diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:49:45 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:49:45 +0000 |
commit | 2c3c1048746a4622d8c89a29670120dc8fab93c4 (patch) | |
tree | 848558de17fb3008cdf4d861b01ac7781903ce39 /arch/mips/kernel/traps.c | |
parent | Initial commit. (diff) | |
download | linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.tar.xz linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.zip |
Adding upstream version 6.1.76.upstream/6.1.76
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to '')
-rw-r--r-- | arch/mips/kernel/traps.c | 2562 |
1 files changed, 2562 insertions, 0 deletions
diff --git a/arch/mips/kernel/traps.c b/arch/mips/kernel/traps.c new file mode 100644 index 000000000..246c6a6b0 --- /dev/null +++ b/arch/mips/kernel/traps.c @@ -0,0 +1,2562 @@ +/* + * This file is subject to the terms and conditions of the GNU General Public + * License. See the file "COPYING" in the main directory of this archive + * for more details. + * + * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle + * Copyright (C) 1995, 1996 Paul M. Antoine + * Copyright (C) 1998 Ulf Carlsson + * Copyright (C) 1999 Silicon Graphics, Inc. + * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com + * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki + * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc. All rights reserved. + * Copyright (C) 2014, Imagination Technologies Ltd. + */ +#include <linux/bitops.h> +#include <linux/bug.h> +#include <linux/compiler.h> +#include <linux/context_tracking.h> +#include <linux/cpu_pm.h> +#include <linux/kexec.h> +#include <linux/init.h> +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/extable.h> +#include <linux/mm.h> +#include <linux/sched/mm.h> +#include <linux/sched/debug.h> +#include <linux/smp.h> +#include <linux/spinlock.h> +#include <linux/kallsyms.h> +#include <linux/memblock.h> +#include <linux/interrupt.h> +#include <linux/ptrace.h> +#include <linux/kgdb.h> +#include <linux/kdebug.h> +#include <linux/kprobes.h> +#include <linux/notifier.h> +#include <linux/kdb.h> +#include <linux/irq.h> +#include <linux/perf_event.h> + +#include <asm/addrspace.h> +#include <asm/bootinfo.h> +#include <asm/branch.h> +#include <asm/break.h> +#include <asm/cop2.h> +#include <asm/cpu.h> +#include <asm/cpu-type.h> +#include <asm/dsp.h> +#include <asm/fpu.h> +#include <asm/fpu_emulator.h> +#include <asm/idle.h> +#include <asm/isa-rev.h> +#include <asm/mips-cps.h> +#include <asm/mips-r2-to-r6-emul.h> +#include <asm/mipsregs.h> +#include <asm/mipsmtregs.h> +#include <asm/module.h> +#include <asm/msa.h> +#include <asm/ptrace.h> +#include <asm/sections.h> +#include <asm/siginfo.h> +#include <asm/tlbdebug.h> +#include <asm/traps.h> +#include <linux/uaccess.h> +#include <asm/watch.h> +#include <asm/mmu_context.h> +#include <asm/types.h> +#include <asm/stacktrace.h> +#include <asm/tlbex.h> +#include <asm/uasm.h> + +#include <asm/mach-loongson64/cpucfg-emul.h> + +#include "access-helper.h" + +extern void check_wait(void); +extern asmlinkage void rollback_handle_int(void); +extern asmlinkage void handle_int(void); +extern asmlinkage void handle_adel(void); +extern asmlinkage void handle_ades(void); +extern asmlinkage void handle_ibe(void); +extern asmlinkage void handle_dbe(void); +extern asmlinkage void handle_sys(void); +extern asmlinkage void handle_bp(void); +extern asmlinkage void handle_ri(void); +extern asmlinkage void handle_ri_rdhwr_tlbp(void); +extern asmlinkage void handle_ri_rdhwr(void); +extern asmlinkage void handle_cpu(void); +extern asmlinkage void handle_ov(void); +extern asmlinkage void handle_tr(void); +extern asmlinkage void handle_msa_fpe(void); +extern asmlinkage void handle_fpe(void); +extern asmlinkage void handle_ftlb(void); +extern asmlinkage void handle_gsexc(void); +extern asmlinkage void handle_msa(void); +extern asmlinkage void handle_mdmx(void); +extern asmlinkage void handle_watch(void); +extern asmlinkage void handle_mt(void); +extern asmlinkage void handle_dsp(void); +extern asmlinkage void handle_mcheck(void); +extern asmlinkage void handle_reserved(void); +extern void tlb_do_page_fault_0(void); + +void (*board_be_init)(void); +static int (*board_be_handler)(struct pt_regs *regs, int is_fixup); +void (*board_nmi_handler_setup)(void); +void (*board_ejtag_handler_setup)(void); +void (*board_bind_eic_interrupt)(int irq, int regset); +void (*board_ebase_setup)(void); +void(*board_cache_error_setup)(void); + +void mips_set_be_handler(int (*handler)(struct pt_regs *regs, int is_fixup)) +{ + board_be_handler = handler; +} +EXPORT_SYMBOL_GPL(mips_set_be_handler); + +static void show_raw_backtrace(unsigned long reg29, const char *loglvl, + bool user) +{ + unsigned long *sp = (unsigned long *)(reg29 & ~3); + unsigned long addr; + + printk("%sCall Trace:", loglvl); +#ifdef CONFIG_KALLSYMS + printk("%s\n", loglvl); +#endif + while (!kstack_end(sp)) { + if (__get_addr(&addr, sp++, user)) { + printk("%s (Bad stack address)", loglvl); + break; + } + if (__kernel_text_address(addr)) + print_ip_sym(loglvl, addr); + } + printk("%s\n", loglvl); +} + +#ifdef CONFIG_KALLSYMS +int raw_show_trace; +static int __init set_raw_show_trace(char *str) +{ + raw_show_trace = 1; + return 1; +} +__setup("raw_show_trace", set_raw_show_trace); +#endif + +static void show_backtrace(struct task_struct *task, const struct pt_regs *regs, + const char *loglvl, bool user) +{ + unsigned long sp = regs->regs[29]; + unsigned long ra = regs->regs[31]; + unsigned long pc = regs->cp0_epc; + + if (!task) + task = current; + + if (raw_show_trace || user_mode(regs) || !__kernel_text_address(pc)) { + show_raw_backtrace(sp, loglvl, user); + return; + } + printk("%sCall Trace:\n", loglvl); + do { + print_ip_sym(loglvl, pc); + pc = unwind_stack(task, &sp, pc, &ra); + } while (pc); + pr_cont("\n"); +} + +/* + * This routine abuses get_user()/put_user() to reference pointers + * with at least a bit of error checking ... + */ +static void show_stacktrace(struct task_struct *task, + const struct pt_regs *regs, const char *loglvl, bool user) +{ + const int field = 2 * sizeof(unsigned long); + unsigned long stackdata; + int i; + unsigned long *sp = (unsigned long *)regs->regs[29]; + + printk("%sStack :", loglvl); + i = 0; + while ((unsigned long) sp & (PAGE_SIZE - 1)) { + if (i && ((i % (64 / field)) == 0)) { + pr_cont("\n"); + printk("%s ", loglvl); + } + if (i > 39) { + pr_cont(" ..."); + break; + } + + if (__get_addr(&stackdata, sp++, user)) { + pr_cont(" (Bad stack address)"); + break; + } + + pr_cont(" %0*lx", field, stackdata); + i++; + } + pr_cont("\n"); + show_backtrace(task, regs, loglvl, user); +} + +void show_stack(struct task_struct *task, unsigned long *sp, const char *loglvl) +{ + struct pt_regs regs; + + regs.cp0_status = KSU_KERNEL; + if (sp) { + regs.regs[29] = (unsigned long)sp; + regs.regs[31] = 0; + regs.cp0_epc = 0; + } else { + if (task && task != current) { + regs.regs[29] = task->thread.reg29; + regs.regs[31] = 0; + regs.cp0_epc = task->thread.reg31; + } else { + prepare_frametrace(®s); + } + } + show_stacktrace(task, ®s, loglvl, false); +} + +static void show_code(void *pc, bool user) +{ + long i; + unsigned short *pc16 = NULL; + + printk("Code:"); + + if ((unsigned long)pc & 1) + pc16 = (u16 *)((unsigned long)pc & ~1); + + for(i = -3 ; i < 6 ; i++) { + if (pc16) { + u16 insn16; + + if (__get_inst16(&insn16, pc16 + i, user)) + goto bad_address; + + pr_cont("%c%04x%c", (i?' ':'<'), insn16, (i?' ':'>')); + } else { + u32 insn32; + + if (__get_inst32(&insn32, (u32 *)pc + i, user)) + goto bad_address; + + pr_cont("%c%08x%c", (i?' ':'<'), insn32, (i?' ':'>')); + } + } + pr_cont("\n"); + return; + +bad_address: + pr_cont(" (Bad address in epc)\n\n"); +} + +static void __show_regs(const struct pt_regs *regs) +{ + const int field = 2 * sizeof(unsigned long); + unsigned int cause = regs->cp0_cause; + unsigned int exccode; + int i; + + show_regs_print_info(KERN_DEFAULT); + + /* + * Saved main processor registers + */ + for (i = 0; i < 32; ) { + if ((i % 4) == 0) + printk("$%2d :", i); + if (i == 0) + pr_cont(" %0*lx", field, 0UL); + else if (i == 26 || i == 27) + pr_cont(" %*s", field, ""); + else + pr_cont(" %0*lx", field, regs->regs[i]); + + i++; + if ((i % 4) == 0) + pr_cont("\n"); + } + +#ifdef CONFIG_CPU_HAS_SMARTMIPS + printk("Acx : %0*lx\n", field, regs->acx); +#endif + if (MIPS_ISA_REV < 6) { + printk("Hi : %0*lx\n", field, regs->hi); + printk("Lo : %0*lx\n", field, regs->lo); + } + + /* + * Saved cp0 registers + */ + printk("epc : %0*lx %pS\n", field, regs->cp0_epc, + (void *) regs->cp0_epc); + printk("ra : %0*lx %pS\n", field, regs->regs[31], + (void *) regs->regs[31]); + + printk("Status: %08x ", (uint32_t) regs->cp0_status); + + if (cpu_has_3kex) { + if (regs->cp0_status & ST0_KUO) + pr_cont("KUo "); + if (regs->cp0_status & ST0_IEO) + pr_cont("IEo "); + if (regs->cp0_status & ST0_KUP) + pr_cont("KUp "); + if (regs->cp0_status & ST0_IEP) + pr_cont("IEp "); + if (regs->cp0_status & ST0_KUC) + pr_cont("KUc "); + if (regs->cp0_status & ST0_IEC) + pr_cont("IEc "); + } else if (cpu_has_4kex) { + if (regs->cp0_status & ST0_KX) + pr_cont("KX "); + if (regs->cp0_status & ST0_SX) + pr_cont("SX "); + if (regs->cp0_status & ST0_UX) + pr_cont("UX "); + switch (regs->cp0_status & ST0_KSU) { + case KSU_USER: + pr_cont("USER "); + break; + case KSU_SUPERVISOR: + pr_cont("SUPERVISOR "); + break; + case KSU_KERNEL: + pr_cont("KERNEL "); + break; + default: + pr_cont("BAD_MODE "); + break; + } + if (regs->cp0_status & ST0_ERL) + pr_cont("ERL "); + if (regs->cp0_status & ST0_EXL) + pr_cont("EXL "); + if (regs->cp0_status & ST0_IE) + pr_cont("IE "); + } + pr_cont("\n"); + + exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE; + printk("Cause : %08x (ExcCode %02x)\n", cause, exccode); + + if (1 <= exccode && exccode <= 5) + printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr); + + printk("PrId : %08x (%s)\n", read_c0_prid(), + cpu_name_string()); +} + +/* + * FIXME: really the generic show_regs should take a const pointer argument. + */ +void show_regs(struct pt_regs *regs) +{ + __show_regs(regs); + dump_stack(); +} + +void show_registers(struct pt_regs *regs) +{ + const int field = 2 * sizeof(unsigned long); + + __show_regs(regs); + print_modules(); + printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n", + current->comm, current->pid, current_thread_info(), current, + field, current_thread_info()->tp_value); + if (cpu_has_userlocal) { + unsigned long tls; + + tls = read_c0_userlocal(); + if (tls != current_thread_info()->tp_value) + printk("*HwTLS: %0*lx\n", field, tls); + } + + show_stacktrace(current, regs, KERN_DEFAULT, user_mode(regs)); + show_code((void *)regs->cp0_epc, user_mode(regs)); + printk("\n"); +} + +static DEFINE_RAW_SPINLOCK(die_lock); + +void __noreturn die(const char *str, struct pt_regs *regs) +{ + static int die_counter; + int sig = SIGSEGV; + + oops_enter(); + + if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr, + SIGSEGV) == NOTIFY_STOP) + sig = 0; + + console_verbose(); + raw_spin_lock_irq(&die_lock); + bust_spinlocks(1); + + printk("%s[#%d]:\n", str, ++die_counter); + show_registers(regs); + add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE); + raw_spin_unlock_irq(&die_lock); + + oops_exit(); + + if (in_interrupt()) + panic("Fatal exception in interrupt"); + + if (panic_on_oops) + panic("Fatal exception"); + + if (regs && kexec_should_crash(current)) + crash_kexec(regs); + + make_task_dead(sig); +} + +extern struct exception_table_entry __start___dbe_table[]; +extern struct exception_table_entry __stop___dbe_table[]; + +__asm__( +" .section __dbe_table, \"a\"\n" +" .previous \n"); + +/* Given an address, look for it in the exception tables. */ +static const struct exception_table_entry *search_dbe_tables(unsigned long addr) +{ + const struct exception_table_entry *e; + + e = search_extable(__start___dbe_table, + __stop___dbe_table - __start___dbe_table, addr); + if (!e) + e = search_module_dbetables(addr); + return e; +} + +asmlinkage void do_be(struct pt_regs *regs) +{ + const int field = 2 * sizeof(unsigned long); + const struct exception_table_entry *fixup = NULL; + int data = regs->cp0_cause & 4; + int action = MIPS_BE_FATAL; + enum ctx_state prev_state; + + prev_state = exception_enter(); + /* XXX For now. Fixme, this searches the wrong table ... */ + if (data && !user_mode(regs)) + fixup = search_dbe_tables(exception_epc(regs)); + + if (fixup) + action = MIPS_BE_FIXUP; + + if (board_be_handler) + action = board_be_handler(regs, fixup != NULL); + else + mips_cm_error_report(); + + switch (action) { + case MIPS_BE_DISCARD: + goto out; + case MIPS_BE_FIXUP: + if (fixup) { + regs->cp0_epc = fixup->nextinsn; + goto out; + } + break; + default: + break; + } + + /* + * Assume it would be too dangerous to continue ... + */ + printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n", + data ? "Data" : "Instruction", + field, regs->cp0_epc, field, regs->regs[31]); + if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr, + SIGBUS) == NOTIFY_STOP) + goto out; + + die_if_kernel("Oops", regs); + force_sig(SIGBUS); + +out: + exception_exit(prev_state); +} + +/* + * ll/sc, rdhwr, sync emulation + */ + +#define OPCODE 0xfc000000 +#define BASE 0x03e00000 +#define RT 0x001f0000 +#define OFFSET 0x0000ffff +#define LL 0xc0000000 +#define SC 0xe0000000 +#define SPEC0 0x00000000 +#define SPEC3 0x7c000000 +#define RD 0x0000f800 +#define FUNC 0x0000003f +#define SYNC 0x0000000f +#define RDHWR 0x0000003b + +/* microMIPS definitions */ +#define MM_POOL32A_FUNC 0xfc00ffff +#define MM_RDHWR 0x00006b3c +#define MM_RS 0x001f0000 +#define MM_RT 0x03e00000 + +/* + * The ll_bit is cleared by r*_switch.S + */ + +unsigned int ll_bit; +struct task_struct *ll_task; + +static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode) +{ + unsigned long value, __user *vaddr; + long offset; + + /* + * analyse the ll instruction that just caused a ri exception + * and put the referenced address to addr. + */ + + /* sign extend offset */ + offset = opcode & OFFSET; + offset <<= 16; + offset >>= 16; + + vaddr = (unsigned long __user *) + ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset); + + if ((unsigned long)vaddr & 3) + return SIGBUS; + if (get_user(value, vaddr)) + return SIGSEGV; + + preempt_disable(); + + if (ll_task == NULL || ll_task == current) { + ll_bit = 1; + } else { + ll_bit = 0; + } + ll_task = current; + + preempt_enable(); + + regs->regs[(opcode & RT) >> 16] = value; + + return 0; +} + +static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode) +{ + unsigned long __user *vaddr; + unsigned long reg; + long offset; + + /* + * analyse the sc instruction that just caused a ri exception + * and put the referenced address to addr. + */ + + /* sign extend offset */ + offset = opcode & OFFSET; + offset <<= 16; + offset >>= 16; + + vaddr = (unsigned long __user *) + ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset); + reg = (opcode & RT) >> 16; + + if ((unsigned long)vaddr & 3) + return SIGBUS; + + preempt_disable(); + + if (ll_bit == 0 || ll_task != current) { + regs->regs[reg] = 0; + preempt_enable(); + return 0; + } + + preempt_enable(); + + if (put_user(regs->regs[reg], vaddr)) + return SIGSEGV; + + regs->regs[reg] = 1; + + return 0; +} + +/* + * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both + * opcodes are supposed to result in coprocessor unusable exceptions if + * executed on ll/sc-less processors. That's the theory. In practice a + * few processors such as NEC's VR4100 throw reserved instruction exceptions + * instead, so we're doing the emulation thing in both exception handlers. + */ +static int simulate_llsc(struct pt_regs *regs, unsigned int opcode) +{ + if ((opcode & OPCODE) == LL) { + perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, + 1, regs, 0); + return simulate_ll(regs, opcode); + } + if ((opcode & OPCODE) == SC) { + perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, + 1, regs, 0); + return simulate_sc(regs, opcode); + } + + return -1; /* Must be something else ... */ +} + +/* + * Simulate trapping 'rdhwr' instructions to provide user accessible + * registers not implemented in hardware. + */ +static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt) +{ + struct