From 2c3c1048746a4622d8c89a29670120dc8fab93c4 Mon Sep 17 00:00:00 2001 From: Daniel Baumann Date: Sun, 7 Apr 2024 20:49:45 +0200 Subject: Adding upstream version 6.1.76. Signed-off-by: Daniel Baumann --- drivers/mtd/nand/raw/arasan-nand-controller.c | 1548 +++++++++++++++++++++++++ 1 file changed, 1548 insertions(+) create mode 100644 drivers/mtd/nand/raw/arasan-nand-controller.c (limited to 'drivers/mtd/nand/raw/arasan-nand-controller.c') diff --git a/drivers/mtd/nand/raw/arasan-nand-controller.c b/drivers/mtd/nand/raw/arasan-nand-controller.c new file mode 100644 index 000000000..e6ffe87a5 --- /dev/null +++ b/drivers/mtd/nand/raw/arasan-nand-controller.c @@ -0,0 +1,1548 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Arasan NAND Flash Controller Driver + * + * Copyright (C) 2014 - 2020 Xilinx, Inc. + * Author: + * Miquel Raynal + * Original work (fully rewritten): + * Punnaiah Choudary Kalluri + * Naga Sureshkumar Relli + */ + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#define PKT_REG 0x00 +#define PKT_SIZE(x) FIELD_PREP(GENMASK(10, 0), (x)) +#define PKT_STEPS(x) FIELD_PREP(GENMASK(23, 12), (x)) + +#define MEM_ADDR1_REG 0x04 + +#define MEM_ADDR2_REG 0x08 +#define ADDR2_STRENGTH(x) FIELD_PREP(GENMASK(27, 25), (x)) +#define ADDR2_CS(x) FIELD_PREP(GENMASK(31, 30), (x)) + +#define CMD_REG 0x0C +#define CMD_1(x) FIELD_PREP(GENMASK(7, 0), (x)) +#define CMD_2(x) FIELD_PREP(GENMASK(15, 8), (x)) +#define CMD_PAGE_SIZE(x) FIELD_PREP(GENMASK(25, 23), (x)) +#define CMD_DMA_ENABLE BIT(27) +#define CMD_NADDRS(x) FIELD_PREP(GENMASK(30, 28), (x)) +#define CMD_ECC_ENABLE BIT(31) + +#define PROG_REG 0x10 +#define PROG_PGRD BIT(0) +#define PROG_ERASE BIT(2) +#define PROG_STATUS BIT(3) +#define PROG_PGPROG BIT(4) +#define PROG_RDID BIT(6) +#define PROG_RDPARAM BIT(7) +#define PROG_RST BIT(8) +#define PROG_GET_FEATURE BIT(9) +#define PROG_SET_FEATURE BIT(10) +#define PROG_CHG_RD_COL_ENH BIT(14) + +#define INTR_STS_EN_REG 0x14 +#define INTR_SIG_EN_REG 0x18 +#define INTR_STS_REG 0x1C +#define WRITE_READY BIT(0) +#define READ_READY BIT(1) +#define XFER_COMPLETE BIT(2) +#define DMA_BOUNDARY BIT(6) +#define EVENT_MASK GENMASK(7, 0) + +#define READY_STS_REG 0x20 + +#define DMA_ADDR0_REG 0x50 +#define DMA_ADDR1_REG 0x24 + +#define FLASH_STS_REG 0x28 + +#define TIMING_REG 0x2C +#define TCCS_TIME_500NS 0 +#define TCCS_TIME_300NS 3 +#define TCCS_TIME_200NS 2 +#define TCCS_TIME_100NS 1 +#define FAST_TCAD BIT(2) +#define DQS_BUFF_SEL_IN(x) FIELD_PREP(GENMASK(6, 3), (x)) +#define DQS_BUFF_SEL_OUT(x) FIELD_PREP(GENMASK(18, 15), (x)) + +#define DATA_PORT_REG 0x30 + +#define ECC_CONF_REG 0x34 +#define ECC_CONF_COL(x) FIELD_PREP(GENMASK(15, 0), (x)) +#define ECC_CONF_LEN(x) FIELD_PREP(GENMASK(26, 16), (x)) +#define ECC_CONF_BCH_EN BIT(27) + +#define ECC_ERR_CNT_REG 0x38 +#define GET_PKT_ERR_CNT(x) FIELD_GET(GENMASK(7, 0), (x)) +#define GET_PAGE_ERR_CNT(x) FIELD_GET(GENMASK(16, 8), (x)) + +#define ECC_SP_REG 0x3C +#define ECC_SP_CMD1(x) FIELD_PREP(GENMASK(7, 0), (x)) +#define ECC_SP_CMD2(x) FIELD_PREP(GENMASK(15, 8), (x)) +#define ECC_SP_ADDRS(x) FIELD_PREP(GENMASK(30, 28), (x)) + +#define ECC_1ERR_CNT_REG 0x40 +#define ECC_2ERR_CNT_REG 0x44 + +#define DATA_INTERFACE_REG 0x6C +#define DIFACE_SDR_MODE(x) FIELD_PREP(GENMASK(2, 0), (x)) +#define DIFACE_DDR_MODE(x) FIELD_PREP(GENMASK(5, 3), (x)) +#define DIFACE_SDR 0 +#define DIFACE_NVDDR BIT(9) + +#define ANFC_MAX_CS 2 +#define ANFC_DFLT_TIMEOUT_US 1000000 +#define ANFC_MAX_CHUNK_SIZE SZ_1M +#define ANFC_MAX_PARAM_SIZE SZ_4K +#define ANFC_MAX_STEPS SZ_2K +#define ANFC_MAX_PKT_SIZE (SZ_2K - 1) +#define ANFC_MAX_ADDR_CYC 5U +#define ANFC_RSVD_ECC_BYTES 21 + +#define ANFC_XLNX_SDR_DFLT_CORE_CLK 100000000 +#define ANFC_XLNX_SDR_HS_CORE_CLK 80000000 + +static struct gpio_desc *anfc_default_cs_array[2] = {NULL, NULL}; + +/** + * struct anfc_op - Defines how to execute an operation + * @pkt_reg: Packet register + * @addr1_reg: Memory address 1 register + * @addr2_reg: Memory address 2 register + * @cmd_reg: Command register + * @prog_reg: Program register + * @steps: Number of "packets" to read/write + * @rdy_timeout_ms: Timeout for waits on Ready/Busy pin + * @len: Data transfer length + * @read: Data transfer direction from the controller point of view + * @buf: Data buffer + */ +struct anfc_op { + u32 pkt_reg; + u32 addr1_reg; + u32 addr2_reg; + u32 cmd_reg; + u32 prog_reg; + int steps; + unsigned int rdy_timeout_ms; + unsigned int len; + bool read; + u8 *buf; +}; + +/** + * struct anand - Defines the NAND chip related information + * @node: Used to store NAND chips into a list + * @chip: NAND chip information structure + * @rb: Ready-busy line + * @page_sz: Register value of the page_sz field to use + * @clk: Expected clock frequency to use + * @data_iface: Data interface timing mode to use + * @timings: NV-DDR specific timings to use + * @ecc_conf: Hardware ECC configuration value + * @strength: Register value of the ECC strength + * @raddr_cycles: Row address cycle information + * @caddr_cycles: Column address cycle information + * @ecc_bits: Exact number of ECC bits per syndrome + * @ecc_total: Total number of ECC bytes + * @errloc: Array of errors located