From 2c3c1048746a4622d8c89a29670120dc8fab93c4 Mon Sep 17 00:00:00 2001 From: Daniel Baumann Date: Sun, 7 Apr 2024 20:49:45 +0200 Subject: Adding upstream version 6.1.76. Signed-off-by: Daniel Baumann --- drivers/gpu/drm/i915/gem/i915_gem_execbuffer.c | 3623 ++++++++++++++++++++++++ 1 file changed, 3623 insertions(+) create mode 100644 drivers/gpu/drm/i915/gem/i915_gem_execbuffer.c (limited to 'drivers/gpu/drm/i915/gem/i915_gem_execbuffer.c') diff --git a/drivers/gpu/drm/i915/gem/i915_gem_execbuffer.c b/drivers/gpu/drm/i915/gem/i915_gem_execbuffer.c new file mode 100644 index 000000000..0a123bb44 --- /dev/null +++ b/drivers/gpu/drm/i915/gem/i915_gem_execbuffer.c @@ -0,0 +1,3623 @@ +/* + * SPDX-License-Identifier: MIT + * + * Copyright © 2008,2010 Intel Corporation + */ + +#include +#include +#include +#include + +#include + +#include "display/intel_frontbuffer.h" + +#include "gem/i915_gem_ioctls.h" +#include "gt/intel_context.h" +#include "gt/intel_gpu_commands.h" +#include "gt/intel_gt.h" +#include "gt/intel_gt_buffer_pool.h" +#include "gt/intel_gt_pm.h" +#include "gt/intel_ring.h" + +#include "pxp/intel_pxp.h" + +#include "i915_cmd_parser.h" +#include "i915_drv.h" +#include "i915_file_private.h" +#include "i915_gem_clflush.h" +#include "i915_gem_context.h" +#include "i915_gem_evict.h" +#include "i915_gem_ioctls.h" +#include "i915_trace.h" +#include "i915_user_extensions.h" + +struct eb_vma { + struct i915_vma *vma; + unsigned int flags; + + /** This vma's place in the execbuf reservation list */ + struct drm_i915_gem_exec_object2 *exec; + struct list_head bind_link; + struct list_head reloc_link; + + struct hlist_node node; + u32 handle; +}; + +enum { + FORCE_CPU_RELOC = 1, + FORCE_GTT_RELOC, + FORCE_GPU_RELOC, +#define DBG_FORCE_RELOC 0 /* choose one of the above! */ +}; + +/* __EXEC_OBJECT_NO_RESERVE is BIT(31), defined in i915_vma.h */ +#define __EXEC_OBJECT_HAS_PIN BIT(30) +#define __EXEC_OBJECT_HAS_FENCE BIT(29) +#define __EXEC_OBJECT_USERPTR_INIT BIT(28) +#define __EXEC_OBJECT_NEEDS_MAP BIT(27) +#define __EXEC_OBJECT_NEEDS_BIAS BIT(26) +#define __EXEC_OBJECT_INTERNAL_FLAGS (~0u << 26) /* all of the above + */ +#define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE) + +#define __EXEC_HAS_RELOC BIT(31) +#define __EXEC_ENGINE_PINNED BIT(30) +#define __EXEC_USERPTR_USED BIT(29) +#define __EXEC_INTERNAL_FLAGS (~0u << 29) +#define UPDATE PIN_OFFSET_FIXED + +#define BATCH_OFFSET_BIAS (256*1024) + +#define __I915_EXEC_ILLEGAL_FLAGS \ + (__I915_EXEC_UNKNOWN_FLAGS | \ + I915_EXEC_CONSTANTS_MASK | \ + I915_EXEC_RESOURCE_STREAMER) + +/* Catch emission of unexpected errors for CI! */ +#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) +#undef EINVAL +#define EINVAL ({ \ + DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \ + 22; \ +}) +#endif + +/** + * DOC: User command execution + * + * Userspace submits commands to be executed on the GPU as an instruction + * stream within a GEM object we call a batchbuffer. This instructions may + * refer to other GEM objects containing auxiliary state such as kernels, + * samplers, render targets and even secondary batchbuffers. Userspace does + * not know where in the GPU memory these objects reside and so before the + * batchbuffer is passed to the GPU for execution, those addresses in the + * batchbuffer and auxiliary objects are updated. This is known as relocation, + * or patching. To try and avoid having to relocate each object on the next + * execution, userspace is told the location of those objects in this pass, + * but this remains just a hint as the kernel may choose a new location for + * any object in the future. + * + * At the level of talking to the hardware, submitting a batchbuffer for the + * GPU to execute is to add content to a buffer from which the HW + * command streamer is reading. + * + * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e. + * Execlists, this command is not placed on the same buffer as the + * remaining items. + * + * 2. Add a command to invalidate caches to the buffer. + * + * 3. Add a batchbuffer start command to the buffer; the start command is + * essentially a token together with the GPU address of the batchbuffer + * to be executed. + * + * 4. Add a pipeline flush to the buffer. + * + * 5. Add a memory write command to the buffer to record when the GPU + * is done executing the batchbuffer. The memory write writes the + * global sequence number of the request, ``i915_request::global_seqno``; + * the i915 driver uses the current value in the register to determine + * if the GPU has completed the batchbuffer. + * + * 6. Add a user interrupt command to the buffer. This command instructs + * the GPU to issue an interrupt when the command, pipeline flush and + * memory write are completed. + * + * 7. Inform the hardware of the additional commands added to the buffer + * (by updating the tail pointer). + * + * Processing an execbuf ioctl is conceptually split up into a few phases. + * + * 1. Validation - Ensure all the pointers, handles and flags are valid. + * 2. Reservation - Assign GPU address space for every object + * 3. Relocation - Update any addresses to point to the final locations + * 4. Serialisation - Order the request with respect to its dependencies + * 5. Construction - Construct a request to execute the batchbuffer + * 6. Submission (at some point in the future execution) + * + * Reserving resources for the execbuf is the most complicated phase. We + * neither want to have to migrate the object in the address space, nor do + * we want to have to update any relocations pointing to this object. Ideally, + * we want to leave the object where it is and for all the existing relocations + * to match. If the object is given a new address, or if userspace thinks the + * object is elsewhere, we have to parse all the relocation entries and update + * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that + * all the target addresses in all of its objects match the value in the + * relocation entries and that they all match the presumed offsets given by the + * list of execbuffer objects. Using this knowledge, we know that if we haven't + * moved any buffers, all the relocation entries are valid and we can skip + * the update. (If userspace is wrong, the likely outcome is an impromptu GPU + * hang.) The requirement for using I915_EXEC_NO_RELOC are: + * + * The addresses written in the objects must match the corresponding + * reloc.presumed_offset which in turn must match the corresponding + * execobject.offset. + * + * Any render targets written to in the batch must be flagged with + * EXEC_OBJECT_WRITE. + * + * To avoid stalling, execobject.offset should match the current + * address of that object within the active context. + * + * The reservation is done is multiple phases. First we try and keep any + * object already bound in its current location - so as long as meets the + * constraints imposed by the new execbuffer. Any object left unbound after the + * first pass is then fitted into any available idle space. If an object does + * not fit, all objects are removed from the reservation and the process rerun + * after sorting the objects into a priority order (more difficult to fit + * objects are tried first). Failing that, the entire VM is cleared and we try + * to fit the execbuf once last time before concluding that it simply will not + * fit. + * + * A small complication to all of this is that we allow userspace not only to + * specify an alignment and a size for the object in the address space, but + * we also allow userspace to specify the exact offset. This objects are + * simpler to place (the location is known a priori) all we have to do is make + * sure the space is available. + * + * Once all the objects are in place, patching up the buried pointers to point + * to the final locations is a fairly simple job of walking over the relocation + * entry arrays, looking up the right address and rewriting the value into + * the object. Simple! ... The relocation entries are stored in user memory + * and so to access them we have to copy them into a local buffer. That copy + * has to avoid taking any pagefaults as they may lead back to a GEM object + * requiring the struct_mutex (i.e. recursive deadlock). So once again we split + * the relocation into multiple passes. First we try to do everything within an + * atomic context (avoid the pagefaults) which requires that we never wait. If + * we detect that we may wait, or if we need to fault, then we have to fallback + * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm + * bells yet?) Dropping the mutex means that we lose all the state we have + * built up so far for the execbuf and we must reset any global data. However, + * we do leave the objects pinned in their final locations - which is a + * potential issue for concurrent execbufs. Once we have left the mutex, we can + * allocate and copy all the relocation entries into a large array at our + * leisure, reacquire the mutex, reclaim all the objects and other state and + * then proceed to update any incorrect addresses with the objects. + * + * As we process the relocation entries, we maintain a record of whether the + * object is being written to. Using NORELOC, we expect userspace to provide + * this information instead. We also check whether we can skip the relocation + * by comparing the expected value inside the relocation entry with the target's + * final address. If they differ, we have to map the current object and rewrite + * the 4 or 8 byte pointer within. + * + * Serialising an execbuf is quite simple according to the rules of the GEM + * ABI. Execution within each context is ordered by the order of submission. + * Writes to any GEM object are in order of submission and are exclusive. Reads + * from a GEM object are unordered with respect to other reads, but ordered by + * writes. A write submitted after a read cannot occur before the read, and + * similarly any read submitted after a write cannot occur before the write. + * Writes are ordered between engines such that only one write occurs at any + * time (completing any reads beforehand) - using semaphores where available + * and CPU serialisation otherwise. Other GEM access obey the same rules, any + * write (either via mmaps using set-domain, or via pwrite) must flush all GPU + * reads before starting, and any read (either using set-domain or pread) must + * flush all GPU writes before starting. (Note we only employ a barrier before, + * we currently rely on userspace not concurrently starting a new execution + * whilst reading or writing to an object. This may be an advantage or not + * depending on how much you trust userspace not to shoot themselves in the + * foot.) Serialisation may just result in the request being inserted into + * a DAG awaiting its turn, but most simple is to wait on the CPU until + * all dependencies are resolved. + * + * After all of that, is just a matter of closing the request and handing it to + * the hardware (well, leaving it in a queue to be executed). However, we also + * offer the ability for batchbuffers to be run with elevated privileges so + * that they access otherwise hidden registers. (Used to adjust L3 cache etc.) + * Before any batch is given extra privileges we first must check that it + * contains no nefarious instructions, we check that each instruction is from + * our whitelist and all registers are also from an allowed list. We first + * copy the user's batchbuffer to a shadow (so that the user doesn't have + * access to it, either by the CPU or GPU as we scan it) and then parse each + * instruction. If everything is ok, we set a flag telling the hardware to run + * the batchbuffer in trusted mode, otherwise the ioctl is rejected. + */ + +struct eb_fence { + struct drm_syncobj *syncobj; /* Use with ptr_mask_bits() */ + struct dma_fence *dma_fence; + u64 value; + struct dma_fence_chain *chain_fence; +}; + +struct i915_execbuffer { + struct