// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2016-2018, The Linux Foundation. All rights reserved. */ #define pr_fmt(fmt) "[drm:%s] " fmt, __func__ #include "dpu_kms.h" #include "dpu_hw_lm.h" #include "dpu_hw_ctl.h" #include "dpu_hw_pingpong.h" #include "dpu_hw_intf.h" #include "dpu_hw_wb.h" #include "dpu_hw_dspp.h" #include "dpu_hw_merge3d.h" #include "dpu_hw_dsc.h" #include "dpu_encoder.h" #include "dpu_trace.h" static inline bool reserved_by_other(uint32_t *res_map, int idx, uint32_t enc_id) { return res_map[idx] && res_map[idx] != enc_id; } /** * struct dpu_rm_requirements - Reservation requirements parameter bundle * @topology: selected topology for the display * @hw_res: Hardware resources required as reported by the encoders */ struct dpu_rm_requirements { struct msm_display_topology topology; }; int dpu_rm_destroy(struct dpu_rm *rm) { int i; for (i = 0; i < ARRAY_SIZE(rm->dspp_blks); i++) { struct dpu_hw_dspp *hw; if (rm->dspp_blks[i]) { hw = to_dpu_hw_dspp(rm->dspp_blks[i]); dpu_hw_dspp_destroy(hw); } } for (i = 0; i < ARRAY_SIZE(rm->pingpong_blks); i++) { struct dpu_hw_pingpong *hw; if (rm->pingpong_blks[i]) { hw = to_dpu_hw_pingpong(rm->pingpong_blks[i]); dpu_hw_pingpong_destroy(hw); } } for (i = 0; i < ARRAY_SIZE(rm->merge_3d_blks); i++) { struct dpu_hw_merge_3d *hw; if (rm->merge_3d_blks[i]) { hw = to_dpu_hw_merge_3d(rm->merge_3d_blks[i]); dpu_hw_merge_3d_destroy(hw); } } for (i = 0; i < ARRAY_SIZE(rm->mixer_blks); i++) { struct dpu_hw_mixer *hw; if (rm->mixer_blks[i]) { hw = to_dpu_hw_mixer(rm->mixer_blks[i]); dpu_hw_lm_destroy(hw); } } for (i = 0; i < ARRAY_SIZE(rm->ctl_blks); i++) { struct dpu_hw_ctl *hw; if (rm->ctl_blks[i]) { hw = to_dpu_hw_ctl(rm->ctl_blks[i]); dpu_hw_ctl_destroy(hw); } } for (i = 0; i < ARRAY_SIZE(rm->hw_intf); i++) dpu_hw_intf_destroy(rm->hw_intf[i]); for (i = 0; i < ARRAY_SIZE(rm->dsc_blks); i++) { struct dpu_hw_dsc *hw; if (rm->dsc_blks[i]) { hw = to_dpu_hw_dsc(rm->dsc_blks[i]); dpu_hw_dsc_destroy(hw); } } for (i = 0; i < ARRAY_SIZE(rm->hw_wb); i++) dpu_hw_wb_destroy(rm->hw_wb[i]); return 0; } int dpu_rm_init(struct dpu_rm *rm, const struct dpu_mdss_cfg *cat, void __iomem *mmio) { int rc, i; if (!rm || !cat || !mmio) { DPU_ERROR("invalid kms\n"); return -EINVAL; } /* Clear, setup lists */ memset(rm, 0, sizeof(*rm)); /* Interrogate HW catalog and create tracking items for hw blocks */ for (i = 0; i < cat->mixer_count; i++) { struct dpu_hw_mixer *hw; const struct dpu_lm_cfg *lm = &cat->mixer[i]; if (lm->pingpong == PINGPONG_MAX) { DPU_DEBUG("skip mixer %d without pingpong\n", lm->id); continue; } if (lm->id < LM_0 || lm->id >= LM_MAX) { DPU_ERROR("skip mixer %d with invalid id\n", lm->id); continue; } hw = dpu_hw_lm_init(lm->id, mmio, cat); if (IS_ERR(hw)) { rc = PTR_ERR(hw); DPU_ERROR("failed lm object creation: err %d\n", rc); goto fail; } rm->mixer_blks[lm->id - LM_0] = &hw->base; } for (i = 0; i < cat->merge_3d_count; i++) { struct dpu_hw_merge_3d *hw; const struct dpu_merge_3d_cfg *merge_3d = &cat->merge_3d[i]; if (merge_3d->id < MERGE_3D_0 || merge_3d->id >= MERGE_3D_MAX) { DPU_ERROR("skip merge_3d %d with invalid id\n", merge_3d->id); continue; } hw = dpu_hw_merge_3d_init(merge_3d->id, mmio, cat); if (IS_ERR(hw)) { rc = PTR_ERR(hw); DPU_ERROR("failed merge_3d object creation: err %d\n", rc); goto fail; } rm->merge_3d_blks[merge_3d->id - MERGE_3D_0] = &hw->base; } for (i = 0; i < cat->pingpong_count; i++) { struct dpu_hw_pingpong *hw; const struct dpu_pingpong_cfg *pp = &cat->pingpong[i]; if (pp->id < PINGPONG_0 || pp->id >= PINGPONG_MAX) { DPU_ERROR("skip pingpong %d with invalid id\n", pp->id); continue; } hw = dpu_hw_pingpong_init(pp->id, mmio, cat); if (IS_ERR(hw)) { rc = PTR_ERR(hw); DPU_ERROR("failed pingpong object creation: err %d\n", rc); goto fail; } if (pp->merge_3d && pp->merge_3d < MERGE_3D_MAX) hw->merge_3d = to_dpu_hw_merge_3d(rm->merge_3d_blks[pp->merge_3d - MERGE_3D_0]); rm->pingpong_blks[pp->id - PINGPONG_0] = &hw->base; } for (i = 0; i < cat->intf_count; i++) { struct dpu_hw_intf *hw; const struct dpu_intf_cfg *intf = &cat->intf[i]; if (intf->type == INTF_NONE) { DPU_DEBUG("skip intf %d with type none\n", i); continue; } if (intf->id < INTF_0 || intf->id >= INTF_MAX) { DPU_ERROR("skip intf %d with invalid id\n", intf->id); continue; } hw = dpu_hw_intf_init(intf->id, mmio, cat); if (IS_ERR(hw)) { rc = PTR_ERR(hw); DPU_ERROR("failed intf object creation: err %d\n", rc); goto fail; } rm->hw_intf[intf->id - INTF_0] = hw; } for (i = 0; i < cat->wb_count; i++) { struct dpu_hw_wb *hw; const struct dpu_wb_cfg *wb = &cat->wb[i]; if (wb->id < WB_0 || wb->id >= WB_MAX) { DPU_ERROR("skip intf %d with invalid id\n", wb->id); continue; } hw = dpu_hw_wb_init(wb->id, mmio, cat); if (IS_ERR(hw)) { rc = PTR_ERR(hw); DPU_ERROR("failed wb object creation: err %d\n", rc); goto fail; } rm->hw_wb[wb->id - WB_0] = hw; } for (i = 0; i < cat->ctl_count; i++) { struct dpu_hw_ctl *hw; const struct dpu_ctl_cfg *ctl = &cat->ctl[i]; if (ctl->id < CTL_0 || ctl->id >= CTL_MAX) { DPU_ERROR("skip ctl %d with invalid id\n", ctl->id); continue; } hw = dpu_hw_ctl_init(ctl->id, mmio, cat); if (IS_ERR(hw)) { rc = PTR_ERR(hw); DPU_ERROR("failed ctl object creation: err %d\n", rc); goto fail; } rm->ctl_blks[ctl->id - CTL_0] = &hw->base; } for (i = 0; i < cat->dspp_count; i++) { struct dpu_hw_dspp *hw; const struct dpu_dspp_cfg *dspp = &cat->dspp[i]; if (dspp->id < DSPP_0 || dspp->id >= DSPP_MAX) { DPU_ERROR("skip dspp %d with invalid id\n", dspp->id); continue; } hw = dpu_hw_dspp_init(dspp->id, mmio, cat); if (IS_ERR(hw)) { rc = PTR_ERR(hw); DPU_ERROR("failed dspp object creation: err %d\n", rc); goto fail; } rm->dspp_blks[dspp->id - DSPP_0] = &hw->base; } for (i = 0; i < cat->dsc_count; i++) { struct dpu_hw_dsc *hw; const struct dpu_dsc_cfg *dsc = &cat->dsc[i]; hw = dpu_hw_dsc_init(dsc->id, mmio, cat); if (IS_ERR_OR_NULL(hw)) { rc = PTR_ERR(hw); DPU_ERROR("failed dsc object creation: err %d\n", rc); goto fail; } rm->dsc_blks[dsc->id - DSC_0] = &hw->base; } return 0; fail: dpu_rm_destroy(rm); return rc ? rc : -EFAULT; } static bool _dpu_rm_needs_split_display(const struct msm_display_topology *top) { return top->num_intf > 1; } /** * _dpu_rm_check_lm_peer - check if a mixer is a peer of the primary * @rm: dpu resource manager handle * @primary_idx: index of primary mixer in rm->mixer_blks[] * @peer_idx: index of other mixer in rm->mixer_blks[] * Return: true