thread_info *ti = task_thread_info(current); + + perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, + 1, regs, 0); + switch (rd) { + case MIPS_HWR_CPUNUM: /* CPU number */ + regs->regs[rt] = smp_processor_id(); + return 0; + case MIPS_HWR_SYNCISTEP: /* SYNCI length */ + regs->regs[rt] = min(current_cpu_data.dcache.linesz, + current_cpu_data.icache.linesz); + return 0; + case MIPS_HWR_CC: /* Read count register */ + regs->regs[rt] = read_c0_count(); + return 0; + case MIPS_HWR_CCRES: /* Count register resolution */ + switch (current_cpu_type()) { + case CPU_20KC: + case CPU_25KF: + regs->regs[rt] = 1; + break; + default: + regs->regs[rt] = 2; + } + return 0; + case MIPS_HWR_ULR: /* Read UserLocal register */ + regs->regs[rt] = ti->tp_value; + return 0; + default: + return -1; + } +} + +static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode) +{ + if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) { + int rd = (opcode & RD) >> 11; + int rt = (opcode & RT) >> 16; + + simulate_rdhwr(regs, rd, rt); + return 0; + } + + /* Not ours. */ + return -1; +} + +static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned int opcode) +{ + if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) { + int rd = (opcode & MM_RS) >> 16; + int rt = (opcode & MM_RT) >> 21; + simulate_rdhwr(regs, rd, rt); + return 0; + } + + /* Not ours. */ + return -1; +} + +static int simulate_sync(struct pt_regs *regs, unsigned int opcode) +{ + if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) { + perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, + 1, regs, 0); + return 0; + } + + return -1; /* Must be something else ... */ +} + +/* + * Loongson-3 CSR instructions emulation + */ + +#ifdef CONFIG_CPU_LOONGSON3_CPUCFG_EMULATION + +#define LWC2 0xc8000000 +#define RS BASE +#define CSR_OPCODE2 0x00000118 +#define CSR_OPCODE2_MASK 0x000007ff +#define CSR_FUNC_MASK RT +#define CSR_FUNC_CPUCFG 0x8 + +static int simulate_loongson3_cpucfg(struct pt_regs *regs, + unsigned int opcode) +{ + int op = opcode & OPCODE; + int op2 = opcode & CSR_OPCODE2_MASK; + int csr_func = (opcode & CSR_FUNC_MASK) >> 16; + + if (op == LWC2 && op2 == CSR_OPCODE2 && csr_func == CSR_FUNC_CPUCFG) { + int rd = (opcode & RD) >> 11; + int rs = (opcode & RS) >> 21; + __u64 sel = regs->regs[rs]; + + perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0); + + /* Do not emulate on unsupported core models. */ + preempt_disable(); + if (!loongson3_cpucfg_emulation_enabled(¤t_cpu_data)) { + preempt_enable(); + return -1; + } + regs->regs[rd] = loongson3_cpucfg_read_synthesized( + ¤t_cpu_data, sel); + preempt_enable(); + return 0; + } + + /* Not ours. */ + return -1; +} +#endif /* CONFIG_CPU_LOONGSON3_CPUCFG_EMULATION */ + +asmlinkage void do_ov(struct pt_regs *regs) +{ + enum ctx_state prev_state; + + prev_state = exception_enter(); + die_if_kernel("Integer overflow", regs); + + force_sig_fault(SIGFPE, FPE_INTOVF, (void __user *)regs->cp0_epc); + exception_exit(prev_state); +} + +#ifdef CONFIG_MIPS_FP_SUPPORT + +/* + * Send SIGFPE according to FCSR Cause bits, which must have already + * been masked against Enable bits. This is impotant as Inexact can + * happen together with Overflow or Underflow, and `ptrace' can set + * any bits. + */ +void force_fcr31_sig(unsigned long fcr31, void __user *fault_addr, + struct task_struct *tsk) +{ + int si_code = FPE_FLTUNK; + + if (fcr31 & FPU_CSR_INV_X) + si_code = FPE_FLTINV; + else if (fcr31 & FPU_CSR_DIV_X) + si_code = FPE_FLTDIV; + else if (fcr31 & FPU_CSR_OVF_X) + si_code = FPE_FLTOVF; + else if (fcr31 & FPU_CSR_UDF_X) + si_code = FPE_FLTUND; + else if (fcr31 & FPU_CSR_INE_X) + si_code = FPE_FLTRES; + + force_sig_fault_to_task(SIGFPE, si_code, fault_addr, tsk); +} + +int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31) +{ + int si_code; + + switch (sig) { + case 0: + return 0; + + case SIGFPE: + force_fcr31_sig(fcr31, fault_addr, current); + return 1; + + case SIGBUS: + force_sig_fault(SIGBUS, BUS_ADRERR, fault_addr); + return 1; + + case SIGSEGV: + mmap_read_lock(current->mm); + if (vma_lookup(current->mm, (unsigned long)fault_addr)) + si_code = SEGV_ACCERR; + else + si_code = SEGV_MAPERR; + mmap_read_unlock(current->mm); + force_sig_fault(SIGSEGV, si_code, fault_addr); + return 1; + + default: + force_sig(sig); + return 1; + } +} + +static int simulate_fp(struct pt_regs *regs, unsigned int opcode, + unsigned long old_epc, unsigned long old_ra) +{ + union mips_instruction inst = { .word = opcode }; + void __user *fault_addr; + unsigned long fcr31; + int sig; + + /* If it's obviously not an FP instruction, skip it */ + switch (inst.i_format.opcode) { + case cop1_op: + case cop1x_op: + case lwc1_op: + case ldc1_op: + case swc1_op: + case sdc1_op: + break; + + default: + return -1; + } + + /* + * do_ri skipped over the instruction via compute_return_epc, undo + * that for the FPU emulator. + */ + regs->cp0_epc = old_epc; + regs->regs[31] = old_ra; + + /* Run the emulator */ + sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1, + &fault_addr); + + /* + * We can't allow the emulated instruction to leave any + * enabled Cause bits set in $fcr31. + */ + fcr31 = mask_fcr31_x(current->thread.fpu.fcr31); + current->thread.fpu.fcr31 &= ~fcr31; + + /* Restore the hardware register state */ + own_fpu(1); + + /* Send a signal if required. */ + process_fpemu_return(sig, fault_addr, fcr31); + + return 0; +} + +/* + * XXX Delayed fp exceptions when doing a lazy ctx switch XXX + */ +asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31) +{ + enum ctx_state prev_state; + void __user *fault_addr; + int sig; + + prev_state = exception_enter(); + if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr, + SIGFPE) == NOTIFY_STOP) + goto out; + + /* Clear FCSR.Cause before enabling interrupts */ + write_32bit_cp1_register(CP1_STATUS, fcr31 & ~mask_fcr31_x(fcr31)); + local_irq_enable(); + + die_if_kernel("FP exception in kernel code", regs); + + if (fcr31 & FPU_CSR_UNI_X) { + /* + * Unimplemented operation exception. If we've got the full + * software emulator on-board, let's use it... + * + * Force FPU to dump state into task/thread context. We're + * moving a lot of data here for what is probably a single + * instruction, but the alternative is to pre-decode the FP + * register operands before invoking the emulator, which seems + * a bit extreme for what should be an infrequent event. + */ + + /* Run the emulator */ + sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1, + &fault_addr); + + /* + * We can't allow the emulated instruction to leave any + * enabled Cause bits set in $fcr31. + */ + fcr31 = mask_fcr31_x(current->thread.fpu.fcr31); + current->thread.fpu.fcr31 &= ~fcr31; + + /* Restore the hardware register state */ + own_fpu(1); /* Using the FPU again. */ + } else { + sig = SIGFPE; + fault_addr = (void __user *) regs->cp0_epc; + } + + /* Send a signal if required. */ + process_fpemu_return(sig, fault_addr, fcr31); + +out: + exception_exit(prev_state); +} + +/* + * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've + * emulated more than some threshold number of instructions, force migration to + * a "CPU" that has FP support. + */ +static void mt_ase_fp_affinity(void) +{ +#ifdef CONFIG_MIPS_MT_FPAFF + if (mt_fpemul_threshold > 0 && + ((current->thread.emulated_fp++ > mt_fpemul_threshold))) { + /* + * If there's no FPU present, or if the application has already + * restricted the allowed set to exclude any CPUs with FPUs, + * we'll skip the procedure. + */ + if (cpumask_intersects(¤t->cpus_mask, &mt_fpu_cpumask)) { + cpumask_t tmask; + + current->thread.user_cpus_allowed + = current->cpus_mask; + cpumask_and(&tmask, ¤t->cpus_mask, + &mt_fpu_cpumask); + set_cpus_allowed_ptr(current, &tmask); + set_thread_flag(TIF_FPUBOUND); + } + } +#endif /* CONFIG_MIPS_MT_FPAFF */ +} + +#else /* !CONFIG_MIPS_FP_SUPPORT */ + +static int simulate_fp(struct pt_regs *regs, unsigned int opcode, + unsigned long old_epc, unsigned long old_ra) +{ + return -1; +} + +#endif /* !CONFIG_MIPS_FP_SUPPORT */ + +void do_trap_or_bp(struct pt_regs *regs, unsigned int code, int si_code, + const char *str) +{ + char