summaryrefslogtreecommitdiffstats
path: root/arch/powerpc/lib/sstep.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:49:45 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:49:45 +0000
commit2c3c1048746a4622d8c89a29670120dc8fab93c4 (patch)
tree848558de17fb3008cdf4d861b01ac7781903ce39 /arch/powerpc/lib/sstep.c
parentInitial commit. (diff)
downloadlinux-2c3c1048746a4622d8c89a29670120dc8fab93c4.tar.xz
linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.zip
Adding upstream version 6.1.76.upstream/6.1.76
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'arch/powerpc/lib/sstep.c')
-rw-r--r--arch/powerpc/lib/sstep.c3665
1 files changed, 3665 insertions, 0 deletions
diff --git a/arch/powerpc/lib/sstep.c b/arch/powerpc/lib/sstep.c
new file mode 100644
index 000000000..398b5694a
--- /dev/null
+++ b/arch/powerpc/lib/sstep.c
@@ -0,0 +1,3665 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * Single-step support.
+ *
+ * Copyright (C) 2004 Paul Mackerras <paulus@au.ibm.com>, IBM
+ */
+#include <linux/kernel.h>
+#include <linux/kprobes.h>
+#include <linux/ptrace.h>
+#include <linux/prefetch.h>
+#include <asm/sstep.h>
+#include <asm/processor.h>
+#include <linux/uaccess.h>
+#include <asm/cpu_has_feature.h>
+#include <asm/cputable.h>
+#include <asm/disassemble.h>
+
+#ifdef CONFIG_PPC64
+/* Bits in SRR1 that are copied from MSR */
+#define MSR_MASK 0xffffffff87c0ffffUL
+#else
+#define MSR_MASK 0x87c0ffff
+#endif
+
+/* Bits in XER */
+#define XER_SO 0x80000000U
+#define XER_OV 0x40000000U
+#define XER_CA 0x20000000U
+#define XER_OV32 0x00080000U
+#define XER_CA32 0x00040000U
+
+#ifdef CONFIG_VSX
+#define VSX_REGISTER_XTP(rd) ((((rd) & 1) << 5) | ((rd) & 0xfe))
+#endif
+
+#ifdef CONFIG_PPC_FPU
+/*
+ * Functions in ldstfp.S
+ */
+extern void get_fpr(int rn, double *p);
+extern void put_fpr(int rn, const double *p);
+extern void get_vr(int rn, __vector128 *p);
+extern void put_vr(int rn, __vector128 *p);
+extern void load_vsrn(int vsr, const void *p);
+extern void store_vsrn(int vsr, void *p);
+extern void conv_sp_to_dp(const float *sp, double *dp);
+extern void conv_dp_to_sp(const double *dp, float *sp);
+#endif
+
+#ifdef __powerpc64__
+/*
+ * Functions in quad.S
+ */
+extern int do_lq(unsigned long ea, unsigned long *regs);
+extern int do_stq(unsigned long ea, unsigned long val0, unsigned long val1);
+extern int do_lqarx(unsigned long ea, unsigned long *regs);
+extern int do_stqcx(unsigned long ea, unsigned long val0, unsigned long val1,
+ unsigned int *crp);
+#endif
+
+#ifdef __LITTLE_ENDIAN__
+#define IS_LE 1
+#define IS_BE 0
+#else
+#define IS_LE 0
+#define IS_BE 1
+#endif
+
+/*
+ * Emulate the truncation of 64 bit values in 32-bit mode.
+ */
+static nokprobe_inline unsigned long truncate_if_32bit(unsigned long msr,
+ unsigned long val)
+{
+ if ((msr & MSR_64BIT) == 0)
+ val &= 0xffffffffUL;
+ return val;
+}
+
+/*
+ * Determine whether a conditional branch instruction would branch.
+ */
+static nokprobe_inline int branch_taken(unsigned int instr,
+ const struct pt_regs *regs,
+ struct instruction_op *op)
+{
+ unsigned int bo = (instr >> 21) & 0x1f;
+ unsigned int bi;
+
+ if ((bo & 4) == 0) {
+ /* decrement counter */
+ op->type |= DECCTR;
+ if (((bo >> 1) & 1) ^ (regs->ctr == 1))
+ return 0;
+ }
+ if ((bo & 0x10) == 0) {
+ /* check bit from CR */
+ bi = (instr >> 16) & 0x1f;
+ if (((regs->ccr >> (31 - bi)) & 1) != ((bo >> 3) & 1))
+ return 0;
+ }
+ return 1;
+}
+
+static nokprobe_inline long address_ok(struct pt_regs *regs,
+ unsigned long ea, int nb)
+{
+ if (!user_mode(regs))
+ return 1;
+ if (access_ok((void __user *)ea, nb))
+ return 1;
+ if (access_ok((void __user *)ea, 1))
+ /* Access overlaps the end of the user region */
+ regs->dar = TASK_SIZE_MAX - 1;
+ else
+ regs->dar = ea;
+ return 0;
+}
+
+/*
+ * Calculate effective address for a D-form instruction
+ */
+static nokprobe_inline unsigned long dform_ea(unsigned int instr,
+ const struct pt_regs *regs)
+{
+ int ra;
+ unsigned long ea;
+
+ ra = (instr >> 16) & 0x1f;
+ ea = (signed short) instr; /* sign-extend */
+ if (ra)
+ ea += regs->gpr[ra];
+
+ return ea;
+}
+
+#ifdef __powerpc64__
+/*
+ * Calculate effective address for a DS-form instruction
+ */
+static nokprobe_inline unsigned long dsform_ea(unsigned int instr,
+ const struct pt_regs *regs)
+{
+ int ra;
+ unsigned long ea;
+
+ ra = (instr >> 16) & 0x1f;
+ ea = (signed short) (instr & ~3); /* sign-extend */
+ if (ra)
+ ea += regs->gpr[ra];
+
+ return ea;
+}
+
+/*
+ * Calculate effective address for a DQ-form instruction
+ */
+static nokprobe_inline unsigned long dqform_ea(unsigned int instr,
+ const struct pt_regs *regs)
+{
+ int ra;
+ unsigned long ea;
+
+ ra = (instr >> 16) & 0x1f;
+ ea = (signed short) (instr & ~0xf); /* sign-extend */
+ if (ra)
+ ea += regs->gpr[ra];
+
+ return ea;
+}
+#endif /* __powerpc64 */
+
+/*
+ * Calculate effective address for an X-form instruction
+ */
+static nokprobe_inline unsigned long xform_ea(unsigned int instr,
+ const struct pt_regs *regs)
+{
+ int ra, rb;
+ unsigned long ea;
+
+ ra = (instr >> 16) & 0x1f;
+ rb = (instr >> 11) & 0x1f;
+ ea = regs->gpr[rb];
+ if (ra)
+ ea += regs->gpr[ra];
+
+ return ea;
+}
+
+/*
+ * Calculate effective address for a MLS:D-form / 8LS:D-form
+ * prefixed instruction
+ */
+static nokprobe_inline unsigned long mlsd_8lsd_ea(unsigned int instr,
+ unsigned int suffix,
+ const struct pt_regs *regs)
+{
+ int ra, prefix_r;
+ unsigned int dd;
+ unsigned long ea, d0, d1, d;
+
+ prefix_r = GET_PREFIX_R(instr);
+ ra = GET_PREFIX_RA(suffix);
+
+ d0 = instr & 0x3ffff;
+ d1 = suffix & 0xffff;
+ d = (d0 << 16) | d1;
+
+ /*
+ * sign extend a 34 bit number
+ */
+ dd = (unsigned int)(d >> 2);
+ ea = (signed int)dd;
+ ea = (ea << 2) | (d & 0x3);
+
+ if (!prefix_r && ra)
+ ea += regs->gpr[ra];
+ else if (!prefix_r && !ra)
+ ; /* Leave ea as is */
+ else if (prefix_r)
+ ea += regs->nip;
+
+ /*
+ * (prefix_r && ra) is an invalid form. Should already be
+ * checked for by caller!
+ */
+
+ return ea;
+}
+
+/*
+ * Return the largest power of 2, not greater than sizeof(unsigned long),
+ * such that x is a multiple of it.
+ */
+static nokprobe_inline unsigned long max_align(unsigned long x)
+{
+ x |= sizeof(unsigned long);
+ return x & -x; /* isolates rightmost bit */
+}
+
+static nokprobe_inline unsigned long byterev_2(unsigned long x)
+{
+ return ((x >> 8) & 0xff) | ((x & 0xff) << 8);
+}
+
+static nokprobe_inline unsigned long byterev_4(unsigned long x)
+{
+ return ((x >> 24) & 0xff) | ((x >> 8) & 0xff00) |
+ ((x & 0xff00) << 8) | ((x & 0xff) << 24);
+}
+
+#ifdef __powerpc64__
+static nokprobe_inline unsigned long byterev_8(unsigned long x)
+{
+ return (byterev_4(x) << 32) | byterev_4(x >> 32);
+}
+#endif
+
+static nokprobe_inline void do_byte_reverse(void *ptr, int nb)
+{
+ switch (nb) {
+ case 2:
+ *(u16 *)ptr = byterev_2(*(u16 *)ptr);
+ break;
+ case 4:
+ *(u32 *)ptr = byterev_4(*(u32 *)ptr);
+ break;
+#ifdef __powerpc64__
+ case 8:
+ *(unsigned long *)ptr = byterev_8(*(unsigned long *)ptr);
+ break;
+ case 16: {
+ unsigned long *up = (unsigned long *)ptr;
+ unsigned long tmp;
+ tmp = byterev_8(up[0]);
+ up[0] = byterev_8(up[1]);
+ up[1] = tmp;
+ break;
+ }
+ case 32: {
+ unsigned long *up = (unsigned long *)ptr;
+ unsigned long tmp;
+
+ tmp = byterev_8(up[0]);
+ up[0] = byterev_8(up[3]);
+ up[3] = tmp;
+ tmp = byterev_8(up[2]);
+ up[2] = byterev_8(up[1]);
+ up[1] = tmp;
+ break;
+ }
+
+#endif
+ default:
+ WARN_ON_ONCE(1);
+ }
+}
+
+static __always_inline int
+__read_mem_aligned(unsigned long *dest, unsigned long ea, int nb, struct pt_regs *regs)
+{
+ unsigned long x = 0;
+
+ switch (nb) {
+ case 1:
+ unsafe_get_user(x, (unsigned char __user *)ea, Efault);
+ break;
+ case 2:
+ unsafe_get_user(x, (unsigned short __user *)ea, Efault);
+ break;
+ case 4:
+ unsafe_get_user(x, (unsigned int __user *)ea, Efault);
+ break;
+#ifdef __powerpc64__
+ case 8:
+ unsafe_get_user(x, (unsigned long __user *)ea, Efault);
+ break;
+#endif
+ }
+ *dest = x;
+ return 0;
+
+Efault:
+ regs->dar = ea;
+ return -EFAULT;
+}
+
+static nokprobe_inline int
+read_mem_aligned(unsigned long *dest, unsigned long ea, int nb, struct pt_regs *regs)
+{
+ int err;
+
+ if (is_kernel_addr(ea))
+ return __read_mem_aligned(dest, ea, nb, regs);
+
+ if (user_read_access_begin((void __user *)ea, nb)) {
+ err = __read_mem_aligned(dest, ea, nb, regs);
+ user_read_access_end();
+ } else {
+ err = -EFAULT;
+ regs->dar = ea;
+ }
+
+ return err;
+}
+
+/*
+ * Copy from userspace to a buffer, using the largest possible
+ * aligned accesses, up to sizeof(long).
+ */
+static __always_inline int __copy_mem_in(u8 *dest, unsigned long ea, int nb, struct pt_regs *regs)
+{
+ int c;
+
+ for (; nb > 0; nb -= c) {
+ c = max_align(ea);
+ if (c > nb)
+ c = max_align(nb);
+ switch (c) {
+ case 1:
+ unsafe_get_user(*dest, (u8 __user *)ea, Efault);
+ break;
+ case 2:
+ unsafe_get_user(*(u16 *)dest, (u16 __user *)ea, Efault);
+ break;
+ case 4:
+ unsafe_get_user(*(u32 *)dest, (u32 __user *)ea, Efault);
+ break;
+#ifdef __powerpc64__
+ case 8:
+ unsafe_get_user(*(u64 *)dest, (u64 __user *)ea, Efault);
+ break;
+#endif
+ }
+ dest += c;
+ ea += c;
+ }
+ return 0;
+
+Efault:
+ regs->dar = ea;
+ return -EFAULT;
+}
+
+static nokprobe_inline int copy_mem_in(u8 *dest, unsigned long ea, int nb, struct pt_regs *regs)
+{
+ int err;
+
+ if (is_kernel_addr(ea))
+ return __copy_mem_in(dest, ea, nb, regs);
+
+ if (user_read_access_begin((void __user *)ea, nb)) {
+ err = __copy_mem_in(dest, ea, nb, regs);
+ user_read_access_end();
+ } else {
+ err = -EFAULT;
+ regs->dar = ea;
+ }
+
+ return err;
+}
+
+static nokprobe_inline int read_mem_unaligned(unsigned long *dest,
+ unsigned long ea, int nb,
+ struct pt_regs *regs)
+{
+ union {
+ unsigned long ul;
+ u8 b[sizeof(unsigned long)];
+ } u;
+ int i;
+ int err;
+
+ u.ul = 0;
+ i = IS_BE ? sizeof(unsigned long) - nb : 0;
+ err = copy_mem_in(&u.b[i], ea, nb, regs);
+ if (!err)
+ *dest = u.ul;
+ return err;
+}
+
+/*
+ * Read memory at address ea for nb bytes, return 0 for success
+ * or -EFAULT if an error occurred. N.B. nb must be 1, 2, 4 or 8.
+ * If nb < sizeof(long), the result is right-justified on BE systems.
+ */
+static int read_mem(unsigned long *dest, unsigned long ea, int nb,
+ struct pt_regs *regs)
+{
+ if (!address_ok(regs, ea, nb))
+ return -EFAULT;
+ if ((ea & (nb - 1)) == 0)
+ return read_mem_aligned(dest, ea, nb, regs);
+ return read_mem_unaligned(dest, ea, nb, regs);
+}
+NOKPROBE_SYMBOL(read_mem);
+
+static __always_inline int
+__write_mem_aligned(unsigned long val, unsigned long ea, int nb, struct pt_regs *regs)
+{
+ switch (nb) {
+ case 1:
+ unsafe_put_user(val, (unsigned char __user *)ea, Efault);
+ break;
+ case 2:
+ unsafe_put_user(val, (unsigned short __user *)ea, Efault);
+ break;
+ case 4:
+ unsafe_put_user(val, (unsigned int __user *)ea, Efault);
+ break;
+#ifdef __powerpc64__
+ case 8:
+ unsafe_put_user(val, (unsigned long __user *)ea, Efault);
+ break;
+#endif
+ }
+ return 0;
+
+Efault:
+ regs->dar = ea;
+ return -EFAULT;
+}
+
+static nokprobe_inline int
+write_mem_aligned(unsigned long val, unsigned long ea, int nb, struct pt_regs *regs)
+{
+ int err;
+
+ if (is_kernel_addr(ea))
+ return __write_mem_aligned(val, ea, nb, regs);
+
+ if (user_write_access_begin((void __user *)ea, nb)) {
+ err = __write_mem_aligned(val, ea, nb, regs);
+ user_write_access_end();
+ } else {
+ err = -EFAULT;
+ regs->dar = ea;
+ }
+
+ return err;
+}
+
+/*
+ * Copy from a buffer to userspace, using the largest possible
+ * aligned accesses, up to sizeof(long).
