summaryrefslogtreecommitdiffstats
path: root/drivers/edac/amd64_edac.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:49:45 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:49:45 +0000
commit2c3c1048746a4622d8c89a29670120dc8fab93c4 (patch)
tree848558de17fb3008cdf4d861b01ac7781903ce39 /drivers/edac/amd64_edac.c
parentInitial commit. (diff)
downloadlinux-2c3c1048746a4622d8c89a29670120dc8fab93c4.tar.xz
linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.zip
Adding upstream version 6.1.76.upstream/6.1.76
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'drivers/edac/amd64_edac.c')
-rw-r--r--drivers/edac/amd64_edac.c4433
1 files changed, 4433 insertions, 0 deletions
diff --git a/drivers/edac/amd64_edac.c b/drivers/edac/amd64_edac.c
new file mode 100644
index 000000000..2f854feee
--- /dev/null
+++ b/drivers/edac/amd64_edac.c
@@ -0,0 +1,4433 @@
+// SPDX-License-Identifier: GPL-2.0-only
+#include "amd64_edac.h"
+#include <asm/amd_nb.h>
+
+static struct edac_pci_ctl_info *pci_ctl;
+
+/*
+ * Set by command line parameter. If BIOS has enabled the ECC, this override is
+ * cleared to prevent re-enabling the hardware by this driver.
+ */
+static int ecc_enable_override;
+module_param(ecc_enable_override, int, 0644);
+
+static struct msr __percpu *msrs;
+
+static struct amd64_family_type *fam_type;
+
+static inline u32 get_umc_reg(u32 reg)
+{
+ if (!fam_type->flags.zn_regs_v2)
+ return reg;
+
+ switch (reg) {
+ case UMCCH_ADDR_CFG: return UMCCH_ADDR_CFG_DDR5;
+ case UMCCH_ADDR_MASK_SEC: return UMCCH_ADDR_MASK_SEC_DDR5;
+ case UMCCH_DIMM_CFG: return UMCCH_DIMM_CFG_DDR5;
+ }
+
+ WARN_ONCE(1, "%s: unknown register 0x%x", __func__, reg);
+ return 0;
+}
+
+/* Per-node stuff */
+static struct ecc_settings **ecc_stngs;
+
+/* Device for the PCI component */
+static struct device *pci_ctl_dev;
+
+/*
+ * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
+ * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
+ * or higher value'.
+ *
+ *FIXME: Produce a better mapping/linearisation.
+ */
+static const struct scrubrate {
+ u32 scrubval; /* bit pattern for scrub rate */
+ u32 bandwidth; /* bandwidth consumed (bytes/sec) */
+} scrubrates[] = {
+ { 0x01, 1600000000UL},
+ { 0x02, 800000000UL},
+ { 0x03, 400000000UL},
+ { 0x04, 200000000UL},
+ { 0x05, 100000000UL},
+ { 0x06, 50000000UL},
+ { 0x07, 25000000UL},
+ { 0x08, 12284069UL},
+ { 0x09, 6274509UL},
+ { 0x0A, 3121951UL},
+ { 0x0B, 1560975UL},
+ { 0x0C, 781440UL},
+ { 0x0D, 390720UL},
+ { 0x0E, 195300UL},
+ { 0x0F, 97650UL},
+ { 0x10, 48854UL},
+ { 0x11, 24427UL},
+ { 0x12, 12213UL},
+ { 0x13, 6101UL},
+ { 0x14, 3051UL},
+ { 0x15, 1523UL},
+ { 0x16, 761UL},
+ { 0x00, 0UL}, /* scrubbing off */
+};
+
+int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
+ u32 *val, const char *func)
+{
+ int err = 0;
+
+ err = pci_read_config_dword(pdev, offset, val);
+ if (err)
+ amd64_warn("%s: error reading F%dx%03x.\n",
+ func, PCI_FUNC(pdev->devfn), offset);
+
+ return err;
+}
+
+int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
+ u32 val, const char *func)
+{
+ int err = 0;
+
+ err = pci_write_config_dword(pdev, offset, val);
+ if (err)
+ amd64_warn("%s: error writing to F%dx%03x.\n",
+ func, PCI_FUNC(pdev->devfn), offset);
+
+ return err;
+}
+
+/*
+ * Select DCT to which PCI cfg accesses are routed
+ */
+static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct)
+{
+ u32 reg = 0;
+
+ amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
+ reg &= (pvt->model == 0x30) ? ~3 : ~1;
+ reg |= dct;
+ amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
+}
+
+/*
+ *
+ * Depending on the family, F2 DCT reads need special handling:
+ *
+ * K8: has a single DCT only and no address offsets >= 0x100
+ *
+ * F10h: each DCT has its own set of regs
+ * DCT0 -> F2x040..
+ * DCT1 -> F2x140..
+ *
+ * F16h: has only 1 DCT
+ *
+ * F15h: we select which DCT we access using F1x10C[DctCfgSel]
+ */
+static inline int amd64_read_dct_pci_cfg(struct amd64_pvt *pvt, u8 dct,
+ int offset, u32 *val)
+{
+ switch (pvt->fam) {
+ case 0xf:
+ if (dct || offset >= 0x100)
+ return -EINVAL;
+ break;
+
+ case 0x10:
+ if (dct) {
+ /*
+ * Note: If ganging is enabled, barring the regs
+ * F2x[1,0]98 and F2x[1,0]9C; reads reads to F2x1xx
+ * return 0. (cf. Section 2.8.1 F10h BKDG)
+ */
+ if (dct_ganging_enabled(pvt))
+ return 0;
+
+ offset += 0x100;
+ }
+ break;
+
+ case 0x15:
+ /*
+ * F15h: F2x1xx addresses do not map explicitly to DCT1.
+ * We should select which DCT we access using F1x10C[DctCfgSel]
+ */
+ dct = (dct && pvt->model == 0x30) ? 3 : dct;
+ f15h_select_dct(pvt, dct);
+ break;
+
+ case 0x16:
+ if (dct)
+ return -EINVAL;
+ break;
+
+ default:
+ break;
+ }
+ return amd64_read_pci_cfg(pvt->F2, offset, val);
+}
+
+/*
+ * Memory scrubber control interface. For K8, memory scrubbing is handled by
+ * hardware and can involve L2 cache, dcache as well as the main memory. With
+ * F10, this is extended to L3 cache scrubbing on CPU models sporting that
+ * functionality.
+ *
+ * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
+ * (dram) over to cache lines. This is nasty, so we will use bandwidth in
+ * bytes/sec for the setting.
+ *
+ * Currently, we only do dram scrubbing. If the scrubbing is done in software on
+ * other archs, we might not have access to the caches directly.
+ */
+
+static inline void __f17h_set_scrubval(struct amd64_pvt *pvt, u32 scrubval)
+{
+ /*
+ * Fam17h supports scrub values between 0x5 and 0x14. Also, the values
+ * are shifted down by 0x5, so scrubval 0x5 is written to the register
+ * as 0x0, scrubval 0x6 as 0x1, etc.
+ */
+ if (scrubval >= 0x5 && scrubval <= 0x14) {
+ scrubval -= 0x5;
+ pci_write_bits32(pvt->F6, F17H_SCR_LIMIT_ADDR, scrubval, 0xF);
+ pci_write_bits32(pvt->F6, F17H_SCR_BASE_ADDR, 1, 0x1);
+ } else {
+ pci_write_bits32(pvt->F6, F17H_SCR_BASE_ADDR, 0, 0x1);
+ }
+}
+/*
+ * Scan the scrub rate mapping table for a close or matching bandwidth value to
+ * issue. If requested is too big, then use last maximum value found.
+ */
+static int __set_scrub_rate(struct amd64_pvt *pvt, u32 new_bw, u32 min_rate)
+{
+ u32 scrubval;
+ int i;
+
+ /*
+ * map the configured rate (new_bw) to a value specific to the AMD64
+ * memory controller and apply to register. Search for the first
+ * bandwidth entry that is greater or equal than the setting requested
+ * and program that. If at last entry, turn off DRAM scrubbing.
+ *
+ * If no suitable bandwidth is found, turn off DRAM scrubbing entirely
+ * by falling back to the last element in scrubrates[].
+ */
+ for (i = 0; i < ARRAY_SIZE(scrubrates) - 1; i++) {
+ /*
+ * skip scrub rates which aren't recommended
+ * (see F10 BKDG, F3x58)
+ */
+ if (scrubrates[i].scrubval < min_rate)
+ continue;
+
+ if (scrubrates[i].bandwidth <= new_bw)
+ break;
+ }
+
+ scrubval = scrubrates[i].scrubval;
+
+ if (pvt->umc) {
+ __f17h_set_scrubval(pvt, scrubval);
+ } else if (pvt->fam == 0x15 && pvt->model == 0x60) {
+ f15h_select_dct(pvt, 0);
+ pci_write_bits32(pvt->F2, F15H_M60H_SCRCTRL, scrubval, 0x001F);
+ f15h_select_dct(pvt, 1);
+ pci_write_bits32(pvt->F2, F15H_M60H_SCRCTRL, scrubval, 0x001F);
+ } else {
+ pci_write_bits32(pvt->F3, SCRCTRL, scrubval, 0x001F);
+ }
+
+ if (scrubval)
+ return scrubrates[i].bandwidth;
+
+ return 0;
+}
+
+static int set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
+{
+ struct amd64_pvt *pvt = mci->pvt_info;
+ u32 min_scrubrate = 0x5;
+
+ if (pvt->fam == 0xf)
+ min_scrubrate = 0x0;
+
+ if (pvt->fam == 0x15) {
+ /* Erratum #505 */
+ if (pvt->model < 0x10)
+ f15h_select_dct(pvt, 0);
+
+ if (pvt->model == 0x60)
+ min_scrubrate = 0x6;
+ }
+ return __set_scrub_rate(pvt, bw, min_scrubrate);
+}
+
+static int get_scrub_rate(struct mem_ctl_info *mci)
+{
+ struct amd64_pvt *pvt = mci->pvt_info;
+ int i, retval = -EINVAL;
+ u32 scrubval = 0;
+
+ if (pvt->umc) {
+ amd64_read_pci_cfg(pvt->F6, F17H_SCR_BASE_ADDR, &scrubval);
+ if (scrubval & BIT(0)) {
+ amd64_read_pci_cfg(pvt->F6, F17H_SCR_LIMIT_ADDR, &scrubval);
+ scrubval &= 0xF;
+ scrubval += 0x5;
+ } else {
+ scrubval = 0;
+ }
+ } else if (pvt->fam == 0x15) {
+ /* Erratum #505 */
+ if (pvt->model < 0x10)
+ f15h_select_dct(pvt, 0);
+
+ if (pvt->model == 0x60)
+ amd64_read_pci_cfg(pvt->F2, F15H_M60H_SCRCTRL, &scrubval);
+ else
+ amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
+ } else {
+ amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
+ }
+
+ scrubval = scrubval & 0x001F;
+
+ for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
+ if (scrubrates[i].scrubval == scrubval) {
+ retval = scrubrates[i].bandwidth;
+ break;
+ }
+ }
+ return retval;
+}
+
+/*
+ * returns true if the SysAddr given by sys_addr matches the
+ * DRAM base/limit associated with node_id
+ */
+static bool base_limit_match(struct amd64_pvt *pvt, u64 sys_addr, u8 nid)
+{
+ u64 addr;
+
+ /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
+ * all ones if the most significant implemented address bit is 1.
+ * Here we discard bits 63-40. See section 3.4.2 of AMD publication
+ * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
+ * Application Programming.
+ */
+ addr = sys_addr & 0x000000ffffffffffull;
+
+ return ((addr >= get_dram_base(pvt, nid)) &&
+ (addr <= get_dram_limit(pvt, nid)));
+}
+
+/*
+ * Attempt to map a SysAddr to a node. On success, return a pointer to the
+ * mem_ctl_info structure for the node that the SysAddr maps to.
+ *
+ * On failure, return NULL.
+ */
+static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
+ u64 sys_addr)
+{
+ struct amd64_pvt *pvt;
+ u8 node_id;
+ u32 intlv_en, bits;
+
+ /*
+ * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
+ * 3.4.4.2) registers to map the SysAddr to a node ID.
+ */
+ pvt = mci->pvt_info;
+
+ /*
+ * The value of this field should be the same for all DRAM Base
+ * registers. Therefore we arbitrarily choose to read it from the
+ * register for node 0.
