -EAGAIN) + goto send_end; + } + continue; +rollback_iter: + copied -= try_to_copy; + sk_msg_sg_copy_clear(msg_pl, first); + iov_iter_revert(&msg->msg_iter, + msg_pl->sg.size - orig_size); +fallback_to_reg_send: + sk_msg_trim(sk, msg_pl, orig_size); + } + + required_size = msg_pl->sg.size + try_to_copy; + + ret = tls_clone_plaintext_msg(sk, required_size); + if (ret) { + if (ret != -ENOSPC) + goto send_end; + + /* Adjust try_to_copy according to the amount that was + * actually allocated. The difference is due + * to max sg elements limit + */ + try_to_copy -= required_size - msg_pl->sg.size; + full_record = true; + sk_msg_trim(sk, msg_en, + msg_pl->sg.size + prot->overhead_size); + } + + if (try_to_copy) { + ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter, + msg_pl, try_to_copy); + if (ret < 0) + goto trim_sgl; + } + + /* Open records defined only if successfully copied, otherwise + * we would trim the sg but not reset the open record frags. + */ + tls_ctx->pending_open_record_frags = true; + copied += try_to_copy; + if (full_record || eor) { + ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, + record_type, &copied, + msg->msg_flags); + if (ret) { + if (ret == -EINPROGRESS) + num_async++; + else if (ret == -ENOMEM) + goto wait_for_memory; + else if (ret != -EAGAIN) { + if (ret == -ENOSPC) + ret = 0; + goto send_end; + } + } + } + + continue; + +wait_for_sndbuf: + set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); +wait_for_memory: + ret = sk_stream_wait_memory(sk, &timeo); + if (ret) { +trim_sgl: + if (ctx->open_rec) + tls_trim_both_msgs(sk, orig_size); + goto send_end; + } + + if (ctx->open_rec && msg_en->sg.size < required_size) + goto alloc_encrypted; + } + + if (!num_async) { + goto send_end; + } else if (num_zc) { + /* Wait for pending encryptions to get completed */ + spin_lock_bh(&ctx->encrypt_compl_lock); + ctx->async_notify = true; + + pending = atomic_read(&ctx->encrypt_pending); + spin_unlock_bh(&ctx->encrypt_compl_lock); + if (pending) + crypto_wait_req(-EINPROGRESS, &ctx->async_wait); + else + reinit_completion(&ctx->async_wait.completion); + + /* There can be no concurrent accesses, since we have no + * pending encrypt operations + */ + WRITE_ONCE(ctx->async_notify, false); + + if (ctx->async_wait.err) { + ret = ctx->async_wait.err; + copied = 0; + } + } + + /* Transmit if any encryptions have completed */ + if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { + cancel_delayed_work(&ctx->tx_work.work); + tls_tx_records(sk, msg->msg_flags); + } + +send_end: + ret = sk_stream_error(sk, msg->msg_flags, ret); + + release_sock(sk); + mutex_unlock(&tls_ctx->tx_lock); + return copied > 0 ? copied : ret; +} + +static int tls_sw_do_sendpage(struct sock *sk, struct page *page, + int offset, size_t size, int flags) +{ + long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); + struct tls_context *tls_ctx = tls_get_ctx(sk); + struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); + struct tls_prot_info *prot = &tls_ctx->prot_info; + unsigned char record_type = TLS_RECORD_TYPE_DATA; + struct sk_msg *msg_pl; + struct tls_rec *rec; + int num_async = 0; + ssize_t copied = 0; + bool full_record; + int record_room; + int ret = 0; + bool eor; + + eor = !(flags & MSG_SENDPAGE_NOTLAST); + sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); + + /* Call the sk_stream functions to manage the sndbuf mem. */ + while (size > 0) { + size_t copy, required_size; + + if (sk->sk_err) { + ret = -sk->sk_err; + goto sendpage_end; + } + + if (ctx->open_rec) + rec = ctx->open_rec; + else + rec = ctx->open_rec = tls_get_rec(sk); + if (!rec) { + ret = -ENOMEM; + goto sendpage_end; + } + + msg_pl = &rec->msg_plaintext; + + full_record = false; + record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size; + copy = size; + if (copy >= record_room) { + copy = record_room; + full_record = true; + } + + required_size = msg_pl->sg.size + copy + prot->overhead_size; + + if (!sk_stream_memory_free(sk)) + goto wait_for_sndbuf; +alloc_payload: + ret = tls_alloc_encrypted_msg(sk, required_size); + if (ret) { + if (ret != -ENOSPC) + goto wait_for_memory; + + /* Adjust copy according to the amount that was + * actually allocated. The difference is due + * to max sg elements limit + */ + copy -= required_size - msg_pl->sg.size; + full_record = true; + } + + sk_msg_page_add(msg_pl, page, copy, offset); + msg_pl->sg.copybreak = 0; + msg_pl->sg.curr = msg_pl->sg.end; + sk_mem_charge(sk, copy); + + offset += copy; + size -= copy; + copied += copy; + + tls_ctx->pending_open_record_frags = true; + if (full_record || eor || sk_msg_full(msg_pl)) { + ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, + record_type, &copied, flags); + if (ret) { + if (ret == -EINPROGRESS) + num_async++; + else if (ret == -ENOMEM) + goto wait_for_memory; + else if (ret != -EAGAIN) { + if (ret == -ENOSPC) + ret = 0; + goto sendpage_end; + } + } + } + continue; +wait_for_sndbuf: + set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); +wait_for_memory: + ret = sk_stream_wait_memory(sk, &timeo); + if (ret) { + if (ctx->open_rec) + tls_trim_both_msgs(sk, msg_pl->sg.size); + goto sendpage_end; + } + + if (ctx->open_rec) + goto alloc_payload; + } + + if (num_async) { + /* Transmit if any encryptions have completed */ + if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { + cancel_delayed_work(&ctx->tx_work.work); + tls_tx_records(sk, flags); + } + } +sendpage_end: + ret = sk_stream_error(sk, flags, ret); + return copied > 0 ? copied : ret; +} + +int tls_sw_sendpage_locked(struct sock *sk, struct page *page, + int offset, size_t size, int flags) +{ + if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | + MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY | + MSG_NO_SHARED_FRAGS)) + return -EOPNOTSUPP; + + return tls_sw_do_sendpage(sk, page, offset, size, flags); +} + +int tls_sw_sendpage(struct sock *sk, struct page *page, + int offset, size_t size, int flags) +{ + struct tls_context *tls_ctx = tls_get_ctx(sk); + int ret; + + if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | + MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY)) + return -EOPNOTSUPP; + + ret = mutex_lock_interruptible(&tls_ctx->tx_lock); + if (ret) + return ret; + lock_sock(sk); + ret = tls_sw_do_sendpage(sk, page, offset, size, flags); + release_sock(sk); + mutex_unlock(&tls_ctx->tx_lock); + return ret; +} + +static int +tls_rx_rec_wait(struct sock *sk, struct sk_psock *psock, bool nonblock, + bool released) +{ + struct tls_context *tls_ctx = tls_get_ctx(sk); + struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); + DEFINE_WAIT_FUNC(wait, woken_wake_function); + int ret = 0; + long timeo; + + timeo = sock_rcvtimeo(sk, nonblock); + + while (!tls_strp_msg_ready(ctx)) { + if (!sk_psock_queue_empty(psock)) + return 0; + + if (sk->sk_err) + return sock_error(sk); + + if (ret < 0) + return ret; + + if (!skb_queue_empty(&sk->sk_receive_queue)) { + tls_strp_check_rcv(&ctx->strp); + if (tls_strp_msg_ready(ctx)) + break; + } + + if (sk->sk_shutdown & RCV_SHUTDOWN) + return 0; + + if (sock_flag(sk, SOCK_DONE)) + return 0; + + if (!timeo) + return -EAGAIN; + + released = true; + add_wait_queue(sk_sleep(sk), &wait); + sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); + ret = sk_wait_event(sk, &timeo, + tls_strp_msg_ready(ctx) || + !sk_psock_queue_empty(psock), + &wait); + sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); + remove_wait_queue(sk_sleep(sk), &wait); + + /* Handle signals */ + if (signal_pending(current)) + return sock_intr_errno(timeo); + } + + tls_strp_msg_load(&ctx->strp, released); + + return 1; +} + +static int tls_setup_from_iter(struct iov_iter *from, + int length, int *pages_used, + struct scatterlist *to, + int to_max_pages) +{ + int rc = 0, i = 0, num_elem = *pages_used, maxpages; + struct page *pages[MAX_SKB_FRAGS]; + unsigned int size = 0; + ssize_t copied, use; + size_t offset; + + while (length > 0) { + i = 0; + maxpages = to_max_pages - num_elem; + if (maxpages == 0) { + rc = -EFAULT; + goto out; + } + copied = iov_iter_get_pages2(from, pages, + length, + maxpages, &offset); + if (copied <= 0) { + rc = -EFAULT; + goto out; + } + + length -= copied; + size += copied; + while (copied) { + use = min_t(int, copied, PAGE_SIZE - offset); + + sg_set_page(&to[num_elem], + pages[i], use, offset); + sg_unmark_end(&to[num_elem]); + /* We do not uncharge memory from this API */ + + offset = 0; + copied -= use; + + i++; + num_elem++; + } + } + /* Mark the end in the last sg entry if newly added */ + if (num_elem > *pages_used) + sg_mark_end(&to[num_elem - 1]); +out: + if (rc) + iov_iter_revert(from, size); + *pages_used = num_elem; + + return rc; +} + +static struct sk_buff * +tls_alloc_clrtxt_skb(struct sock *sk, struct sk_buff *skb, + unsigned int full_len) +{ + struct strp_msg *clr_rxm; + struct sk_buff *clr_skb; + int err; + + clr_skb = alloc_skb_with_frags(0, full_len, TLS_PAGE_ORDER, + &err, sk->sk_allocation); + if (!clr_skb) + return NULL; + + skb_copy_header(clr_skb, skb); + clr_skb->len = full_len; + clr_skb->data_len = full_len; + + clr_rxm = strp_msg(clr_skb); + clr_rxm->offset = 0; + + return clr_skb; +} + +/* Decrypt handlers + * + * tls_decrypt_sw() and tls_decrypt_device() are decrypt handlers. + * They must transform the darg in/out argument are as follows: + * | Input | Output + * ------------------------------------------------------------------- + * zc | Zero-copy decrypt allowed | Zero-copy performed + * async | Async decrypt allowed | Async crypto used / in progress + * skb | * | Output skb + * + * If ZC decryption was performed darg.skb will point to the input skb. + */ + +/* This function decrypts the input skb into either out_iov or in out_sg + * or in skb buffers itself. The input parameter 'darg->zc' indicates if + * zero-copy mode needs to be tried or not. With zero-copy mode, either + * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are + * NULL, then the decryption happens inside skb buffers itself, i.e. + * zero-copy gets disabled and 'darg->zc' is updated. + */ +static int tls_decrypt_sg(struct sock *sk, struct iov_iter *out_iov, + struct scatterlist *out_sg, + struct tls_decrypt_arg *darg) +{ + struct tls_context *tls_ctx = tls_get_ctx(sk); + struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); + struct tls_prot_info *prot = &tls_ctx->prot_info; + int n_sgin, n_sgout, aead_size, err, pages = 0; + struct sk_buff *skb = tls_strp_msg(ctx); + const struct strp_msg *rxm = strp_msg(skb); + const struct tls_msg *tlm = tls_msg(skb); + struct aead_request *aead_req; + struct scatterlist *sgin = NULL; + struct scatterlist *sgout = NULL; + const int data_len = rxm->full_len - prot->overhead_size; + int tail_pages = !!prot->tail_size; + struct tls_decrypt_ctx *dctx; + struct sk_buff *clear_skb; + int iv_offset = 0; + u8 *mem; + + n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size, + rxm->full_len - prot->prepend_size); + if (n_sgin < 1) + return n_sgin ?: -EBADMSG; + + if (darg->zc && (out_iov || out_sg)) { + clear_skb = NULL; + + if (out_iov) + n_sgout = 1 + tail_pages + + iov_iter_npages_cap(out_iov, INT_MAX, data_len); + else + n_sgout = sg_nents(out_sg); + } else { + darg->zc = false; + + clear_skb = tls_alloc_clrtxt_skb(sk, skb, rxm->full_len); + if (!clear_skb) + return -ENOMEM; + + n_sgout = 1 + skb_shinfo(clear_skb)->nr_frags; + } + + /* Increment to accommodate AAD */ + n_sgin = n_sgin + 1; + + /* Allocate a single block of memory which contains + * aead_req || tls_decrypt_ctx. + * Both structs are variable length. + */ + aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv); + aead_size = ALIGN(aead_size, __alignof__(*dctx)); + mem = kmalloc(aead_size + struct_size(dctx, sg, size_add(n_sgin, n_sgout)), + sk->sk_allocation); + if (!mem) { + err = -ENOMEM; + goto exit_free_skb; + } + + /* Segment the allocated memory */ + aead_req = (struct aead_request *)mem; + dctx = (struct tls_decrypt_ctx *)(mem + aead_size); + dctx->sk = sk; + sgin = &dctx->sg[0]; + sgout = &dctx->sg[n_sgin]; + + /* For CCM based ciphers, first byte of nonce+iv is a constant */ + switch (prot->cipher_type) { + case TLS_CIPHER_AES_CCM_128: + dctx->iv[0] = TLS_AES_CCM_IV_B0_BYTE; + iv_offset = 1; + break; + case TLS_CIPHER_SM4_CCM: + dctx->iv[0] = TLS_SM4_CCM_IV_B0_BYTE; + iv_offset = 1; + break; + } + + /* Prepare IV */ + if (prot->version == TLS_1_3_VERSION || + prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) { + memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv, + prot->iv_size + prot->salt_size); + } else { + err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE, + &dctx->iv[iv_offset] + prot->salt_size, + prot->iv_size); + if (err < 0) + goto exit_free; + memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv, prot->salt_size); + } + tls_xor_iv_with_seq(prot, &dctx->iv[iv_offset], tls_ctx->rx.rec_seq); + + /* Prepare AAD */ + tls_make_aad(dctx->aad, rxm->full_len - prot->overhead_size + + prot->tail_size, + tls_ctx->rx.rec_seq, tlm->control, prot); + + /* Prepare sgin */ + sg_init_table(sgin, n_sgin); + sg_set_buf(&sgin[0], dctx->aad, prot->aad_size); + err = skb_to_sgvec(skb, &sgin[1], + rxm->offset + prot->prepend_size, + rxm->full_len - prot->prepend_size); + if (err < 0) + goto exit_free; + + if (clear_skb) { + sg_init_table(sgout, n_sgout); + sg_set_buf(&sgout[0], dctx->aad, prot->aad_size); + + err = skb_to_sgvec(clear_skb, &sgout[1], prot->prepend_size, + data_len + prot->tail_size); + if (err < 0) + goto exit_free; + } else if (out_iov) { + sg_init_table(sgout, n_sgout); + sg_set_buf(&sgout[0], dctx->aad, prot->aad_size); + + err = tls_setup_from_iter(out_iov, data_len, &pages, &sgout[1], + (n_sgout - 1 - tail_pages)); + if (err < 0) + goto exit_free_pages; + + if (prot->tail_size) { + sg_unmark_end(&sgout[pages]); + sg_set_buf(&sgout[pages + 1], &dctx->tail, + prot->tail_size); + sg_mark_end(&sgout[pages + 1]); + } + } else if (out_sg) { + memcpy(sgout, out_sg, n_sgout * sizeof(*sgout)); + } + + /* Prepare and submit AEAD request */ + err = tls_do_decryption(sk, sgin, sgout, dctx->iv, + data_len + prot->tail_size, aead_req, darg); + if (err) + goto exit_free_pages; + + darg->skb = clear_skb ?: tls_strp_msg(ctx); + clear_skb = NULL; + + if (unlikely(darg->async)) { + err = tls_strp_msg_hold(&ctx->strp, &ctx->async_hold); + if (err) + __skb_queue_tail(&ctx->async_hold, darg->skb); + return err; + } + + if (prot->tail_size) + darg->tail = dctx->tail; + +exit_free_pages: + /* Release the pages in case iov was mapped to pages */ + for (; pages > 0; pages--) + put_page(sg_page(&sgout[pages])); +exit_free: + kfree(mem); +exit_free_skb: + consume_skb(clear_skb); + return err; +} + +static int +tls_decrypt_sw(struct sock *sk, struct tls_context *tls_ctx, + struct msghdr *msg, struct tls_decrypt_arg *darg) +{ + struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); + struct tls_prot_info *prot = &tls_ctx->prot_info; + struct strp_msg *rxm; + int pad, err; + + err = tls_decrypt_sg(sk, &msg->msg_iter, NULL, darg); + if (err < 0) { + if (err == -EBADMSG) + TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR); + return err; + } + /* keep going even for ->async, the code below is TLS 1.3 */ + + /* If opportunistic TLS 1.3 ZC failed retry without ZC */ + if (unlikely(darg->zc && prot->version == TLS_1_3_VERSION && + darg->tail != TLS_RECORD_TYPE_DATA)) { + darg->zc = false; + if (!darg->tail) + TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXNOPADVIOL); + TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTRETRY); + return tls_decrypt_sw(sk, tls_ctx, msg, darg); + } + + pad = tls_padding_length(prot, darg->skb, darg); + if (pad < 0) { + if (darg->skb != tls_strp_msg(ctx)) + consume_skb(darg->skb); + return pad; + } + + rxm = strp_msg(darg->skb); + rxm->full_len -= pad; + + return 0; +} + +static int +tls_decrypt_device(struct sock *sk, struct msghdr *msg, + struct tls_context *tls_ctx, struct tls_decrypt_arg *darg) +{ + struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); + struct tls_prot_info *prot = &tls_ctx->prot_info; + struct strp_msg *rxm; + int pad, err; + + if (tls_ctx->rx_conf != TLS_HW) + return 0; + + err = tls_device_decrypted(sk, tls_ctx); + if (err <= 0) + return err; + + pad = tls_padding_length(prot, tls_strp_msg(ctx), darg); + if (pad < 0) + return pad; + + darg->async = false; + darg->skb = tls_strp_msg(ctx); + /* ->zc downgrade check, in case TLS 1.3 gets here */ + darg->zc &= !(prot->version == TLS_1_3_VERSION && + tls_msg(darg->skb)->control != TLS_RECORD_TYPE_DATA); + + rxm = strp_msg(darg->skb); + rxm->full_len -= pad; + + if (!darg->zc) { + /* Non-ZC case needs a real skb */ + darg->skb = tls_strp_msg_detach(ctx); + if (!darg->skb) + return -ENOMEM; + } else { + unsigned int off, len; + + /* In ZC case nobody cares about the output skb. + * Just copy the data here. Note the skb is not fully trimmed. + */ + off = rxm->offset + prot->prepend_size; + len = rxm->full_len - prot->overhead_size; + + err = skb_copy_datagram_msg(darg->skb, off, msg, len); + if (err) + return err; + } + return 1; +} + +static int tls_rx_one_record(struct sock *sk, struct msghdr *msg, + struct tls_decrypt_arg *darg) +{ + struct tls_context *tls_ctx = tls_get_ctx(sk); + struct tls_prot_info *prot = &tls_ctx->prot_info; + struct strp_msg *rxm; + int err; + + err = tls_decrypt_device(sk, msg, tls_ctx, darg); + if (!err) + err = tls_decrypt_sw(sk, tls_ctx, msg, darg); + if (err < 0) + return err; + + rxm = strp_msg(darg->skb); + rxm->offset += prot->prepend_size; + rxm->full_len -= prot->overhead_size; + tls_advance_record_sn(sk, prot, &tls_ctx->rx); + + return 0; +} + +int decrypt_skb(struct sock *sk, struct scatterlist *sgout) +{ + struct tls_decrypt_arg darg = { .zc = true, }; + + return tls_decrypt_sg(sk, NULL, sgout, &darg); +} + +static int tls_record_content_type(struct msghdr *msg, struct tls_msg *tlm, + u8 *control) +{ + int err; + + if (!*control) { + *control = tlm->control; + if (!*control) + return -EBADMSG; + + err = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE, + sizeof(*control), control); + if (*control != TLS_RECORD_TYPE_DATA) { + if (err || msg->msg_flags & MSG_CTRUNC) + return -EIO; + } + } else if (*control != tlm->control) { + return 0; + } + + return 1; +} + +static void tls_rx_rec_done(struct tls_sw_context_rx *ctx) +{ + tls_strp_msg_done(&ctx->strp); +} + +/* This function traverses the rx_list in tls receive context to copies the + * decrypted records into the buffer provided by caller zero copy is not + * true. Further, the records are removed from the rx_list if it is not a peek + * case and the record has been consumed completely. + */ +static int process_rx_list(struct tls_sw_context_rx *ctx, + struct msghdr *msg, + u8 *control, + size_t skip, + size_t len, + bool is_peek) +{ + struct sk_buff *skb = skb_peek(&ctx->rx_list); + struct tls_msg *tlm; + ssize_t copied = 0; + int err; + + while (skip && skb) { + struct strp_msg *rxm = strp_msg(skb); + tlm = tls_msg(skb); + + err = tls_record_content_type(msg, tlm, control); + if (err <= 0) + goto out; + + if (skip < rxm->full_len) + break; + + skip = skip - rxm->full_len; + skb = skb_peek_next(skb, &ctx->rx_list); + } + + while (len && skb) { + struct sk_buff *next_skb; + struct strp_msg *rxm = strp_msg(skb); + int chunk = min_t(unsigned int, rxm->full_len - skip, len); + + tlm = tls_msg(skb); + + err = tls_record_content_type(msg, tlm, control); + if (err <= 0) + goto out; + + err = skb_copy_datagram_msg(skb, rxm->offset + skip, + msg, chunk); + if (err < 0) + goto out; + + len = len - chunk; + copied = copied + chunk; + + /* Consume the data from record if it is non-peek case*/ + if (!is_peek) { + rxm->offset = rxm->offset + chunk; + rxm->full_len = rxm->full_len - chunk; + + /* Return if there is unconsumed data in the record */ + if (rxm->full_len - skip) + break; + } + + /* The remaining skip-bytes must lie in 1st record in rx_list. + * So from the 2nd record, 'skip' should be 0. + */ + skip = 0; + + if (msg) + msg->msg_flags |= MSG_EOR; + + next_skb = skb_peek_next(skb, &ctx->rx_list); + + if (!is_peek) { + __skb_unlink(skb, &ctx->rx_list); + consume_skb(skb); + } + + skb = next_skb; + } + err = 0; + +out: + return copied ? : err; +} + +static bool +tls_read_flush_backlog(struct sock *sk, struct tls_prot_info *prot, + size_t len_left, size_t decrypted, ssize_t done, + size_t *flushed_at) +{ + size_t max_rec; + + if (len_left <= decrypted) + return false; + + max_rec = prot->overhead_size - prot->tail_size + TLS_MAX_PAYLOAD_SIZE; + if (done - *flushed_at < SZ_128K && tcp_inq(sk) > max_rec) + return false; + + *flushed_at = done; + return sk_flush_backlog(sk); +} + +static int tls_rx_reader_acquire(struct sock *sk, struct tls_sw_context_rx *ctx, + bool nonblock) +{ + long timeo; + int ret; + + timeo = sock_rcvtimeo(sk, nonblock); + + while (unlikely(ctx->reader_present)) { + DEFINE_WAIT_FUNC(wait, woken_wake_function); + + ctx->reader_contended = 1; + + add_wait_queue(&ctx->wq, &wait); + ret = sk_wait_event(sk, &timeo, + !READ_ONCE(ctx->reader_present), &wait); + remove_wait_queue(&ctx->wq, &wait); + + if (timeo <= 0) + return -EAGAIN; + if (signal_pending(current)) + return sock_intr_errno(timeo); + if (ret < 0) + return ret; + } + + WRITE_ONCE(ctx->reader_present, 1); + + return 0; +} + +static int tls_rx_reader_lock(struct sock *sk, struct tls_sw_context_rx *ctx, + bool nonblock) +{ + int err; + + lock_sock(sk); + err = tls_rx_reader_acquire(sk, ctx, nonblock); + if (err) + release_sock(sk); + return err; +} + +static void tls_rx_reader_release(struct sock *sk, struct tls_sw_context_rx *ctx) +{ + if (unlikely(ctx->reader_contended)) { + if (wq_has_sleeper(&ctx->wq)) + wake_up(&ctx->wq); + else + ctx->reader_contended = 0; + + WARN_ON_ONCE(!ctx->reader_present); + } + + WRITE_ONCE(ctx->reader_present, 0); +} + +static void tls_rx_reader_unlock(struct sock *sk, struct tls_sw_context_rx *ctx) +{ + tls_rx_reader_release(sk, ctx); + release_sock(sk); +} + +int tls_sw_recvmsg(struct sock *sk, + struct msghdr *msg, + size_t len, + int flags, + int *addr_len) +{ + struct tls_context *tls_ctx = tls_get_ctx(sk); + struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); + struct tls_prot_info *prot = &tls_ctx->prot_info; + ssize_t decrypted = 0, async_copy_bytes = 0; + struct sk_psock *psock; + unsigned char control = 0; + size_t flushed_at = 0; + struct strp_msg *rxm; + struct tls_msg *tlm; + ssize_t copied = 0; + bool async = false; + int target, err; + bool is_kvec = iov_iter_is_kvec(&msg->msg_iter); + bool is_peek = flags & MSG_PEEK; + bool released = true; + bool bpf_strp_enabled; + bool zc_capable; + + if (unlikely(flags & MSG_ERRQUEUE)) + return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR); + + psock = sk_psock_get(sk); + err = tls_rx_reader_lock(sk, ctx, flags & MSG_DONTWAIT); + if (err < 0) + return err; + bpf_strp_enabled = sk_psock_strp_enabled(psock); + + /* If crypto failed the connection is broken */ + err = ctx->async_wait.err; + if (err) + goto end; + + /* Process pending decrypted records. It must be non-zero-copy */ + err = process_rx_list(ctx, msg, &control, 0, len, is_peek); + if (err < 0) + goto end; + + copied = err; + if (len <= copied) + goto end; + + target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); + len = len - copied; + + zc_capable = !bpf_strp_enabled && !is_kvec && !is_peek && + ctx->zc_capable; + decrypted = 0; + while (len && (decrypted + copied < target || tls_strp_msg_ready(ctx))) { + struct tls_decrypt_arg darg; + int to_decrypt, chunk; + + err = tls_rx_rec_wait(sk, psock, flags & MSG_DONTWAIT, + released); + if (err <= 0) { + if (psock) { + chunk = sk_msg_recvmsg(sk, psock, msg, len, + flags); + if (chunk > 0) { + decrypted += chunk; + len -= chunk; + continue; + } + } + goto recv_end; + } + + memset(&darg.inargs, 0, sizeof(darg.inargs)); + + rxm = strp_msg(tls_strp_msg(ctx)); + tlm = tls_msg(tls_strp_msg(ctx)); + + to_decrypt = rxm->full_len - prot->overhead_size; + + if (zc_capable && to_decrypt <= len && + tlm->control == TLS_RECORD_TYPE_DATA) + darg.zc = true; + + /* Do not use async mode if record is non-data */ + if (tlm->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled) + darg.async = ctx->async_capable; + else + darg.async = false; + + err = tls_rx_one_record(sk, msg, &darg); + if (err < 0) { + tls_err_abort(sk, -EBADMSG); + goto recv_end; + } + + async |= darg.async; + + /* If the type of records being processed is not known yet, + * set it to record type just dequeued. If it is already known, + * but does not match the record type just dequeued, go to end. + * We always get record type here since for tls1.2, record type + * is known just after record is dequeued from stream parser. + * For tls1.3, we disable async. + */ + err = tls_record_content_type(msg, tls_msg(darg.skb), &control); + if (err <= 0) { + DEBUG_NET_WARN_ON_ONCE(darg.zc); + tls_rx_rec_done(ctx); +put_on_rx_list_err: + __skb_queue_tail(&ctx->rx_list, darg.skb); + goto recv_end; + } + + /* periodically flush backlog, and feed strparser */ + released = tls_read_flush_backlog(sk, prot, len, to_decrypt, + decrypted + copied, + &flushed_at); + + /* TLS 1.3 may have updated the length by more than overhead */ + rxm = strp_msg(darg.skb); + chunk = rxm->full_len; + tls_rx_rec_done(ctx); + + if (!darg.zc) { + bool partially_consumed = chunk > len; + struct sk_buff *skb = darg.skb; + + DEBUG_NET_WARN_ON_ONCE(darg.skb == ctx->strp.anchor); + + if (async) { + /* TLS 1.2-only, to_decrypt must be text len */ + chunk = min_t(int, to_decrypt, len); + async_copy_bytes += chunk; +put_on_rx_list: + decrypted += chunk; + len -= chunk; + __skb_queue_tail(&ctx->rx_list, skb); + continue; + } + + if (bpf_strp_enabled) { + released = true; + err = sk_psock_tls_strp_read(psock, skb); + if (err != __SK_PASS) { + rxm->offset = rxm->offset + rxm->full_len; + rxm->full_len = 0; + if (err == __SK_DROP) + consume_skb(skb); + continue; + } + } + + if (partially_consumed) + chunk = len; + + err = skb_copy_datagram_msg(skb, rxm->offset, + msg, chunk); + if (err < 0) + goto put_on_rx_list_err; + + if (is_peek) + goto put_on_rx_list; + + if (partially_consumed) { + rxm->offset += chunk; + rxm->full_len -= chunk; + goto put_on_rx_list; + } + + consume_skb(skb); + } + + decrypted += chunk; + len -= chunk; + + /* Return full control message to userspace before trying + * to parse another message type + */ + msg->msg_flags |= MSG_EOR; + if (control != TLS_RECORD_TYPE_DATA) + break; + } + +recv_end: + if (async) { + int ret, pending; + + /* Wait for all previously submitted records to be decrypted */ + spin_lock_bh(&ctx->decrypt_compl_lock); + reinit_completion(&ctx->async_wait.completion); + pending = atomic_read(&ctx->decrypt_pending); + spin_unlock_bh(&ctx->decrypt_compl_lock); + ret = 0; + if (pending) + ret = crypto_wait_req(-EINPROGRESS, &ctx->async_wait); + __skb_queue_purge(&ctx->async_hold); + + if (ret) { + if (err >= 0 || err == -EINPROGRESS) + err = ret; + decrypted = 0; + goto end; + } + + /* Drain records from the rx_list & copy if required */ + if (is_peek || is_kvec) + err = process_rx_list(ctx, msg, &control, copied, + decrypted, is_peek); + else + err = process_rx_list(ctx, msg, &control, 0, + async_copy_bytes, is_peek); + decrypted += max(err, 0); + } + + copied += decrypted; + +end: + tls_rx_reader_unlock(sk, ctx); + if (psock) + sk_psock_put(sk, psock); + return copied ? : err; +} + +ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos, + struct pipe_inode_info *pipe, + size_t len, unsigned int flags) +{ + struct tls_context *tls_ctx = tls_get_ctx(sock->sk); + struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); + struct strp_msg *rxm = NULL; + struct sock *sk = sock->sk; + struct tls_msg *tlm; + struct sk_buff *skb; + ssize_t copied = 0; + int chunk; + int err; + + err = tls_rx_reader_lock(sk, ctx, flags & SPLICE_F_NONBLOCK); + if (err < 0) + return err; + + if (!skb_queue_empty(&ctx->rx_list)) { + skb = __skb_dequeue(&ctx->rx_list); + } else { + struct tls_decrypt_arg darg; + + err = tls_rx_rec_wait(sk, NULL, flags & SPLICE_F_NONBLOCK, + true); + if (err <= 0) + goto splice_read_end; + + memset(&darg.inargs, 0, sizeof(darg.inargs)); + + err = tls_rx_one_record(sk, NULL, &darg); + if (err < 0) { + tls_err_abort(sk, -EBADMSG); + goto splice_read_end; + } + + tls_rx_rec_done(ctx); + skb = darg.skb; + } + + rxm = strp_msg(skb); + tlm = tls_msg(skb); + + /* splice does not support reading control messages */ + if (tlm->control != TLS_RECORD_TYPE_DATA) { + err = -EINVAL; + goto splice_requeue; + } + + chunk = min_t(unsigned int, rxm->full_len, len); + copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags); + if (copied < 0) + goto splice_requeue; + + if (chunk < rxm->full_len) { + rxm->offset += len; + rxm->full_len -= len; + goto splice_requeue; + } + + consume_skb(skb); + +splice_read_end: + tls_rx_reader_unlock(sk, ctx); + return copied ? : err; + +splice_requeue: + __skb_queue_head(&ctx->rx_list, skb); + goto splice_read_end; +} + +bool tls_sw_sock_is_readable(struct sock *sk) +{ + struct tls_context *tls_ctx = tls_get_ctx(sk); + struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); + bool ingress_empty = true; + struct sk_psock *psock; + + rcu_read_lock(); + psock = sk_psock(sk); + if (psock) + ingress_empty = list_empty(&psock->ingress_msg); + rcu_read_unlock(); + + return !ingress_empty || tls_strp_msg_ready(ctx) || + !skb_queue_empty(&ctx->rx_list); +} + +int tls_rx_msg_size(struct tls_strparser *strp, struct sk_buff *skb) +{ + struct tls_context *tls_ctx = tls_get_ctx(strp->sk); + struct tls_prot_info *prot = &tls_ctx->prot_info; + char header[TLS_HEADER_SIZE + MAX_IV_SIZE]; + size_t cipher_overhead; + size_t data_len = 0; + int ret; + + /* Verify that we have a full TLS header, or wait for more data */ + if (strp->stm.offset + prot->prepend_size > skb->len) + return 0; + + /* Sanity-check size of on-stack buffer. */ + if (WARN_ON(prot->prepend_size > sizeof(header))) { + ret = -EINVAL; + goto read_failure; + } + + /* Linearize header to local buffer */ + ret = skb_copy_bits(skb, strp->stm.offset, header, prot->prepend_size); + if (ret < 0) + goto read_failure; + + strp->mark = header[0]; + + data_len = ((header[4] & 0xFF) | (header[3] << 8)); + + cipher_overhead = prot->tag_size; + if (prot->version != TLS_1_3_VERSION && + prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305) + cipher_overhead += prot->iv_size; + + if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead + + prot->tail_size) { + ret = -EMSGSIZE; + goto read_failure; + } + if (data_len < cipher_overhead) { + ret = -EBADMSG; + goto read_failure; + } + + /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */ + if (header[1] != TLS_1_2_VERSION_MINOR || + header[2] != TLS_1_2_VERSION_MAJOR) { + ret = -EINVAL; + goto read_failure; + } + + tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE, + TCP_SKB_CB(skb)->seq + strp->stm.offset); + return data_len + TLS_HEADER_SIZE; + +read_failure: + tls_err_abort(strp->sk, ret); + + return ret; +} + +void tls_rx_msg_ready(struct tls_strparser *strp) +{ + struct tls_sw_context_rx *ctx; + + ctx = container_of(strp, struct tls_sw_context_rx, strp); + ctx->saved_data_ready(strp->sk); +} + +static void tls_data_ready(struct sock *sk) +{ + struct tls_context *tls_ctx = tls_get_ctx(sk); + struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); + struct sk_psock *psock; + gfp_t alloc_save; + + alloc_save = sk->sk_allocation; + sk->sk_allocation = GFP_ATOMIC; + tls_strp_data_ready(&ctx->strp); + sk->sk_allocation = alloc_save; + + psock = sk_psock_get(sk); + if (psock) { + if (!list_empty(&psock->ingress_msg)) + ctx->saved_data_ready(sk); + sk_psock_put(sk, psock); + } +} + +void tls_sw_cancel_work_tx(struct tls_context *tls_ctx) +{ + struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); + + set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask); + set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask); + cancel_delayed_work_sync(&ctx->tx_work.work); +} + +void tls_sw_release_resources_tx(struct sock *sk) +{ + struct tls_context *tls_ctx = tls_get_ctx(sk); + struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); + struct tls_rec *rec, *tmp; + int pending; + + /* Wait for any pending async encryptions to complete */ + spin_lock_bh(&ctx->encrypt_compl_lock); + ctx->async_notify = true; + pending = atomic_read(&ctx->encrypt_pending); + spin_unlock_bh(&ctx->encrypt_compl_lock); + + if (pending) + crypto_wait_req(-EINPROGRESS, &ctx->async_wait); + + tls_tx_records(sk, -1); + + /* Free up un-sent records in tx_list. First, free + * the partially sent record if any at head of tx_list. + */ + if (tls_ctx->partially_sent_record) { + tls_free_partial_record(sk, tls_ctx); + rec = list_first_entry(&ctx->tx_list, + struct tls_rec, list); + list_del(&rec->list); + sk_msg_free(sk, &rec->msg_plaintext); + kfree(rec); + } + + list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) { + list_del(&rec->list); + sk_msg_free(sk, &rec->msg_encrypted); + sk_msg_free(sk, &rec->msg_plaintext); + kfree(rec); + } + + crypto_free_aead(ctx->aead_send); + tls_free_open_rec(sk); +} + +void tls_sw_free_ctx_tx(struct tls_context *tls_ctx) +{ + struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); + + kfree(ctx); +} + +void tls_sw_release_resources_rx(struct sock *sk) +{ + struct tls_context *tls_ctx = tls_get_ctx(sk); + struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); + + kfree(tls_ctx->rx.rec_seq); + kfree(tls_ctx->rx.iv); + + if (ctx->aead_recv) { + __skb_queue_purge(&ctx->rx_list); + crypto_free_aead(ctx->aead_recv); + tls_strp_stop(&ctx->strp); + /* If tls_sw_strparser_arm() was not called (cleanup paths) + * we still want to tls_strp_stop(), but sk->sk_data_ready was + * never swapped. + */ + if (ctx->saved_data_ready) { + write_lock_bh(&sk->sk_callback_lock); + sk->sk_data_ready = ctx->saved_data_ready; + write_unlock_bh(&sk->sk_callback_lock); + } + } +} + +void tls_sw_strparser_done(struct tls_context *tls_ctx) +{ + struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); + + tls_strp_done(&ctx->strp); +} + +void tls_sw_free_ctx_rx(struct tls_context *tls_ctx) +{ + struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); + + kfree(ctx); +} + +void tls_sw_free_resources_rx(struct sock *sk) +{ + struct tls_context *tls_ctx = tls_get_ctx(sk); + + tls_sw_release_resources_rx(sk); + tls_sw_free_ctx_rx(tls_ctx); +} + +/* The work handler to transmitt the encrypted records in tx_list */ +static void tx_work_handler(struct work_struct *work) +{ + struct delayed_work *delayed_work = to_delayed_work(work); + struct tx_work *tx_work = container_of(delayed_work, + struct tx_work, work); + struct sock *sk = tx_work->sk; + struct tls_context *tls_ctx = tls_get_ctx(sk); + struct tls_sw_context_tx *ctx; + + if (unlikely(!tls_ctx)) + return; + + ctx = tls_sw_ctx_tx(tls_ctx); + if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask)) + return; + + if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) + return; + + if (mutex_trylock(&tls_ctx->tx_lock)) { + lock_sock(sk); + tls_tx_records(sk, -1); + release_sock(sk); + mutex_unlock(&tls_ctx->tx_lock); + } else if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { + /* Someone is holding the tx_lock, they will likely run Tx + * and cancel the work on their way out of the lock section. + * Schedule a long delay just in case. + */ + schedule_delayed_work(&ctx->tx_work.work, msecs_to_jiffies(10)); + } +} + +static bool tls_is_tx_ready(struct tls_sw_context_tx *ctx) +{ + struct tls_rec *rec; + + rec = list_first_entry_or_null(&ctx->tx_list, struct tls_rec, list); + if (!rec) + return false; + + return READ_ONCE(rec->tx_ready); +} + +void tls_sw_write_space(struct sock *sk, struct tls_context *ctx) +{ + struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx); + + /* Schedule the transmission if tx list is ready */ + if (tls_is_tx_ready(tx_ctx) && + !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask)) + schedule_delayed_work(&tx_ctx->tx_work.work, 0); +} + +void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx) +{ + struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx); + + write_lock_bh(&sk->sk_callback_lock); + rx_ctx->saved_data_ready = sk->sk_data_ready; + sk->sk_data_ready = tls_data_ready; + write_unlock_bh(&sk->sk_callback_lock); +} + +void tls_update_rx_zc_capable(struct tls_context *tls_ctx) +{ + struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx); + + rx_ctx->zc_capable = tls_ctx->rx_no_pad || + tls_ctx->prot_info.version != TLS_1_3_VERSION; +} + +int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx) +{ + struct tls_context *tls_ctx = tls_get_ctx(sk); + struct tls_prot_info *prot = &tls_ctx->prot_info; + struct tls_crypto_info *crypto_info; + struct tls_sw_context_tx *sw_ctx_tx = NULL; + struct tls_sw_context_rx *sw_ctx_rx = NULL; + struct cipher_context *cctx; + struct crypto_aead **aead; + u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size; + struct crypto_tfm *tfm; + char *iv, *rec_seq, *key, *salt, *cipher_name; + size_t keysize; + int rc = 0; + + if (!ctx) { + rc = -EINVAL; + goto out; + } + + if (tx) { + if (!ctx->priv_ctx_tx) { + sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL); + if (!sw_ctx_tx) { + rc = -ENOMEM; + goto out; + } + ctx->priv_ctx_tx = sw_ctx_tx; + } else { + sw_ctx_tx = + (struct tls_sw_context_tx *)ctx->priv_ctx_tx; + } + } else { + if (!ctx->priv_ctx_rx) { + sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL); + if (!sw_ctx_rx) { + rc = -ENOMEM; + goto out; + } + ctx->priv_ctx_rx = sw_ctx_rx; + } else { + sw_ctx_rx = + (struct tls_sw_context_rx *)ctx->priv_ctx_rx; + } + } + + if (tx) { + crypto_init_wait(&sw_ctx_tx->async_wait); + spin_lock_init(&sw_ctx_tx->encrypt_compl_lock); + crypto_info = &ctx->crypto_send.info; + cctx = &ctx->tx; + aead = &sw_ctx_tx->aead_send; + INIT_LIST_HEAD(&sw_ctx_tx->tx_list); + INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler); + sw_ctx_tx->tx_work.sk = sk; + } else { + crypto_init_wait(&sw_ctx_rx->async_wait); + spin_lock_init(&sw_ctx_rx->decrypt_compl_lock); + init_waitqueue_head(&sw_ctx_rx->wq); + crypto_info = &ctx->crypto_recv.info; + cctx = &ctx->rx; + skb_queue_head_init(&sw_ctx_rx->rx_list); + skb_queue_head_init(&sw_ctx_rx->async_hold); + aead = &sw_ctx_rx->aead_recv; + } + + switch (crypto_info->cipher_type) { + case TLS_CIPHER_AES_GCM_128: { + struct tls12_crypto_info_aes_gcm_128 *gcm_128_info; + + gcm_128_info = (void *)crypto_info; + nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; + tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE; + iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; + iv = gcm_128_info->iv; + rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE; + rec_seq = gcm_128_info->rec_seq; + keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE; + key = gcm_128_info->key; + salt = gcm_128_info->salt; + salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE; + cipher_name = "gcm(aes)"; + break; + } + case TLS_CIPHER_AES_GCM_256: { + struct tls12_crypto_info_aes_gcm_256 *gcm_256_info; + + gcm_256_info = (void *)crypto_info; + nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE; + tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE; + iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE; + iv = gcm_256_info->iv; + rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE; + rec_seq = gcm_256_info->rec_seq; + keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE; + key = gcm_256_info->key; + salt = gcm_256_info->salt; + salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE; + cipher_name = "gcm(aes)"; + break; + } + case TLS_CIPHER_AES_CCM_128: { + struct tls12_crypto_info_aes_ccm_128 *ccm_128_info; + + ccm_128_info = (void *)crypto_info; + nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE; + tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE; + iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE; + iv = ccm_128_info->iv; + rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE; + rec_seq = ccm_128_info->rec_seq; + keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE; + key = ccm_128_info->key; + salt = ccm_128_info->salt; + salt_size = TLS_CIPHER_AES_CCM_128_SALT_SIZE; + cipher_name = "ccm(aes)"; + break; + } + case TLS_CIPHER_CHACHA20_POLY1305: { + struct tls12_crypto_info_chacha20_poly1305 *chacha20_poly1305_info; + + chacha20_poly1305_info = (void *)crypto_info; + nonce_size = 0; + tag_size = TLS_CIPHER_CHACHA20_POLY1305_TAG_SIZE; + iv_size = TLS_CIPHER_CHACHA20_POLY1305_IV_SIZE; + iv = chacha20_poly1305_info->iv; + rec_seq_size = TLS_CIPHER_CHACHA20_POLY1305_REC_SEQ_SIZE; + rec_seq = chacha20_poly1305_info->rec_seq; + keysize = TLS_CIPHER_CHACHA20_POLY1305_KEY_SIZE; + key = chacha20_poly1305_info->key; + salt = chacha20_poly1305_info->salt; + salt_size = TLS_CIPHER_CHACHA20_POLY1305_SALT_SIZE; + cipher_name = "rfc7539(chacha20,poly1305)"; + break; + } + case TLS_CIPHER_SM4_GCM: { + struct tls12_crypto_info_sm4_gcm *sm4_gcm_info; + + sm4_gcm_info = (void *)crypto_info; + nonce_size = TLS_CIPHER_SM4_GCM_IV_SIZE; + tag_size = TLS_CIPHER_SM4_GCM_TAG_SIZE; + iv_size = TLS_CIPHER_SM4_GCM_IV_SIZE; + iv = sm4_gcm_info->iv; + rec_seq_size = TLS_CIPHER_SM4_GCM_REC_SEQ_SIZE; + rec_seq = sm4_gcm_info->rec_seq; + keysize = TLS_CIPHER_SM4_GCM_KEY_SIZE; + key = sm4_gcm_info->key; + salt = sm4_gcm_info->salt; + salt_size = TLS_CIPHER_SM4_GCM_SALT_SIZE; + cipher_name = "gcm(sm4)"; + break; + } + case TLS_CIPHER_SM4_CCM: { + struct tls12_crypto_info_sm4_ccm *sm4_ccm_info; + + sm4_ccm_info = (void *)crypto_info; + nonce_size = TLS_CIPHER_SM4_CCM_IV_SIZE; + tag_size = TLS_CIPHER_SM4_CCM_TAG_SIZE; + iv_size = TLS_CIPHER_SM4_CCM_IV_SIZE; + iv = sm4_ccm_info->iv; + rec_seq_size = TLS_CIPHER_SM4_CCM_REC_SEQ_SIZE; + rec_seq = sm4_ccm_info->rec_seq; + keysize = TLS_CIPHER_SM4_CCM_KEY_SIZE; + key = sm4_ccm_info->key; + salt = sm4_ccm_info->salt; + salt_size = TLS_CIPHER_SM4_CCM_SALT_SIZE; + cipher_name = "ccm(sm4)"; + break; + } + case TLS_CIPHER_ARIA_GCM_128: { + struct tls12_crypto_info_aria_gcm_128 *aria_gcm_128_info; + + aria_gcm_128_info = (void *)crypto_info; + nonce_size = TLS_CIPHER_ARIA_GCM_128_IV_SIZE; + tag_size = TLS_CIPHER_ARIA_GCM_128_TAG_SIZE; + iv_size = TLS_CIPHER_ARIA_GCM_128_IV_SIZE; + iv = aria_gcm_128_info->iv; + rec_seq_size = TLS_CIPHER_ARIA_GCM_128_REC_SEQ_SIZE; + rec_seq = aria_gcm_128_info->rec_seq; + keysize = TLS_CIPHER_ARIA_GCM_128_KEY_SIZE; + key = aria_gcm_128_info->key; + salt = aria_gcm_128_info->salt; + salt_size = TLS_CIPHER_ARIA_GCM_128_SALT_SIZE; + cipher_name = "gcm(aria)"; + break; + } + case TLS_CIPHER_ARIA_GCM_256: { + struct tls12_crypto_info_aria_gcm_256 *gcm_256_info; + + gcm_256_info = (void *)crypto_info; + nonce_size = TLS_CIPHER_ARIA_GCM_256_IV_SIZE; + tag_size = TLS_CIPHER_ARIA_GCM_256_TAG_SIZE; + iv_size = TLS_CIPHER_ARIA_GCM_256_IV_SIZE; + iv = gcm_256_info->iv; + rec_seq_size = TLS_CIPHER_ARIA_GCM_256_REC_SEQ_SIZE; + rec_seq = gcm_256_info->rec_seq; + keysize = TLS_CIPHER_ARIA_GCM_256_KEY_SIZE; + key = gcm_256_info->key; + salt = gcm_256_info->salt; + salt_size = TLS_CIPHER_ARIA_GCM_256_SALT_SIZE; + cipher_name = "gcm(aria)"; + break; + } + default: + rc = -EINVAL; + goto free_priv; + } + + if (crypto_info->version == TLS_1_3_VERSION) { + nonce_size = 0; + prot->aad_size = TLS_HEADER_SIZE; + prot->tail_size = 1; + } else { + prot->aad_size = TLS_AAD_SPACE_SIZE; + prot->tail_size = 0; + } + + /* Sanity-check the sizes for stack allocations. */ + if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE || + rec_seq_size > TLS_MAX_REC_SEQ_SIZE || tag_size != TLS_TAG_SIZE || + prot->aad_size > TLS_MAX_AAD_SIZE) { + rc = -EINVAL; + goto free_priv; + } + + prot->version = crypto_info->version; + prot->cipher_type = crypto_info->cipher_type; + prot->prepend_size = TLS_HEADER_SIZE + nonce_size; + prot->tag_size = tag_size; + prot->overhead_size = prot->prepend_size + + prot->tag_size + prot->tail_size; + prot->iv_size = iv_size; + prot->salt_size = salt_size; + cctx->iv = kmalloc(iv_size + salt_size, GFP_KERNEL); + if (!cctx->iv) { + rc = -ENOMEM; + goto free_priv; + } + /* Note: 128 & 256 bit salt are the same size */ + prot->rec_seq_size = rec_seq_size; + memcpy(cctx->iv, salt, salt_size); + memcpy(cctx->iv + salt_size, iv, iv_size); + cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL); + if (!cctx->rec_seq) { + rc = -ENOMEM; + goto free_iv; + } + + if (!*aead) { + *aead = crypto_alloc_aead(cipher_name, 0, 0); + if (IS_ERR(*aead)) { + rc = PTR_ERR(*aead); + *aead = NULL; + goto free_rec_seq; + } + } + + ctx->push_pending_record = tls_sw_push_pending_record; + + rc = crypto_aead_setkey(*aead, key, keysize); + + if (rc) + goto free_aead; + + rc = crypto_aead_setauthsize(*aead, prot->tag_size); + if (rc) + goto free_aead; + + if (sw_ctx_rx) { + tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv); + + tls_update_rx_zc_capable(ctx); + sw_ctx_rx->async_capable = + crypto_info->version != TLS_1_3_VERSION && + !!(tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC); + + rc = tls_strp_init(&sw_ctx_rx->strp, sk); + if (rc) + goto free_aead; + } + + goto out; + +free_aead: + crypto_free_aead(*aead); + *aead = NULL; +free_rec_seq: + kfree(cctx->rec_seq); + cctx->rec_seq = NULL; +free_iv: + kfree(cctx->iv); + cctx->iv = NULL; +free_priv: + if (tx) { + kfree(ctx->priv_ctx_tx); + ctx->priv_ctx_tx = NULL; + } else { + kfree(ctx->priv_ctx_rx); + ctx->priv_ctx_rx = NULL; + } +out: + return rc; +} diff --git a/net/tls/tls_toe.c b/net/tls/tls_toe.c new file mode 100644 index 000000000..825669e1a --- /dev/null +++ b/net/tls/tls_toe.c @@ -0,0 +1,141 @@ +/* + * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. + * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. + * + * This software is available to you under a choice of one of two + * licenses. You may choose to be licensed under the terms of the GNU + * General Public License (GPL) Version 2, available from the file + * COPYING in the main directory of this source tree, or the + * OpenIB.org BSD license below: + * + * Redistribution and use in source and binary forms, with or + * without modification, are permitted provided that the following + * conditions are met: + * + * - Redistributions of source code must retain the above + * copyright notice, this list of conditions and the following + * disclaimer. + * + * - Redistributions in binary form must reproduce the above + * copyright notice, this list of conditions and the following + * disclaimer in the documentation and/or other materials + * provided with the distribution. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, + * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND + * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS + * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN + * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE + * SOFTWARE. + */ + +#include <linux/list.h> +#include <linux/rcupdate.h> +#include <linux/spinlock.h> +#include <net/inet_connection_sock.h> +#include <net/tls.h> +#include <net/tls_toe.h> + +#include "tls.h" + +static LIST_HEAD(device_list); +static DEFINE_SPINLOCK(device_spinlock); + +static void tls_toe_sk_destruct(struct sock *sk) +{ + struct inet_connection_sock *icsk = inet_csk(sk); + struct tls_context *ctx = tls_get_ctx(sk); + + ctx->sk_destruct(sk); + /* Free ctx */ + rcu_assign_pointer(icsk->icsk_ulp_data, NULL); + tls_ctx_free(sk, ctx); +} + +int tls_toe_bypass(struct sock *sk) +{ + struct tls_toe_device *dev; + struct tls_context *ctx; + int rc = 0; + + spin_lock_bh(&device_spinlock); + list_for_each_entry(dev, &device_list, dev_list) { + if (dev->feature && dev->feature(dev)) { + ctx = tls_ctx_create(sk); + if (!ctx) + goto out; + + ctx->sk_destruct = sk->sk_destruct; + sk->sk_destruct = tls_toe_sk_destruct; + ctx->rx_conf = TLS_HW_RECORD; + ctx->tx_conf = TLS_HW_RECORD; + update_sk_prot(sk, ctx); + rc = 1; + break; + } + } +out: + spin_unlock_bh(&device_spinlock); + return rc; +} + +void tls_toe_unhash(struct sock *sk) +{ + struct tls_context *ctx = tls_get_ctx(sk); + struct tls_toe_device *dev; + + spin_lock_bh(&device_spinlock); + list_for_each_entry(dev, &device_list, dev_list) { + if (dev->unhash) { + kref_get(&dev->kref); + spin_unlock_bh(&device_spinlock); + dev->unhash(dev, sk); + kref_put(&dev->kref, dev->release); + spin_lock_bh(&device_spinlock); + } + } + spin_unlock_bh(&device_spinlock); + ctx->sk_proto->unhash(sk); +} + +int tls_toe_hash(struct sock *sk) +{ + struct tls_context *ctx = tls_get_ctx(sk); + struct tls_toe_device *dev; + int err; + + err = ctx->sk_proto->hash(sk); + spin_lock_bh(&device_spinlock); + list_for_each_entry(dev, &device_list, dev_list) { + if (dev->hash) { + kref_get(&dev->kref); + spin_unlock_bh(&device_spinlock); + err |= dev->hash(dev, sk); + kref_put(&dev->kref, dev->release); + spin_lock_bh(&device_spinlock); + } + } + spin_unlock_bh(&device_spinlock); + + if (err) + tls_toe_unhash(sk); + return err; +} + +void tls_toe_register_device(struct tls_toe_device *device) +{ + spin_lock_bh(&device_spinlock); + list_add_tail(&device->dev_list, &device_list); + spin_unlock_bh(&device_spinlock); +} +EXPORT_SYMBOL(tls_toe_register_device); + +void tls_toe_unregister_device(struct tls_toe_device *device) +{ + spin_lock_bh(&device_spinlock); + list_del(&device->dev_list); + spin_unlock_bh(&device_spinlock); +} +EXPORT_SYMBOL(tls_toe_unregister_device); diff --git a/net/tls/trace.c b/net/tls/trace.c new file mode 100644 index 000000000..e374913cf --- /dev/null +++ b/net/tls/trace.c @@ -0,0 +1,10 @@ +// SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause) +/* Copyright (C) 2019 Netronome Systems, Inc. */ + +#include <linux/module.h> + +#ifndef __CHECKER__ +#define CREATE_TRACE_POINTS +#include "trace.h" + +#endif diff --git a/net/tls/trace.h b/net/tls/trace.h new file mode 100644 index 000000000..9ba5f600e --- /dev/null +++ b/net/tls/trace.h @@ -0,0 +1,202 @@ +/* SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause) */ +/* Copyright (C) 2019 Netronome Systems, Inc. */ + +#undef TRACE_SYSTEM +#define TRACE_SYSTEM tls + +#if !defined(_TLS_TRACE_H_) || defined(TRACE_HEADER_MULTI_READ) +#define _TLS_TRACE_H_ + +#include <asm/unaligned.h> +#include <linux/tracepoint.h> + +struct sock; + +TRACE_EVENT(tls_device_offload_set, + + TP_PROTO(struct sock *sk, int dir, u32 tcp_seq, u8 *rec_no, int ret), + + TP_ARGS(sk, dir, tcp_seq, rec_no, ret), + + TP_STRUCT__entry( + __field( struct sock *, sk ) + __field( u64, rec_no ) + __field( int, dir ) + __field( u32, tcp_seq ) + __field( int, ret ) + ), + + TP_fast_assign( + __entry->sk = sk; + __entry->rec_no = get_unaligned_be64(rec_no); + __entry->dir = dir; + __entry->tcp_seq = tcp_seq; + __entry->ret = ret; + ), + + TP_printk( + "sk=%p direction=%d tcp_seq=%u rec_no=%llu ret=%d", + __entry->sk, __entry->dir, __entry->tcp_seq, __entry->rec_no, + __entry->ret + ) +); + +TRACE_EVENT(tls_device_decrypted, + + TP_PROTO(struct sock *sk, u32 tcp_seq, u8 *rec_no, u32 rec_len, + bool encrypted, bool decrypted), + + TP_ARGS(sk, tcp_seq, rec_no, rec_len, encrypted, decrypted), + + TP_STRUCT__entry( + __field( struct sock *, sk ) + __field( u64, rec_no ) + __field( u32, tcp_seq ) + __field( u32, rec_len ) + __field( bool, encrypted ) + __field( bool, decrypted ) + ), + + TP_fast_assign( + __entry->sk = sk; + __entry->rec_no = get_unaligned_be64(rec_no); + __entry->tcp_seq = tcp_seq; + __entry->rec_len = rec_len; + __entry->encrypted = encrypted; + __entry->decrypted = decrypted; + ), + + TP_printk( + "sk=%p tcp_seq=%u rec_no=%llu len=%u encrypted=%d decrypted=%d", + __entry->sk, __entry->tcp_seq, + __entry->rec_no, __entry->rec_len, + __entry->encrypted, __entry->decrypted + ) +); + +TRACE_EVENT(tls_device_rx_resync_send, + + TP_PROTO(struct sock *sk, u32 tcp_seq, u8 *rec_no, int sync_type), + + TP_ARGS(sk, tcp_seq, rec_no, sync_type), + + TP_STRUCT__entry( + __field( struct sock *, sk ) + __field( u64, rec_no ) + __field( u32, tcp_seq ) + __field( int, sync_type ) + ), + + TP_fast_assign( + __entry->sk = sk; + __entry->rec_no = get_unaligned_be64(rec_no); + __entry->tcp_seq = tcp_seq; + __entry->sync_type = sync_type; + ), + + TP_printk( + "sk=%p tcp_seq=%u rec_no=%llu sync_type=%d", + __entry->sk, __entry->tcp_seq, __entry->rec_no, + __entry->sync_type + ) +); + +TRACE_EVENT(tls_device_rx_resync_nh_schedule, + + TP_PROTO(struct sock *sk), + + TP_ARGS(sk), + + TP_STRUCT__entry( + __field( struct sock *, sk ) + ), + + TP_fast_assign( + __entry->sk = sk; + ), + + TP_printk( + "sk=%p", __entry->sk + ) +); + +TRACE_EVENT(tls_device_rx_resync_nh_delay, + + TP_PROTO(struct sock *sk, u32 sock_data, u32 rec_len), + + TP_ARGS(sk, sock_data, rec_len), + + TP_STRUCT__entry( + __field( struct sock *, sk ) + __field( u32, sock_data ) + __field( u32, rec_len ) + ), + + TP_fast_assign( + __entry->sk = sk; + __entry->sock_data = sock_data; + __entry->rec_len = rec_len; + ), + + TP_printk( + "sk=%p sock_data=%u rec_len=%u", + __entry->sk, __entry->sock_data, __entry->rec_len + ) +); + +TRACE_EVENT(tls_device_tx_resync_req, + + TP_PROTO(struct sock *sk, u32 tcp_seq, u32 exp_tcp_seq), + + TP_ARGS(sk, tcp_seq, exp_tcp_seq), + + TP_STRUCT__entry( + __field( struct sock *, sk ) + __field( u32, tcp_seq ) + __field( u32, exp_tcp_seq ) + ), + + TP_fast_assign( + __entry->sk = sk; + __entry->tcp_seq = tcp_seq; + __entry->exp_tcp_seq = exp_tcp_seq; + ), + + TP_printk( + "sk=%p tcp_seq=%u exp_tcp_seq=%u", + __entry->sk, __entry->tcp_seq, __entry->exp_tcp_seq + ) +); + +TRACE_EVENT(tls_device_tx_resync_send, + + TP_PROTO(struct sock *sk, u32 tcp_seq, u8 *rec_no), + + TP_ARGS(sk, tcp_seq, rec_no), + + TP_STRUCT__entry( + __field( struct sock *, sk ) + __field( u64, rec_no ) + __field( u32, tcp_seq ) + ), + + TP_fast_assign( + __entry->sk = sk; + __entry->rec_no = get_unaligned_be64(rec_no); + __entry->tcp_seq = tcp_seq; + ), + + TP_printk( + "sk=%p tcp_seq=%u rec_no=%llu", + __entry->sk, __entry->tcp_seq, __entry->rec_no + ) +); + +#endif /* _TLS_TRACE_H_ */ + +#undef TRACE_INCLUDE_PATH +#define TRACE_INCLUDE_PATH . +#undef TRACE_INCLUDE_FILE +#define TRACE_INCLUDE_FILE trace + +#include <trace/define_trace.h> |