summaryrefslogtreecommitdiffstats
path: root/sound/firewire/amdtp-stream.c
diff options
context:
space:
mode:
Diffstat (limited to 'sound/firewire/amdtp-stream.c')
-rw-r--r--sound/firewire/amdtp-stream.c2024
1 files changed, 2024 insertions, 0 deletions
diff --git a/sound/firewire/amdtp-stream.c b/sound/firewire/amdtp-stream.c
new file mode 100644
index 000000000..9be2260e4
--- /dev/null
+++ b/sound/firewire/amdtp-stream.c
@@ -0,0 +1,2024 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Audio and Music Data Transmission Protocol (IEC 61883-6) streams
+ * with Common Isochronous Packet (IEC 61883-1) headers
+ *
+ * Copyright (c) Clemens Ladisch <clemens@ladisch.de>
+ */
+
+#include <linux/device.h>
+#include <linux/err.h>
+#include <linux/firewire.h>
+#include <linux/firewire-constants.h>
+#include <linux/module.h>
+#include <linux/slab.h>
+#include <sound/pcm.h>
+#include <sound/pcm_params.h>
+#include "amdtp-stream.h"
+
+#define TICKS_PER_CYCLE 3072
+#define CYCLES_PER_SECOND 8000
+#define TICKS_PER_SECOND (TICKS_PER_CYCLE * CYCLES_PER_SECOND)
+
+#define OHCI_SECOND_MODULUS 8
+
+/* Always support Linux tracing subsystem. */
+#define CREATE_TRACE_POINTS
+#include "amdtp-stream-trace.h"
+
+#define TRANSFER_DELAY_TICKS 0x2e00 /* 479.17 microseconds */
+
+/* isochronous header parameters */
+#define ISO_DATA_LENGTH_SHIFT 16
+#define TAG_NO_CIP_HEADER 0
+#define TAG_CIP 1
+
+// Common Isochronous Packet (CIP) header parameters. Use two quadlets CIP header when supported.
+#define CIP_HEADER_QUADLETS 2
+#define CIP_EOH_SHIFT 31
+#define CIP_EOH (1u << CIP_EOH_SHIFT)
+#define CIP_EOH_MASK 0x80000000
+#define CIP_SID_SHIFT 24
+#define CIP_SID_MASK 0x3f000000
+#define CIP_DBS_MASK 0x00ff0000
+#define CIP_DBS_SHIFT 16
+#define CIP_SPH_MASK 0x00000400
+#define CIP_SPH_SHIFT 10
+#define CIP_DBC_MASK 0x000000ff
+#define CIP_FMT_SHIFT 24
+#define CIP_FMT_MASK 0x3f000000
+#define CIP_FDF_MASK 0x00ff0000
+#define CIP_FDF_SHIFT 16
+#define CIP_FDF_NO_DATA 0xff
+#define CIP_SYT_MASK 0x0000ffff
+#define CIP_SYT_NO_INFO 0xffff
+#define CIP_SYT_CYCLE_MODULUS 16
+#define CIP_NO_DATA ((CIP_FDF_NO_DATA << CIP_FDF_SHIFT) | CIP_SYT_NO_INFO)
+
+#define CIP_HEADER_SIZE (sizeof(__be32) * CIP_HEADER_QUADLETS)
+
+/* Audio and Music transfer protocol specific parameters */
+#define CIP_FMT_AM 0x10
+#define AMDTP_FDF_NO_DATA 0xff
+
+// For iso header and tstamp.
+#define IR_CTX_HEADER_DEFAULT_QUADLETS 2
+// Add nothing.
+#define IR_CTX_HEADER_SIZE_NO_CIP (sizeof(__be32) * IR_CTX_HEADER_DEFAULT_QUADLETS)
+// Add two quadlets CIP header.
+#define IR_CTX_HEADER_SIZE_CIP (IR_CTX_HEADER_SIZE_NO_CIP + CIP_HEADER_SIZE)
+#define HEADER_TSTAMP_MASK 0x0000ffff
+
+#define IT_PKT_HEADER_SIZE_CIP CIP_HEADER_SIZE
+#define IT_PKT_HEADER_SIZE_NO_CIP 0 // Nothing.
+
+// The initial firmware of OXFW970 can postpone transmission of packet during finishing
+// asynchronous transaction. This module accepts 5 cycles to skip as maximum to avoid buffer
+// overrun. Actual device can skip more, then this module stops the packet streaming.
+#define IR_JUMBO_PAYLOAD_MAX_SKIP_CYCLES 5
+
+/**
+ * amdtp_stream_init - initialize an AMDTP stream structure
+ * @s: the AMDTP stream to initialize
+ * @unit: the target of the stream
+ * @dir: the direction of stream
+ * @flags: the details of the streaming protocol consist of cip_flags enumeration-constants.
+ * @fmt: the value of fmt field in CIP header
+ * @process_ctx_payloads: callback handler to process payloads of isoc context
+ * @protocol_size: the size to allocate newly for protocol
+ */
+int amdtp_stream_init(struct amdtp_stream *s, struct fw_unit *unit,
+ enum amdtp_stream_direction dir, unsigned int flags,
+ unsigned int fmt,
+ amdtp_stream_process_ctx_payloads_t process_ctx_payloads,
+ unsigned int protocol_size)
+{
+ if (process_ctx_payloads == NULL)
+ return -EINVAL;
+
+ s->protocol = kzalloc(protocol_size, GFP_KERNEL);
+ if (!s->protocol)
+ return -ENOMEM;
+
+ s->unit = unit;
+ s->direction = dir;
+ s->flags = flags;
+ s->context = ERR_PTR(-1);
+ mutex_init(&s->mutex);
+ s->packet_index = 0;
+
+ init_waitqueue_head(&s->ready_wait);
+
+ s->fmt = fmt;
+ s->process_ctx_payloads = process_ctx_payloads;
+
+ return 0;
+}
+EXPORT_SYMBOL(amdtp_stream_init);
+
+/**
+ * amdtp_stream_destroy - free stream resources
+ * @s: the AMDTP stream to destroy
+ */
+void amdtp_stream_destroy(struct amdtp_stream *s)
+{
+ /* Not initialized. */
+ if (s->protocol == NULL)
+ return;
+
+ WARN_ON(amdtp_stream_running(s));
+ kfree(s->protocol);
+ mutex_destroy(&s->mutex);
+}
+EXPORT_SYMBOL(amdtp_stream_destroy);
+
+const unsigned int amdtp_syt_intervals[CIP_SFC_COUNT] = {
+ [CIP_SFC_32000] = 8,
+ [CIP_SFC_44100] = 8,
+ [CIP_SFC_48000] = 8,
+ [CIP_SFC_88200] = 16,
+ [CIP_SFC_96000] = 16,
+ [CIP_SFC_176400] = 32,
+ [CIP_SFC_192000] = 32,
+};
+EXPORT_SYMBOL(amdtp_syt_intervals);
+
+const unsigned int amdtp_rate_table[CIP_SFC_COUNT] = {
+ [CIP_SFC_32000] = 32000,
+ [CIP_SFC_44100] = 44100,
+ [CIP_SFC_48000] = 48000,
+ [CIP_SFC_88200] = 88200,
+ [CIP_SFC_96000] = 96000,
+ [CIP_SFC_176400] = 176400,
+ [CIP_SFC_192000] = 192000,
+};
+EXPORT_SYMBOL(amdtp_rate_table);
+
+static int apply_constraint_to_size(struct snd_pcm_hw_params *params,
+ struct snd_pcm_hw_rule *rule)
+{
+ struct snd_interval *s = hw_param_interval(params, rule->var);
+ const struct snd_interval *r =
+ hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_RATE);
+ struct snd_interval t = {0};
+ unsigned int step = 0;
+ int i;
+
+ for (i = 0; i < CIP_SFC_COUNT; ++i) {
+ if (snd_interval_test(r, amdtp_rate_table[i]))
+ step = max(step, amdtp_syt_intervals[i]);
+ }
+
+ t.min = roundup(s->min, step);
+ t.max = rounddown(s->max, step);
+ t.integer = 1;
+
+ return snd_interval_refine(s, &t);
+}
+
+/**
+ * amdtp_stream_add_pcm_hw_constraints - add hw constraints for PCM substream
+ * @s: the AMDTP stream, which must be initialized.
+ * @runtime: the PCM substream runtime
+ */
+int amdtp_stream_add_pcm_hw_constraints(struct amdtp_stream *s,
+ struct snd_pcm_runtime *runtime)
+{
+ struct snd_pcm_hardware *hw = &runtime->hw;
+ unsigned int ctx_header_size;
+ unsigned int maximum_usec_per_period;
+ int err;
+
+ hw->info = SNDRV_PCM_INFO_BLOCK_TRANSFER |
+ SNDRV_PCM_INFO_INTERLEAVED |
+ SNDRV_PCM_INFO_JOINT_DUPLEX |
+ SNDRV_PCM_INFO_MMAP |
+ SNDRV_PCM_INFO_MMAP_VALID |
+ SNDRV_PCM_INFO_NO_PERIOD_WAKEUP;
+
+ hw->periods_min = 2;
+ hw->periods_max = UINT_MAX;
+
+ /* bytes for a frame */
+ hw->period_bytes_min = 4 * hw->channels_max;
+
+ /* Just to prevent from allocating much pages. */
+ hw->period_bytes_max = hw->period_bytes_min * 2048;
+ hw->buffer_bytes_max = hw->period_bytes_max * hw->periods_min;
+
+ // Linux driver for 1394 OHCI controller voluntarily flushes isoc
+ // context when total size of accumulated context header reaches
+ // PAGE_SIZE. This kicks work for the isoc context and brings
+ // callback in the middle of scheduled interrupts.