+ */
+ intlv_en = dram_intlv_en(pvt, 0);
+
+ if (intlv_en == 0) {
+ for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
+ if (base_limit_match(pvt, sys_addr, node_id))
+ goto found;
+ }
+ goto err_no_match;
+ }
+
+ if (unlikely((intlv_en != 0x01) &&
+ (intlv_en != 0x03) &&
+ (intlv_en != 0x07))) {
+ amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
+ return NULL;
+ }
+
+ bits = (((u32) sys_addr) >> 12) & intlv_en;
+
+ for (node_id = 0; ; ) {
+ if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
+ break; /* intlv_sel field matches */
+
+ if (++node_id >= DRAM_RANGES)
+ goto err_no_match;
+ }
+
+ /* sanity test for sys_addr */
+ if (unlikely(!base_limit_match(pvt, sys_addr, node_id))) {
+ amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
+ "range for node %d with node interleaving enabled.\n",
+ __func__, sys_addr, node_id);
+ return NULL;
+ }
+
+found:
+ return edac_mc_find((int)node_id);
+
+err_no_match:
+ edac_dbg(2, "sys_addr 0x%lx doesn't match any node\n",
+ (unsigned long)sys_addr);
+
+ return NULL;
+}
+
+/*
+ * compute the CS base address of the @csrow on the DRAM controller @dct.
+ * For details see F2x[5C:40] in the processor's BKDG
+ */
+static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
+ u64 *base, u64 *mask)
+{
+ u64 csbase, csmask, base_bits, mask_bits;
+ u8 addr_shift;
+
+ if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
+ csbase = pvt->csels[dct].csbases[csrow];
+ csmask = pvt->csels[dct].csmasks[csrow];
+ base_bits = GENMASK_ULL(31, 21) | GENMASK_ULL(15, 9);
+ mask_bits = GENMASK_ULL(29, 21) | GENMASK_ULL(15, 9);
+ addr_shift = 4;
+
+ /*
+ * F16h and F15h, models 30h and later need two addr_shift values:
+ * 8 for high and 6 for low (cf. F16h BKDG).
+ */
+ } else if (pvt->fam == 0x16 ||
+ (pvt->fam == 0x15 && pvt->model >= 0x30)) {
+ csbase = pvt->csels[dct].csbases[csrow];
+ csmask = pvt->csels[dct].csmasks[csrow >> 1];
+
+ *base = (csbase & GENMASK_ULL(15, 5)) << 6;
+ *base |= (csbase & GENMASK_ULL(30, 19)) << 8;
+
+ *mask = ~0ULL;
+ /* poke holes for the csmask */
+ *mask &= ~((GENMASK_ULL(15, 5) << 6) |
+ (GENMASK_ULL(30, 19) << 8));
+
+ *mask |= (csmask & GENMASK_ULL(15, 5)) << 6;
+ *mask |= (csmask & GENMASK_ULL(30, 19)) << 8;
+
+ return;
+ } else {
+ csbase = pvt->csels[dct].csbases[csrow];
+ csmask = pvt->csels[dct].csmasks[csrow >> 1];
+ addr_shift = 8;
+
+ if (pvt->fam == 0x15)
+ base_bits = mask_bits =
+ GENMASK_ULL(30,19) | GENMASK_ULL(13,5);
+ else
+ base_bits = mask_bits =
+ GENMASK_ULL(28,19) | GENMASK_ULL(13,5);
+ }
+
+ *base = (csbase & base_bits) << addr_shift;
+
+ *mask = ~0ULL;
+ /* poke holes for the csmask */
+ *mask &= ~(mask_bits << addr_shift);
+ /* OR them in */
+ *mask |= (csmask & mask_bits) << addr_shift;
+}
+
+#define for_each_chip_select(i, dct, pvt) \
+ for (i = 0; i < pvt->csels[dct].b_cnt; i++)
+
+#define chip_select_base(i, dct, pvt) \
+ pvt->csels[dct].csbases[i]
+
+#define for_each_chip_select_mask(i, dct, pvt) \
+ for (i = 0; i < pvt->csels[dct].m_cnt; i++)
+
+#define for_each_umc(i) \
+ for (i = 0; i < fam_type->max_mcs; i++)
+
+/*
+ * @input_addr is an InputAddr associated with the node given by mci. Return the
+ * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
+ */
+static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
+{
+ struct amd64_pvt *pvt;
+ int csrow;
+ u64 base, mask;
+
+ pvt = mci->pvt_info;
+
+ for_each_chip_select(csrow, 0, pvt) {
+ if (!csrow_enabled(csrow, 0, pvt))
+ continue;
+
+ get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
+
+ mask = ~mask;
+
+ if ((input_addr & mask) == (base & mask)) {
+ edac_dbg(2, "InputAddr 0x%lx matches csrow %d (node %d)\n",
+ (unsigned long)input_addr, csrow,
+ pvt->mc_node_id);
+
+ return csrow;
+ }
+ }
+ edac_dbg(2, "no matching csrow for InputAddr 0x%lx (MC node %d)\n",
+ (unsigned long)input_addr, pvt->mc_node_id);
+
+ return -1;
+}
+
+/*
+ * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
+ * for the node represented by mci. Info is passed back in *hole_base,
+ * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
+ * info is invalid. Info may be invalid for either of the following reasons:
+ *
+ * - The revision of the node is not E or greater. In this case, the DRAM Hole
+ * Address Register does not exist.
+ *
+ * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
+ * indicating that its contents are not valid.
+ *
+ * The values passed back in *hole_base, *hole_offset, and *hole_size are
+ * complete 32-bit values despite the fact that the bitfields in the DHAR
+ * only represent bits 31-24 of the base and offset values.
+ */
+static int get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
+ u64 *hole_offset, u64 *hole_size)
+{
+ struct amd64_pvt *pvt = mci->pvt_info;
+
+ /* only revE and later have the DRAM Hole Address Register */
+ if (pvt->fam == 0xf && pvt->ext_model < K8_REV_E) {
+ edac_dbg(1, " revision %d for node %d does not support DHAR\n",
+ pvt->ext_model, pvt->mc_node_id);
+ return 1;
+ }
+
+ /* valid for Fam10h and above */
+ if (pvt->fam >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
+ edac_dbg(1, " Dram Memory Hoisting is DISABLED on this system\n");
+ return 1;
+ }
+
+ if (!dhar_valid(pvt)) {
+ edac_dbg(1, " Dram Memory Hoisting is DISABLED on this node %d\n",
+ pvt->mc_node_id);
+ return 1;
+ }
+
+ /* This node has Memory Hoisting */
+
+ /* +------------------+--------------------+--------------------+-----
+ * | memory | DRAM hole | relocated |
+ * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
+ * | | | DRAM hole |
+ * | | | [0x100000000, |
+ * | | | (0x100000000+ |
+ * | | | (0xffffffff-x))] |
+ * +------------------+--------------------+--------------------+-----
+ *
+ * Above is a diagram of physical memory showing the DRAM hole and the
+ * relocated addresses from the DRAM hole. As shown, the DRAM hole
+ * starts at address x (the base address) and extends through address
+ * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
+ * addresses in the hole so that they start at 0x100000000.
+ */
+
+ *hole_base = dhar_base(pvt);
+ *hole_size = (1ULL << 32) - *hole_base;
+
+ *hole_offset = (pvt->fam > 0xf) ? f10_dhar_offset(pvt)
+ : k8_dhar_offset(pvt);
+
+ edac_dbg(1, " DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
+ pvt->mc_node_id, (unsigned long)*hole_base,
+ (unsigned long)*hole_offset, (unsigned long)*hole_size);
+
+ return 0;
+}
+
+#ifdef CONFIG_EDAC_DEBUG
+#define EDAC_DCT_ATTR_SHOW(reg) \
+static ssize_t reg##_show(struct device *dev, \
+ struct device_attribute *mattr, char *data) \
+{ \
+ struct mem_ctl_info *mci = to_mci(dev); \
+ struct amd64_pvt *pvt = mci->pvt_info; \
+ \
+ return sprintf(data, "0x%016llx\n", (u64)pvt->reg); \
+}
+
+EDAC_DCT_ATTR_SHOW(dhar);
+EDAC_DCT_ATTR_SHOW(dbam0);
+EDAC_DCT_ATTR_SHOW(top_mem);
+EDAC_DCT_ATTR_SHOW(top_mem2);
+
+static ssize_t dram_hole_show(struct device *dev, struct device_attribute *mattr,
+ char *data)
+{
+ struct mem_ctl_info *mci = to_mci(dev);
+
+ u64 hole_base = 0;
+ u64 hole_offset = 0;
+ u64 hole_size = 0;
+
+ get_dram_hole_info(mci, &hole_base, &hole_offset, &hole_size);
+
+ return sprintf(data, "%llx %llx %llx\n", hole_base, hole_offset,
+ hole_size);
+}
+
+/*
+ * update NUM_DBG_ATTRS in case you add new members
+ */
+static DEVICE_ATTR(dhar, S_IRUGO, dhar_show, NULL);
+static DEVICE_ATTR(dbam, S_IRUGO, dbam0_show, NULL);
+static DEVICE_ATTR(topmem, S_IRUGO, top_mem_show, NULL);
+static DEVICE_ATTR(topmem2, S_IRUGO, top_mem2_show, NULL);
+static DEVICE_ATTR_RO(dram_hole);
+
+static struct attribute *dbg_attrs[] = {
+ &dev_attr_dhar.attr,
+ &dev_attr_dbam.attr,
+ &dev_attr_topmem.attr,
+ &dev_attr_topmem2.attr,
+ &dev_attr_dram_hole.attr,
+ NULL
+};
+
+static const struct attribute_group dbg_group = {
+ .attrs = dbg_attrs,
+};
+
+static ssize_t inject_section_show(struct device *dev,
+ struct device_attribute *mattr, char *buf)
+{
+ struct mem_ctl_info *mci = to_mci(dev);
+ struct amd64_pvt *pvt = mci->pvt_info;
+ return sprintf(buf, "0x%x\n", pvt->injection.section);
+}
+
+/*
+ * store error injection section value which refers to one of 4 16-byte sections
+ * within a 64-byte cacheline
+ *
+ * range: 0..3
+ */
+static ssize_t inject_section_store(struct device *dev,
+ struct device_attribute *mattr,
+ const char *data, size_t count)
+{
+ struct mem_ctl_info *mci = to_mci(dev);
+ struct amd64_pvt *pvt = mci->pvt_info;
+ unsigned long value;
+ int ret;
+
+ ret = kstrtoul(data, 10, &value);
+ if (ret < 0)
+ return ret;
+
+ if (value > 3) {
+ amd64_warn("%s: invalid section 0x%lx\n", __func__, value);
+ return -EINVAL;
+ }
+
+ pvt->injection.section = (u32) value;
+ return count;
+}
+
+static ssize_t inject_word_show(struct device *dev,
+ struct device_attribute *mattr, char *buf)
+{
+ struct mem_ctl_info *mci = to_mci(dev);
+ struct amd64_pvt *pvt = mci->pvt_info;
+ return sprintf(buf, "0x%x\n", pvt->injection.word);
+}
+
+/*
+ * store error injection word value which refers to one of 9 16-bit word of the
+ * 16-byte (128-bit + ECC bits) section
+ *
+ * range: 0..8
+ */
+static ssize_t inject_word_store(struct device *dev,
+ struct device_attribute *mattr,
+ const char *data, size_t count)
+{
+ struct mem_ctl_info *mci = to_mci(dev);
+ struct amd64_pvt *pvt = mci->pvt_info;
+ unsigned long value;
+ int ret;
+
+ ret = kstrtoul(data, 10, &value);
+ if (ret < 0)
+ return ret;
+
+ if (value > 8) {
+ amd64_warn("%s: invalid word 0x%lx\n", __func__, value);
+ return -EINVAL;
+ }
+
+ pvt->injection.word = (u32) value;
+ return count;
+}
+
+static ssize_t inject_ecc_vector_show(struct device *dev,
+ struct device_attribute *mattr,
+ char *buf)
+{
+ struct mem_ctl_info *mci = to_mci(dev);
+ struct amd64_pvt *pvt = mci->pvt_info;
+ return sprintf(buf, "0x%x\n", pvt->injection.bit_map);
+}
+
+/*
+ * store 16 bit error injection vector which enables injecting errors to the
+ * corresponding bit within the error injection word above. When used during a
+ * DRAM ECC read, it holds the contents of the of the DRAM ECC bits.