b[40]; + +#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP + if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr, + SIGTRAP) == NOTIFY_STOP) + return; +#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */ + + if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr, + SIGTRAP) == NOTIFY_STOP) + return; + + /* + * A short test says that IRIX 5.3 sends SIGTRAP for all trap + * insns, even for trap and break codes that indicate arithmetic + * failures. Weird ... + * But should we continue the brokenness??? --macro + */ + switch (code) { + case BRK_OVERFLOW: + case BRK_DIVZERO: + scnprintf(b, sizeof(b), "%s instruction in kernel code", str); + die_if_kernel(b, regs); + force_sig_fault(SIGFPE, + code == BRK_DIVZERO ? FPE_INTDIV : FPE_INTOVF, + (void __user *) regs->cp0_epc); + break; + case BRK_BUG: + die_if_kernel("Kernel bug detected", regs); + force_sig(SIGTRAP); + break; + case BRK_MEMU: + /* + * This breakpoint code is used by the FPU emulator to retake + * control of the CPU after executing the instruction from the + * delay slot of an emulated branch. + * + * Terminate if exception was recognized as a delay slot return + * otherwise handle as normal. + */ + if (do_dsemulret(regs)) + return; + + die_if_kernel("Math emu break/trap", regs); + force_sig(SIGTRAP); + break; + default: + scnprintf(b, sizeof(b), "%s instruction in kernel code", str); + die_if_kernel(b, regs); + if (si_code) { + force_sig_fault(SIGTRAP, si_code, NULL); + } else { + force_sig(SIGTRAP); + } + } +} + +asmlinkage void do_bp(struct pt_regs *regs) +{ + unsigned long epc = msk_isa16_mode(exception_epc(regs)); + unsigned int opcode, bcode; + enum ctx_state prev_state; + bool user = user_mode(regs); + + prev_state = exception_enter(); + current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f; + if (get_isa16_mode(regs->cp0_epc)) { + u16 instr[2]; + + if (__get_inst16(&instr[0], (u16 *)epc, user)) + goto out_sigsegv; + + if (!cpu_has_mmips) { + /* MIPS16e mode */ + bcode = (instr[0] >> 5) & 0x3f; + } else if (mm_insn_16bit(instr[0])) { + /* 16-bit microMIPS BREAK */ + bcode = instr[0] & 0xf; + } else { + /* 32-bit microMIPS BREAK */ + if (__get_inst16(&instr[1], (u16 *)(epc + 2), user)) + goto out_sigsegv; + opcode = (instr[0] << 16) | instr[1]; + bcode = (opcode >> 6) & ((1 << 20) - 1); + } + } else { + if (__get_inst32(&opcode, (u32 *)epc, user)) + goto out_sigsegv; + bcode = (opcode >> 6) & ((1 << 20) - 1); + } + + /* + * There is the ancient bug in the MIPS assemblers that the break + * code starts left to bit 16 instead to bit 6 in the opcode. + * Gas is bug-compatible, but not always, grrr... + * We handle both cases with a simple heuristics. --macro + */ + if (bcode >= (1 << 10)) + bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10); + + /* + * notify the kprobe handlers, if instruction is likely to + * pertain to them. + */ + switch (bcode) { + case BRK_UPROBE: + if (notify_die(DIE_UPROBE, "uprobe", regs, bcode, + current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP) + goto out; + else + break; + case BRK_UPROBE_XOL: + if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode, + current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP) + goto out; + else + break; + case BRK_KPROBE_BP: + if (notify_die(DIE_BREAK, "debug", regs, bcode, + current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP) + goto out; + else + break; + case BRK_KPROBE_SSTEPBP: + if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode, + current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP) + goto out; + else + break; + default: + break; + } + + do_trap_or_bp(regs, bcode, TRAP_BRKPT, "Break"); + +out: + exception_exit(prev_state); + return; + +out_sigsegv: + force_sig(SIGSEGV); + goto out; +} + +asmlinkage void do_tr(struct pt_regs *regs) +{ + u32 opcode, tcode = 0; + enum ctx_state prev_state; + u16 instr[2]; + bool user = user_mode(regs); + unsigned long epc = msk_isa16_mode(exception_epc(regs)); + + prev_state = exception_enter(); + current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f; + if (get_isa16_mode(regs->cp0_epc)) { + if (__get_inst16(&instr[0], (u16 *)(epc + 0), user) || + __get_inst16(&instr[1], (u16 *)(epc + 2), user)) + goto out_sigsegv; + opcode = (instr[0] << 16) | instr[1]; + /* Immediate versions don't provide a code. */ + if (!(opcode & OPCODE)) + tcode = (opcode >> 12) & ((1 << 4) - 1); + } else { + if (__get_inst32(&opcode, (u32 *)epc, user)) + goto out_sigsegv; + /* Immediate versions don't provide a code. */ + if (!(opcode & OPCODE)) + tcode = (opcode >> 6) & ((1 << 10) - 1); + } + + do_trap_or_bp(regs, tcode, 0, "Trap"); + +out: + exception_exit(prev_state); + return; + +out_sigsegv: + force_sig(SIGSEGV); + goto out; +} + +asmlinkage void do_ri(struct pt_regs *regs) +{ + unsigned int __user *epc = (unsigned int __user *)exception_epc(regs); + unsigned long old_epc = regs->cp0_epc; + unsigned long old31 = regs->regs[31]; + enum ctx_state prev_state; + unsigned int opcode = 0; + int status = -1; + + /* + * Avoid any kernel code. Just emulate the R2 instruction + * as quickly as possible. + */ + if (mipsr2_emulation && cpu_has_mips_r6 && + likely(user_mode(regs)) && + likely(get_user(opcode, epc) >= 0)) { + unsigned long fcr31 = 0; + + status = mipsr2_decoder(regs, opcode, &fcr31); + switch (status) { + case 0: + case SIGEMT: + return; + case SIGILL: + goto no_r2_instr; + default: + process_fpemu_return(status, + ¤t->thread.cp0_baduaddr, + fcr31); + return; + } + } + +no_r2_instr: + + prev_state = exception_enter(); + current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f; + + if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr, + SIGILL) == NOTIFY_STOP) + goto out; + + die_if_kernel("Reserved instruction in kernel code", regs); + + if (unlikely(compute_return_epc(regs) < 0)) + goto out; + + if (!get_isa16_mode(regs->cp0_epc)) { + if (unlikely(get_user(opcode, epc) < 0)) + status = SIGSEGV; + + if (!cpu_has_llsc && status < 0) + status = simulate_llsc(regs, opcode); + + if (status < 0) + status = simulate_rdhwr_normal(regs, opcode); + + if (status < 0) + status = simulate_sync(regs, opcode); + + if (status < 0) + status = simulate_fp(regs, opcode, old_epc, old31); + +#ifdef CONFIG_CPU_LOONGSON3_CPUCFG_EMULATION + if (status < 0) + status = simulate_loongson3_cpucfg(regs, opcode); +#endif + } else if (cpu_has_mmips) { + unsigned short mmop[2] = { 0 }; + + if (unlikely(get_user(mmop[0], (u16 __user *)epc + 0) < 0)) + status = SIGSEGV; + if (unlikely(get_user(mmop[1], (u16 __user *)epc + 1) < 0)) + status = SIGSEGV; + opcode = mmop[0]; + opcode = (opcode << 16) | mmop[1]; + + if (status < 0) + status = simulate_rdhwr_mm(regs, opcode); + } + + if (status < 0) + status = SIGILL; + + if (unlikely(status > 0)) { + regs->cp0_epc = old_epc; /* Undo skip-over. */ + regs->regs[31] = old31; + force_sig(status); + } + +out: + exception_exit(prev_state); +} + +/* + * No lock; only written during early bootup by CPU 0. + */ +static RAW_NOTIFIER_HEAD(cu2_chain); + +int __ref register_cu2_notifier(struct notifier_block *nb) +{ + return raw_notifier_chain_register(&cu2_chain, nb); +} + +int cu2_notifier_call_chain(unsigned long val, void *v) +{ + return raw_notifier_call_chain(&cu2_chain, val, v); +} + +static int default_cu2_call(struct notifier_block *nfb, unsigned long action, + void *data) +{ + struct pt_regs *regs = data; + + die_if_kernel("COP2: Unhandled kernel unaligned access or invalid " + "instruction", regs); + force_sig(SIGILL); + + return NOTIFY_OK; +} + +#ifdef CONFIG_MIPS_FP_SUPPORT + +static int enable_restore_fp_context(int msa) +{ + int err, was_fpu_owner, prior_msa; + bool first_fp; + + /* Initialize context if it hasn't been used already */ + first_fp = init_fp_ctx(current); + + if (first_fp) { + preempt_disable(); + err = own_fpu_inatomic(1); + if (msa && !err) { + enable_msa(); + /* + * with MSA enabled, userspace can see MSACSR + * and MSA regs, but the values in them are from + * other task before current task, restore them + * from saved fp/msa context + */ + write_msa_csr(current->thread.fpu.msacsr); + /* + * own_fpu_inatomic(1) just restore low 64bit, + * fix the high 