with soft BCH + * @hw_ecc: Buffer to store syndromes computed by hardware + * @bch: BCH structure + * @cs_idx: Array of chip-select for this device, values are indexes + * of the controller structure @gpio_cs array + * @ncs_idx: Size of the @cs_idx array + */ +struct anand { + struct list_head node; + struct nand_chip chip; + unsigned int rb; + unsigned int page_sz; + unsigned long clk; + u32 data_iface; + u32 timings; + u32 ecc_conf; + u32 strength; + u16 raddr_cycles; + u16 caddr_cycles; + unsigned int ecc_bits; + unsigned int ecc_total; + unsigned int *errloc; + u8 *hw_ecc; + struct bch_control *bch; + int *cs_idx; + int ncs_idx; +}; + +/** + * struct arasan_nfc - Defines the Arasan NAND flash controller driver instance + * @dev: Pointer to the device structure + * @base: Remapped register area + * @controller_clk: Pointer to the system clock + * @bus_clk: Pointer to the flash clock + * @controller: Base controller structure + * @chips: List of all NAND chips attached to the controller + * @cur_clk: Current clock rate + * @cs_array: CS array. Native CS are left empty, the other cells are + * populated with their corresponding GPIO descriptor. + * @ncs: Size of @cs_array + * @cur_cs: Index in @cs_array of the currently in use CS + * @native_cs: Currently selected native CS + * @spare_cs: Native CS that is not wired (may be selected when a GPIO + * CS is in use) + */ +struct arasan_nfc { + struct device *dev; + void __iomem *base; + struct clk *controller_clk; + struct clk *bus_clk; + struct nand_controller controller; + struct list_head chips; + unsigned int cur_clk; + struct gpio_desc **cs_array; + unsigned int ncs; + int cur_cs; + unsigned int native_cs; + unsigned int spare_cs; +}; + +static struct anand *to_anand(struct nand_chip *nand) +{ + return container_of(nand, struct anand, chip); +} + +static struct arasan_nfc *to_anfc(struct nand_controller *ctrl) +{ + return container_of(ctrl, struct arasan_nfc, controller); +} + +static int anfc_wait_for_event(struct arasan_nfc *nfc, unsigned int event) +{ + u32 val; + int ret; + + ret = readl_relaxed_poll_timeout(nfc->base + INTR_STS_REG, val, + val & event, 0, + ANFC_DFLT_TIMEOUT_US); + if (ret) { + dev_err(nfc->dev, "Timeout waiting for event 0x%x\n", event); + return -ETIMEDOUT; + } + + writel_relaxed(event, nfc->base + INTR_STS_REG); + + return 0; +} + +static int anfc_wait_for_rb(struct arasan_nfc *nfc, struct nand_chip *chip, + unsigned int timeout_ms) +{ + struct anand *anand = to_anand(chip); + u32 val; + int ret; + + /* There is no R/B interrupt, we must poll a register */ + ret = readl_relaxed_poll_timeout(nfc->base + READY_STS_REG, val, + val & BIT(anand->rb), + 1, timeout_ms * 1000); + if (ret) { + dev_err(nfc->dev, "Timeout waiting for R/B 0x%x\n", + readl_relaxed(nfc->base + READY_STS_REG)); + return -ETIMEDOUT; + } + + return 0; +} + +static void anfc_trigger_op(struct arasan_nfc *nfc, struct anfc_op *nfc_op) +{ + writel_relaxed(nfc_op->pkt_reg, nfc->base + PKT_REG); + writel_relaxed(nfc_op->addr1_reg, nfc->base + MEM_ADDR1_REG); + writel_relaxed(nfc_op->addr2_reg, nfc->base + MEM_ADDR2_REG); + writel_relaxed(nfc_op->cmd_reg, nfc->base + CMD_REG); + writel_relaxed(nfc_op->prog_reg, nfc->base + PROG_REG); +} + +static int anfc_pkt_len_config(unsigned int len, unsigned int *steps, + unsigned int *pktsize) +{ + unsigned int nb, sz; + + for (nb = 1; nb < ANFC_MAX_STEPS; nb *= 2) { + sz = len / nb; + if (sz <= ANFC_MAX_PKT_SIZE) + break; + } + + if (sz * nb != len) + return -ENOTSUPP; + + if (steps) + *steps = nb; + + if (pktsize) + *pktsize = sz; + + return 0; +} + +static bool anfc_is_gpio_cs(struct arasan_nfc *nfc, int nfc_cs) +{ + return nfc_cs >= 0 && nfc->cs_array[nfc_cs]; +} + +static int anfc_relative_to_absolute_cs(struct anand *anand, int num) +{ + return anand->cs_idx[num]; +} + +static void anfc_assert_cs(struct arasan_nfc *nfc, unsigned int nfc_cs_idx) +{ + /* CS did not change: do nothing */ + if (nfc->cur_cs == nfc_cs_idx) + return; + + /* Deassert the previous CS if it was a GPIO */ + if (anfc_is_gpio_cs(nfc, nfc->cur_cs)) + gpiod_set_value_cansleep(nfc->cs_array[nfc->cur_cs], 1); + + /* Assert the new one */ + if (anfc_is_gpio_cs(nfc, nfc_cs_idx)) { + nfc->native_cs = nfc->spare_cs; + gpiod_set_value_cansleep(nfc->cs_array[nfc_cs_idx], 0); + } else { + nfc->native_cs = nfc_cs_idx; + } + + nfc->cur_cs = nfc_cs_idx; +} + +static int anfc_select_target(struct nand_chip *chip, int target) +{ + struct anand *anand = to_anand(chip); + struct arasan_nfc *nfc = to_anfc(chip->controller); + unsigned int nfc_cs_idx = anfc_relative_to_absolute_cs(anand, target); + int ret; + + anfc_assert_cs(nfc, nfc_cs_idx); + + /* Update the controller timings and the potential ECC configuration */ + writel_relaxed(anand->data_iface, nfc->base + DATA_INTERFACE_REG); + writel_relaxed(anand->timings, nfc->base + TIMING_REG); + + /* Update clock frequency */ + if (nfc->cur_clk != anand->clk) { + clk_disable_unprepare(nfc->bus_clk); + ret = clk_set_rate(nfc->bus_clk, anand->clk); + if (ret) { + dev_err(nfc->dev, "Failed to change clock rate\n"); + return ret; + } + + ret = clk_prepare_enable(nfc->bus_clk); + if (ret) { + dev_err(nfc->dev, + "Failed to re-enable the bus clock\n"); + return ret; + } + + nfc->cur_clk = anand->clk; + } + + return 0; +} + +/* + * When using the embedded hardware ECC engine, the controller is in charge of + * feeding the engine with, first, the ECC residue present in the data array. + * A typical read operation is: + * 1/ Assert the read operation by sending the relevant command/address cycles + * but targeting the column of the first ECC bytes in the OOB area instead of + * the main data directly. + * 2/ After having read the relevant number of ECC bytes, the controller uses + * the RNDOUT/RNDSTART commands which are set into the "ECC Spare Command + * Register" to move the pointer back at the beginning of the main data. + * 3/ It will read the content of the main area for a given size (pktsize) and + * will feed the ECC engine with this buffer again. + * 4/ The ECC engine derives the ECC bytes for the given data and compare them + * with the ones already received. It eventually trigger status flags and + * then set the "Buffer Read Ready" flag. + * 5/ The corrected data is then available for reading from the data port + * register. + * + * The hardware BCH ECC engine is known to be inconstent in BCH mode and never + * reports uncorrectable errors. Because of this bug, we have to use the + * software BCH implementation in the read path. + */ +static int anfc_read_page_hw_ecc(struct nand_chip *chip, u8 *buf, + int oob_required, int page) +{ + struct arasan_nfc *nfc = to_anfc(chip->controller); + struct mtd_info *mtd = nand_to_mtd(chip); + struct anand *anand = to_anand(chip); + unsigned int len = mtd->writesize + (oob_required ? mtd->oobsize : 0); + unsigned int max_bitflips = 0; + dma_addr_t dma_addr; + int step, ret; + struct anfc_op nfc_op = { + .pkt_reg = + PKT_SIZE(chip->ecc.size) | + PKT_STEPS(chip->ecc.steps), + .addr1_reg = + (page & 0xFF) << (8 * (anand->caddr_cycles)) | + (((page >> 8) & 0xFF) << (8 * (1 + anand->caddr_cycles))), + .addr2_reg = + ((page >> 16) & 0xFF) | + ADDR2_STRENGTH(anand->strength) | + ADDR2_CS(nfc->native_cs), + .cmd_reg = + CMD_1(NAND_CMD_READ0) | + CMD_2(NAND_CMD_READSTART) | + CMD_PAGE_SIZE(anand->page_sz) | + CMD_DMA_ENABLE | + CMD_NADDRS(anand->caddr_cycles + + anand->raddr_cycles), + .prog_reg = PROG_PGRD, + }; + + dma_addr = dma_map_single(nfc->dev, (void *)buf, len, DMA_FROM_DEVICE); + if (dma_mapping_error(nfc->dev, dma_addr)) { + dev_err(nfc->dev, "Buffer mapping error"); + return -EIO; + } + + writel_relaxed(lower_32_bits(dma_addr), nfc->base + DMA_ADDR0_REG); + writel_relaxed(upper_32_bits(dma_addr), nfc->base + DMA_ADDR1_REG); + + anfc_trigger_op(nfc, &nfc_op); + + ret = anfc_wait_for_event(nfc, XFER_COMPLETE); + dma_unmap_single(nfc->dev, dma_addr, len, DMA_FROM_DEVICE); + if (ret) { + dev_err(nfc->dev, "Error reading page %d\n", page); + return ret; + } + + /* Store the raw OOB bytes as well */ + ret = nand_change_read_column_op(chip, mtd->writesize, chip->oob_poi, + mtd->oobsize, 0); + if (ret) + return ret; + + /* + * For each step, compute by softare the BCH syndrome over the raw data. + * Compare the theoretical amount of errors and compare with the + * hardware engine feedback. + */ + for (step = 0; step < chip->ecc.steps; step++) { + u8 *raw_buf = &buf[step * chip->ecc.size]; + unsigned int bit, byte; + int bf, i; + + /* Extract the syndrome, it is not necessarily aligned */ + memset(anand->hw_ecc, 0, chip->ecc.bytes); + nand_extract_bits(anand->hw_ecc, 0, + &chip->oob_poi[mtd->oobsize - anand->ecc_total], + anand->ecc_bits * step, anand->ecc_bits); + + bf = bch_decode(anand->bch, raw_buf, chip->ecc.size, + anand->hw_ecc, NULL, NULL, anand->errloc); + if (!bf) { + continue; + } else if (bf > 0) { + for (i = 0; i < bf; i++) { + /* Only correct the data, not the syndrome */ + if (anand->errloc[i] < (chip->ecc.size * 8)) { + bit = BIT(anand->errloc[i] & 7); + byte = anand->errloc[i] >> 3; + raw_buf[byte] ^= bit; + } + } + + mtd->ecc_stats.corrected += bf; + max_bitflips = max_t(unsigned int, max_bitflips, bf); + + continue; + } + + bf = nand_check_erased_ecc_chunk(raw_buf, chip->ecc.size, + NULL, 0, NULL, 0, + chip->ecc.strength); + if (bf > 0) { + mtd->ecc_stats.corrected += bf; + max_bitflips = max_t(unsigned int, max_bitflips, bf); + memset(raw_buf, 0xFF, chip->ecc.size); + } else if (bf < 0) { + mtd->ecc_stats.failed++; + } + } + + return 0; +} + +static int anfc_sel_read_page_hw_ecc(struct nand_chip *chip, u8 *buf, + int oob_required, int page) +{ + int ret; + + ret = anfc_select_target(chip, chip->cur_cs); + if (ret) + return ret; + + return anfc_read_page_hw_ecc(chip, buf, oob_required, page); +}; + +static int anfc_write_page_hw_ecc(struct nand_chip *chip, const u8 *buf, + int oob_required, int page) +{ + struct anand *anand = to_anand(chip); + struct arasan_nfc *nfc = to_anfc(chip->controller); + struct mtd_info *mtd = nand_to_mtd(chip); + unsigned int len = mtd->writesize + (oob_required ? mtd->oobsize : 0); + dma_addr_t dma_addr; + u8 status; + int ret; + struct anfc_op nfc_op = { + .pkt_reg = + PKT_SIZE(chip->ecc.size) | + PKT_STEPS(chip->ecc.steps), + .addr1_reg = + (page & 0xFF) << (8 * (anand->caddr_cycles)) | + (((page >> 8) & 0xFF) << (8 * (1 + anand->caddr_cycles))), + .addr2_reg = + ((page >> 16) & 0xFF) | + ADDR2_STRENGTH(anand->strength) | + ADDR2_CS(nfc->native_cs), + .cmd_reg = + CMD_1(NAND_CMD_SEQIN) | + CMD_2(NAND_CMD_PAGEPROG) | + CMD_PAGE_SIZE(anand->page_sz) | + CMD_DMA_ENABLE | + CMD_NADDRS(anand->caddr_cycles + + anand->raddr_cycles) | + CMD_ECC_ENABLE, + .prog_reg = PROG_PGPROG, + }; + + writel_relaxed(anand->ecc_conf, nfc->base + ECC_CONF_REG); + writel_relaxed(ECC_SP_CMD1(NAND_CMD_RNDIN) | + ECC_SP_ADDRS(anand->caddr_cycles), + nfc->base + ECC_SP_REG); + + dma_addr = dma_map_single(nfc->dev, (void *)buf, len, DMA_TO_DEVICE); + if (dma_mapping_error(nfc->dev, dma_addr)) { + dev_err(nfc->dev, "Buffer mapping error"); + return -EIO; + } + + writel_relaxed(lower_32_bits(dma_addr), nfc->base + DMA_ADDR0_REG); + writel_relaxed(upper_32_bits(dma_addr), nfc->base + DMA_ADDR1_REG); + + anfc_trigger_op(nfc, &nfc_op); + ret = anfc_wait_for_event(nfc, XFER_COMPLETE); + dma_unmap_single(nfc->dev, dma_addr, len, DMA_TO_DEVICE); + if (ret) { + dev_err(nfc->dev, "Error writing page %d\n", page); + return ret; + } + + /* Spare data is not protected */ + if (oob_required) { + ret = nand_write_oob_std(chip, page); + if (ret) + return ret; + } + + /* Check write status on the chip side */ + ret = nand_status_op(chip, &status); + if (ret) + return ret; + + if (status & NAND_STATUS_FAIL) + return -EIO; + + return 0; +} + +static int anfc_sel_write_page_hw_ecc(struct nand_chip *chip, const u8 *buf, + int oob_required, int page) +{ + int ret; + + ret = anfc_select_target(chip, chip->cur_cs); + if (ret) + return ret; + + return anfc_write_page_hw_ecc(chip, buf, oob_required, page); +}; + +/* NAND framework ->exec_op() hooks and related helpers */ +static int anfc_parse_instructions(struct nand_chip *chip, + const struct nand_subop *subop, + struct anfc_op *nfc_op) +{ + struct arasan_nfc *nfc = to_anfc(chip->controller); + struct anand *anand = to_anand(chip); + const struct nand_op_instr *instr = NULL; + bool first_cmd = true; + unsigned int op_id; + int ret, i; + + memset(nfc_op, 0, sizeof(*nfc_op)); + nfc_op->addr2_reg = ADDR2_CS(nfc->native_cs); + nfc_op->cmd_reg = CMD_PAGE_SIZE(anand->page_sz); + + for (op_id = 0; op_id < subop->ninstrs; op_id++) { + unsigned int offset, naddrs, pktsize; + const u8 *addrs; + u8 *buf; + + instr = &subop->instrs[op_id]; + + switch (instr->type) { + case NAND_OP_CMD_INSTR: + if (first_cmd) + nfc_op->cmd_reg |= CMD_1(instr->ctx.cmd.opcode); + else + nfc_op->cmd_reg |= CMD_2(instr->ctx.cmd.opcode); + + first_cmd = false; + break; + + case NAND_OP_ADDR_INSTR: + offset = nand_subop_get_addr_start_off(subop, op_id); + naddrs = nand_subop_get_num_addr_cyc(subop, op_id); + addrs = &instr->ctx.addr.addrs[offset]; + nfc_op->cmd_reg |= CMD_NADDRS(naddrs); + + for (i = 0; i < min(ANFC_MAX_ADDR_CYC, naddrs); i++) { + if (i < 4) + nfc_op->addr1_reg |= (u32)addrs[i] << i * 8; + else + nfc_op->addr2_reg |= addrs[i]; + } + + break; + case NAND_OP_DATA_IN_INSTR: + nfc_op->read = true; + fallthrough; + case NAND_OP_DATA_OUT_INSTR: + offset = nand_subop_get_data_start_off(subop, op_id); + buf = instr->ctx.data.buf.in; + nfc_op->buf = &buf[offset]; + nfc_op->len = nand_subop_get_data_len(subop, op_id); + ret = anfc_pkt_len_config(nfc_op->len, &nfc_op->steps, + &pktsize); + if (ret) + return ret; + + /* + * Number of DATA cycles must be aligned on 4, this + * means the controller might read/write more than + * requested. This is harmless most of the time as extra + * DATA are discarded in the write path and read pointer + * adjusted in the read path. + * + * FIXME: The core should mark operations where + * reading/writing more is allowed so the exec_op() + * implementation can take the right decision when the + * alignment constraint is not met: adjust the number of + * DATA cycles when it's allowed, reject the operation + * otherwise. + */ + nfc_op->pkt_reg |= PKT_SIZE(round_up(pktsize, 4)) | + PKT_STEPS(nfc_op->steps); + break; + case NAND_OP_WAITRDY_INSTR: + nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms; + break; + } + } + + return 0; +} + +static int anfc_rw_pio_op(struct arasan_nfc *nfc, struct anfc_op *nfc_op) +{ + unsigned int dwords = (nfc_op->len / 4) / nfc_op->steps; + unsigned int last_len = nfc_op->len % 4; + unsigned int offset, dir; + u8 *buf = nfc_op->buf; + int ret, i; + + for (i = 0; i < nfc_op->steps; i++) { + dir = nfc_op->read ? READ_READY : WRITE_READY; + ret = anfc_wait_for_event(nfc, dir); + if (ret) { + dev_err(nfc->dev, "PIO %s ready signal not received\n", + nfc_op->read ? "Read" : "Write"); + return ret; + } + + offset = i * (dwords * 4); + if (nfc_op->read) + ioread32_rep(nfc->base + DATA_PORT_REG, &buf[offset], + dwords); + else + iowrite32_rep(nfc->base + DATA_PORT_REG, &buf[offset], + dwords); + } + + if (last_len) { + u32 remainder; + + offset = nfc_op->len - last_len; + + if (nfc_op->read) { + remainder = readl_relaxed(nfc->base + DATA_PORT_REG); + memcpy(&buf[offset], &remainder, last_len); + } else { + memcpy(&remainder, &buf[offset], last_len); + writel_relaxed(remainder, nfc->base + DATA_PORT_REG); + } + } + + return