diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:49:45 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:49:45 +0000 |
commit | 2c3c1048746a4622d8c89a29670120dc8fab93c4 (patch) | |
tree | 848558de17fb3008cdf4d861b01ac7781903ce39 /arch/x86/mm/fault.c | |
parent | Initial commit. (diff) | |
download | linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.tar.xz linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.zip |
Adding upstream version 6.1.76.upstream/6.1.76
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to '')
-rw-r--r-- | arch/x86/mm/fault.c | 1531 |
1 files changed, 1531 insertions, 0 deletions
diff --git a/arch/x86/mm/fault.c b/arch/x86/mm/fault.c new file mode 100644 index 000000000..1dbbad731 --- /dev/null +++ b/arch/x86/mm/fault.c @@ -0,0 +1,1531 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright (C) 1995 Linus Torvalds + * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs. + * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar + */ +#include <linux/sched.h> /* test_thread_flag(), ... */ +#include <linux/sched/task_stack.h> /* task_stack_*(), ... */ +#include <linux/kdebug.h> /* oops_begin/end, ... */ +#include <linux/extable.h> /* search_exception_tables */ +#include <linux/memblock.h> /* max_low_pfn */ +#include <linux/kfence.h> /* kfence_handle_page_fault */ +#include <linux/kprobes.h> /* NOKPROBE_SYMBOL, ... */ +#include <linux/mmiotrace.h> /* kmmio_handler, ... */ +#include <linux/perf_event.h> /* perf_sw_event */ +#include <linux/hugetlb.h> /* hstate_index_to_shift */ +#include <linux/prefetch.h> /* prefetchw */ +#include <linux/context_tracking.h> /* exception_enter(), ... */ +#include <linux/uaccess.h> /* faulthandler_disabled() */ +#include <linux/efi.h> /* efi_crash_gracefully_on_page_fault()*/ +#include <linux/mm_types.h> + +#include <asm/cpufeature.h> /* boot_cpu_has, ... */ +#include <asm/traps.h> /* dotraplinkage, ... */ +#include <asm/fixmap.h> /* VSYSCALL_ADDR */ +#include <asm/vsyscall.h> /* emulate_vsyscall */ +#include <asm/vm86.h> /* struct vm86 */ +#include <asm/mmu_context.h> /* vma_pkey() */ +#include <asm/efi.h> /* efi_crash_gracefully_on_page_fault()*/ +#include <asm/desc.h> /* store_idt(), ... */ +#include <asm/cpu_entry_area.h> /* exception stack */ +#include <asm/pgtable_areas.h> /* VMALLOC_START, ... */ +#include <asm/kvm_para.h> /* kvm_handle_async_pf */ +#include <asm/vdso.h> /* fixup_vdso_exception() */ +#include <asm/irq_stack.h> + +#define CREATE_TRACE_POINTS +#include <asm/trace/exceptions.h> + +/* + * Returns 0 if mmiotrace is disabled, or if the fault is not + * handled by mmiotrace: + */ +static nokprobe_inline int +kmmio_fault(struct pt_regs *regs, unsigned long addr) +{ + if (unlikely(is_kmmio_active())) + if (kmmio_handler(regs, addr) == 1) + return -1; + return 0; +} + +/* + * Prefetch quirks: + * + * 32-bit mode: + * + * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch. + * Check that here and ignore it. This is AMD erratum #91. + * + * 64-bit mode: + * + * Sometimes the CPU reports invalid exceptions on prefetch. + * Check that here and ignore it. + * + * Opcode checker based on code by Richard Brunner. + */ +static inline int +check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr, + unsigned char opcode, int *prefetch) +{ + unsigned char instr_hi = opcode & 0xf0; + unsigned char instr_lo = opcode & 0x0f; + + switch (instr_hi) { + case 0x20: + case 0x30: + /* + * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes. + * In X86_64 long mode, the CPU will signal invalid + * opcode if some of these prefixes are present so + * X86_64 will never get here anyway + */ + return ((instr_lo & 7) == 0x6); +#ifdef CONFIG_X86_64 + case 0x40: + /* + * In 64-bit mode 0x40..0x4F are valid REX prefixes + */ + return (!user_mode(regs) || user_64bit_mode(regs)); +#endif + case 0x60: + /* 0x64 thru 0x67 are valid prefixes in all modes. */ + return (instr_lo & 0xC) == 0x4; + case 0xF0: + /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */ + return !instr_lo || (instr_lo>>1) == 1; + case 0x00: + /* Prefetch instruction is 0x0F0D or 0x0F18 */ + if (get_kernel_nofault(opcode, instr)) + return 0; + + *prefetch = (instr_lo == 0xF) && + (opcode == 0x0D || opcode == 0x18); + return 0; + default: + return 0; + } +} + +static bool is_amd_k8_pre_npt(void) +{ + struct cpuinfo_x86 *c = &boot_cpu_data; + + return unlikely(IS_ENABLED(CONFIG_CPU_SUP_AMD) && + c->x86_vendor == X86_VENDOR_AMD && + c->x86 == 0xf && c->x86_model < 0x40); +} + +static int +is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr) +{ + unsigned char *max_instr; + unsigned char *instr; + int prefetch = 0; + + /* Erratum #91 affects AMD K8, pre-NPT CPUs */ + if (!is_amd_k8_pre_npt()) + return 0; + + /* + * If it was a exec (instruction fetch) fault on NX page, then + * do not ignore the fault: + */ + if (error_code & X86_PF_INSTR) + return 0; + + instr = (void *)convert_ip_to_linear(current, regs); + max_instr = instr + 15; + + /* + * This code has historically always bailed out if IP points to a + * not-present page (e.g. due to a race). No one has ever + * complained about this. + */ + pagefault_disable(); + + while (instr < max_instr) { + unsigned char opcode; + + if (user_mode(regs)) { + if (get_user(opcode, (unsigned char __user *) instr)) + break; + } else { + if (get_kernel_nofault(opcode, instr)) + break; + } + + instr++; + + if (!check_prefetch_opcode(regs, instr, opcode, &prefetch)) + break; + } + + pagefault_enable(); + return