drm_i915_private *i915; /** i915 backpointer */ + struct drm_file *file; /** per-file lookup tables and limits */ + struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */ + struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */ + struct eb_vma *vma; + + struct intel_gt *gt; /* gt for the execbuf */ + struct intel_context *context; /* logical state for the request */ + struct i915_gem_context *gem_context; /** caller's context */ + + /** our requests to build */ + struct i915_request *requests[MAX_ENGINE_INSTANCE + 1]; + /** identity of the batch obj/vma */ + struct eb_vma *batches[MAX_ENGINE_INSTANCE + 1]; + struct i915_vma *trampoline; /** trampoline used for chaining */ + + /** used for excl fence in dma_resv objects when > 1 BB submitted */ + struct dma_fence *composite_fence; + + /** actual size of execobj[] as we may extend it for the cmdparser */ + unsigned int buffer_count; + + /* number of batches in execbuf IOCTL */ + unsigned int num_batches; + + /** list of vma not yet bound during reservation phase */ + struct list_head unbound; + + /** list of vma that have execobj.relocation_count */ + struct list_head relocs; + + struct i915_gem_ww_ctx ww; + + /** + * Track the most recently used object for relocations, as we + * frequently have to perform multiple relocations within the same + * obj/page + */ + struct reloc_cache { + struct drm_mm_node node; /** temporary GTT binding */ + unsigned long vaddr; /** Current kmap address */ + unsigned long page; /** Currently mapped page index */ + unsigned int graphics_ver; /** Cached value of GRAPHICS_VER */ + bool use_64bit_reloc : 1; + bool has_llc : 1; + bool has_fence : 1; + bool needs_unfenced : 1; + } reloc_cache; + + u64 invalid_flags; /** Set of execobj.flags that are invalid */ + + /** Length of batch within object */ + u64 batch_len[MAX_ENGINE_INSTANCE + 1]; + u32 batch_start_offset; /** Location within object of batch */ + u32 batch_flags; /** Flags composed for emit_bb_start() */ + struct intel_gt_buffer_pool_node *batch_pool; /** pool node for batch buffer */ + + /** + * Indicate either the size of the hastable used to resolve + * relocation handles, or if negative that we are using a direct + * index into the execobj[]. + */ + int lut_size; + struct hlist_head *buckets; /** ht for relocation handles */ + + struct eb_fence *fences; + unsigned long num_fences; +#if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR) + struct i915_capture_list *capture_lists[MAX_ENGINE_INSTANCE + 1]; +#endif +}; + +static int eb_parse(struct i915_execbuffer *eb); +static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle); +static void eb_unpin_engine(struct i915_execbuffer *eb); +static void eb_capture_release(struct i915_execbuffer *eb); + +static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb) +{ + return intel_engine_requires_cmd_parser(eb->context->engine) || + (intel_engine_using_cmd_parser(eb->context->engine) && + eb->args->batch_len); +} + +static int eb_create(struct i915_execbuffer *eb) +{ + if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) { + unsigned int size = 1 + ilog2(eb->buffer_count); + + /* + * Without a 1:1 association between relocation handles and + * the execobject[] index, we instead create a hashtable. + * We size it dynamically based on available memory, starting + * first with 1:1 assocative hash and scaling back until + * the allocation succeeds. + * + * Later on we use a positive lut_size to indicate we are + * using this hashtable, and a negative value to indicate a + * direct lookup. + */ + do { + gfp_t flags; + + /* While we can still reduce the allocation size, don't + * raise a warning and allow the allocation to fail. + * On the last pass though, we want to try as hard + * as possible to perform the allocation and warn + * if it fails. + */ + flags = GFP_KERNEL; + if (size > 1) + flags |= __GFP_NORETRY | __GFP_NOWARN; + + eb->buckets = kzalloc(sizeof(struct hlist_head) << size, + flags); + if (eb->buckets) + break; + } while (--size); + + if (unlikely(!size)) + return -ENOMEM; + + eb->lut_size = size; + } else { + eb->lut_size = -eb->buffer_count; + } + + return 0; +} + +static bool +eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry, + const struct i915_vma *vma, + unsigned int flags) +{ + if (vma->node.size < entry->pad_to_size) + return true; + + if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment)) + return true; + + if (flags & EXEC_OBJECT_PINNED && + vma->node.start != entry->offset) + return true; + + if (flags & __EXEC_OBJECT_NEEDS_BIAS && + vma->node.start < BATCH_OFFSET_BIAS) + return true; + + if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) && + (vma->node.start + vma->node.size + 4095) >> 32) + return true; + + if (flags & __EXEC_OBJECT_NEEDS_MAP && + !i915_vma_is_map_and_fenceable(vma)) + return true; + + return false; +} + +static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry, + unsigned int exec_flags) +{ + u64 pin_flags = 0; + + if (exec_flags & EXEC_OBJECT_NEEDS_GTT) + pin_flags |= PIN_GLOBAL; + + /* + * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset, + * limit address to the first 4GBs for unflagged objects. + */ + if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) + pin_flags |= PIN_ZONE_4G; + + if (exec_flags & __EXEC_OBJECT_NEEDS_MAP) + pin_flags |= PIN_MAPPABLE; + + if (exec_flags & EXEC_OBJECT_PINNED) + pin_flags |= entry->offset | PIN_OFFSET_FIXED; + else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS) + pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS; + + return pin_flags; +} + +static inline int +eb_pin_vma(struct i915_execbuffer *eb, + const struct drm_i915_gem_exec_object2 *entry, + struct eb_vma *ev) +{ + struct i915_vma *vma = ev->vma; + u64 pin_flags; + int err; + + if (vma->node.size) + pin_flags = vma->node.start; + else + pin_flags = entry->offset & PIN_OFFSET_MASK; + + pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED | PIN_VALIDATE; + if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT)) + pin_flags |= PIN_GLOBAL; + + /* Attempt to reuse the current location if available */ + err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, pin_flags); + if (err == -EDEADLK) + return err; + + if (unlikely(err)) { + if (entry->flags & EXEC_OBJECT_PINNED) + return err; + + /* Failing that pick any _free_ space if suitable */ + err = i915_vma_pin_ww(vma, &eb->ww, + entry->pad_to_size, + entry->alignment, + eb_pin_flags(entry, ev->flags) | + PIN_USER | PIN_NOEVICT | PIN_VALIDATE); + if (unlikely(err)) + return err; + } + + if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) { + err = i915_vma_pin_fence(vma); + if (unlikely(err)) + return err; + + if (vma->fence) + ev->flags |= __EXEC_OBJECT_HAS_FENCE; + } + + ev->flags |= __EXEC_OBJECT_HAS_PIN; + if (eb_vma_misplaced(entry, vma, ev->flags)) + return -EBADSLT; + + return 0; +} + +static inline void +eb_unreserve_vma(struct eb_vma *ev) +{ + if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE)) + __i915_vma_unpin_fence(ev->vma); + + ev->flags &= ~__EXEC_OBJECT_RESERVED; +} + +static int +eb_validate_vma(struct i915_execbuffer *eb, + struct drm_i915_gem_exec_object2 *entry, + struct i915_vma *vma) +{ + /* Relocations are disallowed for all platforms after TGL-LP. This + * also covers all platforms with local memory. + */ + if (entry->relocation_count && + GRAPHICS_VER(eb->i915) >= 12 && !IS_TIGERLAKE(eb->i915)) + return -EINVAL; + + if (unlikely(entry->flags & eb->invalid_flags)) + return -EINVAL; + + if (unlikely(entry->alignment && + !is_power_of_2_u64(entry->alignment))) + return -EINVAL; + + /* + * Offset can be used as input (EXEC_OBJECT_PINNED), reject + * any non-page-aligned or non-canonical addresses. + */ + if (unlikely(entry->flags & EXEC_OBJECT_PINNED && + entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK))) + return -EINVAL; + + /* pad_to_size was once a reserved field, so sanitize it */ + if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) { + if (unlikely(offset_in_page(entry->pad_to_size))) + return -EINVAL; + } else { + entry->pad_to_size = 0; + } + /* + * From drm_mm perspective address space is continuous, + * so from this point we're always using non-canonical + * form internally. + */ + entry->offset = gen8_noncanonical_addr(entry->offset); + + if (!eb->reloc_cache.has_fence) { + entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE; + } else { + if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE || + eb->reloc_cache.needs_unfenced) && + i915_gem_object_is_tiled(vma->obj)) + entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP; + } + + return 0; +} + +static inline bool +is_batch_buffer(struct i915_execbuffer *eb, unsigned int buffer_idx) +{ + return eb->args->flags & I915_EXEC_BATCH_FIRST ? + buffer_idx < eb->num_batches : + buffer_idx >= eb->args->buffer_count - eb->num_batches; +} + +static int +eb_add_vma(struct i915_execbuffer *eb, + unsigned int *current_batch, + unsigned int i, + struct i915_vma *vma) +{ + struct drm_i915_private *i915 = eb->i915; + struct drm_i915_gem_exec_object2 *entry = &eb->exec[i]; + struct eb_vma *ev = &eb->vma[i]; + + ev->vma = vma; + ev->exec = entry; + ev->flags = entry->flags; + + if (eb->lut_size > 0) { + ev->handle = entry->handle; + hlist_add_head(&ev->node, + &eb->buckets[hash_32(entry->handle, + eb->lut_size)]); + } + + if (entry->relocation_count) + list_add_tail(&ev->reloc_link, &eb->relocs); + + /* + * SNA is doing fancy tricks with compressing batch buffers, which leads + * to negative relocation deltas. Usually that works out ok since the + * relocate address is still positive, except when the batch is placed + * very low in the GTT. Ensure this doesn't happen. + * + * Note that actual hangs have only been observed on gen7, but for + * paranoia do it everywhere. + */ + if (is_batch_buffer(eb, i)) { + if (entry->relocation_count && + !(ev->flags & EXEC_OBJECT_PINNED)) + ev->flags |= __EXEC_OBJECT_NEEDS_BIAS; + if (eb->reloc_cache.has_fence) + ev->flags |= EXEC_OBJECT_NEEDS_FENCE; + + eb->batches[*current_batch] = ev; + + if (unlikely(ev->flags & EXEC_OBJECT_WRITE)) { + drm_dbg(&i915->drm, + "Attempting to use self-modifying batch buffer\n"); + return -EINVAL; + } + + if (range_overflows_t(u64, + eb->batch_start_offset, + eb->args->batch_len, + ev->vma->size)) { + drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n"); + return -EINVAL; + } + + if (eb->args->batch_len == 0) + eb->batch_len[*current_batch] = ev->vma->size - + eb->batch_start_offset; + else + eb->batch_len[*current_batch] = eb->args->batch_len; + if (unlikely(eb->batch_len[*current_batch] == 0)) { /* impossible! */ + drm_dbg(&i915->drm, "Invalid batch length\n"); + return -EINVAL; + } + + ++*current_batch; + } + + return 0; +} + +static inline int use_cpu_reloc(const struct reloc_cache *cache, + const struct drm_i915_gem_object *obj) +{ + if (!i915_gem_object_has_struct_page(obj)) + return false; + + if (DBG_FORCE_RELOC == FORCE_CPU_RELOC) + return true; + + if (DBG_FORCE_RELOC == FORCE_GTT_RELOC) + return false; + + return (cache->has_llc || + obj->cache_dirty || + obj->cache_level != I915_CACHE_NONE); +} + +static int eb_reserve_vma(struct i915_execbuffer *eb, + struct eb_vma *ev, + u64 pin_flags) +{ + struct drm_i915_gem_exec_object2 *entry = ev->exec; + struct i915_vma *vma = ev->vma; + int err; + + if (drm_mm_node_allocated(&vma->node) && + eb_vma_misplaced(entry, vma, ev->flags)) { + err = i915_vma_unbind(vma); + if (err) + return err; + } + + err = i915_vma_pin_ww(vma, &eb->ww, + entry->pad_to_size, entry->alignment, + eb_pin_flags(entry, ev->flags) | pin_flags); + if (err) + return err; + + if (entry->offset != vma->node.start) { + entry->offset = vma->node.start | UPDATE; + eb->args->flags |= __EXEC_HAS_RELOC; + } + + if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) { + err = i915_vma_pin_fence(vma); + if (unlikely(err)) + return err; + + if (vma->fence) + ev->flags |= __EXEC_OBJECT_HAS_FENCE; + } + + ev->flags |= __EXEC_OBJECT_HAS_PIN; + GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags)); + + return 0; +} + +static bool eb_unbind(struct i915_execbuffer *eb, bool force) +{ + const unsigned int count = eb->buffer_count; + unsigned int i; + struct list_head last; + bool unpinned = false; + + /* Resort *all* the objects into priority order */ + INIT_LIST_HEAD(&eb->unbound); + INIT_LIST_HEAD(&last); + + for (i = 0; i < count; i++) { + struct eb_vma *ev = &eb->vma[i]; + unsigned int flags = ev->flags; + + if (!force && flags & EXEC_OBJECT_PINNED && + flags & __EXEC_OBJECT_HAS_PIN) + continue; + + unpinned = true; + eb_unreserve_vma(ev); + + if (flags & EXEC_OBJECT_PINNED) + /* Pinned must have their slot */ + list_add(&ev->bind_link, &eb->unbound); + else if (flags & __EXEC_OBJECT_NEEDS_MAP) + /* Map require the lowest 256MiB (aperture) */ + list_add_tail(&ev->bind_link, &eb->unbound); + else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) + /* Prioritise 4GiB region for restricted bo */ + list_add(&ev->bind_link, &last); + else + list_add_tail(&ev->bind_link, &last); + } + + list_splice_tail(&last, &eb->unbound); + return unpinned; +} + +static int eb_reserve(struct i915_execbuffer *eb) +{ + struct eb_vma *ev; + unsigned int pass; + int err = 0; + bool unpinned; + + /* + * We have one more buffers that we couldn't bind, which could be due to + * various reasons. To resolve this we have 4 passes, with every next + * level turning the screws tighter: + * + * 0. Unbind all objects that do not match the GTT constraints for the + * execbuffer (fenceable, mappable, alignment etc). Bind all new + * objects. This avoids unnecessary unbinding of later objects in order + * to make room for the earlier objects *unless* we need to defragment. + * + * 1. Reorder the buffers, where objects with the most restrictive + * placement requirements go first (ignoring fixed location buffers for + * now). For example, objects needing the mappable aperture (the first + * 256M of GTT), should go first vs objects that can be placed just + * about anywhere. Repeat the previous pass. + * + * 2. Consider buffers that are pinned at a fixed location. Also try to + * evict the entire VM this time, leaving only objects that we were + * unable to lock. Try again to bind the buffers. (still using the new + * buffer order). + * + * 3. We likely have object lock contention for one or more stubborn + * objects in the VM, for which we need to evict to make forward + * progress (perhaps we are fighting the shrinker?). When evicting the + * VM this time around, anything that we can't lock we now track using + * the busy_bo, using the full lock (after dropping the vm->mutex to + * prevent deadlocks), instead of trylock. We then continue to evict the + * VM, this time with the stubborn object locked, which we can now + * hopefully unbind (if still bound in the VM). Repeat until the VM is + * evicted. Finally we should be able bind everything. + */ + for (pass = 0; pass <= 3; pass++) { + int pin_flags = PIN_USER | PIN_VALIDATE; + + if (pass == 0) + pin_flags |= PIN_NONBLOCK; + + if (pass >= 1) + unpinned = eb_unbind(eb, pass >= 2); + + if (pass == 2) { + err = mutex_lock_interruptible(&eb->context->vm->mutex); + if (!err) { + err = i915_gem_evict_vm(eb->context->vm, &eb->ww, NULL); + mutex_unlock(&eb->context->vm->mutex); + } + if (err) + return err; + } + + if (pass == 3) { +retry: + err = mutex_lock_interruptible(&eb->context->vm->mutex); + if (!err) { + struct drm_i915_gem_object *busy_bo = NULL; + + err = i915_gem_evict_vm(eb->context->vm, &eb->ww, &busy_bo); + mutex_unlock(&eb->context->vm->mutex); + if (err && busy_bo) { + err = i915_gem_object_lock(busy_bo, &eb->ww); + i915_gem_object_put(busy_bo); + if (!err) + goto retry; + } + } + if (err) + return err; + } + + list_for_each_entry(ev, &eb->unbound, bind_link) { + err = eb_reserve_vma(eb, ev, pin_flags); + if (err) + break; + } + + if (err != -ENOSPC) + break; + } + + return err; +} + +static int eb_select_context(struct i915_execbuffer *eb) +{ + struct i915_gem_context *ctx; + + ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1); + if (unlikely(IS_ERR(ctx))) + return PTR_ERR(ctx); + + eb->gem_context = ctx; + if (i915_gem_context_has_full_ppgtt(ctx)) + eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT; + + return 0; +} + +static int __eb_add_lut(struct i915_execbuffer *eb, + u32 handle, struct i915_vma *vma) +{ + struct i915_gem_context *ctx = eb->gem_context; + struct i915_lut_handle *lut; + int err; + + lut = i915_lut_handle_alloc(); + if (unlikely(!lut)) + return -ENOMEM; + + i915_vma_get(vma); + if (!atomic_fetch_inc(&vma->open_count)) + i915_vma_reopen(vma); + lut->handle = handle; + lut->ctx = ctx; + + /* Check that the context hasn't been closed in the meantime */ + err = -EINTR; + if (!mutex_lock_interruptible(&ctx->lut_mutex)) { + if (likely(!i915_gem_context_is_closed(ctx))) + err = radix_tree_insert(&ctx->handles_vma, handle, vma); + else + err = -ENOENT; + if (err == 0) { /* And nor has this handle */ + struct drm_i915_gem_object *obj = vma->obj; + + spin_lock(&obj->lut_lock); + if (idr_find(&eb->file->object_idr, handle) == obj) { + list_add(&lut->obj_link, &obj->lut_list); + } else { + radix_tree_delete(&ctx->handles_vma, handle); + err = -ENOENT; + } + spin_unlock(&obj->lut_lock); + } + mutex_unlock(&ctx->lut_mutex); + } + if (unlikely(err)) + goto err; + + return 0; + +err: + i915_vma_close(vma); + i915_vma_put(vma); + i915_lut_handle_free(lut); + return err; +} + +static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle) +{ + struct i915_address_space *vm = eb->context->vm; + + do { + struct drm_i915_gem_object *obj; + struct i915_vma *vma; + int err; + + rcu_read_lock(); + vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle); + if (likely(vma && vma->vm == vm)) + vma = i915_vma_tryget(vma); + rcu_read_unlock(); + if (likely(vma)) + return vma; + + obj = i915_gem_object_lookup(eb->file, handle); + if (unlikely(!obj)) + return ERR_PTR(-ENOENT); + + /* + * If the user has opted-in for protected-object tracking, make + * sure the object encryption can be used. + * We only need to do this when the object is first used with + * this context, because the context itself will be banned when + * the protected objects become invalid. + */ + if (i915_gem_context_uses_protected_content(eb->gem_context) && + i915_gem_object_is_protected(obj)) { + err = intel_pxp_key_check(&vm->gt->pxp, obj, true); + if (err) { + i915_gem_object_put(obj); + return ERR_PTR(err); + } + } + + vma = i915_vma_instance(obj, vm, NULL); + if (IS_ERR(vma)) { + i915_gem_object_put(obj); + return vma; + } + + err = __eb_add_lut(eb, handle, vma); + if (likely(!err)) + return vma; + + i915_gem_object_put(obj); + if (err != -EEXIST) + return ERR_PTR(err); + } while (1); +} + +static int eb_lookup_vmas(struct i915_execbuffer *eb) +{ + unsigned int i, current_batch = 0; + int err = 0; + + INIT_LIST_HEAD(&eb->relocs); + + for (i = 0; i < eb->buffer_count; i++) { + struct i915_vma *vma; + + vma = eb_lookup_vma(eb, eb->exec[i].handle); + if (IS_ERR(vma)) { + err = PTR_ERR(vma); + goto err; + } + + err = eb_validate_vma(eb, &eb->exec[i], vma); + if (unlikely(err)) { + i915_vma_put(vma); + goto err; + } + + err = eb_add_vma(eb, ¤t_batch, i, vma); + if (err) + return err; + + if (i915_gem_object_is_userptr(vma->obj)) { + err = i915_gem_object_userptr_submit_init(vma->obj); + if (err) { + if (i + 1 < eb->buffer_count) { + /* + * Execbuffer code expects last vma entry to be NULL, + * since we already initialized this entry, + * set the next value to NULL or we mess up + * cleanup handling. + */ + eb->vma[i + 1].vma = NULL; + } + + return err; + } + + eb->vma[i].flags |= __EXEC_OBJECT_USERPTR_INIT; + eb->args->flags |= __EXEC_USERPTR_USED; + } + } + + return 0; + +err: + eb->vma[i].vma = NULL; + return err; +} + +static int eb_lock_vmas(struct i915_execbuffer *eb) +{ + unsigned int i; + int err; + + for (i = 0; i < eb->buffer_count; i++) { + struct eb_vma *ev = &eb->vma[i]; + struct i915_vma *vma = ev->vma; + + err = i915_gem_object_lock(vma->obj, &eb->ww); + if (err) + return err; + } + + return 0; +} + +static int eb_validate_vmas(struct i915_execbuffer *eb) +{ + unsigned int i; + int err; + + INIT_LIST_HEAD(&eb->unbound); + + err = eb_lock_vmas(eb); + if (err) + return err; + + for (i = 0; i < eb->buffer_count; i++) { + struct drm_i915_gem_exec_object2 *entry = &eb->exec[i]; + struct eb_vma *ev = &eb->vma[i]; + struct i915_vma *vma = ev->vma; + + err = eb_pin_vma(eb, entry, ev); + if (err == -EDEADLK) + return err; + + if (!err) { + if (entry->offset != vma->node.start) { + entry->offset = vma->node.start | UPDATE; + eb->args->flags |= __EXEC_HAS_RELOC; + } + } else { + eb_unreserve_vma(ev); + + list_add_tail(&ev->bind_link, &eb->unbound); + if (drm_mm_node_allocated(&vma->node)) { + err = i915_vma_unbind(vma); + if (err) + return err; + } + } + + /* Reserve enough slots to accommodate composite fences */ + err = dma_resv_reserve_fences(vma->obj->base.resv, eb->num_batches); + if (err) + return err; + + GEM_BUG_ON(drm_mm_node_allocated(&vma->node) && + eb_vma_misplaced(&eb->exec[i], vma, ev->flags)); + } + + if (!list_empty(&eb->unbound)) + return eb_reserve(eb); + + return 0; +} + +static struct eb_vma * +eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle) +{ + if (eb->lut_size < 0) { + if (handle >= -eb->lut_size) + return NULL; + return &eb->vma[handle]; + } else { + struct hlist_head *head; + struct eb_vma *ev; + + head = &eb->buckets[hash_32(handle, eb->lut_size)]; + hlist_for_each_entry(ev, head, node) { + if (ev->handle == handle) + return ev; + } + return NULL; + } +} + +static void eb_release_vmas(struct i915_execbuffer *eb, bool final) +{ + const unsigned int count = eb->buffer_count; + unsigned int i; + + for (i = 0; i < count; i++) { + struct eb_vma *ev = &eb->vma[i]; + struct i915_vma *vma = ev->vma; + + if (!vma) + break; + + eb_unreserve_vma(ev); + + if (final) + i915_vma_put(vma); + } + + eb_capture_release(eb); + eb_unpin_engine(eb); +} + +static void eb_destroy(const struct i915_execbuffer *eb) +{ + if (eb->lut_size > 0) + kfree(eb->buckets); +} + +static inline u64 +relocation_target(const struct drm_i915_gem_relocation_entry *reloc, + const struct i915_vma *target) +{ + return gen8_canonical_addr((int)reloc->delta + target->node.start); +} + +static void reloc_cache_init(struct reloc_cache *cache, + struct drm_i915_private *i915) +{ + cache->page = -1; + cache->vaddr = 0; + /* Must be a variable in the struct to allow GCC to unroll. */ + cache->graphics_ver = GRAPHICS_VER(i915); + cache->has_llc = HAS_LLC(i915); + cache->use_64bit_reloc = HAS_64BIT_RELOC(i915); + cache->has_fence = cache->graphics_ver < 4; + cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment; + cache->node.flags = 0; +} + +static inline void *unmask_page(unsigned long p) +{ + return (void *)(uintptr_t)(p & PAGE_MASK); +} + +static inline unsigned int unmask_flags(unsigned long p) +{ + return p & ~PAGE_MASK; +} + +#define KMAP 0x4 /* after CLFLUSH_FLAGS */ + +static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache) +{ + struct drm_i915_private *i915 = + container_of(cache, struct i915_execbuffer, reloc_cache)->i915; + return to_gt(i915)->ggtt; +} + +static void reloc_cache_unmap(struct reloc_cache *cache) +{ + void *vaddr; + + if (!cache->vaddr) + return; + + vaddr = unmask_page(cache->vaddr); + if (cache->vaddr & KMAP) + kunmap_atomic(vaddr); + else + io_mapping_unmap_atomic((void __iomem *)vaddr); +} + +static void reloc_cache_remap(struct reloc_cache *cache, + struct drm_i915_gem_object *obj) +{ + void *vaddr; + + if (!cache->vaddr) + return; + + if (cache->vaddr & KMAP) { + struct page *page = i915_gem_object_get_page(obj, cache->page); + + vaddr = kmap_atomic(page); + cache->vaddr = unmask_flags(cache->vaddr) | + (unsigned long)vaddr; + } else { + struct i915_ggtt *ggtt = cache_to_ggtt(cache); + unsigned long offset; + + offset = cache->node.start; + if (!drm_mm_node_allocated(&cache->node)) + offset += cache->page << PAGE_SHIFT; + + cache->vaddr = (unsigned long) + io_mapping_map_atomic_wc(&ggtt->iomap, offset); + } +} + +static void reloc_cache_reset(struct reloc_cache *cache, struct i915_execbuffer *eb) +{ + void *vaddr; + + if (!cache->vaddr) + return; + + vaddr = unmask_page(cache->vaddr); + if (cache->vaddr & KMAP) { + struct drm_i915_gem_object *obj = + (struct drm_i915_gem_object *)cache->node.mm; + if (cache->vaddr & CLFLUSH_AFTER) + mb(); + + kunmap_atomic(vaddr); + i915_gem_object_finish_access(obj); + } else { + struct i915_ggtt *ggtt = cache_to_ggtt(cache); + + intel_gt_flush_ggtt_writes(ggtt->vm.gt); + io_mapping_unmap_atomic((void __iomem *)vaddr); + + if (drm_mm_node_allocated(&cache->node)) { + ggtt->vm.clear_range(&ggtt->vm, + cache->node.start, + cache->node.size); + mutex_lock(&ggtt->vm.mutex); + drm_mm_remove_node(&cache->node); + mutex_unlock(&ggtt->vm.mutex); + } else { + i915_vma_unpin((struct i915_vma *)cache->node.mm); + } + } + + cache->vaddr = 0; + cache->page = -1; +} + +static void *reloc_kmap(struct drm_i915_gem_object *obj, + struct reloc_cache *cache, + unsigned long pageno) +{ + void *vaddr; + struct page *page; + + if (cache->vaddr) { + kunmap_atomic(unmask_page(cache->vaddr)); + } else { + unsigned int flushes; + int err; + + err = i915_gem_object_prepare_write(obj, &flushes); + if (err) + return ERR_PTR(err); + + BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS); + BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK); + + cache->vaddr = flushes | KMAP; + cache->node.mm = (void *)obj; + if (flushes) + mb(); + } + + page = i915_gem_object_get_page(obj, pageno); + if (!obj->mm.dirty) + set_page_dirty(page); + + vaddr = kmap_atomic(page); + cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr; + cache->page = pageno; + + return vaddr; +} + +static void *reloc_iomap(struct i915_vma *batch, + struct i915_execbuffer *eb, + unsigned long page) +{ + struct drm_i915_gem_object *obj = batch->obj; + struct reloc_cache *cache = &eb->reloc_cache; + struct i915_ggtt *ggtt = cache_to_ggtt(cache); + unsigned long offset; + void *vaddr; + + if (cache->vaddr) { + intel_gt_flush_ggtt_writes(ggtt->vm.gt); + io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr)); + } else { + struct i915_vma *vma = ERR_PTR(-ENODEV); + int err; + + if (i915_gem_object_is_tiled(obj)) + return ERR_PTR(-EINVAL); + + if (use_cpu_reloc(cache, obj)) + return NULL; + + err = i915_gem_object_set_to_gtt_domain(obj, true); + if (err) + return ERR_PTR(err); + + /* + * i915_gem_object_ggtt_pin_ww may attempt to remove the batch + * VMA from the object list because we no longer pin. + * + * Only attempt to pin the batch buffer to ggtt if the current batch + * is not inside ggtt, or the batch buffer is not misplaced. + */ + if (!i915_is_ggtt(batch->vm) || + !i915_vma_misplaced(batch, 0, 0, PIN_MAPPABLE)) { + vma = i915_gem_object_ggtt_pin_ww(obj, &eb->ww, NULL, 0, 0, + PIN_MAPPABLE | + PIN_NONBLOCK /* NOWARN */ | + PIN_NOEVICT); + } + + if (vma == ERR_PTR(-EDEADLK)) + return vma; + + if (IS_ERR(vma)) { + memset(&cache->node, 0, sizeof(cache->node)); + mutex_lock(&ggtt->vm.mutex); + err = drm_mm_insert_node_in_range + (&ggtt->vm.mm, &cache->node, + PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE, + 0, ggtt->mappable_end, + DRM_MM_INSERT_LOW); + mutex_unlock(&ggtt->vm.mutex); + if (err) /* no inactive aperture space, use cpu reloc */ + return NULL; + } else { + cache->node.start = vma->node.start; + cache->node.mm = (void *)vma; + } + } + + offset = cache->node.start; + if (drm_mm_node_allocated(&cache->node)) { + ggtt->vm.insert_page(&ggtt->vm, + i915_gem_object_get_dma_address(obj, page), + offset, I915_CACHE_NONE, 0); + } else { + offset += page << PAGE_SHIFT; + } + + vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap, + offset); + cache->page = page; + cache->vaddr = (unsigned long)vaddr; + + return vaddr; +} + +static void *reloc_vaddr(struct i915_vma *vma, + struct i915_execbuffer *eb, + unsigned long page) +{ + struct reloc_cache *cache = &eb->reloc_cache; + void *vaddr; + + if (cache->page == page) { + vaddr = unmask_page(cache->vaddr); + } else { + vaddr = NULL; + if ((cache->vaddr & KMAP) == 0) + vaddr = reloc_iomap(vma, eb, page); + if (!vaddr) + vaddr = reloc_kmap(vma->obj, cache, page); + } + + return vaddr; +} + +static void clflush_write32(u32 *addr, u32 value, unsigned int flushes) +{ + if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) { + if (flushes & CLFLUSH_BEFORE) + drm_clflush_virt_range(addr, sizeof(*addr)); + + *addr = value; + + /* + * Writes to the same cacheline are serialised by the CPU + * (including clflush). On the write path, we only require + * that it hits memory in an orderly fashion and place + * mb barriers at the start and end of the relocation phase + * to ensure ordering of clflush wrt to the system. + */ + if (flushes & CLFLUSH_AFTER) + drm_clflush_virt_range(addr, sizeof(*addr)); + } else + *addr = value; +} + +static u64 +relocate_entry(struct i915_vma *vma, + const struct drm_i915_gem_relocation_entry *reloc, + struct i915_execbuffer *eb, + const struct i915_vma *target) +{ + u64 target_addr = relocation_target(reloc, target); + u64 offset = reloc->offset; + bool wide = eb->reloc_cache.use_64bit_reloc; + void *vaddr; + +repeat: + vaddr = reloc_vaddr(vma, eb, + offset >> PAGE_SHIFT); + if (IS_ERR(vaddr)) + return PTR_ERR(vaddr); + + GEM_BUG_ON(!IS_ALIGNED(offset, sizeof(u32))); + clflush_write32(vaddr + offset_in_page(offset), + lower_32_bits(target_addr), + eb->reloc_cache.vaddr); + + if (wide) { + offset += sizeof(u32); + target_addr >>= 32; + wide = false; + goto repeat; + } + + return target->node.start | UPDATE; +} + +static u64 +eb_relocate_entry(struct i915_execbuffer *eb, + struct eb_vma *ev, + const struct drm_i915_gem_relocation_entry *reloc) +{ + struct drm_i915_private *i915 = eb->i915; + struct eb_vma *target; + int err; + + /* we've already hold a reference to all valid objects */ + target = eb_get_vma(eb, reloc->target_handle); + if (unlikely(!target)) + return -ENOENT; + + /* Validate that the target is in a valid r/w GPU domain */ + if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) { + drm_dbg(&i915->drm, "reloc with multiple write domains: " + "target %d offset %d " + "read %08x write %08x", + reloc->target_handle, + (int) reloc->offset, + reloc->read_domains, + reloc->write_domain); + return -EINVAL; + } + if (unlikely((reloc->write_domain | reloc->read_domains) + & ~I915_GEM_GPU_DOMAINS)) { + drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: " + "target %d offset %d " + "read %08x write %08x", + reloc->target_handle, + (int) reloc->offset, + reloc->read_domains, + reloc->write_domain); + return -EINVAL; + } + + if (reloc->write_domain) { + target->flags |= EXEC_OBJECT_WRITE; + + /* + * Sandybridge PPGTT errata: We need a global gtt mapping + * for MI and pipe_control writes because the gpu doesn't + * properly redirect them through the ppgtt for non_secure + * batchbuffers. + */ + if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION && + GRAPHICS_VER(eb->i915) == 6 && + !i915_vma_is_bound(target->vma, I915_VMA_GLOBAL_BIND)) { + struct i915_vma *vma = target->vma; + + reloc_cache_unmap(&eb->reloc_cache); + mutex_lock(&vma->vm->mutex); + err = i915_vma_bind(target->vma, + target->vma->obj->cache_level, + PIN_GLOBAL, NULL, NULL); + mutex_unlock(&vma->vm->mutex); + reloc_cache_remap(&eb->reloc_cache, ev->vma->obj); + if (err) + return err; + } + } + + /* + * If the relocation already has the right value in it, no + * more work needs to be done. + */ + if (!DBG_FORCE_RELOC && + gen8_canonical_addr(target->vma->node.start) == reloc->presumed_offset) + return 0; + + /* Check that the relocation address is valid... */ + if (unlikely(reloc->offset > + ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) { + drm_dbg(&i915->drm, "Relocation beyond object bounds: " + "target %d offset %d size %d.\n", + reloc->target_handle, + (int)reloc->offset, + (int)ev->vma->size); + return -EINVAL; + } + if (unlikely(reloc->offset & 3)) { + drm_dbg(&i915->drm, "Relocation not 4-byte aligned: " + "target %d offset %d.\n", + reloc->target_handle, + (int)reloc->offset); + return -EINVAL; + } + + /* + * If we write into the object, we need to force the synchronisation + * barrier, either with an asynchronous clflush or if we executed the + * patching using the GPU (though that should be serialised by the + * timeline). To be completely sure, and since we are required to + * do relocations we are already stalling, disable the user's opt + * out of our synchronisation. + */ + ev->flags &= ~EXEC_OBJECT_ASYNC; + + /* and update the user's relocation entry */ + return relocate_entry(ev->vma, reloc, eb, target->vma); +} + +static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev) +{ +#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry)) + struct drm_i915_gem_relocation_entry stack[N_RELOC(512)]; + const struct drm_i915_gem_exec_object2 *entry = ev->exec; + struct drm_i915_gem_relocation_entry __user *urelocs = + u64_to_user_ptr(entry->relocs_ptr); + unsigned long remain = entry->relocation_count; + + if (unlikely(remain > N_RELOC(ULONG_MAX))) + return -EINVAL; + + /* + * We must check that the entire relocation array is safe + * to read. However, if the array is not writable the user loses + * the updated relocation values. + */ + if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs)))) + return -EFAULT; + + do { + struct drm_i915_gem_relocation_entry *r = stack; + unsigned int count = + min_t(unsigned long, remain, ARRAY_SIZE(stack)); + unsigned int copied; + + /* + * This is the fast path and we cannot handle a pagefault + * whilst holding the struct mutex lest the user pass in the + * relocations contained within a mmaped bo. For in such a case + * we, the page fault handler would call i915_gem_fault() and + * we would try to acquire the struct mutex again. Obviously + * this is bad and so lockdep complains vehemently. + */ + pagefault_disable(); + copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0])); + pagefault_enable(); + if (unlikely(copied)) { + remain = -EFAULT; + goto out; + } + + remain -= count; + do { + u64 offset = eb_relocate_entry(eb, ev, r); + + if (likely(offset == 0)) { + } else if ((s64)offset < 0) { + remain = (int)offset; + goto out; + } else { + /* + * Note that reporting an error now + * leaves everything in an inconsistent + * state as we have *already* changed + * the relocation value inside the + * object. As we have not changed the + * reloc.presumed_offset or will not + * change the execobject.offset, on the + * call we may not rewrite the value + * inside the object, leaving it + * dangling and causing a GPU hang. Unless + * userspace dynamically rebuilds the + * relocations on each execbuf rather than + * presume a static tree. + * + * We did previously check if the relocations + * were writable (access_ok), an error now + * would be a strange race with mprotect, + * having already demonstrated that we + * can read from this userspace address. + */ + offset = gen8_canonical_addr(offset & ~UPDATE); + __put_user(offset, + &urelocs[r - stack].presumed_offset); + } + } while (r++, --count); + urelocs += ARRAY_SIZE(stack); + } while (remain); +out: + reloc_cache_reset(&eb->reloc_cache, eb); + return remain; +} + +static int +eb_relocate_vma_slow(struct i915_execbuffer *eb, struct eb_vma *ev) +{ + const struct drm_i915_gem_exec_object2 *entry = ev->exec; + struct drm_i915_gem_relocation_entry *relocs = + u64_to_ptr(typeof(*relocs), entry->relocs_ptr); + unsigned int i; + int err; + + for (i = 0; i < entry->relocation_count; i++) { + u64 offset = eb_relocate_entry(eb, ev, &relocs[i]); + + if ((s64)offset < 0) { + err = (int)offset; + goto err; + } + } + err = 0; +err: + reloc_cache_reset(&eb->reloc_cache, eb); + return err; +} + +static int check_relocations(const struct drm_i915_gem_exec_object2 *entry) +{ + const char __user *addr, *end; + unsigned long size; + char __maybe_unused c; + + size = entry->relocation_count; + if (size == 0) + return 0; + + if (size > N_RELOC(ULONG_MAX)) + return -EINVAL; + + addr = u64_to_user_ptr(entry->relocs_ptr); + size *= sizeof(struct drm_i915_gem_relocation_entry); + if (!access_ok(addr, size)) + return -EFAULT; + + end = addr + size; + for (; addr < end; addr += PAGE_SIZE) { + int err = __get_user(c, addr); + if (err) + return err; + } + return __get_user(c, end - 1); +} + +static int eb_copy_relocations(const struct i915_execbuffer *eb) +{ + struct drm_i915_gem_relocation_entry *relocs; + const unsigned int count = eb->buffer_count; + unsigned int i; + int err; + + for (i = 0; i < count; i++) { + const unsigned int nreloc = eb->exec[i].relocation_count; + struct drm_i915_gem_relocation_entry __user *urelocs; + unsigned long size; + unsigned long copied; + + if (nreloc == 0) + continue; + + err = check_relocations(&eb->exec[i]); + if (err) + goto err; + + urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr); + size = nreloc * sizeof(*relocs); + + relocs = kvmalloc_array(size, 1, GFP_KERNEL); + if (!relocs) { + err = -ENOMEM; + goto err; + } + + /* copy_from_user is limited to < 4GiB */ + copied = 0; + do { + unsigned int len = + min_t(u64, BIT_ULL(31), size - copied); + + if (__copy_from_user((char *)relocs + copied, + (char __user *)urelocs + copied, + len)) + goto end; + + copied += len; + } while (copied < size); + + /* + * As we do not update the known relocation offsets after + * relocating (due to the complexities in lock handling), + * we need to mark them as invalid now so that we force the + * relocation processing next time. Just in case the target + * object is evicted and then rebound into its old + * presumed_offset before the next execbuffer - if that + * happened we would make the mistake of assuming that the + * relocations were valid. + */ + if (!user_access_begin(urelocs, size)) + goto end; + + for (copied = 0; copied < nreloc; copied++) + unsafe_put_user(-1, + &urelocs[copied].presumed_offset, + end_user); + user_access_end(); + + eb->exec[i].relocs_ptr = (uintptr_t)relocs; + } + + return 0; + +end_user: + user_access_end(); +end: + kvfree(relocs); + err = -EFAULT; +err: + while (i--) { + relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr); + if (eb->exec[i].relocation_count) + kvfree(relocs); + } + return err; +} + +static int eb_prefault_relocations(const struct i915_execbuffer *eb) +{ + const unsigned int count = eb->buffer_count; + unsigned int i; + + for (i = 0; i < count; i++) { + int err; + + err = check_relocations(&eb->exec[i]); + if (err) + return err; + } + + return 0; +} + +static int eb_reinit_userptr(struct i915_execbuffer *eb) +{ + const unsigned int count = eb->buffer_count; + unsigned int i; + int ret; + + if (likely(!(eb->args->flags & __EXEC_USERPTR_USED))) + return 0; + + for (i = 0; i < count; i++) { + struct eb_vma *ev = &eb->vma[i]; + + if (!i915_gem_object_is_userptr(ev->vma->obj)) + continue; + + ret = i915_gem_object_userptr_submit_init(ev->vma->obj); + if (ret) + return ret; + + ev->flags |= __EXEC_OBJECT_USERPTR_INIT; + } + + return 0; +} + +static noinline int eb_relocate_parse_slow(struct i915_execbuffer *eb) +{ + bool have_copy = false; + struct eb_vma *ev; + int err = 0; + +repeat: + if (signal_pending(current)) { + err = -ERESTARTSYS; + goto out; + } + + /* We may process another execbuffer during the unlock... */ + eb_release_vmas(eb, false); + i915_gem_ww_ctx_fini(&eb->ww); + + /* + * We take 3 passes through the slowpatch. + * + * 1 - we try to just prefault all the user relocation entries and + * then attempt to reuse the atomic pagefault disabled fast path again. + * + * 2 - we copy the user entries to a local buffer here outside of the + * local and allow ourselves to wait upon any rendering before + * relocations + * + * 3 - we already have a local copy of the relocation entries, but + * were interrupted (EAGAIN) whilst waiting for the objects, try again. + */ + if (!err) { + err = eb_prefault_relocations(eb); + } else if (!have_copy) { + err = eb_copy_relocations(eb); + have_copy = err == 0; + } else { + cond_resched(); + err = 0; + } + + if (!err) + err = eb_reinit_userptr(eb); + + i915_gem_ww_ctx_init(&eb->ww, true); + if (err) + goto out; + + /* reacquire the objects */ +repeat_validate: + err = eb_pin_engine(eb, false); + if (err) + goto err; + + err = eb_validate_vmas(eb); + if (err) + goto err; + + GEM_BUG_ON(!eb->batches[0]); + + list_for_each_entry(ev, &eb->relocs, reloc_link) { + if (!have_copy) { + err = eb_relocate_vma(eb, ev); + if (err) + break; + } else { + err = eb_relocate_vma_slow(eb, ev); + if (err) + break; + } + } + + if (err == -EDEADLK) + goto err; + + if (err && !have_copy) + goto repeat; + + if (err) + goto err; + + /* as last step, parse the command buffer */ + err = eb_parse(eb); + if (err) + goto err; + + /* + * Leave the user relocations as are, this is the painfully slow path, + * and we want to avoid the complication of dropping the lock whilst + * having buffers reserved in the aperture and so causing spurious + * ENOSPC for random operations. + */ + +err: + if (err == -EDEADLK) { + eb_release_vmas(eb, false); + err = i915_gem_ww_ctx_backoff(&eb->ww); + if (!err) + goto repeat_validate; + } + + if (err == -EAGAIN) + goto repeat; + +out: + if (have_copy) { + const unsigned int count = eb->buffer_count; + unsigned int i; + + for (i = 0; i < count; i++) { + const struct drm_i915_gem_exec_object2 *entry = + &eb->exec[i]; + struct drm_i915_gem_relocation_entry *relocs; + + if (!entry->relocation_count) + continue; + + relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr); + kvfree(relocs); + } + } + + return err; +} + +static int eb_relocate_parse(struct i915_execbuffer *eb) +{ + int err; + bool throttle = true; + +retry: + err = eb_pin_engine(eb, throttle); + if (err) { + if (err != -EDEADLK) + return err; + + goto err; + } + + /* only throttle once, even if we didn't need to throttle */ + throttle = false; + + err = eb_validate_vmas(eb); + if (err == -EAGAIN) + goto slow; + else if (err) + goto err; + + /* The objects are in their final locations, apply the relocations. */ + if (eb->args->flags & __EXEC_HAS_RELOC) { + struct eb_vma *ev; + + list_for_each_entry(ev, &eb->relocs, reloc_link) { + err = eb_relocate_vma(eb, ev); + if (err) + break; + } + + if (err == -EDEADLK) + goto err; + else if (err) + goto slow; + } + + if (!err) + err = eb_parse(eb); + +err: + if (err == -EDEADLK) { + eb_release_vmas(eb, false); + err = i915_gem_ww_ctx_backoff(&eb->ww); + if (!err) + goto retry; + } + + return err; + +slow: + err = eb_relocate_parse_slow(eb); + if (err) + /* + * If the user expects the execobject.offset and + * reloc.presumed_offset to be an exact match, + * as for using NO_RELOC, then we cannot update + * the execobject.offset until we have completed + * relocation. + */ + eb->args->flags &= ~__EXEC_HAS_RELOC; + + return err; +} + +/* + * Using two helper loops for the order of which requests / batches are created + * and added the to backend. Requests are created in order from the parent to + * the last child. Requests are added in the reverse order, from the last child + * to parent. This is done for locking reasons as the timeline lock is acquired + * during request creation and released when the request is added to the + * backend. To make lockdep happy (see intel_context_timeline_lock) this must be + * the ordering. + */ +#define for_each_batch_create_order(_eb, _i) \ + for ((_i) = 0; (_i) < (_eb)->num_batches; ++(_i)) +#define for_each_batch_add_order(_eb, _i) \ + BUILD_BUG_ON(!typecheck(int, _i)); \ + for ((_i) = (_eb)->num_batches - 1; (_i) >= 0; --(_i)) + +static struct i915_request * +eb_find_first_request_added(struct i915_execbuffer *eb) +{ + int i; + + for_each_batch_add_order(eb, i) + if (eb->requests[i]) + return eb->requests[i]; + + GEM_BUG_ON("Request not found"); + + return NULL; +} + +#if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR) + +/* Stage with GFP_KERNEL allocations before we enter the signaling critical path */ +static int eb_capture_stage(struct i915_execbuffer *eb) +{ + const unsigned int count = eb->buffer_count; + unsigned int i = count, j; + + while (i--) { + struct eb_vma *ev = &eb->vma[i]; + struct i915_vma *vma = ev->vma; + unsigned int flags = ev->flags; + + if (!(flags & EXEC_OBJECT_CAPTURE)) + continue; + + if (i915_gem_context_is_recoverable(eb->gem_context) && + (IS_DGFX(eb->i915) || GRAPHICS_VER_FULL(eb->i915) > IP_VER(12, 0))) + return -EINVAL; + + for_each_batch_create_order(eb, j) { + struct i915_capture_list *capture; + + capture = kmalloc(sizeof(*capture), GFP_KERNEL); + if (!capture) + continue; + + capture->next = eb->capture_lists[j]; + capture->vma_res = i915_vma_resource_get(vma->resource); + eb->capture_lists[j] = capture; + } + } + + return 0; +} + +/* Commit once we're in the critical path */ +static void eb_capture_commit(struct i915_execbuffer *eb) +{ + unsigned int j; + + for_each_batch_create_order(eb, j) { + struct i915_request *rq = eb->requests[j]; + + if (!rq) + break; + + rq->capture_list = eb->capture_lists[j]; + eb->capture_lists[j] = NULL; + } +} + +/* + * Release anything that didn't get committed due to errors. + * The capture_list will otherwise be freed at request retire. + */ +static void eb_capture_release(struct i915_execbuffer *eb) +{ + unsigned int j; + + for_each_batch_create_order(eb, j) { + if (eb->capture_lists[j]) { + i915_request_free_capture_list(eb->capture_lists[j]); + eb->capture_lists[j] = NULL; + } + } +} + +static void eb_capture_list_clear(struct i915_execbuffer *eb) +{ + memset(eb->capture_lists, 0, sizeof(eb->capture_lists)); +} + +#else + +static int eb_capture_stage(struct i915_execbuffer *eb) +{ + return 0; +} + +static void eb_capture_commit(struct i915_execbuffer *eb) +{ +} + +static void eb_capture_release(struct i915_execbuffer *eb) +{ +} + +static void eb_capture_list_clear(struct i915_execbuffer *eb) +{ +} + +#endif + +static int eb_move_to_gpu(struct i915_execbuffer *eb) +{ + const unsigned int count = eb->buffer_count; + unsigned int i = count; + int err = 0, j; + + while (i--) { + struct eb_vma *ev = &eb->vma[i]; + struct i915_vma *vma = ev->vma; + unsigned int flags = ev->flags; + struct drm_i915_gem_object *obj = vma->obj; + + assert_vma_held(vma); + + /* + * If the GPU is not _reading_ through the CPU cache, we need + * to make sure that any writes (both previous GPU writes from + * before a change in snooping levels and normal CPU writes) + * caught in that cache are flushed to main memory. + * + * We want to say + * obj->cache_dirty && + * !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ) + * but gcc's optimiser doesn't handle that as well and emits + * two jumps instead of one. Maybe one day... + * + * FIXME: There is also sync flushing in set_pages(), which + * serves a different purpose(some of the time at least). + * + * We should consider: + * + * 1. Rip out the async flush code. + * + * 2. Or make the sync flushing use the async clflush path + * using mandatory fences underneath. Currently the below + * async flush happens after we bind the object. + */ + if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) { + if (i915_gem_clflush_object(obj, 0)) + flags &= ~EXEC_OBJECT_ASYNC; + } + + /* We only need to await on the first request */ + if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) { + err = i915_request_await_object + (eb_find_first_request_added(eb), obj, + flags & EXEC_OBJECT_WRITE); + } + + for_each_batch_add_order(eb, j) { + if (err) + break; + if (!eb->requests[j]) + continue; + + err = _i915_vma_move_to_active(vma, eb->requests[j], + j ? NULL : + eb->composite_fence ? + eb->composite_fence : + &eb->requests[j]->fence, + flags | __EXEC_OBJECT_NO_RESERVE); + } + } + +#ifdef CONFIG_MMU_NOTIFIER + if (!err && (eb->args->flags & __EXEC_USERPTR_USED)) { + read_lock(&eb->i915->mm.notifier_lock); + + /* + * count is always at least 1, otherwise __EXEC_USERPTR_USED + * could not have been set + */ + for (i = 0; i < count; i++) { + struct eb_vma *ev = &eb->vma[i]; + struct drm_i915_gem_object *obj = ev->vma->obj; + + if (!i915_gem_object_is_userptr(obj)) + continue; + + err = i915_gem_object_userptr_submit_done(obj); + if (err) + break; + } + + read_unlock(&eb->i915->mm.notifier_lock); + } +#endif + + if (unlikely(err)) + goto err_skip; + + /* Unconditionally flush any chipset caches (for streaming writes). */ + intel_gt_chipset_flush(eb->gt); + eb_capture_commit(eb); + + return 0; + +err_skip: + for_each_batch_create_order(eb, j) { + if (!eb->requests[j]) + break; + + i915_request_set_error_once(eb->requests[j], err); + } + return err; +} + +static int i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec) +{ + if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS) + return -EINVAL; + + /* Kernel clipping was a DRI1 misfeature */ + if (!