+ // Although AMDTP streams in the same domain use the same events per
+ // IRQ, use the largest size of context header between IT/IR contexts.
+ // Here, use the value of context header in IR context is for both
+ // contexts.
+ if (!(s->flags & CIP_NO_HEADER))
+ ctx_header_size = IR_CTX_HEADER_SIZE_CIP;
+ else
+ ctx_header_size = IR_CTX_HEADER_SIZE_NO_CIP;
+ maximum_usec_per_period = USEC_PER_SEC * PAGE_SIZE /
+ CYCLES_PER_SECOND / ctx_header_size;
+
+ // In IEC 61883-6, one isoc packet can transfer events up to the value
+ // of syt interval. This comes from the interval of isoc cycle. As 1394
+ // OHCI controller can generate hardware IRQ per isoc packet, the
+ // interval is 125 usec.
+ // However, there are two ways of transmission in IEC 61883-6; blocking
+ // and non-blocking modes. In blocking mode, the sequence of isoc packet
+ // includes 'empty' or 'NODATA' packets which include no event. In
+ // non-blocking mode, the number of events per packet is variable up to
+ // the syt interval.
+ // Due to the above protocol design, the minimum PCM frames per
+ // interrupt should be double of the value of syt interval, thus it is
+ // 250 usec.
+ err = snd_pcm_hw_constraint_minmax(runtime,
+ SNDRV_PCM_HW_PARAM_PERIOD_TIME,
+ 250, maximum_usec_per_period);
+ if (err < 0)
+ goto end;
+
+ /* Non-Blocking stream has no more constraints */
+ if (!(s->flags & CIP_BLOCKING))
+ goto end;
+
+ /*
+ * One AMDTP packet can include some frames. In blocking mode, the
+ * number equals to SYT_INTERVAL. So the number is 8, 16 or 32,
+ * depending on its sampling rate. For accurate period interrupt, it's
+ * preferrable to align period/buffer sizes to current SYT_INTERVAL.
+ */
+ err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
+ apply_constraint_to_size, NULL,
+ SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
+ SNDRV_PCM_HW_PARAM_RATE, -1);
+ if (err < 0)
+ goto end;
+ err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
+ apply_constraint_to_size, NULL,
+ SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
+ SNDRV_PCM_HW_PARAM_RATE, -1);
+ if (err < 0)
+ goto end;
+end:
+ return err;
+}
+EXPORT_SYMBOL(amdtp_stream_add_pcm_hw_constraints);
+
+/**
+ * amdtp_stream_set_parameters - set stream parameters
+ * @s: the AMDTP stream to configure
+ * @rate: the sample rate
+ * @data_block_quadlets: the size of a data block in quadlet unit
+ *
+ * The parameters must be set before the stream is started, and must not be
+ * changed while the stream is running.
+ */
+int amdtp_stream_set_parameters(struct amdtp_stream *s, unsigned int rate,
+ unsigned int data_block_quadlets)
+{
+ unsigned int sfc;
+
+ for (sfc = 0; sfc < ARRAY_SIZE(amdtp_rate_table); ++sfc) {
+ if (amdtp_rate_table[sfc] == rate)
+ break;
+ }
+ if (sfc == ARRAY_SIZE(amdtp_rate_table))
+ return -EINVAL;
+
+ s->sfc = sfc;
+ s->data_block_quadlets = data_block_quadlets;
+ s->syt_interval = amdtp_syt_intervals[sfc];
+
+ // default buffering in the device.
+ s->transfer_delay = TRANSFER_DELAY_TICKS - TICKS_PER_CYCLE;
+
+ // additional buffering needed to adjust for no-data packets.
+ if (s->flags & CIP_BLOCKING)
+ s->transfer_delay += TICKS_PER_SECOND * s->syt_interval / rate;
+
+ return 0;
+}
+EXPORT_SYMBOL(amdtp_stream_set_parameters);
+
+// The CIP header is processed in context header apart from context payload.
+static int amdtp_stream_get_max_ctx_payload_size(struct amdtp_stream *s)
+{
+ unsigned int multiplier;
+
+ if (s->flags & CIP_JUMBO_PAYLOAD)
+ multiplier = IR_JUMBO_PAYLOAD_MAX_SKIP_CYCLES;
+ else
+ multiplier = 1;
+
+ return s->syt_interval * s->data_block_quadlets * sizeof(__be32) * multiplier;
+}
+
+/**
+ * amdtp_stream_get_max_payload - get the stream's packet size
+ * @s: the AMDTP stream
+ *
+ * This function must not be called before the stream has been configured
+ * with amdtp_stream_set_parameters().
+ */
+unsigned int amdtp_stream_get_max_payload(struct amdtp_stream *s)
+{
+ unsigned int cip_header_size;
+
+ if (!(s->flags & CIP_NO_HEADER))
+ cip_header_size = CIP_HEADER_SIZE;
+ else
+ cip_header_size = 0;
+
+ return cip_header_size + amdtp_stream_get_max_ctx_payload_size(s);
+}
+EXPORT_SYMBOL(amdtp_stream_get_max_payload);
+
+/**
+ * amdtp_stream_pcm_prepare - prepare PCM device for running
+ * @s: the AMDTP stream
+ *
+ * This function should be called from the PCM device's .prepare callback.
+ */
+void amdtp_stream_pcm_prepare(struct amdtp_stream *s)
+{
+ s->pcm_buffer_pointer = 0;
+ s->pcm_period_pointer = 0;
+}
+EXPORT_SYMBOL(amdtp_stream_pcm_prepare);
+
+static void pool_blocking_data_blocks(struct amdtp_stream *s, struct seq_desc *descs,
+ const unsigned int seq_size, unsigned int seq_tail,
+ unsigned int count)
+{
+ const unsigned int syt_interval = s->syt_interval;
+ int i;
+
+ for (i = 0; i < count; ++i) {
+ struct seq_desc *desc = descs + seq_tail;
+
+ if (desc->syt_offset != CIP_SYT_NO_INFO)
+ desc->data_blocks = syt_interval;
+ else
+ desc->data_blocks = 0;
+
+ seq_tail = (seq_tail + 1) % seq_size;
+ }
+}
+
+static void pool_ideal_nonblocking_data_blocks(struct amdtp_stream *s, struct seq_desc *descs,
+ const unsigned int seq_size, unsigned int seq_tail,
+ unsigned int count)
+{
+ const enum cip_sfc sfc = s->sfc;
+ unsigned int state = s->ctx_data.rx.data_block_state;
+ int i;
+
+ for (i = 0; i < count; ++i) {
+ struct seq_desc *desc = descs + seq_tail;
+
+ if (!cip_sfc_is_base_44100(sfc)) {
+ // Sample_rate / 8000 is an integer, and precomputed.
+ desc->data_blocks = state;
+ } else {
+ unsigned int phase = state;
+
+ /*
+ * This calculates the number of data blocks per packet so that
+ * 1) the overall rate is correct and exactly synchronized to
+ * the bus clock, and
+ * 2) packets with a rounded-up number of blocks occur as early
+ * as possible in the sequence (to prevent underruns of the
+ * device's buffer).
+ */
+ if (sfc == CIP_SFC_44100)
+ /* 6 6 5 6 5 6 5 ... */
+ desc->data_blocks = 5 + ((phase & 1) ^ (phase == 0 || phase >= 40));
+ else
+ /* 12 11 11 11 11 ... or 23 22 22 22 22 ... */
+ desc->data_blocks = 11 * (sfc >> 1) + (phase == 0);
+ if (++phase >= (80 >> (sfc >> 1)))
+ phase = 0;
+ state = phase;
+ }
+
+ seq_tail = (seq_tail + 1) % seq_size;
+ }
+
+ s->ctx_data.rx.data_block_state = state;
+}
+
+static unsigned int calculate_syt_offset(unsigned int *last_syt_offset,
+ unsigned int *syt_offset_state, enum cip_sfc sfc)
+{
+ unsigned int syt_offset;
+
+ if (*last_syt_offset < TICKS_PER_CYCLE) {
+ if (!cip_sfc_is_base_44100(sfc))
+ syt_offset = *last_syt_offset + *syt_offset_state;
+ else {
+ /*
+ * The time, in ticks, of the n'th SYT_INTERVAL sample is:
+ * n * SYT_INTERVAL * 24576000 / sample_rate
+ * Modulo TICKS_PER_CYCLE, the difference between successive
+ * elements is about 1386.23. Rounding the results of this
+ * formula to the SYT precision results in a sequence of
+ * differences that begins with:
+ * 1386 1386 1387 1386 1386 1386 1387 1386 1386 1386 1387 ...
+ * This code generates _exactly_ the same sequence.