+ */
+static ssize_t inject_ecc_vector_store(struct device *dev,
+ struct device_attribute *mattr,
+ const char *data, size_t count)
+{
+ struct mem_ctl_info *mci = to_mci(dev);
+ struct amd64_pvt *pvt = mci->pvt_info;
+ unsigned long value;
+ int ret;
+
+ ret = kstrtoul(data, 16, &value);
+ if (ret < 0)
+ return ret;
+
+ if (value & 0xFFFF0000) {
+ amd64_warn("%s: invalid EccVector: 0x%lx\n", __func__, value);
+ return -EINVAL;
+ }
+
+ pvt->injection.bit_map = (u32) value;
+ return count;
+}
+
+/*
+ * Do a DRAM ECC read. Assemble staged values in the pvt area, format into
+ * fields needed by the injection registers and read the NB Array Data Port.
+ */
+static ssize_t inject_read_store(struct device *dev,
+ struct device_attribute *mattr,
+ const char *data, size_t count)
+{
+ struct mem_ctl_info *mci = to_mci(dev);
+ struct amd64_pvt *pvt = mci->pvt_info;
+ unsigned long value;
+ u32 section, word_bits;
+ int ret;
+
+ ret = kstrtoul(data, 10, &value);
+ if (ret < 0)
+ return ret;
+
+ /* Form value to choose 16-byte section of cacheline */
+ section = F10_NB_ARRAY_DRAM | SET_NB_ARRAY_ADDR(pvt->injection.section);
+
+ amd64_write_pci_cfg(pvt->F3, F10_NB_ARRAY_ADDR, section);
+
+ word_bits = SET_NB_DRAM_INJECTION_READ(pvt->injection);
+
+ /* Issue 'word' and 'bit' along with the READ request */
+ amd64_write_pci_cfg(pvt->F3, F10_NB_ARRAY_DATA, word_bits);
+
+ edac_dbg(0, "section=0x%x word_bits=0x%x\n", section, word_bits);
+
+ return count;
+}
+
+/*
+ * Do a DRAM ECC write. Assemble staged values in the pvt area and format into
+ * fields needed by the injection registers.
+ */
+static ssize_t inject_write_store(struct device *dev,
+ struct device_attribute *mattr,
+ const char *data, size_t count)
+{
+ struct mem_ctl_info *mci = to_mci(dev);
+ struct amd64_pvt *pvt = mci->pvt_info;
+ u32 section, word_bits, tmp;
+ unsigned long value;
+ int ret;
+
+ ret = kstrtoul(data, 10, &value);
+ if (ret < 0)
+ return ret;
+
+ /* Form value to choose 16-byte section of cacheline */
+ section = F10_NB_ARRAY_DRAM | SET_NB_ARRAY_ADDR(pvt->injection.section);
+
+ amd64_write_pci_cfg(pvt->F3, F10_NB_ARRAY_ADDR, section);
+
+ word_bits = SET_NB_DRAM_INJECTION_WRITE(pvt->injection);
+
+ pr_notice_once("Don't forget to decrease MCE polling interval in\n"
+ "/sys/bus/machinecheck/devices/machinecheck<CPUNUM>/check_interval\n"
+ "so that you can get the error report faster.\n");
+
+ on_each_cpu(disable_caches, NULL, 1);
+
+ /* Issue 'word' and 'bit' along with the READ request */
+ amd64_write_pci_cfg(pvt->F3, F10_NB_ARRAY_DATA, word_bits);
+
+ retry:
+ /* wait until injection happens */
+ amd64_read_pci_cfg(pvt->F3, F10_NB_ARRAY_DATA, &tmp);
+ if (tmp & F10_NB_ARR_ECC_WR_REQ) {
+ cpu_relax();
+ goto retry;
+ }
+
+ on_each_cpu(enable_caches, NULL, 1);
+
+ edac_dbg(0, "section=0x%x word_bits=0x%x\n", section, word_bits);
+
+ return count;
+}
+
+/*
+ * update NUM_INJ_ATTRS in case you add new members
+ */
+
+static DEVICE_ATTR_RW(inject_section);
+static DEVICE_ATTR_RW(inject_word);
+static DEVICE_ATTR_RW(inject_ecc_vector);
+static DEVICE_ATTR_WO(inject_write);
+static DEVICE_ATTR_WO(inject_read);
+
+static struct attribute *inj_attrs[] = {
+ &dev_attr_inject_section.attr,
+ &dev_attr_inject_word.attr,
+ &dev_attr_inject_ecc_vector.attr,
+ &dev_attr_inject_write.attr,
+ &dev_attr_inject_read.attr,
+ NULL
+};
+
+static umode_t inj_is_visible(struct kobject *kobj, struct attribute *attr, int idx)
+{
+ struct device *dev = kobj_to_dev(kobj);
+ struct mem_ctl_info *mci = container_of(dev, struct mem_ctl_info, dev);
+ struct amd64_pvt *pvt = mci->pvt_info;
+
+ /* Families which have that injection hw */
+ if (pvt->fam >= 0x10 && pvt->fam <= 0x16)
+ return attr->mode;
+
+ return 0;
+}
+
+static const struct attribute_group inj_group = {
+ .attrs = inj_attrs,
+ .is_visible = inj_is_visible,
+};
+#endif /* CONFIG_EDAC_DEBUG */
+
+/*
+ * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
+ * assumed that sys_addr maps to the node given by mci.
+ *
+ * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
+ * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
+ * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
+ * then it is also involved in translating a SysAddr to a DramAddr. Sections
+ * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
+ * These parts of the documentation are unclear. I interpret them as follows:
+ *
+ * When node n receives a SysAddr, it processes the SysAddr as follows:
+ *
+ * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
+ * Limit registers for node n. If the SysAddr is not within the range
+ * specified by the base and limit values, then node n ignores the Sysaddr
+ * (since it does not map to node n). Otherwise continue to step 2 below.
+ *
+ * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
+ * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
+ * the range of relocated addresses (starting at 0x100000000) from the DRAM
+ * hole. If not, skip to step 3 below. Else get the value of the
+ * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
+ * offset defined by this value from the SysAddr.
+ *
+ * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
+ * Base register for node n. To obtain the DramAddr, subtract the base
+ * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
+ */
+static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
+{
+ struct amd64_pvt *pvt = mci->pvt_info;
+ u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
+ int ret;
+
+ dram_base = get_dram_base(pvt, pvt->mc_node_id);
+
+ ret = get_dram_hole_info(mci, &hole_base, &hole_offset, &hole_size);
+ if (!ret) {
+ if ((sys_addr >= (1ULL << 32)) &&
+ (sys_addr < ((1ULL << 32) + hole_size))) {
+ /* use DHAR to translate SysAddr to DramAddr */
+ dram_addr = sys_addr - hole_offset;
+
+ edac_dbg(2, "using DHAR to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
+ (unsigned long)sys_addr,
+ (unsigned long)dram_addr);
+
+ return dram_addr;
+ }
+ }
+
+ /*
+ * Translate the SysAddr to a DramAddr as shown near the start of
+ * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
+ * only deals with 40-bit values. Therefore we discard bits 63-40 of
+ * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
+ * discard are all 1s. Otherwise the bits we discard are all 0s. See
+ * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
+ * Programmer's Manual Volume 1 Application Programming.
+ */
+ dram_addr = (sys_addr & GENMASK_ULL(39, 0)) - dram_base;
+
+ edac_dbg(2, "using DRAM Base register to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
+ (unsigned long)sys_addr, (unsigned long)dram_addr);
+ return dram_addr;
+}
+
+/*
+ * @intlv_en is the value of the IntlvEn field from a DRAM Base register
+ * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
+ * for node interleaving.
+ */
+static int num_node_interleave_bits(unsigned intlv_en)
+{
+ static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
+ int n;
+
+ BUG_ON(intlv_en > 7);
+ n = intlv_shift_table[intlv_en];
+ return n;
+}
+
+/* Translate the DramAddr given by @dram_addr to an InputAddr. */
+static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
+{
+ struct amd64_pvt *pvt;
+ int intlv_shift;
+ u64 input_addr;
+
+ pvt = mci->pvt_info;
+
+ /*
+ * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
+ * concerning translating a DramAddr to an InputAddr.
+ */
+ intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
+ input_addr = ((dram_addr >> intlv_shift) & GENMASK_ULL(35, 12)) +
+ (dram_addr & 0xfff);
+
+ edac_dbg(2, " Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
+ intlv_shift, (unsigned long)dram_addr,
+ (unsigned long)input_addr);
+
+ return input_addr;
+}
+
+/*
+ * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
+ * assumed that @sys_addr maps to the node given by mci.
+ */
+static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
+{
+ u64 input_addr;
+
+ input_addr =
+ dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
+
+ edac_dbg(2, "SysAddr 0x%lx translates to InputAddr 0x%lx\n",
+ (unsigned long)sys_addr, (unsigned long)input_addr);
+
+ return input_addr;
+}
+
+/* Map the Error address to a PAGE and PAGE OFFSET. */
+static inline void error_address_to_page_and_offset(u64 error_address,
+ struct err_info *err)
+{
+ err->page = (u32) (error_address >> PAGE_SHIFT);
+ err->offset = ((u32) error_address) & ~PAGE_MASK;
+}
+
+/*
+ * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
+ * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
+ * of a node that detected an ECC memory error. mci represents the node that
+ * the error address maps to (possibly different from the node that detected
+ * the error). Return the number of the csrow that sys_addr maps to, or -1 on
+ * error.
+ */
+static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
+{
+ int csrow;
+
+ csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
+
+ if (csrow == -1)
+ amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
+ "address 0x%lx\n", (unsigned long)sys_addr);
+ return csrow;
+}
+
+/* Protect the PCI config register pairs used for DF indirect access. */
+static DEFINE_MUTEX(df_indirect_mutex);
+
+/*
+ * Data Fabric Indirect Access uses FICAA/FICAD.
+ *
+ * Fabric Indirect Configuration Access Address (FICAA): Constructed based
+ * on the device's Instance Id and the PCI function and register offset of
+ * the desired register.
+ *
+ * Fabric Indirect Configuration Access Data (FICAD): There are FICAD LO
+ * and FICAD HI registers but so far we only need the LO register.
+ *
+ * Use Instance Id 0xFF to indicate a broadcast read.