if rm->mixer_blks[peer_idx] is a peer of * rm->mixer_blks[primary_idx] */ static bool _dpu_rm_check_lm_peer(struct dpu_rm *rm, int primary_idx, int peer_idx) { const struct dpu_lm_cfg *prim_lm_cfg; const struct dpu_lm_cfg *peer_cfg; prim_lm_cfg = to_dpu_hw_mixer(rm->mixer_blks[primary_idx])->cap; peer_cfg = to_dpu_hw_mixer(rm->mixer_blks[peer_idx])->cap; if (!test_bit(peer_cfg->id, &prim_lm_cfg->lm_pair_mask)) { DPU_DEBUG("lm %d not peer of lm %d\n", peer_cfg->id, peer_cfg->id); return false; } return true; } /** * _dpu_rm_check_lm_and_get_connected_blks - check if proposed layer mixer meets * proposed use case requirements, incl. hardwired dependent blocks like * pingpong * @rm: dpu resource manager handle * @global_state: resources shared across multiple kms objects * @enc_id: encoder id requesting for allocation * @lm_idx: index of proposed layer mixer in rm->mixer_blks[], function checks * if lm, and all other hardwired blocks connected to the lm (pp) is * available and appropriate * @pp_idx: output parameter, index of pingpong block attached to the layer * mixer in rm->pingpong_blks[]. * @dspp_idx: output parameter, index of dspp block attached to the layer * mixer in rm->dspp_blks[]. * @reqs: input parameter, rm requirements for HW blocks needed in the * datapath. * Return: true if lm matches all requirements, false otherwise */ static bool _dpu_rm_check_lm_and_get_connected_blks(struct dpu_rm *rm, struct dpu_global_state *global_state, uint32_t enc_id, int lm_idx, int *pp_idx, int *dspp_idx, struct dpu_rm_requirements *reqs) { const struct dpu_lm_cfg *lm_cfg; int idx; /* Already reserved? */ if (reserved_by_other(global_state->mixer_to_enc_id, lm_idx, enc_id)) { DPU_DEBUG("lm %d already reserved\n", lm_idx + LM_0); return false; } lm_cfg = to_dpu_hw_mixer(rm->mixer_blks[lm_idx])->cap; idx = lm_cfg->pingpong - PINGPONG_0; if (idx < 0 || idx >= ARRAY_SIZE(rm->pingpong_blks)) { DPU_ERROR("failed to get pp on lm %d\n", lm_cfg->pingpong); return false; } if (reserved_by_other(global_state->pingpong_to_enc_id, idx, enc_id)) { DPU_DEBUG("lm %d pp %d already reserved\n", lm_cfg->id, lm_cfg->pingpong); return false; } *pp_idx = idx; if (!reqs->topology.num_dspp) return true; idx = lm_cfg->dspp - DSPP_0; if (idx < 0 || idx >= ARRAY_SIZE(rm->dspp_blks)) { DPU_ERROR("failed to get dspp on lm %d\n", lm_cfg->dspp); return false; } if (reserved_by_other(global_state->dspp_to_enc_id, idx, enc_id)) { DPU_DEBUG("lm %d dspp %d already reserved\n", lm_cfg->id, lm_cfg->dspp); return false; } *dspp_idx = idx; return true; } static int _dpu_rm_reserve_lms(struct dpu_rm *rm, struct dpu_global_state *global_state, uint32_t enc_id, struct dpu_rm_requirements *reqs) { int lm_idx[MAX_BLOCKS]; int pp_idx[MAX_BLOCKS]; int dspp_idx[MAX_BLOCKS] = {0}; int i, j, lm_count = 0; if (!reqs->topology.num_lm) { DPU_ERROR("invalid number of lm: %d\n", reqs->topology.num_lm); return -EINVAL; } /* Find a primary mixer */ for (i = 0; i < ARRAY_SIZE(rm->mixer_blks) && lm_count < reqs->topology.num_lm; i++) { if (!rm->mixer_blks[i]) continue; lm_count = 0; lm_idx[lm_count] = i; if (!