(exec->flags & (I915_EXEC_FENCE_ARRAY | + I915_EXEC_USE_EXTENSIONS))) { + if (exec->num_cliprects || exec->cliprects_ptr) + return -EINVAL; + } + + if (exec->DR4 == 0xffffffff) { + DRM_DEBUG("UXA submitting garbage DR4, fixing up\n"); + exec->DR4 = 0; + } + if (exec->DR1 || exec->DR4) + return -EINVAL; + + if ((exec->batch_start_offset | exec->batch_len) & 0x7) + return -EINVAL; + + return 0; +} + +static int i915_reset_gen7_sol_offsets(struct i915_request *rq) +{ + u32 *cs; + int i; + + if (GRAPHICS_VER(rq->engine->i915) != 7 || rq->engine->id != RCS0) { + drm_dbg(&rq->engine->i915->drm, "sol reset is gen7/rcs only\n"); + return -EINVAL; + } + + cs = intel_ring_begin(rq, 4 * 2 + 2); + if (IS_ERR(cs)) + return PTR_ERR(cs); + + *cs++ = MI_LOAD_REGISTER_IMM(4); + for (i = 0; i < 4; i++) { + *cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i)); + *cs++ = 0; + } + *cs++ = MI_NOOP; + intel_ring_advance(rq, cs); + + return 0; +} + +static struct i915_vma * +shadow_batch_pin(struct i915_execbuffer *eb, + struct drm_i915_gem_object *obj, + struct i915_address_space *vm, + unsigned int flags) +{ + struct i915_vma *vma; + int err; + + vma = i915_vma_instance(obj, vm, NULL); + if (IS_ERR(vma)) + return vma; + + err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, flags | PIN_VALIDATE); + if (err) + return ERR_PTR(err); + + return vma; +} + +static struct i915_vma *eb_dispatch_secure(struct i915_execbuffer *eb, struct i915_vma *vma) +{ + /* + * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure + * batch" bit. Hence we need to pin secure batches into the global gtt. + * hsw should have this fixed, but bdw mucks it up again. */ + if (eb->batch_flags & I915_DISPATCH_SECURE) + return i915_gem_object_ggtt_pin_ww(vma->obj, &eb->ww, NULL, 0, 0, PIN_VALIDATE); + + return NULL; +} + +static int eb_parse(struct i915_execbuffer *eb) +{ + struct drm_i915_private *i915 = eb->i915; + struct intel_gt_buffer_pool_node *pool = eb->batch_pool; + struct i915_vma *shadow, *trampoline, *batch; + unsigned long len; + int err; + + if (!eb_use_cmdparser(eb)) { + batch = eb_dispatch_secure(eb, eb->batches[0]->vma); + if (IS_ERR(batch)) + return PTR_ERR(batch); + + goto secure_batch; + } + + if (intel_context_is_parallel(eb->context)) + return -EINVAL; + + len = eb->batch_len[0]; + if (!CMDPARSER_USES_GGTT(eb->i915)) { + /* + * ppGTT backed shadow buffers must be mapped RO, to prevent + * post-scan tampering + */ + if (!eb->context->vm->has_read_only) { + drm_dbg(&i915->drm, + "Cannot prevent post-scan tampering without RO capable vm\n"); + return -EINVAL; + } + } else { + len += I915_CMD_PARSER_TRAMPOLINE_SIZE; + } + if (unlikely(len < eb->batch_len[0])) /* last paranoid check of overflow */ + return -EINVAL; + + if (!pool) { + pool = intel_gt_get_buffer_pool(eb->gt, len, + I915_MAP_WB); + if (IS_ERR(pool)) + return PTR_ERR(pool); + eb->batch_pool = pool; + } + + err = i915_gem_object_lock(pool->obj, &eb->ww); + if (err) + return err; + + shadow = shadow_batch_pin(eb, pool->obj, eb->context->vm, PIN_USER); + if (IS_ERR(shadow)) + return PTR_ERR(shadow); + + intel_gt_buffer_pool_mark_used(pool); + i915_gem_object_set_readonly(shadow->obj); + shadow->private = pool; + + trampoline = NULL; + if (CMDPARSER_USES_GGTT(eb->i915)) { + trampoline = shadow; + + shadow = shadow_batch_pin(eb, pool->obj, + &eb->gt->ggtt->vm, + PIN_GLOBAL); + if (IS_ERR(shadow)) + return PTR_ERR(shadow); + + shadow->private = pool; + + eb->batch_flags |= I915_DISPATCH_SECURE; + } + + batch = eb_dispatch_secure(eb, shadow); + if (IS_ERR(batch)) + return PTR_ERR(batch); + + err = dma_resv_reserve_fences(shadow->obj->base.resv, 1); + if (err) + return err; + + err = intel_engine_cmd_parser(eb->context->engine, + eb->batches[0]->vma, + eb->batch_start_offset, + eb->batch_len[0], + shadow, trampoline); + if (err) + return err; + + eb->batches[0] = &eb->vma[eb->buffer_count++]; + eb->batches[0]->vma = i915_vma_get(shadow); + eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN; + + eb->trampoline = trampoline; + eb->batch_start_offset = 0; + +secure_batch: + if (batch) { + if (intel_context_is_parallel(eb->context)) + return -EINVAL; + + eb->batches[0] = &eb->vma[eb->buffer_count++]; + eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN; + eb->batches[0]->vma = i915_vma_get(batch); + } + return 0; +} + +static int eb_request_submit(struct i915_execbuffer *eb, + struct i915_request *rq, + struct i915_vma *batch, + u64 batch_len) +{ + int err; + + if (intel_context_nopreempt(rq->context)) + __set_bit(I915_FENCE_FLAG_NOPREEMPT, &rq->fence.flags); + + if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) { + err = i915_reset_gen7_sol_offsets(rq); + if (err) + return err; + } + + /* + * After we completed waiting for other engines (using HW semaphores) + * then we can signal that this request/batch is ready to run. This + * allows us to determine if the batch is still waiting on the GPU + * or actually running by checking the breadcrumb. + */ + if (rq->context->engine->emit_init_breadcrumb) { + err = rq->context->engine->emit_init_breadcrumb(rq); + if (err) + return err; + } + + err = rq->context->engine->emit_bb_start(rq, + batch->node.start + + eb->batch_start_offset, + batch_len, + eb->batch_flags); + if (err) + return err; + + if (eb->trampoline) { + GEM_BUG_ON(intel_context_is_parallel(rq->context)); + GEM_BUG_ON(eb->batch_start_offset); + err = rq->context->engine->emit_bb_start(rq, + eb->trampoline->node.start + + batch_len, 0, 0); + if (err) + return err; + } + + return 0; +} + +static int eb_submit(struct i915_execbuffer *eb) +{ + unsigned int i; + int err; + + err = eb_move_to_gpu(eb); + + for_each_batch_create_order(eb, i) { + if (!eb->requests[i]) + break; + + trace_i915_request_queue(eb->requests[i], eb->batch_flags); + if (!err) + err = eb_request_submit(eb, eb->requests[i], + eb->batches[i]->vma, + eb->batch_len[i]); + } + + return err; +} + +static int num_vcs_engines(struct drm_i915_private *i915) +{ + return hweight_long(VDBOX_MASK(to_gt(i915))); +} + +/* + * Find one BSD ring to dispatch the corresponding BSD command. + * The engine index is returned. + */ +static unsigned int +gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv, + struct drm_file *file) +{ + struct drm_i915_file_private *file_priv = file->driver_priv; + + /* Check whether the file_priv has already selected one ring. */ + if ((int)file_priv->bsd_engine < 0) + file_priv->bsd_engine = + prandom_u32_max(num_vcs_engines(dev_priv)); + + return file_priv->bsd_engine; +} + +static const enum intel_engine_id user_ring_map[] = { + [I915_EXEC_DEFAULT] = RCS0, + [I915_EXEC_RENDER] = RCS0, + [I915_EXEC_BLT] = BCS0, + [I915_EXEC_BSD] = VCS0, + [I915_EXEC_VEBOX] = VECS0 +}; + +static struct i915_request *eb_throttle(struct i915_execbuffer *eb, struct intel_context *ce) +{ + struct intel_ring *ring = ce->ring; + struct intel_timeline *tl = ce->timeline; + struct i915_request *rq; + + /* + * Completely unscientific finger-in-the-air estimates for suitable + * maximum user request size (to avoid blocking) and then backoff. + */ + if (intel_ring_update_space(ring) >= PAGE_SIZE) + return NULL; + + /* + * Find a request that after waiting upon, there will be at least half + * the ring available. The hysteresis allows us to compete for the + * shared ring and should mean that we sleep less often prior to + * claiming our resources, but not so long that the ring completely + * drains before we can submit our next request. + */ + list_for_each_entry(rq, &tl->requests, link) { + if (rq->ring != ring) + continue; + + if (__intel_ring_space(rq->postfix, + ring->emit, ring->size) > ring->size / 2) + break; + } + if (&rq->link == &tl->requests) + return NULL; /* weird, we will check again later for real */ + + return i915_request_get(rq); +} + +static int eb_pin_timeline(struct i915_execbuffer *eb, struct intel_context *ce, + bool throttle) +{ + struct intel_timeline *tl; + struct i915_request *rq = NULL; + + /* + * Take a local wakeref for preparing to dispatch the execbuf as + * we expect to access the hardware fairly frequently in the + * process, and require the engine to be kept awake between accesses. + * Upon dispatch, we acquire another prolonged wakeref that we hold + * until the timeline is idle, which in turn releases the wakeref + * taken on the engine, and the parent device. + */ + tl = intel_context_timeline_lock(ce); + if (IS_ERR(tl)) + return PTR_ERR(tl); + + intel_context_enter(ce); + if (throttle) + rq = eb_throttle(eb, ce); + intel_context_timeline_unlock(tl); + + if (rq) { + bool nonblock = eb->file->filp->f_flags & O_NONBLOCK; + long timeout = nonblock ? 0 : MAX_SCHEDULE_TIMEOUT; + + if (i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE, + timeout) < 0) { + i915_request_put(rq); + + /* + * Error path, cannot use intel_context_timeline_lock as + * that is user interruptable and this clean up step + * must be done. + */ + mutex_lock(&ce->timeline->mutex); + intel_context_exit(ce); + mutex_unlock(&ce->timeline->mutex); + + if (nonblock) + return -EWOULDBLOCK; + else + return -EINTR; + } + i915_request_put(rq); + } + + return 0; +} + +static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle) +{ + struct intel_context *ce = eb->context, *child; + int err; + int i = 0, j = 0; + + GEM_BUG_ON(eb->args->flags & __EXEC_ENGINE_PINNED); + + if (unlikely(intel_context_is_banned(ce))) + return -EIO; + + /* + * Pinning the contexts may generate requests in order to acquire + * GGTT space, so do this first before we reserve a seqno for + * ourselves. + */ + err = intel_context_pin_ww(ce, &eb->ww); + if (err) + return err; + for_each_child(ce, child) { + err = intel_context_pin_ww(child, &eb->ww); + GEM_BUG_ON(err); /* perma-pinned should incr a counter */ + } + + for_each_child(ce, child) { + err = eb_pin_timeline(eb, child, throttle); + if (err) + goto unwind; + ++i; + } + err = eb_pin_timeline(eb, ce, throttle); + if (err) + goto unwind; + + eb->args->flags |= __EXEC_ENGINE_PINNED; + return 0; + +unwind: + for_each_child(ce, child) { + if (j++ < i) { + mutex_lock(&child->timeline->mutex); + intel_context_exit(child); + mutex_unlock(&child->timeline->mutex); + } + } + for_each_child(ce, child) + intel_context_unpin(child); + intel_context_unpin(ce); + return err; +} + +static void eb_unpin_engine(struct i915_execbuffer *eb) +{ + struct intel_context *ce = eb->context, *child; + + if (!