From 2c3c1048746a4622d8c89a29670120dc8fab93c4 Mon Sep 17 00:00:00 2001 From: Daniel Baumann Date: Sun, 7 Apr 2024 20:49:45 +0200 Subject: Adding upstream version 6.1.76. Signed-off-by: Daniel Baumann --- drivers/mtd/nand/raw/davinci_nand.c | 857 ++++++++++++++++++++++++++++++++++++ 1 file changed, 857 insertions(+) create mode 100644 drivers/mtd/nand/raw/davinci_nand.c (limited to 'drivers/mtd/nand/raw/davinci_nand.c') diff --git a/drivers/mtd/nand/raw/davinci_nand.c b/drivers/mtd/nand/raw/davinci_nand.c new file mode 100644 index 000000000..3e98e3c25 --- /dev/null +++ b/drivers/mtd/nand/raw/davinci_nand.c @@ -0,0 +1,857 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * davinci_nand.c - NAND Flash Driver for DaVinci family chips + * + * Copyright © 2006 Texas Instruments. + * + * Port to 2.6.23 Copyright © 2008 by: + * Sander Huijsen + * Troy Kisky + * Dirk Behme + */ + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#include +#include + +/* + * This is a device driver for the NAND flash controller found on the + * various DaVinci family chips. It handles up to four SoC chipselects, + * and some flavors of secondary chipselect (e.g. based on A12) as used + * with multichip packages. + * + * The 1-bit ECC hardware is supported, as well as the newer 4-bit ECC + * available on chips like the DM355 and OMAP-L137 and needed with the + * more error-prone MLC NAND chips. + * + * This driver assumes EM_WAIT connects all the NAND devices' RDY/nBUSY + * outputs in a "wire-AND" configuration, with no per-chip signals. + */ +struct davinci_nand_info { + struct nand_controller controller; + struct nand_chip chip; + + struct platform_device *pdev; + + bool is_readmode; + + void __iomem *base; + void __iomem *vaddr; + + void __iomem *current_cs; + + uint32_t mask_chipsel; + uint32_t mask_ale; + uint32_t mask_cle; + + uint32_t core_chipsel; + + struct davinci_aemif_timing *timing; +}; + +static DEFINE_SPINLOCK(davinci_nand_lock); +static bool ecc4_busy; + +static inline struct davinci_nand_info *to_davinci_nand(struct mtd_info *mtd) +{ + return container_of(mtd_to_nand(mtd), struct davinci_nand_info, chip); +} + +static inline unsigned int davinci_nand_readl(struct davinci_nand_info *info, + int offset) +{ + return __raw_readl(info->base + offset); +} + +static inline void davinci_nand_writel(struct davinci_nand_info *info, + int offset, unsigned long value) +{ + __raw_writel(value, info->base + offset); +} + +/*----------------------------------------------------------------------*/ + +/* + * 1-bit hardware ECC ... context maintained for each core chipselect + */ + +static inline uint32_t nand_davinci_readecc_1bit(struct mtd_info *mtd) +{ + struct davinci_nand_info *info = to_davinci_nand(mtd); + + return davinci_nand_readl(info, NANDF1ECC_OFFSET + + 4 * info->core_chipsel); +} + +static void nand_davinci_hwctl_1bit(struct nand_chip *chip, int mode) +{ + struct davinci_nand_info *info; + uint32_t nandcfr; + unsigned long flags; + + info = to_davinci_nand(nand_to_mtd(chip)); + + /* Reset ECC hardware */ + nand_davinci_readecc_1bit(nand_to_mtd(chip)); + + spin_lock_irqsave(&davinci_nand_lock, flags); + + /* Restart ECC hardware */ + nandcfr = davinci_nand_readl(info, NANDFCR_OFFSET); + nandcfr |= BIT(8 + info->core_chipsel); + davinci_nand_writel(info, NANDFCR_OFFSET, nandcfr); + + spin_unlock_irqrestore(&davinci_nand_lock, flags); +} + +/* + * Read hardware ECC value and pack into three bytes + */ +static int nand_davinci_calculate_1bit(struct