prefetch; +} + +DEFINE_SPINLOCK(pgd_lock); +LIST_HEAD(pgd_list); + +#ifdef CONFIG_X86_32 +static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address) +{ + unsigned index = pgd_index(address); + pgd_t *pgd_k; + p4d_t *p4d, *p4d_k; + pud_t *pud, *pud_k; + pmd_t *pmd, *pmd_k; + + pgd += index; + pgd_k = init_mm.pgd + index; + + if (!pgd_present(*pgd_k)) + return NULL; + + /* + * set_pgd(pgd, *pgd_k); here would be useless on PAE + * and redundant with the set_pmd() on non-PAE. As would + * set_p4d/set_pud. + */ + p4d = p4d_offset(pgd, address); + p4d_k = p4d_offset(pgd_k, address); + if (!p4d_present(*p4d_k)) + return NULL; + + pud = pud_offset(p4d, address); + pud_k = pud_offset(p4d_k, address); + if (!pud_present(*pud_k)) + return NULL; + + pmd = pmd_offset(pud, address); + pmd_k = pmd_offset(pud_k, address); + + if (pmd_present(*pmd) != pmd_present(*pmd_k)) + set_pmd(pmd, *pmd_k); + + if (!pmd_present(*pmd_k)) + return NULL; + else + BUG_ON(pmd_pfn(*pmd) != pmd_pfn(*pmd_k)); + + return pmd_k; +} + +/* + * Handle a fault on the vmalloc or module mapping area + * + * This is needed because there is a race condition between the time + * when the vmalloc mapping code updates the PMD to the point in time + * where it synchronizes this update with the other page-tables in the + * system. + * + * In this race window another thread/CPU can map an area on the same + * PMD, finds it already present and does not synchronize it with the + * rest of the system yet. As a result v[mz]alloc might return areas + * which are not mapped in every page-table in the system, causing an + * unhandled page-fault when they are accessed. + */ +static noinline int vmalloc_fault(unsigned long address) +{ + unsigned long pgd_paddr; + pmd_t *pmd_k; + pte_t *pte_k; + + /* Make sure we are in vmalloc area: */ + if (!(address >= VMALLOC_START && address < VMALLOC_END)) + return -1; + + /* + * Synchronize this task's top level page-table + * with the 'reference' page table. + * + * Do _not_ use "current" here. We might be inside + * an interrupt in the middle of a task switch.. + */ + pgd_paddr = read_cr3_pa(); + pmd_k = vmalloc_sync_one(__va(pgd_paddr), address); + if (!pmd_k) + return -1; + + if (pmd_large(*pmd_k)) + return 0; + + pte_k = pte_offset_kernel(pmd_k, address); + if (!pte_present(*pte_k)) + return -1; + + return 0; +} +NOKPROBE_SYMBOL(vmalloc_fault); + +static void __arch_sync_kernel_mappings(unsigned long start, unsigned long end) +{ + unsigned long addr; + + for (addr = start & PMD_MASK; + addr >= TASK_SIZE_MAX && addr < VMALLOC_END; + addr += PMD_SIZE) { + struct page *page; + + spin_lock(&pgd_lock); + list_for_each_entry(page, &pgd_list, lru) { + spinlock_t *pgt_lock; + + /* the pgt_lock only for Xen */ + pgt_lock = &pgd_page_get_mm(page)->page_table_lock; + + spin_lock(pgt_lock); + vmalloc_sync_one(page_address(page), addr); + spin_unlock(pgt_lock); + } + spin_unlock(&pgd_lock); + } +} + +void arch_sync_kernel_mappings(unsigned long start, unsigned long end) +{ + __arch_sync_kernel_mappings(start, end); +#ifdef CONFIG_KMSAN + /* + * KMSAN maintains two additional metadata page mappings for the + * [VMALLOC_START, VMALLOC_END) range. These mappings start at + * KMSAN_VMALLOC_SHADOW_START and KMSAN_VMALLOC_ORIGIN_START and + * have to be synced together with the vmalloc memory mapping. + */ + if (start >= VMALLOC_START && end < VMALLOC_END) { + __arch_sync_kernel_mappings( + start - VMALLOC_START + KMSAN_VMALLOC_SHADOW_START, + end - VMALLOC_START + KMSAN_VMALLOC_SHADOW_START); + __arch_sync_kernel_mappings( + start - VMALLOC_START + KMSAN_VMALLOC_ORIGIN_START, + end - VMALLOC_START + KMSAN_VMALLOC_ORIGIN_START); + } +#endif +} + +static bool low_pfn(unsigned long pfn) +{ + return pfn < max_low_pfn; +} + +static void dump_pagetable(unsigned long address) +{ + pgd_t *base = __va(read_cr3_pa()); + pgd_t *pgd = &base[pgd_index(address)]; + p4d_t *p4d; + pud_t *pud; + pmd_t *pmd; + pte_t *pte; + +#ifdef CONFIG_X86_PAE + pr_info("*pdpt = %016Lx ", pgd_val(*pgd)); + if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd)) + goto out; +#define pr_pde pr_cont +#else +#define pr_pde pr_info +#endif + p4d = p4d_offset(pgd, address); + pud = pud_offset(p4d, address); + pmd = pmd_offset(pud, address); + pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd)); +#undef pr_pde + + /* + * We must not directly access the pte in the highpte + * case if the page table is located in highmem. + * And let's rather not kmap-atomic the pte, just in case + * it's allocated already: + */ + if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd)) + goto out; + + pte = pte_offset_kernel(pmd, address); + pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte)); +out: + pr_cont("\n"); +} + +#else /* CONFIG_X86_64: */ + +#ifdef CONFIG_CPU_SUP_AMD +static const char errata93_warning[] = +KERN_ERR +"******* Your BIOS seems to not contain a fix for K8 errata #93\n" +"******* Working around it, but it may cause SEGVs or burn power.\n" +"******* Please consider a BIOS update.\n" +"******* Disabling USB legacy in the BIOS may also help.