+ */
+#define DF_BROADCAST 0xFF
+static int __df_indirect_read(u16 node, u8 func, u16 reg, u8 instance_id, u32 *lo)
+{
+ struct pci_dev *F4;
+ u32 ficaa;
+ int err = -ENODEV;
+
+ if (node >= amd_nb_num())
+ goto out;
+
+ F4 = node_to_amd_nb(node)->link;
+ if (!F4)
+ goto out;
+
+ ficaa = (instance_id == DF_BROADCAST) ? 0 : 1;
+ ficaa |= reg & 0x3FC;
+ ficaa |= (func & 0x7) << 11;
+ ficaa |= instance_id << 16;
+
+ mutex_lock(&df_indirect_mutex);
+
+ err = pci_write_config_dword(F4, 0x5C, ficaa);
+ if (err) {
+ pr_warn("Error writing DF Indirect FICAA, FICAA=0x%x\n", ficaa);
+ goto out_unlock;
+ }
+
+ err = pci_read_config_dword(F4, 0x98, lo);
+ if (err)
+ pr_warn("Error reading DF Indirect FICAD LO, FICAA=0x%x.\n", ficaa);
+
+out_unlock:
+ mutex_unlock(&df_indirect_mutex);
+
+out:
+ return err;
+}
+
+static int df_indirect_read_instance(u16 node, u8 func, u16 reg, u8 instance_id, u32 *lo)
+{
+ return __df_indirect_read(node, func, reg, instance_id, lo);
+}
+
+static int df_indirect_read_broadcast(u16 node, u8 func, u16 reg, u32 *lo)
+{
+ return __df_indirect_read(node, func, reg, DF_BROADCAST, lo);
+}
+
+struct addr_ctx {
+ u64 ret_addr;
+ u32 tmp;
+ u16 nid;
+ u8 inst_id;
+};
+
+static int umc_normaddr_to_sysaddr(u64 norm_addr, u16 nid, u8 umc, u64 *sys_addr)
+{
+ u64 dram_base_addr, dram_limit_addr, dram_hole_base;
+
+ u8 die_id_shift, die_id_mask, socket_id_shift, socket_id_mask;
+ u8 intlv_num_dies, intlv_num_chan, intlv_num_sockets;
+ u8 intlv_addr_sel, intlv_addr_bit;
+ u8 num_intlv_bits, hashed_bit;
+ u8 lgcy_mmio_hole_en, base = 0;
+ u8 cs_mask, cs_id = 0;
+ bool hash_enabled = false;
+
+ struct addr_ctx ctx;
+
+ memset(&ctx, 0, sizeof(ctx));
+
+ /* Start from the normalized address */
+ ctx.ret_addr = norm_addr;
+
+ ctx.nid = nid;
+ ctx.inst_id = umc;
+
+ /* Read D18F0x1B4 (DramOffset), check if base 1 is used. */
+ if (df_indirect_read_instance(nid, 0, 0x1B4, umc, &ctx.tmp))
+ goto out_err;
+
+ /* Remove HiAddrOffset from normalized address, if enabled: */
+ if (ctx.tmp & BIT(0)) {
+ u64 hi_addr_offset = (ctx.tmp & GENMASK_ULL(31, 20)) << 8;
+
+ if (norm_addr >= hi_addr_offset) {
+ ctx.ret_addr -= hi_addr_offset;
+ base = 1;
+ }
+ }
+
+ /* Read D18F0x110 (DramBaseAddress). */
+ if (df_indirect_read_instance(nid, 0, 0x110 + (8 * base), umc, &ctx.tmp))
+ goto out_err;
+
+ /* Check if address range is valid. */
+ if (!(ctx.tmp & BIT(0))) {
+ pr_err("%s: Invalid DramBaseAddress range: 0x%x.\n",
+ __func__, ctx.tmp);
+ goto out_err;
+ }
+
+ lgcy_mmio_hole_en = ctx.tmp & BIT(1);
+ intlv_num_chan = (ctx.tmp >> 4) & 0xF;
+ intlv_addr_sel = (ctx.tmp >> 8) & 0x7;
+ dram_base_addr = (ctx.tmp & GENMASK_ULL(31, 12)) << 16;
+
+ /* {0, 1, 2, 3} map to address bits {8, 9, 10, 11} respectively */
+ if (intlv_addr_sel > 3) {
+ pr_err("%s: Invalid interleave address select %d.\n",
+ __func__, intlv_addr_sel);
+ goto out_err;
+ }
+
+ /* Read D18F0x114 (DramLimitAddress). */
+ if (df_indirect_read_instance(nid, 0, 0x114 + (8 * base), umc, &ctx.tmp))
+ goto out_err;
+
+ intlv_num_sockets = (ctx.tmp >> 8) & 0x1;
+ intlv_num_dies = (ctx.tmp >> 10) & 0x3;
+ dram_limit_addr = ((ctx.tmp & GENMASK_ULL(31, 12)) << 16) | GENMASK_ULL(27, 0);
+
+ intlv_addr_bit = intlv_addr_sel + 8;
+
+ /* Re-use intlv_num_chan by setting it equal to log2(#channels) */
+ switch (intlv_num_chan) {
+ case 0: intlv_num_chan = 0; break;
+ case 1: intlv_num_chan = 1; break;
+ case 3: intlv_num_chan = 2; break;
+ case 5: intlv_num_chan = 3; break;
+ case 7: intlv_num_chan = 4; break;
+
+ case 8: intlv_num_chan = 1;
+ hash_enabled = true;
+ break;
+ default:
+ pr_err("%s: Invalid number of interleaved channels %d.\n",
+ __func__, intlv_num_chan);
+ goto out_err;
+ }
+
+ num_intlv_bits = intlv_num_chan;
+
+ if (intlv_num_dies > 2) {
+ pr_err("%s: Invalid number of interleaved nodes/dies %d.\n",
+ __func__, intlv_num_dies);
+ goto out_err;
+ }
+
+ num_intlv_bits += intlv_num_dies;
+
+ /* Add a bit if sockets are interleaved. */
+ num_intlv_bits += intlv_num_sockets;
+
+ /* Assert num_intlv_bits <= 4 */
+ if (num_intlv_bits > 4) {
+ pr_err("%s: Invalid interleave bits %d.\n",
+ __func__, num_intlv_bits);
+ goto out_err;
+ }
+
+ if (num_intlv_bits > 0) {
+ u64 temp_addr_x, temp_addr_i, temp_addr_y;
+ u8 die_id_bit, sock_id_bit, cs_fabric_id;
+
+ /*
+ * Read FabricBlockInstanceInformation3_CS[BlockFabricID].
+ * This is the fabric id for this coherent slave. Use
+ * umc/channel# as instance id of the coherent slave
+ * for FICAA.
+ */
+ if (df_indirect_read_instance(nid, 0, 0x50, umc, &ctx.tmp))
+ goto out_err;
+
+ cs_fabric_id = (ctx.tmp >> 8) & 0xFF;
+ die_id_bit = 0;
+
+ /* If interleaved over more than 1 channel: */
+ if (intlv_num_chan) {
+ die_id_bit = intlv_num_chan;
+ cs_mask = (1 << die_id_bit) - 1;
+ cs_id = cs_fabric_id & cs_mask;
+ }
+
+ sock_id_bit = die_id_bit;
+
+ /* Read D18F1x208 (SystemFabricIdMask). */
+ if (intlv_num_dies || intlv_num_sockets)
+ if (df_indirect_read_broadcast(nid, 1, 0x208, &ctx.tmp))
+ goto out_err;
+
+ /* If interleaved over more than 1 die. */
+ if (intlv_num_dies) {
+ sock_id_bit = die_id_bit + intlv_num_dies;
+ die_id_shift = (ctx.tmp >> 24) & 0xF;
+ die_id_mask = (ctx.tmp >> 8) & 0xFF;
+
+ cs_id |= ((cs_fabric_id & die_id_mask) >> die_id_shift) << die_id_bit;
+ }
+
+ /* If interleaved over more than 1 socket. */
+ if (intlv_num_sockets) {
+ socket_id_shift = (ctx.tmp >> 28) & 0xF;
+ socket_id_mask = (ctx.tmp >> 16) & 0xFF;
+
+ cs_id |= ((cs_fabric_id & socket_id_mask) >> socket_id_shift) << sock_id_bit;
+ }
+
+ /*
+ * The pre-interleaved address consists of XXXXXXIIIYYYYY
+ * where III is the ID for this CS, and XXXXXXYYYYY are the
+ * address bits from the post-interleaved address.
+ * "num_intlv_bits" has been calculated to tell us how many "I"
+ * bits there are. "intlv_addr_bit" tells us how many "Y" bits
+ * there are (where "I" starts).
+ */
+ temp_addr_y = ctx.ret_addr & GENMASK_ULL(intlv_addr_bit - 1, 0);
+ temp_addr_i = (cs_id << intlv_addr_bit);
+ temp_addr_x = (ctx.ret_addr & GENMASK_ULL(63, intlv_addr_bit)) << num_intlv_bits;
+ ctx.ret_addr = temp_addr_x | temp_addr_i | temp_addr_y;
+ }
+
+ /* Add dram base address */
+ ctx.ret_addr += dram_base_addr;
+
+ /* If legacy MMIO hole enabled */
+ if (lgcy_mmio_hole_en) {
+ if (df_indirect_read_broadcast(nid, 0, 0x104, &ctx.tmp))
+ goto out_err;
+
+ dram_hole_base = ctx.tmp & GENMASK(31, 24);
+ if (ctx.ret_addr >= dram_hole_base)
+ ctx.ret_addr += (BIT_ULL(32) - dram_hole_base);
+ }
+
+ if (hash_enabled) {
+ /* Save some parentheses and grab ls-bit at the end. */
+ hashed_bit = (ctx.ret_addr >> 12) ^
+ (ctx.ret_addr >> 18) ^
+ (ctx.ret_addr >> 21) ^
+ (ctx.ret_addr >> 30) ^
+ cs_id;
+
+ hashed_bit &= BIT(0);
+
+ if (hashed_bit != ((ctx.ret_addr >> intlv_addr_bit) & BIT(0)))
+ ctx.ret_addr ^= BIT(intlv_addr_bit);
+ }
+
+ /* Is calculated system address is above DRAM limit address? */
+ if (ctx.ret_addr > dram_limit_addr)
+ goto out_err;
+
+ *sys_addr = ctx.ret_addr;
+ return 0;
+
+out_err:
+ return -EINVAL;
+}
+
+static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
+
+/*
+ * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
+ * are ECC capable.
+ */
+static unsigned long determine_edac_cap(struct amd64_pvt *pvt)
+{
+ unsigned long edac_cap = EDAC_FLAG_NONE;
+ u8 bit;
+
+ if (pvt->umc) {
+ u8 i, umc_en_mask = 0, dimm_ecc_en_mask = 0;
+
+ for_each_umc(i) {
+ if (!(pvt->umc[i].sdp_ctrl & UMC_SDP_INIT))
+ continue;
+
+ umc_en_mask |= BIT(i);
+
+ /* UMC Configuration bit 12 (DimmEccEn) */
+ if (pvt->umc[i].umc_cfg & BIT(12))
+ dimm_ecc_en_mask |= BIT(i);
+ }
+
+ if (umc_en_mask == dimm_ecc_en_mask)
+ edac_cap = EDAC_FLAG_SECDED;
+ } else {
+ bit = (pvt->fam > 0xf || pvt->ext_model >= K8_REV_F)
+ ? 19
+ : 17;
+
+ if (pvt->dclr0 & BIT(bit))
+ edac_cap = EDAC_FLAG_SECDED;
+ }
+
+ return edac_cap;
+}
+
+static void debug_display_dimm_sizes(struct amd64_pvt *, u8);
+
+static void debug_dump_dramcfg_low(struct amd64_pvt *pvt, u32 dclr, int chan)
+{
+ edac_dbg(1, "F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
+
+ if (pvt->dram_type == MEM_LRDDR3) {
+ u32 dcsm = pvt->csels[chan].csmasks[0];
+ /*
+ * It's assumed all LRDIMMs in a DCT are going to be of
+ * same 'type' until proven otherwise. So, use a cs
+ * value of '0' here to get dcsm value.
+ */
+ edac_dbg(1, " LRDIMM %dx rank multiply\n", (dcsm & 0x3));
+ }
+
+ edac_dbg(1, "All DIMMs support ECC:%s\n",
+ (dclr & BIT(19)) ? "yes" : "no");
+
+
+ edac_dbg(1, " PAR/ERR parity: %s\n",
+ (dclr & BIT(8)) ? "enabled" : "disabled");
+
+ if (pvt->fam == 0x10)
+ edac_dbg(1, " DCT 128bit mode width: %s\n",
+ (dclr & BIT(11)) ? "128b" : "64b");
+
+ edac_dbg(1, " x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
+ (dclr & BIT(12)) ? "yes" : "no",
+ (dclr & BIT(13)) ? "yes" : "no",
+ (dclr & BIT(14)) ? "yes" : "no",
+ (dclr & BIT(15)) ? "yes" : "no");
+}
+
+#define CS_EVEN_PRIMARY BIT(0)
+#define CS_ODD_PRIMARY BIT(1)
+#define CS_EVEN_SECONDARY BIT(2)
+#define CS_ODD_SECONDARY BIT(3)
+#define CS_3R_INTERLEAVE BIT(4)
+
+#define CS_EVEN (CS_EVEN_PRIMARY | CS_EVEN_SECONDARY)
+#define CS_ODD (CS_ODD_PRIMARY | CS_ODD_SECONDARY)
+
+static int f17_get_cs_mode(int dimm, u8 ctrl, struct amd64_pvt *pvt)
+{
+ u8 base, count = 0;
+ int cs_mode = 0;
+
+ if (csrow_enabled(2 * dimm, ctrl, pvt))
+ cs_mode |= CS_EVEN_PRIMARY;
+
+ if (csrow_enabled(2 * dimm + 1, ctrl, pvt))
+ cs_mode |= CS_ODD_PRIMARY;
+
+ /* Asymmetric dual-rank DIMM support. */
+ if (csrow_sec_enabled(2 * dimm + 1, ctrl, pvt))
+ cs_mode |= CS_ODD_SECONDARY;
+
+ /*
+ * 3 Rank inteleaving support.
+ * There should be only three bases enabled and their two masks should
+ * be equal.