64bit + */ + init_msa_upper(); + set_thread_flag(TIF_USEDMSA); + set_thread_flag(TIF_MSA_CTX_LIVE); + } + preempt_enable(); + return err; + } + + /* + * This task has formerly used the FP context. + * + * If this thread has no live MSA vector context then we can simply + * restore the scalar FP context. If it has live MSA vector context + * (that is, it has or may have used MSA since last performing a + * function call) then we'll need to restore the vector context. This + * applies even if we're currently only executing a scalar FP + * instruction. This is because if we were to later execute an MSA + * instruction then we'd either have to: + * + * - Restore the vector context & clobber any registers modified by + * scalar FP instructions between now & then. + * + * or + * + * - Not restore the vector context & lose the most significant bits + * of all vector registers. + * + * Neither of those options is acceptable. We cannot restore the least + * significant bits of the registers now & only restore the most + * significant bits later because the most significant bits of any + * vector registers whose aliased FP register is modified now will have + * been zeroed. We'd have no way to know that when restoring the vector + * context & thus may load an outdated value for the most significant + * bits of a vector register. + */ + if (!msa && !thread_msa_context_live()) + return own_fpu(1); + + /* + * This task is using or has previously used MSA. Thus we require + * that Status.FR == 1. + */ + preempt_disable(); + was_fpu_owner = is_fpu_owner(); + err = own_fpu_inatomic(0); + if (err) + goto out; + + enable_msa(); + write_msa_csr(current->thread.fpu.msacsr); + set_thread_flag(TIF_USEDMSA); + + /* + * If this is the first time that the task is using MSA and it has + * previously used scalar FP in this time slice then we already nave + * FP context which we shouldn't clobber. We do however need to clear + * the upper 64b of each vector register so that this task has no + * opportunity to see data left behind by another. + */ + prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE); + if (!prior_msa && was_fpu_owner) { + init_msa_upper(); + + goto out; + } + + if (!prior_msa) { + /* + * Restore the least significant 64b of each vector register + * from the existing scalar FP context. + */ + _restore_fp(current); + + /* + * The task has not formerly used MSA, so clear the upper 64b + * of each vector register such that it cannot see data left + * behind by another task. + */ + init_msa_upper(); + } else { + /* We need to restore the vector context. */ + restore_msa(current); + + /* Restore the scalar FP control & status register */ + if (!was_fpu_owner) + write_32bit_cp1_register(CP1_STATUS, + current->thread.fpu.fcr31); + } + +out: + preempt_enable(); + + return 0; +} + +#else /* !CONFIG_MIPS_FP_SUPPORT */ + +static int enable_restore_fp_context(int msa) +{ + return SIGILL; +} + +#endif /* CONFIG_MIPS_FP_SUPPORT */ + +asmlinkage void do_cpu(struct pt_regs *regs) +{ + enum ctx_state prev_state; + unsigned int __user *epc; + unsigned long old_epc, old31; + unsigned int opcode; + unsigned int cpid; + int status; + + prev_state = exception_enter(); + cpid = (regs->cp0_cause >> CAUSEB_CE) & 3; + + if (cpid != 2) + die_if_kernel("do_cpu invoked from kernel context!", regs); + + switch (cpid) { + case 0: + epc = (unsigned int __user *)exception_epc(regs); + old_epc = regs->cp0_epc; + old31 = regs->regs[31]; + opcode = 0; + status = -1; + + if (unlikely(compute_return_epc(regs) < 0)) + break; + + if (!get_isa16_mode(regs->cp0_epc)) { + if (unlikely(get_user(opcode, epc) < 0)) + status = SIGSEGV; + + if (!cpu_has_llsc && status < 0) + status = simulate_llsc(regs, opcode); + } + + if (status < 0) + status = SIGILL; + + if (unlikely(status > 0)) { + regs->cp0_epc = old_epc; /* Undo skip-over. */ + regs->regs[31] = old31; + force_sig(status); + } + + break; + +#ifdef CONFIG_MIPS_FP_SUPPORT + case 3: + /* + * The COP3 opcode space and consequently the CP0.Status.CU3 + * bit and the CP0.Cause.CE=3 encoding have been removed as + * of the MIPS III ISA. From the MIPS IV and MIPS32r2 ISAs + * up the space has been reused for COP1X instructions, that + * are enabled by the CP0.Status.CU1 bit and consequently + * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable + * exceptions. Some FPU-less processors that implement one + * of these ISAs however use this code erroneously for COP1X + * instructions. Therefore we redirect this trap to the FP + * emulator too. + */ + if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) { + force_sig(SIGILL); + break; + } + fallthrough; + case 1: { + void __user *fault_addr; + unsigned long fcr31; + int err, sig; + + err = enable_restore_fp_context(0); + + if (raw_cpu_has_fpu && !err) + break; + + sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 0, + &fault_addr); + + /* + * We can't allow the emulated instruction to leave + * any enabled Cause bits set in $fcr31. + */ + fcr31 = mask_fcr31_x(current->thread.fpu.fcr31); + current->thread.fpu.fcr31 &= ~fcr31; + + /* Send a signal if required. */ + if (!process_fpemu_return(sig, fault_addr, fcr31) && !err) + mt_ase_fp_affinity(); + + break; + } +#else /* CONFIG_MIPS_FP_SUPPORT */ + case 1: + case 3: + force_sig(SIGILL); + break; +#endif /* CONFIG_MIPS_FP_SUPPORT */ + + case 2: + raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs); + break; + } + + exception_exit(prev_state); +} + +asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr) +{ + enum ctx_state prev_state; + + prev_state = exception_enter(); + current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f; + if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0, + current->thread.trap_nr, SIGFPE) == NOTIFY_STOP) + goto out; + + /* Clear MSACSR.Cause before enabling interrupts */ + write_msa_csr(msacsr & ~MSA_CSR_CAUSEF); + local_irq_enable(); + + die_if_kernel("do_msa_fpe invoked from kernel context!", regs); + force_sig(SIGFPE); +out: + exception_exit(prev_state); +} + +asmlinkage void do_msa(struct pt_regs *regs) +{ + enum ctx_state prev_state; + int err; + + prev_state = exception_enter(); + + if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) { + force_sig(SIGILL); + goto out; + } + + die_if_kernel("do_msa invoked from kernel context!", regs); + + err = enable_restore_fp_context(1); + if (err) + force_sig(SIGILL); +out: + exception_exit(prev_state); +} + +asmlinkage void do_mdmx(struct pt_regs *regs) +{ + enum ctx_state prev_state; + + prev_state = exception_enter(); + force_sig(SIGILL); + exception_exit(prev_state); +} + +/* + * Called with interrupts disabled. + */ +asmlinkage void do_watch(struct pt_regs *regs) +{ + enum ctx_state prev_state; + + prev_state = exception_enter(); + /* + * Clear WP (bit 22) bit of cause register so we don't loop + * forever. + */ + clear_c0_cause(CAUSEF_WP); + + /* + * If the current thread has the watch registers loaded, save + * their values and send SIGTRAP. Otherwise another thread + * left the registers set, clear them and continue. + */ + if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) { + mips_read_watch_registers(); + local_irq_enable(); + force_sig_fault(SIGTRAP, TRAP_HWBKPT, NULL); + } else { + mips_clear_watch_registers(); + local_irq_enable(); + } + exception_exit(prev_state); +} + +asmlinkage void do_mcheck(struct pt_regs *regs) +{ + int multi_match = regs->cp0_status & ST0_TS; + enum ctx_state prev_state; + + prev_state = exception_enter(); + show_regs(regs); + + if (multi_match) { + dump_tlb_regs(); + pr_info("\n"); + dump_tlb_all(); + } + + show_code((void *)regs->cp0_epc, user_mode(regs)); + + /* + * Some chips may have other causes of machine check (e.g. SB1 + * graduation timer) + */ + panic("Caught Machine Check exception - %scaused by multiple " + "matching entries in the TLB.", + (multi_match) ? "" : "not "); +} + +asmlinkage void do_mt(struct pt_regs *regs) +{ + int subcode; + + subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT) + >> VPECONTROL_EXCPT_SHIFT; + switch (subcode) { + case 0: + printk(KERN_DEBUG "Thread Underflow\n"); + break; + case 1: + printk(KERN_DEBUG "Thread