anfc_wait_for_event(nfc, XFER_COMPLETE); +} + +static int anfc_misc_data_type_exec(struct nand_chip *chip, + const struct nand_subop *subop, + u32 prog_reg) +{ + struct arasan_nfc *nfc = to_anfc(chip->controller); + struct anfc_op nfc_op = {}; + int ret; + + ret = anfc_parse_instructions(chip, subop, &nfc_op); + if (ret) + return ret; + + nfc_op.prog_reg = prog_reg; + anfc_trigger_op(nfc, &nfc_op); + + if (nfc_op.rdy_timeout_ms) { + ret = anfc_wait_for_rb(nfc, chip, nfc_op.rdy_timeout_ms); + if (ret) + return ret; + } + + return anfc_rw_pio_op(nfc, &nfc_op); +} + +static int anfc_param_read_type_exec(struct nand_chip *chip, + const struct nand_subop *subop) +{ + return anfc_misc_data_type_exec(chip, subop, PROG_RDPARAM); +} + +static int anfc_data_read_type_exec(struct nand_chip *chip, + const struct nand_subop *subop) +{ + u32 prog_reg = PROG_PGRD; + + /* + * Experience shows that while in SDR mode sending a CHANGE READ COLUMN + * command through the READ PAGE "type" always works fine, when in + * NV-DDR mode the same command simply fails. However, it was also + * spotted that any CHANGE READ COLUMN command sent through the CHANGE + * READ COLUMN ENHANCED "type" would correctly work in both cases (SDR + * and NV-DDR). So, for simplicity, let's program the controller with + * the CHANGE READ COLUMN ENHANCED "type" whenever we are requested to + * perform a CHANGE READ COLUMN operation. + */ + if (subop->instrs[0].ctx.cmd.opcode == NAND_CMD_RNDOUT && + subop->instrs[2].ctx.cmd.opcode == NAND_CMD_RNDOUTSTART) + prog_reg = PROG_CHG_RD_COL_ENH; + + return anfc_misc_data_type_exec(chip, subop, prog_reg); +} + +static int anfc_param_write_type_exec(struct nand_chip *chip, + const struct nand_subop *subop) +{ + return anfc_misc_data_type_exec(chip, subop, PROG_SET_FEATURE); +} + +static int anfc_data_write_type_exec(struct nand_chip *chip, + const struct nand_subop *subop) +{ + return anfc_misc_data_type_exec(chip, subop, PROG_PGPROG); +} + +static int anfc_misc_zerolen_type_exec(struct nand_chip *chip, + const struct nand_subop *subop, + u32 prog_reg) +{ + struct arasan_nfc *nfc = to_anfc(chip->controller); + struct anfc_op nfc_op = {}; + int ret; + + ret = anfc_parse_instructions(chip, subop, &nfc_op); + if (ret) + return ret; + + nfc_op.prog_reg = prog_reg; + anfc_trigger_op(nfc, &nfc_op); + + ret = anfc_wait_for_event(nfc, XFER_COMPLETE); + if (ret) + return ret; + + if (nfc_op.rdy_timeout_ms) + ret = anfc_wait_for_rb(nfc, chip, nfc_op.rdy_timeout_ms); + + return ret; +} + +static int anfc_status_type_exec(struct nand_chip *chip, + const struct nand_subop *subop) +{ + struct arasan_nfc *nfc = to_anfc(chip->controller); + u32 tmp; + int ret; + + /* See anfc_check_op() for details about this constraint */ + if (subop->instrs[0].ctx.cmd.opcode != NAND_CMD_STATUS) + return -ENOTSUPP; + + ret = anfc_misc_zerolen_type_exec(chip, subop, PROG_STATUS); + if (ret) + return ret; + + tmp = readl_relaxed(nfc->base + FLASH_STS_REG); + memcpy(subop->instrs[1].ctx.data.buf.in, &tmp, 1); + + return 0; +} + +static int anfc_reset_type_exec(struct nand_chip *chip, + const struct nand_subop *subop) +{ + return anfc_misc_zerolen_type_exec(chip, subop, PROG_RST); +} + +static int anfc_erase_type_exec(struct nand_chip *chip, + const struct nand_subop *subop) +{ + return anfc_misc_zerolen_type_exec(chip, subop, PROG_ERASE); +} + +static int anfc_wait_type_exec(struct nand_chip *chip, + const struct nand_subop *subop) +{ + struct arasan_nfc *nfc = to_anfc(chip->controller); + struct anfc_op nfc_op = {}; + int ret; + + ret = anfc_parse_instructions(chip, subop, &nfc_op); + if (ret) + return ret; + + return anfc_wait_for_rb(nfc, chip, nfc_op.rdy_timeout_ms); +} + +static const struct nand_op_parser anfc_op_parser = NAND_OP_PARSER( + NAND_OP_PARSER_PATTERN( + anfc_param_read_type_exec, + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC), + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true), + NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, ANFC_MAX_CHUNK_SIZE)), + NAND_OP_PARSER_PATTERN( + anfc_param_write_type_exec, + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC), + NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, ANFC_MAX_PARAM_SIZE)), + NAND_OP_PARSER_PATTERN( + anfc_data_read_type_exec, + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC), + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true), + NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, ANFC_MAX_CHUNK_SIZE)), + NAND_OP_PARSER_PATTERN( + anfc_data_write_type_exec, + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC), + NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, ANFC_MAX_CHUNK_SIZE), + NAND_OP_PARSER_PAT_CMD_ELEM(false)), + NAND_OP_PARSER_PATTERN( + anfc_reset_type_exec, + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), + NAND_OP_PARSER_PATTERN( + anfc_erase_type_exec, + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC), + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), + NAND_OP_PARSER_PATTERN( + anfc_status_type_exec, + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, ANFC_MAX_CHUNK_SIZE)), + NAND_OP_PARSER_PATTERN( + anfc_wait_type_exec, + NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), + ); + +static