+ */
+ for_each_chip_select(base, ctrl, pvt)
+ count += csrow_enabled(base, ctrl, pvt);
+
+ if (count == 3 &&
+ pvt->csels[ctrl].csmasks[0] == pvt->csels[ctrl].csmasks[1]) {
+ edac_dbg(1, "3R interleaving in use.\n");
+ cs_mode |= CS_3R_INTERLEAVE;
+ }
+
+ return cs_mode;
+}
+
+static void debug_display_dimm_sizes_df(struct amd64_pvt *pvt, u8 ctrl)
+{
+ int dimm, size0, size1, cs0, cs1, cs_mode;
+
+ edac_printk(KERN_DEBUG, EDAC_MC, "UMC%d chip selects:\n", ctrl);
+
+ for (dimm = 0; dimm < 2; dimm++) {
+ cs0 = dimm * 2;
+ cs1 = dimm * 2 + 1;
+
+ cs_mode = f17_get_cs_mode(dimm, ctrl, pvt);
+
+ size0 = pvt->ops->dbam_to_cs(pvt, ctrl, cs_mode, cs0);
+ size1 = pvt->ops->dbam_to_cs(pvt, ctrl, cs_mode, cs1);
+
+ amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
+ cs0, size0,
+ cs1, size1);
+ }
+}
+
+static void __dump_misc_regs_df(struct amd64_pvt *pvt)
+{
+ struct amd64_umc *umc;
+ u32 i, tmp, umc_base;
+
+ for_each_umc(i) {
+ umc_base = get_umc_base(i);
+ umc = &pvt->umc[i];
+
+ edac_dbg(1, "UMC%d DIMM cfg: 0x%x\n", i, umc->dimm_cfg);
+ edac_dbg(1, "UMC%d UMC cfg: 0x%x\n", i, umc->umc_cfg);
+ edac_dbg(1, "UMC%d SDP ctrl: 0x%x\n", i, umc->sdp_ctrl);
+ edac_dbg(1, "UMC%d ECC ctrl: 0x%x\n", i, umc->ecc_ctrl);
+
+ amd_smn_read(pvt->mc_node_id, umc_base + UMCCH_ECC_BAD_SYMBOL, &tmp);
+ edac_dbg(1, "UMC%d ECC bad symbol: 0x%x\n", i, tmp);
+
+ amd_smn_read(pvt->mc_node_id, umc_base + UMCCH_UMC_CAP, &tmp);
+ edac_dbg(1, "UMC%d UMC cap: 0x%x\n", i, tmp);
+ edac_dbg(1, "UMC%d UMC cap high: 0x%x\n", i, umc->umc_cap_hi);
+
+ edac_dbg(1, "UMC%d ECC capable: %s, ChipKill ECC capable: %s\n",
+ i, (umc->umc_cap_hi & BIT(30)) ? "yes" : "no",
+ (umc->umc_cap_hi & BIT(31)) ? "yes" : "no");
+ edac_dbg(1, "UMC%d All DIMMs support ECC: %s\n",
+ i, (umc->umc_cfg & BIT(12)) ? "yes" : "no");
+ edac_dbg(1, "UMC%d x4 DIMMs present: %s\n",
+ i, (umc->dimm_cfg & BIT(6)) ? "yes" : "no");
+ edac_dbg(1, "UMC%d x16 DIMMs present: %s\n",
+ i, (umc->dimm_cfg & BIT(7)) ? "yes" : "no");
+
+ if (umc->dram_type == MEM_LRDDR4 || umc->dram_type == MEM_LRDDR5) {
+ amd_smn_read(pvt->mc_node_id,
+ umc_base + get_umc_reg(UMCCH_ADDR_CFG),
+ &tmp);
+ edac_dbg(1, "UMC%d LRDIMM %dx rank multiply\n",
+ i, 1 << ((tmp >> 4) & 0x3));
+ }
+
+ debug_display_dimm_sizes_df(pvt, i);
+ }
+
+ edac_dbg(1, "F0x104 (DRAM Hole Address): 0x%08x, base: 0x%08x\n",
+ pvt->dhar, dhar_base(pvt));
+}
+
+/* Display and decode various NB registers for debug purposes. */
+static void __dump_misc_regs(struct amd64_pvt *pvt)
+{
+ edac_dbg(1, "F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
+
+ edac_dbg(1, " NB two channel DRAM capable: %s\n",
+ (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
+
+ edac_dbg(1, " ECC capable: %s, ChipKill ECC capable: %s\n",
+ (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
+ (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
+
+ debug_dump_dramcfg_low(pvt, pvt->dclr0, 0);
+
+ edac_dbg(1, "F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
+
+ edac_dbg(1, "F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, offset: 0x%08x\n",
+ pvt->dhar, dhar_base(pvt),
+ (pvt->fam == 0xf) ? k8_dhar_offset(pvt)
+ : f10_dhar_offset(pvt));
+
+ debug_display_dimm_sizes(pvt, 0);
+
+ /* everything below this point is Fam10h and above */
+ if (pvt->fam == 0xf)
+ return;
+
+ debug_display_dimm_sizes(pvt, 1);
+
+ /* Only if NOT ganged does dclr1 have valid info */
+ if (!dct_ganging_enabled(pvt))
+ debug_dump_dramcfg_low(pvt, pvt->dclr1, 1);
+}
+
+/* Display and decode various NB registers for debug purposes. */
+static void dump_misc_regs(struct amd64_pvt *pvt)
+{
+ if (pvt->umc)
+ __dump_misc_regs_df(pvt);
+ else
+ __dump_misc_regs(pvt);
+
+ edac_dbg(1, " DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
+
+ amd64_info("using x%u syndromes.\n", pvt->ecc_sym_sz);
+}
+
+/*
+ * See BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
+ */
+static void prep_chip_selects(struct amd64_pvt *pvt)
+{
+ if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
+ pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
+ pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
+ } else if (pvt->fam == 0x15 && pvt->model == 0x30) {
+ pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 4;
+ pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 2;
+ } else if (pvt->fam >= 0x17) {
+ int umc;
+
+ for_each_umc(umc) {
+ pvt->csels[umc].b_cnt = 4;
+ pvt->csels[umc].m_cnt = fam_type->flags.zn_regs_v2 ? 4 : 2;
+ }
+
+ } else {
+ pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
+ pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
+ }
+}
+
+static void read_umc_base_mask(struct amd64_pvt *pvt)
+{
+ u32 umc_base_reg, umc_base_reg_sec;
+ u32 umc_mask_reg, umc_mask_reg_sec;
+ u32 base_reg, base_reg_sec;
+ u32 mask_reg, mask_reg_sec;
+ u32 *base, *base_sec;
+ u32 *mask, *mask_sec;
+ int cs, umc;
+
+ for_each_umc(umc) {
+ umc_base_reg = get_umc_base(umc) + UMCCH_BASE_ADDR;
+ umc_base_reg_sec = get_umc_base(umc) + UMCCH_BASE_ADDR_SEC;
+
+ for_each_chip_select(cs, umc, pvt) {
+ base = &pvt->csels[umc].csbases[cs];
+ base_sec = &pvt->csels[umc].csbases_sec[cs];
+
+ base_reg = umc_base_reg + (cs * 4);
+ base_reg_sec = umc_base_reg_sec + (cs * 4);
+
+ if (!amd_smn_read(pvt->mc_node_id, base_reg, base))
+ edac_dbg(0, " DCSB%d[%d]=0x%08x reg: 0x%x\n",
+ umc, cs, *base, base_reg);
+
+ if (!amd_smn_read(pvt->mc_node_id, base_reg_sec, base_sec))
+ edac_dbg(0, " DCSB_SEC%d[%d]=0x%08x reg: 0x%x\n",
+ umc, cs, *base_sec, base_reg_sec);
+ }
+
+ umc_mask_reg = get_umc_base(umc) + UMCCH_ADDR_MASK;
+ umc_mask_reg_sec = get_umc_base(umc) + get_umc_reg(UMCCH_ADDR_MASK_SEC);
+
+ for_each_chip_select_mask(cs, umc, pvt) {
+ mask = &pvt->csels[umc].csmasks[cs];
+ mask_sec = &pvt->csels[umc].csmasks_sec[cs];
+
+ mask_reg = umc_mask_reg + (cs * 4);
+ mask_reg_sec = umc_mask_reg_sec + (cs * 4);
+
+ if (!amd_smn_read(pvt->mc_node_id, mask_reg, mask))
+ edac_dbg(0, " DCSM%d[%d]=0x%08x reg: 0x%x\n",
+ umc, cs, *mask, mask_reg);
+
+ if (!amd_smn_read(pvt->mc_node_id, mask_reg_sec, mask_sec))
+ edac_dbg(0, " DCSM_SEC%d[%d]=0x%08x reg: 0x%x\n",
+ umc, cs, *mask_sec, mask_reg_sec);
+ }
+ }
+}
+
+/*
+ * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
+ */
+static void read_dct_base_mask(struct amd64_pvt *pvt)
+{
+ int cs;
+
+ prep_chip_selects(pvt);
+
+ if (pvt->umc)
+ return read_umc_base_mask(pvt);
+
+ for_each_chip_select(cs, 0, pvt) {
+ int reg0 = DCSB0 + (cs * 4);
+ int reg1 = DCSB1 + (cs * 4);
+ u32 *base0 = &pvt->csels[0].csbases[cs];
+ u32 *base1 = &pvt->csels[1].csbases[cs];
+
+ if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, base0))
+ edac_dbg(0, " DCSB0[%d]=0x%08x reg: F2x%x\n",
+ cs, *base0, reg0);
+
+ if (pvt->fam == 0xf)
+ continue;
+
+ if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, base1))
+ edac_dbg(0, " DCSB1[%d]=0x%08x reg: F2x%x\n",
+ cs, *base1, (pvt->fam == 0x10) ? reg1
+ : reg0);
+ }
+
+ for_each_chip_select_mask(cs, 0, pvt) {
+ int reg0 = DCSM0 + (cs * 4);
+ int reg1 = DCSM1 + (cs * 4);
+ u32 *mask0 = &pvt->csels[0].csmasks[cs];
+ u32 *mask1 = &pvt->csels[1].csmasks[cs];
+
+ if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, mask0))
+ edac_dbg(0, " DCSM0[%d]=0x%08x reg: F2x%x\n",
+ cs, *mask0, reg0);
+
+ if (pvt->fam == 0xf)
+ continue;
+
+ if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, mask1))
+ edac_dbg(0, " DCSM1[%d]=0x%08x reg: F2x%x\n",
+ cs, *mask1, (pvt->fam == 0x10) ? reg1
+ : reg0);
+ }
+}
+
+static void determine_memory_type_df(struct amd64_pvt *pvt)
+{
+ struct amd64_umc *umc;
+ u32 i;
+
+ for_each_umc(i) {
+ umc = &pvt->umc[i];
+
+ if (!(umc->sdp_ctrl & UMC_SDP_INIT)) {
+ umc->dram_type = MEM_EMPTY;
+ continue;
+ }
+
+ /*
+ * Check if the system supports the "DDR Type" field in UMC Config
+ * and has DDR5 DIMMs in use.
+ */
+ if (fam_type->flags.zn_regs_v2 && ((umc->umc_cfg & GENMASK(2, 0)) == 0x1)) {
+ if (umc->dimm_cfg & BIT(5))
+ umc->dram_type = MEM_LRDDR5;
+ else if (umc->dimm_cfg & BIT(4))
+ umc->dram_type = MEM_RDDR5;
+ else
+ umc->dram_type = MEM_DDR5;
+ } else {
+ if (umc->dimm_cfg & BIT(5))
+ umc->dram_type = MEM_LRDDR4;
+ else if (umc->dimm_cfg & BIT(4))
+ umc->dram_type = MEM_RDDR4;
+ else
+ umc->dram_type = MEM_DDR4;
+ }
+
+ edac_dbg(1, " UMC%d DIMM type: %s\n", i, edac_mem_types[umc->dram_type]);
+ }
+}
+
+static void determine_memory_type(struct amd64_pvt *pvt)
+{
+ u32 dram_ctrl, dcsm;
+
+ if (pvt->umc)
+ return determine_memory_type_df(pvt);
+
+ switch (pvt->fam) {
+ case 0xf:
+ if (pvt->ext_model >= K8_REV_F)
+ goto ddr3;
+
+ pvt->dram_type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
+ return;
+
+ case 0x10:
+ if (pvt->dchr0 & DDR3_MODE)
+ goto ddr3;
+
+ pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
+ return;
+
+ case 0x15:
+ if (pvt->model < 0x60)
+ goto ddr3;
+
+ /*
+ * Model 0x60h needs special handling:
+ *
+ * We use a Chip Select value of '0' to obtain dcsm.
+ * Theoretically, it is possible to populate LRDIMMs of different
+ * 'Rank' value on a DCT. But this is not the common case. So,
+ * it's reasonable to assume all DIMMs are going to be of same
+ * 'type' until proven otherwise.