+ */
+static nokprobe_inline int __copy_mem_out(u8 *dest, unsigned long ea, int nb, struct pt_regs *regs)
+{
+ int c;
+
+ for (; nb > 0; nb -= c) {
+ c = max_align(ea);
+ if (c > nb)
+ c = max_align(nb);
+ switch (c) {
+ case 1:
+ unsafe_put_user(*dest, (u8 __user *)ea, Efault);
+ break;
+ case 2:
+ unsafe_put_user(*(u16 *)dest, (u16 __user *)ea, Efault);
+ break;
+ case 4:
+ unsafe_put_user(*(u32 *)dest, (u32 __user *)ea, Efault);
+ break;
+#ifdef __powerpc64__
+ case 8:
+ unsafe_put_user(*(u64 *)dest, (u64 __user *)ea, Efault);
+ break;
+#endif
+ }
+ dest += c;
+ ea += c;
+ }
+ return 0;
+
+Efault:
+ regs->dar = ea;
+ return -EFAULT;
+}
+
+static nokprobe_inline int copy_mem_out(u8 *dest, unsigned long ea, int nb, struct pt_regs *regs)
+{
+ int err;
+
+ if (is_kernel_addr(ea))
+ return __copy_mem_out(dest, ea, nb, regs);
+
+ if (user_write_access_begin((void __user *)ea, nb)) {
+ err = __copy_mem_out(dest, ea, nb, regs);
+ user_write_access_end();
+ } else {
+ err = -EFAULT;
+ regs->dar = ea;
+ }
+
+ return err;
+}
+
+static nokprobe_inline int write_mem_unaligned(unsigned long val,
+ unsigned long ea, int nb,
+ struct pt_regs *regs)
+{
+ union {
+ unsigned long ul;
+ u8 b[sizeof(unsigned long)];
+ } u;
+ int i;
+
+ u.ul = val;
+ i = IS_BE ? sizeof(unsigned long) - nb : 0;
+ return copy_mem_out(&u.b[i], ea, nb, regs);
+}
+
+/*
+ * Write memory at address ea for nb bytes, return 0 for success
+ * or -EFAULT if an error occurred. N.B. nb must be 1, 2, 4 or 8.
+ */
+static int write_mem(unsigned long val, unsigned long ea, int nb,
+ struct pt_regs *regs)
+{
+ if (!address_ok(regs, ea, nb))
+ return -EFAULT;
+ if ((ea & (nb - 1)) == 0)
+ return write_mem_aligned(val, ea, nb, regs);
+ return write_mem_unaligned(val, ea, nb, regs);
+}
+NOKPROBE_SYMBOL(write_mem);
+
+#ifdef CONFIG_PPC_FPU
+/*
+ * These access either the real FP register or the image in the
+ * thread_struct, depending on regs->msr & MSR_FP.
+ */
+static int do_fp_load(struct instruction_op *op, unsigned long ea,
+ struct pt_regs *regs, bool cross_endian)
+{
+ int err, rn, nb;
+ union {
+ int i;
+ unsigned int u;
+ float f;
+ double d[2];
+ unsigned long l[2];
+ u8 b[2 * sizeof(double)];
+ } u;
+
+ nb = GETSIZE(op->type);
+ if (!address_ok(regs, ea, nb))
+ return -EFAULT;
+ rn = op->reg;
+ err = copy_mem_in(u.b, ea, nb, regs);
+ if (err)
+ return err;
+ if (unlikely(cross_endian)) {
+ do_byte_reverse(u.b, min(nb, 8));
+ if (nb == 16)
+ do_byte_reverse(&u.b[8], 8);
+ }
+ preempt_disable();
+ if (nb == 4) {
+ if (op->type & FPCONV)
+ conv_sp_to_dp(&u.f, &u.d[0]);
+ else if (op->type & SIGNEXT)
+ u.l[0] = u.i;
+ else
+ u.l[0] = u.u;
+ }
+ if (regs->msr & MSR_FP)
+ put_fpr(rn, &u.d[0]);
+ else
+ current->thread.TS_FPR(rn) = u.l[0];
+ if (nb == 16) {
+ /* lfdp */
+ rn |= 1;
+ if (regs->msr & MSR_FP)
+ put_fpr(rn, &u.d[1]);
+ else
+ current->thread.TS_FPR(rn) = u.l[1];
+ }
+ preempt_enable();
+ return 0;
+}
+NOKPROBE_SYMBOL(do_fp_load);
+
+static int do_fp_store(struct instruction_op *op, unsigned long ea,
+ struct pt_regs *regs, bool cross_endian)
+{
+ int rn, nb;
+ union {
+ unsigned int u;
+ float f;
+ double d[2];
+ unsigned long l[2];
+ u8 b[2 * sizeof(double)];
+ } u;
+
+ nb = GETSIZE(op->type);
+ if (!address_ok(regs, ea, nb))
+ return -EFAULT;
+ rn = op->reg;
+ preempt_disable();
+ if (regs->msr & MSR_FP)
+ get_fpr(rn, &u.d[0]);
+ else
+ u.l[0] = current->thread.TS_FPR(rn);
+ if (nb == 4) {
+ if (op->type & FPCONV)
+ conv_dp_to_sp(&u.d[0], &u.f);
+ else
+ u.u = u.l[0];
+ }
+ if (nb == 16) {
+ rn |= 1;
+ if (regs->msr & MSR_FP)
+ get_fpr(rn, &u.d[1]);
+ else
+ u.l[1] = current->thread.TS_FPR(rn);
+ }
+ preempt_enable();
+ if (unlikely(cross_endian)) {
+ do_byte_reverse(u.b, min(nb, 8));
+ if (nb == 16)
+ do_byte_reverse(&u.b[8], 8);
+ }
+ return copy_mem_out(u.b, ea, nb, regs);
+}
+NOKPROBE_SYMBOL(do_fp_store);
+#endif
+
+#ifdef CONFIG_ALTIVEC
+/* For Altivec/VMX, no need to worry about alignment */
+static nokprobe_inline int do_vec_load(int rn, unsigned long ea,
+ int size, struct pt_regs *regs,
+ bool cross_endian)
+{
+ int err;
+ union {
+ __vector128 v;
+ u8 b[sizeof(__vector128)];
+ } u = {};
+
+ if (!address_ok(regs, ea & ~0xfUL, 16))
+ return -EFAULT;
+ /* align to multiple of size */
+ ea &= ~(size - 1);
+ err = copy_mem_in(&u.b[ea & 0xf], ea, size, regs);
+ if (err)
+ return err;
+ if (unlikely(cross_endian))
+ do_byte_reverse(&u.b[ea & 0xf], size);
+ preempt_disable();
+ if (regs->msr & MSR_VEC)
+ put_vr(rn, &u.v);
+ else
+ current->thread.vr_state.vr[rn] = u.v;
+ preempt_enable();
+ return 0;
+}
+
+static nokprobe_inline int do_vec_store(int rn, unsigned long ea,
+ int size, struct pt_regs *regs,
+ bool cross_endian)
+{
+ union {
+ __vector128 v;
+ u8 b[sizeof(__vector128)];
+ } u;
+
+ if (!address_ok(regs, ea & ~0xfUL, 16))
+ return -EFAULT;
+ /* align to multiple of size */
+ ea &= ~(size - 1);
+
+ preempt_disable();
+ if (regs->msr & MSR_VEC)
+ get_vr(rn, &u.v);
+ else
+ u.v = current->thread.vr_state.vr[rn];
+ preempt_enable();
+ if (unlikely(cross_endian))
+ do_byte_reverse(&u.b[ea & 0xf], size);
+ return copy_mem_out(&u.b[ea & 0xf], ea, size, regs);
+}
+#endif /* CONFIG_ALTIVEC */
+
+#ifdef __powerpc64__
+static nokprobe_inline int emulate_lq(struct pt_regs *regs, unsigned long ea,
+ int reg, bool cross_endian)
+{
+ int err;
+
+ if (!address_ok(regs, ea, 16))
+ return -EFAULT;
+ /* if aligned, should be atomic */
+ if ((ea & 0xf) == 0) {
+ err = do_lq(ea, &regs->gpr[reg]);
+ } else {
+ err = read_mem(&regs->gpr[reg + IS_LE], ea, 8, regs);
+ if (!err)
+ err = read_mem(&regs->gpr[reg + IS_BE], ea + 8, 8, regs);
+ }
+ if (!err && unlikely(cross_endian))
+ do_byte_reverse(&regs->gpr[reg], 16);
+ return err;
+}
+
+static nokprobe_inline int emulate_stq(struct pt_regs *regs, unsigned long ea,
+ int reg, bool cross_endian)
+{
+ int err;
+ unsigned long vals[2];
+
+ if (!address_ok(regs, ea, 16))
+ return -EFAULT;
+ vals[0] = regs->gpr[reg];
+ vals[1] = regs->gpr[reg + 1];
+ if (unlikely(cross_endian))
+ do_byte_reverse(vals, 16);
+
+ /* if aligned, should be atomic */
+ if ((ea & 0xf) == 0)
+ return do_stq(ea, vals[0], vals[1]);
+
+ err = write_mem(vals[IS_LE], ea, 8, regs);
+ if (!err)
+ err = write_mem(vals[IS_BE], ea + 8, 8, regs);
+ return err;
+}
+#endif /* __powerpc64 */
+
+#ifdef CONFIG_VSX
+void emulate_vsx_load(struct instruction_op *op, union vsx_reg *reg,
+ const void *mem, bool rev)
+{
+ int size, read_size;
+ int i, j;
+ const unsigned int *wp;
+ const unsigned short *hp;
+ const unsigned char *bp;
+
+ size = GETSIZE(op->type);
+ reg->d[0] = reg->d[1] = 0;
+
+ switch (op->element_size) {
+ case 32:
+ /* [p]lxvp[x] */
+ case 16:
+ /* whole vector; lxv[x] or lxvl[l] */
+ if (size == 0)
+ break;
+ memcpy(reg, mem, size);
+ if (IS_LE && (op->vsx_flags & VSX_LDLEFT))
+ rev = !rev;
+ if (rev)
+ do_byte_reverse(reg, size);
+ break;
+ case 8:
+ /* scalar loads, lxvd2x, lxvdsx */
+ read_size = (size >= 8) ? 8 : size;
+ i = IS_LE ? 8 : 8 - read_size;
+ memcpy(&reg->b[i], mem, read_size);
+ if (rev)
+ do_byte_reverse(&reg->b[i], 8);
+ if (size < 8) {
+ if (op->type & SIGNEXT) {
+ /* size == 4 is the only case here */
+ reg->d[IS_LE] = (signed int) reg->d[IS_LE];
+ } else if (op->vsx_flags & VSX_FPCONV) {
+ preempt_disable();
+ conv_sp_to_dp(&reg->fp[1 + IS_LE],
+ &reg->dp[IS_LE]);
+ preempt_enable();
+ }
+ } else {
+ if (size == 16) {
+ unsigned long v = *(unsigned long *)(mem + 8);
+ reg->d[IS_BE] = !rev ? v : byterev_8(v);
+ } else if (op->vsx_flags & VSX_SPLAT)
+ reg->d[IS_BE] = reg->d[IS_LE];
+ }
+ break;
+ case 4:
+ /* lxvw4x, lxvwsx */
+ wp = mem;
+ for (j = 0; j < size / 4; ++j) {
+ i = IS_LE ? 3 - j : j;
+ reg->w[i] = !rev ? *wp++ : byterev_4(*wp++);
+ }
+ if (op->vsx_flags & VSX_SPLAT) {
+ u32 val = reg->w[IS_LE ? 3 : 0];
+ for (; j < 4; ++j) {
+ i = IS_LE ? 3 - j : j;
+ reg->w[i] = val;
+ }
+ }
+ break;
+ case 2:
+ /* lxvh8x */
+ hp = mem;
+ for (j = 0; j < size / 2; ++j) {
+ i = IS_LE ? 7 - j : j;
+ reg->h[i] = !rev ? *hp++ : byterev_2(*hp++);
+ }
+ break;
+ case 1:
+ /* lxvb16x */
+ bp = mem;
+ for (j = 0; j < size; ++j) {
+ i = IS_LE ? 15 - j : j;
+ reg->b[i] = *bp++;
+ }
+ break;
+ }
+}
+EXPORT_SYMBOL_GPL(emulate_vsx_load);
+NOKPROBE_SYMBOL(emulate_vsx_load);
+
+void emulate_vsx_store(struct instruction_op *op, const union vsx_reg *reg,
+ void *mem, bool rev)
+{
+ int size, write_size;
+ int i, j;
+ union vsx_reg buf;
+ unsigned int *wp;
+ unsigned short *hp;
+ unsigned char *bp;
+
+ size = GETSIZE(op->type);
+
+ switch (op->element_size) {
+ case 32:
+ /* [p]stxvp[x] */
+ if (size == 0)
+ break;
+ if (rev) {
+ /* reverse 32 bytes */
+ union vsx_reg buf32[2];
+ buf32[0].d[0] = byterev_8(reg[1].d[1]);
+ buf32[0].d[1] = byterev_8(reg[1].d[0]);
+ buf32[1].d[0] = byterev_8(reg[0].d[1]);
+ buf32[1].d[1] = byterev_8(reg[0].d[0]);
+ memcpy(mem, buf32, size);
+ } else {
+ memcpy(mem, reg, size);
+ }
+ break;
+ case 16:
+ /* stxv, stxvx, stxvl, stxvll */
+ if (size == 0)
+ break;
+ if (IS_LE && (op->vsx_flags & VSX_LDLEFT))
+ rev = !rev;
+ if (rev) {
+ /* reverse 16 bytes */
+ buf.d[0] = byterev_8(reg->d[1]);
+ buf.d[1] = byterev_8(reg->d[0]);
+ reg = &buf;
+ }
+ memcpy(mem, reg, size);
+ break;
+ case 8:
+ /* scalar stores, stxvd2x */
+ write_size = (size >= 8) ? 8 : size;
+ i = IS_LE ? 8 : 8 - write_size;
+ if (size < 8 && op->vsx_flags & VSX_FPCONV) {
+ buf.d[0] = buf.d[1] = 0;
+ preempt_disable();
+ conv_dp_to_sp(&reg->dp[IS_LE], &buf.fp[1 + IS_LE]);
+ preempt_enable();
+ reg = &buf;
+ }
+ memcpy(mem, &reg->b[i], write_size);
+ if (size == 16)
+ memcpy(mem + 8, &reg->d[IS_BE], 8);
+ if (unlikely(rev)) {
+ do_byte_reverse(mem, write_size);
+ if (size == 16)
+ do_byte_reverse(mem + 8, 8);
+ }
+ break;
+ case 4:
+ /* stxvw4x */
+ wp = mem;
+ for (j = 0; j < size / 4; ++j) {
+ i = IS_LE ? 3 - j : j;
+ *wp++ = !rev ? reg->w[i] : byterev_4(reg->w[i]);
+ }
+ break;
+ case 2:
+ /* stxvh8x */
+ hp = mem;
+ for (j = 0; j < size / 2; ++j) {