(eb->args->flags & __EXEC_ENGINE_PINNED)) + return; + + eb->args->flags &= ~__EXEC_ENGINE_PINNED; + + for_each_child(ce, child) { + mutex_lock(&child->timeline->mutex); + intel_context_exit(child); + mutex_unlock(&child->timeline->mutex); + + intel_context_unpin(child); + } + + mutex_lock(&ce->timeline->mutex); + intel_context_exit(ce); + mutex_unlock(&ce->timeline->mutex); + + intel_context_unpin(ce); +} + +static unsigned int +eb_select_legacy_ring(struct i915_execbuffer *eb) +{ + struct drm_i915_private *i915 = eb->i915; + struct drm_i915_gem_execbuffer2 *args = eb->args; + unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK; + + if (user_ring_id != I915_EXEC_BSD && + (args->flags & I915_EXEC_BSD_MASK)) { + drm_dbg(&i915->drm, + "execbuf with non bsd ring but with invalid " + "bsd dispatch flags: %d\n", (int)(args->flags)); + return -1; + } + + if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) { + unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK; + + if (bsd_idx == I915_EXEC_BSD_DEFAULT) { + bsd_idx = gen8_dispatch_bsd_engine(i915, eb->file); + } else if (bsd_idx >= I915_EXEC_BSD_RING1 && + bsd_idx <= I915_EXEC_BSD_RING2) { + bsd_idx >>= I915_EXEC_BSD_SHIFT; + bsd_idx--; + } else { + drm_dbg(&i915->drm, + "execbuf with unknown bsd ring: %u\n", + bsd_idx); + return -1; + } + + return _VCS(bsd_idx); + } + + if (user_ring_id >= ARRAY_SIZE(user_ring_map)) { + drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n", + user_ring_id); + return -1; + } + + return user_ring_map[user_ring_id]; +} + +static int +eb_select_engine(struct i915_execbuffer *eb) +{ + struct intel_context *ce, *child; + unsigned int idx; + int err; + + if (i915_gem_context_user_engines(eb->gem_context)) + idx = eb->args->flags & I915_EXEC_RING_MASK; + else + idx = eb_select_legacy_ring(eb); + + ce = i915_gem_context_get_engine(eb->gem_context, idx); + if (IS_ERR(ce)) + return PTR_ERR(ce); + + if (intel_context_is_parallel(ce)) { + if (eb->buffer_count < ce->parallel.number_children + 1) { + intel_context_put(ce); + return -EINVAL; + } + if (eb->batch_start_offset || eb->args->batch_len) { + intel_context_put(ce); + return -EINVAL; + } + } + eb->num_batches = ce->parallel.number_children + 1; + + for_each_child(ce, child) + intel_context_get(child); + intel_gt_pm_get(ce->engine->gt); + + if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags)) { + err = intel_context_alloc_state(ce); + if (err) + goto err; + } + for_each_child(ce, child) { + if (!test_bit(CONTEXT_ALLOC_BIT, &child->flags)) { + err = intel_context_alloc_state(child); + if (err) + goto err; + } + } + + /* + * ABI: Before userspace accesses the GPU (e.g. execbuffer), report + * EIO if the GPU is already wedged. + */ + err = intel_gt_terminally_wedged(ce->engine->gt); + if (err) + goto err; + + if (!i915_vm_tryget(ce->vm)) { + err = -ENOENT; + goto err; + } + + eb->context = ce; + eb->gt = ce->engine->gt; + + /* + * Make sure engine pool stays alive even if we call intel_context_put + * during ww handling. The pool is destroyed when last pm reference + * is dropped, which breaks our -EDEADLK handling. + */ + return err; + +err: + intel_gt_pm_put(ce->engine->gt); + for_each_child(ce, child) + intel_context_put(child); + intel_context_put(ce); + return err; +} + +static void +eb_put_engine(struct i915_execbuffer *eb) +{ + struct intel_context *child; + + i915_vm_put(eb->context->vm); + intel_gt_pm_put(eb->gt); + for_each_child(eb->context, child) + intel_context_put(child); + intel_context_put(eb->context); +} + +static void +__free_fence_array(struct eb_fence *fences, unsigned int n) +{ + while (n--) { + drm_syncobj_put(ptr_mask_bits(fences[n].syncobj, 2)); + dma_fence_put(fences[n].dma_fence); + dma_fence_chain_free(fences[n].chain_fence); + } + kvfree(fences); +} + +static int +add_timeline_fence_array(struct i915_execbuffer *eb, + const struct drm_i915_gem_execbuffer_ext_timeline_fences *timeline_fences) +{ + struct drm_i915_gem_exec_fence __user *user_fences; + u64 __user *user_values; + struct eb_fence *f; + u64 nfences; + int err = 0; + + nfences = timeline_fences->fence_count; + if (!nfences) + return 0; + + /* Check multiplication overflow for access_ok() and kvmalloc_array() */ + BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long)); + if (nfences > min_t(unsigned long, + ULONG_MAX / sizeof(*user_fences), + SIZE_MAX / sizeof(*f)) - eb->num_fences) + return -EINVAL; + + user_fences = u64_to_user_ptr(timeline_fences->handles_ptr); + if (!access_ok(user_fences, nfences * sizeof(*user_fences))) + return -EFAULT; + + user_values = u64_to_user_ptr(timeline_fences->values_ptr); + if (!access_ok(user_values, nfences * sizeof(*user_values))) + return -EFAULT; + + f = krealloc(eb->fences, + (eb->num_fences + nfences) * sizeof(*f), + __GFP_NOWARN | GFP_KERNEL); + if (!f) + return -ENOMEM; + + eb->fences = f; + f += eb->num_fences; + + BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) & + ~__I915_EXEC_FENCE_UNKNOWN_FLAGS); + + while (nfences--) { + struct drm_i915_gem_exec_fence user_fence; + struct drm_syncobj *syncobj; + struct dma_fence *fence = NULL; + u64 point; + + if (__copy_from_user(&user_fence, + user_fences++, + sizeof(user_fence))) + return -EFAULT; + + if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) + return -EINVAL; + + if (__get_user(point, user_values++)) + return -EFAULT; + + syncobj = drm_syncobj_find(eb->file, user_fence.handle); + if (!syncobj) { + DRM_DEBUG("Invalid syncobj handle provided\n"); + return -ENOENT; + } + + fence = drm_syncobj_fence_get(syncobj); + + if (!fence && user_fence.flags && + !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) { + DRM_DEBUG("Syncobj handle has no fence\n"); + drm_syncobj_put(syncobj); + return -EINVAL; + } + + if (fence) + err = dma_fence_chain_find_seqno(&fence, point); + + if (err && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) { + DRM_DEBUG("Syncobj handle missing requested point %llu\n", point); + dma_fence_put(fence); + drm_syncobj_put(syncobj); + return err; + } + + /* + * A point might have been signaled already and + * garbage collected from the timeline. In this case + * just ignore the point and carry on. + */ + if (!fence && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) { + drm_syncobj_put(syncobj); + continue; + } + + /* + * For timeline syncobjs we need to preallocate chains for + * later signaling. + */ + if (point != 0 && user_fence.flags & I915_EXEC_FENCE_SIGNAL) { + /* + * Waiting and signaling the same point (when point != + * 0) would break the timeline. + */ + if (user_fence.flags & I915_EXEC_FENCE_WAIT) { + DRM_DEBUG("Trying to wait & signal the same timeline point.\n"); + dma_fence_put(fence); + drm_syncobj_put(syncobj); + return -EINVAL; + } + + f->chain_fence = dma_fence_chain_alloc(); + if (!f->chain_fence) { + drm_syncobj_put(syncobj); + dma_fence_put(fence); + return -ENOMEM; + } + } else { + f->chain_fence = NULL; + } + + f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2); + f->dma_fence = fence; + f->value = point; + f++; + eb->num_fences++; + } + + return 0; +} + +static int add_fence_array(struct i915_execbuffer *eb) +{ + struct drm_i915_gem_execbuffer2 *args = eb->args; + struct drm_i915_gem_exec_fence __user *user; + unsigned long num_fences = args->num_cliprects; + struct eb_fence *f; + + if (!(args->flags & I915_EXEC_FENCE_ARRAY)) + return 0; + + if (!num_fences) + return 0; + + /* Check multiplication overflow for access_ok() and kvmalloc_array() */ + BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long)); + if (num_fences > min_t(unsigned long, + ULONG_MAX / sizeof(*user), + SIZE_MAX / sizeof(*f) - eb->num_fences)) + return -EINVAL; + + user = u64_to_user_ptr(args->cliprects_ptr); + if (!access_ok(user, num_fences * sizeof(*user))) + return -EFAULT; + + f = krealloc(eb->fences, + (eb->num_fences + num_fences) * sizeof(*f), + __GFP_NOWARN | GFP_KERNEL); + if (!f) + return -ENOMEM; + + eb->fences = f; + f += eb->num_fences; + while (num_fences--) { + struct drm_i915_gem_exec_fence user_fence; + struct drm_syncobj *syncobj; + struct dma_fence *fence = NULL; + + if (__copy_from_user(&user_fence, user++, sizeof(user_fence))) + return -EFAULT; + + if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) + return -EINVAL; + + syncobj = drm_syncobj_find(eb->file, user_fence.handle); + if (!syncobj) { + DRM_DEBUG("Invalid syncobj handle provided\n"); + return -ENOENT; + } + + if (user_fence.flags & I915_EXEC_FENCE_WAIT) { + fence = drm_syncobj_fence_get(syncobj); + if (!fence) { + DRM_DEBUG("Syncobj handle has no fence\n"); + drm_syncobj_put(syncobj); + return -EINVAL; + } + } + + BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) & + ~__I915_EXEC_FENCE_UNKNOWN_FLAGS); + + f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2); + f->dma_fence = fence; + f->value = 0; + f->chain_fence = NULL; + f++; + eb->num_fences++; + } + + return 0; +} + +static void put_fence_array(struct eb_fence *fences, int num_fences) +{ + if (fences) + __free_fence_array(fences, num_fences); +} + +static int +await_fence_array(struct i915_execbuffer *eb, + struct i915_request *rq) +{ + unsigned int n; + int err; + + for (n = 0; n < eb->num_fences; n++) { + struct drm_syncobj *syncobj; + unsigned int flags; + + syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2); + + if (!eb->fences[n].dma_fence) + continue; + + err = i915_request_await_dma_fence(rq, eb->fences[n].dma_fence); + if (err < 0) + return err; + } + + return 0; +} + +static void signal_fence_array(const struct i915_execbuffer *eb, + struct dma_fence * const fence) +{ + unsigned int n; + + for (n = 0; n < eb->num_fences; n++) { + struct drm_syncobj *syncobj; + unsigned int flags; + + syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2); + if (!(flags & I915_EXEC_FENCE_SIGNAL)) + continue; + + if (eb->fences[n].chain_fence) { + drm_syncobj_add_point(syncobj, + eb->fences[n].chain_fence, + fence, + eb->fences[n].value); + /* + * The chain's ownership is transferred to the + * timeline. + */ + eb->fences[n].chain_fence = NULL; + } else { + drm_syncobj_replace_fence(syncobj, fence); + } + } +} + +static int +parse_timeline_fences(struct i915_user_extension __user *ext, void *data) +{ + struct i915_execbuffer *eb = data; + struct drm_i915_gem_execbuffer_ext_timeline_fences timeline_fences; + + if (copy_from_user(&timeline_fences, ext, sizeof(timeline_fences))) + return -EFAULT; + + return add_timeline_fence_array(eb, &timeline_fences); +} + +static void retire_requests(struct intel_timeline *tl, struct i915_request *end) +{ + struct i915_request *rq, *rn; + + list_for_each_entry_safe(rq, rn, &tl->requests, link) + if (rq == end || !i915_request_retire(rq)) + break; +} + +static int eb_request_add(struct i915_execbuffer *eb, struct i915_request *rq, + int err, bool last_parallel) +{ + struct intel_timeline * const tl = i915_request_timeline(rq); + struct i915_sched_attr attr = {}; + struct i915_request *prev; + + lockdep_assert_held(&tl->mutex); + lockdep_unpin_lock(&tl->mutex, rq->cookie); + + trace_i915_request_add(rq); + + prev = __i915_request_commit(rq); + + /* Check that the context wasn't destroyed before submission */ + if (likely(!intel_context_is_closed(eb->context))) { + attr = eb->gem_context->sched; + } else { + /* Serialise with context_close via the add_to_timeline */ + i915_request_set_error_once(rq, -ENOENT); + __i915_request_skip(rq); + err = -ENOENT; /* override any transient errors */ + } + + if (intel_context_is_parallel(eb->context)) { + if (err) { + __i915_request_skip(rq); + set_bit(I915_FENCE_FLAG_SKIP_PARALLEL, + &rq->fence.flags); + } + if (last_parallel) + set_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL, + &rq->fence.flags); + } + + __i915_request_queue(rq, &attr); + + /* Try to clean up the client's timeline after submitting the request */ + if (prev) + retire_requests(tl, prev); + + mutex_unlock(&tl->mutex); + + return err; +} + +static int eb_requests_add(struct i915_execbuffer *eb, int err) +{ + int i; + + /* + * We iterate in reverse order of creation to release timeline mutexes in + * same order. + */ + for_each_batch_add_order(eb, i) { + struct i915_request *rq = eb->requests[i]; + + if (!rq) + continue; + err |= eb_request_add(eb, rq, err, i == 0); + } + + return err; +} + +static const i915_user_extension_fn execbuf_extensions[] = { + [DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES] = parse_timeline_fences, +}; + +static int +parse_execbuf2_extensions(struct drm_i915_gem_execbuffer2 *args, + struct i915_execbuffer *eb) +{ + if (!