Overflow\n"); + break; + case 2: + printk(KERN_DEBUG "Invalid YIELD Qualifier\n"); + break; + case 3: + printk(KERN_DEBUG "Gating Storage Exception\n"); + break; + case 4: + printk(KERN_DEBUG "YIELD Scheduler Exception\n"); + break; + case 5: + printk(KERN_DEBUG "Gating Storage Scheduler Exception\n"); + break; + default: + printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n", + subcode); + break; + } + die_if_kernel("MIPS MT Thread exception in kernel", regs); + + force_sig(SIGILL); +} + + +asmlinkage void do_dsp(struct pt_regs *regs) +{ + if (cpu_has_dsp) + panic("Unexpected DSP exception"); + + force_sig(SIGILL); +} + +asmlinkage void do_reserved(struct pt_regs *regs) +{ + /* + * Game over - no way to handle this if it ever occurs. Most probably + * caused by a new unknown cpu type or after another deadly + * hard/software error. + */ + show_regs(regs); + panic("Caught reserved exception %ld - should not happen.", + (regs->cp0_cause & 0x7f) >> 2); +} + +static int __initdata l1parity = 1; +static int __init nol1parity(char *s) +{ + l1parity = 0; + return 1; +} +__setup("nol1par", nol1parity); +static int __initdata l2parity = 1; +static int __init nol2parity(char *s) +{ + l2parity = 0; + return 1; +} +__setup("nol2par", nol2parity); + +/* + * Some MIPS CPUs can enable/disable for cache parity detection, but do + * it different ways. + */ +static inline __init void parity_protection_init(void) +{ +#define ERRCTL_PE 0x80000000 +#define ERRCTL_L2P 0x00800000 + + if (mips_cm_revision() >= CM_REV_CM3) { + ulong gcr_ectl, cp0_ectl; + + /* + * With CM3 systems we need to ensure that the L1 & L2 + * parity enables are set to the same value, since this + * is presumed by the hardware engineers. + * + * If the user disabled either of L1 or L2 ECC checking, + * disable both. + */ + l1parity &= l2parity; + l2parity &= l1parity; + + /* Probe L1 ECC support */ + cp0_ectl = read_c0_ecc(); + write_c0_ecc(cp0_ectl | ERRCTL_PE); + back_to_back_c0_hazard(); + cp0_ectl = read_c0_ecc(); + + /* Probe L2 ECC support */ + gcr_ectl = read_gcr_err_control(); + + if (!(gcr_ectl & CM_GCR_ERR_CONTROL_L2_ECC_SUPPORT) || + !(cp0_ectl & ERRCTL_PE)) { + /* + * One of L1 or L2 ECC checking isn't supported, + * so we cannot enable either. + */ + l1parity = l2parity = 0; + } + + /* Configure L1 ECC checking */ + if (l1parity) + cp0_ectl |= ERRCTL_PE; + else + cp0_ectl &= ~ERRCTL_PE; + write_c0_ecc(cp0_ectl); + back_to_back_c0_hazard(); + WARN_ON(!!(read_c0_ecc() & ERRCTL_PE) != l1parity); + + /* Configure L2 ECC checking */ + if (l2parity) + gcr_ectl |= CM_GCR_ERR_CONTROL_L2_ECC_EN; + else + gcr_ectl &= ~CM_GCR_ERR_CONTROL_L2_ECC_EN; + write_gcr_err_control(gcr_ectl); + gcr_ectl = read_gcr_err_control(); + gcr_ectl &= CM_GCR_ERR_CONTROL_L2_ECC_EN; + WARN_ON(!!gcr_ectl != l2parity); + + pr_info("Cache parity protection %sabled\n", + l1parity ? "en" : "dis"); + return; + } + + switch (current_cpu_type()) { + case CPU_24K: + case CPU_34K: + case CPU_74K: + case CPU_1004K: + case CPU_1074K: + case CPU_INTERAPTIV: + case CPU_PROAPTIV: + case CPU_P5600: + case CPU_QEMU_GENERIC: + case CPU_P6600: + { + unsigned long errctl; + unsigned int l1parity_present, l2parity_present; + + errctl = read_c0_ecc(); + errctl &= ~(ERRCTL_PE|ERRCTL_L2P); + + /* probe L1 parity support */ + write_c0_ecc(errctl | ERRCTL_PE); + back_to_back_c0_hazard(); + l1parity_present = (read_c0_ecc() & ERRCTL_PE); + + /* probe L2 parity support */ + write_c0_ecc(errctl|ERRCTL_L2P); + back_to_back_c0_hazard(); + l2parity_present = (read_c0_ecc() & ERRCTL_L2P); + + if (l1parity_present && l2parity_present) { + if (l1parity) + errctl |= ERRCTL_PE; + if (l1parity ^ l2parity) + errctl |= ERRCTL_L2P; + } else if (l1parity_present) { + if (l1parity) + errctl |= ERRCTL_PE; + } else if (l2parity_present) { + if (l2parity) + errctl |= ERRCTL_L2P; + } else { + /* No parity available */ + } + + printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl); + + write_c0_ecc(errctl); + back_to_back_c0_hazard(); + errctl = read_c0_ecc(); + printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl); + + if (l1parity_present) + printk(KERN_INFO "Cache parity protection %sabled\n", + (errctl & ERRCTL_PE) ? "en" : "dis"); + + if (l2parity_present) { + if (l1parity_present && l1parity) + errctl ^= ERRCTL_L2P; + printk(KERN_INFO "L2 cache parity protection %sabled\n", + (errctl & ERRCTL_L2P) ? "en" : "dis"); + } + } + break; + + case CPU_5KC: + case CPU_5KE: + case CPU_LOONGSON32: + write_c0_ecc(0x80000000); + back_to_back_c0_hazard(); + /* Set the PE bit (bit 31) in the c0_errctl register. */ + printk(KERN_INFO "Cache parity protection %sabled\n", + (read_c0_ecc() & 0x80000000) ? "en" : "dis"); + break; + case CPU_20KC: + case CPU_25KF: + /* Clear the DE bit (bit 16) in the c0_status register. */ + printk(KERN_INFO "Enable cache parity protection for " + "MIPS 20KC/25KF CPUs.\n"); + clear_c0_status(ST0_DE); + break; + default: + break; + } +} + +asmlinkage void cache_parity_error(void) +{ + const int field = 2 * sizeof(unsigned long); + unsigned int reg_val; + + /* For the moment, report the problem and hang. */ + printk("Cache error exception:\n"); + printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc()); + reg_val = read_c0_cacheerr(); + printk("c0_cacheerr == %08x\n", reg_val); + + printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n", + reg_val & (1<<30) ? "secondary" : "primary", + reg_val & (1<<31) ? "data" : "insn"); + if ((cpu_has_mips_r2_r6) && + ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) { + pr_err("Error bits: %s%s%s%s%s%s%s%s\n", + reg_val & (1<<29) ? "ED " : "", + reg_val & (1<<28) ? "ET " : "", + reg_val & (1<<27) ? "ES " : "", + reg_val & (1<<26) ? "EE " : "", + reg_val & (1<<25) ? "EB " : "", + reg_val & (1<<24) ? "EI " : "", + reg_val & (1<<23) ? "E1 " : "", + reg_val & (1<<22) ? "E0 " : ""); + } else { + pr_err("Error bits: %s%s%s%s%s%s%s\n", + reg_val & (1<<29) ? "ED " : "", + reg_val & (1<<28) ? "ET " : "", + reg_val & (1<<26) ? "EE " : "", + reg_val & (1<<25) ? "EB " : "", + reg_val & (1<<24) ? "EI " : "", + reg_val & (1<<23) ? "E1 " : "", + reg_val & (1<<22) ? "E0 " : ""); + } + printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1)); + +#if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64) + if (reg_val & (1<<22)) + printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0()); + + if (reg_val & (1<<23)) + printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1()); +#endif + + panic("Can't handle the cache error!"); +} + +asmlinkage void do_ftlb(void) +{ + const int field = 2 * sizeof(unsigned long); + unsigned int reg_val; + + /* For the moment, report the problem and hang. */ + if ((cpu_has_mips_r2_r6) && + (((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS) || + ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_LOONGSON))) { + pr_err("FTLB error exception, cp0_ecc=0x%08x:\n", + read_c0_ecc()); + pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc()); + reg_val = read_c0_cacheerr(); + pr_err("c0_cacheerr == %08x\n", reg_val); + + if ((reg_val & 0xc0000000) == 0xc0000000) { + pr_err("Decoded c0_cacheerr: FTLB parity error\n"); + } else { + pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n", + reg_val & (1<<30) ? "secondary" : "primary", + reg_val & (1<<31) ? "data" : "insn"); + } + } else { + pr_err("FTLB error exception\n"); + } + /* Just print the cacheerr bits for now */ + cache_parity_error(); +} + +asmlinkage void do_gsexc(struct pt_regs *regs, u32 diag1) +{ + u32 exccode = (diag1 & LOONGSON_DIAG1_EXCCODE) >> + LOONGSON_DIAG1_EXCCODE_SHIFT; + enum ctx_state prev_state; + + prev_state = exception_enter(); + + switch (exccode) { + case 0x08: + /* Undocumented exception, will trigger on certain + * also-undocumented instructions accessible from userspace. + * Processor state is not otherwise corrupted, but currently + * we don't know how to proceed. Maybe there is some + * undocumented control flag to enable the instructions? + */ + force_sig(SIGILL); + break; + + default: + /* None of the other exceptions, documented or not, have + * further details given; none are encountered in the wild + * either. Panic in