+ */
+ amd64_read_dct_pci_cfg(pvt, 0, DRAM_CONTROL, &dram_ctrl);
+ dcsm = pvt->csels[0].csmasks[0];
+
+ if (((dram_ctrl >> 8) & 0x7) == 0x2)
+ pvt->dram_type = MEM_DDR4;
+ else if (pvt->dclr0 & BIT(16))
+ pvt->dram_type = MEM_DDR3;
+ else if (dcsm & 0x3)
+ pvt->dram_type = MEM_LRDDR3;
+ else
+ pvt->dram_type = MEM_RDDR3;
+
+ return;
+
+ case 0x16:
+ goto ddr3;
+
+ default:
+ WARN(1, KERN_ERR "%s: Family??? 0x%x\n", __func__, pvt->fam);
+ pvt->dram_type = MEM_EMPTY;
+ }
+ return;
+
+ddr3:
+ pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
+}
+
+/* Get the number of DCT channels the memory controller is using. */
+static int k8_early_channel_count(struct amd64_pvt *pvt)
+{
+ int flag;
+
+ if (pvt->ext_model >= K8_REV_F)
+ /* RevF (NPT) and later */
+ flag = pvt->dclr0 & WIDTH_128;
+ else
+ /* RevE and earlier */
+ flag = pvt->dclr0 & REVE_WIDTH_128;
+
+ /* not used */
+ pvt->dclr1 = 0;
+
+ return (flag) ? 2 : 1;
+}
+
+/* On F10h and later ErrAddr is MC4_ADDR[47:1] */
+static u64 get_error_address(struct amd64_pvt *pvt, struct mce *m)
+{
+ u16 mce_nid = topology_die_id(m->extcpu);
+ struct mem_ctl_info *mci;
+ u8 start_bit = 1;
+ u8 end_bit = 47;
+ u64 addr;
+
+ mci = edac_mc_find(mce_nid);
+ if (!mci)
+ return 0;
+
+ pvt = mci->pvt_info;
+
+ if (pvt->fam == 0xf) {
+ start_bit = 3;
+ end_bit = 39;
+ }
+
+ addr = m->addr & GENMASK_ULL(end_bit, start_bit);
+
+ /*
+ * Erratum 637 workaround
+ */
+ if (pvt->fam == 0x15) {
+ u64 cc6_base, tmp_addr;
+ u32 tmp;
+ u8 intlv_en;
+
+ if ((addr & GENMASK_ULL(47, 24)) >> 24 != 0x00fdf7)
+ return addr;
+
+
+ amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp);
+ intlv_en = tmp >> 21 & 0x7;
+
+ /* add [47:27] + 3 trailing bits */
+ cc6_base = (tmp & GENMASK_ULL(20, 0)) << 3;
+
+ /* reverse and add DramIntlvEn */
+ cc6_base |= intlv_en ^ 0x7;
+
+ /* pin at [47:24] */
+ cc6_base <<= 24;
+
+ if (!intlv_en)
+ return cc6_base | (addr & GENMASK_ULL(23, 0));
+
+ amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp);
+
+ /* faster log2 */
+ tmp_addr = (addr & GENMASK_ULL(23, 12)) << __fls(intlv_en + 1);
+
+ /* OR DramIntlvSel into bits [14:12] */
+ tmp_addr |= (tmp & GENMASK_ULL(23, 21)) >> 9;
+
+ /* add remaining [11:0] bits from original MC4_ADDR */
+ tmp_addr |= addr & GENMASK_ULL(11, 0);
+
+ return cc6_base | tmp_addr;
+ }
+
+ return addr;
+}
+
+static struct pci_dev *pci_get_related_function(unsigned int vendor,
+ unsigned int device,
+ struct pci_dev *related)
+{
+ struct pci_dev *dev = NULL;
+
+ while ((dev = pci_get_device(vendor, device, dev))) {
+ if (pci_domain_nr(dev->bus) == pci_domain_nr(related->bus) &&
+ (dev->bus->number == related->bus->number) &&
+ (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
+ break;
+ }
+
+ return dev;
+}
+
+static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
+{
+ struct amd_northbridge *nb;
+ struct pci_dev *f1 = NULL;
+ unsigned int pci_func;
+ int off = range << 3;
+ u32 llim;
+
+ amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off, &pvt->ranges[range].base.lo);
+ amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
+
+ if (pvt->fam == 0xf)
+ return;
+
+ if (!dram_rw(pvt, range))
+ return;
+
+ amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off, &pvt->ranges[range].base.hi);
+ amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
+
+ /* F15h: factor in CC6 save area by reading dst node's limit reg */
+ if (pvt->fam != 0x15)
+ return;
+
+ nb = node_to_amd_nb(dram_dst_node(pvt, range));
+ if (WARN_ON(!nb))
+ return;
+
+ if (pvt->model == 0x60)
+ pci_func = PCI_DEVICE_ID_AMD_15H_M60H_NB_F1;
+ else if (pvt->model == 0x30)
+ pci_func = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1;
+ else
+ pci_func = PCI_DEVICE_ID_AMD_15H_NB_F1;
+
+ f1 = pci_get_related_function(nb->misc->vendor, pci_func, nb->misc);
+ if (WARN_ON(!f1))
+ return;
+
+ amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim);
+
+ pvt->ranges[range].lim.lo &= GENMASK_ULL(15, 0);
+
+ /* {[39:27],111b} */
+ pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16;
+
+ pvt->ranges[range].lim.hi &= GENMASK_ULL(7, 0);
+
+ /* [47:40] */
+ pvt->ranges[range].lim.hi |= llim >> 13;
+
+ pci_dev_put(f1);
+}
+
+static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
+ struct err_info *err)
+{
+ struct amd64_pvt *pvt = mci->pvt_info;
+
+ error_address_to_page_and_offset(sys_addr, err);
+
+ /*
+ * Find out which node the error address belongs to. This may be
+ * different from the node that detected the error.
+ */
+ err->src_mci = find_mc_by_sys_addr(mci, sys_addr);
+ if (!err->src_mci) {
+ amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
+ (unsigned long)sys_addr);
+ err->err_code = ERR_NODE;
+ return;
+ }
+
+ /* Now map the sys_addr to a CSROW */
+ err->csrow = sys_addr_to_csrow(err->src_mci, sys_addr);
+ if (err->csrow < 0) {
+ err->err_code = ERR_CSROW;
+ return;
+ }
+
+ /* CHIPKILL enabled */
+ if (pvt->nbcfg & NBCFG_CHIPKILL) {
+ err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
+ if (err->channel < 0) {
+ /*
+ * Syndrome didn't map, so we don't know which of the
+ * 2 DIMMs is in error. So we need to ID 'both' of them
+ * as suspect.
+ */
+ amd64_mc_warn(err->src_mci, "unknown syndrome 0x%04x - "
+ "possible error reporting race\n",
+ err->syndrome);
+ err->err_code = ERR_CHANNEL;
+ return;
+ }
+ } else {
+ /*
+ * non-chipkill ecc mode
+ *
+ * The k8 documentation is unclear about how to determine the
+ * channel number when using non-chipkill memory. This method
+ * was obtained from email communication with someone at AMD.
+ * (Wish the email was placed in this comment - norsk)
+ */
+ err->channel = ((sys_addr & BIT(3)) != 0);
+ }
+}
+
+static int ddr2_cs_size(unsigned i, bool dct_width)
+{
+ unsigned shift = 0;
+
+ if (i <= 2)
+ shift = i;
+ else if (!(i & 0x1))
+ shift = i >> 1;
+ else
+ shift = (i + 1) >> 1;
+
+ return 128 << (shift + !!dct_width);
+}
+
+static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
+ unsigned cs_mode, int cs_mask_nr)
+{
+ u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
+
+ if (pvt->ext_model >= K8_REV_F) {
+ WARN_ON(cs_mode > 11);
+ return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
+ }
+ else if (pvt->ext_model >= K8_REV_D) {
+ unsigned diff;
+ WARN_ON(cs_mode > 10);
+
+ /*
+ * the below calculation, besides trying to win an obfuscated C
+ * contest, maps cs_mode values to DIMM chip select sizes. The
+ * mappings are:
+ *
+ * cs_mode CS size (mb)
+ * ======= ============
+ * 0 32
+ * 1 64
+ * 2 128
+ * 3 128
+ * 4 256
+ * 5 512
+ * 6 256
+ * 7 512
+ * 8 1024
+ * 9 1024
+ * 10 2048
+ *
+ * Basically, it calculates a value with which to shift the
+ * smallest CS size of 32MB.
+ *
+ * ddr[23]_cs_size have a similar purpose.
+ */
+ diff = cs_mode/3 + (unsigned)(cs_mode > 5);
+
+ return 32 << (cs_mode - diff);
+ }
+ else {
+ WARN_ON(cs_mode > 6);
+ return 32 << cs_mode;
+ }
+}
+
+/*
+ * Get the number of DCT channels in use.
+ *
+ * Return:
+ * number of Memory Channels in operation
+ * Pass back:
+ * contents of the DCL0_LOW register
+ */
+static int f1x_early_channel_count(struct amd64_pvt *pvt)
+{
+ int i, j, channels = 0;
+
+ /* On F10h, if we are in 128 bit mode, then we are using 2 channels */
+ if (pvt->fam == 0x10 && (pvt->dclr0 & WIDTH_128))
+ return 2;
+
+ /*
+ * Need to check if in unganged mode: In such, there are 2 channels,
+ * but they are not in 128 bit mode and thus the above 'dclr0' status
+ * bit will be OFF.
+ *
+ * Need to check DCT0[0] and DCT1[0] to see if only one of them has
+ * their CSEnable bit on. If so, then SINGLE DIMM case.
+ */
+ edac_dbg(0, "Data width is not 128 bits - need more decoding\n");
+
+ /*
+ * Check DRAM Bank Address Mapping values for each DIMM to see if there
+ * is more than just one DIMM present in unganged mode. Need to check
+ * both controllers since DIMMs can be placed in either one.
+ */
+ for (i = 0; i < 2; i++) {
+ u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
+
+ for (j = 0; j < 4; j++) {
+ if (DBAM_DIMM(j, dbam) > 0) {
+ channels++;
+ break;
+ }
+ }
+ }
+
+ if (channels > 2)
+ channels = 2;
+
+ amd64_info("MCT channel count: %d\n", channels);
+
+ return channels;
+}
+
+static int f17_early_channel_count(struct amd64_pvt *pvt)
+{
+ int i, channels = 0;
+
+ /* SDP Control bit 31 (SdpInit) is clear for unused UMC channels */
+ for_each_umc(i)
+ channels += !!(pvt->umc[i].sdp_ctrl & UMC_SDP_INIT);
+
+ amd64_info("MCT channel count: %d\n", channels);
+
+ return channels;
+}
+
+static int ddr3_cs_size(unsigned i, bool dct_width)
+{
+ unsigned shift = 0;
+ int cs_size = 0;
+
+ if (i == 0 || i == 3 || i == 4)
+ cs_size = -1;
+ else if (i <= 2)
+ shift = i;
+ else if (i == 12)
+ shift = 7;
+ else if (!(i & 0x1))
+ shift = i >> 1;
+ else
+ shift = (i + 1) >> 1;
+
+ if (cs_size != -1)
+ cs_size = (128 * (1 << !!dct_width)) << shift;
+
+ return cs_size;
+}
+
+static int ddr3_lrdimm_cs_size(unsigned i, unsigned rank_multiply)
+{
+ unsigned shift = 0;
+ int cs_size = 0;
+
+ if (i < 4 || i == 6)
+ cs_size = -1;
+ else if (i == 12)
+ shift = 7;
+ else if (!(i & 0x1))
+ shift = i >> 1;
+ else
+ shift = (i + 1) >> 1;
+
+ if (cs_size != -1)
+ cs_size = rank_multiply * (128 << shift);
+
+ return cs_size;
+}
+
+static int ddr4_cs_size(unsigned i)
+{
+ int cs_size = 0;
+
+ if (i == 0)
+ cs_size = -1;
+ else if (i == 1)
+ cs_size = 1024;
+ else
+ /* Min cs_size = 1G */
+ cs_size = 1024 * (1 << (i >> 1));
+
+ return cs_size;
+}
+
+static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
+ unsigned cs_mode, int cs_mask_nr)
+{
+ u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
+
+ WARN_ON(cs_mode > 11);
+
+ if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
+ return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
+ else
+ return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
+}
+
+/*
+ * F15h supports only 64bit DCT interfaces
+ */
+static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
+ unsigned cs_mode, int cs_mask_nr)
+{
+ WARN_ON(cs_mode > 12);
+
+ return ddr3_cs_size(cs_mode, false);
+}
+
+/* F15h M60h supports DDR4 mapping as well.. */
+static int f15_m60h_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
+ unsigned cs_mode, int cs_mask_nr)
+{
+ int cs_size;
+ u32 dcsm = pvt->csels[dct].csmasks[cs_mask_nr];
+
+ WARN_ON(cs_mode > 12);
+
+ if (pvt->dram_type == MEM_DDR4) {
+ if (cs_mode > 9)
+ return -1;
+
+ cs_size = ddr4_cs_size(cs_mode);
+ } else if (pvt->dram_type == MEM_LRDDR3) {
+ unsigned rank_multiply = dcsm & 0xf;
+
+ if (rank_multiply == 3)
+ rank_multiply = 4;
+ cs_size = ddr3_lrdimm_cs_size(cs_mode, rank_multiply);
+ } else {
+ /* Minimum cs size is 512mb for F15hM60h*/
+ if (cs_mode == 0x1)
+ return -1;
+
+ cs_size = ddr3_cs_size(cs_mode, false);
+ }
+
+ return cs_size;
+}
+
+/*
+ * F16h and F15h model 30h have only limited cs_modes.