+ i = IS_LE ? 7 - j : j;
+ *hp++ = !rev ? reg->h[i] : byterev_2(reg->h[i]);
+ }
+ break;
+ case 1:
+ /* stvxb16x */
+ bp = mem;
+ for (j = 0; j < size; ++j) {
+ i = IS_LE ? 15 - j : j;
+ *bp++ = reg->b[i];
+ }
+ break;
+ }
+}
+EXPORT_SYMBOL_GPL(emulate_vsx_store);
+NOKPROBE_SYMBOL(emulate_vsx_store);
+
+static nokprobe_inline int do_vsx_load(struct instruction_op *op,
+ unsigned long ea, struct pt_regs *regs,
+ bool cross_endian)
+{
+ int reg = op->reg;
+ int i, j, nr_vsx_regs;
+ u8 mem[32];
+ union vsx_reg buf[2];
+ int size = GETSIZE(op->type);
+
+ if (!address_ok(regs, ea, size) || copy_mem_in(mem, ea, size, regs))
+ return -EFAULT;
+
+ nr_vsx_regs = max(1ul, size / sizeof(__vector128));
+ emulate_vsx_load(op, buf, mem, cross_endian);
+ preempt_disable();
+ if (reg < 32) {
+ /* FP regs + extensions */
+ if (regs->msr & MSR_FP) {
+ for (i = 0; i < nr_vsx_regs; i++) {
+ j = IS_LE ? nr_vsx_regs - i - 1 : i;
+ load_vsrn(reg + i, &buf[j].v);
+ }
+ } else {
+ for (i = 0; i < nr_vsx_regs; i++) {
+ j = IS_LE ? nr_vsx_regs - i - 1 : i;
+ current->thread.fp_state.fpr[reg + i][0] = buf[j].d[0];
+ current->thread.fp_state.fpr[reg + i][1] = buf[j].d[1];
+ }
+ }
+ } else {
+ if (regs->msr & MSR_VEC) {
+ for (i = 0; i < nr_vsx_regs; i++) {
+ j = IS_LE ? nr_vsx_regs - i - 1 : i;
+ load_vsrn(reg + i, &buf[j].v);
+ }
+ } else {
+ for (i = 0; i < nr_vsx_regs; i++) {
+ j = IS_LE ? nr_vsx_regs - i - 1 : i;
+ current->thread.vr_state.vr[reg - 32 + i] = buf[j].v;
+ }
+ }
+ }
+ preempt_enable();
+ return 0;
+}
+
+static nokprobe_inline int do_vsx_store(struct instruction_op *op,
+ unsigned long ea, struct pt_regs *regs,
+ bool cross_endian)
+{
+ int reg = op->reg;
+ int i, j, nr_vsx_regs;
+ u8 mem[32];
+ union vsx_reg buf[2];
+ int size = GETSIZE(op->type);
+
+ if (!address_ok(regs, ea, size))
+ return -EFAULT;
+
+ nr_vsx_regs = max(1ul, size / sizeof(__vector128));
+ preempt_disable();
+ if (reg < 32) {
+ /* FP regs + extensions */
+ if (regs->msr & MSR_FP) {
+ for (i = 0; i < nr_vsx_regs; i++) {
+ j = IS_LE ? nr_vsx_regs - i - 1 : i;
+ store_vsrn(reg + i, &buf[j].v);
+ }
+ } else {
+ for (i = 0; i < nr_vsx_regs; i++) {
+ j = IS_LE ? nr_vsx_regs - i - 1 : i;
+ buf[j].d[0] = current->thread.fp_state.fpr[reg + i][0];
+ buf[j].d[1] = current->thread.fp_state.fpr[reg + i][1];
+ }
+ }
+ } else {
+ if (regs->msr & MSR_VEC) {
+ for (i = 0; i < nr_vsx_regs; i++) {
+ j = IS_LE ? nr_vsx_regs - i - 1 : i;
+ store_vsrn(reg + i, &buf[j].v);
+ }
+ } else {
+ for (i = 0; i < nr_vsx_regs; i++) {
+ j = IS_LE ? nr_vsx_regs - i - 1 : i;
+ buf[j].v = current->thread.vr_state.vr[reg - 32 + i];
+ }
+ }
+ }
+ preempt_enable();
+ emulate_vsx_store(op, buf, mem, cross_endian);
+ return copy_mem_out(mem, ea, size, regs);
+}
+#endif /* CONFIG_VSX */
+
+static int __emulate_dcbz(unsigned long ea)
+{
+ unsigned long i;
+ unsigned long size = l1_dcache_bytes();
+
+ for (i = 0; i < size; i += sizeof(long))
+ unsafe_put_user(0, (unsigned long __user *)(ea + i), Efault);
+
+ return 0;
+
+Efault:
+ return -EFAULT;
+}
+
+int emulate_dcbz(unsigned long ea, struct pt_regs *regs)
+{
+ int err;
+ unsigned long size = l1_dcache_bytes();
+
+ ea = truncate_if_32bit(regs->msr, ea);
+ ea &= ~(size - 1);
+ if (!address_ok(regs, ea, size))
+ return -EFAULT;
+
+ if (is_kernel_addr(ea)) {
+ err = __emulate_dcbz(ea);
+ } else if (user_write_access_begin((void __user *)ea, size)) {
+ err = __emulate_dcbz(ea);
+ user_write_access_end();
+ } else {
+ err = -EFAULT;
+ }
+
+ if (err)
+ regs->dar = ea;
+
+
+ return err;
+}
+NOKPROBE_SYMBOL(emulate_dcbz);
+
+#define __put_user_asmx(x, addr, err, op, cr) \
+ __asm__ __volatile__( \
+ ".machine push\n" \
+ ".machine power8\n" \
+ "1: " op " %2,0,%3\n" \
+ ".machine pop\n" \
+ " mfcr %1\n" \
+ "2:\n" \
+ ".section .fixup,\"ax\"\n" \
+ "3: li %0,%4\n" \
+ " b 2b\n" \
+ ".previous\n" \
+ EX_TABLE(1b, 3b) \
+ : "=r" (err), "=r" (cr) \
+ : "r" (x), "r" (addr), "i" (-EFAULT), "0" (err))
+
+#define __get_user_asmx(x, addr, err, op) \
+ __asm__ __volatile__( \
+ ".machine push\n" \
+ ".machine power8\n" \
+ "1: "op" %1,0,%2\n" \
+ ".machine pop\n" \
+ "2:\n" \
+ ".section .fixup,\"ax\"\n" \
+ "3: li %0,%3\n" \
+ " b 2b\n" \
+ ".previous\n" \
+ EX_TABLE(1b, 3b) \
+ : "=r" (err), "=r" (x) \
+ : "r" (addr), "i" (-EFAULT), "0" (err))
+
+#define __cacheop_user_asmx(addr, err, op) \
+ __asm__ __volatile__( \
+ "1: "op" 0,%1\n" \
+ "2:\n" \
+ ".section .fixup,\"ax\"\n" \
+ "3: li %0,%3\n" \
+ " b 2b\n" \
+ ".previous\n" \
+ EX_TABLE(1b, 3b) \
+ : "=r" (err) \
+ : "r" (addr), "i" (-EFAULT), "0" (err))
+
+static nokprobe_inline void set_cr0(const struct pt_regs *regs,
+ struct instruction_op *op)
+{
+ long val = op->val;
+
+ op->type |= SETCC;
+ op->ccval = (regs->ccr & 0x0fffffff) | ((regs->xer >> 3) & 0x10000000);
+ if (!(regs->msr & MSR_64BIT))
+ val = (int) val;
+ if (val < 0)
+ op->ccval |= 0x80000000;
+ else if (val > 0)
+ op->ccval |= 0x40000000;
+ else
+ op->ccval |= 0x20000000;
+}
+
+static nokprobe_inline void set_ca32(struct instruction_op *op, bool val)
+{
+ if (cpu_has_feature(CPU_FTR_ARCH_300)) {
+ if (val)
+ op->xerval |= XER_CA32;
+ else
+ op->xerval &= ~XER_CA32;
+ }
+}
+
+static nokprobe_inline void add_with_carry(const struct pt_regs *regs,
+ struct instruction_op *op, int rd,
+ unsigned long val1, unsigned long val2,
+ unsigned long carry_in)
+{
+ unsigned long val = val1 + val2;
+
+ if (carry_in)
+ ++val;
+ op->type = COMPUTE | SETREG | SETXER;
+ op->reg = rd;
+ op->val = val;
+ val = truncate_if_32bit(regs->msr, val);
+ val1 = truncate_if_32bit(regs->msr, val1);
+ op->xerval = regs->xer;
+ if (val < val1 || (carry_in && val == val1))
+ op->xerval |= XER_CA;
+ else
+ op->xerval &= ~XER_CA;
+
+ set_ca32(op, (unsigned int)val < (unsigned int)val1 ||
+ (carry_in && (unsigned int)val == (unsigned int)val1));
+}
+
+static nokprobe_inline void do_cmp_signed(const struct pt_regs *regs,
+ struct instruction_op *op,
+ long v1, long v2, int crfld)
+{
+ unsigned int crval, shift;
+
+ op->type = COMPUTE | SETCC;
+ crval = (regs->xer >> 31) & 1; /* get SO bit */
+ if (v1 < v2)
+ crval |= 8;
+ else if (v1 > v2)
+ crval |= 4;
+ else
+ crval |= 2;
+ shift = (7 - crfld) * 4;
+ op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift);
+}
+
+static nokprobe_inline void do_cmp_unsigned(const struct pt_regs *regs,
+ struct instruction_op *op,
+ unsigned long v1,
+ unsigned long v2, int crfld)
+{
+ unsigned int crval, shift;
+
+ op->type = COMPUTE | SETCC;
+ crval = (regs->xer >> 31) & 1; /* get SO bit */
+ if (v1 < v2)
+ crval |= 8;
+ else if (v1 > v2)
+ crval |= 4;
+ else
+ crval |= 2;
+ shift = (7 - crfld) * 4;
+ op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift);
+}
+
+static nokprobe_inline void do_cmpb(const struct pt_regs *regs,
+ struct instruction_op *op,
+ unsigned long v1, unsigned long v2)
+{
+ unsigned long long out_val, mask;
+ int i;
+
+ out_val = 0;
+ for (i = 0; i < 8; i++) {
+ mask = 0xffUL << (i * 8);
+ if ((v1 & mask) == (v2 & mask))
+ out_val |= mask;
+ }
+ op->val = out_val;
+}
+
+/*
+ * The size parameter is used to adjust the equivalent popcnt instruction.
+ * popcntb = 8, popcntw = 32, popcntd = 64
+ */
+static nokprobe_inline void do_popcnt(const struct pt_regs *regs,
+ struct instruction_op *op,
+ unsigned long v1, int size)
+{
+ unsigned long long out = v1;
+
+ out -= (out >> 1) & 0x5555555555555555ULL;
+ out = (0x3333333333333333ULL & out) +
+ (0x3333333333333333ULL & (out >> 2));
+ out = (out + (out >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
+
+ if (size == 8) { /* popcntb */
+ op->val = out;
+ return;
+ }
+ out += out >> 8;
+ out += out >> 16;
+ if (size == 32) { /* popcntw */
+ op->val = out & 0x0000003f0000003fULL;
+ return;
+ }
+
+ out = (out + (out >> 32)) & 0x7f;
+ op->val = out; /* popcntd */
+}
+
+#ifdef CONFIG_PPC64
+static nokprobe_inline void do_bpermd(const struct pt_regs *regs,
+ struct instruction_op *op,
+ unsigned long v1, unsigned long v2)
+{
+ unsigned char perm, idx;
+ unsigned int i;
+
+ perm = 0;
+ for (i = 0; i < 8; i++) {
+ idx = (v1 >> (i * 8)) & 0xff;
+ if (idx < 64)
+ if (v2 & PPC_BIT(idx))
+ perm |= 1 << i;
+ }
+ op->val = perm;
+}
+#endif /* CONFIG_PPC64 */
+/*
+ * The size parameter adjusts the equivalent prty instruction.
+ * prtyw = 32, prtyd = 64
+ */
+static nokprobe_inline void do_prty(const struct pt_regs *regs,
+ struct instruction_op *op,
+ unsigned long v, int size)
+{
+ unsigned long long res = v ^ (v >> 8);
+
+ res ^= res >> 16;
+ if (size == 32) { /* prtyw */
+ op->val = res & 0x0000000100000001ULL;
+ return;
+ }
+
+ res ^= res >> 32;
+ op->val = res & 1; /*prtyd */
+}
+
+static nokprobe_inline int trap_compare(long v1, long v2)
+{
+ int ret = 0;
+
+ if (v1 < v2)
+ ret |= 0x10;
+ else if (v1 > v2)
+ ret |= 0x08;
+ else
+ ret |= 0x04;
+ if ((unsigned long)v1 < (unsigned long)v2)
+ ret |= 0x02;
+ else if ((unsigned long)v1 > (unsigned long)v2)
+ ret |= 0x01;
+ return ret;
+}
+
+/*
+ * Elements of 32-bit rotate and mask instructions.
+ */
+#define MASK32(mb, me) ((0xffffffffUL >> (mb)) + \
+ ((signed long)-0x80000000L >> (me)) + ((me) >= (mb)))
+#ifdef __powerpc64__
+#define MASK64_L(mb) (~0UL >> (mb))
+#define MASK64_R(me) ((signed long)-0x8000000000000000L >> (me))
+#define MASK64(mb, me) (MASK64_L(mb) + MASK64_R(me) + ((me) >= (mb)))
+#define DATA32(x) (((x) & 0xffffffffUL) | (((x) & 0xffffffffUL) << 32))
+#else
+#define DATA32(x) (x)
+#endif
+#define ROTATE(x, n) ((n) ? (((x) << (n)) | ((x) >> (8 * sizeof(long) - (n)))) : (x))
+
+/*
+ * Decode an instruction, and return information about it in *op
+ * without changing *regs.
+ * Integer arithmetic and logical instructions, branches, and barrier
+ * instructions can be emulated just using the information in *op.
+ *
+ * Return value is 1 if the instruction can be emulated just by
+ * updating *regs with the information in *op, -1 if we need the
+ * GPRs but *regs doesn't contain the full register set, or 0
+ * otherwise.
