diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:49:45 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:49:45 +0000 |
commit | 2c3c1048746a4622d8c89a29670120dc8fab93c4 (patch) | |
tree | 848558de17fb3008cdf4d861b01ac7781903ce39 /arch/sparc/mm/init_64.c | |
parent | Initial commit. (diff) | |
download | linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.tar.xz linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.zip |
Adding upstream version 6.1.76.upstream/6.1.76
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'arch/sparc/mm/init_64.c')
-rw-r--r-- | arch/sparc/mm/init_64.c | 3201 |
1 files changed, 3201 insertions, 0 deletions
diff --git a/arch/sparc/mm/init_64.c b/arch/sparc/mm/init_64.c new file mode 100644 index 000000000..d6faee23c --- /dev/null +++ b/arch/sparc/mm/init_64.c @@ -0,0 +1,3201 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * arch/sparc64/mm/init.c + * + * Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu) + * Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz) + */ + +#include <linux/extable.h> +#include <linux/kernel.h> +#include <linux/sched.h> +#include <linux/string.h> +#include <linux/init.h> +#include <linux/memblock.h> +#include <linux/mm.h> +#include <linux/hugetlb.h> +#include <linux/initrd.h> +#include <linux/swap.h> +#include <linux/pagemap.h> +#include <linux/poison.h> +#include <linux/fs.h> +#include <linux/seq_file.h> +#include <linux/kprobes.h> +#include <linux/cache.h> +#include <linux/sort.h> +#include <linux/ioport.h> +#include <linux/percpu.h> +#include <linux/mmzone.h> +#include <linux/gfp.h> +#include <linux/bootmem_info.h> + +#include <asm/head.h> +#include <asm/page.h> +#include <asm/pgalloc.h> +#include <asm/oplib.h> +#include <asm/iommu.h> +#include <asm/io.h> +#include <linux/uaccess.h> +#include <asm/mmu_context.h> +#include <asm/tlbflush.h> +#include <asm/dma.h> +#include <asm/starfire.h> +#include <asm/tlb.h> +#include <asm/spitfire.h> +#include <asm/sections.h> +#include <asm/tsb.h> +#include <asm/hypervisor.h> +#include <asm/prom.h> +#include <asm/mdesc.h> +#include <asm/cpudata.h> +#include <asm/setup.h> +#include <asm/irq.h> + +#include "init_64.h" + +unsigned long kern_linear_pte_xor[4] __read_mostly; +static unsigned long page_cache4v_flag; + +/* A bitmap, two bits for every 256MB of physical memory. These two + * bits determine what page size we use for kernel linear + * translations. They form an index into kern_linear_pte_xor[]. The + * value in the indexed slot is XOR'd with the TLB miss virtual + * address to form the resulting TTE. The mapping is: + * + * 0 ==> 4MB + * 1 ==> 256MB + * 2 ==> 2GB + * 3 ==> 16GB + * + * All sun4v chips support 256MB pages. Only SPARC-T4 and later + * support 2GB pages, and hopefully future cpus will support the 16GB + * pages as well. For slots 2 and 3, we encode a 256MB TTE xor there + * if these larger page sizes are not supported by the cpu. + * + * It would be nice to determine this from the machine description + * 'cpu' properties, but we need to have this table setup before the + * MDESC is initialized. + */ + +#ifndef CONFIG_DEBUG_PAGEALLOC +/* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings. + * Space is allocated for this right after the trap table in + * arch/sparc64/kernel/head.S + */ +extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES]; +#endif +extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES]; + +static unsigned long cpu_pgsz_mask; + +#define MAX_BANKS 1024 + +static struct linux_prom64_registers pavail[MAX_BANKS]; +static int pavail_ents; + +u64 numa_latency[MAX_NUMNODES][MAX_NUMNODES]; + +static int cmp_p64(const void *a, const void *b) +{ + const struct linux_prom64_registers *x = a, *y = b; + + if (x->phys_addr > y->phys_addr) + return 1; + if (x->phys_addr < y->phys_addr) + return -1; + return 0; +} + +static void __init read_obp_memory(const char *property, + struct linux_prom64_registers *regs, + int *num_ents) +{ + phandle node = prom_finddevice("/memory"); + int prop_size = prom_getproplen(node, property); + int ents, ret, i; + + ents = prop_size / sizeof(struct linux_prom64_registers); + if (ents > MAX_BANKS) { + prom_printf("The machine has more %s property entries than " + "this kernel can support (%d).\n", + property, MAX_BANKS); + prom_halt(); + } + + ret = prom_getproperty(node, property, (char *) regs, prop_size); + if (ret == -1) { + prom_printf("Couldn't get %s property from /memory.\n", + property); + prom_halt(); + } + + /* Sanitize what we got from the firmware, by page aligning + * everything. + */ + for (i = 0; i < ents; i++) { + unsigned long base, size; + + base = regs[i].phys_addr; + size = regs[i].reg_size; + + size &= PAGE_MASK; + if (base & ~PAGE_MASK) { + unsigned long new_base = PAGE_ALIGN(base); + + size -= new_base - base; + if ((long) size < 0L) + size = 0UL; + base = new_base; + } + if (size == 0UL) { + /* If it is empty, simply get rid of it. + * This simplifies the logic of the other + * functions that process these arrays. + */ + memmove(®s[i], ®s[i + 1], + (ents - i - 1) * sizeof(regs[0])); + i--; + ents--; + continue; + } + regs[i].phys_addr = base; + regs[i].reg_size = size; + } + + *num_ents = ents; + + sort(regs, ents, sizeof(struct linux_prom64_registers), + cmp_p64, NULL); +} + +/* Kernel physical address base and size in bytes. */ +unsigned long kern_base __read_mostly; +unsigned long kern_size __read_mostly; + +/* Initial ramdisk setup */ +extern unsigned long sparc_ramdisk_image64; +extern unsigned int sparc_ramdisk_image; +extern unsigned int sparc_ramdisk_size; + +struct page *mem_map_zero __read_mostly; +EXPORT_SYMBOL(mem_map_zero); + +unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly; + +unsigned long sparc64_kern_pri_context __read_mostly; +unsigned long sparc64_kern_pri_nuc_bits __read_mostly; +unsigned long sparc64_kern_sec_context __read_mostly; + +int num_kernel_image_mappings; + +#ifdef CONFIG_DEBUG_DCFLUSH +atomic_t dcpage_flushes = ATOMIC_INIT(0); +#ifdef CONFIG_SMP +atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0); +#endif +#endif + +inline void flush_dcache_page_impl(struct page *page) +{ + BUG_ON(tlb_type == hypervisor); +#ifdef CONFIG_DEBUG_DCFLUSH + atomic_inc(&dcpage_flushes); +#endif + +#ifdef DCACHE_ALIASING_POSSIBLE + __flush_dcache_page(page_address(page), + ((tlb_type == spitfire) && + page_mapping_file(page) != NULL)); +#else + if (page_mapping_file(page) != NULL && + tlb_type == spitfire) + __flush_icache_page(__pa(page_address(page))); +#endif +} + +#define PG_dcache_dirty PG_arch_1 +#define PG_dcache_cpu_shift 32UL +#define PG_dcache_cpu_mask \ + ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL) + +#define dcache_dirty_cpu(page) \ + (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask) + +static inline void set_dcache_dirty(struct page *page, int this_cpu) +{ + unsigned long mask = this_cpu; + unsigned long non_cpu_bits; + + non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift); + mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty); + + __asm__ __volatile__("1:\n\t" + "ldx [%2], %%g7\n\t" + "and %%g7, %1, %%g1\n\t" + "or %%g1, %0, %%g1\n\t" + "casx [%2], %%g7, %%g1\n\t" + "cmp %%g7, %%g1\n\t" + "bne,pn %%xcc, 1b\n\t" + " nop" + : /* no outputs */ + : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags) + : "g1", "g7"); +} + +static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu) +{ + unsigned long mask = (1UL << PG_dcache_dirty); + + __asm__ __volatile__("! test_and_clear_dcache_dirty\n" + "1:\n\t" + "ldx [%2], %%g7\n\t" + "srlx %%g7, %4, %%g1\n\t" + "and %%g1, %3, %%g1\n\t" + "cmp %%g1, %0\n\t" + "bne,pn %%icc, 2f\n\t" + " andn %%g7, %1, %%g1\n\t" + "casx [%2], %%g7, %%g1\n\t" + "cmp %%g7, %%g1\n\t" + "bne,pn %%xcc, 1b\n\t" + " nop\n" + "2:" + : /* no outputs */ + : "r" (cpu), "r" (mask), "r" (&page->flags), + "i" (PG_dcache_cpu_mask), + "i" (PG_dcache_cpu_shift) + : "g1", "g7"); +} + +static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte) +{ + unsigned long tsb_addr = (unsigned long) ent; + + if (tlb_type == cheetah_plus || tlb_type == hypervisor) + tsb_addr = __pa(tsb_addr); + + __tsb_insert(tsb_addr, tag, pte); +} + +unsigned long _PAGE_ALL_SZ_BITS __read_mostly; + +static void flush_dcache(unsigned long pfn) +{ + struct page *page; + + page = pfn_to_page(pfn); + if (page) { + unsigned long pg_flags; + + pg_flags = page->flags; + if (pg_flags & (1UL << PG_dcache_dirty)) { + int cpu = ((pg_flags >> PG_dcache_cpu_shift) & + PG_dcache_cpu_mask); + int this_cpu = get_cpu(); + + /* This is just to optimize away some function calls + * in the SMP case. + */ + if (cpu == this_cpu) + flush_dcache_page_impl(page); + else + smp_flush_dcache_page_impl(page, cpu); + + clear_dcache_dirty_cpu(page, cpu); + + put_cpu(); + } + } +} + +/* mm->context.lock must be held */ +static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index, + unsigned long tsb_hash_shift, unsigned long address, + unsigned long tte) +{ + struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb; + unsigned long tag; + + if (unlikely(!tsb)) + return; + + tsb += ((address >> tsb_hash_shift) & + (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL)); + tag = (address >> 22UL); + tsb_insert(tsb, tag, tte); +} + +#ifdef CONFIG_HUGETLB_PAGE +static int __init hugetlbpage_init(void) +{ + hugetlb_add_hstate(HPAGE_64K_SHIFT - PAGE_SHIFT); + hugetlb_add_hstate(HPAGE_SHIFT - PAGE_SHIFT); + hugetlb_add_hstate(HPAGE_256MB_SHIFT - PAGE_SHIFT); + hugetlb_add_hstate(HPAGE_2GB_SHIFT - PAGE_SHIFT); + + return 0; +} + +arch_initcall(hugetlbpage_init); + +static void __init pud_huge_patch(void) +{ + struct pud_huge_patch_entry *p; + unsigned long addr; + + p = &__pud_huge_patch; + addr = p->addr; + *(unsigned int *)addr = p->insn; + + __asm__ __volatile__("flush %0" : : "r" (addr)); +} + +bool __init arch_hugetlb_valid_size(unsigned long size) +{ + unsigned int hugepage_shift = ilog2(size); + unsigned short hv_pgsz_idx; + unsigned int hv_pgsz_mask; + + switch (hugepage_shift) { + case HPAGE_16GB_SHIFT: + hv_pgsz_mask = HV_PGSZ_MASK_16GB; + hv_pgsz_idx = HV_PGSZ_IDX_16GB; + pud_huge_patch(); + break; + case HPAGE_2GB_SHIFT: + hv_pgsz_mask = HV_PGSZ_MASK_2GB; + hv_pgsz_idx = HV_PGSZ_IDX_2GB; + break; + case HPAGE_256MB_SHIFT: + hv_pgsz_mask = HV_PGSZ_MASK_256MB; + hv_pgsz_idx = HV_PGSZ_IDX_256MB; + break; + case HPAGE_SHIFT: + hv_pgsz_mask = HV_PGSZ_MASK_4MB; + hv_pgsz_idx = HV_PGSZ_IDX_4MB; + break; + case HPAGE_64K_SHIFT: + hv_pgsz_mask = HV_PGSZ_MASK_64K; + hv_pgsz_idx = HV_PGSZ_IDX_64K; + break; + default: + hv_pgsz_mask = 0; + } + + if ((hv_pgsz_mask & cpu_pgsz_mask) == 0U) + return false; + + return true; +} +#endif /* CONFIG_HUGETLB_PAGE */ + +void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep) +{ + struct mm_struct *mm; + unsigned long flags; + bool is_huge_tsb; + pte_t pte = *ptep; + + if (tlb_type != hypervisor) { + unsigned long pfn = pte_pfn(pte); + + if (pfn_valid(pfn)) + flush_dcache(pfn); + } + + mm = vma->vm_mm; + + /* Don't insert a non-valid PTE into the TSB, we'll deadlock. */ + if (!pte_accessible(mm, pte)) + return; + + spin_lock_irqsave(&mm->context.lock, flags); + + is_huge_tsb = false; +#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE) + if (mm->context.hugetlb_pte_count || mm->context.thp_pte_count) { + unsigned long hugepage_size = PAGE_SIZE; + + if (is_vm_hugetlb_page(vma)) + hugepage_size = huge_page_size(hstate_vma(vma)); + + if (hugepage_size >= PUD_SIZE) { + unsigned long mask = 0x1ffc00000UL; + + /* Transfer bits [32:22] from address to resolve + * at 4M granularity. + */ + pte_val(pte) &= ~mask; + pte_val(pte) |= (address & mask); + } else if (hugepage_size >= PMD_SIZE) { + /* We are fabricating 8MB pages using 4MB + * real hw pages. + */ + pte_val(pte) |= (address & (1UL << REAL_HPAGE_SHIFT)); + } + + if (hugepage_size >= PMD_SIZE) { + __update_mmu_tsb_insert(mm, MM_TSB_HUGE, + REAL_HPAGE_SHIFT, address, pte_val(pte)); + is_huge_tsb = true; + } + } +#endif + if (!is_huge_tsb) + __update_mmu_tsb_insert(mm, MM_TSB_BASE, PAGE_SHIFT, + address, pte_val(pte)); + + spin_unlock_irqrestore(&mm->context.lock, flags); +} + +void flush_dcache_page(struct page *page) +{ + struct address_space *mapping; + int this_cpu; + + if (tlb_type == hypervisor) + return; + + /* Do not bother with the expensive D-cache flush if it + * is merely the zero page. The 'bigcore' testcase in GDB + * causes this case to run millions of times. + */ + if (page == ZERO_PAGE(0)) + return; + + this_cpu = get_cpu(); + + mapping = page_mapping_file(page); + if (mapping && !mapping_mapped(mapping)) { + int dirty = test_bit(PG_dcache_dirty, &page->flags); + if (dirty) { + int dirty_cpu = dcache_dirty_cpu(page); + + if (dirty_cpu == this_cpu) + goto out; + smp_flush_dcache_page_impl(page, dirty_cpu); + } + set_dcache_dirty(page, this_cpu); + } else { + /* We could delay the flush for the !page_mapping + * case too. But that case is for exec env/arg + * pages and those are %99 certainly going to get + * faulted into the tlb (and thus flushed) anyways. + */ + flush_dcache_page_impl(page); + } + +out: + put_cpu(); +} +EXPORT_SYMBOL(flush_dcache_page); + +void __kprobes flush_icache_range(unsigned long start, unsigned long end) +{ + /* Cheetah and Hypervisor platform cpus have coherent I-cache. */ + if (tlb_type == spitfire) { + unsigned long kaddr; + + /* This code only runs on Spitfire cpus so this is + * why we can assume _PAGE_PADDR_4U. + */ + for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) { + unsigned long paddr, mask = _PAGE_PADDR_4U; + + if (kaddr >= PAGE_OFFSET) + paddr = kaddr & mask; + else { + pte_t *ptep = virt_to_kpte(kaddr); + + paddr = pte_val(*ptep) & mask; + } + __flush_icache_page(paddr); + } + } +} +EXPORT_SYMBOL(flush_icache_range); + +void mmu_info(struct seq_file *m) +{ + static const char *pgsz_strings[] = { + "8K", "64K", "512K", "4MB", "32MB", + "256MB", "2GB", "16GB", + }; + int i, printed; + + if (tlb_type == cheetah) + seq_printf(m, "MMU Type\t: Cheetah\n"); + else if (tlb_type == cheetah_plus) + seq_printf(m, "MMU Type\t: Cheetah+\n"); + else if (tlb_type == spitfire) + seq_printf(m, "MMU Type\t: Spitfire\n"); + else if (tlb_type == hypervisor) + seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n"); + else + seq_printf(m, "MMU Type\t: ???\n"); + + seq_printf(m, "MMU PGSZs\t: "); + printed = 0; + for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) { + if (cpu_pgsz_mask & (1UL << i)) { + seq_printf(m, "%s%s", + printed ? "," : "", pgsz_strings[i]); + printed++; + } + } + seq_putc(m, '\n'); + +#ifdef CONFIG_DEBUG_DCFLUSH + seq_printf(m, "DCPageFlushes\t: %d\n", + atomic_read(&dcpage_flushes)); +#ifdef CONFIG_SMP + seq_printf(m, "DCPageFlushesXC\t: %d\n", + atomic_read(&dcpage_flushes_xcall)); +#endif /* CONFIG_SMP */ +#endif /* CONFIG_DEBUG_DCFLUSH */ +} + +struct linux_prom_translation prom_trans[512] __read_mostly; +unsigned int prom_trans_ents __read_mostly; + +unsigned long kern_locked_tte_data; + +/* The obp translations are saved based on 8k pagesize, since obp can + * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS -> + * HI_OBP_ADDRESS range are handled in ktlb.S. + */ +static inline int in_obp_range(unsigned long vaddr) +{ + return (vaddr >= LOW_OBP_ADDRESS && + vaddr < HI_OBP_ADDRESS); +} + +static int cmp_ptrans(const void *a, const void *b) +{ + const struct linux_prom_translation *x = a, *y = b; + + if (x->virt > y->virt) + return 1; + if (x->virt < y->virt) + return -1; + return 0; +} + +/* Read OBP translations property into 'prom_trans[]'. */ +static void __init read_obp_translations(void) +{ + int n, node, ents, first, last, i; + + node = prom_finddevice("/virtual-memory"); + n = prom_getproplen(node, "translations"); + if (unlikely(n == 0 || n == -1)) { + prom_printf("prom_mappings: Couldn't get size.\n"); + prom_halt(); + } + if (unlikely(n > sizeof(prom_trans))) { + prom_printf("prom_mappings: Size %d is too big.\n", n); + prom_halt(); + } + + if ((n = prom_getproperty(node, "translations", + (char *)&prom_trans[0], + sizeof(prom_trans))) == -1) { + prom_printf("prom_mappings: Couldn't get property.\n"); + prom_halt(); + } + + n = n / sizeof(struct linux_prom_translation); + + ents = n; + + sort(prom_trans, ents, sizeof(struct linux_prom_translation), + cmp_ptrans, NULL); + + /* Now kick out all the non-OBP entries. */ + for (i = 0; i < ents; i++) { + if (in_obp_range(prom_trans[i].virt)) + break; + } + first = i; + for (; i < ents; i++) { + if (!in_obp_range(prom_trans[i].virt)) + break; + } + last = i; + + for (i = 0; i < (last - first); i++) { + struct linux_prom_translation *src = &prom_trans[i + first]; + struct linux_prom_translation *dest = &prom_trans[i]; + + *dest = *src; + } + for (; i < ents; i++) { + struct linux_prom_translation *dest = &prom_trans[i]; + dest->virt = dest->size = dest->data = 0x0UL; + } + + prom_trans_ents = last - first; + + if (tlb_type == spitfire) { + /* Clear diag TTE bits. */ + for (i = 0; i < prom_trans_ents; i++) + prom_trans[i].data &= ~0x0003fe0000000000UL; + } + + /* Force execute bit on. */ + for (i = 0; i < prom_trans_ents; i++) + prom_trans[i].data |= (tlb_type == hypervisor ? + _PAGE_EXEC_4V : _PAGE_EXEC_4U); +} + +static void __init hypervisor_tlb_lock(unsigned long vaddr, + unsigned long pte, + unsigned long mmu) +{ + unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu); + + if (ret != 0) { + prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: " + "errors with %lx\n", vaddr, 0, pte, mmu, ret); + prom_halt(); + } +} + +static unsigned long kern_large_tte(unsigned long paddr); + +static void __init remap_kernel(void) +{ + unsigned long phys_page, tte_vaddr, tte_data; + int i, tlb_ent = sparc64_highest_locked_tlbent(); + + tte_vaddr = (unsigned long) KERNBASE; + phys_page = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB; + tte_data = kern_large_tte(phys_page); + + kern_locked_tte_data = tte_data; + + /* Now lock us into the TLBs via Hypervisor or OBP. */ + if (tlb_type == hypervisor) { + for (i = 0; i < num_kernel_image_mappings; i++) { + hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU); + hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU); + tte_vaddr += 0x400000; + tte_data += 0x400000; + } + } else { + for (i = 0; i < num_kernel_image_mappings; i++) { + prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr); + prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr); + tte_vaddr += 0x400000; + tte_data += 0x400000; + } + sparc64_highest_unlocked_tlb_ent = tlb_ent - i; + } + if (tlb_type == cheetah_plus) { + sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 | + CTX_CHEETAH_PLUS_NUC); + sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC; + sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0; + } +} + + +static void __init inherit_prom_mappings(void) +{ + /* Now fixup OBP's idea about where we really are mapped. */ + printk("Remapping the kernel... "); + remap_kernel(); + printk("done.