+ */
+static int f16_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
+ unsigned cs_mode, int cs_mask_nr)
+{
+ WARN_ON(cs_mode > 12);
+
+ if (cs_mode == 6 || cs_mode == 8 ||
+ cs_mode == 9 || cs_mode == 12)
+ return -1;
+ else
+ return ddr3_cs_size(cs_mode, false);
+}
+
+static int f17_addr_mask_to_cs_size(struct amd64_pvt *pvt, u8 umc,
+ unsigned int cs_mode, int csrow_nr)
+{
+ u32 addr_mask_orig, addr_mask_deinterleaved;
+ u32 msb, weight, num_zero_bits;
+ int cs_mask_nr = csrow_nr;
+ int dimm, size = 0;
+
+ /* No Chip Selects are enabled. */
+ if (!cs_mode)
+ return size;
+
+ /* Requested size of an even CS but none are enabled. */
+ if (!(cs_mode & CS_EVEN) && !(csrow_nr & 1))
+ return size;
+
+ /* Requested size of an odd CS but none are enabled. */
+ if (!(cs_mode & CS_ODD) && (csrow_nr & 1))
+ return size;
+
+ /*
+ * Family 17h introduced systems with one mask per DIMM,
+ * and two Chip Selects per DIMM.
+ *
+ * CS0 and CS1 -> MASK0 / DIMM0
+ * CS2 and CS3 -> MASK1 / DIMM1
+ *
+ * Family 19h Model 10h introduced systems with one mask per Chip Select,
+ * and two Chip Selects per DIMM.
+ *
+ * CS0 -> MASK0 -> DIMM0
+ * CS1 -> MASK1 -> DIMM0
+ * CS2 -> MASK2 -> DIMM1
+ * CS3 -> MASK3 -> DIMM1
+ *
+ * Keep the mask number equal to the Chip Select number for newer systems,
+ * and shift the mask number for older systems.
+ */
+ dimm = csrow_nr >> 1;
+
+ if (!fam_type->flags.zn_regs_v2)
+ cs_mask_nr >>= 1;
+
+ /* Asymmetric dual-rank DIMM support. */
+ if ((csrow_nr & 1) && (cs_mode & CS_ODD_SECONDARY))
+ addr_mask_orig = pvt->csels[umc].csmasks_sec[cs_mask_nr];
+ else
+ addr_mask_orig = pvt->csels[umc].csmasks[cs_mask_nr];
+
+ /*
+ * The number of zero bits in the mask is equal to the number of bits
+ * in a full mask minus the number of bits in the current mask.
+ *
+ * The MSB is the number of bits in the full mask because BIT[0] is
+ * always 0.
+ *
+ * In the special 3 Rank interleaving case, a single bit is flipped
+ * without swapping with the most significant bit. This can be handled
+ * by keeping the MSB where it is and ignoring the single zero bit.
+ */
+ msb = fls(addr_mask_orig) - 1;
+ weight = hweight_long(addr_mask_orig);
+ num_zero_bits = msb - weight - !!(cs_mode & CS_3R_INTERLEAVE);
+
+ /* Take the number of zero bits off from the top of the mask. */
+ addr_mask_deinterleaved = GENMASK_ULL(msb - num_zero_bits, 1);
+
+ edac_dbg(1, "CS%d DIMM%d AddrMasks:\n", csrow_nr, dimm);
+ edac_dbg(1, " Original AddrMask: 0x%x\n", addr_mask_orig);
+ edac_dbg(1, " Deinterleaved AddrMask: 0x%x\n", addr_mask_deinterleaved);
+
+ /* Register [31:1] = Address [39:9]. Size is in kBs here. */
+ size = (addr_mask_deinterleaved >> 2) + 1;
+
+ /* Return size in MBs. */
+ return size >> 10;
+}
+
+static void read_dram_ctl_register(struct amd64_pvt *pvt)
+{
+
+ if (pvt->fam == 0xf)
+ return;
+
+ if (!amd64_read_pci_cfg(pvt->F2, DCT_SEL_LO, &pvt->dct_sel_lo)) {
+ edac_dbg(0, "F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
+ pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
+
+ edac_dbg(0, " DCTs operate in %s mode\n",
+ (dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
+
+ if (!dct_ganging_enabled(pvt))
+ edac_dbg(0, " Address range split per DCT: %s\n",
+ (dct_high_range_enabled(pvt) ? "yes" : "no"));
+
+ edac_dbg(0, " data interleave for ECC: %s, DRAM cleared since last warm reset: %s\n",
+ (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
+ (dct_memory_cleared(pvt) ? "yes" : "no"));
+
+ edac_dbg(0, " channel interleave: %s, "
+ "interleave bits selector: 0x%x\n",
+ (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
+ dct_sel_interleave_addr(pvt));
+ }
+
+ amd64_read_pci_cfg(pvt->F2, DCT_SEL_HI, &pvt->dct_sel_hi);
+}
+
+/*
+ * Determine channel (DCT) based on the interleaving mode (see F15h M30h BKDG,
+ * 2.10.12 Memory Interleaving Modes).
+ */
+static u8 f15_m30h_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
+ u8 intlv_en, int num_dcts_intlv,
+ u32 dct_sel)
+{
+ u8 channel = 0;
+ u8 select;
+
+ if (!(intlv_en))
+ return (u8)(dct_sel);
+
+ if (num_dcts_intlv == 2) {
+ select = (sys_addr >> 8) & 0x3;
+ channel = select ? 0x3 : 0;
+ } else if (num_dcts_intlv == 4) {
+ u8 intlv_addr = dct_sel_interleave_addr(pvt);
+ switch (intlv_addr) {
+ case 0x4:
+ channel = (sys_addr >> 8) & 0x3;
+ break;
+ case 0x5:
+ channel = (sys_addr >> 9) & 0x3;
+ break;
+ }
+ }
+ return channel;
+}
+
+/*
+ * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
+ * Interleaving Modes.
+ */
+static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
+ bool hi_range_sel, u8 intlv_en)
+{
+ u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
+
+ if (dct_ganging_enabled(pvt))
+ return 0;
+
+ if (hi_range_sel)
+ return dct_sel_high;
+
+ /*
+ * see F2x110[DctSelIntLvAddr] - channel interleave mode
+ */
+ if (dct_interleave_enabled(pvt)) {
+ u8 intlv_addr = dct_sel_interleave_addr(pvt);
+
+ /* return DCT select function: 0=DCT0, 1=DCT1 */
+ if (!intlv_addr)
+ return sys_addr >> 6 & 1;
+
+ if (intlv_addr & 0x2) {
+ u8 shift = intlv_addr & 0x1 ? 9 : 6;
+ u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) & 1;
+
+ return ((sys_addr >> shift) & 1) ^ temp;
+ }
+
+ if (intlv_addr & 0x4) {
+ u8 shift = intlv_addr & 0x1 ? 9 : 8;
+
+ return (sys_addr >> shift) & 1;
+ }
+
+ return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
+ }
+
+ if (dct_high_range_enabled(pvt))
+ return ~dct_sel_high & 1;
+
+ return 0;
+}
+
+/* Convert the sys_addr to the normalized DCT address */
+static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, u8 range,
+ u64 sys_addr, bool hi_rng,
+ u32 dct_sel_base_addr)
+{
+ u64 chan_off;
+ u64 dram_base = get_dram_base(pvt, range);
+ u64 hole_off = f10_dhar_offset(pvt);
+ u64 dct_sel_base_off = (u64)(pvt->dct_sel_hi & 0xFFFFFC00) << 16;
+
+ if (hi_rng) {
+ /*
+ * if
+ * base address of high range is below 4Gb
+ * (bits [47:27] at [31:11])
+ * DRAM address space on this DCT is hoisted above 4Gb &&
+ * sys_addr > 4Gb
+ *
+ * remove hole offset from sys_addr
+ * else
+ * remove high range offset from sys_addr
+ */
+ if ((!(dct_sel_base_addr >> 16) ||
+ dct_sel_base_addr < dhar_base(pvt)) &&
+ dhar_valid(pvt) &&
+ (sys_addr >= BIT_64(32)))
+ chan_off = hole_off;
+ else
+ chan_off = dct_sel_base_off;
+ } else {
+ /*
+ * if
+ * we have a valid hole &&
+ * sys_addr > 4Gb
+ *
+ * remove hole
+ * else
+ * remove dram base to normalize to DCT address
+ */
+ if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
+ chan_off = hole_off;
+ else
+ chan_off = dram_base;
+ }
+
+ return (sys_addr & GENMASK_ULL(47,6)) - (chan_off & GENMASK_ULL(47,23));
+}
+
+/*
+ * checks if the csrow passed in is marked as SPARED, if so returns the new
+ * spare row
+ */
+static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
+{
+ int tmp_cs;
+
+ if (online_spare_swap_done(pvt, dct) &&
+ csrow == online_spare_bad_dramcs(pvt, dct)) {
+
+ for_each_chip_select(tmp_cs, dct, pvt) {
+ if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
+ csrow = tmp_cs;
+ break;
+ }
+ }
+ }
+ return csrow;
+}
+
+/*
+ * Iterate over the DRAM DCT "base" and "mask" registers looking for a
+ * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
+ *
+ * Return:
+ * -EINVAL: NOT FOUND
+ * 0..csrow = Chip-Select Row
+ */
+static int f1x_lookup_addr_in_dct(u64 in_addr, u8 nid, u8 dct)
+{
+ struct mem_ctl_info *mci;
+ struct amd64_pvt *pvt;
+ u64 cs_base, cs_mask;
+ int cs_found = -EINVAL;
+ int csrow;
+
+ mci = edac_mc_find(nid);
+ if (!mci)
+ return cs_found;
+
+ pvt = mci->pvt_info;
+
+ edac_dbg(1, "input addr: 0x%llx, DCT: %d\n", in_addr, dct);
+
+ for_each_chip_select(csrow, dct, pvt) {
+ if (!csrow_enabled(csrow, dct, pvt))
+ continue;
+
+ get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
+
+ edac_dbg(1, " CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
+ csrow, cs_base, cs_mask);
+
+ cs_mask = ~cs_mask;
+
+ edac_dbg(1, " (InputAddr & ~CSMask)=0x%llx (CSBase & ~CSMask)=0x%llx\n",
+ (in_addr & cs_mask), (cs_base & cs_mask));
+
+ if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
+ if (pvt->fam == 0x15 && pvt->model >= 0x30) {
+ cs_found = csrow;
+ break;
+ }
+ cs_found = f10_process_possible_spare(pvt, dct, csrow);
+
+ edac_dbg(1, " MATCH csrow=%d\n", cs_found);
+ break;
+ }
+ }
+ return cs_found;
+}
+
+/*
+ * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
+ * swapped with a region located at the bottom of memory so that the GPU can use
+ * the interleaved region and thus two channels.
+ */
+static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
+{
+ u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;
+
+ if (pvt->fam == 0x10) {
+ /* only revC3 and revE have that feature */
+ if (pvt->model < 4 || (pvt->model < 0xa && pvt->stepping < 3))
+ return sys_addr;
+ }
+
+ amd64_read_pci_cfg(pvt->F2, SWAP_INTLV_REG, &swap_reg);
+
+ if (!(swap_reg & 0x1))
+ return sys_addr;
+
+ swap_base = (swap_reg >> 3) & 0x7f;
+ swap_limit = (swap_reg >> 11) & 0x7f;
+ rgn_size = (swap_reg >> 20) & 0x7f;
+ tmp_addr = sys_addr >> 27;
+
+ if (!(sys_addr >> 34) &&
+ (((tmp_addr >= swap_base) &&
+ (tmp_addr <= swap_limit)) ||
+ (tmp_addr < rgn_size)))
+ return sys_addr ^ (u64)swap_base << 27;
+
+ return sys_addr;
+}
+
+/* For a given @dram_range, check if @sys_addr falls within it. */
+static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
+ u64 sys_addr, int *chan_sel)
+{
+ int cs_found = -EINVAL;
+ u64 chan_addr;
+ u32 dct_sel_base;
+ u8 channel;
+ bool high_range = false;
+
+ u8 node_id = dram_dst_node(pvt, range);
+ u8 intlv_en = dram_intlv_en(pvt, range);
+ u32 intlv_sel = dram_intlv_sel(pvt, range);
+
+ edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
+ range, sys_addr, get_dram_limit(pvt, range));
+
+ if (dhar_valid(pvt) &&
+ dhar_base(pvt) <= sys_addr &&
+ sys_addr < BIT_64(32)) {
+ amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
+ sys_addr);
+ return -EINVAL;
+ }
+
+ if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en)))
+ return -EINVAL;
+
+ sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
+
+ dct_sel_base = dct_sel_baseaddr(pvt);
+
+ /*
+ * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
+ * select between DCT0 and DCT1.