+ */
+ unsigned int phase = *syt_offset_state;
+ unsigned int index = phase % 13;
+
+ syt_offset = *last_syt_offset;
+ syt_offset += 1386 + ((index && !(index & 3)) ||
+ phase == 146);
+ if (++phase >= 147)
+ phase = 0;
+ *syt_offset_state = phase;
+ }
+ } else
+ syt_offset = *last_syt_offset - TICKS_PER_CYCLE;
+ *last_syt_offset = syt_offset;
+
+ if (syt_offset >= TICKS_PER_CYCLE)
+ syt_offset = CIP_SYT_NO_INFO;
+
+ return syt_offset;
+}
+
+static void pool_ideal_syt_offsets(struct amdtp_stream *s, struct seq_desc *descs,
+ const unsigned int seq_size, unsigned int seq_tail,
+ unsigned int count)
+{
+ const enum cip_sfc sfc = s->sfc;
+ unsigned int last = s->ctx_data.rx.last_syt_offset;
+ unsigned int state = s->ctx_data.rx.syt_offset_state;
+ int i;
+
+ for (i = 0; i < count; ++i) {
+ struct seq_desc *desc = descs + seq_tail;
+
+ desc->syt_offset = calculate_syt_offset(&last, &state, sfc);
+
+ seq_tail = (seq_tail + 1) % seq_size;
+ }
+
+ s->ctx_data.rx.last_syt_offset = last;
+ s->ctx_data.rx.syt_offset_state = state;
+}
+
+static unsigned int compute_syt_offset(unsigned int syt, unsigned int cycle,
+ unsigned int transfer_delay)
+{
+ unsigned int cycle_lo = (cycle % CYCLES_PER_SECOND) & 0x0f;
+ unsigned int syt_cycle_lo = (syt & 0xf000) >> 12;
+ unsigned int syt_offset;
+
+ // Round up.
+ if (syt_cycle_lo < cycle_lo)
+ syt_cycle_lo += CIP_SYT_CYCLE_MODULUS;
+ syt_cycle_lo -= cycle_lo;
+
+ // Subtract transfer delay so that the synchronization offset is not so large
+ // at transmission.
+ syt_offset = syt_cycle_lo * TICKS_PER_CYCLE + (syt & 0x0fff);
+ if (syt_offset < transfer_delay)
+ syt_offset += CIP_SYT_CYCLE_MODULUS * TICKS_PER_CYCLE;
+
+ return syt_offset - transfer_delay;
+}
+
+// Both of the producer and consumer of the queue runs in the same clock of IEEE 1394 bus.
+// Additionally, the sequence of tx packets is severely checked against any discontinuity
+// before filling entries in the queue. The calculation is safe even if it looks fragile by
+// overrun.
+static unsigned int calculate_cached_cycle_count(struct amdtp_stream *s, unsigned int head)
+{
+ const unsigned int cache_size = s->ctx_data.tx.cache.size;
+ unsigned int cycles = s->ctx_data.tx.cache.tail;
+
+ if (cycles < head)
+ cycles += cache_size;
+ cycles -= head;
+
+ return cycles;
+}
+
+static void cache_seq(struct amdtp_stream *s, const struct pkt_desc *descs, unsigned int desc_count)
+{
+ const unsigned int transfer_delay = s->transfer_delay;
+ const unsigned int cache_size = s->ctx_data.tx.cache.size;
+ struct seq_desc *cache = s->ctx_data.tx.cache.descs;
+ unsigned int cache_tail = s->ctx_data.tx.cache.tail;
+ bool aware_syt = !(s->flags & CIP_UNAWARE_SYT);
+ int i;
+
+ for (i = 0; i < desc_count; ++i) {
+ struct seq_desc *dst = cache + cache_tail;
+ const struct pkt_desc *src = descs + i;
+
+ if (aware_syt && src->syt != CIP_SYT_NO_INFO)
+ dst->syt_offset = compute_syt_offset(src->syt, src->cycle, transfer_delay);
+ else
+ dst->syt_offset = CIP_SYT_NO_INFO;
+ dst->data_blocks = src->data_blocks;
+
+ cache_tail = (cache_tail + 1) % cache_size;
+ }
+
+ s->ctx_data.tx.cache.tail = cache_tail;
+}
+
+static void pool_ideal_seq_descs(struct amdtp_stream *s, unsigned int count)
+{
+ struct seq_desc *descs = s->ctx_data.rx.seq.descs;
+ unsigned int seq_tail = s->ctx_data.rx.seq.tail;
+ const unsigned int seq_size = s->ctx_data.rx.seq.size;
+
+ pool_ideal_syt_offsets(s, descs, seq_size, seq_tail, count);
+
+ if (s->flags & CIP_BLOCKING)
+ pool_blocking_data_blocks(s, descs, seq_size, seq_tail, count);
+ else
+ pool_ideal_nonblocking_data_blocks(s, descs, seq_size, seq_tail, count);
+
+ s->ctx_data.rx.seq.tail = (seq_tail + count) % seq_size;
+}
+
+static void pool_replayed_seq(struct amdtp_stream *s, unsigned int count)
+{
+ struct amdtp_stream *target = s->ctx_data.rx.replay_target;
+ const struct seq_desc *cache = target->ctx_data.tx.cache.descs;
+ const unsigned int cache_size = target->ctx_data.tx.cache.size;
+ unsigned int cache_head = s->ctx_data.rx.cache_head;
+ struct seq_desc *descs = s->ctx_data.rx.seq.descs;
+ const unsigned int seq_size = s->ctx_data.rx.seq.size;
+ unsigned int seq_tail = s->ctx_data.rx.seq.tail;
+ int i;
+
+ for (i = 0; i < count; ++i) {
+ descs[seq_tail] = cache[cache_head];
+ seq_tail = (seq_tail + 1) % seq_size;
+ cache_head = (cache_head + 1) % cache_size;
+ }
+
+ s->ctx_data.rx.seq.tail = seq_tail;
+ s->ctx_data.rx.cache_head = cache_head;
+}
+
+static void pool_seq_descs(struct amdtp_stream *s, unsigned int count)
+{
+ struct amdtp_domain *d = s->domain;
+
+ if (!d->replay.enable || !s->ctx_data.rx.replay_target) {
+ pool_ideal_seq_descs(s, count);
+ } else {
+ if (!d->replay.on_the_fly) {
+ pool_replayed_seq(s, count);
+ } else {
+ struct amdtp_stream *tx = s->ctx_data.rx.replay_target;
+ const unsigned int cache_size = tx->ctx_data.tx.cache.size;
+ const unsigned int cache_head = s->ctx_data.rx.cache_head;
+ unsigned int cached_cycles = calculate_cached_cycle_count(tx, cache_head);
+
+ if (cached_cycles > count && cached_cycles > cache_size / 2)
+ pool_replayed_seq(s, count);
+ else
+ pool_ideal_seq_descs(s, count);
+ }
+ }
+}
+
+static void update_pcm_pointers(struct amdtp_stream *s,
+ struct snd_pcm_substream *pcm,
+ unsigned int frames)
+{
+ unsigned int ptr;
+
+ ptr = s->pcm_buffer_pointer + frames;
+ if (ptr >= pcm->runtime->buffer_size)
+ ptr -= pcm->runtime->buffer_size;
+ WRITE_ONCE(s->pcm_buffer_pointer, ptr);
+
+ s->pcm_period_pointer += frames;
+ if (s->pcm_period_pointer >= pcm->runtime->period_size) {
+ s->pcm_period_pointer -= pcm->runtime->period_size;
+
+ // The program in user process should periodically check the status of intermediate
+ // buffer associated to PCM substream to process PCM frames in the buffer, instead
+ // of receiving notification of period elapsed by poll wait.
+ if (!pcm->runtime->no_period_wakeup) {
+ if (in_softirq()) {
+ // In software IRQ context for 1394 OHCI.
+ snd_pcm_period_elapsed(pcm);
+ } else {
+ // In process context of ALSA PCM application under acquired lock of
+ // PCM substream.
+ snd_pcm_period_elapsed_under_stream_lock(pcm);
+ }
+ }
+ }
+}
+
+static int queue_packet(struct amdtp_stream *s, struct fw_iso_packet *params,
+ bool sched_irq)
+{
+ int err;
+
+ params->interrupt = sched_irq;
+ params->tag = s->tag;
+ params->sy = 0;
+
+ err = fw_iso_context_queue(s->context, params, &s->buffer.iso_buffer,
+ s->buffer.packets[s->packet_index].offset);
+ if (err < 0) {
+ dev_err(&s->unit->device, "queueing error: %d\n", err);
+ goto end;
+ }
+
+ if (++s->packet_index >= s->queue_size)
+ s->packet_index = 0;
+end:
+ return err;
+}
+
+static inline int queue_out_packet(struct amdtp_stream *s,
+ struct fw_iso_packet *params, bool sched_irq)
+{
+ params->skip =
+ !!(params->header_length == 0 && params->payload_length == 0);
+ return queue_packet(s, params, sched_irq);
+}
+
+static inline int queue_in_packet(struct amdtp_stream *s,
+ struct fw_iso_packet *params)
+{
+ // Queue one packet for IR context.