\n"); +} + +void prom_world(int enter) +{ + /* + * No need to change the address space any more, just flush + * the register windows + */ + __asm__ __volatile__("flushw"); +} + +void __flush_dcache_range(unsigned long start, unsigned long end) +{ + unsigned long va; + + if (tlb_type == spitfire) { + int n = 0; + + for (va = start; va < end; va += 32) { + spitfire_put_dcache_tag(va & 0x3fe0, 0x0); + if (++n >= 512) + break; + } + } else if (tlb_type == cheetah || tlb_type == cheetah_plus) { + start = __pa(start); + end = __pa(end); + for (va = start; va < end; va += 32) + __asm__ __volatile__("stxa %%g0, [%0] %1\n\t" + "membar #Sync" + : /* no outputs */ + : "r" (va), + "i" (ASI_DCACHE_INVALIDATE)); + } +} +EXPORT_SYMBOL(__flush_dcache_range); + +/* get_new_mmu_context() uses "cache + 1". */ +DEFINE_SPINLOCK(ctx_alloc_lock); +unsigned long tlb_context_cache = CTX_FIRST_VERSION; +#define MAX_CTX_NR (1UL << CTX_NR_BITS) +#define CTX_BMAP_SLOTS BITS_TO_LONGS(MAX_CTX_NR) +DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR); +DEFINE_PER_CPU(struct mm_struct *, per_cpu_secondary_mm) = {0}; + +static void mmu_context_wrap(void) +{ + unsigned long old_ver = tlb_context_cache & CTX_VERSION_MASK; + unsigned long new_ver, new_ctx, old_ctx; + struct mm_struct *mm; + int cpu; + + bitmap_zero(mmu_context_bmap, 1 << CTX_NR_BITS); + + /* Reserve kernel context */ + set_bit(0, mmu_context_bmap); + + new_ver = (tlb_context_cache & CTX_VERSION_MASK) + CTX_FIRST_VERSION; + if (unlikely(new_ver == 0)) + new_ver = CTX_FIRST_VERSION; + tlb_context_cache = new_ver; + + /* + * Make sure that any new mm that are added into per_cpu_secondary_mm, + * are going to go through get_new_mmu_context() path. + */ + mb(); + + /* + * Updated versions to current on those CPUs that had valid secondary + * contexts + */ + for_each_online_cpu(cpu) { + /* + * If a new mm is stored after we took this mm from the array, + * it will go into get_new_mmu_context() path, because we + * already bumped the version in tlb_context_cache. + */ + mm = per_cpu(per_cpu_secondary_mm, cpu); + + if (unlikely(!mm || mm == &init_mm)) + continue; + + old_ctx = mm->context.sparc64_ctx_val; + if (likely((old_ctx & CTX_VERSION_MASK) == old_ver)) { + new_ctx = (old_ctx & ~CTX_VERSION_MASK) | new_ver; + set_bit(new_ctx & CTX_NR_MASK, mmu_context_bmap); + mm->context.sparc64_ctx_val = new_ctx; + } + } +} + +/* Caller does TLB context flushing on local CPU if necessary. + * The caller also ensures that CTX_VALID(mm->context) is false. + * + * We must be careful about boundary cases so that we never + * let the user have CTX 0 (nucleus) or we ever use a CTX + * version of zero (and thus NO_CONTEXT would not be caught + * by version mis-match tests in mmu_context.h). + * + * Always invoked with interrupts disabled. + */ +void get_new_mmu_context(struct mm_struct *mm) +{ + unsigned long ctx, new_ctx; + unsigned long orig_pgsz_bits; + + spin_lock(&ctx_alloc_lock); +retry: + /* wrap might have happened, test again if our context became valid */ + if (unlikely(CTX_VALID(mm->context))) + goto out; + orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK); + ctx = (tlb_context_cache + 1) & CTX_NR_MASK; + new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx); + if (new_ctx >= (1 << CTX_NR_BITS)) { + new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1); + if (new_ctx >= ctx) { + mmu_context_wrap(); + goto retry; + } + } + if (mm->context.sparc64_ctx_val) + cpumask_clear(mm_cpumask(mm)); + mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63)); + new_ctx |= (tlb_context_cache & CTX_VERSION_MASK); + tlb_context_cache = new_ctx; + mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits; +out: + spin_unlock(&ctx_alloc_lock); +} + +static int numa_enabled = 1; +static int numa_debug; + +static int __init early_numa(char *p) +{ + if (!p) + return 0; + + if (strstr(p, "off")) + numa_enabled = 0; + + if (strstr(p, "debug")) + numa_debug = 1; + + return 0; +} +early_param("numa", early_numa); + +#define numadbg(f, a...) \ +do { if (numa_debug) \ + printk(KERN_INFO f, ## a); \ +} while (0) + +static void __init find_ramdisk(unsigned long phys_base) +{ +#ifdef CONFIG_BLK_DEV_INITRD + if (sparc_ramdisk_image || sparc_ramdisk_image64) { + unsigned long ramdisk_image; + + /* Older versions of the bootloader only supported a + * 32-bit physical address for the ramdisk image + * location, stored at sparc_ramdisk_image. Newer + * SILO versions set sparc_ramdisk_image to zero and + * provide a full 64-bit physical address at + * sparc_ramdisk_image64. + */ + ramdisk_image = sparc_ramdisk_image; + if (!ramdisk_image) + ramdisk_image = sparc_ramdisk_image64; + + /* Another bootloader quirk. The bootloader normalizes + * the physical address to KERNBASE, so we have to + * factor that back out and add in the lowest valid + * physical page address to get the true physical address. + */ + ramdisk_image -= KERNBASE; + ramdisk_image += phys_base; + + numadbg("Found ramdisk at physical address 0x%lx, size %u\n", + ramdisk_image, sparc_ramdisk_size); + + initrd_start = ramdisk_image; + initrd_end = ramdisk_image + sparc_ramdisk_size; + + memblock_reserve(initrd_start, sparc_ramdisk_size); + + initrd_start += PAGE_OFFSET; + initrd_end += PAGE_OFFSET; + } +#endif +} + +struct node_mem_mask { + unsigned long mask; + unsigned long match; +}; +static struct node_mem_mask node_masks[MAX_NUMNODES]; +static int num_node_masks; + +#ifdef CONFIG_NUMA + +struct mdesc_mlgroup { + u64 node; + u64 latency; + u64 match; + u64 mask; +}; + +static struct mdesc_mlgroup *mlgroups; +static int num_mlgroups; + +int numa_cpu_lookup_table[NR_CPUS]; +cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES]; + +struct mdesc_mblock { + u64 base; + u64 size; + u64 offset; /* RA-to-PA */ +}; +static struct mdesc_mblock *mblocks; +static int num_mblocks; + +static struct mdesc_mblock * __init addr_to_mblock(unsigned long addr) +{ + struct mdesc_mblock *m = NULL; + int i; + + for (i = 0; i < num_mblocks; i++) { + m = &mblocks[i]; + + if (addr >= m->base && + addr < (m->base + m->size)) { + break; + } + } + + return m; +} + +static u64 __init memblock_nid_range_sun4u(u64 start, u64 end, int *nid) +{ + int prev_nid, new_nid; + + prev_nid = NUMA_NO_NODE; + for ( ; start < end; start += PAGE_SIZE) { + for (new_nid = 0; new_nid < num_node_masks; new_nid++) { + struct node_mem_mask *p = &node_masks[new_nid]; + + if ((start & p->mask) == p->match) { + if (prev_nid == NUMA_NO_NODE) + prev_nid = new_nid; + break; + } + } + + if (new_nid == num_node_masks) { + prev_nid = 0; + WARN_ONCE(1, "addr[%Lx] doesn't match a NUMA node rule. Some memory will be owned by node 0.", + start); + break; + } + + if (prev_nid != new_nid) + break; + } + *nid = prev_nid; + + return start > end ? end : start; +} + +static u64 __init memblock_nid_range(u64 start, u64 end, int *nid) +{ + u64 ret_end, pa_start, m_mask, m_match, m_end; + struct mdesc_mblock *mblock; + int _nid, i; + + if (tlb_type != hypervisor) + return memblock_nid_range_sun4u(start, end, nid); + + mblock = addr_to_mblock(start); + if (!mblock) { + WARN_ONCE(1, "memblock_nid_range: Can't find mblock addr[%Lx]", + start); + + _nid = 0; + ret_end = end; + goto done; + } + + pa_start = start + mblock->offset; + m_match = 0; + m_mask = 0; + + for (_nid = 0; _nid < num_node_masks; _nid++) { + struct node_mem_mask *const m = &node_masks[_nid]; + + if ((pa_start & m->mask) == m->match) { + m_match = m->match; + m_mask = m->mask; + break; + } + } + + if (num_node_masks == _nid) { + /* We could not find NUMA group, so default to 0, but lets + * search for latency group, so we could calculate the correct + * end address that we return + */ + _nid = 0; + + for (i = 0; i < num_mlgroups; i++) { + struct mdesc_mlgroup *const m = &mlgroups[i]; + + if ((pa_start & m->mask) == m->match) { + m_match = m->match; + m_mask = m->mask; + break; + } + } + + if (i == num_mlgroups) { + WARN_ONCE(1, "memblock_nid_range: Can't find latency group addr[%Lx]", + start); + + ret_end = end; + goto done; + } + } + + /* + * Each latency group has match and mask, and each memory block has an + * offset. An address belongs to a latency group if its address matches + * the following formula: ((addr + offset) & mask) == match + * It is, however, slow to check every single page if it matches a + * particular latency group. As optimization we calculate end value by + * using bit arithmetics. + */ + m_end = m_match + (1ul << __ffs(m_mask)) - mblock->offset; + m_end += pa_start & ~((1ul << fls64(m_mask)) - 1); + ret_end = m_end > end ? end : m_end; + +done: + *nid = _nid; + return ret_end; +} +#endif + +/* This must be invoked after performing all of the necessary + * memblock_set_node() calls for 'nid'. We need to be able to get + * correct data from get_pfn_range_for_nid(). + */ +static void __init allocate_node_data(int nid) +{ + struct pglist_data *p; + unsigned long start_pfn, end_pfn; +#ifdef CONFIG_NUMA + + NODE_DATA(nid) = memblock_alloc_node(sizeof(struct pglist_data), + SMP_CACHE_BYTES, nid); + if (!NODE_DATA(nid)) { + prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid); + prom_halt(); + } + + NODE_DATA(nid)->node_id = nid; +#endif + + p = NODE_DATA(nid); + + get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); + p->node_start_pfn = start_pfn; + p->node_spanned_pages = end_pfn - start_pfn; +} + +static void init_node_masks_nonnuma(void) +{ +#ifdef CONFIG_NUMA + int i; +#endif + + numadbg("Initializing tables for non-numa.\n"); + + node_masks[0].mask = 0; + node_masks[0].match = 0; + num_node_masks = 1; + +#ifdef CONFIG_NUMA + for (i = 0; i < NR_CPUS; i++) + numa_cpu_lookup_table[i] = 0; + + cpumask_setall(&numa_cpumask_lookup_table[0]); +#endif +} + +#ifdef CONFIG_NUMA +struct pglist_data *node_data[MAX_NUMNODES]; + +EXPORT_SYMBOL(numa_cpu_lookup_table); +EXPORT_SYMBOL(numa_cpumask_lookup_table); +EXPORT_SYMBOL(node_data); + +static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio, + u32 cfg_handle) +{ + u64 arc; + + mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) { + u64 target = mdesc_arc_target(md, arc); + const u64 *val; + + val = mdesc_get_property(md, target, + "cfg-handle", NULL); + if (val && *val == cfg_handle) + return 0; + } + return -ENODEV; +} + +static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp, + u32 cfg_handle) +{ + u64 arc, candidate, best_latency = ~(u64)0; + + candidate = MDESC_NODE_NULL; + mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) { + u64 target = mdesc_arc_target(md, arc); + const char *name = mdesc_node_name(md, target); + const u64 *val; + + if (strcmp(name, "pio-latency-group")) + continue; + + val = mdesc_get_property(md, target, "latency", NULL); + if (!val) + continue; + + if (*val < best_latency) { + candidate = target; + best_latency = *val; + } + } + + if (candidate == MDESC_NODE_NULL) + return -ENODEV; + + return scan_pio_for_cfg_handle(md, candidate, cfg_handle); +} + +int of_node_to_nid(struct device_node *dp) +{ + const struct linux_prom64_registers *regs; + struct mdesc_handle *md; + u32 cfg_handle; + int count, nid; + u64 grp; + + /* This is the right thing to do on currently supported + * SUN4U NUMA platforms as well, as the PCI controller does + * not sit behind any particular memory controller. + */ + if (!mlgroups) + return -1; + + regs = of_get_property(dp, "reg", NULL); + if (!regs) + return -1; + + cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff; + + md = mdesc_grab(); + + count = 0; + nid = NUMA_NO_NODE; + mdesc_for_each_node_by_name(md, grp, "group") { + if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) { + nid = count; + break; + } + count++; + } + + mdesc_release(md); + + return nid; +} + +static void __init add_node_ranges(void) +{ + phys_addr_t start, end; + unsigned long prev_max; + u64 i; + +memblock_resized: + prev_max = memblock.memory.max; + + for_each_mem_range(i, &start, &end) { + while (start < end) { + unsigned long this_end; + int nid; + + this_end = memblock_nid_range(start, end, &nid); + + numadbg("Setting memblock NUMA node nid[%d] " + "start[%llx] end[%lx]\n", + nid, start, this_end); + + memblock_set_node(start, this_end - start, + &memblock.memory, nid); + if (memblock.memory.max != prev_max) + goto memblock_resized; + start = this_end; + } + } +} + +static int __init grab_mlgroups(struct mdesc_handle *md) +{ + unsigned long paddr; + int count = 0; + u64 node; + + mdesc_for_each_node_by_name(md, node, "memory-latency-group") + count++; + if (!count) + return -ENOENT; + + paddr = memblock_phys_alloc(count * sizeof(struct mdesc_mlgroup), + SMP_CACHE_BYTES); + if (!paddr) + return -ENOMEM; + + mlgroups = __va(paddr); + num_mlgroups = count; + + count = 0; + mdesc_for_each_node_by_name(md, node, "memory-latency-group") { + struct mdesc_mlgroup *m = &mlgroups[count++]; + const u64 *val; + + m->node = node; + + val = mdesc_get_property(md, node, "latency", NULL); + m->latency = *val; + val = mdesc_get_property(md, node, "address-match", NULL); + m->match = *val; + val = mdesc_get_property(md, node, "address-mask", NULL); + m->mask = *val; + + numadbg("MLGROUP[%d]: node[%llx] latency[%llx] " + "match[%llx] mask[%llx]\n", + count - 1, m->node, m->latency, m->match, m->mask); + } + + return 0; +} + +static int __init grab_mblocks(struct mdesc_handle *md) +{ + unsigned long paddr; + int count = 0; + u64 node; + + mdesc_for_each_node_by_name(md, node, "mblock") + count++; + if (!count) + return -ENOENT; + + paddr = memblock_phys_alloc(count * sizeof(struct mdesc_mblock), + SMP_CACHE_BYTES); + if (!paddr) + return -ENOMEM; + + mblocks = __va(paddr); + num_mblocks = count; + + count = 0; + mdesc_for_each_node_by_name(md, node, "mblock") { + struct mdesc_mblock *m = &mblocks[count++]; + const u64 *val; + + val = mdesc_get_property(md, node, "base", NULL); + m->base = *val; + val = mdesc_get_property(md, node, "size", NULL); + m->size = *val; + val = mdesc_get_property(md, node, + "address-congruence-offset", NULL); + + /* The address-congruence-offset property is optional. + * Explicity zero it be identifty this. + */ + if (val) + m->offset = *val; + else + m->offset = 0UL; + + numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n", + count - 1, m->base, m->size, m->offset); + } + + return 0; +} + +static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md, + u64 grp, cpumask_t *mask) +{ + u64 arc; + + cpumask_clear(mask); + + mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) { + u64 target = mdesc_arc_target(md, arc); + const char *name = mdesc_node_name(md, target); + const u64 *id; + + if (strcmp(name, "cpu")) + continue; + id = mdesc_get_property(md, target, "id", NULL); + if (*id < nr_cpu_ids) + cpumask_set_cpu(*id, mask); + } +} + +static struct mdesc_mlgroup * __init find_mlgroup(u64 node) +{ + int i; + + for (i = 0; i < num_mlgroups; i++) { + struct mdesc_mlgroup *m = &mlgroups[i]; + if (m->node == node) + return m; + } + return NULL; +} + +int __node_distance(int from, int to) +{ + if ((from >= MAX_NUMNODES) || (to >= MAX_NUMNODES)) { + pr_warn("Returning default NUMA distance value for %d->%d\n", + from, to); + return (from == to) ? LOCAL_DISTANCE : REMOTE_DISTANCE; + } + return numa_latency[from][to]; +} +EXPORT_SYMBOL(__node_distance); + +static int __init find_best_numa_node_for_mlgroup(struct mdesc_mlgroup *grp) +{ + int i; + + for (i = 0; i < MAX_NUMNODES; i++) { + struct node_mem_mask *n = &node_masks[i]; + + if ((grp->mask == n->mask) && (grp->match == n->match)) + break; + } + return i; +} + +static void __init find_numa_latencies_for_group(struct mdesc_handle *md, + u64 grp, int index) +{ + u64 arc; + + mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) { + int tnode; + u64 target = mdesc_arc_target(md, arc); + struct mdesc_mlgroup *m = find_mlgroup(target); + + if (!m) + continue; + tnode = find_best_numa_node_for_mlgroup(m); + if (tnode == MAX_NUMNODES) + continue; + numa_latency[index][tnode] = m->latency; + } +} + +static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp, + int index) +{ + struct mdesc_mlgroup *candidate = NULL; + u64 arc, best_latency = ~(u64)0; + struct node_mem_mask *n; + + mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) { + u64 target = mdesc_arc_target(md, arc); + struct mdesc_mlgroup *m = find_mlgroup(target); + if (!m) + continue; + if (m->latency < best_latency) { + candidate = m; + best_latency = m->latency; + } + } + if (!candidate) + return -ENOENT; + + if (num_node_masks != index) { + printk(KERN_ERR "Inconsistent NUMA state, " + "index[%d] != num_node_masks[%d]\n", + index, num_node_masks); + return -EINVAL; + } + + n = &node_masks[num_node_masks++]; + + n->mask = candidate->mask; + n->match = candidate->match; + + numadbg("NUMA NODE[%d]: mask[%lx] match[%lx] (latency[%llx])\n", + index, n->mask, n->match, candidate->latency); + + return 0; +} + +static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp, + int index) +{ + cpumask_t mask; + int cpu; + + numa_parse_mdesc_group_cpus(md, grp, &mask); + + for_each_cpu(cpu, &mask) + numa_cpu_lookup_table[cpu] = index; + cpumask_copy(&numa_cpumask_lookup_table[index], &mask); + + if (numa_debug) { + printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index); + for_each_cpu(cpu, &mask) + printk("%d ", cpu); + printk("]\n"); + } + + return numa_attach_mlgroup(md, grp, index); +} + +static int __init numa_parse_mdesc(void) +{ + struct mdesc_handle *md = mdesc_grab(); + int i, j, err, count; + u64 node; + + node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups"); + if (node == MDESC_NODE_NULL) { + mdesc_release(md); + return -ENOENT; + } + + err = grab_mblocks(md); + if (err < 0) + goto out; + + err = grab_mlgroups(md); + if (err < 0) + goto out; + + count = 0; + mdesc_for_each_node_by_name(md, node, "group") { + err = numa_parse_mdesc_group(md, node, count); + if (err < 0) + break; + count++; + } + + count = 0; + mdesc_for_each_node_by_name(md, node, "group") { + find_numa_latencies_for_group(md, node, count); + count++; + } + + /* Normalize numa latency matrix according to ACPI SLIT spec. */ + for (i = 0; i < MAX_NUMNODES; i++) { + u64 self_latency = numa_latency[i][i]; + + for (j = 0; j < MAX_NUMNODES; j++) { + numa_latency[i][j] = + (numa_latency[i][j] * LOCAL_DISTANCE) / + self_latency; + } + } + + add_node_ranges(); + + for (i = 0; i < num_node_masks; i++) { + allocate_node_data(i); + node_set_online(i); + } + + err = 0; +out: + mdesc_release(md); + return err; +} + +static int __init numa_parse_jbus(void) +{ + unsigned long cpu, index; + + /* NUMA node id is encoded in bits 36 and higher, and there is + * a 1-to-1 mapping from CPU ID to NUMA node ID. + */ + index = 0; + for_each_present_cpu(cpu) { + numa_cpu_lookup_table[cpu] = index; + cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu)); + node_masks[index].mask = ~((1UL << 36UL) - 1UL); + node_masks[index].match = cpu << 36UL; + + index++; + } + num_node_masks = index; + + add_node_ranges(); + + for (index = 0; index < num_node_masks; index++) { + allocate_node_data(index); + node_set_online(index); + } + + return 0; +} + +static int __init numa_parse_sun4u(void) +{ + if (tlb_type == cheetah || tlb_type == cheetah_plus) { + unsigned long ver; + + __asm__ ("rdpr %%ver, %0" : "=r" (ver)); + if ((ver >> 32UL) == __JALAPENO_ID || + (ver >> 32UL) == __SERRANO_ID) + return numa_parse_jbus(); + } + return -1; +} + +static int __init bootmem_init_numa(void) +{ + int i, j; + int err = -1; + + numadbg("bootmem_init_numa()\n"); + + /* Some sane defaults for numa latency values */ + for (i = 0; i < MAX_NUMNODES; i++) { + for (j = 0; j < MAX_NUMNODES; j++) + numa_latency[i][j] = (i == j) ? + LOCAL_DISTANCE : REMOTE_DISTANCE; + } + + if (numa_enabled) { + if (tlb_type == hypervisor) + err = numa_parse_mdesc(); + else + err = numa_parse_sun4u(); + } + return err; +} + +#else + +static int bootmem_init_numa(void) +{ + return -1; +} + +#endif + +static void __init bootmem_init_nonnuma(void) +{ + unsigned long top_of_ram = memblock_end_of_DRAM(); + unsigned long total_ram = memblock_phys_mem_size(); + + numadbg("bootmem_init_nonnuma()\n"); + + printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n", + top_of_ram, total_ram); + printk(KERN_INFO "Memory hole size: %ldMB\n", + (top_of_ram - total_ram) >> 20); + + init_node_masks_nonnuma(); + memblock_set_node(0, PHYS_ADDR_MAX, &memblock.memory, 0); + allocate_node_data(0); + node_set_online(0); +} + +static unsigned long __init bootmem_init(unsigned long phys_base) +{ + unsigned long end_pfn; + + end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT; + max_pfn = max_low_pfn = end_pfn; + min_low_pfn = (phys_base >> PAGE_SHIFT); + + if (bootmem_init_numa() < 0) + bootmem_init_nonnuma(); + + /* Dump memblock with node info. */ + memblock_dump_all(); + + /* XXX cpu notifier XXX */ + + sparse_init(); + + return end_pfn; +} + +static struct linux_prom64_registers pall[MAX_BANKS] __initdata; +static int pall_ents __initdata; + +static unsigned long max_phys_bits = 40; + +bool kern_addr_valid(unsigned long addr) +{ + pgd_t *pgd; + p4d_t *p4d; + pud_t *pud; + pmd_t *pmd; + pte_t *pte; + + if ((long)addr < 0L) { + unsigned long pa = __pa(addr); + + if ((pa >> max_phys_bits) != 0UL) + return false; + + return pfn_valid(pa >> PAGE_SHIFT); + } + + if (addr >= (unsigned long) KERNBASE && + addr < (unsigned long)&_end) + return true; + + pgd = pgd_offset_k(addr); + if (pgd_none(*pgd)) + return false; + + p4d = p4d_offset(pgd, addr); + if (p4d_none(*p4d)) + return false; + + pud = pud_offset(p4d, addr); + if (pud_none(*pud)) + return false; + + if (pud_large(*pud)) + return pfn_valid(pud_pfn(*pud)); + + pmd = pmd_offset(pud, addr); + if (pmd_none(*pmd)) + return false; + + if (pmd_large(*pmd)) + return pfn_valid(pmd_pfn(*pmd)); + + pte = pte_offset_kernel(pmd, addr); + if (pte_none(*pte)) + return false; + + return pfn_valid(pte_pfn(*pte)); +} +EXPORT_SYMBOL(kern_addr_valid); + +static unsigned long __ref kernel_map_hugepud(unsigned long vstart, + unsigned long vend, + pud_t *pud) +{ + const unsigned long mask16gb = (1UL << 34) - 1UL; + u64 pte_val = vstart; + + /* Each PUD is 8GB */ + if ((vstart & mask16gb) || + (vend - vstart <= mask16gb)) { + pte_val ^= kern_linear_pte_xor[2]; + pud_val(*pud) = pte_val | _PAGE_PUD_HUGE; + + return vstart + PUD_SIZE; + } + + pte_val ^= kern_linear_pte_xor[3]; + pte_val |= _PAGE_PUD_HUGE; + + vend = vstart + mask16gb + 1UL; + while (vstart < vend) { + pud_val(*pud) = pte_val; + + pte_val += PUD_SIZE; + vstart += PUD_SIZE; + pud++; + } + return vstart; +} + +static bool kernel_can_map_hugepud(unsigned long vstart, unsigned long vend, + bool guard) +{ + if (guard && !