_dpu_rm_check_lm_and_get_connected_blks(rm, global_state, enc_id, i, &pp_idx[lm_count], &dspp_idx[lm_count], reqs)) { continue; } ++lm_count; /* Valid primary mixer found, find matching peers */ for (j = i + 1; j < ARRAY_SIZE(rm->mixer_blks) && lm_count < reqs->topology.num_lm; j++) { if (!rm->mixer_blks[j]) continue; if (!_dpu_rm_check_lm_peer(rm, i, j)) { DPU_DEBUG("lm %d not peer of lm %d\n", LM_0 + j, LM_0 + i); continue; } if (!_dpu_rm_check_lm_and_get_connected_blks(rm, global_state, enc_id, j, &pp_idx[lm_count], &dspp_idx[lm_count], reqs)) { continue; } lm_idx[lm_count] = j; ++lm_count; } } if (lm_count != reqs->topology.num_lm) { DPU_DEBUG("unable to find appropriate mixers\n"); return -ENAVAIL; } for (i = 0; i < lm_count; i++) { global_state->mixer_to_enc_id[lm_idx[i]] = enc_id; global_state->pingpong_to_enc_id[pp_idx[i]] = enc_id; global_state->dspp_to_enc_id[dspp_idx[i]] = reqs->topology.num_dspp ? enc_id : 0; trace_dpu_rm_reserve_lms(lm_idx[i] + LM_0, enc_id, pp_idx[i] + PINGPONG_0); } return 0; } static int _dpu_rm_reserve_ctls( struct dpu_rm *rm, struct dpu_global_state *global_state, uint32_t enc_id, const struct msm_display_topology *top) { int ctl_idx[MAX_BLOCKS]; int i = 0, j, num_ctls; bool needs_split_display; /* each hw_intf needs its own hw_ctrl to program its control path */ num_ctls = top->num_intf; needs_split_display = _dpu_rm_needs_split_display(top); for (j = 0; j < ARRAY_SIZE(rm->ctl_blks); j++) { const struct dpu_hw_ctl *ctl; unsigned long features; bool has_split_display; if (!rm->ctl_blks[j]) continue; if (reserved_by_other(global_state->ctl_to_enc_id, j, enc_id)) continue; ctl = to_dpu_hw_ctl(rm->ctl_blks[j]); features = ctl->caps->features; has_split_display = BIT(DPU_CTL_SPLIT_DISPLAY) & features; DPU_DEBUG("ctl %d caps 0x%lX\n", j + CTL_0, features); if (needs_split_display != has_split_display) continue; ctl_idx[i] = j; DPU_DEBUG("ctl %d match\n", j + CTL_0); if (++i == num_ctls) break; } if (i != num_ctls) return -ENAVAIL; for (i = 0; i < ARRAY_SIZE(ctl_idx) && i < num_ctls; i++) { global_state->ctl_to_enc_id[ctl_idx[i]] = enc_id; trace_dpu_rm_reserve_ctls(i + CTL_0, enc_id); } return 0; } static int _dpu_rm_reserve_dsc(struct dpu_rm *rm, struct dpu_global_state *global_state, struct drm_encoder *enc, const struct msm_display_topology *top) { int num_dsc = top->num_dsc; int i; /* check if DSC required are allocated or not */ for (i = 0; i < num_dsc; i++) { if (global_state->dsc_to_enc_id[i]) { DPU_ERROR("DSC %d is already allocated\n", i); return -EIO; } } for (i = 0; i < num_dsc; i++) global_state->dsc_to_enc_id[i] = enc->base.id; return 0; } static int _dpu_rm_make_reservation( struct dpu_rm *rm, struct dpu_global_state *global_state, struct drm_encoder *enc, struct dpu_rm_requirements *reqs) { int ret; ret = _dpu_rm_reserve_lms(rm, global_state, enc->base.id, reqs); if (ret) { DPU_ERROR("unable to find appropriate mixers\n"); return ret; } ret = _dpu_rm_reserve_ctls(rm, global_state, enc->base.id, &reqs->topology); if (ret) { DPU_ERROR("unable to find appropriate CTL\n"); return ret; } ret = _dpu_rm_reserve_dsc(rm, global_state, enc, &reqs->topology); if (ret) return ret; return ret; } static int _dpu_rm_populate_requirements( struct drm_encoder *enc, struct dpu_rm_requirements *reqs, struct msm_display_topology