diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:49:45 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:49:45 +0000 |
commit | 2c3c1048746a4622d8c89a29670120dc8fab93c4 (patch) | |
tree | 848558de17fb3008cdf4d861b01ac7781903ce39 /arch/arm64/mm/fault.c | |
parent | Initial commit. (diff) | |
download | linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.tar.xz linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.zip |
Adding upstream version 6.1.76.upstream/6.1.76
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'arch/arm64/mm/fault.c')
-rw-r--r-- | arch/arm64/mm/fault.c | 920 |
1 files changed, 920 insertions, 0 deletions
diff --git a/arch/arm64/mm/fault.c b/arch/arm64/mm/fault.c new file mode 100644 index 000000000..6b6b8a82f --- /dev/null +++ b/arch/arm64/mm/fault.c @@ -0,0 +1,920 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Based on arch/arm/mm/fault.c + * + * Copyright (C) 1995 Linus Torvalds + * Copyright (C) 1995-2004 Russell King + * Copyright (C) 2012 ARM Ltd. + */ + +#include <linux/acpi.h> +#include <linux/bitfield.h> +#include <linux/extable.h> +#include <linux/kfence.h> +#include <linux/signal.h> +#include <linux/mm.h> +#include <linux/hardirq.h> +#include <linux/init.h> +#include <linux/kasan.h> +#include <linux/kprobes.h> +#include <linux/uaccess.h> +#include <linux/page-flags.h> +#include <linux/sched/signal.h> +#include <linux/sched/debug.h> +#include <linux/highmem.h> +#include <linux/perf_event.h> +#include <linux/preempt.h> +#include <linux/hugetlb.h> + +#include <asm/acpi.h> +#include <asm/bug.h> +#include <asm/cmpxchg.h> +#include <asm/cpufeature.h> +#include <asm/efi.h> +#include <asm/exception.h> +#include <asm/daifflags.h> +#include <asm/debug-monitors.h> +#include <asm/esr.h> +#include <asm/kprobes.h> +#include <asm/mte.h> +#include <asm/processor.h> +#include <asm/sysreg.h> +#include <asm/system_misc.h> +#include <asm/tlbflush.h> +#include <asm/traps.h> + +struct fault_info { + int (*fn)(unsigned long far, unsigned long esr, + struct pt_regs *regs); + int sig; + int code; + const char *name; +}; + +static const struct fault_info fault_info[]; +static struct fault_info debug_fault_info[]; + +static inline const struct fault_info *esr_to_fault_info(unsigned long esr) +{ + return fault_info + (esr & ESR_ELx_FSC); +} + +static inline const struct fault_info *esr_to_debug_fault_info(unsigned long esr) +{ + return debug_fault_info + DBG_ESR_EVT(esr); +} + +static void data_abort_decode(unsigned long esr) +{ + pr_alert("Data abort info:\n"); + + if (esr & ESR_ELx_ISV) { + pr_alert(" Access size = %u byte(s)\n", + 1U << ((esr & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT)); + pr_alert(" SSE = %lu, SRT = %lu\n", + (esr & ESR_ELx_SSE) >> ESR_ELx_SSE_SHIFT, + (esr & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT); + pr_alert(" SF = %lu, AR = %lu\n", + (esr & ESR_ELx_SF) >> ESR_ELx_SF_SHIFT, + (esr & ESR_ELx_AR) >> ESR_ELx_AR_SHIFT); + } else { + pr_alert(" ISV = 0, ISS = 0x%08lx\n", esr & ESR_ELx_ISS_MASK); + } + + pr_alert(" CM = %lu, WnR = %lu\n", + (esr & ESR_ELx_CM) >> ESR_ELx_CM_SHIFT, + (esr & ESR_ELx_WNR) >> ESR_ELx_WNR_SHIFT); +} + +static void mem_abort_decode(unsigned long esr) +{ + pr_alert("Mem abort info:\n"); + + pr_alert(" ESR = 0x%016lx\n", esr); + pr_alert(" EC = 0x%02lx: %s, IL = %u bits\n", + ESR_ELx_EC(esr), esr_get_class_string(esr), + (esr & ESR_ELx_IL) ? 