\n"; +#endif + +static int bad_address(void *p) +{ + unsigned long dummy; + + return get_kernel_nofault(dummy, (unsigned long *)p); +} + +static void dump_pagetable(unsigned long address) +{ + pgd_t *base = __va(read_cr3_pa()); + pgd_t *pgd = base + pgd_index(address); + p4d_t *p4d; + pud_t *pud; + pmd_t *pmd; + pte_t *pte; + + if (bad_address(pgd)) + goto bad; + + pr_info("PGD %lx ", pgd_val(*pgd)); + + if (!pgd_present(*pgd)) + goto out; + + p4d = p4d_offset(pgd, address); + if (bad_address(p4d)) + goto bad; + + pr_cont("P4D %lx ", p4d_val(*p4d)); + if (!p4d_present(*p4d) || p4d_large(*p4d)) + goto out; + + pud = pud_offset(p4d, address); + if (bad_address(pud)) + goto bad; + + pr_cont("PUD %lx ", pud_val(*pud)); + if (!pud_present(*pud) || pud_large(*pud)) + goto out; + + pmd = pmd_offset(pud, address); + if (bad_address(pmd)) + goto bad; + + pr_cont("PMD %lx ", pmd_val(*pmd)); + if (!pmd_present(*pmd) || pmd_large(*pmd)) + goto out; + + pte = pte_offset_kernel(pmd, address); + if (bad_address(pte)) + goto bad; + + pr_cont("PTE %lx", pte_val(*pte)); +out: + pr_cont("\n"); + return; +bad: + pr_info("BAD\n"); +} + +#endif /* CONFIG_X86_64 */ + +/* + * Workaround for K8 erratum #93 & buggy BIOS. + * + * BIOS SMM functions are required to use a specific workaround + * to avoid corruption of the 64bit RIP register on C stepping K8. + * + * A lot of BIOS that didn't get tested properly miss this. + * + * The OS sees this as a page fault with the upper 32bits of RIP cleared. + * Try to work around it here. + * + * Note we only handle faults in kernel here. + * Does nothing on 32-bit. + */ +static int is_errata93(struct pt_regs *regs, unsigned long address) +{ +#if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD) + if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD + || boot_cpu_data.x86 != 0xf) + return 0; + + if (user_mode(regs)) + return 0; + + if (address != regs->ip) + return 0; + + if ((address >> 32) != 0) + return 0; + + address |= 0xffffffffUL << 32; + if ((address >= (u64)_stext && address <= (u64)_etext) || + (address >= MODULES_VADDR && address <= MODULES_END)) { + printk_once(errata93_warning); + regs->ip = address; + return 1; + } +#endif + return 0; +} + +/* + * Work around K8 erratum #100 K8 in compat mode occasionally jumps + * to illegal addresses >4GB. + * + * We catch this in the page fault handler because these addresses + * are not reachable. Just detect this case and return. Any code + * segment in LDT is compatibility mode. + */ +static int is_errata100(struct pt_regs *regs, unsigned long address) +{ +#ifdef CONFIG_X86_64 + if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32)) + return 1; +#endif + return 0; +} + +/* Pentium F0 0F C7 C8 bug workaround: */ +static int is_f00f_bug(struct pt_regs *regs, unsigned long error_code, + unsigned long address) +{ +#ifdef CONFIG_X86_F00F_BUG + if (boot_cpu_has_bug(X86_BUG_F00F) && !(error_code & X86_PF_USER) && + idt_is_f00f_address(address)) { + handle_invalid_op(regs); + return 1; + } +#endif + return 0; +} + +static void show_ldttss(const struct desc_ptr *gdt, const char *name, u16 index) +{ + u32 offset = (index >> 3) * sizeof(struct desc_struct); + unsigned long addr; + struct ldttss_desc desc; + + if (index == 0) { + pr_alert("%s: NULL\n", name); + return; + } + + if (offset + sizeof(struct ldttss_desc) >= gdt->size) { + pr_alert("%s: 0x%hx -- out of bounds\n", name, index); + return; + } + + if (copy_from_kernel_nofault(&desc, (void *)(gdt->address + offset), + sizeof(struct ldttss_desc))) { + pr_alert("%s: 0x%hx -- GDT entry is not readable\n", + name, index); + return; + } + + addr = desc.base0 | (desc.base1 << 16) | ((unsigned long)desc.base2 << 24); +#ifdef CONFIG_X86_64 + addr |= ((u64)desc.base3 << 32); +#endif + pr_alert("%s: 0x%hx -- base=0x%lx limit=0x%x\n", + name, index, addr, (desc.limit0 | (desc.limit1 << 16))); +} + +static void +show_fault_oops(struct pt_regs *regs, unsigned long error_code, unsigned long address) +{ + if (!oops_may_print()) + return; + + if (error_code & X86_PF_INSTR) { + unsigned int level; + pgd_t *pgd; + pte_t *pte; + + pgd = __va(read_cr3_pa()); + pgd += pgd_index(address); + + pte = lookup_address_in_pgd(pgd, address, &level); + + if (pte && pte_present(*pte) && !pte_exec(*pte)) + pr_crit("kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n", + from_kuid(&init_user_ns, current_uid())); + if (pte && pte_present(*pte) && pte_exec(*pte) && + (pgd_flags(*pgd) & _PAGE_USER) && + (__read_cr4() & X86_CR4_SMEP)) + pr_crit("unable to execute userspace code (SMEP?) (uid: %d)\n", + from_kuid(&init_user_ns, current_uid())); + } + + if (address < PAGE_SIZE && !user_mode(regs)) + pr_alert("BUG: kernel NULL pointer dereference, address: %px\n", + (void *)address); + else + pr_alert("BUG: unable to handle page fault for address: %px\n", + (void *)address); + + pr_alert("#PF: %s %s in %s mode\n", + (error_code & X86_PF_USER) ? "user" : "supervisor", + (error_code & X86_PF_INSTR) ? "instruction fetch" : + (error_code & X86_PF_WRITE) ? "write access" : + "read access", + user_mode(regs) ? "user" : "kernel"); + pr_alert("#PF: error_code(0x%04lx) - %s\n", error_code, + !(error_code & X86_PF_PROT) ? "not-present page" : + (error_code & X86_PF_RSVD) ? "reserved bit violation" : + (error_code & X86_PF_PK) ? "protection keys violation" : + "permissions violation"); + + if (!