req_topology) { reqs->topology = req_topology; DRM_DEBUG_KMS("num_lm: %d num_enc: %d num_intf: %d\n", reqs->topology.num_lm, reqs->topology.num_enc, reqs->topology.num_intf); return 0; } static void _dpu_rm_clear_mapping(uint32_t *res_mapping, int cnt, uint32_t enc_id) { int i; for (i = 0; i < cnt; i++) { if (res_mapping[i] == enc_id) res_mapping[i] = 0; } } void dpu_rm_release(struct dpu_global_state *global_state, struct drm_encoder *enc) { _dpu_rm_clear_mapping(global_state->pingpong_to_enc_id, ARRAY_SIZE(global_state->pingpong_to_enc_id), enc->base.id); _dpu_rm_clear_mapping(global_state->mixer_to_enc_id, ARRAY_SIZE(global_state->mixer_to_enc_id), enc->base.id); _dpu_rm_clear_mapping(global_state->ctl_to_enc_id, ARRAY_SIZE(global_state->ctl_to_enc_id), enc->base.id); _dpu_rm_clear_mapping(global_state->dsc_to_enc_id, ARRAY_SIZE(global_state->dsc_to_enc_id), enc->base.id); _dpu_rm_clear_mapping(global_state->dspp_to_enc_id, ARRAY_SIZE(global_state->dspp_to_enc_id), enc->base.id); } int dpu_rm_reserve( struct dpu_rm *rm, struct dpu_global_state *global_state, struct drm_encoder *enc, struct drm_crtc_state *crtc_state, struct msm_display_topology topology) { struct dpu_rm_requirements reqs; int ret; /* Check if this is just a page-flip */ if (!drm_atomic_crtc_needs_modeset(crtc_state)) return 0; if (IS_ERR(global_state)) { DPU_ERROR("failed to global state\n"); return PTR_ERR(global_state); } DRM_DEBUG_KMS("reserving hw for enc %d crtc %d\n", enc->base.id, crtc_state->crtc->base.id); ret = _dpu_rm_populate_requirements(enc, &reqs, topology); if (ret) { DPU_ERROR("failed to populate hw requirements\n"); return ret; } ret = _dpu_rm_make_reservation(rm, global_state, enc, &reqs); if (ret) DPU_ERROR("failed to reserve hw resources: %d\n", ret); return ret; } int dpu_rm_get_assigned_resources(struct dpu_rm *rm, struct dpu_global_state *global_state, uint32_t enc_id, enum dpu_hw_blk_type type, struct dpu_hw_blk **blks, int blks_size) { struct dpu_hw_blk **hw_blks; uint32_t *hw_to_enc_id; int i, num_blks, max_blks; switch (type) { case DPU_HW_BLK_PINGPONG: hw_blks = rm->pingpong_blks; hw_to_enc_id = global_state->pingpong_to_enc_id; max_blks = ARRAY_SIZE(rm->pingpong_blks); break; case DPU_HW_BLK_LM: hw_blks = rm->mixer_blks; hw_to_enc_id = global_state->mixer_to_enc_id; max_blks = ARRAY_SIZE(rm->mixer_blks); break; case DPU_HW_BLK_CTL: hw_blks = rm->ctl_blks; hw_to_enc_id = global_state->ctl_to_enc_id; max_blks = ARRAY_SIZE(rm->ctl_blks); break; case DPU_HW_BLK_DSPP: hw_blks = rm->dspp_blks; hw_to_enc_id = global_state->dspp_to_enc_id; max_blks = ARRAY_SIZE(rm->dspp_blks); break; case DPU_HW_BLK_DSC: hw_blks = rm->dsc_blks; hw_to_enc_id = global_state->dsc_to_enc_id; max_blks = ARRAY_SIZE(rm->dsc_blks); break; default: DPU_ERROR("blk type %d not managed by rm\n", type); return 0; } num_blks = 0; for (i = 0; i < max_blks; i++) { if (hw_to_enc_id[i] != enc_id) continue; if (num_blks == blks_size) { DPU_ERROR("More than %d resources assigned to enc %d\n", blks_size, enc_id); break; } if (!hw_blks[i]) { DPU_ERROR("Allocated resource %d unavailable to assign to enc %d\n", type, enc_id); break; } blks[num_blks++] = hw_blks[i]; } return num_blks; }