32 : 16); + pr_alert(" SET = %lu, FnV = %lu\n", + (esr & ESR_ELx_SET_MASK) >> ESR_ELx_SET_SHIFT, + (esr & ESR_ELx_FnV) >> ESR_ELx_FnV_SHIFT); + pr_alert(" EA = %lu, S1PTW = %lu\n", + (esr & ESR_ELx_EA) >> ESR_ELx_EA_SHIFT, + (esr & ESR_ELx_S1PTW) >> ESR_ELx_S1PTW_SHIFT); + pr_alert(" FSC = 0x%02lx: %s\n", (esr & ESR_ELx_FSC), + esr_to_fault_info(esr)->name); + + if (esr_is_data_abort(esr)) + data_abort_decode(esr); +} + +static inline unsigned long mm_to_pgd_phys(struct mm_struct *mm) +{ + /* Either init_pg_dir or swapper_pg_dir */ + if (mm == &init_mm) + return __pa_symbol(mm->pgd); + + return (unsigned long)virt_to_phys(mm->pgd); +} + +/* + * Dump out the page tables associated with 'addr' in the currently active mm. + */ +static void show_pte(unsigned long addr) +{ + struct mm_struct *mm; + pgd_t *pgdp; + pgd_t pgd; + + if (is_ttbr0_addr(addr)) { + /* TTBR0 */ + mm = current->active_mm; + if (mm == &init_mm) { + pr_alert("[%016lx] user address but active_mm is swapper\n", + addr); + return; + } + } else if (is_ttbr1_addr(addr)) { + /* TTBR1 */ + mm = &init_mm; + } else { + pr_alert("[%016lx] address between user and kernel address ranges\n", + addr); + return; + } + + pr_alert("%s pgtable: %luk pages, %llu-bit VAs, pgdp=%016lx\n", + mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K, + vabits_actual, mm_to_pgd_phys(mm)); + pgdp = pgd_offset(mm, addr); + pgd = READ_ONCE(*pgdp); + pr_alert("[%016lx] pgd=%016llx", addr, pgd_val(pgd)); + + do { + p4d_t *p4dp, p4d; + pud_t *pudp, pud; + pmd_t *pmdp, pmd; + pte_t *ptep, pte; + + if (pgd_none(pgd) || pgd_bad(pgd)) + break; + + p4dp = p4d_offset(pgdp, addr); + p4d = READ_ONCE(*p4dp); + pr_cont(", p4d=%016llx", p4d_val(p4d)); + if (p4d_none(p4d) || p4d_bad(p4d)) + break; + + pudp = pud_offset(p4dp, addr); + pud = READ_ONCE(*pudp); + pr_cont(", pud=%016llx", pud_val(pud)); + if (pud_none(pud) || pud_bad(pud)) + break; + + pmdp = pmd_offset(pudp, addr); + pmd = READ_ONCE(*pmdp); + pr_cont(", pmd=%016llx", pmd_val(pmd)); + if (pmd_none(pmd) || pmd_bad(pmd)) + break; + + ptep = pte_offset_map(pmdp, addr); + pte = READ_ONCE(*ptep); + pr_cont(", pte=%016llx", pte_val(pte)); + pte_unmap(ptep); + } while(0); + + pr_cont("\n"); +} + +/* + * This function sets the access flags (dirty, accessed), as well as write + * permission, and only to a more permissive setting. + * + * It needs to cope with hardware update of the accessed/dirty state by other + * agents in the system and can safely skip the __sync_icache_dcache() call as, + * like set_pte_at(), the PTE is never changed from no-exec to exec here. + * + * Returns whether or not the PTE actually changed. + */ +int ptep_set_access_flags(struct vm_area_struct *vma, + unsigned long address, pte_t *ptep, + pte_t entry, int dirty) +{ + pteval_t old_pteval, pteval; + pte_t pte = READ_ONCE(*ptep); + + if (pte_same(pte, entry)) + return 0; + + /* only preserve the access flags and write permission */ + pte_val(entry) &= PTE_RDONLY | PTE_AF | PTE_WRITE | PTE_DIRTY; + + /* + * Setting the flags must be done atomically to avoid racing with the + * hardware update of the access/dirty state. The PTE_RDONLY bit must + * be set to the most permissive (lowest value) of *ptep and entry + * (calculated as: a & b == ~(~a | ~b)). + */ + pte_val(entry) ^= PTE_RDONLY; + pteval = pte_val(pte); + do { + old_pteval = pteval; + pteval ^= PTE_RDONLY; + pteval |= pte_val(entry); + pteval ^= PTE_RDONLY; + pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval); + } while (pteval != old_pteval); + + /* Invalidate a stale read-only entry */ + if (dirty) + flush_tlb_page(vma, address); + return 1; +} + +static bool is_el1_instruction_abort(unsigned long esr) +{ + return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR; +} + +static bool is_el1_data_abort(unsigned long esr) +{ + return ESR_ELx_EC(esr) == ESR_ELx_EC_DABT_CUR; +} + +static inline bool is_el1_permission_fault(unsigned long addr, unsigned long esr, + struct pt_regs *regs) +{ + unsigned long fsc_type = esr & ESR_ELx_FSC_TYPE; + + if (!is_el1_data_abort(esr) && !is_el1_instruction_abort(esr)) + return false; + + if (fsc_type == ESR_ELx_FSC_PERM) + return true; + + if (is_ttbr0_addr(addr) && system_uses_ttbr0_pan()) + return fsc_type == ESR_ELx_FSC_FAULT && + (regs->pstate & PSR_PAN_BIT); + + return false; +} + +static bool __kprobes is_spurious_el1_translation_fault(unsigned long addr, + unsigned long esr, + struct pt_regs *regs) +{ + unsigned long flags; + u64 par, dfsc; + + if (!is_el1_data_abort(esr) || + (esr & ESR_ELx_FSC_TYPE) != ESR_ELx_FSC_FAULT) + return false; + + local_irq_save(flags); + asm volatile("at s1e1r, %0" :: "r" (addr)); + isb(); + par = read_sysreg_par(); + local_irq_restore(flags); + + /* + * If we now have a valid translation, treat the translation fault as + * spurious. + */ + if (!(par & SYS_PAR_EL1_F)) + return true; + + /* + * If we got a different type of fault from the AT instruction, + * treat the translation fault as spurious. + */ + dfsc = FIELD_GET(SYS_PAR_EL1_FST, par); + return (dfsc & ESR_ELx_FSC_TYPE) != ESR_ELx_FSC_FAULT; +} + +static void die_kernel_fault(const char *msg, unsigned long addr, + unsigned long esr, struct pt_regs *regs) +{ + bust_spinlocks(1); + + pr_alert("Unable to handle kernel %s at virtual address %016lx\n", msg, + addr); + + kasan_non_canonical_hook(addr); + + mem_abort_decode(esr); + + show_pte(addr); + die("Oops", regs, esr); + bust_spinlocks(0); + make_task_dead(SIGKILL); +} + +#ifdef CONFIG_KASAN_HW_TAGS +static void report_tag_fault(unsigned long addr, unsigned long esr, + struct pt_regs *regs) +{ + /* + * SAS bits aren't set for all faults reported in EL1, so we can't + * find out access size. + */ + bool is_write = !!(esr & ESR_ELx_WNR); + kasan_report(addr, 0, is_write, regs->pc); +} +#else +/* Tag faults aren't enabled without CONFIG_KASAN_HW_TAGS. */ +static inline void report_tag_fault(unsigned long addr, unsigned long esr, + struct pt_regs *regs) { } +#endif + +static void do_tag_recovery(unsigned long addr, unsigned long esr, + struct pt_regs *regs) +{ + + report_tag_fault(addr, esr, regs); + + /* + * Disable MTE Tag Checking on the local CPU for the current EL. + * It will be done lazily on the other CPUs when they will hit a + * tag fault. + */ + sysreg_clear_set(sctlr_el1, SCTLR_EL1_TCF_MASK, + SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF, NONE)); + isb(); +} + +static bool is_el1_mte_sync_tag_check_fault(unsigned long esr) +{ + unsigned long fsc = esr & ESR_ELx_FSC; + + if (!is_el1_data_abort(esr)) + return false; + + if (fsc == ESR_ELx_FSC_MTE) + return true; + + return false; +} + +static bool is_translation_fault(unsigned long esr) +{ + return (esr & ESR_ELx_FSC_TYPE) == ESR_ELx_FSC_FAULT; +} + +static void __do_kernel_fault(unsigned long addr, unsigned long esr, + struct pt_regs *regs) +{ + const char *msg; + + /* + * Are we prepared to handle this kernel fault? + * We are almost certainly not prepared to handle instruction faults. + */ + if (!is_el1_instruction_abort(esr) && fixup_exception(regs)) + return; + + if (WARN_RATELIMIT(is_spurious_el1_translation_fault(addr, esr, regs), + "Ignoring spurious kernel translation fault at virtual address %016lx\n", addr)) + return; + + if (is_el1_mte_sync_tag_check_fault(esr)) { + do_tag_recovery(addr, esr, regs); + + return; + } + + if (is_el1_permission_fault(addr, esr, regs)) { + if (esr & ESR_ELx_WNR) + msg = "write to read-only memory"; + else if (is_el1_instruction_abort(esr)) + msg = "execute from non-executable memory"; + else + msg = "read from unreadable memory"; + } else if (addr < PAGE_SIZE) { + msg = "NULL pointer dereference"; + } else { + if (is_translation_fault(esr) && + kfence_handle_page_fault(addr, esr & ESR_ELx_WNR, regs)) + return; + + msg = "paging request"; + } + + if (efi_runtime_fixup_exception(regs, msg)) + return; + + die_kernel_fault(msg, addr, esr, regs); +} + +static void set_thread_esr(unsigned long address, unsigned long esr) +{ + current->thread.fault_address = address; + + /* + * If the faulting address is in the kernel, we must sanitize the ESR. + * From userspace's point of view, kernel-only mappings don't exist + * at all, so we report them as level 0 translation faults. + * (This is not quite the way that "no mapping there at all" behaves: + * an alignment fault not caused by the memory type would take + * precedence over translation fault for a real access to empty + * space. Unfortunately we can't easily distinguish "alignment fault + * not caused by memory type" from "alignment fault caused by memory + * type", so we ignore this wrinkle and just return the translation + * fault.) + */ + if (!is_ttbr0_addr(current->thread.fault_address)) { + switch (ESR_ELx_EC(esr)) { + case ESR_ELx_EC_DABT_LOW: + /* + * These bits provide only information about the + * faulting instruction, which userspace knows already. + * We explicitly clear bits which are architecturally + * RES0 in case they are given meanings in future. + * We always report the ESR as if the fault was taken + * to EL1 and so ISV and the bits in ISS[23:14] are + * clear. (In fact it always will be a fault to EL1.) + */ + esr &= ESR_ELx_EC_MASK | ESR_ELx_IL | + ESR_ELx_CM | ESR_ELx_WNR; + esr |= ESR_ELx_FSC_FAULT; + break; + case ESR_ELx_EC_IABT_LOW: + /* + * Claim a level 0 translation fault. + * All other bits are architecturally RES0 for faults + * reported with that DFSC value, so we clear them. + */ + esr &= ESR_ELx_EC_MASK | ESR_ELx_IL; + esr |= ESR_ELx_FSC_FAULT; + break; + default: + /* + * This should never happen (entry.S only brings us + * into this code for insn and data aborts from a lower + * exception level). Fail safe by not providing an ESR + * context record at all. + */ + WARN(1, "ESR 0x%lx is not DABT or IABT from EL0\n", esr); + esr = 0; + break; + } + } + + current->thread.fault_code = esr; +} + +static void do_bad_area(unsigned long far, unsigned long esr, + struct pt_regs *regs) +{ + unsigned long addr = untagged_addr(far); + + /* + * If we are in kernel mode at this point, we have no context to + * handle this fault with. + */ + if (user_mode(regs)) { + const struct fault_info *inf = esr_to_fault_info(esr); + + set_thread_esr(addr, esr); + arm64_force_sig_fault(inf->sig, inf->code, far, inf->name); + } else { + __do_kernel_fault(addr, esr, regs); + } +} + +#define VM_FAULT_BADMAP ((__force vm_fault_t)0x010000) +#define VM_FAULT_BADACCESS ((__force vm_fault_t)0x020000) + +static vm_fault_t __do_page_fault(struct mm_struct *mm, + struct vm_area_struct *vma, unsigned long addr, + unsigned int mm_flags, unsigned long vm_flags, + struct pt_regs *regs) +{ + /* + * Ok, we have a good vm_area for this memory access, so we can handle + * it. + * Check that the permissions on the VMA allow for the fault which + * occurred. + */ + if (!