(error_code & X86_PF_USER) && user_mode(regs)) { + struct desc_ptr idt, gdt; + u16 ldtr, tr; + + /* + * This can happen for quite a few reasons. The more obvious + * ones are faults accessing the GDT, or LDT. Perhaps + * surprisingly, if the CPU tries to deliver a benign or + * contributory exception from user code and gets a page fault + * during delivery, the page fault can be delivered as though + * it originated directly from user code. This could happen + * due to wrong permissions on the IDT, GDT, LDT, TSS, or + * kernel or IST stack. + */ + store_idt(&idt); + + /* Usable even on Xen PV -- it's just slow. */ + native_store_gdt(&gdt); + + pr_alert("IDT: 0x%lx (limit=0x%hx) GDT: 0x%lx (limit=0x%hx)\n", + idt.address, idt.size, gdt.address, gdt.size); + + store_ldt(ldtr); + show_ldttss(&gdt, "LDTR", ldtr); + + store_tr(tr); + show_ldttss(&gdt, "TR", tr); + } + + dump_pagetable(address); +} + +static noinline void +pgtable_bad(struct pt_regs *regs, unsigned long error_code, + unsigned long address) +{ + struct task_struct *tsk; + unsigned long flags; + int sig; + + flags = oops_begin(); + tsk = current; + sig = SIGKILL; + + printk(KERN_ALERT "%s: Corrupted page table at address %lx\n", + tsk->comm, address); + dump_pagetable(address); + + if (__die("Bad pagetable", regs, error_code)) + sig = 0; + + oops_end(flags, regs, sig); +} + +static void sanitize_error_code(unsigned long address, + unsigned long *error_code) +{ + /* + * To avoid leaking information about the kernel page + * table layout, pretend that user-mode accesses to + * kernel addresses are always protection faults. + * + * NB: This means that failed vsyscalls with vsyscall=none + * will have the PROT bit. This doesn't leak any + * information and does not appear to cause any problems. + */ + if (address >= TASK_SIZE_MAX) + *error_code |= X86_PF_PROT; +} + +static void set_signal_archinfo(unsigned long address, + unsigned long error_code) +{ + struct task_struct *tsk = current; + + tsk->thread.trap_nr = X86_TRAP_PF; + tsk->thread.error_code = error_code | X86_PF_USER; + tsk->thread.cr2 = address; +} + +static noinline void +page_fault_oops(struct pt_regs *regs, unsigned long error_code, + unsigned long address) +{ +#ifdef CONFIG_VMAP_STACK + struct stack_info info; +#endif + unsigned long flags; + int sig; + + if (user_mode(regs)) { + /* + * Implicit kernel access from user mode? Skip the stack + * overflow and EFI special cases. + */ + goto oops; + } + +#ifdef CONFIG_VMAP_STACK + /* + * Stack overflow? During boot, we can fault near the initial + * stack in the direct map, but that's not an overflow -- check + * that we're in vmalloc space to avoid this. + */ + if (is_vmalloc_addr((void *)address) && + get_stack_guard_info((void *)address, &info)) { + /* + * We're likely to be running with very little stack space + * left. It's plausible that we'd hit this condition but + * double-fault even before we get this far, in which case + * we're fine: the double-fault handler will deal with it. + * + * We don't want to make it all the way into the oops code + * and then double-fault, though, because we're likely to + * break the console driver and lose most of the stack dump. + */ + call_on_stack(__this_cpu_ist_top_va(DF) - sizeof(void*), + handle_stack_overflow, + ASM_CALL_ARG3, + , [arg1] "r" (regs), [arg2] "r" (address), [arg3] "r" (&info)); + + unreachable(); + } +#endif + + /* + * Buggy firmware could access regions which might page fault. If + * this happens, EFI has a special OOPS path that will try to + * avoid hanging the system. + */ + if (IS_ENABLED(CONFIG_EFI)) + efi_crash_gracefully_on_page_fault(address); + + /* Only not-present faults should be handled by KFENCE. */ + if (!(error_code & X86_PF_PROT) && + kfence_handle_page_fault(address, error_code & X86_PF_WRITE, regs)) + return; + +oops: + /* + * Oops. The kernel tried to access some bad page. We'll have to + * terminate things with extreme prejudice: + */ + flags = oops_begin(); + + show_fault_oops(regs, error_code, address); + + if (task_stack_end_corrupted(current)) + printk(KERN_EMERG "Thread overran stack, or stack corrupted\n"); + + sig = SIGKILL; + if (__die("Oops", regs, error_code)) + sig = 0; + + /* Executive summary in case the body of the oops scrolled away */ + printk(KERN_DEFAULT "CR2: %016lx\n", address); + + oops_end(flags, regs, sig); +} + +static noinline void +kernelmode_fixup_or_oops(struct pt_regs *regs, unsigned long error_code, + unsigned long address, int signal, int si_code, + u32 pkey) +{ + WARN_ON_ONCE(user_mode(regs)); + + /* Are we prepared to handle this kernel fault? */ + if (fixup_exception(regs, X86_TRAP_PF, error_code, address)) { + /* + * Any interrupt that takes a fault gets the fixup. This makes + * the below recursive fault logic only apply to a faults from + * task context. + */ + if (in_interrupt()) + return; + + /* + * Per the above we're !in_interrupt(), aka. task context. + * + * In this case we need to make sure we're not recursively + * faulting through the emulate_vsyscall() logic. + */ + if (current->thread.sig_on_uaccess_err && signal) { + sanitize_error_code(address, &error_code); + + set_signal_archinfo(address, error_code); + + if (si_code == SEGV_PKUERR) { + force_sig_pkuerr((void __user *)address, pkey); + } else { + /* XXX: hwpoison faults will set the wrong code. */ + force_sig_fault(signal, si_code, (void __user *)address); + } + } + + /* + * Barring that, we can do the fixup and be happy. + */ + return; + } + + /* + * AMD erratum #91 manifests as a spurious page fault on a PREFETCH + * instruction. + */ + if (is_prefetch(regs, error_code, address)) + return; + + page_fault_oops(regs, error_code, address); +} + +/* + * Print out info about fatal segfaults, if the show_unhandled_signals + * sysctl is set: + */ +static inline void +show_signal_msg(struct pt_regs *regs, unsigned long