+ params->header_length = s->ctx_data.tx.ctx_header_size;
+ params->payload_length = s->ctx_data.tx.max_ctx_payload_length;
+ params->skip = false;
+ return queue_packet(s, params, false);
+}
+
+static void generate_cip_header(struct amdtp_stream *s, __be32 cip_header[2],
+ unsigned int data_block_counter, unsigned int syt)
+{
+ cip_header[0] = cpu_to_be32(READ_ONCE(s->source_node_id_field) |
+ (s->data_block_quadlets << CIP_DBS_SHIFT) |
+ ((s->sph << CIP_SPH_SHIFT) & CIP_SPH_MASK) |
+ data_block_counter);
+ cip_header[1] = cpu_to_be32(CIP_EOH |
+ ((s->fmt << CIP_FMT_SHIFT) & CIP_FMT_MASK) |
+ ((s->ctx_data.rx.fdf << CIP_FDF_SHIFT) & CIP_FDF_MASK) |
+ (syt & CIP_SYT_MASK));
+}
+
+static void build_it_pkt_header(struct amdtp_stream *s, unsigned int cycle,
+ struct fw_iso_packet *params, unsigned int header_length,
+ unsigned int data_blocks,
+ unsigned int data_block_counter,
+ unsigned int syt, unsigned int index)
+{
+ unsigned int payload_length;
+ __be32 *cip_header;
+
+ payload_length = data_blocks * sizeof(__be32) * s->data_block_quadlets;
+ params->payload_length = payload_length;
+
+ if (header_length > 0) {
+ cip_header = (__be32 *)params->header;
+ generate_cip_header(s, cip_header, data_block_counter, syt);
+ params->header_length = header_length;
+ } else {
+ cip_header = NULL;
+ }
+
+ trace_amdtp_packet(s, cycle, cip_header, payload_length + header_length, data_blocks,
+ data_block_counter, s->packet_index, index);
+}
+
+static int check_cip_header(struct amdtp_stream *s, const __be32 *buf,
+ unsigned int payload_length,
+ unsigned int *data_blocks,
+ unsigned int *data_block_counter, unsigned int *syt)
+{
+ u32 cip_header[2];
+ unsigned int sph;
+ unsigned int fmt;
+ unsigned int fdf;
+ unsigned int dbc;
+ bool lost;
+
+ cip_header[0] = be32_to_cpu(buf[0]);
+ cip_header[1] = be32_to_cpu(buf[1]);
+
+ /*
+ * This module supports 'Two-quadlet CIP header with SYT field'.
+ * For convenience, also check FMT field is AM824 or not.
+ */
+ if ((((cip_header[0] & CIP_EOH_MASK) == CIP_EOH) ||
+ ((cip_header[1] & CIP_EOH_MASK) != CIP_EOH)) &&
+ (!(s->flags & CIP_HEADER_WITHOUT_EOH))) {
+ dev_info_ratelimited(&s->unit->device,
+ "Invalid CIP header for AMDTP: %08X:%08X\n",
+ cip_header[0], cip_header[1]);
+ return -EAGAIN;
+ }
+
+ /* Check valid protocol or not. */
+ sph = (cip_header[0] & CIP_SPH_MASK) >> CIP_SPH_SHIFT;
+ fmt = (cip_header[1] & CIP_FMT_MASK) >> CIP_FMT_SHIFT;
+ if (sph != s->sph || fmt != s->fmt) {
+ dev_info_ratelimited(&s->unit->device,
+ "Detect unexpected protocol: %08x %08x\n",
+ cip_header[0], cip_header[1]);
+ return -EAGAIN;
+ }
+
+ /* Calculate data blocks */
+ fdf = (cip_header[1] & CIP_FDF_MASK) >> CIP_FDF_SHIFT;
+ if (payload_length == 0 || (fmt == CIP_FMT_AM && fdf == AMDTP_FDF_NO_DATA)) {
+ *data_blocks = 0;
+ } else {
+ unsigned int data_block_quadlets =
+ (cip_header[0] & CIP_DBS_MASK) >> CIP_DBS_SHIFT;
+ /* avoid division by zero */
+ if (data_block_quadlets == 0) {
+ dev_err(&s->unit->device,
+ "Detect invalid value in dbs field: %08X\n",
+ cip_header[0]);
+ return -EPROTO;
+ }
+ if (s->flags & CIP_WRONG_DBS)
+ data_block_quadlets = s->data_block_quadlets;
+
+ *data_blocks = payload_length / sizeof(__be32) / data_block_quadlets;
+ }
+
+ /* Check data block counter continuity */
+ dbc = cip_header[0] & CIP_DBC_MASK;
+ if (*data_blocks == 0 && (s->flags & CIP_EMPTY_HAS_WRONG_DBC) &&
+ *data_block_counter != UINT_MAX)
+ dbc = *data_block_counter;
+
+ if ((dbc == 0x00 && (s->flags & CIP_SKIP_DBC_ZERO_CHECK)) ||
+ *data_block_counter == UINT_MAX) {
+ lost = false;
+ } else if (!(s->flags & CIP_DBC_IS_END_EVENT)) {
+ lost = dbc != *data_block_counter;
+ } else {
+ unsigned int dbc_interval;
+
+ if (*data_blocks > 0 && s->ctx_data.tx.dbc_interval > 0)
+ dbc_interval = s->ctx_data.tx.dbc_interval;
+ else
+ dbc_interval = *data_blocks;
+
+ lost = dbc != ((*data_block_counter + dbc_interval) & 0xff);
+ }
+
+ if (lost) {
+ dev_err(&s->unit->device,
+ "Detect discontinuity of CIP: %02X %02X\n",
+ *data_block_counter, dbc);
+ return -EIO;
+ }
+
+ *data_block_counter = dbc;
+
+ if (!(s->flags & CIP_UNAWARE_SYT))
+ *syt = cip_header[1] & CIP_SYT_MASK;
+
+ return 0;
+}
+
+static int parse_ir_ctx_header(struct amdtp_stream *s, unsigned int cycle,
+ const __be32 *ctx_header,
+ unsigned int *data_blocks,
+ unsigned int *data_block_counter,
+ unsigned int *syt, unsigned int packet_index, unsigned int index)
+{
+ unsigned int payload_length;
+ const __be32 *cip_header;
+ unsigned int cip_header_size;
+
+ payload_length = be32_to_cpu(ctx_header[0]) >> ISO_DATA_LENGTH_SHIFT;
+
+ if (!(s->flags & CIP_NO_HEADER))
+ cip_header_size = CIP_HEADER_SIZE;
+ else
+ cip_header_size = 0;
+
+ if (payload_length > cip_header_size + s->ctx_data.tx.max_ctx_payload_length) {
+ dev_err(&s->unit->device,
+ "Detect jumbo payload: %04x %04x\n",
+ payload_length, cip_header_size + s->ctx_data.tx.max_ctx_payload_length);
+ return -EIO;
+ }
+
+ if (cip_header_size > 0) {
+ if (payload_length >= cip_header_size) {
+ int err;
+
+ cip_header = ctx_header + IR_CTX_HEADER_DEFAULT_QUADLETS;
+ err = check_cip_header(s, cip_header, payload_length - cip_header_size,
+ data_blocks, data_block_counter, syt);
+ if (err < 0)
+ return err;
+ } else {
+ // Handle the cycle so that empty packet arrives.
+ cip_header = NULL;
+ *data_blocks = 0;
+ *syt = 0;
+ }
+ } else {
+ cip_header = NULL;
+ *data_blocks = payload_length / sizeof(__be32) / s->data_block_quadlets;
+ *syt = 0;
+
+ if (*data_block_counter == UINT_MAX)
+ *data_block_counter = 0;
+ }
+
+ trace_amdtp_packet(s, cycle, cip_header, payload_length, *data_blocks,
+ *data_block_counter, packet_index, index);
+
+ return 0;
+}
+
+// In CYCLE_TIMER register of IEEE 1394, 7 bits are used to represent second. On
+// the other hand, in DMA descriptors of 1394 OHCI, 3 bits are used to represent
+// it. Thus, via Linux firewire subsystem, we can get the 3 bits for second.
+static inline u32 compute_ohci_cycle_count(__be32 ctx_header_tstamp)
+{
+ u32 tstamp = be32_to_cpu(ctx_header_tstamp) & HEADER_TSTAMP_MASK;
+ return (((tstamp >> 13) & 0x07) * 8000) + (tstamp & 0x1fff);
+}
+
+static inline u32 increment_ohci_cycle_count(u32 cycle, unsigned int addend)
+{
+ cycle += addend;
+ if (cycle >= OHCI_SECOND_MODULUS * CYCLES_PER_SECOND)
+ cycle -= OHCI_SECOND_MODULUS * CYCLES_PER_SECOND;
+ return cycle;
+}
+
+static int compare_ohci_cycle_count(u32 lval, u32 rval)
+{
+ if (lval == rval)
+ return 0;
+ else if (lval < rval && rval - lval < OHCI_SECOND_MODULUS * CYCLES_PER_SECOND / 2)
+ return -1;
+ else
+ return 1;
+}
+
+// Align to actual cycle count for the packet which is going to be scheduled.
+// This module queued the same number of isochronous cycle as the size of queue
+// to kip isochronous cycle, therefore it's OK to just increment the cycle by
+// the size of queue for scheduled cycle.
+static inline u32 compute_ohci_it_cycle(const __be32 ctx_header_tstamp,
+ unsigned int queue_size)
+{
+ u32 cycle = compute_ohci_cycle_count(ctx_header_tstamp);
+ return increment_ohci_cycle_count(cycle, queue_size);
+}
+
+static int generate_device_pkt_descs(struct amdtp_stream *s,
+ struct pkt_desc *descs,
+ const __be32 *ctx_header,
+ unsigned int packets,
+ unsigned int *desc_count)
+{
+ unsigned int next_cycle = s->next_cycle;
+ unsigned int dbc = s->data_block_counter;
+ unsigned int packet_index = s->packet_index;
+ unsigned int queue_size = s->queue_size;
+ int i;
+ int err;
+
+ *desc_count = 0;
+ for (i = 0; i < packets; ++i) {
+ struct pkt_desc *desc = descs + *desc_count;
+ unsigned int cycle;
+ bool lost;
+ unsigned int data_blocks;
+ unsigned int syt;
+
+ cycle = compute_ohci_cycle_count(ctx_header[1]);
+ lost = (next_cycle != cycle);
+ if (lost) {
+ if (s->flags & CIP_NO_HEADER) {
+ // Fireface skips transmission just for an isoc cycle corresponding
+ // to empty packet.
+ unsigned int prev_cycle = next_cycle;
+
+ next_cycle = increment_ohci_cycle_count(next_cycle, 1);
+ lost = (next_cycle != cycle);
+ if (!lost) {
+ // Prepare a description for the skipped cycle for
+ // sequence replay.