(vma->vm_flags & vm_flags)) + return VM_FAULT_BADACCESS; + return handle_mm_fault(vma, addr, mm_flags, regs); +} + +static bool is_el0_instruction_abort(unsigned long esr) +{ + return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW; +} + +/* + * Note: not valid for EL1 DC IVAC, but we never use that such that it + * should fault. EL0 cannot issue DC IVAC (undef). + */ +static bool is_write_abort(unsigned long esr) +{ + return (esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM); +} + +static int __kprobes do_page_fault(unsigned long far, unsigned long esr, + struct pt_regs *regs) +{ + const struct fault_info *inf; + struct mm_struct *mm = current->mm; + vm_fault_t fault; + unsigned long vm_flags; + unsigned int mm_flags = FAULT_FLAG_DEFAULT; + unsigned long addr = untagged_addr(far); + struct vm_area_struct *vma; + + if (kprobe_page_fault(regs, esr)) + return 0; + + /* + * If we're in an interrupt or have no user context, we must not take + * the fault. + */ + if (faulthandler_disabled() || !mm) + goto no_context; + + if (user_mode(regs)) + mm_flags |= FAULT_FLAG_USER; + + /* + * vm_flags tells us what bits we must have in vma->vm_flags + * for the fault to be benign, __do_page_fault() would check + * vma->vm_flags & vm_flags and returns an error if the + * intersection is empty + */ + if (is_el0_instruction_abort(esr)) { + /* It was exec fault */ + vm_flags = VM_EXEC; + mm_flags |= FAULT_FLAG_INSTRUCTION; + } else if (is_write_abort(esr)) { + /* It was write fault */ + vm_flags = VM_WRITE; + mm_flags |= FAULT_FLAG_WRITE; + } else { + /* It was read fault */ + vm_flags = VM_READ; + /* Write implies read */ + vm_flags |= VM_WRITE; + /* If EPAN is absent then exec implies read */ + if (!cpus_have_const_cap(ARM64_HAS_EPAN)) + vm_flags |= VM_EXEC; + } + + if (is_ttbr0_addr(addr) && is_el1_permission_fault(addr, esr, regs)) { + if (is_el1_instruction_abort(esr)) + die_kernel_fault("execution of user memory", + addr, esr, regs); + + if (!search_exception_tables(regs->pc)) + die_kernel_fault("access to user memory outside uaccess routines", + addr, esr, regs); + } + + perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr); + +retry: + vma = lock_mm_and_find_vma(mm, addr, regs); + if (unlikely(!vma)) { + fault = VM_FAULT_BADMAP; + goto done; + } + + fault = __do_page_fault(mm, vma, addr, mm_flags, vm_flags, regs); + + /* Quick path to respond to signals */ + if (fault_signal_pending(fault, regs)) { + if (!user_mode(regs)) + goto no_context; + return 0; + } + + /* The fault is fully completed (including releasing mmap lock) */ + if (fault & VM_FAULT_COMPLETED) + return 0; + + if (fault & VM_FAULT_RETRY) { + mm_flags |= FAULT_FLAG_TRIED; + goto retry; + } + mmap_read_unlock(mm); + +done: + /* + * Handle the "normal" (no error) case first. + */ + if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP | + VM_FAULT_BADACCESS)))) + return 0; + + /* + * If we are in kernel mode at this point, we have no context to + * handle this fault with. + */ + if (!user_mode(regs)) + goto no_context; + + if (fault & VM_FAULT_OOM) { + /* + * We ran out of memory, call the OOM killer, and return to + * userspace (which will retry the fault, or kill us if we got + * oom-killed). + */ + pagefault_out_of_memory(); + return 0; + } + + inf = esr_to_fault_info(esr); + set_thread_esr(addr, esr); + if (fault & VM_FAULT_SIGBUS) { + /* + * We had some memory, but were unable to successfully fix up + * this page fault. + */ + arm64_force_sig_fault(SIGBUS, BUS_ADRERR, far, inf->name); + } else if (fault & (VM_FAULT_HWPOISON_LARGE | VM_FAULT_HWPOISON)) { + unsigned int lsb; + + lsb = PAGE_SHIFT; + if (fault & VM_FAULT_HWPOISON_LARGE) + lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault)); + + arm64_force_sig_mceerr(BUS_MCEERR_AR, far, lsb, inf->name); + } else { + /* + * Something tried to access memory that isn't in our memory + * map. + */ + arm64_force_sig_fault(SIGSEGV, + fault == VM_FAULT_BADACCESS ? SEGV_ACCERR : SEGV_MAPERR, + far, inf->name); + } + + return 0; + +no_context: + __do_kernel_fault(addr, esr, regs); + return 0; +} + +static int __kprobes do_translation_fault(unsigned long far, + unsigned long esr, + struct pt_regs *regs) +{ + unsigned long addr = untagged_addr(far); + + if (is_ttbr0_addr(addr)) + return do_page_fault(far, esr, regs); + + do_bad_area(far, esr, regs); + return 0; +} + +static int do_alignment_fault(unsigned long far, unsigned long esr, + struct pt_regs *regs) +{ + if (IS_ENABLED(CONFIG_COMPAT_ALIGNMENT_FIXUPS) && + compat_user_mode(regs)) + return do_compat_alignment_fixup(far, regs); + do_bad_area(far, esr, regs); + return 0; +} + +static int do_bad(unsigned long far, unsigned long esr, struct pt_regs *regs) +{ + return 1; /* "fault" */ +} + +static int do_sea(unsigned long far, unsigned long esr, struct pt_regs *regs) +{ + const struct fault_info *inf; + unsigned long siaddr; + + inf = esr_to_fault_info(esr); + + if (user_mode(regs) && apei_claim_sea(regs) == 0) { + /* + * APEI claimed this as a firmware-first notification. + * Some processing deferred to task_work before ret_to_user(). + */ + return 0; + } + + if (esr & ESR_ELx_FnV) { + siaddr = 0; + } else { + /* + * The architecture specifies that the tag bits of FAR_EL1 are + * UNKNOWN for synchronous external aborts. Mask them out now + * so that userspace doesn't see them. + */ + siaddr = untagged_addr(far); + } + arm64_notify_die(inf->name, regs, inf->sig, inf->code, siaddr, esr); + + return 0; +} + +static int do_tag_check_fault(unsigned long far, unsigned long esr, + struct pt_regs *regs) +{ + /* + * The architecture specifies that bits 63:60 of FAR_EL1 are UNKNOWN + * for tag check faults. Set them to corresponding bits in the untagged + * address. + */ + far = (__untagged_addr(far) & ~MTE_TAG_MASK) | (far & MTE_TAG_MASK); + do_bad_area(far, esr, regs); + return 0; +} + +static const struct fault_info fault_info[] = { + { do_bad, SIGKILL, SI_KERNEL, "ttbr address size fault" }, + { do_bad, SIGKILL, SI_KERNEL, "level 1 address size fault" }, + { do_bad, SIGKILL, SI_KERNEL, "level 2 address size fault" }, + { do_bad, SIGKILL, SI_KERNEL, "level 3 address size fault" }, + { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 0 translation fault" }, + { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 1 translation fault" }, + { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 2 translation fault" }, + { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 3 translation fault" }, + { do_bad, SIGKILL, SI_KERNEL, "unknown 8" }, + { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 access flag fault" }, + { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 access flag fault" }, + { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 