// SPDX-License-Identifier: GPL-2.0 /* * Driver for the ST STV6111 tuner * * Copyright (C) 2014 Digital Devices GmbH */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/init.h> #include <linux/delay.h> #include <linux/firmware.h> #include <linux/i2c.h> #include <asm/div64.h> #include "stv6111.h" #include <media/dvb_frontend.h> struct stv { struct i2c_adapter *i2c; u8 adr; u8 reg[11]; u32 ref_freq; u32 frequency; }; struct slookup { s16 value; u16 reg_value; }; static const struct slookup lnagain_nf_lookup[] = { /* Gain *100dB // Reg */ { 2572, 0 }, { 2575, 1 }, { 2580, 2 }, { 2588, 3 }, { 2596, 4 }, { 2611, 5 }, { 2633, 6 }, { 2664, 7 }, { 2701, 8 }, { 2753, 9 }, { 2816, 10 }, { 2902, 11 }, { 2995, 12 }, { 3104, 13 }, { 3215, 14 }, { 3337, 15 }, { 3492, 16 }, { 3614, 17 }, { 3731, 18 }, { 3861, 19 }, { 3988, 20 }, { 4124, 21 }, { 4253, 22 }, { 4386, 23 }, { 4505, 24 }, { 4623, 25 }, { 4726, 26 }, { 4821, 27 }, { 4903, 28 }, { 4979, 29 }, { 5045, 30 }, { 5102, 31 } }; static const struct slookup lnagain_iip3_lookup[] = { /* Gain *100dB // reg */ { 1548, 0 }, { 1552, 1 }, { 1569, 2 }, { 1565, 3 }, { 1577, 4 }, { 1594, 5 }, { 1627, 6 }, { 1656, 7 }, { 1700, 8 }, { 1748, 9 }, { 1805, 10 }, { 1896, 11 }, { 1995, 12 }, { 2113, 13 }, { 2233, 14 }, { 2366, 15 }, { 2543, 16 }, { 2687, 17 }, { 2842, 18 }, { 2999, 19 }, { 3167, 20 }, { 3342, 21 }, { 3507, 22 }, { 3679, 23 }, { 3827, 24 }, { 3970, 25 }, { 4094, 26 }, { 4210, 27 }, { 4308, 28 }, { 4396, 29 }, { 4468, 30 }, { 4535, 31 } }; static const struct slookup gain_rfagc_lookup[] = { /* Gain *100dB // reg */ { 4870, 0x3000 }, { 4850, 0x3C00 }, { 4800, 0x4500 }, { 4750, 0x4800 }, { 4700, 0x4B00 }, { 4650, 0x4D00 }, { 4600, 0x4F00 }, { 4550, 0x5100 }, { 4500, 0x5200 }, { 4420, 0x5500 }, { 4316, 0x5800 }, { 4200, 0x5B00 }, { 4119, 0x5D00 }, { 3999, 0x6000 }, { 3950, 0x6100 }, { 3876, 0x6300 }, { 3755, 0x6600 }, { 3641, 0x6900 }, { 3567, 0x6B00 }, { 3425, 0x6F00 }, { 3350, 0x7100 }, { 3236, 0x7400 }, { 3118, 0x7700 }, { 3004, 0x7A00 }, { 2917, 0x7C00 }, { 2776, 0x7F00 }, { 2635, 0x8200 }, { 2516, 0x8500 }, { 2406, 0x8800 }, { 2290, 0x8B00 }, { 2170, 0x8E00 }, { 2073, 0x9100 }, { 1949, 0x9400 }, { 1836, 0x9700 }, { 1712, 0x9A00 }, { 1631, 0x9C00 }, { 1515, 0x9F00 }, { 1400, 0xA200 }, { 1323, 0xA400 }, { 1203, 0xA700 }, { 1091, 0xAA00 }, { 1011, 0xAC00 }, { 904, 0xAF00 }, { 787, 0xB200 }, { 685, 0xB500 }, { 571, 0xB800 }, { 464, 0xBB00 }, { 374, 0xBE00 }, { 275, 0xC200 }, { 181, 0xC600 }, { 102, 0xCC00 }, { 49, 0xD900 } }; /* * This table is 6 dB too low comapred to the others (probably created with * a different BB_MAG setting) */ static const struct slookup gain_channel_agc_nf_lookup[] = { /* Gain *100dB // reg */ { 7082, 0x3000 }, { 7052, 0x4000 }, { 7007, 0x4600 }, { 6954, 0x4A00 }, { 6909, 0x4D00 }, { 6833, 0x5100 }, { 6753, 0x5400 }, { 6659, 0x5700 }, { 6561, 0x5A00 }, { 6472, 0x5C00 }, { 6366, 0x5F00 }, { 6259, 0x6100 }, { 6151, 0x6400 }, { 6026, 0x6700 }, { 5920, 0x6900 }, { 5835, 0x6B00 }, { 5770, 0x6C00 }, { 5681, 0x6E00 }, { 5596, 0x7000 }, { 5503, 0x7200 }, { 5429, 0x7300 }, { 5319, 0x7500 }, { 5220, 0x7700 }, { 5111, 0x7900 }, { 4983, 0x7B00 }, { 4876, 0x7D00 }, { 4755, 0x7F00 }, { 4635, 0x8100 }, { 4499, 0x8300 }, { 4405, 0x8500 }, { 4323, 0x8600 }, { 4233, 0x8800 }, { 4156, 0x8A00 }, { 4038, 0x8C00 }, { 3935, 0x8E00 }, { 3823, 0x9000 }, { 3712, 0x9200 }, { 3601, 0x9500 }, { 3511, 0x9700 }, { 3413, 0x9900 }, { 3309, 0x9B00 }, { 3213, 0x9D00 }, { 3088, 0x9F00 }, { 2992, 0xA100 }, { 2878, 0xA400 }, { 2769, 0xA700 }, { 2645, 0xAA00 }, { 2538, 0xAD00 }, { 2441, 0xB000 }, { 2350, 0xB600 }, { 2237, 0xBA00 }, { 2137, 0xBF00 }, { 2039, 0xC500 }, { 1938, 0xDF00 }, { 1927, 0xFF00 } }; static const struct slookup gain_channel_agc_iip3_lookup[] = { /* Gain *100dB // reg */ { 7070, 0x3000 }, { 7028, 0x4000 }, { 7019, 0x4600 }, { 6900, 0x4A00 }, { 6811, 0x4D00 }, { 6763, 0x5100 }, { 6690, 0x5400 }, { 6644, 0x5700 }, { 6617, 0x5A00 }, { 6598, 0x5C00 }, { 6462, 0x5F00 }, { 6348, 0x6100 }, { 6197, 0x6400 }, { 6154, 0x6700 }, { 6098, 0x6900 }, { 5893, 0x6B00 }, { 5812, 0x6C00 }, { 5773, 0x6E00 }, { 5723, 0x7000 }, { 5661, 0x7200 }, { 5579, 0x7300 }, { 5460, 0x7500 }, { 5308, 0x7700 }, { 5099, 0x7900 }, { 4910, 0x7B00 }, { 4800, 0x7D00 }, { 4785, 0x7F00 }, { 4635, 0x8100 }, { 4466, 0x8300 }, { 4314, 0x8500 }, { 4295, 0x8600 }, { 4144, 0x8800 }, { 3920, 0x8A00 }, { 3889, 0x8C00 }, { 3771, 0x8E00 }, { 3655, 0x9000 }, { 3446, 0x9200 }, { 3298, 0x9500 }, { 3083, 0x9700 }, { 3015, 0x9900 }, { 2833, 0x9B00 }, { 2746, 0x9D00 }, { 2632, 0x9F00 }, { 2598, 0xA100 }, { 2480, 0xA400 }, { 2236, 0xA700 }, { 2171, 0xAA00 }, { 2060, 0xAD00 }, { 1999, 0xB000 }, { 1974, 0xB600 }, { 1820, 0xBA00 }, { 1741, 0xBF00 }, { 1655, 0xC500 }, { 1444, 0xDF00 }, { 1325, 0xFF00 }, }; static inline u32 muldiv32(u32 a, u32 b, u32 c) { u64 tmp64; tmp64 = (u64)a * (u64)b; do_div(tmp64, c); return (u32)tmp64; } static int i2c_read(struct i2c_adapter *adap, u8 adr, u8 *msg, int len, u8 *answ, int alen) { struct i2c_msg msgs[2] = { { .addr = adr, .flags = 0, .buf = msg, .len = len}, { .addr = adr, .flags = I2C_M_RD, .buf = answ, .len = alen } }; if (i2c_transfer(adap, msgs, 2) != 2) { dev_err(&adap->dev, "i2c read error\n"); return -EIO; } return 