(vstart & ~PUD_MASK) && (vend - vstart) >= PUD_SIZE) + return true; + + return false; +} + +static unsigned long __ref kernel_map_hugepmd(unsigned long vstart, + unsigned long vend, + pmd_t *pmd) +{ + const unsigned long mask256mb = (1UL << 28) - 1UL; + const unsigned long mask2gb = (1UL << 31) - 1UL; + u64 pte_val = vstart; + + /* Each PMD is 8MB */ + if ((vstart & mask256mb) || + (vend - vstart <= mask256mb)) { + pte_val ^= kern_linear_pte_xor[0]; + pmd_val(*pmd) = pte_val | _PAGE_PMD_HUGE; + + return vstart + PMD_SIZE; + } + + if ((vstart & mask2gb) || + (vend - vstart <= mask2gb)) { + pte_val ^= kern_linear_pte_xor[1]; + pte_val |= _PAGE_PMD_HUGE; + vend = vstart + mask256mb + 1UL; + } else { + pte_val ^= kern_linear_pte_xor[2]; + pte_val |= _PAGE_PMD_HUGE; + vend = vstart + mask2gb + 1UL; + } + + while (vstart < vend) { + pmd_val(*pmd) = pte_val; + + pte_val += PMD_SIZE; + vstart += PMD_SIZE; + pmd++; + } + + return vstart; +} + +static bool kernel_can_map_hugepmd(unsigned long vstart, unsigned long vend, + bool guard) +{ + if (guard && !(vstart & ~PMD_MASK) && (vend - vstart) >= PMD_SIZE) + return true; + + return false; +} + +static unsigned long __ref kernel_map_range(unsigned long pstart, + unsigned long pend, pgprot_t prot, + bool use_huge) +{ + unsigned long vstart = PAGE_OFFSET + pstart; + unsigned long vend = PAGE_OFFSET + pend; + unsigned long alloc_bytes = 0UL; + + if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) { + prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n", + vstart, vend); + prom_halt(); + } + + while (vstart < vend) { + unsigned long this_end, paddr = __pa(vstart); + pgd_t *pgd = pgd_offset_k(vstart); + p4d_t *p4d; + pud_t *pud; + pmd_t *pmd; + pte_t *pte; + + if (pgd_none(*pgd)) { + pud_t *new; + + new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE, + PAGE_SIZE); + if (!new) + goto err_alloc; + alloc_bytes += PAGE_SIZE; + pgd_populate(&init_mm, pgd, new); + } + + p4d = p4d_offset(pgd, vstart); + if (p4d_none(*p4d)) { + pud_t *new; + + new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE, + PAGE_SIZE); + if (!new) + goto err_alloc; + alloc_bytes += PAGE_SIZE; + p4d_populate(&init_mm, p4d, new); + } + + pud = pud_offset(p4d, vstart); + if (pud_none(*pud)) { + pmd_t *new; + + if (kernel_can_map_hugepud(vstart, vend, use_huge)) { + vstart = kernel_map_hugepud(vstart, vend, pud); + continue; + } + new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE, + PAGE_SIZE); + if (!new) + goto err_alloc; + alloc_bytes += PAGE_SIZE; + pud_populate(&init_mm, pud, new); + } + + pmd = pmd_offset(pud, vstart); + if (pmd_none(*pmd)) { + pte_t *new; + + if (kernel_can_map_hugepmd(vstart, vend, use_huge)) { + vstart = kernel_map_hugepmd(vstart, vend, pmd); + continue; + } + new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE, + PAGE_SIZE); + if (!new) + goto err_alloc; + alloc_bytes += PAGE_SIZE; + pmd_populate_kernel(&init_mm, pmd, new); + } + + pte = pte_offset_kernel(pmd, vstart); + this_end = (vstart + PMD_SIZE) & PMD_MASK; + if (this_end > vend) + this_end = vend; + + while (vstart < this_end) { + pte_val(*pte) = (paddr | pgprot_val(prot)); + + vstart += PAGE_SIZE; + paddr += PAGE_SIZE; + pte++; + } + } + + return alloc_bytes; + +err_alloc: + panic("%s: Failed to allocate %lu bytes align=%lx from=%lx\n", + __func__, PAGE_SIZE, PAGE_SIZE, PAGE_SIZE); + return -ENOMEM; +} + +static void __init flush_all_kernel_tsbs(void) +{ + int i; + + for (i = 0; i < KERNEL_TSB_NENTRIES; i++) { + struct tsb *ent = &swapper_tsb[i]; + + ent->tag = (1UL << TSB_TAG_INVALID_BIT); + } +#ifndef CONFIG_DEBUG_PAGEALLOC + for (i = 0; i < KERNEL_TSB4M_NENTRIES; i++) { + struct tsb *ent = &swapper_4m_tsb[i]; + + ent->tag = (1UL << TSB_TAG_INVALID_BIT); + } +#endif +} + +extern unsigned int kvmap_linear_patch[1]; + +static void __init kernel_physical_mapping_init(void) +{ + unsigned long i, mem_alloced = 0UL; + bool use_huge = true; + +#ifdef CONFIG_DEBUG_PAGEALLOC + use_huge = false; +#endif + for (i = 0; i < pall_ents; i++) { + unsigned long phys_start, phys_end; + + phys_start = pall[i].phys_addr; + phys_end = phys_start + pall[i].reg_size; + + mem_alloced += kernel_map_range(phys_start, phys_end, + PAGE_KERNEL, use_huge); + } + + printk("Allocated %ld bytes for kernel page tables.\n", + mem_alloced); + + kvmap_linear_patch[0] = 0x01000000; /* nop */ + flushi(&kvmap_linear_patch[0]); + + flush_all_kernel_tsbs(); + + __flush_tlb_all(); +} + +#ifdef CONFIG_DEBUG_PAGEALLOC +void __kernel_map_pages(struct page *page, int numpages, int enable) +{ + unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT; + unsigned long phys_end = phys_start + (numpages * PAGE_SIZE); + + kernel_map_range(phys_start, phys_end, + (enable ? PAGE_KERNEL : __pgprot(0)), false); + + flush_tsb_kernel_range(PAGE_OFFSET + phys_start, + PAGE_OFFSET + phys_end); + + /* we should perform an IPI and flush all tlbs, + * but that can deadlock->flush only current cpu. + */ + __flush_tlb_kernel_range(PAGE_OFFSET + phys_start, + PAGE_OFFSET + phys_end); +} +#endif + +unsigned long __init find_ecache_flush_span(unsigned long size) +{ + int i; + + for (i = 0; i < pavail_ents; i++) { + if (pavail[i].reg_size >= size) + return pavail[i].phys_addr; + } + + return ~0UL; +} + +unsigned long PAGE_OFFSET; +EXPORT_SYMBOL(PAGE_OFFSET); + +unsigned long VMALLOC_END = 0x0000010000000000UL; +EXPORT_SYMBOL(VMALLOC_END); + +unsigned long sparc64_va_hole_top = 0xfffff80000000000UL; +unsigned long sparc64_va_hole_bottom = 0x0000080000000000UL; + +static void __init setup_page_offset(void) +{ + if (tlb_type == cheetah || tlb_type == cheetah_plus) { + /* Cheetah/Panther support a full 64-bit virtual + * address, so we can use all that our page tables + * support. + */ + sparc64_va_hole_top = 0xfff0000000000000UL; + sparc64_va_hole_bottom = 0x0010000000000000UL; + + max_phys_bits = 42; + } else if (tlb_type == hypervisor) { + switch (sun4v_chip_type) { + case SUN4V_CHIP_NIAGARA1: + case SUN4V_CHIP_NIAGARA2: + /* T1 and T2 support 48-bit virtual addresses. */ + sparc64_va_hole_top = 0xffff800000000000UL; + sparc64_va_hole_bottom = 0x0000800000000000UL; + + max_phys_bits = 39; + break; + case SUN4V_CHIP_NIAGARA3: + /* T3 supports 48-bit virtual addresses. */ + sparc64_va_hole_top = 0xffff800000000000UL; + sparc64_va_hole_bottom = 0x0000800000000000UL; + + max_phys_bits = 43; + break; + case SUN4V_CHIP_NIAGARA4: + case SUN4V_CHIP_NIAGARA5: + case SUN4V_CHIP_SPARC64X: + case SUN4V_CHIP_SPARC_M6: + /* T4 and later support 52-bit virtual addresses. */ + sparc64_va_hole_top = 0xfff8000000000000UL; + sparc64_va_hole_bottom = 0x0008000000000000UL; + max_phys_bits = 47; + break; + case SUN4V_CHIP_SPARC_M7: + case SUN4V_CHIP_SPARC_SN: + /* M7 and later support 52-bit virtual addresses. */ + sparc64_va_hole_top = 0xfff8000000000000UL; + sparc64_va_hole_bottom = 0x0008000000000000UL; + max_phys_bits = 49; + break; + case SUN4V_CHIP_SPARC_M8: + default: + /* M8 and later support 54-bit virtual addresses. + * However, restricting M8 and above VA bits to 53 + * as 4-level page table cannot support more than + * 53 VA bits. + */ + sparc64_va_hole_top = 0xfff0000000000000UL; + sparc64_va_hole_bottom = 0x0010000000000000UL; + max_phys_bits = 51; + break; + } + } + + if (max_phys_bits > MAX_PHYS_ADDRESS_BITS) { + prom_printf("MAX_PHYS_ADDRESS_BITS is too small, need %lu\n", + max_phys_bits); + prom_halt(); + } + + PAGE_OFFSET = sparc64_va_hole_top; + VMALLOC_END = ((sparc64_va_hole_bottom >> 1) + + (sparc64_va_hole_bottom >> 2)); + + pr_info("MM: PAGE_OFFSET is 0x%016lx (max_phys_bits == %lu)\n", + PAGE_OFFSET, max_phys_bits); + pr_info("MM: VMALLOC [0x%016lx --> 0x%016lx]\n", + VMALLOC_START, VMALLOC_END); + pr_info("MM: VMEMMAP [0x%016lx --> 0x%016lx]\n", + VMEMMAP_BASE, VMEMMAP_BASE << 1); +} + +static void __init tsb_phys_patch(void) +{ + struct tsb_ldquad_phys_patch_entry *pquad; + struct tsb_phys_patch_entry *p; + + pquad = &__tsb_ldquad_phys_patch; + while (pquad < &__tsb_ldquad_phys_patch_end) { + unsigned long addr = pquad->addr; + + if (tlb_type == hypervisor) + *(unsigned int *) addr = pquad->sun4v_insn; + else + *(unsigned int *) addr = pquad->sun4u_insn; + wmb(); + __asm__ __volatile__("flush %0" + : /* no outputs */ + : "r" (addr)); + + pquad++; + } + + p = &__tsb_phys_patch; + while (p < &__tsb_phys_patch_end) { + unsigned long addr = p->addr; + + *(unsigned int *) addr = p->insn; + wmb(); + __asm__ __volatile__("flush %0" + : /* no outputs */ + : "r" (addr)); + + p++; + } +} + +/* Don't mark as init, we give this to the Hypervisor. */ +#ifndef CONFIG_DEBUG_PAGEALLOC +#define NUM_KTSB_DESCR 2 +#else +#define NUM_KTSB_DESCR 1 +#endif +static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR]; + +/* The swapper TSBs are loaded with a base sequence of: + * + * sethi %uhi(SYMBOL), REG1 + * sethi %hi(SYMBOL), REG2 + * or REG1, %ulo(SYMBOL), REG1 + * or REG2, %lo(SYMBOL), REG2 + * sllx REG1, 32, REG1 + * or REG1, REG2, REG1 + * + * When we use physical addressing for the TSB accesses, we patch the + * first four instructions in the above sequence. + */ + +static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa) +{ + unsigned long high_bits, low_bits; + + high_bits = (pa >> 32) & 0xffffffff; + low_bits = (pa >> 0) & 0xffffffff; + + while (start < end) { + unsigned int *ia = (unsigned int *)(unsigned long)*start; + + ia[0] = (ia[0] & ~0x3fffff) | (high_bits >> 10); + __asm__ __volatile__("flush %0" : : "r" (ia)); + + ia[1] = (ia[1] & ~0x3fffff) | (low_bits >> 10); + __asm__ __volatile__("flush %0" : : "r" (ia + 1)); + + ia[2] = (ia[2] & ~0x1fff) | (high_bits & 0x3ff); + __asm__ __volatile__("flush %0" : : "r" (ia + 2)); + + ia[3] = (ia[3] & ~0x1fff) | (low_bits & 0x3ff); + __asm__ __volatile__("flush %0" : : "r" (ia + 3)); + + start++; + } +} + +static void ktsb_phys_patch(void) +{ + extern unsigned int __swapper_tsb_phys_patch; + extern unsigned int __swapper_tsb_phys_patch_end; + unsigned long ktsb_pa; + + ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE); + patch_one_ktsb_phys(&__swapper_tsb_phys_patch, + &__swapper_tsb_phys_patch_end, ktsb_pa); +#ifndef CONFIG_DEBUG_PAGEALLOC + { + extern unsigned int __swapper_4m_tsb_phys_patch; + extern unsigned int __swapper_4m_tsb_phys_patch_end; + ktsb_pa = (kern_base + + ((unsigned long)&swapper_4m_tsb[0] - KERNBASE)); + patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch, + &__swapper_4m_tsb_phys_patch_end, ktsb_pa); + } +#endif +} + +static void __init sun4v_ktsb_init(void) +{ + unsigned long ktsb_pa; + + /* First KTSB for PAGE_SIZE mappings. */ + ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE); + + switch (PAGE_SIZE) { + case 8 * 1024: + default: + ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K; + ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K; + break; + + case 64 * 1024: + ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K; + ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K; + break; + + case 512 * 1024: + ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K; + ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K; + break; + + case 4 * 1024 * 1024: + ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB; + ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB; + break; + } + + ktsb_descr[0].assoc = 1; + ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES; + ktsb_descr[0].ctx_idx = 0; + ktsb_descr[0].tsb_base = ktsb_pa; + ktsb_descr[0].resv = 0; + +#ifndef CONFIG_DEBUG_PAGEALLOC + /* Second KTSB for 4MB/256MB/2GB/16GB mappings. */ + ktsb_pa = (kern_base + + ((unsigned long)&swapper_4m_tsb[0] - KERNBASE)); + + ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB; + ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB | + HV_PGSZ_MASK_256MB | + HV_PGSZ_MASK_2GB | + HV_PGSZ_MASK_16GB) & + cpu_pgsz_mask); + ktsb_descr[1].assoc = 1; + ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES; + ktsb_descr[1].ctx_idx = 0; + ktsb_descr[1].tsb_base = ktsb_pa; + ktsb_descr[1].resv = 0; +#endif +} + +void sun4v_ktsb_register(void) +{ + unsigned long pa, ret; + + pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE); + + ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa); + if (ret != 0) { + prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: " + "errors with %lx\n", pa, ret); + prom_halt(); + } +} + +static void __init sun4u_linear_pte_xor_finalize(void) +{ +#ifndef CONFIG_DEBUG_PAGEALLOC + /* This is where we would add Panther support for + * 32MB and 256MB pages. + */ +#endif +} + +static void __init sun4v_linear_pte_xor_finalize(void) +{ + unsigned long pagecv_flag; + + /* Bit 9 of TTE is no longer CV bit on M7 processor and it instead + * enables MCD error. Do not set bit 9 on M7 processor. + */ + switch (sun4v_chip_type) { + case SUN4V_CHIP_SPARC_M7: + case SUN4V_CHIP_SPARC_M8: + case SUN4V_CHIP_SPARC_SN: + pagecv_flag = 0x00; + break; + default: + pagecv_flag = _PAGE_CV_4V; + break; + } +#ifndef CONFIG_DEBUG_PAGEALLOC + if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) { + kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^ + PAGE_OFFSET; + kern_linear_pte_xor[1] |= (_PAGE_CP_4V | pagecv_flag | + _PAGE_P_4V | _PAGE_W_4V); + } else { + kern_linear_pte_xor[1] = kern_linear_pte_xor[0]; + } + + if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) { + kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^ + PAGE_OFFSET; + kern_linear_pte_xor[2] |= (_PAGE_CP_4V | pagecv_flag | + _PAGE_P_4V | _PAGE_W_4V); + } else { + kern_linear_pte_xor[2] = kern_linear_pte_xor[1]; + } + + if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) { + kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^ + PAGE_OFFSET; + kern_linear_pte_xor[3] |= (_PAGE_CP_4V | pagecv_flag | + _PAGE_P_4V | _PAGE_W_4V); + } else { + kern_linear_pte_xor[3] = kern_linear_pte_xor[2]; + } +#endif +} + +/* paging_init() sets up the page tables */ + +static unsigned long last_valid_pfn; + +static void sun4u_pgprot_init(void); +static void sun4v_pgprot_init(void); + +#define _PAGE_CACHE_4U (_PAGE_CP_4U | _PAGE_CV_4U) +#define _PAGE_CACHE_4V (_PAGE_CP_4V | _PAGE_CV_4V) +#define __DIRTY_BITS_4U (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U) +#define __DIRTY_BITS_4V (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V) +#define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R) +#define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R) + +/* We need to exclude reserved regions. This exclusion will include + * vmlinux and initrd. To be more precise the initrd size could be used to + * compute a new lower limit because it is freed later during initialization. + */ +static void __init reduce_memory(phys_addr_t limit_ram) +{ + limit_ram += memblock_reserved_size(); + memblock_enforce_memory_limit(limit_ram); +} + +void __init paging_init(void) +{ + unsigned long end_pfn, shift, phys_base; + unsigned long real_end, i; + + setup_page_offset(); + + /* These build time checkes make sure that the dcache_dirty_cpu() + * page->flags usage will work. + * + * When a page gets marked as dcache-dirty, we store the + * cpu number starting at bit 32 in the page->flags. Also, + * functions like clear_dcache_dirty_cpu use the cpu mask + * in 13-bit signed-immediate instruction fields. + */ + + /* + * Page flags must not reach into upper 32 bits that are used + * for the cpu number + */ + BUILD_BUG_ON(NR_PAGEFLAGS > 32); + + /* + * The bit fields placed in the high range must not reach below + * the 32 bit boundary. Otherwise we cannot place the cpu field + * at the 32 bit boundary. + */ + BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH + + ilog2(roundup_pow_of_two(NR_CPUS)) > 32); + + BUILD_BUG_ON(NR_CPUS > 4096); + + kern_base = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB; + kern_size = (unsigned long)&_end - (unsigned long)KERNBASE; + + /* Invalidate both kernel TSBs. */ + memset(swapper_tsb, 0x40, sizeof(swapper_tsb)); +#ifndef CONFIG_DEBUG_PAGEALLOC + memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb)); +#endif + + /* TTE.cv bit on sparc v9 occupies the same position as TTE.mcde + * bit on M7 processor. This is a conflicting usage of the same + * bit. Enabling TTE.cv on M7 would turn on Memory Corruption + * Detection error on all pages and this will lead to problems + * later. Kernel does not run with MCD enabled and hence rest + * of the required steps to fully configure memory corruption + * detection are not taken. We need to ensure TTE.mcde is not + * set on M7 processor. Compute the value of cacheability + * flag for use later taking this into consideration. + */ + switch (sun4v_chip_type) { + case SUN4V_CHIP_SPARC_M7: + case SUN4V_CHIP_SPARC_M8: + case SUN4V_CHIP_SPARC_SN: + page_cache4v_flag = _PAGE_CP_4V; + break; + default: + page_cache4v_flag = _PAGE_CACHE_4V; + break; + } + + if (tlb_type == hypervisor) + sun4v_pgprot_init(); + else + sun4u_pgprot_init(); + + if (tlb_type == cheetah_plus || + tlb_type == hypervisor) { + tsb_phys_patch(); + ktsb_phys_patch(); + } + + if (tlb_type == hypervisor) + sun4v_patch_tlb_handlers(); + + /* Find available physical memory... + * + * Read it twice in order to work around a bug in openfirmware. + * The call to grab this table itself can cause openfirmware to + * allocate memory, which in turn can take away some space from + * the list of available memory. Reading it twice makes sure + * we really do get the final value. + */ + read_obp_translations(); + read_obp_memory("reg", &pall[0], &pall_ents); + read_obp_memory("available", &pavail[0], &pavail_ents); + read_obp_memory("available", &pavail[0], &pavail_ents); + + phys_base = 0xffffffffffffffffUL; + for (i = 0; i < pavail_ents; i++) { + phys_base = min(phys_base, pavail[i].phys_addr); + memblock_add(pavail[i].phys_addr, pavail[i].reg_size); + } + + memblock_reserve(kern_base, kern_size); + + find_ramdisk(phys_base); + + if (cmdline_memory_size) + reduce_memory(cmdline_memory_size); + + memblock_allow_resize(); + memblock_dump_all(); + + set_bit(0, mmu_context_bmap); + + shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE); + + real_end = (unsigned long)_end; + num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << ILOG2_4MB); + printk("Kernel: Using %d locked TLB entries for main kernel image.