case some of them turn out to be fatal. + */ + show_regs(regs); + panic("Unhandled Loongson exception - GSCause = %08x", diag1); + } + + exception_exit(prev_state); +} + +/* + * SDBBP EJTAG debug exception handler. + * We skip the instruction and return to the next instruction. + */ +void ejtag_exception_handler(struct pt_regs *regs) +{ + const int field = 2 * sizeof(unsigned long); + unsigned long depc, old_epc, old_ra; + unsigned int debug; + + printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n"); + depc = read_c0_depc(); + debug = read_c0_debug(); + printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug); + if (debug & 0x80000000) { + /* + * In branch delay slot. + * We cheat a little bit here and use EPC to calculate the + * debug return address (DEPC). EPC is restored after the + * calculation. + */ + old_epc = regs->cp0_epc; + old_ra = regs->regs[31]; + regs->cp0_epc = depc; + compute_return_epc(regs); + depc = regs->cp0_epc; + regs->cp0_epc = old_epc; + regs->regs[31] = old_ra; + } else + depc += 4; + write_c0_depc(depc); + +#if 0 + printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n"); + write_c0_debug(debug | 0x100); +#endif +} + +/* + * NMI exception handler. + * No lock; only written during early bootup by CPU 0. + */ +static RAW_NOTIFIER_HEAD(nmi_chain); + +int register_nmi_notifier(struct notifier_block *nb) +{ + return raw_notifier_chain_register(&nmi_chain, nb); +} + +void __noreturn nmi_exception_handler(struct pt_regs *regs) +{ + char str[100]; + + nmi_enter(); + raw_notifier_call_chain(&nmi_chain, 0, regs); + bust_spinlocks(1); + snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n", + smp_processor_id(), regs->cp0_epc); + regs->cp0_epc = read_c0_errorepc(); + die(str, regs); + nmi_exit(); +} + +unsigned long ebase; +EXPORT_SYMBOL_GPL(ebase); +unsigned long exception_handlers[32]; +unsigned long vi_handlers[64]; + +void reserve_exception_space(phys_addr_t addr, unsigned long size) +{ + memblock_reserve(addr, size); +} + +void __init *set_except_vector(int n, void *addr) +{ + unsigned long handler = (unsigned long) addr; + unsigned long old_handler; + +#ifdef CONFIG_CPU_MICROMIPS + /* + * Only the TLB handlers are cache aligned with an even + * address. All other handlers are on an odd address and + * require no modification. Otherwise, MIPS32 mode will + * be entered when handling any TLB exceptions. That + * would be bad...since we must stay in microMIPS mode. + */ + if (!(handler & 0x1)) + handler |= 1; +#endif + old_handler = xchg(&exception_handlers[n], handler); + + if (n == 0 && cpu_has_divec) { +#ifdef CONFIG_CPU_MICROMIPS + unsigned long jump_mask = ~((1 << 27) - 1); +#else + unsigned long jump_mask = ~((1 << 28) - 1); +#endif + u32 *buf = (u32 *)(ebase + 0x200); + unsigned int k0 = 26; + if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) { + uasm_i_j(&buf, handler & ~jump_mask); + uasm_i_nop(&buf); + } else { + UASM_i_LA(&buf, k0, handler); + uasm_i_jr(&buf, k0); + uasm_i_nop(&buf); + } + local_flush_icache_range(ebase + 0x200, (unsigned long)buf); + } + return (void *)old_handler; +} + +static void do_default_vi(void) +{ + show_regs(get_irq_regs()); + panic("Caught unexpected vectored interrupt."); +} + +static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs) +{ + unsigned long handler; + unsigned long old_handler = vi_handlers[n]; + int srssets = current_cpu_data.srsets; + u16 *h; + unsigned char *b; + + BUG_ON(!cpu_has_veic && !cpu_has_vint); + + if (addr == NULL) { + handler = (unsigned long) do_default_vi; + srs = 0; + } else + handler = (unsigned long) addr; + vi_handlers[n] = handler; + + b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING); + + if (srs >= srssets) + panic("Shadow register set %d not supported", srs); + + if (cpu_has_veic) { + if (board_bind_eic_interrupt) + board_bind_eic_interrupt(n, srs); + } else if (cpu_has_vint) { + /* SRSMap is only defined if shadow sets are implemented */ + if (srssets > 1) + change_c0_srsmap(0xf << n*4, srs << n*4); + } + + if (srs == 0) { + /* + * If no shadow set is selected then use the default handler + * that does normal register saving and standard interrupt exit + */ + extern const u8 except_vec_vi[], except_vec_vi_lui[]; + extern const u8 except_vec_vi_ori[], except_vec_vi_end[]; + extern const u8 rollback_except_vec_vi[]; + const u8 *vec_start = using_rollback_handler() ? + rollback_except_vec_vi : except_vec_vi; +#if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN) + const int lui_offset = except_vec_vi_lui - vec_start + 2; + const int ori_offset = except_vec_vi_ori - vec_start + 2; +#else + const int lui_offset = except_vec_vi_lui - vec_start; + const int ori_offset = except_vec_vi_ori - vec_start; +#endif + const int handler_len = except_vec_vi_end - vec_start; + + if (handler_len > VECTORSPACING) { + /* + * Sigh... panicing won't help as the console + * is probably not configured :( + */ + panic("VECTORSPACING too small"); + } + + set_handler(((unsigned long)b - ebase), vec_start, +#ifdef CONFIG_CPU_MICROMIPS + (handler_len - 1)); +#else + handler_len); +#endif + h = (u16 *)(b + lui_offset); + *h = (handler >> 16) & 0xffff; + h = (u16 *)(b + ori_offset); + *h = (handler & 0xffff); + local_flush_icache_range((unsigned long)b, + (unsigned long)(b+handler_len)); + } + else { + /* + * In other cases jump directly to the interrupt handler. It + * is the handler's responsibility to save registers if required + * (eg hi/lo) and return from the exception using "eret". + */ + u32 insn; + + h = (u16 *)b; + /* j handler */ +#ifdef CONFIG_CPU_MICROMIPS + insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1); +#else + insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2); +#endif + h[0] = (insn >> 16) & 0xffff; + h[1] = insn & 0xffff; + h[2] = 0; + h[3] = 0; + local_flush_icache_range((unsigned long)b, + (unsigned long)(b+8)); + } + + return (void *)old_handler; +} + +void *set_vi_handler(int n, vi_handler_t addr) +{ + return set_vi_srs_handler(n, addr, 0); +} + +extern void tlb_init(void); + +/* + * Timer interrupt + */ +int cp0_compare_irq; +EXPORT_SYMBOL_GPL(cp0_compare_irq); +int cp0_compare_irq_shift; + +/* + * Performance counter IRQ or -1 if shared with timer + */ +int cp0_perfcount_irq; +EXPORT_SYMBOL_GPL(cp0_perfcount_irq); + +/* + * Fast debug channel IRQ or -1 if not present + */ +int cp0_fdc_irq; +EXPORT_SYMBOL_GPL(cp0_fdc_irq); + +static int noulri; + +static int __init ulri_disable(char *s) +{ + pr_info("Disabling ulri\n"); + noulri = 1; + + return 1; +} +__setup("noulri", ulri_disable); + +/* configure STATUS register */ +static void configure_status(void) +{ + /* + * Disable coprocessors and select 32-bit or 64-bit addressing + * and the 16/32 or 32/32 FPR register model. Reset the BEV + * flag that some firmware may have left set and the TS bit (for + * IP27). Set XX for ISA IV code to work. + */ + unsigned int status_set = ST0_KERNEL_CUMASK; +#ifdef CONFIG_64BIT + status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX; +#endif + if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV) + status_set |= ST0_XX; + if (cpu_has_dsp) + status_set |= ST0_MX; + + change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX, + status_set); + back_to_back_c0_hazard(); +} + +unsigned int hwrena; +EXPORT_SYMBOL_GPL(hwrena); + +/* configure HWRENA register */ +static void configure_hwrena(void) +{ + hwrena = cpu_hwrena_impl_bits; + + if (cpu_has_mips_r2_r6) + hwrena |= MIPS_HWRENA_CPUNUM | + MIPS_HWRENA_SYNCISTEP | + MIPS_HWRENA_CC | + MIPS_HWRENA_CCRES; + + if (!noulri && cpu_has_userlocal) + hwrena |= MIPS_HWRENA_ULR; + + if (hwrena) + write_c0_hwrena(hwrena); +} + +static void configure_exception_vector(void) +{ + if (cpu_has_mips_r2_r6) { + unsigned long sr = set_c0_status(ST0_BEV); + /* If available, use WG to set top bits of EBASE */ + if (cpu_has_ebase_wg) { +#ifdef CONFIG_64BIT + write_c0_ebase_64(ebase | MIPS_EBASE_WG); +#else + write_c0_ebase(ebase | MIPS_EBASE_WG); +#endif + } + write_c0_ebase(ebase); + write_c0_status(sr); + } + if (cpu_has_veic || cpu_has_vint) { + /* Setting vector spacing enables EI/VI mode */ + change_c0_intctl(0x3e0, VECTORSPACING); + } + if (cpu_has_divec) { + if (cpu_has_mipsmt) { + unsigned int vpflags = dvpe(); + set_c0_cause(CAUSEF_IV); + evpe(vpflags); + } else + set_c0_cause(CAUSEF_IV); + } +} + +void per_cpu_trap_init(bool is_boot_cpu) +{ + unsigned int cpu = smp_processor_id(); + + configure_status(); + configure_hwrena(); + + configure_exception_vector(); + + /* + * Before R2 both interrupt numbers were fixed to 7, so on R2 only: + * + * o read IntCtl.IPTI to determine the timer interrupt + * o read IntCtl.IPPCI to determine the performance counter interrupt + * o read IntCtl.IPFDC to determine the fast debug channel interrupt + */ + if (cpu_has_mips_r2_r6) { + cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP; + cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7; + cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7; + cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7; + if (!cp0_fdc_irq) + cp0_fdc_irq = -1; + + } else { + cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ; + cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ; + cp0_perfcount_irq = -1; + cp0_fdc_irq = -1; + } + + if (cpu_has_mmid) + cpu_data[cpu].asid_cache = 0; + else if (!cpu_data[cpu].asid_cache) + cpu_data[cpu].asid_cache = asid_first_version(cpu); + + mmgrab(&init_mm); + current->active_mm = &init_mm; + BUG_ON(current->mm); + enter_lazy_tlb(&init_mm, current); + + /* Boot CPU's cache setup in setup_arch(). */ + if (!is_boot_cpu) + cpu_cache_init(); + tlb_init(); + TLBMISS_HANDLER_SETUP(); +} + +/* Install CPU exception handler */ +void set_handler(unsigned long offset, const void *addr, unsigned long size) +{ +#ifdef CONFIG_CPU_MICROMIPS + memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size); +#else + memcpy((void *)(ebase + offset), addr, size); +#endif + local_flush_icache_range(ebase + offset, ebase + offset + size); +} + +static const char panic_null_cerr[] = + "Trying to set NULL cache error exception handler\n"; + +/* + * Install uncached CPU exception handler. + * This is suitable only for the cache error exception which is the only + * exception handler that is being run uncached. + */ +void set_uncached_handler(unsigned long offset, void *addr, + unsigned long size) +{ + unsigned long uncached_ebase = CKSEG1ADDR(ebase); + + if (!addr) + panic(panic_null_cerr); + + memcpy((void *)(uncached_ebase + offset), addr, size); +} + +static int __initdata rdhwr_noopt; +static int __init set_rdhwr_noopt(char *str) +{ + rdhwr_noopt = 1; + return 1; +} + +__setup("rdhwr_noopt", set_rdhwr_noopt); + +void __init trap_init(void) +{ + extern char except_vec3_generic; + extern char except_vec4; + extern char except_vec3_r4000; + unsigned long i, vec_size; + phys_addr_t ebase_pa; + + check_wait(); + + if (!cpu_has_mips_r2_r6) { + ebase = CAC_BASE; + vec_size = 0x400; + } else { + if (cpu_has_veic || cpu_has_vint) + vec_size = 0x200 + VECTORSPACING*64; + else + vec_size = PAGE_SIZE; + + ebase_pa = memblock_phys_alloc(vec_size, 1 << fls(vec_size)); + if (!ebase_pa) + panic("%s: Failed to allocate %lu bytes align=0x%x\n", + __func__, vec_size, 1 << fls(vec_size)); + + /* + * Try to ensure ebase resides in KSeg0 if possible. + * + * It shouldn't generally be in XKPhys on MIPS64 to avoid + * hitting a poorly defined exception base for Cache Errors. + * The allocation is likely to be in the low 512MB of physical, + * in which case we should be able to convert to KSeg0. + * + * EVA is special though as it allows segments to be rearranged + * and to become uncached during cache error handling. + */ + if (!IS_ENABLED(CONFIG_EVA) && !WARN_ON(ebase_pa >= 0x20000000)) + ebase = CKSEG0ADDR(ebase_pa); + else + ebase = (unsigned long)phys_to_virt(ebase_pa); + } + + if (cpu_has_mmips) { + unsigned int config3 = read_c0_config3(); + + if (IS_ENABLED(CONFIG_CPU_MICROMIPS)) + write_c0_config3(config3 | MIPS_CONF3_ISA_OE); + else + write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE); + } + + if (board_ebase_setup) + board_ebase_setup(); + per_cpu_trap_init(true); + memblock_set_bottom_up(false); + + /* + * Copy the generic exception handlers to their final destination. + * This will be overridden later as suitable for a particular + * configuration. + */ + set_handler(0x180, &except_vec3_generic, 0x80); + + /* + * Setup default vectors + */ + for (i = 0; i <= 31; i++) + set_except_vector(i, handle_reserved); + + /* + * Copy the EJTAG debug exception vector handler code to it's final + * destination. + */ + if (cpu_has_ejtag && board_ejtag_handler_setup) + board_ejtag_handler_setup(); + + /* + * Only some CPUs have the watch exceptions. + */ + if (cpu_has_watch) + set_except_vector(EXCCODE_WATCH, handle_watch); + + /* + * Initialise interrupt handlers + */ + if (cpu_has_veic || cpu_has_vint) { + int nvec = cpu_has_veic ? 64 : 8; + for (i = 0; i < nvec; i++) + set_vi_handler(i, NULL); + } + else if (cpu_has_divec) + set_handler(0x200, &except_vec4, 0x8); + + /* + * Some CPUs can enable/disable for cache parity detection, but does + * it different ways. + */ + parity_protection_init(); + + /* + * The Data Bus Errors / Instruction Bus Errors are signaled + * by external hardware. Therefore these two exceptions + * may have board specific handlers. + */ + if (board_be_init) + board_be_init(); + + set_except_vector(EXCCODE_INT, using_rollback_handler() ? + rollback_handle_int : handle_int); + set_except_vector(EXCCODE_MOD, handle_tlbm); + set_except_vector(EXCCODE_TLBL, handle_tlbl); + set_except_vector(EXCCODE_TLBS, handle_tlbs); + + set_except_vector(EXCCODE_ADEL, handle_adel); + set_except_vector(EXCCODE_ADES, handle_ades); + + set_except_vector(EXCCODE_IBE, handle_ibe); + set_except_vector(EXCCODE_DBE, handle_dbe); + + set_except_vector(EXCCODE_SYS, handle_sys); + set_except_vector(EXCCODE_BP, handle_bp); + + if (rdhwr_noopt) + set_except_vector(EXCCODE_RI, handle_ri); + else { + if (cpu_has_vtag_icache) + set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp); + else if (current_cpu_type() == CPU_LOONGSON64) + set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp); + else + set_except_vector(EXCCODE_RI, handle_ri_rdhwr); + } + + set_except_vector(EXCCODE_CPU, handle_cpu); + set_except_vector(EXCCODE_OV, handle_ov); + set_except_vector(EXCCODE_TR, handle_tr); + set_except_vector(EXCCODE_MSAFPE, handle_msa_fpe); + + if (board_nmi_handler_setup) + board_nmi_handler_setup(); + + if (cpu_has_fpu && !cpu_has_nofpuex) + set_except_vector(EXCCODE_FPE, handle_fpe); + + if (cpu_has_ftlbparex) + set_except_vector(MIPS_EXCCODE_TLBPAR, handle_ftlb); + + if (cpu_has_gsexcex) + set_except_vector(LOONGSON_EXCCODE_GSEXC, handle_gsexc); + + if (cpu_has_rixiex) { + set_except_vector(EXCCODE_TLBRI, tlb_do_page_fault_0); + set_except_vector(EXCCODE_TLBXI, tlb_do_page_fault_0); + } + + set_except_vector(EXCCODE_MSADIS, handle_msa); + set_except_vector(EXCCODE_MDMX, handle_mdmx); + + if (cpu_has_mcheck) + set_except_vector(EXCCODE_MCHECK, handle_mcheck); + + if (cpu_has_mipsmt) + set_except_vector(EXCCODE_THREAD, handle_mt); + + set_except_vector(EXCCODE_DSPDIS, handle_dsp); + + if (board_cache_error_setup) + board_cache_error_setup(); + + if (cpu_has_vce) + /* Special exception: R4[04]00 uses also the divec space. */ + set_handler(0x180, &except_vec3_r4000, 0x100); + else if (cpu_has_4kex) + set_handler(0x180, &except_vec3_generic, 0x80); + else + set_handler(0x080, &except_vec3_generic, 0x80); + + local_flush_icache_range(ebase, ebase + vec_size); + + sort_extable(__start___dbe_table, __stop___dbe_table); + + cu2_notifier(default_cu2_call, 0x80000000); /* Run last */ +} + +static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd, + void *v) +{ + switch (cmd) { + case CPU_PM_ENTER_FAILED: + case CPU_PM_EXIT: + configure_status(); + configure_hwrena(); + configure_exception_vector(); + + /* Restore register with CPU number for TLB handlers */ + TLBMISS_HANDLER_RESTORE(); + + break; + } + + return NOTIFY_OK; +} + +static struct notifier_block trap_pm_notifier_block = { + .notifier_call = trap_pm_notifier, +}; + +static int __init trap_pm_init(void) +{ + return cpu_pm_register_notifier(&trap_pm_notifier_block); +} +arch_initcall(trap_pm_init); |