nand_chip *chip, + const u_char *dat, u_char *ecc_code) +{ + unsigned int ecc_val = nand_davinci_readecc_1bit(nand_to_mtd(chip)); + unsigned int ecc24 = (ecc_val & 0x0fff) | ((ecc_val & 0x0fff0000) >> 4); + + /* invert so that erased block ecc is correct */ + ecc24 = ~ecc24; + ecc_code[0] = (u_char)(ecc24); + ecc_code[1] = (u_char)(ecc24 >> 8); + ecc_code[2] = (u_char)(ecc24 >> 16); + + return 0; +} + +static int nand_davinci_correct_1bit(struct nand_chip *chip, u_char *dat, + u_char *read_ecc, u_char *calc_ecc) +{ + uint32_t eccNand = read_ecc[0] | (read_ecc[1] << 8) | + (read_ecc[2] << 16); + uint32_t eccCalc = calc_ecc[0] | (calc_ecc[1] << 8) | + (calc_ecc[2] << 16); + uint32_t diff = eccCalc ^ eccNand; + + if (diff) { + if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) { + /* Correctable error */ + if ((diff >> (12 + 3)) < chip->ecc.size) { + dat[diff >> (12 + 3)] ^= BIT((diff >> 12) & 7); + return 1; + } else { + return -EBADMSG; + } + } else if (!(diff & (diff - 1))) { + /* Single bit ECC error in the ECC itself, + * nothing to fix */ + return 1; + } else { + /* Uncorrectable error */ + return -EBADMSG; + } + + } + return 0; +} + +/*----------------------------------------------------------------------*/ + +/* + * 4-bit hardware ECC ... context maintained over entire AEMIF + * + * This is a syndrome engine, but we avoid NAND_ECC_PLACEMENT_INTERLEAVED + * since that forces use of a problematic "infix OOB" layout. + * Among other things, it trashes manufacturer bad block markers. + * Also, and specific to this hardware, it ECC-protects the "prepad" + * in the OOB ... while having ECC protection for parts of OOB would + * seem useful, the current MTD stack sometimes wants to update the + * OOB without recomputing ECC. + */ + +static void nand_davinci_hwctl_4bit(struct nand_chip *chip, int mode) +{ + struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip)); + unsigned long flags; + u32 val; + + /* Reset ECC hardware */ + davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET); + + spin_lock_irqsave(&davinci_nand_lock, flags); + + /* Start 4-bit ECC calculation for read/write */ + val = davinci_nand_readl(info, NANDFCR_OFFSET); + val &= ~(0x03 << 4); + val |= (info->core_chipsel << 4) | BIT(12); + davinci_nand_writel(info, NANDFCR_OFFSET, val); + + info->is_readmode = (mode == NAND_ECC_READ); + + spin_unlock_irqrestore(&davinci_nand_lock, flags); +} + +/* Read raw ECC code after writing to NAND. */ +static void +nand_davinci_readecc_4bit(struct davinci_nand_info *info, u32 code[4]) +{ + const u32 mask = 0x03ff03ff; + + code[0] = davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET) & mask; + code[1] = davinci_nand_readl(info, NAND_4BIT_ECC2_OFFSET) & mask; + code[2] = davinci_nand_readl(info, NAND_4BIT_ECC3_OFFSET) & mask; + code[3] = davinci_nand_readl(info, NAND_4BIT_ECC4_OFFSET) & mask; +} + +/* Terminate read ECC; or return ECC (as bytes) of data written to NAND. */ +static int nand_davinci_calculate_4bit(struct nand_chip *chip, + const u_char *dat, u_char *ecc_code) +{ + struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip)); + u32 raw_ecc[4], *p; + unsigned i; + + /* After a read, terminate ECC calculation by a dummy read + * of some 4-bit ECC register. ECC covers everything that + * was read; correct() just uses the hardware state, so + * ecc_code is not needed. + */ + if (info->is_readmode) { + davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET); + return 