(args->flags & I915_EXEC_USE_EXTENSIONS)) + return 0; + + /* The execbuf2 extension mechanism reuses cliprects_ptr. So we cannot + * have another flag also using it at the same time. + */ + if (eb->args->flags & I915_EXEC_FENCE_ARRAY) + return -EINVAL; + + if (args->num_cliprects != 0) + return -EINVAL; + + return i915_user_extensions(u64_to_user_ptr(args->cliprects_ptr), + execbuf_extensions, + ARRAY_SIZE(execbuf_extensions), + eb); +} + +static void eb_requests_get(struct i915_execbuffer *eb) +{ + unsigned int i; + + for_each_batch_create_order(eb, i) { + if (!eb->requests[i]) + break; + + i915_request_get(eb->requests[i]); + } +} + +static void eb_requests_put(struct i915_execbuffer *eb) +{ + unsigned int i; + + for_each_batch_create_order(eb, i) { + if (!eb->requests[i]) + break; + + i915_request_put(eb->requests[i]); + } +} + +static struct sync_file * +eb_composite_fence_create(struct i915_execbuffer *eb, int out_fence_fd) +{ + struct sync_file *out_fence = NULL; + struct dma_fence_array *fence_array; + struct dma_fence **fences; + unsigned int i; + + GEM_BUG_ON(!intel_context_is_parent(eb->context)); + + fences = kmalloc_array(eb->num_batches, sizeof(*fences), GFP_KERNEL); + if (!fences) + return ERR_PTR(-ENOMEM); + + for_each_batch_create_order(eb, i) { + fences[i] = &eb->requests[i]->fence; + __set_bit(I915_FENCE_FLAG_COMPOSITE, + &eb->requests[i]->fence.flags); + } + + fence_array = dma_fence_array_create(eb->num_batches, + fences, + eb->context->parallel.fence_context, + eb->context->parallel.seqno++, + false); + if (!fence_array) { + kfree(fences); + return ERR_PTR(-ENOMEM); + } + + /* Move ownership to the dma_fence_array created above */ + for_each_batch_create_order(eb, i) + dma_fence_get(fences[i]); + + if (out_fence_fd != -1) { + out_fence = sync_file_create(&fence_array->base); + /* sync_file now owns fence_arry, drop creation ref */ + dma_fence_put(&fence_array->base); + if (!out_fence) + return ERR_PTR(-ENOMEM); + } + + eb->composite_fence = &fence_array->base; + + return out_fence; +} + +static struct sync_file * +eb_fences_add(struct i915_execbuffer *eb, struct i915_request *rq, + struct dma_fence *in_fence, int out_fence_fd) +{ + struct sync_file *out_fence = NULL; + int err; + + if (unlikely(eb->gem_context->syncobj)) { + struct dma_fence *fence; + + fence = drm_syncobj_fence_get(eb->gem_context->syncobj); + err = i915_request_await_dma_fence(rq, fence); + dma_fence_put(fence); + if (err) + return ERR_PTR(err); + } + + if (in_fence) { + if (eb->args->flags & I915_EXEC_FENCE_SUBMIT) + err = i915_request_await_execution(rq, in_fence); + else + err = i915_request_await_dma_fence(rq, in_fence); + if (err < 0) + return ERR_PTR(err); + } + + if (eb->fences) { + err = await_fence_array(eb, rq); + if (err) + return ERR_PTR(err); + } + + if (intel_context_is_parallel(eb->context)) { + out_fence = eb_composite_fence_create(eb, out_fence_fd); + if (IS_ERR(out_fence)) + return ERR_PTR(-ENOMEM); + } else if (out_fence_fd != -1) { + out_fence = sync_file_create(&rq->fence); + if (!out_fence) + return ERR_PTR(-ENOMEM); + } + + return out_fence; +} + +static struct intel_context * +eb_find_context(struct i915_execbuffer *eb, unsigned int context_number) +{ + struct intel_context *child; + + if (likely(context_number == 0)) + return eb->context; + + for_each_child(eb->context, child) + if (!--context_number) + return child; + + GEM_BUG_ON("Context not found"); + + return NULL; +} + +static struct sync_file * +eb_requests_create(struct i915_execbuffer *eb, struct dma_fence *in_fence, + int out_fence_fd) +{ + struct sync_file *out_fence = NULL; + unsigned int i; + + for_each_batch_create_order(eb, i) { + /* Allocate a request for this batch buffer nice and early. */ + eb->requests[i] = i915_request_create(eb_find_context(eb, i)); + if (IS_ERR(eb->requests[i])) { + out_fence = ERR_CAST(eb->requests[i]); + eb->requests[i] = NULL; + return out_fence; + } + + /* + * Only the first request added (committed to backend) has to + * take the in fences into account as all subsequent requests + * will have fences inserted inbetween them. + */ + if (i + 1 == eb->num_batches) { + out_fence = eb_fences_add(eb, eb->requests[i], + in_fence, out_fence_fd); + if (IS_ERR(out_fence)) + return out_fence; + } + + /* + * Not really on stack, but we don't want to call + * kfree on the batch_snapshot when we put it, so use the + * _onstack interface. + */ + if (eb->batches[i]->vma) + eb->requests[i]->batch_res = + i915_vma_resource_get(eb->batches[i]->vma->resource); + if (eb->batch_pool) { + GEM_BUG_ON(intel_context_is_parallel(eb->context)); + intel_gt_buffer_pool_mark_active(eb->batch_pool, + eb->requests[i]); + } + } + + return out_fence; +} + +static int +i915_gem_do_execbuffer(struct drm_device *dev, + struct drm_file *file, + struct drm_i915_gem_execbuffer2 *args, + struct drm_i915_gem_exec_object2 *exec) +{ + struct drm_i915_private *i915 = to_i915(dev); + struct i915_execbuffer eb; + struct dma_fence *in_fence = NULL; + struct sync_file *out_fence = NULL; + int out_fence_fd = -1; + int err; + + BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS); + BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS & + ~__EXEC_OBJECT_UNKNOWN_FLAGS); + + eb.i915 = i915; + eb.file = file; + eb.args = args; + if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC)) + args->flags |= __EXEC_HAS_RELOC; + + eb.exec = exec; + eb.vma = (struct eb_vma *)(exec + args->buffer_count + 1); + eb.vma[0].vma = NULL; + eb.batch_pool = NULL; + + eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS; + reloc_cache_init(&eb.reloc_cache, eb.i915); + + eb.buffer_count = args->buffer_count; + eb.batch_start_offset = args->batch_start_offset; + eb.trampoline = NULL; + + eb.fences = NULL; + eb.num_fences = 0; + + eb_capture_list_clear(&eb); + + memset(eb.requests, 0, sizeof(struct i915_request *) * + ARRAY_SIZE(eb.requests)); + eb.composite_fence = NULL; + + eb.batch_flags = 0; + if (args->flags & I915_EXEC_SECURE) { + if (GRAPHICS_VER(i915) >= 11) + return -ENODEV; + + /* Return -EPERM to trigger fallback code on old binaries. */ + if (!HAS_SECURE_BATCHES(i915)) + return -EPERM; + + if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN)) + return -EPERM; + + eb.batch_flags |= I915_DISPATCH_SECURE; + } + if (args->flags & I915_EXEC_IS_PINNED) + eb.batch_flags |= I915_DISPATCH_PINNED; + + err = parse_execbuf2_extensions(args, &eb); + if (err) + goto err_ext; + + err = add_fence_array(&eb); + if (err) + goto err_ext; + +#define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT) + if (args->flags & IN_FENCES) { + if ((args->flags & IN_FENCES) == IN_FENCES) + return -EINVAL; + + in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2)); + if (!in_fence) { + err = -EINVAL; + goto err_ext; + } + } +#undef IN_FENCES + + if (args->flags & I915_EXEC_FENCE_OUT) { + out_fence_fd = get_unused_fd_flags(O_CLOEXEC); + if (out_fence_fd < 0) { + err = out_fence_fd; + goto err_in_fence; + } + } + + err = eb_create(&eb); + if (err) + goto err_out_fence; + + GEM_BUG_ON(!eb.lut_size); + + err = eb_select_context(&eb); + if (unlikely(err)) + goto err_destroy; + + err = eb_select_engine(&eb); + if (unlikely(err)) + goto err_context; + + err = eb_lookup_vmas(&eb); + if (err) { + eb_release_vmas(&eb, true); + goto err_engine; + } + + i915_gem_ww_ctx_init(&eb.ww, true); + + err = eb_relocate_parse(&eb); + if (err) { + /* + * If the user expects the execobject.offset and + * reloc.presumed_offset to be an exact match, + * as for using NO_RELOC, then we cannot update + * the execobject.offset until we have completed + * relocation. + */ + args->flags &= ~__EXEC_HAS_RELOC; + goto err_vma; + } + + ww_acquire_done(&eb.ww.ctx); + err = eb_capture_stage(&eb); + if (err) + goto err_vma; + + out_fence = eb_requests_create(&eb, in_fence, out_fence_fd); + if (IS_ERR(out_fence)) { + err = PTR_ERR(out_fence); + out_fence = NULL; + if (eb.requests[0]) + goto err_request; + else + goto err_vma; + } + + err = eb_submit(&eb); + +err_request: + eb_requests_get(&eb); + err = eb_requests_add(&eb, err); + + if (eb.fences) + signal_fence_array(&eb, eb.composite_fence ? + eb.composite_fence : + &eb.requests[0]->fence); + + if (unlikely(eb.gem_context->syncobj)) { + drm_syncobj_replace_fence(eb.gem_context->syncobj, + eb.composite_fence ? + eb.composite_fence : + &eb.requests[0]->fence); + } + + if (out_fence) { + if (err == 0) { + fd_install(out_fence_fd, out_fence->file); + args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */ + args->rsvd2 |= (u64)out_fence_fd << 32; + out_fence_fd = -1; + } else { + fput(out_fence->file); + } + } + + if (!out_fence && eb.composite_fence) + dma_fence_put(eb.composite_fence); + + eb_requests_put(&eb); + +err_vma: + eb_release_vmas(&eb, true); + WARN_ON(err == -EDEADLK); + i915_gem_ww_ctx_fini(&eb.ww); + + if (eb.batch_pool) + intel_gt_buffer_pool_put(eb.batch_pool); +err_engine: + eb_put_engine(&eb); +err_context: + i915_gem_context_put(eb.gem_context); +err_destroy: + eb_destroy(&eb); +err_out_fence: + if (out_fence_fd != -1) + put_unused_fd(out_fence_fd); +err_in_fence: + dma_fence_put(in_fence); +err_ext: + put_fence_array(eb.fences, eb.num_fences); + return err; +} + +static size_t eb_element_size(void) +{ + return sizeof(struct drm_i915_gem_exec_object2) + sizeof(struct eb_vma); +} + +static bool check_buffer_count(size_t count) +{ + const size_t sz = eb_element_size(); + + /* + * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup + * array size (see eb_create()). Otherwise, we can accept an array as + * large as can be addressed (though use large arrays at your peril)! + */ + + return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1); +} + +int +i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data, + struct drm_file *file) +{ + struct drm_i915_private *i915 = to_i915(dev); + struct drm_i915_gem_execbuffer2 *args = data; + struct drm_i915_gem_exec_object2 *exec2_list; + const size_t count = args->buffer_count; + int err; + + if (!check_buffer_count(count)) { + drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count); + return -EINVAL; + } + + err = i915_gem_check_execbuffer(args); + if (err) + return err; + + /* Allocate extra slots for use by the command parser */ + exec2_list = kvmalloc_array(count + 2, eb_element_size(), + __GFP_NOWARN | GFP_KERNEL); + if (exec2_list == NULL) { + drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n", + count); + return -ENOMEM; + } + if (copy_from_user(exec2_list, + u64_to_user_ptr(args->buffers_ptr), + sizeof(*exec2_list) * count)) { + drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count); + kvfree(exec2_list); + return -EFAULT; + } + + err = i915_gem_do_execbuffer(dev, file, args, exec2_list); + + /* + * Now that we have begun execution of the batchbuffer, we ignore + * any new error after this point. Also given that we have already + * updated the associated relocations, we try to write out the current + * object locations irrespective of any error. + */ + if (args->flags & __EXEC_HAS_RELOC) { + struct drm_i915_gem_exec_object2 __user *user_exec_list = + u64_to_user_ptr(args->buffers_ptr); + unsigned int i; + + /* Copy the new buffer offsets back to the user's exec list. */ + /* + * Note: count * sizeof(*user_exec_list) does not overflow, + * because we checked 'count' in check_buffer_count(). + * + * And this range already got effectively checked earlier + * when we did the "copy_from_user()" above. + */ + if (!user_write_access_begin(user_exec_list, + count * sizeof(*user_exec_list))) + goto end; + + for (i = 0; i < args->buffer_count; i++) { + if (!(exec2_list[i].offset & UPDATE)) + continue; + + exec2_list[i].offset = + gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK); + unsafe_put_user(exec2_list[i].offset, + &user_exec_list[i].offset, + end_user); + } +end_user: + user_write_access_end(); +end:; + } + + args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS; + kvfree(exec2_list); + return err; +} -- cgit v1.2.3