+ desc->cycle = prev_cycle;
+ desc->syt = 0;
+ desc->data_blocks = 0;
+ desc->data_block_counter = dbc;
+ desc->ctx_payload = NULL;
+ ++desc;
+ ++(*desc_count);
+ }
+ } else if (s->flags & CIP_JUMBO_PAYLOAD) {
+ // OXFW970 skips transmission for several isoc cycles during
+ // asynchronous transaction. The sequence replay is impossible due
+ // to the reason.
+ unsigned int safe_cycle = increment_ohci_cycle_count(next_cycle,
+ IR_JUMBO_PAYLOAD_MAX_SKIP_CYCLES);
+ lost = (compare_ohci_cycle_count(safe_cycle, cycle) > 0);
+ }
+ if (lost) {
+ dev_err(&s->unit->device, "Detect discontinuity of cycle: %d %d\n",
+ next_cycle, cycle);
+ return -EIO;
+ }
+ }
+
+ err = parse_ir_ctx_header(s, cycle, ctx_header, &data_blocks, &dbc, &syt,
+ packet_index, i);
+ if (err < 0)
+ return err;
+
+ desc->cycle = cycle;
+ desc->syt = syt;
+ desc->data_blocks = data_blocks;
+ desc->data_block_counter = dbc;
+ desc->ctx_payload = s->buffer.packets[packet_index].buffer;
+
+ if (!(s->flags & CIP_DBC_IS_END_EVENT))
+ dbc = (dbc + desc->data_blocks) & 0xff;
+
+ next_cycle = increment_ohci_cycle_count(next_cycle, 1);
+ ++(*desc_count);
+ ctx_header += s->ctx_data.tx.ctx_header_size / sizeof(*ctx_header);
+ packet_index = (packet_index + 1) % queue_size;
+ }
+
+ s->next_cycle = next_cycle;
+ s->data_block_counter = dbc;
+
+ return 0;
+}
+
+static unsigned int compute_syt(unsigned int syt_offset, unsigned int cycle,
+ unsigned int transfer_delay)
+{
+ unsigned int syt;
+
+ syt_offset += transfer_delay;
+ syt = ((cycle + syt_offset / TICKS_PER_CYCLE) << 12) |
+ (syt_offset % TICKS_PER_CYCLE);
+ return syt & CIP_SYT_MASK;
+}
+
+static void generate_pkt_descs(struct amdtp_stream *s, const __be32 *ctx_header, unsigned int packets)
+{
+ struct pkt_desc *descs = s->pkt_descs;
+ const struct seq_desc *seq_descs = s->ctx_data.rx.seq.descs;
+ const unsigned int seq_size = s->ctx_data.rx.seq.size;
+ unsigned int dbc = s->data_block_counter;
+ unsigned int seq_head = s->ctx_data.rx.seq.head;
+ bool aware_syt = !(s->flags & CIP_UNAWARE_SYT);
+ int i;
+
+ for (i = 0; i < packets; ++i) {
+ struct pkt_desc *desc = descs + i;
+ unsigned int index = (s->packet_index + i) % s->queue_size;
+ const struct seq_desc *seq = seq_descs + seq_head;
+
+ desc->cycle = compute_ohci_it_cycle(*ctx_header, s->queue_size);
+
+ if (aware_syt && seq->syt_offset != CIP_SYT_NO_INFO)
+ desc->syt = compute_syt(seq->syt_offset, desc->cycle, s->transfer_delay);
+ else
+ desc->syt = CIP_SYT_NO_INFO;
+
+ desc->data_blocks = seq->data_blocks;
+
+ if (s->flags & CIP_DBC_IS_END_EVENT)
+ dbc = (dbc + desc->data_blocks) & 0xff;
+
+ desc->data_block_counter = dbc;
+
+ if (!(s->flags & CIP_DBC_IS_END_EVENT))
+ dbc = (dbc + desc->data_blocks) & 0xff;
+
+ desc->ctx_payload = s->buffer.packets[index].buffer;
+
+ seq_head = (seq_head + 1) % seq_size;
+
+ ++ctx_header;
+ }
+
+ s->data_block_counter = dbc;
+ s->ctx_data.rx.seq.head = seq_head;
+}
+
+static inline void cancel_stream(struct amdtp_stream *s)
+{
+ s->packet_index = -1;
+ if (in_softirq())
+ amdtp_stream_pcm_abort(s);
+ WRITE_ONCE(s->pcm_buffer_pointer, SNDRV_PCM_POS_XRUN);
+}
+
+static void process_ctx_payloads(struct amdtp_stream *s,
+ const struct pkt_desc *descs,
+ unsigned int packets)
+{
+ struct snd_pcm_substream *pcm;
+ unsigned int pcm_frames;
+
+ pcm = READ_ONCE(s->pcm);
+ pcm_frames = s->process_ctx_payloads(s, descs, packets, pcm);
+ if (pcm)
+ update_pcm_pointers(s, pcm, pcm_frames);
+}
+
+static void process_rx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length,
+ void *header, void *private_data)
+{
+ struct amdtp_stream *s = private_data;
+ const struct amdtp_domain *d = s->domain;
+ const __be32 *ctx_header = header;
+ const unsigned int events_per_period = d->events_per_period;
+ unsigned int event_count = s->ctx_data.rx.event_count;
+ unsigned int pkt_header_length;
+ unsigned int packets;
+ bool need_hw_irq;
+ int i;
+
+ if (s->packet_index < 0)
+ return;
+
+ // Calculate the number of packets in buffer and check XRUN.
+ packets = header_length / sizeof(*ctx_header);
+
+ pool_seq_descs(s, packets);
+
+ generate_pkt_descs(s, ctx_header, packets);
+
+ process_ctx_payloads(s, s->pkt_descs, packets);
+
+ if (!(s->flags & CIP_NO_HEADER))
+ pkt_header_length = IT_PKT_HEADER_SIZE_CIP;
+ else
+ pkt_header_length = 0;
+
+ if (s == d->irq_target) {
+ // At NO_PERIOD_WAKEUP mode, the packets for all IT/IR contexts are processed by
+ // the tasks of user process operating ALSA PCM character device by calling ioctl(2)
+ // with some requests, instead of scheduled hardware IRQ of an IT context.
+ struct snd_pcm_substream *pcm = READ_ONCE(s->pcm);
+ need_hw_irq = !pcm || !pcm->runtime->no_period_wakeup;
+ } else {
+ need_hw_irq = false;
+ }
+
+ for (i = 0; i < packets; ++i) {
+ const struct pkt_desc *desc = s->pkt_descs + i;
+ struct {
+ struct fw_iso_packet params;
+ __be32 header[CIP_HEADER_QUADLETS];
+ } template = { {0}, {0} };
+ bool sched_irq = false;
+
+ build_it_pkt_header(s, desc->cycle, &template.params, pkt_header_length,
+ desc->data_blocks, desc->data_block_counter,
+ desc->syt, i);
+
+ if (s == s->domain->irq_target) {
+ event_count += desc->data_blocks;
+ if (event_count >= events_per_period) {
+ event_count -= events_per_period;
+ sched_irq = need_hw_irq;
+ }
+ }
+
+ if (queue_out_packet(s, &template.params, sched_irq) < 0) {
+ cancel_stream(s);
+ return;
+ }
+ }
+
+ s->ctx_data.rx.event_count = event_count;
+}
+
+static void skip_rx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length,
+ void *header, void *private_data)
+{
+ struct amdtp_stream *s = private_data;
+ struct amdtp_domain *d = s->domain;
+ const __be32 *ctx_header = header;
+ unsigned int packets;
+ unsigned int cycle;
+ int i;
+
+ if (s->packet_index < 0)
+ return;
+
+ packets = header_length / sizeof(*ctx_header);
+
+ cycle = compute_ohci_it_cycle(ctx_header[packets - 1], s->queue_size);
+ s->next_cycle = increment_ohci_cycle_count(cycle, 1);
+
+ for (i = 0; i < packets; ++i) {
+ struct fw_iso_packet params = {
+ .header_length = 0,
+ .payload_length = 0,
+ };
+ bool sched_irq = (s == d->irq_target && i == packets - 1);
+
+ if (queue_out_packet(s, &params, sched_irq) < 0) {
+ cancel_stream(s);
+ return;
+ }
+ }
+}
+
+static void irq_target_callback(struct fw_iso_context *context, u32 tstamp, size_t header_length,
+ void *header, void *private_data);
+
+static void process_rx_packets_intermediately(struct fw_iso_context *context, u32 tstamp,
+ size_t header_length, void *header, void *private_data)
+{
+ struct amdtp_stream *s = private_data;
+ struct amdtp_domain *d = s->domain;
+ __be32 *ctx_header = header;
+ const unsigned int queue_size = s->queue_size;
+ unsigned int packets;
+ unsigned int offset;
+
+ if (s->packet_index < 0)
+ return;
+
+ packets = header_length / sizeof(*ctx_header);
+
+ offset = 0;
+ while (offset < packets) {
+ unsigned int cycle = compute_ohci_it_cycle(ctx_header[offset], queue_size);
+
+ if (compare_ohci_cycle_count(cycle, d->processing_cycle.rx_start) >= 0)
+ break;
+
+ ++offset;
+ }
+
+ if (offset > 0) {
+ unsigned int length = sizeof(*ctx_header) * offset;
+
+ skip_rx_packets(context, tstamp, length, ctx_header, private_data);
+ if (amdtp_streaming_error(s))
+ return;
+
+ ctx_header += offset;
+ header_length -= length;
+ }
+
+ if (offset < packets) {
+ s->ready_processing = true;
+ wake_up(&s->ready_wait);
+
+ process_rx_packets(context, tstamp, header_length, ctx_header, private_data);
+ if (amdtp_streaming_error(s))
+ return;
+
+ if (s == d->irq_target)
+ s->context->callback.sc = irq_target_callback;
+ else
+ s->context->callback.sc = process_rx_packets;
+ }
+}
+
+static void process_tx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length,
+ void *header, void *private_data)
+{
+ struct amdtp_stream *s = private_data;
+ __be32 *ctx_header = header;
+ unsigned int packets;
+ unsigned int desc_count;
+ int i;
+ int err;
+
+ if (s->packet_index < 0)
+ return;
+
+ // Calculate the number of packets in buffer and check XRUN.