0; + } + + /* Pack eight raw 10-bit ecc values into ten bytes, making + * two passes which each convert four values (in upper and + * lower halves of two 32-bit words) into five bytes. The + * ROM boot loader uses this same packing scheme. + */ + nand_davinci_readecc_4bit(info, raw_ecc); + for (i = 0, p = raw_ecc; i < 2; i++, p += 2) { + *ecc_code++ = p[0] & 0xff; + *ecc_code++ = ((p[0] >> 8) & 0x03) | ((p[0] >> 14) & 0xfc); + *ecc_code++ = ((p[0] >> 22) & 0x0f) | ((p[1] << 4) & 0xf0); + *ecc_code++ = ((p[1] >> 4) & 0x3f) | ((p[1] >> 10) & 0xc0); + *ecc_code++ = (p[1] >> 18) & 0xff; + } + + return 0; +} + +/* Correct up to 4 bits in data we just read, using state left in the + * hardware plus the ecc_code computed when it was first written. + */ +static int nand_davinci_correct_4bit(struct nand_chip *chip, u_char *data, + u_char *ecc_code, u_char *null) +{ + int i; + struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip)); + unsigned short ecc10[8]; + unsigned short *ecc16; + u32 syndrome[4]; + u32 ecc_state; + unsigned num_errors, corrected; + unsigned long timeo; + + /* Unpack ten bytes into eight 10 bit values. We know we're + * little-endian, and use type punning for less shifting/masking. + */ + if (WARN_ON(0x01 & (uintptr_t)ecc_code)) + return -EINVAL; + ecc16 = (unsigned short *)ecc_code; + + ecc10[0] = (ecc16[0] >> 0) & 0x3ff; + ecc10[1] = ((ecc16[0] >> 10) & 0x3f) | ((ecc16[1] << 6) & 0x3c0); + ecc10[2] = (ecc16[1] >> 4) & 0x3ff; + ecc10[3] = ((ecc16[1] >> 14) & 0x3) | ((ecc16[2] << 2) & 0x3fc); + ecc10[4] = (ecc16[2] >> 8) | ((ecc16[3] << 8) & 0x300); + ecc10[5] = (ecc16[3] >> 2) & 0x3ff; + ecc10[6] = ((ecc16[3] >> 12) & 0xf) | ((ecc16[4] << 4) & 0x3f0); + ecc10[7] = (ecc16[4] >> 6) & 0x3ff; + + /* Tell ECC controller about the expected ECC codes. */ + for (i = 7; i >= 0; i--) + davinci_nand_writel(info, NAND_4BIT_ECC_LOAD_OFFSET, ecc10[i]); + + /* Allow time for syndrome calculation ... then read it. + * A syndrome of all zeroes 0 means no detected errors. + */ + davinci_nand_readl(info, NANDFSR_OFFSET); + nand_davinci_readecc_4bit(info, syndrome); + if (!(syndrome[0] | syndrome[1] | syndrome[2] | syndrome[3])) + return 0; + + /* + * Clear any previous address calculation by doing a dummy read of an + * error address register. + */ + davinci_nand_readl(info, NAND_ERR_ADD1_OFFSET); + + /* Start address calculation, and wait for it to complete. + * We _could_ start reading more data while this is working, + * to speed up the overall page read. + */ + davinci_nand_writel(info, NANDFCR_OFFSET, + davinci_nand_readl(info, NANDFCR_OFFSET) | BIT(13)); + + /* + * ECC_STATE field reads 0x3 (Error correction complete) immediately + * after setting the 4BITECC_ADD_CALC_START bit. So if you immediately + * begin trying to poll for the state, you may fall right out of your + * loop without any of the correction calculations having taken place. + * The recommendation from the hardware team is to initially delay as + * long as ECC_STATE reads less than 4. After that, ECC HW has entered + * correction state. + */ + timeo = jiffies + usecs_to_jiffies(100); + do { + ecc_state = (davinci_nand_readl(info, + NANDFSR_OFFSET) >> 8) & 0x0f; + cpu_relax(); + } while ((ecc_state < 4) && time_before(jiffies, timeo)); + + for (;;) { + u32 fsr = davinci_nand_readl(info, NANDFSR_OFFSET); + + switch ((fsr >> 8) & 0x0f) { + case 0: /* no error, should not happen */ + davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET); + return 0; + case 1: /* five or more errors detected */ + davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET); + return -EBADMSG; + case 2: /* error addresses computed */ + case 3: + num_errors = 1 + ((fsr >> 16) & 0x03); + goto correct; + default: /* still working on it */ + cpu_relax(); + continue; + } + } + +correct: + /* correct each error */ + for (i = 0, corrected = 0; i < num_errors; i++) { + int error_address, error_value; + + if (i > 1) { + error_address = davinci_nand_readl(info, + NAND_ERR_ADD2_OFFSET); + error_value = davinci_nand_readl(info, + NAND_ERR_ERRVAL2_OFFSET); + } else { + error_address = davinci_nand_readl(info, + NAND_ERR_ADD1_OFFSET); + error_value = davinci_nand_readl(info, + NAND_ERR_ERRVAL1_OFFSET); + } + + if (i & 1) { + error_address >>= 16; + error_value >>= 16; + } + error_address &= 0x3ff; + error_address = (512 + 7) - error_address; + + if (error_address < 512) { + data[error_address] ^= error_value; + corrected++; + } + } + + return corrected; +} + +/*----------------------------------------------------------------------*/ + +/* An ECC layout for using 4-bit ECC with small-page flash, storing + * ten ECC bytes plus the manufacturer's bad block marker byte, and + * and not overlapping the default BBT markers. + */ +static int hwecc4_ooblayout_small_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + if (section > 2) + return -ERANGE; + + if (!section) { + oobregion->offset = 0; + oobregion->length = 5; + } else if (section == 1) { + oobregion->offset = 6; + oobregion->length = 2; + } else { + oobregion->offset = 13; + oobregion->length = 3; + } + + return 0; +} + +static int hwecc4_ooblayout_small_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + if (section > 1) + return -ERANGE; + + if (!section) { + oobregion->offset = 8; + oobregion->length = 5; + } else { + oobregion->offset = 16; + oobregion->length = mtd->oobsize - 16; + } + + return 0; +} + +static const struct mtd_ooblayout_ops hwecc4_small_ooblayout_ops = { + .ecc = hwecc4_ooblayout_small_ecc, + .free = hwecc4_ooblayout_small_free, +}; + +#if defined(CONFIG_OF) +static const struct of_device_id davinci_nand_of_match[] = { + {.compatible = "ti,davinci-nand", }, + {.compatible = "ti,keystone-nand", }, + {}, +}; +MODULE_DEVICE_TABLE(of, davinci_nand_of_match); + +static struct davinci_nand_pdata + *nand_davinci_get_pdata(struct platform_device *pdev) +{ + if (!dev_get_platdata(&pdev->dev) && pdev->dev.of_node) { + struct davinci_nand_pdata *pdata; + const char *mode; + u32 prop; + + pdata = devm_kzalloc(&pdev->dev, + sizeof(struct davinci_nand_pdata), + GFP_KERNEL); + pdev->dev.platform_data = pdata; + if (!pdata) + return ERR_PTR(-ENOMEM); + if (!of_property_read_u32(pdev->dev.of_node, + "ti,davinci-chipselect", &prop)) + pdata->core_chipsel = prop; + else + return ERR_PTR(-EINVAL); + + if (!of_property_read_u32(pdev->dev.of_node, + "ti,davinci-mask-ale", &prop)) + pdata->mask_ale = prop; + if (!of_property_read_u32(pdev->dev.of_node, + "ti,davinci-mask-cle", &prop)) + pdata->mask_cle = prop; + if (!of_property_read_u32(pdev->dev.of_node, + "ti,davinci-mask-chipsel", &prop)) + pdata->mask_chipsel = prop; + if (!of_property_read_string(pdev->dev.of_node, + "ti,davinci-ecc-mode", &mode)) { + if (!strncmp("none", mode, 4)) + pdata->engine_type = NAND_ECC_ENGINE_TYPE_NONE; + if (!strncmp("soft", mode, 4)) + pdata->engine_type = NAND_ECC_ENGINE_TYPE_SOFT; + if (!strncmp("hw", mode, 2)) + pdata->engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; + } + if (!of_property_read_u32(pdev->dev.of_node, + "ti,davinci-ecc-bits", &prop)) + pdata->ecc_bits = prop; + + if (!of_property_read_u32(pdev->dev.of_node, + "ti,davinci-nand-buswidth", &prop) && prop == 16) + pdata->options |= NAND_BUSWIDTH_16; + + if (of_property_read_bool(pdev->dev.of_node, + "ti,davinci-nand-use-bbt")) + pdata->bbt_options = NAND_BBT_USE_FLASH; + + /* + * Since kernel v4.8, this driver has been fixed to enable + * use of 4-bit hardware ECC with subpages and verified on + * TI's keystone EVMs (K2L, K2HK and K2E). + * However, in the interest of not breaking systems using + * existing UBI partitions, sub-page writes are not being + * (re)enabled. If you want to use subpage writes on Keystone + * platforms (i.e. do not have any existing UBI partitions), + * then use "ti,davinci-nand" as the compatible in your + * device-tree file. + */ + if (of_device_is_compatible(pdev->dev.of_node, + "ti,keystone-nand")) { + pdata->options |= NAND_NO_SUBPAGE_WRITE; + } + } + + return dev_get_platdata(&pdev->dev); +} +#else +static struct davinci_nand_pdata + *nand_davinci_get_pdata(struct platform_device *pdev) +{ + return dev_get_platdata(&pdev->dev); +} +#endif + +static int davinci_nand_attach_chip(struct nand_chip *chip) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct davinci_nand_info *info = to_davinci_nand(mtd); + struct davinci_nand_pdata *pdata = nand_davinci_get_pdata(info->pdev); + int ret = 0; + + if (IS_ERR(pdata)) + return PTR_ERR(pdata); + + /* Use board-specific ECC config */ + chip->ecc.engine_type = pdata->engine_type; + chip->ecc.placement = pdata->ecc_placement; + + switch (chip->ecc.engine_type) { + case NAND_ECC_ENGINE_TYPE_NONE: + pdata->ecc_bits = 0; + break; + case NAND_ECC_ENGINE_TYPE_SOFT: + pdata->ecc_bits = 0; + /* + * This driver expects Hamming based ECC when engine_type is set + * to NAND_ECC_ENGINE_TYPE_SOFT. Force ecc.algo to + * NAND_ECC_ALGO_HAMMING to avoid adding an extra ->ecc_algo + * field to davinci_nand_pdata. + */ + chip->ecc.algo = NAND_ECC_ALGO_HAMMING; + break; + case NAND_ECC_ENGINE_TYPE_ON_HOST: + if (pdata->ecc_bits == 4) { + int chunks = mtd->writesize / 512; + + if (!chunks || mtd->oobsize < 16) { + dev_dbg(&info->pdev->dev, "too small\n"); + return -EINVAL; + } + + /* + * No sanity checks: CPUs must support this, + * and the chips may not use NAND_BUSWIDTH_16. + */ + + /* No sharing 4-bit hardware between chipselects yet */ + spin_lock_irq(&davinci_nand_lock); + if (ecc4_busy) + ret = -EBUSY; + else + ecc4_busy = true; + spin_unlock_irq(&davinci_nand_lock); + + if (ret == -EBUSY) + return ret; + + chip->ecc.calculate = nand_davinci_calculate_4bit; + chip->ecc.correct = nand_davinci_correct_4bit; + chip->ecc.hwctl = nand_davinci_hwctl_4bit; + chip->ecc.bytes = 10; + chip->ecc.options = NAND_ECC_GENERIC_ERASED_CHECK; + chip->ecc.algo = NAND_ECC_ALGO_BCH; + + /* + * Update ECC layout if needed ... for 1-bit HW ECC, the + * default is OK, but it allocates 6 bytes when only 3 + * are needed (for each 512 bytes). For 4-bit HW ECC, + * the default is not usable: 10 bytes needed, not 6. + * + * For small page chips, preserve the manufacturer's + * badblock marking data ... and make sure a flash BBT + * table marker fits in the free bytes. + */ + if (chunks == 1) { + mtd_set_ooblayout(mtd, + &hwecc4_small_ooblayout_ops); + } else if (chunks == 4 || chunks == 8) { + mtd_set_ooblayout(mtd, + nand_get_large_page_ooblayout()); + chip->ecc.read_page = nand_read_page_hwecc_oob_first; + } else { + return -EIO; + } + } else { + /* 1bit ecc hamming */ + chip->ecc.calculate = nand_davinci_calculate_1bit; + chip->ecc.correct = nand_davinci_correct_1bit; + chip->ecc.hwctl = nand_davinci_hwctl_1bit; + chip->ecc.bytes = 3; + chip->ecc.algo = NAND_ECC_ALGO_HAMMING; + } + chip->ecc.size = 512; + chip->ecc.strength = pdata->ecc_bits; + break; + default: + return -EINVAL; + } + + return ret; +} + +static void nand_davinci_data_in(struct davinci_nand_info *info, void *buf, + unsigned int len, bool force_8bit) +{ + u32 alignment = ((uintptr_t)buf | len) & 3; + + if (force_8bit || (alignment & 1)) + ioread8_rep(info->current_cs, buf, len); + else if (alignment & 3) + ioread16_rep(info->current_cs, buf, len >> 1); + else + ioread32_rep(info->current_cs, buf, len >> 2); +} + +static void nand_davinci_data_out(struct davinci_nand_info *info, + const void *buf, unsigned int len, + bool force_8bit) +{ + u32 alignment = ((uintptr_t)buf | len) & 3; + + if (force_8bit || (alignment & 1)) + iowrite8_rep(info->current_cs, buf, len); + else if (alignment & 3) + iowrite16_rep(info->current_cs, buf, len >> 1); + else + iowrite32_rep(info->current_cs, buf, len >> 2); +} + +static int davinci_nand_exec_instr(struct davinci_nand_info *info, + const struct nand_op_instr *instr) +{ + unsigned int i, timeout_us; + u32 status; + int ret; + + switch (instr->type) { + case NAND_OP_CMD_INSTR: + iowrite8(instr->ctx.cmd.opcode, + info->current_cs + info->mask_cle); + break; + + case NAND_OP_ADDR_INSTR: + for (i = 0; i < instr->ctx.addr.naddrs; i++) { + iowrite8(instr->ctx.addr.addrs[i], + info->current_cs + info->mask_ale); + } + break; + + case NAND_OP_DATA_IN_INSTR: + nand_davinci_data_in(info, instr->ctx.data.buf.in, + instr->ctx.data.len, + instr->ctx.data.force_8bit); + break; + + case NAND_OP_DATA_OUT_INSTR: + nand_davinci_data_out(info, instr->ctx.data.buf.out, + instr->ctx.data.len, + instr->ctx.data.force_8bit); + break; + + case NAND_OP_WAITRDY_INSTR: + timeout_us = instr->ctx.waitrdy.timeout_ms * 1000; + ret = readl_relaxed_poll_timeout(info->base + NANDFSR_OFFSET, + status, status & BIT(0), 100, + timeout_us); + if (ret) + return ret; + + break; + } + + if (instr->delay_ns) + ndelay(instr->delay_ns); + + return 0; +} + +static int davinci_nand_exec_op(struct nand_chip *chip, + const struct nand_operation *op, + bool check_only) +{ + struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip)); + unsigned int i; + + if (check_only) + return 0; + + info->current_cs = info->vaddr + (op->cs * info->mask_chipsel); + + for (i = 0; i < op->ninstrs; i++) { + int ret; + + ret = davinci_nand_exec_instr(info, &op->instrs[i]); + if (ret) + return ret; + } + + return 0; +} + +static const struct nand_controller_ops davinci_nand_controller_ops = { + .attach_chip = davinci_nand_attach_chip, + .exec_op = davinci_nand_exec_op, +}; + +static int nand_davinci_probe(struct platform_device *pdev) +{ + struct davinci_nand_pdata *pdata; + struct davinci_nand_info *info; + struct resource *res1; + struct resource *res2; + void __iomem *vaddr; + void __iomem *base; + int ret; + uint32_t val; + struct mtd_info *mtd; + + pdata = nand_davinci_get_pdata(pdev); + if (IS_ERR(pdata)) + return PTR_ERR(pdata); + + /* insist on board-specific configuration */ + if (!pdata) + return -ENODEV; + + /* which external chipselect will we be managing? */ + if (pdata->core_chipsel > 3) + return -ENODEV; + + info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL); + if (!info) + return -ENOMEM; + + platform_set_drvdata(pdev, info); + + res1 = platform_get_resource(pdev, IORESOURCE_MEM, 0); + res2 = platform_get_resource(pdev, IORESOURCE_MEM, 1); + if (!res1 || !res2) { + dev_err(&pdev->dev, "resource missing\n"); + return -EINVAL; + } + + vaddr = devm_ioremap_resource(&pdev->dev, res1); + if (IS_ERR(vaddr)) + return PTR_ERR(vaddr); + + /* + * This registers range is used to setup NAND settings. In case with + * TI AEMIF driver, the same memory address range is requested already + * by AEMIF, so we cannot request it twice, just ioremap. + * The AEMIF and NAND drivers not use the same registers in this range. + */ + base = devm_ioremap(&pdev->dev, res2->start, resource_size(res2)); + if (!base) { + dev_err(&pdev->dev, "ioremap failed for resource %pR\n", res2); + return -EADDRNOTAVAIL; + } + + info->pdev = pdev; + info->base = base; + info->vaddr = vaddr; + + mtd = nand_to_mtd(&info->chip); + mtd->dev.parent = &pdev->dev; + nand_set_flash_node(&info->chip, pdev->dev.of_node); + + /* options such as NAND_BBT_USE_FLASH */ + info->chip.bbt_options = pdata->bbt_options; + /* options such as 16-bit widths */ + info->chip.options = pdata->options; + info->chip.bbt_td = pdata->bbt_td; + info->chip.bbt_md = pdata->bbt_md; + info->timing = pdata->timing; + + info->current_cs = info->vaddr; + info->core_chipsel = pdata->core_chipsel; + info->mask_chipsel = pdata->mask_chipsel; + + /* use nandboot-capable ALE/CLE masks by default */ + info->mask_ale = pdata->mask_ale ? : MASK_ALE; + info->mask_cle = pdata->mask_cle ? : MASK_CLE; + + spin_lock_irq(&davinci_nand_lock); + + /* put CSxNAND into NAND mode */ + val = davinci_nand_readl(info, NANDFCR_OFFSET); + val |= BIT(info->core_chipsel); + davinci_nand_writel(info, NANDFCR_OFFSET, val); + + spin_unlock_irq(&davinci_nand_lock); + + /* Scan to find existence of the device(s) */ + nand_controller_init(&info->controller); + info->controller.ops = &davinci_nand_controller_ops; + info->chip.controller = &info->controller; + ret = nand_scan(&info->chip, pdata->mask_chipsel ? 2 : 1); + if (ret < 0) { + dev_dbg(&pdev->dev, "no NAND chip(s) found\n"); + return ret; + } + + if (pdata->parts) + ret = mtd_device_register(mtd, pdata->parts, pdata->nr_parts); + else + ret = mtd_device_register(mtd, NULL, 0); + if (ret < 0) + goto err_cleanup_nand; + + val = davinci_nand_readl(info, NRCSR_OFFSET); + dev_info(&pdev->dev, "controller rev. %d.%d\n", + (val >> 8) & 0xff, val & 0xff); + + return 0; + +err_cleanup_nand: + nand_cleanup(&info->chip); + + return ret; +} + +static int nand_davinci_remove(struct platform_device *pdev) +{ + struct davinci_nand_info *info = platform_get_drvdata(pdev); + struct nand_chip *chip = &info->chip; + int ret; + + spin_lock_irq(&davinci_nand_lock); + if (chip->ecc.placement == NAND_ECC_PLACEMENT_INTERLEAVED) + ecc4_busy = false; + spin_unlock_irq(&davinci_nand_lock); + + ret = mtd_device_unregister(nand_to_mtd(chip)); + WARN_ON(ret); + nand_cleanup(chip); + + return 0; +} + +static struct platform_driver nand_davinci_driver = { + .probe = nand_davinci_probe, + .remove = nand_davinci_remove, + .driver = { + .name = "davinci_nand", + .of_match_table = of_match_ptr(davinci_nand_of_match), + }, +}; +MODULE_ALIAS("platform:davinci_nand"); + +module_platform_driver(nand_davinci_driver); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Texas Instruments"); +MODULE_DESCRIPTION("Davinci NAND flash driver"); + -- cgit v1.2.3