access flag fault" }, + { do_bad, SIGKILL, SI_KERNEL, "unknown 12" }, + { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 permission fault" }, + { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 permission fault" }, + { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 permission fault" }, + { do_sea, SIGBUS, BUS_OBJERR, "synchronous external abort" }, + { do_tag_check_fault, SIGSEGV, SEGV_MTESERR, "synchronous tag check fault" }, + { do_bad, SIGKILL, SI_KERNEL, "unknown 18" }, + { do_bad, SIGKILL, SI_KERNEL, "unknown 19" }, + { do_sea, SIGKILL, SI_KERNEL, "level 0 (translation table walk)" }, + { do_sea, SIGKILL, SI_KERNEL, "level 1 (translation table walk)" }, + { do_sea, SIGKILL, SI_KERNEL, "level 2 (translation table walk)" }, + { do_sea, SIGKILL, SI_KERNEL, "level 3 (translation table walk)" }, + { do_sea, SIGBUS, BUS_OBJERR, "synchronous parity or ECC error" }, // Reserved when RAS is implemented + { do_bad, SIGKILL, SI_KERNEL, "unknown 25" }, + { do_bad, SIGKILL, SI_KERNEL, "unknown 26" }, + { do_bad, SIGKILL, SI_KERNEL, "unknown 27" }, + { do_sea, SIGKILL, SI_KERNEL, "level 0 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented + { do_sea, SIGKILL, SI_KERNEL, "level 1 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented + { do_sea, SIGKILL, SI_KERNEL, "level 2 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented + { do_sea, SIGKILL, SI_KERNEL, "level 3 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented + { do_bad, SIGKILL, SI_KERNEL, "unknown 32" }, + { do_alignment_fault, SIGBUS, BUS_ADRALN, "alignment fault" }, + { do_bad, SIGKILL, SI_KERNEL, "unknown 34" }, + { do_bad, SIGKILL, SI_KERNEL, "unknown 35" }, + { do_bad, SIGKILL, SI_KERNEL, "unknown 36" }, + { do_bad, SIGKILL, SI_KERNEL, "unknown 37" }, + { do_bad, SIGKILL, SI_KERNEL, "unknown 38" }, + { do_bad, SIGKILL, SI_KERNEL, "unknown 39" }, + { do_bad, SIGKILL, SI_KERNEL, "unknown 40" }, + { do_bad, SIGKILL, SI_KERNEL, "unknown 41" }, + { do_bad, SIGKILL, SI_KERNEL, "unknown 42" }, + { do_bad, SIGKILL, SI_KERNEL, "unknown 43" }, + { do_bad, SIGKILL, SI_KERNEL, "unknown 44" }, + { do_bad, SIGKILL, SI_KERNEL, "unknown 45" }, + { do_bad, SIGKILL, SI_KERNEL, "unknown 46" }, + { do_bad, SIGKILL, SI_KERNEL, "unknown 47" }, + { do_bad, SIGKILL, SI_KERNEL, "TLB conflict abort" }, + { do_bad, SIGKILL, SI_KERNEL, "Unsupported atomic hardware update fault" }, + { do_bad, SIGKILL, SI_KERNEL, "unknown 50" }, + { do_bad, SIGKILL, SI_KERNEL, "unknown 51" }, + { do_bad, SIGKILL, SI_KERNEL, "implementation fault (lockdown abort)" }, + { do_bad, SIGBUS, BUS_OBJERR, "implementation fault (unsupported exclusive)" }, + { do_bad, SIGKILL, SI_KERNEL, "unknown 54" }, + { do_bad, SIGKILL, SI_KERNEL, "unknown 55" }, + { do_bad, SIGKILL, SI_KERNEL, "unknown 56" }, + { do_bad, SIGKILL, SI_KERNEL, "unknown 57" }, + { do_bad, SIGKILL, SI_KERNEL, "unknown 58" }, + { do_bad, SIGKILL, SI_KERNEL, "unknown 59" }, + { do_bad, SIGKILL, SI_KERNEL, "unknown 60" }, + { do_bad, SIGKILL, SI_KERNEL, "section domain fault" }, + { do_bad, SIGKILL, SI_KERNEL, "page domain fault" }, + { do_bad, SIGKILL, SI_KERNEL, "unknown 63" }, +}; + +void do_mem_abort(unsigned long far, unsigned long esr, struct pt_regs *regs) +{ + const struct fault_info *inf = esr_to_fault_info(esr); + unsigned long addr = untagged_addr(far); + + if (!inf->fn(far, esr, regs)) + return; + + if (!user_mode(regs)) + die_kernel_fault(inf->name, addr, esr, regs); + + /* + * At this point we have