\n", + num_kernel_image_mappings); + + /* Set kernel pgd to upper alias so physical page computations + * work. + */ + init_mm.pgd += ((shift) / (sizeof(pgd_t))); + + memset(swapper_pg_dir, 0, sizeof(swapper_pg_dir)); + + inherit_prom_mappings(); + + /* Ok, we can use our TLB miss and window trap handlers safely. */ + setup_tba(); + + __flush_tlb_all(); + + prom_build_devicetree(); + of_populate_present_mask(); +#ifndef CONFIG_SMP + of_fill_in_cpu_data(); +#endif + + if (tlb_type == hypervisor) { + sun4v_mdesc_init(); + mdesc_populate_present_mask(cpu_all_mask); +#ifndef CONFIG_SMP + mdesc_fill_in_cpu_data(cpu_all_mask); +#endif + mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask); + + sun4v_linear_pte_xor_finalize(); + + sun4v_ktsb_init(); + sun4v_ktsb_register(); + } else { + unsigned long impl, ver; + + cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K | + HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB); + + __asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver)); + impl = ((ver >> 32) & 0xffff); + if (impl == PANTHER_IMPL) + cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB | + HV_PGSZ_MASK_256MB); + + sun4u_linear_pte_xor_finalize(); + } + + /* Flush the TLBs and the 4M TSB so that the updated linear + * pte XOR settings are realized for all mappings. + */ + __flush_tlb_all(); +#ifndef CONFIG_DEBUG_PAGEALLOC + memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb)); +#endif + __flush_tlb_all(); + + /* Setup bootmem... */ + last_valid_pfn = end_pfn = bootmem_init(phys_base); + + kernel_physical_mapping_init(); + + { + unsigned long max_zone_pfns[MAX_NR_ZONES]; + + memset(max_zone_pfns, 0, sizeof(max_zone_pfns)); + + max_zone_pfns[ZONE_NORMAL] = end_pfn; + + free_area_init(max_zone_pfns); + } + + printk("Booting Linux...\n"); +} + +int page_in_phys_avail(unsigned long paddr) +{ + int i; + + paddr &= PAGE_MASK; + + for (i = 0; i < pavail_ents; i++) { + unsigned long start, end; + + start = pavail[i].phys_addr; + end = start + pavail[i].reg_size; + + if (paddr >= start && paddr < end) + return 1; + } + if (paddr >= kern_base && paddr < (kern_base + kern_size)) + return 1; +#ifdef CONFIG_BLK_DEV_INITRD + if (paddr >= __pa(initrd_start) && + paddr < __pa(PAGE_ALIGN(initrd_end))) + return 1; +#endif + + return 0; +} + +static void __init register_page_bootmem_info(void) +{ +#ifdef CONFIG_NUMA + int i; + + for_each_online_node(i) + if (NODE_DATA(i)->node_spanned_pages) + register_page_bootmem_info_node(NODE_DATA(i)); +#endif +} +void __init mem_init(void) +{ + high_memory = __va(last_valid_pfn << PAGE_SHIFT); + + memblock_free_all(); + + /* + * Must be done after boot memory is put on freelist, because here we + * might set fields in deferred struct pages that have not yet been + * initialized, and memblock_free_all() initializes all the reserved + * deferred pages for us. + */ + register_page_bootmem_info(); + + /* + * Set up the zero page, mark it reserved, so that page count + * is not manipulated when freeing the page from user ptes. + */ + mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0); + if (mem_map_zero == NULL) { + prom_printf("paging_init: Cannot alloc zero page.\n"); + prom_halt(); + } + mark_page_reserved(mem_map_zero); + + + if (tlb_type == cheetah || tlb_type == cheetah_plus) + cheetah_ecache_flush_init(); +} + +void free_initmem(void) +{ + unsigned long addr, initend; + int do_free = 1; + + /* If the physical memory maps were trimmed by kernel command + * line options, don't even try freeing this initmem stuff up. + * The kernel image could have been in the trimmed out region + * and if so the freeing below will free invalid page structs. + */ + if (cmdline_memory_size) + do_free = 0; + + /* + * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes. + */ + addr = PAGE_ALIGN((unsigned long)(__init_begin)); + initend = (unsigned long)(__init_end) & PAGE_MASK; + for (; addr < initend; addr += PAGE_SIZE) { + unsigned long page; + + page = (addr + + ((unsigned long) __va(kern_base)) - + ((unsigned long) KERNBASE)); + memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE); + + if (do_free) + free_reserved_page(virt_to_page(page)); + } +} + +pgprot_t PAGE_KERNEL __read_mostly; +EXPORT_SYMBOL(PAGE_KERNEL); + +pgprot_t PAGE_KERNEL_LOCKED __read_mostly; +pgprot_t PAGE_COPY __read_mostly; + +pgprot_t PAGE_SHARED __read_mostly; +EXPORT_SYMBOL(PAGE_SHARED); + +unsigned long pg_iobits __read_mostly; + +unsigned long _PAGE_IE __read_mostly; +EXPORT_SYMBOL(_PAGE_IE); + +unsigned long _PAGE_E __read_mostly; +EXPORT_SYMBOL(_PAGE_E); + +unsigned long _PAGE_CACHE __read_mostly; +EXPORT_SYMBOL(_PAGE_CACHE); + +#ifdef CONFIG_SPARSEMEM_VMEMMAP +int __meminit vmemmap_populate(unsigned long vstart, unsigned long vend, + int node, struct vmem_altmap *altmap) +{ + unsigned long pte_base; + + pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U | + _PAGE_CP_4U | _PAGE_CV_4U | + _PAGE_P_4U | _PAGE_W_4U); + if (tlb_type == hypervisor) + pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V | + page_cache4v_flag | _PAGE_P_4V | _PAGE_W_4V); + + pte_base |= _PAGE_PMD_HUGE; + + vstart = vstart & PMD_MASK; + vend = ALIGN(vend, PMD_SIZE); + for (; vstart < vend; vstart += PMD_SIZE) { + pgd_t *pgd = vmemmap_pgd_populate(vstart, node); + unsigned long pte; + p4d_t *p4d; + pud_t *pud; + pmd_t *pmd; + + if (!pgd) + return -ENOMEM; + + p4d = vmemmap_p4d_populate(pgd, vstart, node); + if (!p4d) + return -ENOMEM; + + pud = vmemmap_pud_populate(p4d, vstart, node); + if (!pud) + return -ENOMEM; + + pmd = pmd_offset(pud, vstart); + pte = pmd_val(*pmd); + if (!(pte & _PAGE_VALID)) { + void *block = vmemmap_alloc_block(PMD_SIZE, node); + + if (!block) + return -ENOMEM; + + pmd_val(*pmd) = pte_base | __pa(block); + } + } + + return 0; +} + +void vmemmap_free(unsigned long start, unsigned long end, + struct vmem_altmap *altmap) +{ +} +#endif /* CONFIG_SPARSEMEM_VMEMMAP */ + +/* These are actually filled in at boot time by sun4{u,v}_pgprot_init() */ +static pgprot_t protection_map[16] __ro_after_init; + +static void prot_init_common(unsigned long page_none, + unsigned long page_shared, + unsigned long page_copy, + unsigned long page_readonly, + unsigned long page_exec_bit) +{ + PAGE_COPY = __pgprot(page_copy); + PAGE_SHARED = __pgprot(page_shared); + + protection_map[0x0] = __pgprot(page_none); + protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit); + protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit); + protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit); + protection_map[0x4] = __pgprot(page_readonly); + protection_map[0x5] = __pgprot(page_readonly); + protection_map[0x6] = __pgprot(page_copy); + protection_map[0x7] = __pgprot(page_copy); + protection_map[0x8] = __pgprot(page_none); + protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit); + protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit); + protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit); + protection_map[0xc] = __pgprot(page_readonly); + protection_map[0xd] = __pgprot(page_readonly); + protection_map[0xe] = __pgprot(page_shared); + protection_map[0xf] = __pgprot(page_shared); +} + +static void __init sun4u_pgprot_init(void) +{ + unsigned long page_none, page_shared, page_copy, page_readonly; + unsigned long page_exec_bit; + int i; + + PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID | + _PAGE_CACHE_4U | _PAGE_P_4U | + __ACCESS_BITS_4U | __DIRTY_BITS_4U | + _PAGE_EXEC_4U); + PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID | + _PAGE_CACHE_4U | _PAGE_P_4U | + __ACCESS_BITS_4U | __DIRTY_BITS_4U | + _PAGE_EXEC_4U | _PAGE_L_4U); + + _PAGE_IE = _PAGE_IE_4U; + _PAGE_E = _PAGE_E_4U; + _PAGE_CACHE = _PAGE_CACHE_4U; + + pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U | + __ACCESS_BITS_4U | _PAGE_E_4U); + +#ifdef CONFIG_DEBUG_PAGEALLOC + kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET; +#else + kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^ + PAGE_OFFSET; +#endif + kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U | + _PAGE_P_4U | _PAGE_W_4U); + + for (i = 1; i < 4; i++) + kern_linear_pte_xor[i] = kern_linear_pte_xor[0]; + + _PAGE_ALL_SZ_BITS = (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U | + _PAGE_SZ64K_4U | _PAGE_SZ8K_4U | + _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U); + + + page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U; + page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U | + __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U); + page_copy = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U | + __ACCESS_BITS_4U | _PAGE_EXEC_4U); + page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U | + __ACCESS_BITS_4U | _PAGE_EXEC_4U); + + page_exec_bit = _PAGE_EXEC_4U; + + prot_init_common(page_none, page_shared, page_copy, page_readonly, + page_exec_bit); +} + +static void __init sun4v_pgprot_init(void) +{ + unsigned long page_none, page_shared, page_copy, page_readonly; + unsigned long page_exec_bit; + int i; + + PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID | + page_cache4v_flag | _PAGE_P_4V | + __ACCESS_BITS_4V | __DIRTY_BITS_4V | + _PAGE_EXEC_4V); + PAGE_KERNEL_LOCKED = PAGE_KERNEL; + + _PAGE_IE = _PAGE_IE_4V; + _PAGE_E = _PAGE_E_4V; + _PAGE_CACHE = page_cache4v_flag; + +#ifdef CONFIG_DEBUG_PAGEALLOC + kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET; +#else + kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^ + PAGE_OFFSET; +#endif + kern_linear_pte_xor[0] |= (page_cache4v_flag | _PAGE_P_4V | + _PAGE_W_4V); + + for (i = 1; i < 4; i++) + kern_linear_pte_xor[i] = kern_linear_pte_xor[0]; + + pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V | + __ACCESS_BITS_4V | _PAGE_E_4V); + + _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V | + _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V | + _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V | + _PAGE_SZ64K_4V | _PAGE_SZ8K_4V); + + page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | page_cache4v_flag; + page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag | + __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V); + page_copy = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag | + __ACCESS_BITS_4V | _PAGE_EXEC_4V); + page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag | + __ACCESS_BITS_4V | _PAGE_EXEC_4V); + + page_exec_bit = _PAGE_EXEC_4V; + + prot_init_common(page_none, page_shared, page_copy, page_readonly, + page_exec_bit); +} + +unsigned long pte_sz_bits(unsigned long sz) +{ + if (tlb_type == hypervisor) { + switch (sz) { + case 8 * 1024: + default: + return _PAGE_SZ8K_4V; + case 64 * 1024: + return _PAGE_SZ64K_4V; + case 512 * 1024: + return _PAGE_SZ512K_4V; + case 4 * 1024 * 1024: + return _PAGE_SZ4MB_4V; + } + } else { + switch (sz) { + case 8 * 1024: + default: + return _PAGE_SZ8K_4U; + case 64 * 1024: + return _PAGE_SZ64K_4U; + case 512 * 1024: + return _PAGE_SZ512K_4U; + case 4 * 1024 * 1024: + return _PAGE_SZ4MB_4U; + } + } +} + +pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size) +{ + pte_t pte; + + pte_val(pte) = page | pgprot_val(pgprot_noncached(prot)); + pte_val(pte) |= (((unsigned long)space) << 32); + pte_val(pte) |= pte_sz_bits(page_size); + + return pte; +} + +static unsigned long kern_large_tte(unsigned long paddr) +{ + unsigned long val; + + val = (_PAGE_VALID | _PAGE_SZ4MB_4U | + _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U | + _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U); + if (tlb_type == hypervisor) + val = (_PAGE_VALID | _PAGE_SZ4MB_4V | + page_cache4v_flag | _PAGE_P_4V | + _PAGE_EXEC_4V | _PAGE_W_4V); + + return val | paddr; +} + +/* If not locked, zap it. */ +void __flush_tlb_all(void) +{ + unsigned long pstate; + int i; + + __asm__ __volatile__("flushw\n\t" + "rdpr %%pstate, %0\n\t" + "wrpr %0, %1, %%pstate" + : "=r" (pstate) + : "i" (PSTATE_IE)); + if (tlb_type == hypervisor) { + sun4v_mmu_demap_all(); + } else if (tlb_type == spitfire) { + for (i = 0; i < 64; i++) { + /* Spitfire Errata #32 workaround */ + /* NOTE: Always runs on spitfire, so no + * cheetah+ page size encodings. + */ + __asm__ __volatile__("stxa %0, [%1] %2\n\t" + "flush %%g6" + : /* No outputs */ + : "r" (0), + "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU)); + + if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) { + __asm__ __volatile__("stxa %%g0, [%0] %1\n\t" + "membar #Sync" + : /* no outputs */ + : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU)); + spitfire_put_dtlb_data(i, 0x0UL); + } + + /* Spitfire Errata #32 workaround */ + /* NOTE: Always runs on spitfire, so no + * cheetah+ page size encodings. + */ + __asm__ __volatile__("stxa %0, [%1] %2\n\t" + "flush %%g6" + : /* No outputs */ + : "r" (0), + "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU)); + + if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) { + __asm__ __volatile__("stxa %%g0, [%0] %1\n\t" + "membar #Sync" + : /* no outputs */ + : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU)); + spitfire_put_itlb_data(i, 0x0UL); + } + } + } else if (tlb_type == cheetah || tlb_type == cheetah_plus) { + cheetah_flush_dtlb_all(); + cheetah_flush_itlb_all(); + } + __asm__ __volatile__("wrpr %0, 0, %%pstate" + : : "r" (pstate)); +} + +pte_t *pte_alloc_one_kernel(struct mm_struct *mm) +{ + struct page *page = alloc_page(GFP_KERNEL | __GFP_ZERO); + pte_t *pte = NULL; + + if (page) + pte = (pte_t *) page_address(page); + + return pte; +} + +pgtable_t pte_alloc_one(struct mm_struct *mm) +{ + struct page *page = alloc_page(GFP_KERNEL | __GFP_ZERO); + if (!page) + return NULL; + if (!pgtable_pte_page_ctor(page)) { + __free_page(page); + return NULL; + } + return (pte_t *) page_address(page); +} + +void pte_free_kernel(struct mm_struct *mm, pte_t *pte) +{ + free_page((unsigned long)pte); +} + +static void __pte_free(pgtable_t pte) +{ + struct page *page = virt_to_page(pte); + + pgtable_pte_page_dtor(page); + __free_page(page); +} + +void pte_free(struct mm_struct *mm, pgtable_t pte) +{ + __pte_free(pte); +} + +void pgtable_free(void *table, bool is_page) +{ + if (is_page) + __pte_free(table); + else + kmem_cache_free(pgtable_cache, table); +} + +#ifdef CONFIG_TRANSPARENT_HUGEPAGE +void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr, + pmd_t *pmd) +{ + unsigned long pte, flags; + struct mm_struct *mm; + pmd_t entry = *pmd; + + if (!pmd_large(entry) || !pmd_young(entry)) + return; + + pte = pmd_val(entry); + + /* Don't insert a non-valid PMD into the TSB, we'll deadlock. */ + if (!(pte & _PAGE_VALID)) + return; + + /* We are fabricating 8MB pages using 4MB real hw pages. */ + pte |= (addr & (1UL << REAL_HPAGE_SHIFT)); + + mm = vma->vm_mm; + + spin_lock_irqsave(&mm->context.lock, flags); + + if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL) + __update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT, + addr, pte); + + spin_unlock_irqrestore(&mm->context.lock, flags); +} +#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ + +#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE) +static void context_reload(void *__data) +{ + struct mm_struct *mm = __data; + + if (mm == current->mm) + load_secondary_context(mm); +} + +void hugetlb_setup(struct pt_regs *regs) +{ + struct mm_struct *mm = current->mm; + struct tsb_config *tp; + + if (faulthandler_disabled() || !mm) { + const struct exception_table_entry *entry; + + entry = search_exception_tables(regs->tpc); + if (entry) { + regs->tpc = entry->fixup; + regs->tnpc = regs->tpc + 4; + return; + } + pr_alert("Unexpected HugeTLB setup in atomic context.\n"); + die_if_kernel("HugeTSB in atomic", regs); + } + + tp = &mm->context.tsb_block[MM_TSB_HUGE]; + if (likely(tp->tsb == NULL)) + tsb_grow(mm, MM_TSB_HUGE, 0); + + tsb_context_switch(mm); + smp_tsb_sync(mm); + + /* On UltraSPARC-III+ and later, configure the second half of + * the Data-TLB for huge pages. + */ + if (tlb_type == cheetah_plus) { + bool need_context_reload = false; + unsigned long ctx; + + spin_lock_irq(&ctx_alloc_lock); + ctx = mm->context.sparc64_ctx_val; + ctx &= ~CTX_PGSZ_MASK; + ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT; + ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT; + + if (ctx != mm->context.sparc64_ctx_val) { + /* When changing the page size fields, we + * must perform a context flush so that no + * stale entries match. This flush must + * occur with the original context register + * settings. + */ + do_flush_tlb_mm(mm); + + /* Reload the context register of all processors + * also executing in this address space. + */ + mm->context.sparc64_ctx_val = ctx; + need_context_reload = true; + } + spin_unlock_irq(&ctx_alloc_lock); + + if (need_context_reload) + on_each_cpu(context_reload, mm, 0); + } +} +#endif + +static struct resource code_resource = { + .name = "Kernel code", + .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM +}; + +static struct resource data_resource = { + .name = "Kernel data", + .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM +}; + +static struct resource bss_resource = { + .name = "Kernel bss", + .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM +}; + +static inline resource_size_t compute_kern_paddr(void *addr) +{ + return (resource_size_t) (addr - KERNBASE + kern_base); +} + +static void __init kernel_lds_init(void) +{ + code_resource.start = compute_kern_paddr(_text); + code_resource.end = compute_kern_paddr(_etext - 1); + data_resource.start = compute_kern_paddr(_etext); + data_resource.end = compute_kern_paddr(_edata - 1); + bss_resource.start = compute_kern_paddr(__bss_start); + bss_resource.end = compute_kern_paddr(_end - 1); +} + +static int __init report_memory(void) +{ + int i; + struct resource *res; + + kernel_lds_init(); + + for (i = 0; i < pavail_ents; i++) { + res = kzalloc(sizeof(struct resource), GFP_KERNEL); + + if (!res) { + pr_warn("Failed to allocate source.\n"); + break; + } + + res->name = "System RAM"; + res->start = pavail[i].phys_addr; + res->end = pavail[i].phys_addr + pavail[i].reg_size - 1; + res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM; + + if (insert_resource(&iomem_resource, res) < 0) { + pr_warn("Resource insertion failed.\n"); + break; + } + + insert_resource(res, &code_resource); + insert_resource(res, &data_resource); + insert_resource(res, &bss_resource); + } + + return 0; +} +arch_initcall(report_memory); + +#ifdef CONFIG_SMP +#define do_flush_tlb_kernel_range smp_flush_tlb_kernel_range +#else +#define do_flush_tlb_kernel_range __flush_tlb_kernel_range +#endif + +void flush_tlb_kernel_range(unsigned long start, unsigned long end) +{ + if (start < HI_OBP_ADDRESS && end > LOW_OBP_ADDRESS) { + if (start < LOW_OBP_ADDRESS) { + flush_tsb_kernel_range(start, LOW_OBP_ADDRESS); + do_flush_tlb_kernel_range(start, LOW_OBP_ADDRESS); + } + if (end > HI_OBP_ADDRESS) { + flush_tsb_kernel_range(HI_OBP_ADDRESS, end); + do_flush_tlb_kernel_range(HI_OBP_ADDRESS, end); + } + } else { + flush_tsb_kernel_range(start, end); + do_flush_tlb_kernel_range(start, end); + } +} + +void copy_user_highpage(struct page *to, struct page *from, + unsigned long vaddr, struct vm_area_struct *vma) +{ + char *vfrom, *vto; + + vfrom = kmap_atomic(from); + vto = kmap_atomic(to); + copy_user_page(vto, vfrom, vaddr, to); + kunmap_atomic(vto); + kunmap_atomic(vfrom); + + /* If this page has ADI enabled, copy over any ADI tags + * as well + */ + if (vma->vm_flags & VM_SPARC_ADI) { + unsigned long pfrom, pto, i, adi_tag; + + pfrom = page_to_phys(from); + pto = page_to_phys(to); + + for (i = pfrom; i < (pfrom + PAGE_SIZE); i += adi_blksize()) { + asm volatile("ldxa [%1] %2, %0\n\t" + : "=r" (adi_tag) + : "r" (i), "i" (ASI_MCD_REAL)); + asm volatile("stxa %0, [%1] %2\n\t" + : + : "r" (adi_tag), "r" (pto), + "i" (ASI_MCD_REAL)); + pto += adi_blksize(); + } + asm volatile("membar #Sync\n\t"); + } +} +EXPORT_SYMBOL(copy_user_highpage); + +void copy_highpage(struct page *to, struct page *from) +{ + char *vfrom, *vto; + + vfrom = kmap_atomic(from); + vto = kmap_atomic(to); + copy_page(vto, vfrom); + kunmap_atomic(vto); + kunmap_atomic(vfrom); + + /* If this platform is ADI enabled, copy any ADI tags + * as well + */ + if (adi_capable()) { + unsigned long pfrom, pto, i, adi_tag; + + pfrom = page_to_phys(from); + pto = page_to_phys(to); + + for (i = pfrom; i < (pfrom + PAGE_SIZE); i += adi_blksize()) { + asm volatile("ldxa [%1] %2, %0\n\t" + : "=r" (adi_tag) + : "r" (i), "i" (ASI_MCD_REAL)); + asm volatile("stxa %0, [%1] %2\n\t" + : + : "r" (adi_tag), "r" (pto), + "i" (ASI_MCD_REAL)); + pto += adi_blksize(); + } + asm volatile("membar #Sync\n\t"); + } +} +EXPORT_SYMBOL(copy_highpage); + +pgprot_t vm_get_page_prot(unsigned long vm_flags) +{ + unsigned long prot = pgprot_val(protection_map[vm_flags & + (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]); + + if (vm_flags & VM_SPARC_ADI) + prot |= _PAGE_MCD_4V; + + return __pgprot(prot); +} +EXPORT_SYMBOL(vm_get_page_prot); |