int anfc_check_op(struct nand_chip *chip, + const struct nand_operation *op) +{ + const struct nand_op_instr *instr; + int op_id; + + /* + * The controller abstracts all the NAND operations and do not support + * data only operations. + * + * TODO: The nand_op_parser framework should be extended to + * support custom checks on DATA instructions. + */ + for (op_id = 0; op_id < op->ninstrs; op_id++) { + instr = &op->instrs[op_id]; + + switch (instr->type) { + case NAND_OP_ADDR_INSTR: + if (instr->ctx.addr.naddrs > ANFC_MAX_ADDR_CYC) + return -ENOTSUPP; + + break; + case NAND_OP_DATA_IN_INSTR: + case NAND_OP_DATA_OUT_INSTR: + if (instr->ctx.data.len > ANFC_MAX_CHUNK_SIZE) + return -ENOTSUPP; + + if (anfc_pkt_len_config(instr->ctx.data.len, NULL, NULL)) + return -ENOTSUPP; + + break; + default: + break; + } + } + + /* + * The controller does not allow to proceed with a CMD+DATA_IN cycle + * manually on the bus by reading data from the data register. Instead, + * the controller abstract a status read operation with its own status + * register after ordering a read status operation. Hence, we cannot + * support any CMD+DATA_IN operation other than a READ STATUS. + * + * TODO: The nand_op_parser() framework should be extended to describe + * fixed patterns instead of open-coding this check here. + */ + if (op->ninstrs == 2 && + op->instrs[0].type == NAND_OP_CMD_INSTR && + op->instrs[0].ctx.cmd.opcode != NAND_CMD_STATUS && + op->instrs[1].type == NAND_OP_DATA_IN_INSTR) + return -ENOTSUPP; + + return nand_op_parser_exec_op(chip, &anfc_op_parser, op, true); +} + +static int anfc_exec_op(struct nand_chip *chip, + const struct nand_operation *op, + bool check_only) +{ + int ret; + + if (check_only) + return anfc_check_op(chip, op); + + ret = anfc_select_target(chip, op->cs); + if (ret) + return ret; + + return nand_op_parser_exec_op(chip, &anfc_op_parser, op, check_only); +} + +static int anfc_setup_interface(struct nand_chip *chip, int target, + const struct nand_interface_config *conf) +{ + struct anand *anand = to_anand(chip); + struct arasan_nfc *nfc = to_anfc(chip->controller); + struct device_node *np = nfc->dev->of_node; + const struct nand_sdr_timings *sdr; + const struct nand_nvddr_timings *nvddr; + unsigned int tccs_min, dqs_mode, fast_tcad; + + if (nand_interface_is_nvddr(conf)) { + nvddr = nand_get_nvddr_timings(conf); + if (IS_ERR(nvddr)) + return PTR_ERR(nvddr); + + /* + * The controller only supports data payload requests which are + * a multiple of 4. In practice, most data accesses are 4-byte + * aligned and this is not an issue. However, rounding up will + * simply be refused by the controller if we reached the end of + * the device *and* we are using the NV-DDR interface(!). In + * this situation, unaligned data requests ending at the device + * boundary will confuse the controller and cannot be performed. + * + * This is something that happens in nand_read_subpage() when + * selecting software ECC support and must be avoided. + */ + if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_SOFT) + return -ENOTSUPP; + } else { + sdr = nand_get_sdr_timings(conf); + if (IS_ERR(sdr)) + return PTR_ERR(sdr); + } + + if (target < 0) + return 0; + + if (nand_interface_is_sdr(conf)) { + anand->data_iface = DIFACE_SDR | + DIFACE_SDR_MODE(conf->timings.mode); + anand->timings = 0; + } else { + anand->data_iface = DIFACE_NVDDR | + DIFACE_DDR_MODE(conf->timings.mode); + + if (conf->timings.nvddr.tCCS_min <= 100000) + tccs_min = TCCS_TIME_100NS; + else if (conf->timings.nvddr.tCCS_min <= 200000) + tccs_min = TCCS_TIME_200NS; + else if (conf->timings.nvddr.tCCS_min <= 300000) + tccs_min = TCCS_TIME_300NS; + else + tccs_min = TCCS_TIME_500NS; + + fast_tcad = 0; + if (conf->timings.nvddr.tCAD_min < 45000) + fast_tcad = FAST_TCAD; + + switch (conf->timings.mode) { + case 5: + case 4: + dqs_mode = 2; + break; + case 3: + dqs_mode = 3; + break; + case 2: + dqs_mode = 4; + break; + case 1: + dqs_mode = 5; + break; + case 0: + default: + dqs_mode = 6; + break; + } + + anand->timings = tccs_min | fast_tcad | + DQS_BUFF_SEL_IN(dqs_mode) | + DQS_BUFF_SEL_OUT(dqs_mode); + } + + if (nand_interface_is_sdr(conf)) { + anand->clk = ANFC_XLNX_SDR_DFLT_CORE_CLK; + } else { + /* ONFI timings are defined in picoseconds */ + anand->clk = div_u64((u64)NSEC_PER_SEC * 1000, + conf->timings.nvddr.tCK_min); + } + + /* + * Due to a hardware bug in the ZynqMP SoC, SDR timing modes 0-1 work + * with f > 90MHz (default clock is 100MHz) but signals are unstable + * with higher modes. Hence we decrease a little bit the clock rate to + * 80MHz when using SDR modes 2-5 with this SoC. + */ + if (of_device_is_compatible(np, "xlnx,zynqmp-nand-controller") && + nand_interface_is_sdr(conf) && conf->timings.mode >= 2) + anand->clk = ANFC_XLNX_SDR_HS_CORE_CLK; + + return 0; +} + +static int anfc_calc_hw_ecc_bytes(int step_size, int strength) +{ + unsigned int bch_gf_mag, ecc_bits; + + switch (step_size) { + case SZ_512: + bch_gf_mag = 13; + break; + case SZ_1K: + bch_gf_mag = 14; + break; + default: + return -EINVAL; + } + + ecc_bits = bch_gf_mag * strength; + + return DIV_ROUND_UP(ecc_bits, 