+ */
+int analyse_instr(struct instruction_op *op, const struct pt_regs *regs,
+ ppc_inst_t instr)
+{
+#ifdef CONFIG_PPC64
+ unsigned int suffixopcode, prefixtype, prefix_r;
+#endif
+ unsigned int opcode, ra, rb, rc, rd, spr, u;
+ unsigned long int imm;
+ unsigned long int val, val2;
+ unsigned int mb, me, sh;
+ unsigned int word, suffix;
+ long ival;
+
+ word = ppc_inst_val(instr);
+ suffix = ppc_inst_suffix(instr);
+
+ op->type = COMPUTE;
+
+ opcode = ppc_inst_primary_opcode(instr);
+ switch (opcode) {
+ case 16: /* bc */
+ op->type = BRANCH;
+ imm = (signed short)(word & 0xfffc);
+ if ((word & 2) == 0)
+ imm += regs->nip;
+ op->val = truncate_if_32bit(regs->msr, imm);
+ if (word & 1)
+ op->type |= SETLK;
+ if (branch_taken(word, regs, op))
+ op->type |= BRTAKEN;
+ return 1;
+ case 17: /* sc */
+ if ((word & 0xfe2) == 2)
+ op->type = SYSCALL;
+ else if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) &&
+ (word & 0xfe3) == 1) { /* scv */
+ op->type = SYSCALL_VECTORED_0;
+ if (!cpu_has_feature(CPU_FTR_ARCH_300))
+ goto unknown_opcode;
+ } else
+ op->type = UNKNOWN;
+ return 0;
+ case 18: /* b */
+ op->type = BRANCH | BRTAKEN;
+ imm = word & 0x03fffffc;
+ if (imm & 0x02000000)
+ imm -= 0x04000000;
+ if ((word & 2) == 0)
+ imm += regs->nip;
+ op->val = truncate_if_32bit(regs->msr, imm);
+ if (word & 1)
+ op->type |= SETLK;
+ return 1;
+ case 19:
+ switch ((word >> 1) & 0x3ff) {
+ case 0: /* mcrf */
+ op->type = COMPUTE + SETCC;
+ rd = 7 - ((word >> 23) & 0x7);
+ ra = 7 - ((word >> 18) & 0x7);
+ rd *= 4;
+ ra *= 4;
+ val = (regs->ccr >> ra) & 0xf;
+ op->ccval = (regs->ccr & ~(0xfUL << rd)) | (val << rd);
+ return 1;
+
+ case 16: /* bclr */
+ case 528: /* bcctr */
+ op->type = BRANCH;
+ imm = (word & 0x400)? regs->ctr: regs->link;
+ op->val = truncate_if_32bit(regs->msr, imm);
+ if (word & 1)
+ op->type |= SETLK;
+ if (branch_taken(word, regs, op))
+ op->type |= BRTAKEN;
+ return 1;
+
+ case 18: /* rfid, scary */
+ if (regs->msr & MSR_PR)
+ goto priv;
+ op->type = RFI;
+ return 0;
+
+ case 150: /* isync */
+ op->type = BARRIER | BARRIER_ISYNC;
+ return 1;
+
+ case 33: /* crnor */
+ case 129: /* crandc */
+ case 193: /* crxor */
+ case 225: /* crnand */
+ case 257: /* crand */
+ case 289: /* creqv */
+ case 417: /* crorc */
+ case 449: /* cror */
+ op->type = COMPUTE + SETCC;
+ ra = (word >> 16) & 0x1f;
+ rb = (word >> 11) & 0x1f;
+ rd = (word >> 21) & 0x1f;
+ ra = (regs->ccr >> (31 - ra)) & 1;
+ rb = (regs->ccr >> (31 - rb)) & 1;
+ val = (word >> (6 + ra * 2 + rb)) & 1;
+ op->ccval = (regs->ccr & ~(1UL << (31 - rd))) |
+ (val << (31 - rd));
+ return 1;
+ }
+ break;
+ case 31:
+ switch ((word >> 1) & 0x3ff) {
+ case 598: /* sync */
+ op->type = BARRIER + BARRIER_SYNC;
+#ifdef __powerpc64__
+ switch ((word >> 21) & 3) {
+ case 1: /* lwsync */
+ op->type = BARRIER + BARRIER_LWSYNC;
+ break;
+ case 2: /* ptesync */
+ op->type = BARRIER + BARRIER_PTESYNC;
+ break;
+ }
+#endif
+ return 1;
+
+ case 854: /* eieio */
+ op->type = BARRIER + BARRIER_EIEIO;
+ return 1;
+ }
+ break;
+ }
+
+ rd = (word >> 21) & 0x1f;
+ ra = (word >> 16) & 0x1f;
+ rb = (word >> 11) & 0x1f;
+ rc = (word >> 6) & 0x1f;
+
+ switch (opcode) {
+#ifdef __powerpc64__
+ case 1:
+ if (!cpu_has_feature(CPU_FTR_ARCH_31))
+ goto unknown_opcode;
+
+ prefix_r = GET_PREFIX_R(word);
+ ra = GET_PREFIX_RA(suffix);
+ rd = (suffix >> 21) & 0x1f;
+ op->reg = rd;
+ op->val = regs->gpr[rd];
+ suffixopcode = get_op(suffix);
+ prefixtype = (word >> 24) & 0x3;
+ switch (prefixtype) {
+ case 2:
+ if (prefix_r && ra)
+ return 0;
+ switch (suffixopcode) {
+ case 14: /* paddi */
+ op->type = COMPUTE | PREFIXED;
+ op->val = mlsd_8lsd_ea(word, suffix, regs);
+ goto compute_done;
+ }
+ }
+ break;
+ case 2: /* tdi */
+ if (rd & trap_compare(regs->gpr[ra], (short) word))
+ goto trap;
+ return 1;
+#endif
+ case 3: /* twi */
+ if (rd & trap_compare((int)regs->gpr[ra], (short) word))
+ goto trap;
+ return 1;
+
+#ifdef __powerpc64__
+ case 4:
+ /*
+ * There are very many instructions with this primary opcode
+ * introduced in the ISA as early as v2.03. However, the ones
+ * we currently emulate were all introduced with ISA 3.0
+ */
+ if (!cpu_has_feature(CPU_FTR_ARCH_300))
+ goto unknown_opcode;
+
+ switch (word & 0x3f) {
+ case 48: /* maddhd */
+ asm volatile(PPC_MADDHD(%0, %1, %2, %3) :
+ "=r" (op->val) : "r" (regs->gpr[ra]),
+ "r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
+ goto compute_done;
+
+ case 49: /* maddhdu */
+ asm volatile(PPC_MADDHDU(%0, %1, %2, %3) :
+ "=r" (op->val) : "r" (regs->gpr[ra]),
+ "r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
+ goto compute_done;
+
+ case 51: /* maddld */
+ asm volatile(PPC_MADDLD(%0, %1, %2, %3) :
+ "=r" (op->val) : "r" (regs->gpr[ra]),
+ "r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
+ goto compute_done;
+ }
+
+ /*
+ * There are other instructions from ISA 3.0 with the same
+ * primary opcode which do not have emulation support yet.
+ */
+ goto unknown_opcode;
+#endif
+
+ case 7: /* mulli */
+ op->val = regs->gpr[ra] * (short) word;
+ goto compute_done;
+
+ case 8: /* subfic */
+ imm = (short) word;
+ add_with_carry(regs, op, rd, ~regs->gpr[ra], imm, 1);
+ return 1;
+
+ case 10: /* cmpli */
+ imm = (unsigned short) word;
+ val = regs->gpr[ra];
+#ifdef __powerpc64__
+ if ((rd & 1) == 0)
+ val = (unsigned int) val;
+#endif
+ do_cmp_unsigned(regs, op, val, imm, rd >> 2);
+ return 1;
+
+ case 11: /* cmpi */
+ imm = (short) word;
+ val = regs->gpr[ra];
+#ifdef __powerpc64__
+ if ((rd & 1) == 0)
+ val = (int) val;
+#endif
+ do_cmp_signed(regs, op, val, imm, rd >> 2);
+ return 1;
+
+ case 12: /* addic */
+ imm = (short) word;
+ add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0);
+ return 1;
+
+ case 13: /* addic. */
+ imm = (short) word;
+ add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0);
+ set_cr0(regs, op);
+ return 1;
+
+ case 14: /* addi */
+ imm = (short) word;
+ if (ra)
+ imm += regs->gpr[ra];
+ op->val = imm;
+ goto compute_done;
+
+ case 15: /* addis */
+ imm = ((short) word) << 16;
+ if (ra)
+ imm += regs->gpr[ra];
+ op->val = imm;
+ goto compute_done;
+
+ case 19:
+ if (((word >> 1) & 0x1f) == 2) {
+ /* addpcis */
+ if (!cpu_has_feature(CPU_FTR_ARCH_300))
+ goto unknown_opcode;
+ imm = (short) (word & 0xffc1); /* d0 + d2 fields */
+ imm |= (word >> 15) & 0x3e; /* d1 field */
+ op->val = regs->nip + (imm << 16) + 4;
+ goto compute_done;
+ }
+ op->type = UNKNOWN;
+ return 0;
+
+ case 20: /* rlwimi */
+ mb = (word >> 6) & 0x1f;
+ me = (word >> 1) & 0x1f;
+ val = DATA32(regs->gpr[rd]);
+ imm = MASK32(mb, me);
+ op->val = (regs->gpr[ra] & ~imm) | (ROTATE(val, rb) & imm);
+ goto logical_done;
+
+ case 21: /* rlwinm */
+ mb = (word >> 6) & 0x1f;
+ me = (word >> 1) & 0x1f;
+ val = DATA32(regs->gpr[rd]);
+ op->val = ROTATE(val, rb) & MASK32(mb, me);
+ goto logical_done;
+
+ case 23: /* rlwnm */
+ mb = (word >> 6) & 0x1f;
+ me = (word >> 1) & 0x1f;
+ rb = regs->gpr[rb] & 0x1f;
+ val = DATA32(regs->gpr[rd]);
+ op->val = ROTATE(val, rb) & MASK32(mb, me);
+ goto logical_done;
+
+ case 24: /* ori */
+ op->val = regs->gpr[rd] | (unsigned short) word;
+ goto logical_done_nocc;
+
+ case 25: /* oris */
+ imm = (unsigned short) word;
+ op->val = regs->gpr[rd] | (imm << 16);
+ goto logical_done_nocc;
+
+ case 26: /* xori */
+ op->val = regs->gpr[rd] ^ (unsigned short) word;
+ goto logical_done_nocc;
+
+ case 27: /* xoris */
+ imm = (unsigned short) word;
+ op->val = regs->gpr[rd] ^ (imm << 16);
+ goto logical_done_nocc;
+
+ case 28: /* andi. */
+ op->val = regs->gpr[rd] & (unsigned short) word;
+ set_cr0(regs, op);
+ goto logical_done_nocc;
+
+ case 29: /* andis. */
+ imm = (unsigned short) word;
+ op->val = regs->gpr[rd] & (imm << 16);
+ set_cr0(regs, op);
+ goto logical_done_nocc;
+
+#ifdef __powerpc64__
+ case 30: /* rld* */
+ mb = ((word >> 6) & 0x1f) | (word & 0x20);
+ val = regs->gpr[rd];
+ if ((word & 0x10) == 0) {
+ sh = rb | ((word & 2) << 4);
+ val = ROTATE(val, sh);
+ switch ((word >> 2) & 3) {
+ case 0: /* rldicl */
+ val &= MASK64_L(mb);
+ break;
+ case 1: /* rldicr */
+ val &= MASK64_R(mb);
+ break;
+ case 2: /* rldic */
+ val &= MASK64(mb, 63 - sh);
+ break;
+ case 3: /* rldimi */
+ imm = MASK64(mb, 63 - sh);
+ val = (regs->gpr[ra] & ~imm) |
+ (val & imm);
+ }
+ op->val = val;
+ goto logical_done;
+ } else {
+ sh = regs->gpr[rb] & 0x3f;
+ val = ROTATE(val, sh);
+ switch ((word >> 1) & 7) {
+ case 0: /* rldcl */
+ op->val = val & MASK64_L(mb);
+ goto logical_done;
+ case 1: /* rldcr */
+ op->val = val & MASK64_R(mb);
+ goto logical_done;
+ }
+ }
+#endif
+ op->type = UNKNOWN; /* illegal instruction */
+ return 0;
+
+ case 31:
+ /* isel occupies 32 minor opcodes */
+ if (((word >> 1) & 0x1f) == 15) {
+ mb = (word >> 6) & 0x1f; /* bc field */
+ val = (regs->ccr >> (31 - mb)) & 1;
+ val2 = (ra) ? regs->gpr[ra] : 0;
+
+ op->val = (val) ? val2 : regs->gpr[rb];
+ goto compute_done;
+ }
+
+ switch ((word >> 1) & 0x3ff) {
+ case 4: /* tw */
+ if (rd == 0x1f ||
+ (rd & trap_compare((int)regs->gpr[ra],
+ (int)regs->gpr[rb])))
+ goto trap;
+ return 1;
+#ifdef __powerpc64__
+ case 68: /* td */
+ if (rd & trap_compare(regs->gpr[ra], regs->gpr[rb]))
+ goto trap;
+ return 1;
+#endif
+ case 83: /* mfmsr */
+ if (regs->msr & MSR_PR)
+ goto priv;
+ op->type = MFMSR;
+ op->reg = rd;
+ return 0;
+ case 146: /* mtmsr */
+ if (regs->msr & MSR_PR)
+ goto priv;
+ op->type = MTMSR;
+ op->reg = rd;
+ op->val = 0xffffffff & ~(MSR_ME | MSR_LE);
+ return 0;
+#ifdef CONFIG_PPC64
+ case 178: /* mtmsrd */
+ if (regs->msr & MSR_PR)
+ goto priv;
+ op->type = MTMSR;
+ op->reg = rd;
+ /* only MSR_EE and MSR_RI get changed if bit 15 set */
+ /* mtmsrd doesn't change MSR_HV, MSR_ME or MSR_LE */
+ imm = (word & 0x10000)? 0x8002: 0xefffffffffffeffeUL;
+ op->val = imm;
+ return 0;
+#endif
+
+ case 19: /* mfcr */
+ imm = 0xffffffffUL;
+ if ((word >> 20) & 1) {
+ imm = 0xf0000000UL;
+ for (sh = 0; sh < 8; ++sh) {
+ if (word & (0x80000 >> sh))
+ break;
+ imm >>= 4;
+ }
+ }
+ op->val = regs->ccr & imm;
+ goto compute_done;
+
+ case 128: /* setb */
+ if (!cpu_has_feature(CPU_FTR_ARCH_300))
+ goto unknown_opcode;
+ /*
+ * 'ra' encodes the CR field number (bfa) in the top 3 bits.
+ * Since each CR field is 4 bits,
+ * we can simply mask off the bottom two bits (bfa * 4)
+ * to yield the first bit in the CR field.