error_code, + unsigned long address, struct task_struct *tsk) +{ + const char *loglvl = task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG; + /* This is a racy snapshot, but it's better than nothing. */ + int cpu = raw_smp_processor_id(); + + if (!unhandled_signal(tsk, SIGSEGV)) + return; + + if (!printk_ratelimit()) + return; + + printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx", + loglvl, tsk->comm, task_pid_nr(tsk), address, + (void *)regs->ip, (void *)regs->sp, error_code); + + print_vma_addr(KERN_CONT " in ", regs->ip); + + /* + * Dump the likely CPU where the fatal segfault happened. + * This can help identify faulty hardware. + */ + printk(KERN_CONT " likely on CPU %d (core %d, socket %d)", cpu, + topology_core_id(cpu), topology_physical_package_id(cpu)); + + + printk(KERN_CONT "\n"); + + show_opcodes(regs, loglvl); +} + +/* + * The (legacy) vsyscall page is the long page in the kernel portion + * of the address space that has user-accessible permissions. + */ +static bool is_vsyscall_vaddr(unsigned long vaddr) +{ + return unlikely((vaddr & PAGE_MASK) == VSYSCALL_ADDR); +} + +static void +__bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code, + unsigned long address, u32 pkey, int si_code) +{ + struct task_struct *tsk = current; + + if (!user_mode(regs)) { + kernelmode_fixup_or_oops(regs, error_code, address, + SIGSEGV, si_code, pkey); + return; + } + + if (!(error_code & X86_PF_USER)) { + /* Implicit user access to kernel memory -- just oops */ + page_fault_oops(regs, error_code, address); + return; + } + + /* + * User mode accesses just cause a SIGSEGV. + * It's possible to have interrupts off here: + */ + local_irq_enable(); + + /* + * Valid to do another page fault here because this one came + * from user space: + */ + if (is_prefetch(regs, error_code, address)) + return; + + if (is_errata100(regs, address)) + return; + + sanitize_error_code(address, &error_code); + + if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address)) + return; + + if (likely(show_unhandled_signals)) + show_signal_msg(regs, error_code, address, tsk); + + set_signal_archinfo(address, error_code); + + if (si_code == SEGV_PKUERR) + force_sig_pkuerr((void __user *)address, pkey); + else + force_sig_fault(SIGSEGV, si_code, (void __user *)address); + + local_irq_disable(); +} + +static noinline void +bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code, + unsigned long address) +{ + __bad_area_nosemaphore(regs, error_code, address, 0, SEGV_MAPERR); +} + +static void +__bad_area(struct pt_regs *regs, unsigned long error_code, + unsigned long address, u32 pkey, int si_code) +{ + struct mm_struct *mm = current->mm; + /* + * Something tried to access memory that isn't in our memory map.. + * Fix it, but check if it's kernel or user first.. + */ + mmap_read_unlock(mm); + + __bad_area_nosemaphore(regs, error_code, address, pkey, si_code); +} + +static inline bool bad_area_access_from_pkeys(unsigned long error_code, + struct vm_area_struct *vma) +{ + /* This code is always called on the current mm */ + bool foreign = false; + + if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) + return false; + if (error_code & X86_PF_PK) + return true; + /* this checks permission keys on the VMA: */ + if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE), + (error_code & X86_PF_INSTR), foreign)) + return true; + return false; +} + +static noinline void +bad_area_access_error(struct pt_regs *regs, unsigned long error_code, + unsigned long address, struct vm_area_struct *vma) +{ + /* + * This OSPKE check is not strictly necessary at runtime. + * But, doing it this way allows compiler optimizations + * if pkeys are compiled out. + */ + if (bad_area_access_from_pkeys(error_code, vma)) { + /* + * A protection key fault means that the PKRU value did not allow + * access to some PTE. Userspace can figure out what PKRU was + * from the XSAVE state. This function captures the pkey from + * the vma and passes it to userspace so userspace can discover + * which protection key was set on the PTE. + * + * If we get here, we know that the hardware signaled a X86_PF_PK + * fault and that there was a VMA once we got in the fault + * handler. It does *not* guarantee that the VMA we find here + * was the one that we faulted on. + * + * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4); + * 2. T1 : set PKRU to deny access to pkey=4, touches page + * 3. T1 : faults... + * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5); + * 5. T1 : enters fault handler, takes mmap_lock, etc... + * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really + * faulted on a pte with its pkey=4. + */ + u32 pkey = vma_pkey(vma); + + __bad_area(regs, error_code, address, pkey, SEGV_PKUERR); + } else { + __bad_area(regs, error_code, address, 0, SEGV_ACCERR); + } +} + +static void +do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address, + vm_fault_t fault) +{ + /* Kernel mode? Handle exceptions or die: */ + if (!user_mode(regs)) { + kernelmode_fixup_or_oops(regs, error_code, address, + SIGBUS, BUS_ADRERR, ARCH_DEFAULT_PKEY); + return; + } + + /* User-space => ok to do another page fault: */ + if (is_prefetch(regs, error_code, address)) + return; + + sanitize_error_code(address, &error_code); + + if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address)) + return; + + set_signal_archinfo(address, error_code); + +#ifdef CONFIG_MEMORY_FAILURE + if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) { + struct task_struct *tsk = current; + unsigned lsb = 0; + + pr_err( + "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n", + tsk->comm, tsk->pid, address); + if (fault & VM_FAULT_HWPOISON_LARGE) + lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault)); + if (fault & VM_FAULT_HWPOISON) + lsb = PAGE_SHIFT; + force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb); + return; + } +#endif + force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address); +} + +static int spurious_kernel_fault_check(unsigned long error_code, pte_t *pte) +{ + if ((error_code & X86_PF_WRITE) && !pte_write(*pte)) + return 0; + + if ((error_code & X86_PF_INSTR) && !pte_exec(*pte)) + return 0; + + return 1; +} + +/* + * Handle a spurious fault caused by a stale TLB entry. + * + * This allows us to lazily refresh the TLB when increasing the + * permissions of a kernel page (RO -> RW or NX -> X). Doing it + * eagerly is very expensive since that implies doing a full + * cross-processor TLB flush, even if no stale TLB entries exist + * on other processors. + * + * Spurious faults may only occur if the TLB contains an entry with + * fewer permission than the page table entry. Non-present (P = 0) + * and reserved bit (R = 1) faults are never spurious. + * + * There are no security implications to leaving a stale TLB when + * increasing the permissions on a page. + * + * Returns non-zero if a spurious fault was handled, zero otherwise. + * + * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3 + * (Optional Invalidation). + */ +static noinline int +spurious_kernel_fault(unsigned long error_code, unsigned long address) +{ + pgd_t *pgd; + p4d_t *p4d; + pud_t *pud; + pmd_t *pmd; + pte_t *pte; + int ret; + + /* + * Only writes to RO or instruction fetches from NX may cause + * spurious faults. + * + * These could be from user or supervisor accesses but the TLB + * is only lazily flushed after a kernel mapping protection + * change, so user accesses are not expected to cause spurious + * faults. + */ + if (error_code != (X86_PF_WRITE | X86_PF_PROT) && + error_code != (X86_PF_INSTR | X86_PF_PROT)) + return 0; + + pgd = init_mm.pgd + pgd_index(address); + if (!pgd_present(*pgd)) + return 0; + + p4d = p4d_offset(pgd, address); + if (!p4d_present(*p4d)) + return 0; + + if (p4d_large(*p4d)) + return spurious_kernel_fault_check(error_code, (pte_t *) p4d); + + pud = pud_offset(p4d, address); + if (!pud_present(*pud)) + return 0; + + if (pud_large(*pud)) + return spurious_kernel_fault_check(error_code, (pte_t *) pud); + + pmd = pmd_offset(pud, address); + if (!pmd_present(*pmd)) + return 0; + + if (pmd_large(*pmd)) + return spurious_kernel_fault_check(error_code, (pte_t *) pmd); + + pte = pte_offset_kernel(pmd, address); + if (!pte_present(*pte)) + return 0; + + ret = spurious_kernel_fault_check(error_code, pte); + if (!ret) + return 0; + + /* + * Make sure we have permissions in PMD. + * If not, then there's a bug in the page tables: + */ + ret = spurious_kernel_fault_check(error_code, (pte_t *) pmd); + WARN_ONCE(!ret, "PMD has incorrect permission bits\n"); + + return ret; +} +NOKPROBE_SYMBOL(spurious_kernel_fault); + +int show_unhandled_signals = 1; + +static inline int +access_error(unsigned long error_code, struct vm_area_struct *vma) +{ + /* This is only called for the current mm, so: */ + bool foreign = false; + + /* + * Read or write was blocked by protection keys. This is + * always an unconditional error and can never result in + * a follow-up action to resolve the fault, like a COW. + */ + if (error_code & X86_PF_PK) + return 1; + + /* + * SGX hardware blocked the access. This usually happens + * when the enclave memory contents have been destroyed, like + * after a suspend/resume cycle. In any case, the kernel can't + * fix the cause of the fault. Handle the fault as an access + * error even in cases where no actual access violation + * occurred. This allows userspace to rebuild the enclave in + * response to the signal. + */ + if (unlikely(error_code & X86_PF_SGX)) + return 1; + + /* + * Make sure to check the VMA so that we do not perform + * faults just to hit a X86_PF_PK as soon as we fill in a + * page. + */ + if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE), + (error_code & X86_PF_INSTR), foreign)) + return 1; + + if (error_code & X86_PF_WRITE) { + /* write, present and write, not present: */ + if (unlikely(!(vma->vm_flags & VM_WRITE))) + return 1; + return 0; + } + + /* read, present: */ + if (unlikely(error_code & X86_PF_PROT)) + return 1; + + /* read, not present: */ + if (unlikely(!vma_is_accessible(vma))) + return 1; + + return 0; +} + +bool fault_in_kernel_space(unsigned long address) +{ + /* + * On 64-bit systems, the vsyscall page is at an address above + * TASK_SIZE_MAX, but is not considered part of the kernel + * address space. + */ + if (IS_ENABLED(CONFIG_X86_64) && is_vsyscall_vaddr(address)) + return false; + + return address >= TASK_SIZE_MAX; +} + +/* + * Called for all faults where 'address' is part of the kernel address + * space. Might get called for faults that originate from *code* that + * ran in userspace or the kernel. + */ +static void +do_kern_addr_fault(struct pt_regs *regs, unsigned long hw_error_code, + unsigned long address) +{ + /* + * Protection keys exceptions only happen on user pages. We + * have no user pages in the kernel portion of the address + * space, so do not expect them here. + */ + WARN_ON_ONCE(hw_error_code & X86_PF_PK); + +#ifdef CONFIG_X86_32 + /* + * We can fault-in kernel-space virtual memory on-demand. The + * 'reference' page table is init_mm.pgd. + * + * NOTE! We MUST NOT take any locks for this case. We may + * be in an interrupt or a critical region, and should + * only copy the information from the master page table, + * nothing more. + * + * Before doing this on-demand faulting, ensure that the + * fault is not any of the following: + * 1. A fault on a PTE with a reserved bit set. + * 2. A fault caused by a user-mode access. (Do not demand- + * fault kernel memory due to user-mode accesses). + * 3. A fault caused by a page-level protection violation. + * (A demand fault would be on a non-present page which + * would have X86_PF_PROT==0). + * + * This is only needed to close a race condition on x86-32 in + * the vmalloc mapping/unmapping code. See the comment above + * vmalloc_fault() for details. On x86-64 the race does not + * exist as the vmalloc mappings don't need to be synchronized + * there. + */ + if (!(hw_error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) { + if (vmalloc_fault(address) >= 0) + return; + } +#endif + + if (is_f00f_bug(regs, hw_error_code, address)) + return; + + /* Was the fault spurious, caused by lazy TLB invalidation? */ + if (spurious_kernel_fault(hw_error_code, address)) + return; + + /* kprobes don't want to hook the spurious faults: */ + if (WARN_ON_ONCE(kprobe_page_fault(regs, X86_TRAP_PF))) + return; + + /* + * Note, despite being a "bad area", there are quite a few + * acceptable reasons to get here, such as erratum fixups + * and handling kernel code that can fault, like get_user(). + * + * Don't take the mm semaphore here. If we fixup a prefetch + * fault we could otherwise deadlock: + */ + bad_area_nosemaphore(regs, hw_error_code, address); +} +NOKPROBE_SYMBOL(do_kern_addr_fault); + +/* + * Handle faults in the user portion of the address space. Nothing in here + * should check X86_PF_USER without a specific justification: for almost + * all purposes, we should treat a normal kernel access to user memory + * (e.g. get_user(), put_user(), etc.) the same as the WRUSS instruction. + * The one exception is AC flag handling, which is, per the x86 + * architecture, special for WRUSS. + */ +static inline +void do_user_addr_fault(struct pt_regs *regs, + unsigned long error_code, + unsigned long address) +{ + struct vm_area_struct *vma; + struct task_struct *tsk; + struct mm_struct *mm; + vm_fault_t fault; + unsigned int flags = FAULT_FLAG_DEFAULT; + + tsk = current; + mm = tsk->mm; + + if (unlikely((error_code & (X86_PF_USER | X86_PF_INSTR)) == X86_PF_INSTR)) { + /* + * Whoops, this is kernel mode code trying to execute from + * user memory. Unless this is AMD erratum #93, which + * corrupts RIP such that it looks like a user address, + * this is unrecoverable. Don't even try to look up the + * VMA or look for extable entries. + */ + if (is_errata93(regs, address)) + return; + + page_fault_oops(regs, error_code, address); + return; + } + + /* kprobes don't want to hook the spurious faults: */ + if (WARN_ON_ONCE(kprobe_page_fault(regs, X86_TRAP_PF))) + return; + + /* + * Reserved bits are never expected to be set on + * entries in the user portion of the page tables. + */ + if (unlikely(error_code & X86_PF_RSVD)) + pgtable_bad(regs, error_code, address); + + /* + * If SMAP is on, check for invalid kernel (supervisor) access to user + * pages in the user address space. The odd case here is WRUSS, + * which, according to the preliminary documentation, does not respect + * SMAP and will have the USER bit set so, in all cases, SMAP + * enforcement appears to be consistent with the USER bit. + */ + if (unlikely(cpu_feature_enabled(X86_FEATURE_SMAP) && + !(error_code & X86_PF_USER) && + !(regs->flags & X86_EFLAGS_AC))) { + /* + * No extable entry here. This was a kernel access to an + * invalid pointer. get_kernel_nofault() will not get here. + */ + page_fault_oops(regs, error_code, address); + return; + } + + /* + * If we're in an interrupt, have no user context or are running + * in a region with pagefaults disabled then we must not take the fault + */ + if (unlikely(faulthandler_disabled() || !mm)) { + bad_area_nosemaphore(regs, error_code, address); + return; + } + + /* + * It's safe to allow irq's after cr2 has been saved and the + * vmalloc fault has been handled. + * + * User-mode registers count as a user access even for any + * potential system fault or CPU buglet: + */ + if (user_mode(regs)) { + local_irq_enable(); + flags |= FAULT_FLAG_USER; + } else { + if (regs->flags & X86_EFLAGS_IF) + local_irq_enable(); + } + + perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address); + + if (error_code & X86_PF_WRITE) + flags |= FAULT_FLAG_WRITE; + if (error_code & X86_PF_INSTR) + flags |= FAULT_FLAG_INSTRUCTION; + +#ifdef CONFIG_X86_64 + /* + * Faults in the vsyscall page might need emulation. The + * vsyscall page is at a high address (>PAGE_OFFSET), but is + * considered to be part of the user address space. + * + * The vsyscall page does not have a "real" VMA, so do this + * emulation before we go searching for VMAs. + * + * PKRU never rejects instruction fetches, so we don't need + * to consider the PF_PK bit. + */ + if (is_vsyscall_vaddr(address)) { + if (emulate_vsyscall(error_code, regs, address)) + return; + } +#endif + +retry: + vma = lock_mm_and_find_vma(mm, address, regs); + if (unlikely(!vma)) { + bad_area_nosemaphore(regs, error_code, address); + return; + } + + /* + * Ok, we have a good vm_area for this memory access, so + * we can handle it.. + */ + if (unlikely(access_error(error_code, vma))) { + bad_area_access_error(regs, error_code, address, vma); + return; + } + + /* + * If for any reason at all we couldn't handle the fault, + * make sure we exit gracefully rather than endlessly redo + * the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if + * we get VM_FAULT_RETRY back, the mmap_lock has been unlocked. + * + * Note that handle_userfault() may also release and reacquire mmap_lock + * (and not return with VM_FAULT_RETRY), when returning to userland to + * repeat the page fault later with a VM_FAULT_NOPAGE retval + * (potentially after handling any pending signal during the return to + * userland). The return to userland is identified whenever + * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags. + */ + fault = handle_mm_fault(vma, address, flags, regs); + + if (fault_signal_pending(fault, regs)) { + /* + * Quick path to respond to signals. The core mm code + * has unlocked the mm for us if we get here. + */ + if (!user_mode(regs)) + kernelmode_fixup_or_oops(regs, error_code, address, + SIGBUS, BUS_ADRERR, + ARCH_DEFAULT_PKEY); + return; + } + + /* The fault is fully completed (including releasing mmap lock) */ + if (fault & VM_FAULT_COMPLETED) + return; + + /* + * If we need to retry the mmap_lock has already been released, + * and if there is a fatal signal pending there is no guarantee + * that we made any progress. Handle this case first. + */ + if (unlikely(fault & VM_FAULT_RETRY)) { + flags |= FAULT_FLAG_TRIED; + goto retry; + } + + mmap_read_unlock(mm); + if (likely(!(fault & VM_FAULT_ERROR))) + return; + + if (fatal_signal_pending(current) && !user_mode(regs)) { + kernelmode_fixup_or_oops(regs, error_code, address, + 0, 0, ARCH_DEFAULT_PKEY); + return; + } + + if (fault & VM_FAULT_OOM) { + /* Kernel mode? Handle exceptions or die: */ + if (!user_mode(regs)) { + kernelmode_fixup_or_oops(regs, error_code, address, + SIGSEGV, SEGV_MAPERR, + ARCH_DEFAULT_PKEY); + return; + } + + /* + * We ran out of memory, call the OOM killer, and return the + * userspace (which will retry the fault, or kill us if we got + * oom-killed): + */ + pagefault_out_of_memory(); + } else { + if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON| + VM_FAULT_HWPOISON_LARGE)) + do_sigbus(regs, error_code, address, fault); + else if (fault & VM_FAULT_SIGSEGV) + bad_area_nosemaphore(regs, error_code, address); + else + BUG(); + } +} +NOKPROBE_SYMBOL(do_user_addr_fault); + +static __always_inline void +trace_page_fault_entries(struct pt_regs *regs, unsigned long error_code, + unsigned long address) +{ + if (!trace_pagefault_enabled()) + return; + + if (user_mode(regs)) + trace_page_fault_user(address, regs, error_code); + else + trace_page_fault_kernel(address, regs, error_code); +} + +static __always_inline void +handle_page_fault(struct pt_regs *regs, unsigned long error_code, + unsigned long address) +{ + trace_page_fault_entries(regs, error_code, address); + + if (unlikely(kmmio_fault(regs, address))) + return; + + /* Was the fault on kernel-controlled part of the address space? */ + if (unlikely(fault_in_kernel_space(address))) { + do_kern_addr_fault(regs, error_code, address); + } else { + do_user_addr_fault(regs, error_code, address); + /* + * User address page fault handling might have reenabled + * interrupts. Fixing up all potential exit points of + * do_user_addr_fault() and its leaf functions is just not + * doable w/o creating an unholy mess or turning the code + * upside down. + */ + local_irq_disable(); + } +} + +DEFINE_IDTENTRY_RAW_ERRORCODE(exc_page_fault) +{ + unsigned long address = read_cr2(); + irqentry_state_t state; + + prefetchw(¤t->mm->mmap_lock); + + /* + * KVM uses #PF vector to deliver 'page not present' events to guests + * (asynchronous page fault mechanism). The event happens when a + * userspace task is trying to access some valid (from guest's point of + * view) memory which is not currently mapped by the host (e.g. the + * memory is swapped out). Note, the corresponding "page ready" event + * which is injected when the memory becomes available, is delivered via + * an interrupt mechanism and not a #PF exception + * (see arch/x86/kernel/kvm.c: sysvec_kvm_asyncpf_interrupt()). + * + * We are relying on the interrupted context being sane (valid RSP, + * relevant locks not held, etc.), which is fine as long as the + * interrupted context had IF=1. We are also relying on the KVM + * async pf type field and CR2 being read consistently instead of + * getting values from real and async page faults mixed up. + * + * Fingers crossed. + * + * The async #PF handling code takes care of idtentry handling + * itself. + */ + if (kvm_handle_async_pf(regs, (u32)address)) + return; + + /* + * Entry handling for valid #PF from kernel mode is slightly + * different: RCU is already watching and ct_irq_enter() must not + * be invoked because a kernel fault on a user space address might + * sleep. + * + * In case the fault hit a RCU idle region the conditional entry + * code reenabled RCU to avoid subsequent wreckage which helps + * debuggability. + */ + state = irqentry_enter(regs); + + instrumentation_begin(); + handle_page_fault(regs, error_code, address); + instrumentation_end(); + + irqentry_exit(regs, state); +} |