8); +} + +static const int anfc_hw_ecc_512_strengths[] = {4, 8, 12}; + +static const int anfc_hw_ecc_1024_strengths[] = {24}; + +static const struct nand_ecc_step_info anfc_hw_ecc_step_infos[] = { + { + .stepsize = SZ_512, + .strengths = anfc_hw_ecc_512_strengths, + .nstrengths = ARRAY_SIZE(anfc_hw_ecc_512_strengths), + }, + { + .stepsize = SZ_1K, + .strengths = anfc_hw_ecc_1024_strengths, + .nstrengths = ARRAY_SIZE(anfc_hw_ecc_1024_strengths), + }, +}; + +static const struct nand_ecc_caps anfc_hw_ecc_caps = { + .stepinfos = anfc_hw_ecc_step_infos, + .nstepinfos = ARRAY_SIZE(anfc_hw_ecc_step_infos), + .calc_ecc_bytes = anfc_calc_hw_ecc_bytes, +}; + +static int anfc_init_hw_ecc_controller(struct arasan_nfc *nfc, + struct nand_chip *chip) +{ + struct anand *anand = to_anand(chip); + struct mtd_info *mtd = nand_to_mtd(chip); + struct nand_ecc_ctrl *ecc = &chip->ecc; + unsigned int bch_prim_poly = 0, bch_gf_mag = 0, ecc_offset; + int ret; + + switch (mtd->writesize) { + case SZ_512: + case SZ_2K: + case SZ_4K: + case SZ_8K: + case SZ_16K: + break; + default: + dev_err(nfc->dev, "Unsupported page size %d\n", mtd->writesize); + return -EINVAL; + } + + ret = nand_ecc_choose_conf(chip, &anfc_hw_ecc_caps, mtd->oobsize); + if (ret) + return ret; + + switch (ecc->strength) { + case 12: + anand->strength = 0x1; + break; + case 8: + anand->strength = 0x2; + break; + case 4: + anand->strength = 0x3; + break; + case 24: + anand->strength = 0x4; + break; + default: + dev_err(nfc->dev, "Unsupported strength %d\n", ecc->strength); + return -EINVAL; + } + + switch (ecc->size) { + case SZ_512: + bch_gf_mag = 13; + bch_prim_poly = 0x201b; + break; + case SZ_1K: + bch_gf_mag = 14; + bch_prim_poly = 0x4443; + break; + default: + dev_err(nfc->dev, "Unsupported step size %d\n", ecc->strength); + return -EINVAL; + } + + mtd_set_ooblayout(mtd, nand_get_large_page_ooblayout()); + + ecc->steps = mtd->writesize / ecc->size; + ecc->algo = NAND_ECC_ALGO_BCH; + anand->ecc_bits = bch_gf_mag * ecc->strength; + ecc->bytes = DIV_ROUND_UP(anand->ecc_bits, 8); + anand->ecc_total = DIV_ROUND_UP(anand->ecc_bits * ecc->steps, 8); + ecc_offset = mtd->writesize + mtd->oobsize - anand->ecc_total; + anand->ecc_conf = ECC_CONF_COL(ecc_offset) | + ECC_CONF_LEN(anand->ecc_total) | + ECC_CONF_BCH_EN; + + anand->errloc = devm_kmalloc_array(nfc->dev, ecc->strength, + sizeof(*anand->errloc), GFP_KERNEL); + if (!anand->errloc) + return -ENOMEM; + + anand->hw_ecc = devm_kmalloc(nfc->dev, ecc->bytes, GFP_KERNEL); + if (!anand->hw_ecc) + return -ENOMEM; + + /* Enforce bit swapping to fit the hardware */ + anand->bch = bch_init(bch_gf_mag, ecc->strength, bch_prim_poly, true); + if (!anand->bch) + return -EINVAL; + + ecc->read_page = anfc_sel_read_page_hw_ecc; + ecc->write_page = anfc_sel_write_page_hw_ecc; + + return 0; +} + +static int anfc_attach_chip(struct nand_chip *chip) +{ + struct anand *anand = to_anand(chip); + struct arasan_nfc *nfc = to_anfc(chip->controller); + struct mtd_info *mtd = nand_to_mtd(chip); + int ret = 0; + + if (mtd->writesize <= SZ_512) + anand->caddr_cycles = 1; + else + anand->caddr_cycles = 2; + + if (chip->options & NAND_ROW_ADDR_3) + anand->raddr_cycles = 3; + else + anand->raddr_cycles = 2; + + switch (mtd->writesize) { + case 512: + anand->page_sz = 0; + break; + case 1024: + anand->page_sz = 5; + break; + case 2048: + anand->page_sz = 1; + break; + case 4096: + anand->page_sz = 2; + break; + case 8192: + anand->page_sz = 3; + break; + case 16384: + anand->page_sz = 4; + break; + default: + return -EINVAL; + } + + /* These hooks are valid for all ECC providers */ + chip->ecc.read_page_raw = nand_monolithic_read_page_raw; + chip->ecc.write_page_raw = nand_monolithic_write_page_raw; + + switch (chip->ecc.engine_type) { + case NAND_ECC_ENGINE_TYPE_NONE: + case NAND_ECC_ENGINE_TYPE_SOFT: + case NAND_ECC_ENGINE_TYPE_ON_DIE: + break; + case NAND_ECC_ENGINE_TYPE_ON_HOST: + ret = anfc_init_hw_ecc_controller(nfc, chip); + break; + default: + dev_err(nfc->dev, "Unsupported ECC mode: %d\n", + chip->ecc.engine_type); + return -EINVAL; + } + + return ret; +} + +static void anfc_detach_chip(struct nand_chip *chip) +{ + struct anand *anand = to_anand(chip); + + if (anand->bch) + bch_free(anand->bch); +} + +static const struct nand_controller_ops anfc_ops = { + .exec_op = anfc_exec_op, + .setup_interface = anfc_setup_interface, + .attach_chip = anfc_attach_chip, + .detach_chip = anfc_detach_chip, +}; + +static int anfc_chip_init(struct arasan_nfc *nfc, struct device_node *np) +{ + struct anand *anand; + struct nand_chip *chip; + struct mtd_info *mtd; + int rb, ret, i; + + anand = devm_kzalloc(nfc->dev, sizeof(*anand), GFP_KERNEL); + if (!anand) + return -ENOMEM; + + /* Chip-select init */ + anand->ncs_idx = of_property_count_elems_of_size(np, "reg", sizeof(u32)); + if (anand->ncs_idx <= 0 || anand->ncs_idx > nfc->ncs) { + dev_err(nfc->dev, "Invalid reg property\n"); + return -EINVAL; + } + + anand->cs_idx = devm_kcalloc(nfc->dev, anand->ncs_idx, + sizeof(*anand->cs_idx), GFP_KERNEL); + if (!anand->cs_idx) + return -ENOMEM; + + for (i = 0; i < anand->ncs_idx; i++) { + ret = of_property_read_u32_index(np, "reg", i, + &anand->cs_idx[i]); + if (ret) { + dev_err(nfc->dev, "invalid CS property: %d\n", ret); + return ret; + } + } + + /* Ready-busy init */ + ret = of_property_read_u32(np, "nand-rb", &rb); + if (ret) + return ret; + + if (rb >= ANFC_MAX_CS) { + dev_err(nfc->dev, "Wrong RB %d\n", rb); + return -EINVAL; + } + + anand->rb = rb; + + chip = &anand->chip; + mtd = nand_to_mtd(chip); + mtd->dev.parent = nfc->dev; + chip->controller = &nfc->controller; + chip->options = NAND_BUSWIDTH_AUTO | NAND_NO_SUBPAGE_WRITE | + NAND_USES_DMA; + + nand_set_flash_node(chip, np); + if (!mtd->name) { + dev_err(nfc->dev, "NAND label property is mandatory\n"); + return -EINVAL; + } + + ret = nand_scan(chip, anand->ncs_idx); + if (ret) { + dev_err(nfc->dev, "Scan operation failed\n"); + return ret; + } + + ret = mtd_device_register(mtd, NULL, 0); + if (ret) { + nand_cleanup(chip); + return ret; + } + + list_add_tail(&anand->node, &nfc->chips); + + return 0; +} + +static void anfc_chips_cleanup(struct arasan_nfc *nfc) +{ + struct anand *anand, *tmp; + struct nand_chip *chip; + int ret; + + list_for_each_entry_safe(anand, tmp, &nfc->chips, node) { + chip = &anand->chip; + ret = mtd_device_unregister(nand_to_mtd(chip)); + WARN_ON(ret); + nand_cleanup(chip); + list_del(&anand->node); + } +} + +static int anfc_chips_init(struct arasan_nfc *nfc) +{ + struct device_node *np = nfc->dev->of_node, *nand_np; + int nchips = of_get_child_count(np); + int ret; + + if (!nchips) { + dev_err(nfc->dev, "Incorrect number of NAND chips (%d)\n", + nchips); + return -EINVAL; + } + + for_each_child_of_node(np, nand_np) { + ret = anfc_chip_init(nfc, nand_np); + if (ret) { + of_node_put(nand_np); + anfc_chips_cleanup(nfc); + break; + } + } + + return ret; +} + +static void anfc_reset(struct arasan_nfc *nfc) +{ + /* Disable interrupt signals */ + writel_relaxed(0, nfc->base + INTR_SIG_EN_REG); + + /* Enable interrupt status */ + writel_relaxed(EVENT_MASK, nfc->base + INTR_STS_EN_REG); + + nfc->cur_cs = -1; +} + +static int anfc_parse_cs(struct arasan_nfc *nfc) +{ + int ret; + + /* Check the gpio-cs property */ + ret = rawnand_dt_parse_gpio_cs(nfc->dev, &nfc->cs_array, &nfc->ncs); + if (ret) + return ret; + + /* + * The controller native CS cannot be both disabled at the same time. + * Hence, only one native CS can be used if GPIO CS are needed, so that + * the other is selected when a non-native CS must be asserted (not + * wired physically or configured as GPIO instead of NAND CS). In this + * case, the "not" chosen CS is assigned to nfc->spare_cs and selected + * whenever a GPIO CS must be asserted. + */ + if (nfc->cs_array && nfc->ncs > 2) { + if (!nfc->cs_array[0] && !nfc->cs_array[1]) { + dev_err(nfc->dev, + "Assign a single native CS when using GPIOs\n"); + return -EINVAL; + } + + if (nfc->cs_array[0]) + nfc->spare_cs = 0; + else + nfc->spare_cs = 1; + } + + if (!nfc->cs_array) { + nfc->cs_array = anfc_default_cs_array; + nfc->ncs = ANFC_MAX_CS; + return 0; + } + + return 0; +} + +static int anfc_probe(struct platform_device *pdev) +{ + struct arasan_nfc *nfc; + int ret; + + nfc = devm_kzalloc(&pdev->dev, sizeof(*nfc), GFP_KERNEL); + if (!nfc) + return -ENOMEM; + + nfc->dev = &pdev->dev; + nand_controller_init(&nfc->controller); + nfc->controller.ops = &anfc_ops; + INIT_LIST_HEAD(&nfc->chips); + + nfc->base = devm_platform_ioremap_resource(pdev, 0); + if (IS_ERR(nfc->base)) + return PTR_ERR(nfc->base); + + anfc_reset(nfc); + + nfc->controller_clk = devm_clk_get(&pdev->dev, "controller"); + if (IS_ERR(nfc->controller_clk)) + return PTR_ERR(nfc->controller_clk); + + nfc->bus_clk = devm_clk_get(&pdev->dev, "bus"); + if (IS_ERR(nfc->bus_clk)) + return PTR_ERR(nfc->bus_clk); + + ret = clk_prepare_enable(nfc->controller_clk); + if (ret) + return ret; + + ret = clk_prepare_enable(nfc->bus_clk); + if (ret) + goto disable_controller_clk; + + ret = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)); + if (ret) + goto disable_bus_clk; + + ret = anfc_parse_cs(nfc); + if (ret) + goto disable_bus_clk; + + ret = anfc_chips_init(nfc); + if (ret) + goto disable_bus_clk; + + platform_set_drvdata(pdev, nfc); + + return 0; + +disable_bus_clk: + clk_disable_unprepare(nfc->bus_clk); + +disable_controller_clk: + clk_disable_unprepare(nfc->controller_clk); + + return ret; +} + +static int anfc_remove(struct platform_device *pdev) +{ + struct arasan_nfc *nfc = platform_get_drvdata(pdev); + + anfc_chips_cleanup(nfc); + + clk_disable_unprepare(nfc->bus_clk); + clk_disable_unprepare(nfc->controller_clk); + + return 0; +} + +static const struct of_device_id anfc_ids[] = { + { + .compatible = "xlnx,zynqmp-nand-controller", + }, + { + .compatible = "arasan,nfc-v3p10", + }, + {} +}; +MODULE_DEVICE_TABLE(of, anfc_ids); + +static struct platform_driver anfc_driver = { + .driver = { + .name = "arasan-nand-controller", + .of_match_table = anfc_ids, + }, + .probe = anfc_probe, + .remove = anfc_remove, +}; +module_platform_driver(anfc_driver); + +MODULE_LICENSE("GPL v2"); +MODULE_AUTHOR("Punnaiah Choudary Kalluri "); +MODULE_AUTHOR("Naga Sureshkumar Relli "); +MODULE_AUTHOR("Miquel Raynal "); +MODULE_DESCRIPTION("Arasan NAND Flash Controller Driver"); -- cgit v1.2.3