+ packets = header_length / s->ctx_data.tx.ctx_header_size;
+
+ desc_count = 0;
+ err = generate_device_pkt_descs(s, s->pkt_descs, ctx_header, packets, &desc_count);
+ if (err < 0) {
+ if (err != -EAGAIN) {
+ cancel_stream(s);
+ return;
+ }
+ } else {
+ struct amdtp_domain *d = s->domain;
+
+ process_ctx_payloads(s, s->pkt_descs, desc_count);
+
+ if (d->replay.enable)
+ cache_seq(s, s->pkt_descs, desc_count);
+ }
+
+ for (i = 0; i < packets; ++i) {
+ struct fw_iso_packet params = {0};
+
+ if (queue_in_packet(s, &params) < 0) {
+ cancel_stream(s);
+ return;
+ }
+ }
+}
+
+static void drop_tx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length,
+ void *header, void *private_data)
+{
+ struct amdtp_stream *s = private_data;
+ const __be32 *ctx_header = header;
+ unsigned int packets;
+ unsigned int cycle;
+ int i;
+
+ if (s->packet_index < 0)
+ return;
+
+ packets = header_length / s->ctx_data.tx.ctx_header_size;
+
+ ctx_header += (packets - 1) * s->ctx_data.tx.ctx_header_size / sizeof(*ctx_header);
+ cycle = compute_ohci_cycle_count(ctx_header[1]);
+ s->next_cycle = increment_ohci_cycle_count(cycle, 1);
+
+ for (i = 0; i < packets; ++i) {
+ struct fw_iso_packet params = {0};
+
+ if (queue_in_packet(s, &params) < 0) {
+ cancel_stream(s);
+ return;
+ }
+ }
+}
+
+static void process_tx_packets_intermediately(struct fw_iso_context *context, u32 tstamp,
+ size_t header_length, void *header, void *private_data)
+{
+ struct amdtp_stream *s = private_data;
+ struct amdtp_domain *d = s->domain;
+ __be32 *ctx_header;
+ unsigned int packets;
+ unsigned int offset;
+
+ if (s->packet_index < 0)
+ return;
+
+ packets = header_length / s->ctx_data.tx.ctx_header_size;
+
+ offset = 0;
+ ctx_header = header;
+ while (offset < packets) {
+ unsigned int cycle = compute_ohci_cycle_count(ctx_header[1]);
+
+ if (compare_ohci_cycle_count(cycle, d->processing_cycle.tx_start) >= 0)
+ break;
+
+ ctx_header += s->ctx_data.tx.ctx_header_size / sizeof(__be32);
+ ++offset;
+ }
+
+ ctx_header = header;
+
+ if (offset > 0) {
+ size_t length = s->ctx_data.tx.ctx_header_size * offset;
+
+ drop_tx_packets(context, tstamp, length, ctx_header, s);
+ if (amdtp_streaming_error(s))
+ return;
+
+ ctx_header += length / sizeof(*ctx_header);
+ header_length -= length;
+ }
+
+ if (offset < packets) {
+ s->ready_processing = true;
+ wake_up(&s->ready_wait);
+
+ process_tx_packets(context, tstamp, header_length, ctx_header, s);
+ if (amdtp_streaming_error(s))
+ return;
+
+ context->callback.sc = process_tx_packets;
+ }
+}
+
+static void drop_tx_packets_initially(struct fw_iso_context *context, u32 tstamp,
+ size_t header_length, void *header, void *private_data)
+{
+ struct amdtp_stream *s = private_data;
+ struct amdtp_domain *d = s->domain;
+ __be32 *ctx_header;
+ unsigned int count;
+ unsigned int events;
+ int i;
+
+ if (s->packet_index < 0)
+ return;
+
+ count = header_length / s->ctx_data.tx.ctx_header_size;
+
+ // Attempt to detect any event in the batch of packets.
+ events = 0;
+ ctx_header = header;
+ for (i = 0; i < count; ++i) {
+ unsigned int payload_quads =
+ (be32_to_cpu(*ctx_header) >> ISO_DATA_LENGTH_SHIFT) / sizeof(__be32);
+ unsigned int data_blocks;
+
+ if (s->flags & CIP_NO_HEADER) {
+ data_blocks = payload_quads / s->data_block_quadlets;
+ } else {
+ __be32 *cip_headers = ctx_header + IR_CTX_HEADER_DEFAULT_QUADLETS;
+
+ if (payload_quads < CIP_HEADER_QUADLETS) {
+ data_blocks = 0;
+ } else {
+ payload_quads -= CIP_HEADER_QUADLETS;
+
+ if (s->flags & CIP_UNAWARE_SYT) {
+ data_blocks = payload_quads / s->data_block_quadlets;
+ } else {
+ u32 cip1 = be32_to_cpu(cip_headers[1]);
+
+ // NODATA packet can includes any data blocks but they are
+ // not available as event.
+ if ((cip1 & CIP_NO_DATA) == CIP_NO_DATA)
+ data_blocks = 0;
+ else
+ data_blocks = payload_quads / s->data_block_quadlets;
+ }
+ }
+ }
+
+ events += data_blocks;
+
+ ctx_header += s->ctx_data.tx.ctx_header_size / sizeof(__be32);
+ }
+
+ drop_tx_packets(context, tstamp, header_length, header, s);
+
+ if (events > 0)
+ s->ctx_data.tx.event_starts = true;
+
+ // Decide the cycle count to begin processing content of packet in IR contexts.
+ {
+ unsigned int stream_count = 0;
+ unsigned int event_starts_count = 0;
+ unsigned int cycle = UINT_MAX;
+
+ list_for_each_entry(s, &d->streams, list) {
+ if (s->direction == AMDTP_IN_STREAM) {
+ ++stream_count;
+ if (s->ctx_data.tx.event_starts)
+ ++event_starts_count;
+ }
+ }
+
+ if (stream_count == event_starts_count) {
+ unsigned int next_cycle;
+
+ list_for_each_entry(s, &d->streams, list) {
+ if (s->direction != AMDTP_IN_STREAM)
+ continue;
+
+ next_cycle = increment_ohci_cycle_count(s->next_cycle,
+ d->processing_cycle.tx_init_skip);
+ if (cycle == UINT_MAX ||
+ compare_ohci_cycle_count(next_cycle, cycle) > 0)
+ cycle = next_cycle;
+
+ s->context->callback.sc = process_tx_packets_intermediately;
+ }
+
+ d->processing_cycle.tx_start = cycle;
+ }
+ }
+}
+
+static void process_ctxs_in_domain(struct amdtp_domain *d)
+{
+ struct amdtp_stream *s;
+
+ list_for_each_entry(s, &d->streams, list) {
+ if (s != d->irq_target && amdtp_stream_running(s))
+ fw_iso_context_flush_completions(s->context);
+
+ if (amdtp_streaming_error(s))
+ goto error;
+ }
+
+ return;
+error:
+ if (amdtp_stream_running(d->irq_target))
+ cancel_stream(d->irq_target);
+
+ list_for_each_entry(s, &d->streams, list) {
+ if (amdtp_stream_running(s))
+ cancel_stream(s);
+ }
+}
+
+static void irq_target_callback(struct fw_iso_context *context, u32 tstamp, size_t header_length,
+ void *header, void *private_data)
+{
+ struct amdtp_stream *s = private_data;
+ struct amdtp_domain *d = s->domain;
+
+ process_rx_packets(context, tstamp, header_length, header, private_data);
+ process_ctxs_in_domain(d);
+}
+
+static void irq_target_callback_intermediately(struct fw_iso_context *context, u32 tstamp,
+ size_t header_length, void *header, void *private_data)
+{
+ struct amdtp_stream *s = private_data;
+ struct amdtp_domain *d = s->domain;
+
+ process_rx_packets_intermediately(context, tstamp, header_length, header, private_data);
+ process_ctxs_in_domain(d);
+}
+
+static void irq_target_callback_skip(struct fw_iso_context *context, u32 tstamp,
+ size_t header_length, void *header, void *private_data)
+{
+ struct amdtp_stream *s = private_data;
+ struct amdtp_domain *d = s->domain;
+ bool ready_to_start;
+
+ skip_rx_packets(context, tstamp, header_length, header, private_data);
+ process_ctxs_in_domain(d);
+
+ if (d->replay.enable && !d->replay.on_the_fly) {
+ unsigned int rx_count = 0;
+ unsigned int rx_ready_count = 0;
+ struct amdtp_stream *rx;
+
+ list_for_each_entry(rx, &d->streams, list) {
+ struct amdtp_stream *tx;
+ unsigned int cached_cycles;
+
+ if (rx->direction != AMDTP_OUT_STREAM)
+ continue;
+ ++rx_count;
+
+ tx = rx->ctx_data.rx.replay_target;
+ cached_cycles = calculate_cached_cycle_count(tx, 0);
+ if (cached_cycles > tx->ctx_data.tx.cache.size / 2)
+ ++rx_ready_count;
+ }
+
+ ready_to_start = (rx_count == rx_ready_count);
+ } else {
+ ready_to_start = true;
+ }
+
+ // Decide the cycle count to begin processing content of packet in IT contexts. All of IT
+ // contexts are expected to start and get callback when reaching here.