+ */
+ ra = ra & ~0x3;
+ /* 'val' stores bits of the CR field (bfa) */
+ val = regs->ccr >> (CR0_SHIFT - ra);
+ /* checks if the LT bit of CR field (bfa) is set */
+ if (val & 8)
+ op->val = -1;
+ /* checks if the GT bit of CR field (bfa) is set */
+ else if (val & 4)
+ op->val = 1;
+ else
+ op->val = 0;
+ goto compute_done;
+
+ case 144: /* mtcrf */
+ op->type = COMPUTE + SETCC;
+ imm = 0xf0000000UL;
+ val = regs->gpr[rd];
+ op->ccval = regs->ccr;
+ for (sh = 0; sh < 8; ++sh) {
+ if (word & (0x80000 >> sh))
+ op->ccval = (op->ccval & ~imm) |
+ (val & imm);
+ imm >>= 4;
+ }
+ return 1;
+
+ case 339: /* mfspr */
+ spr = ((word >> 16) & 0x1f) | ((word >> 6) & 0x3e0);
+ op->type = MFSPR;
+ op->reg = rd;
+ op->spr = spr;
+ if (spr == SPRN_XER || spr == SPRN_LR ||
+ spr == SPRN_CTR)
+ return 1;
+ return 0;
+
+ case 467: /* mtspr */
+ spr = ((word >> 16) & 0x1f) | ((word >> 6) & 0x3e0);
+ op->type = MTSPR;
+ op->val = regs->gpr[rd];
+ op->spr = spr;
+ if (spr == SPRN_XER || spr == SPRN_LR ||
+ spr == SPRN_CTR)
+ return 1;
+ return 0;
+
+/*
+ * Compare instructions
+ */
+ case 0: /* cmp */
+ val = regs->gpr[ra];
+ val2 = regs->gpr[rb];
+#ifdef __powerpc64__
+ if ((rd & 1) == 0) {
+ /* word (32-bit) compare */
+ val = (int) val;
+ val2 = (int) val2;
+ }
+#endif
+ do_cmp_signed(regs, op, val, val2, rd >> 2);
+ return 1;
+
+ case 32: /* cmpl */
+ val = regs->gpr[ra];
+ val2 = regs->gpr[rb];
+#ifdef __powerpc64__
+ if ((rd & 1) == 0) {
+ /* word (32-bit) compare */
+ val = (unsigned int) val;
+ val2 = (unsigned int) val2;
+ }
+#endif
+ do_cmp_unsigned(regs, op, val, val2, rd >> 2);
+ return 1;
+
+ case 508: /* cmpb */
+ do_cmpb(regs, op, regs->gpr[rd], regs->gpr[rb]);
+ goto logical_done_nocc;
+
+/*
+ * Arithmetic instructions
+ */
+ case 8: /* subfc */
+ add_with_carry(regs, op, rd, ~regs->gpr[ra],
+ regs->gpr[rb], 1);
+ goto arith_done;
+#ifdef __powerpc64__
+ case 9: /* mulhdu */
+ asm("mulhdu %0,%1,%2" : "=r" (op->val) :
+ "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
+ goto arith_done;
+#endif
+ case 10: /* addc */
+ add_with_carry(regs, op, rd, regs->gpr[ra],
+ regs->gpr[rb], 0);
+ goto arith_done;
+
+ case 11: /* mulhwu */
+ asm("mulhwu %0,%1,%2" : "=r" (op->val) :
+ "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
+ goto arith_done;
+
+ case 40: /* subf */
+ op->val = regs->gpr[rb] - regs->gpr[ra];
+ goto arith_done;
+#ifdef __powerpc64__
+ case 73: /* mulhd */
+ asm("mulhd %0,%1,%2" : "=r" (op->val) :
+ "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
+ goto arith_done;
+#endif
+ case 75: /* mulhw */
+ asm("mulhw %0,%1,%2" : "=r" (op->val) :
+ "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
+ goto arith_done;
+
+ case 104: /* neg */
+ op->val = -regs->gpr[ra];
+ goto arith_done;
+
+ case 136: /* subfe */
+ add_with_carry(regs, op, rd, ~regs->gpr[ra],
+ regs->gpr[rb], regs->xer & XER_CA);
+ goto arith_done;
+
+ case 138: /* adde */
+ add_with_carry(regs, op, rd, regs->gpr[ra],
+ regs->gpr[rb], regs->xer & XER_CA);
+ goto arith_done;
+
+ case 200: /* subfze */
+ add_with_carry(regs, op, rd, ~regs->gpr[ra], 0L,
+ regs->xer & XER_CA);
+ goto arith_done;
+
+ case 202: /* addze */
+ add_with_carry(regs, op, rd, regs->gpr[ra], 0L,
+ regs->xer & XER_CA);
+ goto arith_done;
+
+ case 232: /* subfme */
+ add_with_carry(regs, op, rd, ~regs->gpr[ra], -1L,
+ regs->xer & XER_CA);
+ goto arith_done;
+#ifdef __powerpc64__
+ case 233: /* mulld */
+ op->val = regs->gpr[ra] * regs->gpr[rb];
+ goto arith_done;
+#endif
+ case 234: /* addme */
+ add_with_carry(regs, op, rd, regs->gpr[ra], -1L,
+ regs->xer & XER_CA);
+ goto arith_done;
+
+ case 235: /* mullw */
+ op->val = (long)(int) regs->gpr[ra] *
+ (int) regs->gpr[rb];
+
+ goto arith_done;
+#ifdef __powerpc64__
+ case 265: /* modud */
+ if (!cpu_has_feature(CPU_FTR_ARCH_300))
+ goto unknown_opcode;
+ op->val = regs->gpr[ra] % regs->gpr[rb];
+ goto compute_done;
+#endif
+ case 266: /* add */
+ op->val = regs->gpr[ra] + regs->gpr[rb];
+ goto arith_done;
+
+ case 267: /* moduw */
+ if (!cpu_has_feature(CPU_FTR_ARCH_300))
+ goto unknown_opcode;
+ op->val = (unsigned int) regs->gpr[ra] %
+ (unsigned int) regs->gpr[rb];
+ goto compute_done;
+#ifdef __powerpc64__
+ case 457: /* divdu */
+ op->val = regs->gpr[ra] / regs->gpr[rb];
+ goto arith_done;
+#endif
+ case 459: /* divwu */
+ op->val = (unsigned int) regs->gpr[ra] /
+ (unsigned int) regs->gpr[rb];
+ goto arith_done;
+#ifdef __powerpc64__
+ case 489: /* divd */
+ op->val = (long int) regs->gpr[ra] /
+ (long int) regs->gpr[rb];
+ goto arith_done;
+#endif
+ case 491: /* divw */
+ op->val = (int) regs->gpr[ra] /
+ (int) regs->gpr[rb];
+ goto arith_done;
+#ifdef __powerpc64__
+ case 425: /* divde[.] */
+ asm volatile(PPC_DIVDE(%0, %1, %2) :
+ "=r" (op->val) : "r" (regs->gpr[ra]),
+ "r" (regs->gpr[rb]));
+ goto arith_done;
+ case 393: /* divdeu[.] */
+ asm volatile(PPC_DIVDEU(%0, %1, %2) :
+ "=r" (op->val) : "r" (regs->gpr[ra]),
+ "r" (regs->gpr[rb]));
+ goto arith_done;
+#endif
+ case 755: /* darn */
+ if (!cpu_has_feature(CPU_FTR_ARCH_300))
+ goto unknown_opcode;
+ switch (ra & 0x3) {
+ case 0:
+ /* 32-bit conditioned */
+ asm volatile(PPC_DARN(%0, 0) : "=r" (op->val));
+ goto compute_done;
+
+ case 1:
+ /* 64-bit conditioned */
+ asm volatile(PPC_DARN(%0, 1) : "=r" (op->val));
+ goto compute_done;
+
+ case 2:
+ /* 64-bit raw */
+ asm volatile(PPC_DARN(%0, 2) : "=r" (op->val));
+ goto compute_done;
+ }
+
+ goto unknown_opcode;
+#ifdef __powerpc64__
+ case 777: /* modsd */
+ if (!cpu_has_feature(CPU_FTR_ARCH_300))
+ goto unknown_opcode;
+ op->val = (long int) regs->gpr[ra] %
+ (long int) regs->gpr[rb];
+ goto compute_done;
+#endif
+ case 779: /* modsw */
+ if (!cpu_has_feature(CPU_FTR_ARCH_300))
+ goto unknown_opcode;
+ op->val = (int) regs->gpr[ra] %
+ (int) regs->gpr[rb];
+ goto compute_done;
+
+
+/*
+ * Logical instructions
+ */
+ case 26: /* cntlzw */
+ val = (unsigned int) regs->gpr[rd];
+ op->val = ( val ? __builtin_clz(val) : 32 );
+ goto logical_done;
+#ifdef __powerpc64__
+ case 58: /* cntlzd */
+ val = regs->gpr[rd];
+ op->val = ( val ? __builtin_clzl(val) : 64 );
+ goto logical_done;
+#endif
+ case 28: /* and */
+ op->val = regs->gpr[rd] & regs->gpr[rb];
+ goto logical_done;
+
+ case 60: /* andc */
+ op->val = regs->gpr[rd] & ~regs->gpr[rb];
+ goto logical_done;
+
+ case 122: /* popcntb */
+ do_popcnt(regs, op, regs->gpr[rd], 8);
+ goto logical_done_nocc;
+
+ case 124: /* nor */
+ op->val = ~(regs->gpr[rd] | regs->gpr[rb]);
+ goto logical_done;
+
+ case 154: /* prtyw */
+ do_prty(regs, op, regs->gpr[rd], 32);
+ goto logical_done_nocc;
+
+ case 186: /* prtyd */
+ do_prty(regs, op, regs->gpr[rd], 64);
+ goto logical_done_nocc;
+#ifdef CONFIG_PPC64
+ case 252: /* bpermd */
+ do_bpermd(regs, op, regs->gpr[rd], regs->gpr[rb]);
+ goto logical_done_nocc;
+#endif
+ case 284: /* xor */
+ op->val = ~(regs->gpr[rd] ^ regs->gpr[rb]);
+ goto logical_done;
+
+ case 316: /* xor */
+ op->val = regs->gpr[rd] ^ regs->gpr[rb];
+ goto logical_done;
+
+ case 378: /* popcntw */
+ do_popcnt(regs, op, regs->gpr[rd], 32);
+ goto logical_done_nocc;
+
+ case 412: /* orc */
+ op->val = regs->gpr[rd] | ~regs->gpr[rb];
+ goto logical_done;
+
+ case 444: /* or */
+ op->val = regs->gpr[rd] | regs->gpr[rb];
+ goto logical_done;
+
+ case 476: /* nand */
+ op->val = ~(regs->gpr[rd] & regs->gpr[rb]);
+ goto logical_done;
+#ifdef CONFIG_PPC64
+ case 506: /* popcntd */
+ do_popcnt(regs, op, regs->gpr[rd], 64);
+ goto logical_done_nocc;
+#endif
+ case 538: /* cnttzw */
+ if (!cpu_has_feature(CPU_FTR_ARCH_300))
+ goto unknown_opcode;
+ val = (unsigned int) regs->gpr[rd];
+ op->val = (val ? __builtin_ctz(val) : 32);
+ goto logical_done;
+#ifdef __powerpc64__
+ case 570: /* cnttzd */
+ if (!cpu_has_feature(CPU_FTR_ARCH_300))
+ goto unknown_opcode;
+ val = regs->gpr[rd];
+ op->val = (val ? __builtin_ctzl(val) : 64);
+ goto logical_done;
+#endif
+ case 922: /* extsh */
+ op->val = (signed short) regs->gpr[rd];
+ goto logical_done;
+
+ case 954: /* extsb */
+ op->val = (signed char) regs->gpr[rd];
+ goto logical_done;
+#ifdef __powerpc64__
+ case 986: /* extsw */
+ op->val = (signed int) regs->gpr[rd];
+ goto logical_done;
+#endif
+
+/*
+ * Shift instructions
+ */
+ case 24: /* slw */
+ sh = regs->gpr[rb] & 0x3f;
+ if (sh < 32)
+ op->val = (regs->gpr[rd] << sh) & 0xffffffffUL;
+ else
+ op->val = 0;
+ goto logical_done;
+
+ case 536: /* srw */
+ sh = regs->gpr[rb] & 0x3f;
+ if (sh < 32)
+ op->val = (regs->gpr[rd] & 0xffffffffUL) >> sh;
+ else
+ op->val = 0;
+ goto logical_done;
+
+ case 792: /* sraw */
+ op->type = COMPUTE + SETREG + SETXER;
+ sh = regs->gpr[rb] & 0x3f;
+ ival = (signed int) regs->gpr[rd];
+ op->val = ival >> (sh < 32 ? sh : 31);
+ op->xerval = regs->xer;
+ if (ival < 0 && (sh >= 32 || (ival & ((1ul << sh) - 1)) != 0))
+ op->xerval |= XER_CA;
+ else
+ op->xerval &= ~XER_CA;
+ set_ca32(op, op->xerval & XER_CA);
+ goto logical_done;
+
+ case 824: /* srawi */
+ op->type = COMPUTE + SETREG + SETXER;
+ sh = rb;
+ ival = (signed int) regs->gpr[rd];
+ op->val = ival >> sh;
+ op->xerval = regs->xer;
+ if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
+ op->xerval |= XER_CA;
+ else
+ op->xerval &= ~XER_CA;
+ set_ca32(op, op->xerval & XER_CA);
+ goto logical_done;
+
+#ifdef __powerpc64__
+ case 27: /* sld */
+ sh = regs->gpr[rb] & 0x7f;
+ if (sh < 64)
+ op->val = regs->gpr[rd] << sh;
+ else
+ op->val = 0;
+ goto logical_done;
+
+ case 539: /* srd */
+ sh = regs->gpr[rb] & 0x7f;
+ if (sh < 64)
+ op->val = regs->gpr[rd] >> sh;
+ else
+ op->val = 0;
+ goto logical_done;
+
+ case 794: /* srad */
+ op->type = COMPUTE + SETREG + SETXER;
+ sh = regs->gpr[rb] & 0x7f;
+ ival = (signed long int) regs->gpr[rd];
+ op->val = ival >> (sh < 64 ? sh : 63);
+ op->xerval = regs->xer;
+ if (ival < 0 && (sh >= 64 || (ival & ((1ul << sh) - 1)) != 0))
+ op->xerval |= XER_CA;
+ else
+ op->xerval &= ~XER_CA;
+ set_ca32(op, op->xerval & XER_CA);
+ goto logical_done;
+
+ case 826: /* sradi with sh_5 = 0 */
+ case 827: /* sradi with sh_5 = 1 */
+ op->type = COMPUTE + SETREG + SETXER;
+ sh = rb | ((word & 2) << 4);
+ ival = (signed long int) regs->gpr[rd];
+ op->val = ival >> sh;
+ op->xerval = regs->xer;
+ if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
+ op->xerval |= XER_CA;
+ else
+ op->xerval &= ~XER_CA;
+ set_ca32(op, op->xerval & XER_CA);
+ goto logical_done;
+
+ case 890: /* extswsli with sh_5 = 0 */
+ case 891: /* extswsli with sh_5 = 1 */
+ if (!cpu_has_feature(CPU_FTR_ARCH_300))
+ goto unknown_opcode;
+ op->type = COMPUTE + SETREG;
+ sh = rb | ((word & 2) << 4);
+ val = (signed int) regs->gpr[rd];
+ if (sh)
+ op->val = ROTATE(val, sh) & MASK64(0, 63 - sh);
+ else
+ op->val = val;
+ goto logical_done;
+
+#endif /* __powerpc64__ */
+
+/*
+ * Cache instructions
+ */
+ case 54: /* dcbst */
+ op->type = MKOP(CACHEOP, DCBST, 0);
+ op->ea = xform_ea(word, regs);
+ return 0;
+
+ case 86: /* dcbf */
+ op->type = MKOP(CACHEOP, DCBF, 0);
+ op->ea = xform_ea(word, regs);
+ return 0;
+
+ case 246: /* dcbtst */
+ op->type = MKOP(CACHEOP, DCBTST, 0);
+ op->ea = xform_ea(word, regs);
+ op->reg = rd;
+ return 0;
+
+ case 278: /* dcbt */
+ op->type = MKOP(CACHEOP, DCBTST, 0);
+ op->ea = xform_ea(word, regs);
+ op->reg = rd;
+ return 0;
+
+ case 982: /* icbi */
+ op->type = MKOP(CACHEOP, ICBI, 0);
+ op->ea = xform_ea(word, regs);
+ return 0;
+
+ case 1014: /* dcbz */
+ op->type = MKOP(CACHEOP, DCBZ, 0);
+ op->ea = xform_ea(word, regs);
+ return 0;
+ }
+ break;
+ }
+
+/*
+ * Loads and stores.