0; } static int i2c_write(struct i2c_adapter *adap, u8 adr, u8 *data, int len) { struct i2c_msg msg = {.addr = adr, .flags = 0, .buf = data, .len = len}; if (i2c_transfer(adap, &msg, 1) != 1) { dev_err(&adap->dev, "i2c write error\n"); return -EIO; } return 0; } static int write_regs(struct stv *state, int reg, int len) { u8 d[12]; memcpy(&d[1], &state->reg[reg], len); d[0] = reg; return i2c_write(state->i2c, state->adr, d, len + 1); } static int write_reg(struct stv *state, u8 reg, u8 val) { u8 d[2] = {reg, val}; return i2c_write(state->i2c, state->adr, d, 2); } static int read_reg(struct stv *state, u8 reg, u8 *val) { return i2c_read(state->i2c, state->adr, ®, 1, val, 1); } static int wait_for_call_done(struct stv *state, u8 mask) { int status = 0; u32 lock_retry_count = 10; while (lock_retry_count > 0) { u8 regval; status = read_reg(state, 9, ®val); if (status < 0) return status; if ((regval & mask) == 0) break; usleep_range(4000, 6000); lock_retry_count -= 1; status = -EIO; } return status; } static void init_state(struct stv *state) { u32 clkdiv = 0; u32 agcmode = 0; u32 agcref = 2; u32 agcset = 0xffffffff; u32 bbmode = 0xffffffff; state->reg[0] = 0x08; state->reg[1] = 0x41; state->reg[2] = 0x8f; state->reg[3] = 0x00; state->reg[4] = 0xce; state->reg[5] = 0x54; state->reg[6] = 0x55; state->reg[7] = 0x45; state->reg[8] = 0x46; state->reg[9] = 0xbd; state->reg[10] = 0x11; state->ref_freq = 16000; if (clkdiv <= 3) state->reg[0x00] |= (clkdiv & 0x03); if (agcmode <= 3) { state->reg[0x03] |= (agcmode << 5); if (agcmode == 0x01) state->reg[0x01] |= 0x30; } if (bbmode <= 3) state->reg[0x01] = (state->reg[0x01] & ~0x30) | (bbmode << 4); if (agcref <= 7) state->reg[0x03] |= agcref; if (agcset <= 31) state->reg[0x02] = (state->reg[0x02] & ~0x1F) | agcset | 0x40; } static int attach_init(struct stv *state) { if (write_regs(state, 0, 11)) return -ENODEV; return 0; } static void release(struct dvb_frontend *fe) { kfree(fe->tuner_priv); fe->tuner_priv = NULL; } static int set_bandwidth(struct dvb_frontend *fe, u32 cutoff_frequency) { struct stv *state = fe->tuner_priv; u32 index = (cutoff_frequency + 999999) / 1000000; int stat = 0; if (index < 6) index = 6; if (index > 50) index = 50; if ((state->reg[0x08] & ~0xFC) == ((index - 6) << 2)) return 0; state->reg[0x08] = (state->reg[0x08] & ~0xFC) | ((index - 6) << 2); state->reg[0x09] = (state->reg[0x09] & ~0x0C) | 0x08; if (fe->ops.i2c_gate_ctrl) stat = fe->ops.i2c_gate_ctrl(fe, 1); if (!stat) { write_regs(state, 0x08, 2); wait_for_call_done(state, 0x08); } if (fe->ops.i2c_gate_ctrl && !stat) fe->ops.i2c_gate_ctrl(fe, 0); return stat; } static