+ if (ready_to_start) {
+ unsigned int cycle = s->next_cycle;
+ list_for_each_entry(s, &d->streams, list) {
+ if (s->direction != AMDTP_OUT_STREAM)
+ continue;
+
+ if (compare_ohci_cycle_count(s->next_cycle, cycle) > 0)
+ cycle = s->next_cycle;
+
+ if (s == d->irq_target)
+ s->context->callback.sc = irq_target_callback_intermediately;
+ else
+ s->context->callback.sc = process_rx_packets_intermediately;
+ }
+
+ d->processing_cycle.rx_start = cycle;
+ }
+}
+
+// This is executed one time. For in-stream, first packet has come. For out-stream, prepared to
+// transmit first packet.
+static void amdtp_stream_first_callback(struct fw_iso_context *context,
+ u32 tstamp, size_t header_length,
+ void *header, void *private_data)
+{
+ struct amdtp_stream *s = private_data;
+ struct amdtp_domain *d = s->domain;
+
+ if (s->direction == AMDTP_IN_STREAM) {
+ context->callback.sc = drop_tx_packets_initially;
+ } else {
+ if (s == d->irq_target)
+ context->callback.sc = irq_target_callback_skip;
+ else
+ context->callback.sc = skip_rx_packets;
+ }
+
+ context->callback.sc(context, tstamp, header_length, header, s);
+}
+
+/**
+ * amdtp_stream_start - start transferring packets
+ * @s: the AMDTP stream to start
+ * @channel: the isochronous channel on the bus
+ * @speed: firewire speed code
+ * @queue_size: The number of packets in the queue.
+ * @idle_irq_interval: the interval to queue packet during initial state.
+ *
+ * The stream cannot be started until it has been configured with
+ * amdtp_stream_set_parameters() and it must be started before any PCM or MIDI
+ * device can be started.
+ */
+static int amdtp_stream_start(struct amdtp_stream *s, int channel, int speed,
+ unsigned int queue_size, unsigned int idle_irq_interval)
+{
+ bool is_irq_target = (s == s->domain->irq_target);
+ unsigned int ctx_header_size;
+ unsigned int max_ctx_payload_size;
+ enum dma_data_direction dir;
+ int type, tag, err;
+
+ mutex_lock(&s->mutex);
+
+ if (WARN_ON(amdtp_stream_running(s) ||
+ (s->data_block_quadlets < 1))) {
+ err = -EBADFD;
+ goto err_unlock;
+ }
+
+ if (s->direction == AMDTP_IN_STREAM) {
+ // NOTE: IT context should be used for constant IRQ.
+ if (is_irq_target) {
+ err = -EINVAL;
+ goto err_unlock;
+ }
+
+ s->data_block_counter = UINT_MAX;
+ } else {
+ s->data_block_counter = 0;
+ }
+
+ // initialize packet buffer.
+ if (s->direction == AMDTP_IN_STREAM) {
+ dir = DMA_FROM_DEVICE;
+ type = FW_ISO_CONTEXT_RECEIVE;
+ if (!(s->flags & CIP_NO_HEADER))
+ ctx_header_size = IR_CTX_HEADER_SIZE_CIP;
+ else
+ ctx_header_size = IR_CTX_HEADER_SIZE_NO_CIP;
+ } else {
+ dir = DMA_TO_DEVICE;
+ type = FW_ISO_CONTEXT_TRANSMIT;
+ ctx_header_size = 0; // No effect for IT context.
+ }
+ max_ctx_payload_size = amdtp_stream_get_max_ctx_payload_size(s);
+
+ err = iso_packets_buffer_init(&s->buffer, s->unit, queue_size, max_ctx_payload_size, dir);
+ if (err < 0)
+ goto err_unlock;
+ s->queue_size = queue_size;
+
+ s->context = fw_iso_context_create(fw_parent_device(s->unit)->card,
+ type, channel, speed, ctx_header_size,
+ amdtp_stream_first_callback, s);
+ if (IS_ERR(s->context)) {
+ err = PTR_ERR(s->context);
+ if (err == -EBUSY)
+ dev_err(&s->unit->device,
+ "no free stream on this controller\n");
+ goto err_buffer;
+ }
+
+ amdtp_stream_update(s);
+
+ if (s->direction == AMDTP_IN_STREAM) {
+ s->ctx_data.tx.max_ctx_payload_length = max_ctx_payload_size;
+ s->ctx_data.tx.ctx_header_size = ctx_header_size;
+ s->ctx_data.tx.event_starts = false;
+
+ if (s->domain->replay.enable) {
+ // struct fw_iso_context.drop_overflow_headers is false therefore it's
+ // possible to cache much unexpectedly.
+ s->ctx_data.tx.cache.size = max_t(unsigned int, s->syt_interval * 2,
+ queue_size * 3 / 2);
+ s->ctx_data.tx.cache.tail = 0;
+ s->ctx_data.tx.cache.descs = kcalloc(s->ctx_data.tx.cache.size,
+ sizeof(*s->ctx_data.tx.cache.descs), GFP_KERNEL);
+ if (!s->ctx_data.tx.cache.descs) {
+ err = -ENOMEM;
+ goto err_context;
+ }
+ }
+ } else {
+ static const struct {
+ unsigned int data_block;
+ unsigned int syt_offset;
+ } *entry, initial_state[] = {
+ [CIP_SFC_32000] = { 4, 3072 },
+ [CIP_SFC_48000] = { 6, 1024 },
+ [CIP_SFC_96000] = { 12, 1024 },
+ [CIP_SFC_192000] = { 24, 1024 },
+ [CIP_SFC_44100] = { 0, 67 },
+ [CIP_SFC_88200] = { 0, 67 },
+ [CIP_SFC_176400] = { 0, 67 },
+ };
+
+ s->ctx_data.rx.seq.descs = kcalloc(queue_size, sizeof(*s->ctx_data.rx.seq.descs), GFP_KERNEL);
+ if (!s->ctx_data.rx.seq.descs) {
+ err = -ENOMEM;
+ goto err_context;
+ }
+ s->ctx_data.rx.seq.size = queue_size;
+ s->ctx_data.rx.seq.tail = 0;
+ s->ctx_data.rx.seq.head = 0;
+
+ entry = &initial_state[s->sfc];
+ s->ctx_data.rx.data_block_state = entry->data_block;
+ s->ctx_data.rx.syt_offset_state = entry->syt_offset;
+ s->ctx_data.rx.last_syt_offset = TICKS_PER_CYCLE;
+
+ s->ctx_data.rx.event_count = 0;
+ }
+
+ if (s->flags & CIP_NO_HEADER)
+ s->tag = TAG_NO_CIP_HEADER;
+ else
+ s->tag = TAG_CIP;
+
+ s->pkt_descs = kcalloc(s->queue_size, sizeof(*s->pkt_descs),
+ GFP_KERNEL);
+ if (!s->pkt_descs) {
+ err = -ENOMEM;
+ goto err_context;
+ }
+
+ s->packet_index = 0;
+ do {
+ struct fw_iso_packet params;
+
+ if (s->direction == AMDTP_IN_STREAM) {
+ err = queue_in_packet(s, &params);
+ } else {
+ bool sched_irq = false;
+
+ params.header_length = 0;
+ params.payload_length = 0;
+
+ if (is_irq_target) {
+ sched_irq = !((s->packet_index + 1) %
+ idle_irq_interval);
+ }
+
+ err = queue_out_packet(s, &params, sched_irq);
+ }
+ if (err < 0)
+ goto err_pkt_descs;
+ } while (s->packet_index > 0);
+
+ /* NOTE: TAG1 matches CIP. This just affects in stream. */
+ tag = FW_ISO_CONTEXT_MATCH_TAG1;
+ if ((s->flags & CIP_EMPTY_WITH_TAG0) || (s->flags & CIP_NO_HEADER))
+ tag |= FW_ISO_CONTEXT_MATCH_TAG0;
+
+ s->ready_processing = false;
+ err = fw_iso_context_start(s->context, -1, 0, tag);
+ if (err < 0)
+ goto err_pkt_descs;
+
+ mutex_unlock(&s->mutex);
+
+ return 0;
+err_pkt_descs:
+ kfree(s->pkt_descs);
+err_context:
+ if (s->direction == AMDTP_OUT_STREAM) {
+ kfree(s->ctx_data.rx.seq.descs);
+ } else {
+ if (s->domain->replay.enable)
+ kfree(s->ctx_data.tx.cache.descs);
+ }
+ fw_iso_context_destroy(s->context);
+ s->context = ERR_PTR(-1);
+err_buffer:
+ iso_packets_buffer_destroy(&s->buffer, s->unit);
+err_unlock:
+ mutex_unlock(&s->mutex);
+
+ return err;
+}
+
+/**
+ * amdtp_domain_stream_pcm_pointer - get the PCM buffer position
+ * @d: the AMDTP domain.
+ * @s: the AMDTP stream that transports the PCM data
+ *
+ * Returns the current buffer position, in frames.
+ */
+unsigned long amdtp_domain_stream_pcm_pointer(struct amdtp_domain *d,
+ struct amdtp_stream *s)
+{
+ struct amdtp_stream *irq_target = d->irq_target;
+
+ // Process isochronous packets queued till recent isochronous cycle to handle PCM frames.