+ */
+ op->type = UNKNOWN;
+ op->update_reg = ra;
+ op->reg = rd;
+ op->val = regs->gpr[rd];
+ u = (word >> 20) & UPDATE;
+ op->vsx_flags = 0;
+
+ switch (opcode) {
+ case 31:
+ u = word & UPDATE;
+ op->ea = xform_ea(word, regs);
+ switch ((word >> 1) & 0x3ff) {
+ case 20: /* lwarx */
+ op->type = MKOP(LARX, 0, 4);
+ break;
+
+ case 150: /* stwcx. */
+ op->type = MKOP(STCX, 0, 4);
+ break;
+
+#ifdef __powerpc64__
+ case 84: /* ldarx */
+ op->type = MKOP(LARX, 0, 8);
+ break;
+
+ case 214: /* stdcx. */
+ op->type = MKOP(STCX, 0, 8);
+ break;
+
+ case 52: /* lbarx */
+ op->type = MKOP(LARX, 0, 1);
+ break;
+
+ case 694: /* stbcx. */
+ op->type = MKOP(STCX, 0, 1);
+ break;
+
+ case 116: /* lharx */
+ op->type = MKOP(LARX, 0, 2);
+ break;
+
+ case 726: /* sthcx. */
+ op->type = MKOP(STCX, 0, 2);
+ break;
+
+ case 276: /* lqarx */
+ if (!((rd & 1) || rd == ra || rd == rb))
+ op->type = MKOP(LARX, 0, 16);
+ break;
+
+ case 182: /* stqcx. */
+ if (!(rd & 1))
+ op->type = MKOP(STCX, 0, 16);
+ break;
+#endif
+
+ case 23: /* lwzx */
+ case 55: /* lwzux */
+ op->type = MKOP(LOAD, u, 4);
+ break;
+
+ case 87: /* lbzx */
+ case 119: /* lbzux */
+ op->type = MKOP(LOAD, u, 1);
+ break;
+
+#ifdef CONFIG_ALTIVEC
+ /*
+ * Note: for the load/store vector element instructions,
+ * bits of the EA say which field of the VMX register to use.
+ */
+ case 7: /* lvebx */
+ op->type = MKOP(LOAD_VMX, 0, 1);
+ op->element_size = 1;
+ break;
+
+ case 39: /* lvehx */
+ op->type = MKOP(LOAD_VMX, 0, 2);
+ op->element_size = 2;
+ break;
+
+ case 71: /* lvewx */
+ op->type = MKOP(LOAD_VMX, 0, 4);
+ op->element_size = 4;
+ break;
+
+ case 103: /* lvx */
+ case 359: /* lvxl */
+ op->type = MKOP(LOAD_VMX, 0, 16);
+ op->element_size = 16;
+ break;
+
+ case 135: /* stvebx */
+ op->type = MKOP(STORE_VMX, 0, 1);
+ op->element_size = 1;
+ break;
+
+ case 167: /* stvehx */
+ op->type = MKOP(STORE_VMX, 0, 2);
+ op->element_size = 2;
+ break;
+
+ case 199: /* stvewx */
+ op->type = MKOP(STORE_VMX, 0, 4);
+ op->element_size = 4;
+ break;
+
+ case 231: /* stvx */
+ case 487: /* stvxl */
+ op->type = MKOP(STORE_VMX, 0, 16);
+ break;
+#endif /* CONFIG_ALTIVEC */
+
+#ifdef __powerpc64__
+ case 21: /* ldx */
+ case 53: /* ldux */
+ op->type = MKOP(LOAD, u, 8);
+ break;
+
+ case 149: /* stdx */
+ case 181: /* stdux */
+ op->type = MKOP(STORE, u, 8);
+ break;
+#endif
+
+ case 151: /* stwx */
+ case 183: /* stwux */
+ op->type = MKOP(STORE, u, 4);
+ break;
+
+ case 215: /* stbx */
+ case 247: /* stbux */
+ op->type = MKOP(STORE, u, 1);
+ break;
+
+ case 279: /* lhzx */
+ case 311: /* lhzux */
+ op->type = MKOP(LOAD, u, 2);
+ break;
+
+#ifdef __powerpc64__
+ case 341: /* lwax */
+ case 373: /* lwaux */
+ op->type = MKOP(LOAD, SIGNEXT | u, 4);
+ break;
+#endif
+
+ case 343: /* lhax */
+ case 375: /* lhaux */
+ op->type = MKOP(LOAD, SIGNEXT | u, 2);
+ break;
+
+ case 407: /* sthx */
+ case 439: /* sthux */
+ op->type = MKOP(STORE, u, 2);
+ break;
+
+#ifdef __powerpc64__
+ case 532: /* ldbrx */
+ op->type = MKOP(LOAD, BYTEREV, 8);
+ break;
+
+#endif
+ case 533: /* lswx */
+ op->type = MKOP(LOAD_MULTI, 0, regs->xer & 0x7f);
+ break;
+
+ case 534: /* lwbrx */
+ op->type = MKOP(LOAD, BYTEREV, 4);
+ break;
+
+ case 597: /* lswi */
+ if (rb == 0)
+ rb = 32; /* # bytes to load */
+ op->type = MKOP(LOAD_MULTI, 0, rb);
+ op->ea = ra ? regs->gpr[ra] : 0;
+ break;
+
+#ifdef CONFIG_PPC_FPU
+ case 535: /* lfsx */
+ case 567: /* lfsux */
+ op->type = MKOP(LOAD_FP, u | FPCONV, 4);
+ break;
+
+ case 599: /* lfdx */
+ case 631: /* lfdux */
+ op->type = MKOP(LOAD_FP, u, 8);
+ break;
+
+ case 663: /* stfsx */
+ case 695: /* stfsux */
+ op->type = MKOP(STORE_FP, u | FPCONV, 4);
+ break;
+
+ case 727: /* stfdx */
+ case 759: /* stfdux */
+ op->type = MKOP(STORE_FP, u, 8);
+ break;
+
+#ifdef __powerpc64__
+ case 791: /* lfdpx */
+ op->type = MKOP(LOAD_FP, 0, 16);
+ break;
+
+ case 855: /* lfiwax */
+ op->type = MKOP(LOAD_FP, SIGNEXT, 4);
+ break;
+
+ case 887: /* lfiwzx */
+ op->type = MKOP(LOAD_FP, 0, 4);
+ break;
+
+ case 919: /* stfdpx */
+ op->type = MKOP(STORE_FP, 0, 16);
+ break;
+
+ case 983: /* stfiwx */
+ op->type = MKOP(STORE_FP, 0, 4);
+ break;
+#endif /* __powerpc64 */
+#endif /* CONFIG_PPC_FPU */
+
+#ifdef __powerpc64__
+ case 660: /* stdbrx */
+ op->type = MKOP(STORE, BYTEREV, 8);
+ op->val = byterev_8(regs->gpr[rd]);
+ break;
+
+#endif
+ case 661: /* stswx */
+ op->type = MKOP(STORE_MULTI, 0, regs->xer & 0x7f);
+ break;
+
+ case 662: /* stwbrx */
+ op->type = MKOP(STORE, BYTEREV, 4);
+ op->val = byterev_4(regs->gpr[rd]);
+ break;
+
+ case 725: /* stswi */
+ if (rb == 0)
+ rb = 32; /* # bytes to store */
+ op->type = MKOP(STORE_MULTI, 0, rb);
+ op->ea = ra ? regs->gpr[ra] : 0;
+ break;
+
+ case 790: /* lhbrx */
+ op->type = MKOP(LOAD, BYTEREV, 2);
+ break;
+
+ case 918: /* sthbrx */
+ op->type = MKOP(STORE, BYTEREV, 2);
+ op->val = byterev_2(regs->gpr[rd]);
+ break;
+
+#ifdef CONFIG_VSX
+ case 12: /* lxsiwzx */
+ op->reg = rd | ((word & 1) << 5);
+ op->type = MKOP(LOAD_VSX, 0, 4);
+ op->element_size = 8;
+ break;
+
+ case 76: /* lxsiwax */
+ op->reg = rd | ((word & 1) << 5);
+ op->type = MKOP(LOAD_VSX, SIGNEXT, 4);
+ op->element_size = 8;
+ break;
+
+ case 140: /* stxsiwx */
+ op->reg = rd | ((word & 1) << 5);
+ op->type = MKOP(STORE_VSX, 0, 4);
+ op->element_size = 8;
+ break;
+
+ case 268: /* lxvx */
+ if (!cpu_has_feature(CPU_FTR_ARCH_300))
+ goto unknown_opcode;
+ op->reg = rd | ((word & 1) << 5);
+ op->type = MKOP(LOAD_VSX, 0, 16);
+ op->element_size = 16;
+ op->vsx_flags = VSX_CHECK_VEC;
+ break;
+
+ case 269: /* lxvl */
+ case 301: { /* lxvll */
+ int nb;
+ if (!cpu_has_feature(CPU_FTR_ARCH_300))
+ goto unknown_opcode;
+ op->reg = rd | ((word & 1) << 5);
+ op->ea = ra ? regs->gpr[ra] : 0;
+ nb = regs->gpr[rb] & 0xff;
+ if (nb > 16)
+ nb = 16;
+ op->type = MKOP(LOAD_VSX, 0, nb);
+ op->element_size = 16;
+ op->vsx_flags = ((word & 0x20) ? VSX_LDLEFT : 0) |
+ VSX_CHECK_VEC;
+ break;
+ }
+ case 332: /* lxvdsx */
+ op->reg = rd | ((word & 1) << 5);
+ op->type = MKOP(LOAD_VSX, 0, 8);
+ op->element_size = 8;
+ op->vsx_flags = VSX_SPLAT;
+ break;
+
+ case 333: /* lxvpx */
+ if (!cpu_has_feature(CPU_FTR_ARCH_31))
+ goto unknown_opcode;
+ op->reg = VSX_REGISTER_XTP(rd);
+ op->type = MKOP(LOAD_VSX, 0, 32);
+ op->element_size = 32;
+ break;
+
+ case 364: /* lxvwsx */
+ if (!cpu_has_feature(CPU_FTR_ARCH_300))
+ goto unknown_opcode;
+ op->reg = rd | ((word & 1) << 5);
+ op->type = MKOP(LOAD_VSX, 0, 4);
+ op->element_size = 4;
+ op->vsx_flags = VSX_SPLAT | VSX_CHECK_VEC;
+ break;
+
+ case 396: /* stxvx */
+ if (!cpu_has_feature(CPU_FTR_ARCH_300))
+ goto unknown_opcode;
+ op->reg = rd | ((word & 1) << 5);
+ op->type = MKOP(STORE_VSX, 0, 16);
+ op->element_size = 16;
+ op->vsx_flags = VSX_CHECK_VEC;
+ break;
+
+ case 397: /* stxvl */
+ case 429: { /* stxvll */
+ int nb;
+ if (!cpu_has_feature(CPU_FTR_ARCH_300))
+ goto unknown_opcode;
+ op->reg = rd | ((word & 1) << 5);
+ op->ea = ra ? regs->gpr[ra] : 0;
+ nb = regs->gpr[rb] & 0xff;
+ if (nb > 16)
+ nb = 16;
+ op->type = MKOP(STORE_VSX, 0, nb);
+ op->element_size = 16;
+ op->vsx_flags = ((word & 0x20) ? VSX_LDLEFT : 0) |
+ VSX_CHECK_VEC;
+ break;
+ }
+ case 461: /* stxvpx */
+ if (!cpu_has_feature(CPU_FTR_ARCH_31))
+ goto unknown_opcode;
+ op->reg = VSX_REGISTER_XTP(rd);
+ op->type = MKOP(STORE_VSX, 0, 32);
+ op->element_size = 32;
+ break;
+ case 524: /* lxsspx */
+ op->reg = rd | ((word & 1) << 5);
+ op->type = MKOP(LOAD_VSX, 0, 4);
+ op->element_size = 8;
+ op->vsx_flags = VSX_FPCONV;
+ break;
+
+ case 588: /* lxsdx */
+ op->reg = rd | ((word & 1) << 5);
+ op->type = MKOP(LOAD_VSX, 0, 8);
+ op->element_size = 8;
+ break;
+
+ case 652: /* stxsspx */
+ op->reg = rd | ((word & 1) << 5);
+ op->type = MKOP(STORE_VSX, 0, 4);
+ op->element_size = 8;
+ op->vsx_flags = VSX_FPCONV;
+ break;
+
+ case 716: /* stxsdx */
+ op->reg = rd | ((word & 1) << 5);
+ op->type = MKOP(STORE_VSX, 0, 8);
+ op->element_size = 8;
+ break;
+
+ case 780: /* lxvw4x */
+ op->reg = rd | ((word & 1) << 5);
+ op->type = MKOP(LOAD_VSX, 0, 16);
+ op->element_size = 4;
+ break;
+
+ case 781: /* lxsibzx */
+ if (!cpu_has_feature(CPU_FTR_ARCH_300))
+ goto unknown_opcode;
+ op->reg = rd | ((word & 1) << 5);
+ op->type = MKOP(LOAD_VSX, 0, 1);
+ op->element_size = 8;
+ op->vsx_flags = VSX_CHECK_VEC;
+ break;
+
+ case 812: /* lxvh8x */
+ if (!cpu_has_feature(CPU_FTR_ARCH_300))
+ goto unknown_opcode;
+ op->reg = rd | ((word & 1) << 5);
+ op->type = MKOP(LOAD_VSX, 0, 16);
+ op->element_size = 2;
+ op->vsx_flags = VSX_CHECK_VEC;
+ break;
+
+ case 813: /* lxsihzx */
+ if (!cpu_has_feature(CPU_FTR_ARCH_300))
+ goto unknown_opcode;
+ op->reg = rd | ((word & 1) << 5);
+ op->type = MKOP(LOAD_VSX, 0, 2);
+ op->element_size = 8;
+ op->vsx_flags = VSX_CHECK_VEC;
+ break;
+
+ case 844: /* lxvd2x */
+ op->reg = rd | ((word & 1) << 5);
+ op->type = MKOP(LOAD_VSX, 0, 16);
+ op->element_size = 8;
+ break;
+
+ case 876: /* lxvb16x */
+ if (!cpu_has_feature(CPU_FTR_ARCH_300))
+ goto unknown_opcode;
+ op->reg = rd | ((word & 1) << 5);
+ op->type = MKOP(LOAD_VSX, 0, 16);
+ op->element_size = 1;
+ op->vsx_flags = VSX_CHECK_VEC;
+ break;
+
+ case 908: /* stxvw4x */
+ op->reg = rd | ((word & 1) << 5);
+ op->type = MKOP(STORE_VSX, 0, 16);
+ op->element_size = 4;
+ break;
+
+ case 909: /* stxsibx */
+ if (!cpu_has_feature(CPU_FTR_ARCH_300))
+ goto unknown_opcode;
+ op->reg = rd | ((word & 1) << 5);
+ op->type = MKOP(STORE_VSX, 0, 1);
+ op->element_size = 8;
+ op->vsx_flags = VSX_CHECK_VEC;
+ break;
+
+ case 940: /* stxvh8x */
+ if (!cpu_has_feature(CPU_FTR_ARCH_300))
+ goto unknown_opcode;
+ op->reg = rd | ((word & 1) << 5);
+ op->type = MKOP(STORE_VSX, 0, 16);
+ op->element_size = 2;
+ op->vsx_flags = VSX_CHECK_VEC;
+ break;
+
+ case 941: /* stxsihx */
+ if (!cpu_has_feature(CPU_FTR_ARCH_300))
+ goto unknown_opcode;
+ op->reg = rd | ((word & 1) << 5);
+ op->type = MKOP(STORE_VSX, 0, 2);
+ op->element_size = 8;
+ op->vsx_flags = VSX_CHECK_VEC;