int set_lof(struct stv *state, u32 local_frequency, u32 cutoff_frequency) { u32 index = (cutoff_frequency + 999999) / 1000000; u32 frequency = (local_frequency + 500) / 1000; u32 p = 1, psel = 0, fvco, div, frac; u8 icp, tmp; if (index < 6) index = 6; if (index > 50) index = 50; if (frequency <= 1300000) { p = 4; psel = 1; } else { p = 2; psel = 0; } fvco = frequency * p; div = fvco / state->ref_freq; frac = fvco % state->ref_freq; frac = muldiv32(frac, 0x40000, state->ref_freq); icp = 0; if (fvco < 2700000) icp = 0; else if (fvco < 2950000) icp = 1; else if (fvco < 3300000) icp = 2; else if (fvco < 3700000) icp = 3; else if (fvco < 4200000) icp = 5; else if (fvco < 4800000) icp = 6; else icp = 7; state->reg[0x02] |= 0x80; /* LNA IIP3 Mode */ state->reg[0x03] = (state->reg[0x03] & ~0x80) | (psel << 7); state->reg[0x04] = (div & 0xFF); state->reg[0x05] = (((div >> 8) & 0x01) | ((frac & 0x7F) << 1)) & 0xff; state->reg[0x06] = ((frac >> 7) & 0xFF); state->reg[0x07] = (state->reg[0x07] & ~0x07) | ((frac >> 15) & 0x07); state->reg[0x07] = (state->reg[0x07] & ~0xE0) | (icp << 5); state->reg[0x08] = (state->reg[0x08] & ~0xFC) | ((index - 6) << 2); /* Start cal vco,CF */ state->reg[0x09] = (state->reg[0x09] & ~0x0C) | 0x0C; write_regs(state, 2, 8); wait_for_call_done(state, 0x0C); usleep_range(10000, 12000); read_reg(state, 0x03, &tmp); if (tmp & 0x10) { state->reg[0x02] &= ~0x80; /* LNA NF Mode */ write_regs(state, 2, 1); } read_reg(state, 0x08, &tmp); state->frequency = frequency; return 0; } static int set_params(struct dvb_frontend *fe) { struct stv *state = fe->tuner_priv; struct dtv_frontend_properties *p = &fe->dtv_property_cache; u32 freq, cutoff; int stat = 0; if (p->delivery_system != SYS_DVBS && p->delivery_system != SYS_DVBS2) return -EINVAL; freq = p->frequency * 1000; cutoff = 5000000 + muldiv32(p->symbol_rate, 135, 200); if (fe->ops.i2c_gate_ctrl) stat = fe->ops.i2c_gate_ctrl(fe, 1); if (!stat) set_lof(state, freq, cutoff); if (fe->ops.i2c_gate_ctrl && !stat) fe->ops.i2c_gate_ctrl(fe, 0); return 0; } static s32 table_lookup(const struct slookup *table, int table_size, u16 reg_value) { s32 gain; s32 reg_diff; int imin = 0; int imax = table_size - 1; int i; /* Assumes Table[0].RegValue < Table[imax].RegValue */ if (reg_value <= table[0].reg_value) { gain = table[0].value; } else if (reg_value >= table[imax].reg_value) { gain = table[imax].value; } else { while ((imax - imin) > 1) { i = (imax + imin) / 2; if ((table[imin].reg_value <= reg_value) && (reg_value <= table[i].reg_value)) imax = i; else imin = i; } reg_diff = table[imax].reg_value - table[imin].reg_value; gain = table[imin].value; if (reg_diff != 0) gain += ((s32)(reg_value - table[imin].reg_value) * (s32)(table[imax].value - table[imin].value)) / reg_diff; } return gain; } static int get_rf_strength(struct dvb_frontend *fe, u16 *st) { struct stv *state = fe->tuner_priv; u16 rfagc = *st; s32 gain; if ((state->reg[0x03] & 0x60) == 0) { /* RF Mode, Read AGC ADC */ u8 reg = 0; int stat = 0; if (fe->ops.i2c_gate_ctrl) stat = fe->ops.i2c_gate_ctrl(fe, 1); if (!stat) { write_reg(state, 0x02, state->reg[0x02] | 0x20); read_reg(state, 2, ®); if (reg & 0x20) read_reg(state, 2, ®); } if (fe->ops.i2c_gate_ctrl && !stat) fe->ops.i2c_gate_ctrl(fe, 0); if ((state->reg[0x02] & 0x80) == 0) /* NF */ gain = table_lookup(lnagain_nf_lookup, ARRAY_SIZE(lnagain_nf_lookup), reg & 0x1F); else /* IIP3 */ gain = table_lookup(lnagain_iip3_lookup, ARRAY_SIZE(lnagain_iip3_lookup), reg & 0x1F); gain += table_lookup(gain_rfagc_lookup, ARRAY_SIZE(gain_rfagc_lookup), rfagc); gain -= 2400; } else { /* Channel Mode */ if ((state->reg[0x02] & 0x80) == 0) { /* NF */ gain = table_lookup( gain_channel_agc_nf_lookup, ARRAY_SIZE(gain_channel_agc_nf_lookup), rfagc); gain += 600; } else { /* IIP3 */ gain = table_lookup( gain_channel_agc_iip3_lookup, ARRAY_SIZE(gain_channel_agc_iip3_lookup), rfagc); } } if (state->frequency > 0) /* Tilt correction ( 0.00016 dB/MHz ) */ gain -= ((((s32)(state->frequency / 1000) - 1550) * 2) / 12); /* + (BBGain * 10); */ gain += (s32)((state->reg[0x01] & 0xC0) >> 6) * 600 - 1300; if (gain < 0) gain = 0; else if (gain > 10000) gain = 10000; *st = 10000 - gain; return 0; } static const struct dvb_tuner_ops tuner_ops = { .info = { .name = "ST STV6111", .frequency_min_hz = 950 * MHz, .frequency_max_hz = 2150 * MHz, }, .set_params = set_params, .release = release, .get_rf_strength = get_rf_strength, .set_bandwidth = set_bandwidth, }; struct dvb_frontend *stv6111_attach(struct dvb_frontend *fe, struct i2c_adapter *i2c, u8 adr) { struct stv *state; int stat = -ENODEV; int gatestat = 0; state = kzalloc(sizeof(*state), GFP_KERNEL); if (!state) return NULL; state->adr = adr; state->i2c = i2c; memcpy(&fe->ops.tuner_ops, &tuner_ops, sizeof(struct dvb_tuner_ops)); init_state(state); if (fe->ops.i2c_gate_ctrl) gatestat = fe->ops.i2c_gate_ctrl(fe, 1); if (!gatestat) stat = attach_init(state); if (fe->ops.i2c_gate_ctrl && !gatestat) fe->ops.i2c_gate_ctrl(fe, 0); if (stat < 0) { kfree(state); return NULL; } fe->tuner_priv = state; return fe; } EXPORT_SYMBOL_GPL(stv6111_attach); MODULE_DESCRIPTION("ST STV6111 satellite tuner driver"); MODULE_AUTHOR("Ralph Metzler, Manfred Voelkel"); MODULE_LICENSE("GPL v2");