+ if (irq_target && amdtp_stream_running(irq_target)) {
+ // In software IRQ context, the call causes dead-lock to disable the tasklet
+ // synchronously.
+ if (!in_softirq())
+ fw_iso_context_flush_completions(irq_target->context);
+ }
+
+ return READ_ONCE(s->pcm_buffer_pointer);
+}
+EXPORT_SYMBOL_GPL(amdtp_domain_stream_pcm_pointer);
+
+/**
+ * amdtp_domain_stream_pcm_ack - acknowledge queued PCM frames
+ * @d: the AMDTP domain.
+ * @s: the AMDTP stream that transfers the PCM frames
+ *
+ * Returns zero always.
+ */
+int amdtp_domain_stream_pcm_ack(struct amdtp_domain *d, struct amdtp_stream *s)
+{
+ struct amdtp_stream *irq_target = d->irq_target;
+
+ // Process isochronous packets for recent isochronous cycle to handle
+ // queued PCM frames.
+ if (irq_target && amdtp_stream_running(irq_target))
+ fw_iso_context_flush_completions(irq_target->context);
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(amdtp_domain_stream_pcm_ack);
+
+/**
+ * amdtp_stream_update - update the stream after a bus reset
+ * @s: the AMDTP stream
+ */
+void amdtp_stream_update(struct amdtp_stream *s)
+{
+ /* Precomputing. */
+ WRITE_ONCE(s->source_node_id_field,
+ (fw_parent_device(s->unit)->card->node_id << CIP_SID_SHIFT) & CIP_SID_MASK);
+}
+EXPORT_SYMBOL(amdtp_stream_update);
+
+/**
+ * amdtp_stream_stop - stop sending packets
+ * @s: the AMDTP stream to stop
+ *
+ * All PCM and MIDI devices of the stream must be stopped before the stream
+ * itself can be stopped.
+ */
+static void amdtp_stream_stop(struct amdtp_stream *s)
+{
+ mutex_lock(&s->mutex);
+
+ if (!amdtp_stream_running(s)) {
+ mutex_unlock(&s->mutex);
+ return;
+ }
+
+ fw_iso_context_stop(s->context);
+ fw_iso_context_destroy(s->context);
+ s->context = ERR_PTR(-1);
+ iso_packets_buffer_destroy(&s->buffer, s->unit);
+ kfree(s->pkt_descs);
+
+ if (s->direction == AMDTP_OUT_STREAM) {
+ kfree(s->ctx_data.rx.seq.descs);
+ } else {
+ if (s->domain->replay.enable)
+ kfree(s->ctx_data.tx.cache.descs);
+ }
+
+ mutex_unlock(&s->mutex);
+}
+
+/**
+ * amdtp_stream_pcm_abort - abort the running PCM device
+ * @s: the AMDTP stream about to be stopped
+ *
+ * If the isochronous stream needs to be stopped asynchronously, call this
+ * function first to stop the PCM device.
+ */
+void amdtp_stream_pcm_abort(struct amdtp_stream *s)
+{
+ struct snd_pcm_substream *pcm;
+
+ pcm = READ_ONCE(s->pcm);
+ if (pcm)
+ snd_pcm_stop_xrun(pcm);
+}
+EXPORT_SYMBOL(amdtp_stream_pcm_abort);
+
+/**
+ * amdtp_domain_init - initialize an AMDTP domain structure
+ * @d: the AMDTP domain to initialize.
+ */
+int amdtp_domain_init(struct amdtp_domain *d)
+{
+ INIT_LIST_HEAD(&d->streams);
+
+ d->events_per_period = 0;
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(amdtp_domain_init);
+
+/**
+ * amdtp_domain_destroy - destroy an AMDTP domain structure
+ * @d: the AMDTP domain to destroy.
+ */
+void amdtp_domain_destroy(struct amdtp_domain *d)
+{
+ // At present nothing to do.
+ return;
+}
+EXPORT_SYMBOL_GPL(amdtp_domain_destroy);
+
+/**
+ * amdtp_domain_add_stream - register isoc context into the domain.
+ * @d: the AMDTP domain.
+ * @s: the AMDTP stream.
+ * @channel: the isochronous channel on the bus.
+ * @speed: firewire speed code.
+ */
+int amdtp_domain_add_stream(struct amdtp_domain *d, struct amdtp_stream *s,
+ int channel, int speed)
+{
+ struct amdtp_stream *tmp;
+
+ list_for_each_entry(tmp, &d->streams, list) {
+ if (s == tmp)
+ return -EBUSY;
+ }
+
+ list_add(&s->list, &d->streams);
+
+ s->channel = channel;
+ s->speed = speed;
+ s->domain = d;
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(amdtp_domain_add_stream);
+
+// Make the reference from rx stream to tx stream for sequence replay. When the number of tx streams
+// is less than the number of rx streams, the first tx stream is selected.
+static int make_association(struct amdtp_domain *d)
+{
+ unsigned int dst_index = 0;
+ struct amdtp_stream *rx;
+
+ // Make association to replay target.
+ list_for_each_entry(rx, &d->streams, list) {
+ if (rx->direction == AMDTP_OUT_STREAM) {
+ unsigned int src_index = 0;
+ struct amdtp_stream *tx = NULL;
+ struct amdtp_stream *s;
+
+ list_for_each_entry(s, &d->streams, list) {
+ if (s->direction == AMDTP_IN_STREAM) {
+ if (dst_index == src_index) {
+ tx = s;
+ break;
+ }
+
+ ++src_index;
+ }
+ }
+ if (!tx) {
+ // Select the first entry.
+ list_for_each_entry(s, &d->streams, list) {
+ if (s->direction == AMDTP_IN_STREAM) {
+ tx = s;
+ break;
+ }
+ }
+ // No target is available to replay sequence.
+ if (!tx)
+ return -EINVAL;
+ }
+
+ rx->ctx_data.rx.replay_target = tx;
+ rx->ctx_data.rx.cache_head = 0;
+
+ ++dst_index;
+ }
+ }
+
+ return 0;
+}
+
+/**
+ * amdtp_domain_start - start sending packets for isoc context in the domain.
+ * @d: the AMDTP domain.
+ * @tx_init_skip_cycles: the number of cycles to skip processing packets at initial stage of IR
+ * contexts.
+ * @replay_seq: whether to replay the sequence of packet in IR context for the sequence of packet in
+ * IT context.
+ * @replay_on_the_fly: transfer rx packets according to nominal frequency, then begin to replay
+ * according to arrival of events in tx packets.
+ */
+int amdtp_domain_start(struct amdtp_domain *d, unsigned int tx_init_skip_cycles, bool replay_seq,
+ bool replay_on_the_fly)
+{
+ unsigned int events_per_buffer = d->events_per_buffer;
+ unsigned int events_per_period = d->events_per_period;
+ unsigned int queue_size;
+ struct amdtp_stream *s;
+ bool found = false;
+ int err;
+
+ if (replay_seq) {
+ err = make_association(d);
+ if (err < 0)
+ return err;
+ }
+ d->replay.enable = replay_seq;
+ d->replay.on_the_fly = replay_on_the_fly;
+
+ // Select an IT context as IRQ target.
+ list_for_each_entry(s, &d->streams, list) {
+ if (s->direction == AMDTP_OUT_STREAM) {
+ found = true;
+ break;
+ }
+ }
+ if (!found)
+ return -ENXIO;
+ d->irq_target = s;
+
+ d->processing_cycle.tx_init_skip = tx_init_skip_cycles;
+
+ // This is a case that AMDTP streams in domain run just for MIDI
+ // substream. Use the number of events equivalent to 10 msec as
+ // interval of hardware IRQ.
+ if (events_per_period == 0)
+ events_per_period = amdtp_rate_table[d->irq_target->sfc] / 100;
+ if (events_per_buffer == 0)
+ events_per_buffer = events_per_period * 3;
+
+ queue_size = DIV_ROUND_UP(CYCLES_PER_SECOND * events_per_buffer,
+ amdtp_rate_table[d->irq_target->sfc]);
+
+ list_for_each_entry(s, &d->streams, list) {
+ unsigned int idle_irq_interval = 0;
+
+ if (s->direction == AMDTP_OUT_STREAM && s == d->irq_target) {
+ idle_irq_interval = DIV_ROUND_UP(CYCLES_PER_SECOND * events_per_period,
+ amdtp_rate_table[d->irq_target->sfc]);
+ }
+
+ // Starts immediately but actually DMA context starts several hundred cycles later.
+ err = amdtp_stream_start(s, s->channel, s->speed, queue_size, idle_irq_interval);
+ if (err < 0)
+ goto error;
+ }
+
+ return 0;
+error:
+ list_for_each_entry(s, &d->streams, list)
+ amdtp_stream_stop(s);
+ return err;
+}
+EXPORT_SYMBOL_GPL(amdtp_domain_start);
+
+/**
+ * amdtp_domain_stop - stop sending packets for isoc context in the same domain.
+ * @d: the AMDTP domain to which the isoc contexts belong.
+ */
+void amdtp_domain_stop(struct amdtp_domain *d)
+{
+ struct amdtp_stream *s, *next;
+
+ if (d->irq_target)
+ amdtp_stream_stop(d->irq_target);
+
+ list_for_each_entry_safe(s, next, &d->streams, list) {
+ list_del(&s->list);
+
+ if (s != d->irq_target)
+ amdtp_stream_stop(s);
+ }
+
+ d->events_per_period = 0;
+ d->irq_target = NULL;
+}
+EXPORT_SYMBOL_GPL(amdtp_domain_stop);