+ break;
+
+ case 972: /* stxvd2x */
+ op->reg = rd | ((word & 1) << 5);
+ op->type = MKOP(STORE_VSX, 0, 16);
+ op->element_size = 8;
+ break;
+
+ case 1004: /* stxvb16x */
+ if (!cpu_has_feature(CPU_FTR_ARCH_300))
+ goto unknown_opcode;
+ op->reg = rd | ((word & 1) << 5);
+ op->type = MKOP(STORE_VSX, 0, 16);
+ op->element_size = 1;
+ op->vsx_flags = VSX_CHECK_VEC;
+ break;
+
+#endif /* CONFIG_VSX */
+ }
+ break;
+
+ case 32: /* lwz */
+ case 33: /* lwzu */
+ op->type = MKOP(LOAD, u, 4);
+ op->ea = dform_ea(word, regs);
+ break;
+
+ case 34: /* lbz */
+ case 35: /* lbzu */
+ op->type = MKOP(LOAD, u, 1);
+ op->ea = dform_ea(word, regs);
+ break;
+
+ case 36: /* stw */
+ case 37: /* stwu */
+ op->type = MKOP(STORE, u, 4);
+ op->ea = dform_ea(word, regs);
+ break;
+
+ case 38: /* stb */
+ case 39: /* stbu */
+ op->type = MKOP(STORE, u, 1);
+ op->ea = dform_ea(word, regs);
+ break;
+
+ case 40: /* lhz */
+ case 41: /* lhzu */
+ op->type = MKOP(LOAD, u, 2);
+ op->ea = dform_ea(word, regs);
+ break;
+
+ case 42: /* lha */
+ case 43: /* lhau */
+ op->type = MKOP(LOAD, SIGNEXT | u, 2);
+ op->ea = dform_ea(word, regs);
+ break;
+
+ case 44: /* sth */
+ case 45: /* sthu */
+ op->type = MKOP(STORE, u, 2);
+ op->ea = dform_ea(word, regs);
+ break;
+
+ case 46: /* lmw */
+ if (ra >= rd)
+ break; /* invalid form, ra in range to load */
+ op->type = MKOP(LOAD_MULTI, 0, 4 * (32 - rd));
+ op->ea = dform_ea(word, regs);
+ break;
+
+ case 47: /* stmw */
+ op->type = MKOP(STORE_MULTI, 0, 4 * (32 - rd));
+ op->ea = dform_ea(word, regs);
+ break;
+
+#ifdef CONFIG_PPC_FPU
+ case 48: /* lfs */
+ case 49: /* lfsu */
+ op->type = MKOP(LOAD_FP, u | FPCONV, 4);
+ op->ea = dform_ea(word, regs);
+ break;
+
+ case 50: /* lfd */
+ case 51: /* lfdu */
+ op->type = MKOP(LOAD_FP, u, 8);
+ op->ea = dform_ea(word, regs);
+ break;
+
+ case 52: /* stfs */
+ case 53: /* stfsu */
+ op->type = MKOP(STORE_FP, u | FPCONV, 4);
+ op->ea = dform_ea(word, regs);
+ break;
+
+ case 54: /* stfd */
+ case 55: /* stfdu */
+ op->type = MKOP(STORE_FP, u, 8);
+ op->ea = dform_ea(word, regs);
+ break;
+#endif
+
+#ifdef __powerpc64__
+ case 56: /* lq */
+ if (!((rd & 1) || (rd == ra)))
+ op->type = MKOP(LOAD, 0, 16);
+ op->ea = dqform_ea(word, regs);
+ break;
+#endif
+
+#ifdef CONFIG_VSX
+ case 57: /* lfdp, lxsd, lxssp */
+ op->ea = dsform_ea(word, regs);
+ switch (word & 3) {
+ case 0: /* lfdp */
+ if (rd & 1)
+ break; /* reg must be even */
+ op->type = MKOP(LOAD_FP, 0, 16);
+ break;
+ case 2: /* lxsd */
+ if (!cpu_has_feature(CPU_FTR_ARCH_300))
+ goto unknown_opcode;
+ op->reg = rd + 32;
+ op->type = MKOP(LOAD_VSX, 0, 8);
+ op->element_size = 8;
+ op->vsx_flags = VSX_CHECK_VEC;
+ break;
+ case 3: /* lxssp */
+ if (!cpu_has_feature(CPU_FTR_ARCH_300))
+ goto unknown_opcode;
+ op->reg = rd + 32;
+ op->type = MKOP(LOAD_VSX, 0, 4);
+ op->element_size = 8;
+ op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
+ break;
+ }
+ break;
+#endif /* CONFIG_VSX */
+
+#ifdef __powerpc64__
+ case 58: /* ld[u], lwa */
+ op->ea = dsform_ea(word, regs);
+ switch (word & 3) {
+ case 0: /* ld */
+ op->type = MKOP(LOAD, 0, 8);
+ break;
+ case 1: /* ldu */
+ op->type = MKOP(LOAD, UPDATE, 8);
+ break;
+ case 2: /* lwa */
+ op->type = MKOP(LOAD, SIGNEXT, 4);
+ break;
+ }
+ break;
+#endif
+
+#ifdef CONFIG_VSX
+ case 6:
+ if (!cpu_has_feature(CPU_FTR_ARCH_31))
+ goto unknown_opcode;
+ op->ea = dqform_ea(word, regs);
+ op->reg = VSX_REGISTER_XTP(rd);
+ op->element_size = 32;
+ switch (word & 0xf) {
+ case 0: /* lxvp */
+ op->type = MKOP(LOAD_VSX, 0, 32);
+ break;
+ case 1: /* stxvp */
+ op->type = MKOP(STORE_VSX, 0, 32);
+ break;
+ }
+ break;
+
+ case 61: /* stfdp, lxv, stxsd, stxssp, stxv */
+ switch (word & 7) {
+ case 0: /* stfdp with LSB of DS field = 0 */
+ case 4: /* stfdp with LSB of DS field = 1 */
+ op->ea = dsform_ea(word, regs);
+ op->type = MKOP(STORE_FP, 0, 16);
+ break;
+
+ case 1: /* lxv */
+ if (!cpu_has_feature(CPU_FTR_ARCH_300))
+ goto unknown_opcode;
+ op->ea = dqform_ea(word, regs);
+ if (word & 8)
+ op->reg = rd + 32;
+ op->type = MKOP(LOAD_VSX, 0, 16);
+ op->element_size = 16;
+ op->vsx_flags = VSX_CHECK_VEC;
+ break;
+
+ case 2: /* stxsd with LSB of DS field = 0 */
+ case 6: /* stxsd with LSB of DS field = 1 */
+ if (!cpu_has_feature(CPU_FTR_ARCH_300))
+ goto unknown_opcode;
+ op->ea = dsform_ea(word, regs);
+ op->reg = rd + 32;
+ op->type = MKOP(STORE_VSX, 0, 8);
+ op->element_size = 8;
+ op->vsx_flags = VSX_CHECK_VEC;
+ break;
+
+ case 3: /* stxssp with LSB of DS field = 0 */
+ case 7: /* stxssp with LSB of DS field = 1 */
+ if (!cpu_has_feature(CPU_FTR_ARCH_300))
+ goto unknown_opcode;
+ op->ea = dsform_ea(word, regs);
+ op->reg = rd + 32;
+ op->type = MKOP(STORE_VSX, 0, 4);
+ op->element_size = 8;
+ op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
+ break;
+
+ case 5: /* stxv */
+ if (!cpu_has_feature(CPU_FTR_ARCH_300))
+ goto unknown_opcode;
+ op->ea = dqform_ea(word, regs);
+ if (word & 8)
+ op->reg = rd + 32;
+ op->type = MKOP(STORE_VSX, 0, 16);
+ op->element_size = 16;
+ op->vsx_flags = VSX_CHECK_VEC;
+ break;
+ }
+ break;
+#endif /* CONFIG_VSX */
+
+#ifdef __powerpc64__
+ case 62: /* std[u] */
+ op->ea = dsform_ea(word, regs);
+ switch (word & 3) {
+ case 0: /* std */
+ op->type = MKOP(STORE, 0, 8);
+ break;
+ case 1: /* stdu */
+ op->type = MKOP(STORE, UPDATE, 8);
+ break;
+ case 2: /* stq */
+ if (!(rd & 1))
+ op->type = MKOP(STORE, 0, 16);
+ break;
+ }
+ break;
+ case 1: /* Prefixed instructions */
+ if (!cpu_has_feature(CPU_FTR_ARCH_31))
+ goto unknown_opcode;
+
+ prefix_r = GET_PREFIX_R(word);
+ ra = GET_PREFIX_RA(suffix);
+ op->update_reg = ra;
+ rd = (suffix >> 21) & 0x1f;
+ op->reg = rd;
+ op->val = regs->gpr[rd];
+
+ suffixopcode = get_op(suffix);
+ prefixtype = (word >> 24) & 0x3;
+ switch (prefixtype) {
+ case 0: /* Type 00 Eight-Byte Load/Store */
+ if (prefix_r && ra)
+ break;
+ op->ea = mlsd_8lsd_ea(word, suffix, regs);
+ switch (suffixopcode) {
+ case 41: /* plwa */
+ op->type = MKOP(LOAD, PREFIXED | SIGNEXT, 4);
+ break;
+#ifdef CONFIG_VSX
+ case 42: /* plxsd */
+ op->reg = rd + 32;
+ op->type = MKOP(LOAD_VSX, PREFIXED, 8);
+ op->element_size = 8;
+ op->vsx_flags = VSX_CHECK_VEC;
+ break;
+ case 43: /* plxssp */
+ op->reg = rd + 32;
+ op->type = MKOP(LOAD_VSX, PREFIXED, 4);
+ op->element_size = 8;
+ op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
+ break;
+ case 46: /* pstxsd */
+ op->reg = rd + 32;
+ op->type = MKOP(STORE_VSX, PREFIXED, 8);
+ op->element_size = 8;
+ op->vsx_flags = VSX_CHECK_VEC;
+ break;
+ case 47: /* pstxssp */
+ op->reg = rd + 32;
+ op->type = MKOP(STORE_VSX, PREFIXED, 4);
+ op->element_size = 8;
+ op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
+ break;
+ case 51: /* plxv1 */
+ op->reg += 32;
+ fallthrough;
+ case 50: /* plxv0 */
+ op->type = MKOP(LOAD_VSX, PREFIXED, 16);
+ op->element_size = 16;
+ op->vsx_flags = VSX_CHECK_VEC;
+ break;
+ case 55: /* pstxv1 */
+ op->reg = rd + 32;
+ fallthrough;
+ case 54: /* pstxv0 */
+ op->type = MKOP(STORE_VSX, PREFIXED, 16);
+ op->element_size = 16;
+ op->vsx_flags = VSX_CHECK_VEC;
+ break;
+#endif /* CONFIG_VSX */
+ case 56: /* plq */
+ op->type = MKOP(LOAD, PREFIXED, 16);
+ break;
+ case 57: /* pld */
+ op->type = MKOP(LOAD, PREFIXED, 8);
+ break;
+#ifdef CONFIG_VSX
+ case 58: /* plxvp */
+ op->reg = VSX_REGISTER_XTP(rd);
+ op->type = MKOP(LOAD_VSX, PREFIXED, 32);
+ op->element_size = 32;
+ break;
+#endif /* CONFIG_VSX */
+ case 60: /* pstq */
+ op->type = MKOP(STORE, PREFIXED, 16);
+ break;
+ case 61: /* pstd */
+ op->type = MKOP(STORE, PREFIXED, 8);
+ break;
+#ifdef CONFIG_VSX
+ case 62: /* pstxvp */
+ op->reg = VSX_REGISTER_XTP(rd);
+ op->type = MKOP(STORE_VSX, PREFIXED, 32);
+ op->element_size = 32;
+ break;
+#endif /* CONFIG_VSX */
+ }
+ break;
+ case 1: /* Type 01 Eight-Byte Register-to-Register */
+ break;
+ case 2: /* Type 10 Modified Load/Store */
+ if (prefix_r && ra)
+ break;
+ op->ea = mlsd_8lsd_ea(word, suffix, regs);
+ switch (suffixopcode) {
+ case 32: /* plwz */
+ op->type = MKOP(LOAD, PREFIXED, 4);
+ break;
+ case 34: /* plbz */
+ op->type = MKOP(LOAD, PREFIXED, 1);
+ break;
+ case 36: /* pstw */
+ op->type = MKOP(STORE, PREFIXED, 4);
+ break;
+ case 38: /* pstb */
+ op->type = MKOP(STORE, PREFIXED, 1);
+ break;
+ case 40: /* plhz */
+ op->type = MKOP(LOAD, PREFIXED, 2);
+ break;
+ case 42: /* plha */
+ op->type = MKOP(LOAD, PREFIXED | SIGNEXT, 2);
+ break;
+ case 44: /* psth */
+ op->type = MKOP(STORE, PREFIXED, 2);
+ break;
+ case 48: /* plfs */
+ op->type = MKOP(LOAD_FP, PREFIXED | FPCONV, 4);
+ break;
+ case 50: /* plfd */
+ op->type = MKOP(LOAD_FP, PREFIXED, 8);
+ break;
+ case 52: /* pstfs */
+ op->type = MKOP(STORE_FP, PREFIXED | FPCONV, 4);
+ break;
+ case 54: /* pstfd */
+ op->type = MKOP(STORE_FP, PREFIXED, 8);
+ break;
+ }
+ break;
+ case 3: /* Type 11 Modified Register-to-Register */
+ break;
+ }
+#endif /* __powerpc64__ */
+
+ }
+
+ if (OP_IS_LOAD_STORE(op->type) && (op->type & UPDATE)) {
+ switch (GETTYPE(op->type)) {
+ case LOAD:
+ if (ra == rd)
+ goto unknown_opcode;
+ fallthrough;
+ case STORE:
+ case LOAD_FP:
+ case STORE_FP:
+ if (ra == 0)
+ goto unknown_opcode;
+ }
+ }
+
+#ifdef CONFIG_VSX
+ if ((GETTYPE(op->type) == LOAD_VSX ||
+ GETTYPE(op->type) == STORE_VSX) &&
+ !cpu_has_feature(CPU_FTR_VSX)) {
+ return -1;
+ }
+#endif /* CONFIG_VSX */
+
+ return 0;
+
+ unknown_opcode:
+ op->type = UNKNOWN;
+ return 0;
+
+ logical_done:
+ if (word & 1)
+ set_cr0(regs, op);
+ logical_done_nocc:
+ op->reg = ra;
+ op->type |= SETREG;
+ return 1;
+
+ arith_done:
+ if (word & 1)
+ set_cr0(regs, op);
+ compute_done:
+ op->reg = rd;
+ op->type |= SETREG;
+ return 1;
+
+ priv:
+ op->type = INTERRUPT | 0x700;
+ op->val = SRR1_PROGPRIV;
+ return 0;
+
+ trap:
+ op->type = INTERRUPT | 0x700;
+ op->val = SRR1_PROGTRAP;
+ return 0;
+}
+EXPORT_SYMBOL_GPL(analyse_instr);
+NOKPROBE_SYMBOL(analyse_instr);
+
+/*
+ * For PPC32 we always use stwu with r1 to change the stack pointer.