an unrecognized fault type whose tag bits may + * have been defined as UNKNOWN. Therefore we only expose the untagged + * address to the signal handler. + */ + arm64_notify_die(inf->name, regs, inf->sig, inf->code, addr, esr); +} +NOKPROBE_SYMBOL(do_mem_abort); + +void do_sp_pc_abort(unsigned long addr, unsigned long esr, struct pt_regs *regs) +{ + arm64_notify_die("SP/PC alignment exception", regs, SIGBUS, BUS_ADRALN, + addr, esr); +} +NOKPROBE_SYMBOL(do_sp_pc_abort); + +int __init early_brk64(unsigned long addr, unsigned long esr, + struct pt_regs *regs); + +/* + * __refdata because early_brk64 is __init, but the reference to it is + * clobbered at arch_initcall time. + * See traps.c and debug-monitors.c:debug_traps_init(). + */ +static struct fault_info __refdata debug_fault_info[] = { + { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware breakpoint" }, + { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware single-step" }, + { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware watchpoint" }, + { do_bad, SIGKILL, SI_KERNEL, "unknown 3" }, + { do_bad, SIGTRAP, TRAP_BRKPT, "aarch32 BKPT" }, + { do_bad, SIGKILL, SI_KERNEL, "aarch32 vector catch" }, + { early_brk64, SIGTRAP, TRAP_BRKPT, "aarch64 BRK" }, + { do_bad, SIGKILL, SI_KERNEL, "unknown 7" }, +}; + +void __init hook_debug_fault_code(int nr, + int (*fn)(unsigned long, unsigned long, struct pt_regs *), + int sig, int code, const char *name) +{ + BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info)); + + debug_fault_info[nr].fn = fn; + debug_fault_info[nr].sig = sig; + debug_fault_info[nr].code = code; + debug_fault_info[nr].name = name; +} + +/* + * In debug exception context, we explicitly disable preemption despite + * having interrupts disabled. + * This serves two purposes: it makes it much less likely that we would + * accidentally schedule in exception context and it will force a warning + * if we somehow manage to schedule by accident. + */ +static void debug_exception_enter(struct pt_regs *regs) +{ + preempt_disable(); + + /* This code is a bit fragile. Test it. */ + RCU_LOCKDEP_WARN(!rcu_is_watching(), "exception_enter didn't work"); +} +NOKPROBE_SYMBOL(debug_exception_enter); + +static void debug_exception_exit(struct pt_regs *regs) +{ + preempt_enable_no_resched(); +} +NOKPROBE_SYMBOL(debug_exception_exit); + +void do_debug_exception(unsigned long addr_if_watchpoint, unsigned long esr, + struct pt_regs *regs) +{ + const struct fault_info *inf = esr_to_debug_fault_info(esr); + unsigned long pc = instruction_pointer(regs); + + debug_exception_enter(regs); + + if (user_mode(regs) && !is_ttbr0_addr(pc)) + arm64_apply_bp_hardening(); + + if (inf->fn(addr_if_watchpoint, esr, regs)) { + arm64_notify_die(inf->name, regs, inf->sig, inf->code, pc, esr); + } + + debug_exception_exit(regs); +} +NOKPROBE_SYMBOL(do_debug_exception); + +/* + * Used during anonymous page fault handling. + */ +struct page *alloc_zeroed_user_highpage_movable(struct vm_area_struct *vma, + unsigned long vaddr) +{ + gfp_t flags = GFP_HIGHUSER_MOVABLE | __GFP_ZERO; + + /* + * If the page is mapped with PROT_MTE, initialise the tags at the + * point of allocation and page zeroing as this is usually faster than + * separate DC ZVA and STGM. + */ + if (vma->vm_flags & VM_MTE) + flags |= __GFP_ZEROTAGS; + + return alloc_page_vma(flags, vma, vaddr); +} + +void tag_clear_highpage(struct page *page) +{ + mte_zero_clear_page_tags(page_address(page)); + set_page_mte_tagged(page); +} |