+ * So this emulated store may corrupt the exception frame, now we
+ * have to provide the exception frame trampoline, which is pushed
+ * below the kprobed function stack. So we only update gpr[1] but
+ * don't emulate the real store operation. We will do real store
+ * operation safely in exception return code by checking this flag.
+ */
+static nokprobe_inline int handle_stack_update(unsigned long ea, struct pt_regs *regs)
+{
+ /*
+ * Check if we already set since that means we'll
+ * lose the previous value.
+ */
+ WARN_ON(test_thread_flag(TIF_EMULATE_STACK_STORE));
+ set_thread_flag(TIF_EMULATE_STACK_STORE);
+ return 0;
+}
+
+static nokprobe_inline void do_signext(unsigned long *valp, int size)
+{
+ switch (size) {
+ case 2:
+ *valp = (signed short) *valp;
+ break;
+ case 4:
+ *valp = (signed int) *valp;
+ break;
+ }
+}
+
+static nokprobe_inline void do_byterev(unsigned long *valp, int size)
+{
+ switch (size) {
+ case 2:
+ *valp = byterev_2(*valp);
+ break;
+ case 4:
+ *valp = byterev_4(*valp);
+ break;
+#ifdef __powerpc64__
+ case 8:
+ *valp = byterev_8(*valp);
+ break;
+#endif
+ }
+}
+
+/*
+ * Emulate an instruction that can be executed just by updating
+ * fields in *regs.
+ */
+void emulate_update_regs(struct pt_regs *regs, struct instruction_op *op)
+{
+ unsigned long next_pc;
+
+ next_pc = truncate_if_32bit(regs->msr, regs->nip + GETLENGTH(op->type));
+ switch (GETTYPE(op->type)) {
+ case COMPUTE:
+ if (op->type & SETREG)
+ regs->gpr[op->reg] = op->val;
+ if (op->type & SETCC)
+ regs->ccr = op->ccval;
+ if (op->type & SETXER)
+ regs->xer = op->xerval;
+ break;
+
+ case BRANCH:
+ if (op->type & SETLK)
+ regs->link = next_pc;
+ if (op->type & BRTAKEN)
+ next_pc = op->val;
+ if (op->type & DECCTR)
+ --regs->ctr;
+ break;
+
+ case BARRIER:
+ switch (op->type & BARRIER_MASK) {
+ case BARRIER_SYNC:
+ mb();
+ break;
+ case BARRIER_ISYNC:
+ isync();
+ break;
+ case BARRIER_EIEIO:
+ eieio();
+ break;
+#ifdef CONFIG_PPC64
+ case BARRIER_LWSYNC:
+ asm volatile("lwsync" : : : "memory");
+ break;
+ case BARRIER_PTESYNC:
+ asm volatile("ptesync" : : : "memory");
+ break;
+#endif
+ }
+ break;
+
+ case MFSPR:
+ switch (op->spr) {
+ case SPRN_XER:
+ regs->gpr[op->reg] = regs->xer & 0xffffffffUL;
+ break;
+ case SPRN_LR:
+ regs->gpr[op->reg] = regs->link;
+ break;
+ case SPRN_CTR:
+ regs->gpr[op->reg] = regs->ctr;
+ break;
+ default:
+ WARN_ON_ONCE(1);
+ }
+ break;
+
+ case MTSPR:
+ switch (op->spr) {
+ case SPRN_XER:
+ regs->xer = op->val & 0xffffffffUL;
+ break;
+ case SPRN_LR:
+ regs->link = op->val;
+ break;
+ case SPRN_CTR:
+ regs->ctr = op->val;
+ break;
+ default:
+ WARN_ON_ONCE(1);
+ }
+ break;
+
+ default:
+ WARN_ON_ONCE(1);
+ }
+ regs_set_return_ip(regs, next_pc);
+}
+NOKPROBE_SYMBOL(emulate_update_regs);
+
+/*
+ * Emulate a previously-analysed load or store instruction.
+ * Return values are:
+ * 0 = instruction emulated successfully
+ * -EFAULT = address out of range or access faulted (regs->dar
+ * contains the faulting address)
+ * -EACCES = misaligned access, instruction requires alignment
+ * -EINVAL = unknown operation in *op
+ */
+int emulate_loadstore(struct pt_regs *regs, struct instruction_op *op)
+{
+ int err, size, type;
+ int i, rd, nb;
+ unsigned int cr;
+ unsigned long val;
+ unsigned long ea;
+ bool cross_endian;
+
+ err = 0;
+ size = GETSIZE(op->type);
+ type = GETTYPE(op->type);
+ cross_endian = (regs->msr & MSR_LE) != (MSR_KERNEL & MSR_LE);
+ ea = truncate_if_32bit(regs->msr, op->ea);
+
+ switch (type) {
+ case LARX:
+ if (ea & (size - 1))
+ return -EACCES; /* can't handle misaligned */
+ if (!address_ok(regs, ea, size))
+ return -EFAULT;
+ err = 0;
+ val = 0;
+ switch (size) {
+#ifdef __powerpc64__
+ case 1:
+ __get_user_asmx(val, ea, err, "lbarx");
+ break;
+ case 2:
+ __get_user_asmx(val, ea, err, "lharx");
+ break;
+#endif
+ case 4:
+ __get_user_asmx(val, ea, err, "lwarx");
+ break;
+#ifdef __powerpc64__
+ case 8:
+ __get_user_asmx(val, ea, err, "ldarx");
+ break;
+ case 16:
+ err = do_lqarx(ea, &regs->gpr[op->reg]);
+ break;
+#endif
+ default:
+ return -EINVAL;
+ }
+ if (err) {
+ regs->dar = ea;
+ break;
+ }
+ if (size < 16)
+ regs->gpr[op->reg] = val;
+ break;
+
+ case STCX:
+ if (ea & (size - 1))
+ return -EACCES; /* can't handle misaligned */
+ if (!address_ok(regs, ea, size))
+ return -EFAULT;
+ err = 0;
+ switch (size) {
+#ifdef __powerpc64__
+ case 1:
+ __put_user_asmx(op->val, ea, err, "stbcx.", cr);
+ break;
+ case 2:
+ __put_user_asmx(op->val, ea, err, "sthcx.", cr);
+ break;
+#endif
+ case 4:
+ __put_user_asmx(op->val, ea, err, "stwcx.", cr);
+ break;
+#ifdef __powerpc64__
+ case 8:
+ __put_user_asmx(op->val, ea, err, "stdcx.", cr);
+ break;
+ case 16:
+ err = do_stqcx(ea, regs->gpr[op->reg],
+ regs->gpr[op->reg + 1], &cr);
+ break;
+#endif
+ default:
+ return -EINVAL;
+ }
+ if (!err)
+ regs->ccr = (regs->ccr & 0x0fffffff) |
+ (cr & 0xe0000000) |
+ ((regs->xer >> 3) & 0x10000000);
+ else
+ regs->dar = ea;
+ break;
+
+ case LOAD:
+#ifdef __powerpc64__
+ if (size == 16) {
+ err = emulate_lq(regs, ea, op->reg, cross_endian);
+ break;
+ }
+#endif
+ err = read_mem(&regs->gpr[op->reg], ea, size, regs);
+ if (!err) {
+ if (op->type & SIGNEXT)
+ do_signext(&regs->gpr[op->reg], size);
+ if ((op->type & BYTEREV) == (cross_endian ? 0 : BYTEREV))
+ do_byterev(&regs->gpr[op->reg], size);
+ }
+ break;
+
+#ifdef CONFIG_PPC_FPU
+ case LOAD_FP:
+ /*
+ * If the instruction is in userspace, we can emulate it even
+ * if the VMX state is not live, because we have the state
+ * stored in the thread_struct. If the instruction is in
+ * the kernel, we must not touch the state in the thread_struct.
+ */
+ if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP))
+ return 0;
+ err = do_fp_load(op, ea, regs, cross_endian);
+ break;
+#endif
+#ifdef CONFIG_ALTIVEC
+ case LOAD_VMX:
+ if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC))
+ return 0;
+ err = do_vec_load(op->reg, ea, size, regs, cross_endian);
+ break;
+#endif
+#ifdef CONFIG_VSX
+ case LOAD_VSX: {
+ unsigned long msrbit = MSR_VSX;
+
+ /*
+ * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX
+ * when the target of the instruction is a vector register.
+ */
+ if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC))
+ msrbit = MSR_VEC;
+ if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit))
+ return 0;
+ err = do_vsx_load(op, ea, regs, cross_endian);
+ break;
+ }
+#endif
+ case LOAD_MULTI:
+ if (!address_ok(regs, ea, size))
+ return -EFAULT;
+ rd = op->reg;
+ for (i = 0; i < size; i += 4) {
+ unsigned int v32 = 0;
+
+ nb = size - i;
+ if (nb > 4)
+ nb = 4;
+ err = copy_mem_in((u8 *) &v32, ea, nb, regs);
+ if (err)
+ break;
+ if (unlikely(cross_endian))
+ v32 = byterev_4(v32);
+ regs->gpr[rd] = v32;
+ ea += 4;
+ /* reg number wraps from 31 to 0 for lsw[ix] */
+ rd = (rd + 1) & 0x1f;
+ }
+ break;
+
+ case STORE:
+#ifdef __powerpc64__
+ if (size == 16) {
+ err = emulate_stq(regs, ea, op->reg, cross_endian);
+ break;
+ }
+#endif
+ if ((op->type & UPDATE) && size == sizeof(long) &&
+ op->reg == 1 && op->update_reg == 1 &&
+ !(regs->msr & MSR_PR) &&
+ ea >= regs->gpr[1] - STACK_INT_FRAME_SIZE) {
+ err = handle_stack_update(ea, regs);
+ break;
+ }
+ if (unlikely(cross_endian))
+ do_byterev(&op->val, size);
+ err = write_mem(op->val, ea, size, regs);
+ break;
+
+#ifdef CONFIG_PPC_FPU
+ case STORE_FP:
+ if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP))
+ return 0;
+ err = do_fp_store(op, ea, regs, cross_endian);
+ break;
+#endif
+#ifdef CONFIG_ALTIVEC
+ case STORE_VMX:
+ if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC))
+ return 0;
+ err = do_vec_store(op->reg, ea, size, regs, cross_endian);
+ break;
+#endif
+#ifdef CONFIG_VSX
+ case STORE_VSX: {
+ unsigned long msrbit = MSR_VSX;
+
+ /*
+ * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX
+ * when the target of the instruction is a vector register.
+ */
+ if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC))
+ msrbit = MSR_VEC;
+ if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit))
+ return 0;
+ err = do_vsx_store(op, ea, regs, cross_endian);
+ break;
+ }
+#endif
+ case STORE_MULTI:
+ if (!address_ok(regs, ea, size))
+ return -EFAULT;
+ rd = op->reg;
+ for (i = 0; i < size; i += 4) {
+ unsigned int v32 = regs->gpr[rd];
+
+ nb = size - i;
+ if (nb > 4)
+ nb = 4;
+ if (unlikely(cross_endian))
+ v32 = byterev_4(v32);
+ err = copy_mem_out((u8 *) &v32, ea, nb, regs);
+ if (err)
+ break;
+ ea += 4;
+ /* reg number wraps from 31 to 0 for stsw[ix] */
+ rd = (rd + 1) & 0x1f;
+ }
+ break;
+
+ default:
+ return -EINVAL;
+ }
+
+ if (err)
+ return err;
+
+ if (op->type & UPDATE)
+ regs->gpr[op->update_reg] = op->ea;
+
+ return 0;
+}
+NOKPROBE_SYMBOL(emulate_loadstore);
+
+/*
+ * Emulate instructions that cause a transfer of control,
+ * loads and stores, and a few other instructions.
+ * Returns 1 if the step was emulated, 0 if not,
+ * or -1 if the instruction is one that should not be stepped,
+ * such as an rfid, or a mtmsrd that would clear MSR_RI.
+ */
+int emulate_step(struct pt_regs *regs, ppc_inst_t instr)
+{
+ struct instruction_op op;
+ int r, err, type;
+ unsigned long val;
+ unsigned long ea;
+
+ r = analyse_instr(&op, regs, instr);
+ if (r < 0)
+ return r;
+ if (r > 0) {
+ emulate_update_regs(regs, &op);
+ return 1;
+ }
+
+ err = 0;
+ type = GETTYPE(op.type);
+
+ if (OP_IS_LOAD_STORE(type)) {
+ err = emulate_loadstore(regs, &op);
+ if (err)
+ return 0;
+ goto instr_done;
+ }
+
+ switch (type) {
+ case CACHEOP:
+ ea = truncate_if_32bit(regs->msr, op.ea);
+ if (!address_ok(regs, ea, 8))
+ return 0;
+ switch (op.type & CACHEOP_MASK) {
+ case DCBST:
+ __cacheop_user_asmx(ea, err, "dcbst");
+ break;
+ case DCBF:
+ __cacheop_user_asmx(ea, err, "dcbf");
+ break;
+ case DCBTST:
+ if (op.reg == 0)
+ prefetchw((void *) ea);
+ break;
+ case DCBT:
+ if (op.reg == 0)
+ prefetch((void *) ea);
+ break;
+ case ICBI:
+ __cacheop_user_asmx(ea, err, "icbi");
+ break;
+ case DCBZ:
+ err = emulate_dcbz(ea, regs);
+ break;
+ }
+ if (err) {
+ regs->dar = ea;
+ return 0;
+ }
+ goto instr_done;
+
+ case MFMSR:
+ regs->gpr[op.reg] = regs->msr & MSR_MASK;
+ goto instr_done;
+
+ case MTMSR:
+ val = regs->gpr[op.reg];
+ if ((val & MSR_RI) == 0)
+ /* can't step mtmsr[d] that would clear MSR_RI */
+ return -1;
+ /* here op.val is the mask of bits to change */
+ regs_set_return_msr(regs, (regs->msr & ~op.val) | (val & op.val));
+ goto instr_done;
+
+ case SYSCALL: /* sc */
+ /*
+ * Per ISA v3.1, section 7.5.15 'Trace Interrupt', we can't
+ * single step a system call instruction:
+ *
+ * Successful completion for an instruction means that the
+ * instruction caused no other interrupt. Thus a Trace
+ * interrupt never occurs for a System Call or System Call
+ * Vectored instruction, or for a Trap instruction that
+ * traps.
+ */
+ return -1;
+ case SYSCALL_VECTORED_0: /* scv 0 */
+ return -1;
+ case RFI:
+ return -1;
+ }
+ return 0;
+
+ instr_done:
+ regs_set_return_ip(regs,
+ truncate_if_32bit(regs->msr, regs->nip + GETLENGTH(op.type)));
+ return 1;
+}
+NOKPROBE_SYMBOL(emulate_step);