+ */
+ if (dct_high_range_enabled(pvt) &&
+ !dct_ganging_enabled(pvt) &&
+ ((sys_addr >> 27) >= (dct_sel_base >> 11)))
+ high_range = true;
+
+ channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
+
+ chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
+ high_range, dct_sel_base);
+
+ /* Remove node interleaving, see F1x120 */
+ if (intlv_en)
+ chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
+ (chan_addr & 0xfff);
+
+ /* remove channel interleave */
+ if (dct_interleave_enabled(pvt) &&
+ !dct_high_range_enabled(pvt) &&
+ !dct_ganging_enabled(pvt)) {
+
+ if (dct_sel_interleave_addr(pvt) != 1) {
+ if (dct_sel_interleave_addr(pvt) == 0x3)
+ /* hash 9 */
+ chan_addr = ((chan_addr >> 10) << 9) |
+ (chan_addr & 0x1ff);
+ else
+ /* A[6] or hash 6 */
+ chan_addr = ((chan_addr >> 7) << 6) |
+ (chan_addr & 0x3f);
+ } else
+ /* A[12] */
+ chan_addr = ((chan_addr >> 13) << 12) |
+ (chan_addr & 0xfff);
+ }
+
+ edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr);
+
+ cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
+
+ if (cs_found >= 0)
+ *chan_sel = channel;
+
+ return cs_found;
+}
+
+static int f15_m30h_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
+ u64 sys_addr, int *chan_sel)
+{
+ int cs_found = -EINVAL;
+ int num_dcts_intlv = 0;
+ u64 chan_addr, chan_offset;
+ u64 dct_base, dct_limit;
+ u32 dct_cont_base_reg, dct_cont_limit_reg, tmp;
+ u8 channel, alias_channel, leg_mmio_hole, dct_sel, dct_offset_en;
+
+ u64 dhar_offset = f10_dhar_offset(pvt);
+ u8 intlv_addr = dct_sel_interleave_addr(pvt);
+ u8 node_id = dram_dst_node(pvt, range);
+ u8 intlv_en = dram_intlv_en(pvt, range);
+
+ amd64_read_pci_cfg(pvt->F1, DRAM_CONT_BASE, &dct_cont_base_reg);
+ amd64_read_pci_cfg(pvt->F1, DRAM_CONT_LIMIT, &dct_cont_limit_reg);
+
+ dct_offset_en = (u8) ((dct_cont_base_reg >> 3) & BIT(0));
+ dct_sel = (u8) ((dct_cont_base_reg >> 4) & 0x7);
+
+ edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
+ range, sys_addr, get_dram_limit(pvt, range));
+
+ if (!(get_dram_base(pvt, range) <= sys_addr) &&
+ !(get_dram_limit(pvt, range) >= sys_addr))
+ return -EINVAL;
+
+ if (dhar_valid(pvt) &&
+ dhar_base(pvt) <= sys_addr &&
+ sys_addr < BIT_64(32)) {
+ amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
+ sys_addr);
+ return -EINVAL;
+ }
+
+ /* Verify sys_addr is within DCT Range. */
+ dct_base = (u64) dct_sel_baseaddr(pvt);
+ dct_limit = (dct_cont_limit_reg >> 11) & 0x1FFF;
+
+ if (!(dct_cont_base_reg & BIT(0)) &&
+ !(dct_base <= (sys_addr >> 27) &&
+ dct_limit >= (sys_addr >> 27)))
+ return -EINVAL;
+
+ /* Verify number of dct's that participate in channel interleaving. */
+ num_dcts_intlv = (int) hweight8(intlv_en);
+
+ if (!(num_dcts_intlv % 2 == 0) || (num_dcts_intlv > 4))
+ return -EINVAL;
+
+ if (pvt->model >= 0x60)
+ channel = f1x_determine_channel(pvt, sys_addr, false, intlv_en);
+ else
+ channel = f15_m30h_determine_channel(pvt, sys_addr, intlv_en,
+ num_dcts_intlv, dct_sel);
+
+ /* Verify we stay within the MAX number of channels allowed */
+ if (channel > 3)
+ return -EINVAL;
+
+ leg_mmio_hole = (u8) (dct_cont_base_reg >> 1 & BIT(0));
+
+ /* Get normalized DCT addr */
+ if (leg_mmio_hole && (sys_addr >= BIT_64(32)))
+ chan_offset = dhar_offset;
+ else
+ chan_offset = dct_base << 27;
+
+ chan_addr = sys_addr - chan_offset;
+
+ /* remove channel interleave */
+ if (num_dcts_intlv == 2) {
+ if (intlv_addr == 0x4)
+ chan_addr = ((chan_addr >> 9) << 8) |
+ (chan_addr & 0xff);
+ else if (intlv_addr == 0x5)
+ chan_addr = ((chan_addr >> 10) << 9) |
+ (chan_addr & 0x1ff);
+ else
+ return -EINVAL;
+
+ } else if (num_dcts_intlv == 4) {
+ if (intlv_addr == 0x4)
+ chan_addr = ((chan_addr >> 10) << 8) |
+ (chan_addr & 0xff);
+ else if (intlv_addr == 0x5)
+ chan_addr = ((chan_addr >> 11) << 9) |
+ (chan_addr & 0x1ff);
+ else
+ return -EINVAL;
+ }
+
+ if (dct_offset_en) {
+ amd64_read_pci_cfg(pvt->F1,
+ DRAM_CONT_HIGH_OFF + (int) channel * 4,
+ &tmp);
+ chan_addr += (u64) ((tmp >> 11) & 0xfff) << 27;
+ }
+
+ f15h_select_dct(pvt, channel);
+
+ edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr);
+
+ /*
+ * Find Chip select:
+ * if channel = 3, then alias it to 1. This is because, in F15 M30h,
+ * there is support for 4 DCT's, but only 2 are currently functional.
+ * They are DCT0 and DCT3. But we have read all registers of DCT3 into
+ * pvt->csels[1]. So we need to use '1' here to get correct info.
+ * Refer F15 M30h BKDG Section 2.10 and 2.10.3 for clarifications.
+ */
+ alias_channel = (channel == 3) ? 1 : channel;
+
+ cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, alias_channel);
+
+ if (cs_found >= 0)
+ *chan_sel = alias_channel;
+
+ return cs_found;
+}
+
+static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt,
+ u64 sys_addr,
+ int *chan_sel)
+{
+ int cs_found = -EINVAL;
+ unsigned range;
+
+ for (range = 0; range < DRAM_RANGES; range++) {
+ if (!dram_rw(pvt, range))
+ continue;
+
+ if (pvt->fam == 0x15 && pvt->model >= 0x30)
+ cs_found = f15_m30h_match_to_this_node(pvt, range,
+ sys_addr,
+ chan_sel);
+
+ else if ((get_dram_base(pvt, range) <= sys_addr) &&
+ (get_dram_limit(pvt, range) >= sys_addr)) {
+ cs_found = f1x_match_to_this_node(pvt, range,
+ sys_addr, chan_sel);
+ if (cs_found >= 0)
+ break;
+ }
+ }
+ return cs_found;
+}
+
+/*
+ * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
+ * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
+ *
+ * The @sys_addr is usually an error address received from the hardware
+ * (MCX_ADDR).
+ */
+static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
+ struct err_info *err)
+{
+ struct amd64_pvt *pvt = mci->pvt_info;
+
+ error_address_to_page_and_offset(sys_addr, err);
+
+ err->csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &err->channel);
+ if (err->csrow < 0) {
+ err->err_code = ERR_CSROW;
+ return;
+ }
+
+ /*
+ * We need the syndromes for channel detection only when we're
+ * ganged. Otherwise @chan should already contain the channel at
+ * this point.
+ */
+ if (dct_ganging_enabled(pvt))
+ err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
+}
+
+/*
+ * debug routine to display the memory sizes of all logical DIMMs and its
+ * CSROWs
+ */
+static void debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
+{
+ int dimm, size0, size1;
+ u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
+ u32 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
+
+ if (pvt->fam == 0xf) {
+ /* K8 families < revF not supported yet */
+ if (pvt->ext_model < K8_REV_F)
+ return;
+ else
+ WARN_ON(ctrl != 0);
+ }
+
+ if (pvt->fam == 0x10) {
+ dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1
+ : pvt->dbam0;
+ dcsb = (ctrl && !dct_ganging_enabled(pvt)) ?
+ pvt->csels[1].csbases :
+ pvt->csels[0].csbases;
+ } else if (ctrl) {
+ dbam = pvt->dbam0;
+ dcsb = pvt->csels[1].csbases;
+ }
+ edac_dbg(1, "F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
+ ctrl, dbam);
+
+ edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
+
+ /* Dump memory sizes for DIMM and its CSROWs */
+ for (dimm = 0; dimm < 4; dimm++) {
+
+ size0 = 0;
+ if (dcsb[dimm*2] & DCSB_CS_ENABLE)
+ /*
+ * For F15m60h, we need multiplier for LRDIMM cs_size
+ * calculation. We pass dimm value to the dbam_to_cs
+ * mapper so we can find the multiplier from the
+ * corresponding DCSM.
+ */
+ size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
+ DBAM_DIMM(dimm, dbam),
+ dimm);
+
+ size1 = 0;
+ if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
+ size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
+ DBAM_DIMM(dimm, dbam),
+ dimm);
+
+ amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
+ dimm * 2, size0,
+ dimm * 2 + 1, size1);
+ }
+}
+
+static struct amd64_family_type family_types[] = {
+ [K8_CPUS] = {
+ .ctl_name = "K8",
+ .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
+ .f2_id = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
+ .max_mcs = 2,
+ .ops = {
+ .early_channel_count = k8_early_channel_count,
+ .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
+ .dbam_to_cs = k8_dbam_to_chip_select,
+ }
+ },
+ [F10_CPUS] = {
+ .ctl_name = "F10h",
+ .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
+ .f2_id = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
+ .max_mcs = 2,
+ .ops = {
+ .early_channel_count = f1x_early_channel_count,
+ .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
+ .dbam_to_cs = f10_dbam_to_chip_select,
+ }
+ },
+ [F15_CPUS] = {
+ .ctl_name = "F15h",
+ .f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
+ .f2_id = PCI_DEVICE_ID_AMD_15H_NB_F2,
+ .max_mcs = 2,
+ .ops = {
+ .early_channel_count = f1x_early_channel_count,
+ .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
+ .dbam_to_cs = f15_dbam_to_chip_select,
+ }
+ },
+ [F15_M30H_CPUS] = {
+ .ctl_name = "F15h_M30h",
+ .f1_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1,
+ .f2_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F2,
+ .max_mcs = 2,
+ .ops = {
+ .early_channel_count = f1x_early_channel_count,
+ .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
+ .dbam_to_cs = f16_dbam_to_chip_select,
+ }
+ },
+ [F15_M60H_CPUS] = {
+ .ctl_name = "F15h_M60h",
+ .f1_id = PCI_DEVICE_ID_AMD_15H_M60H_NB_F1,
+ .f2_id = PCI_DEVICE_ID_AMD_15H_M60H_NB_F2,
+ .max_mcs = 2,
+ .ops = {
+ .early_channel_count = f1x_early_channel_count,
+ .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
+ .dbam_to_cs = f15_m60h_dbam_to_chip_select,
+ }
+ },
+ [F16_CPUS] = {
+ .ctl_name = "F16h",
+ .f1_id = PCI_DEVICE_ID_AMD_16H_NB_F1,
+ .f2_id = PCI_DEVICE_ID_AMD_16H_NB_F2,
+ .max_mcs = 2,
+ .ops = {
+ .early_channel_count = f1x_early_channel_count,
+ .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
+ .dbam_to_cs = f16_dbam_to_chip_select,
+ }
+ },
+ [F16_M30H_CPUS] = {
+ .ctl_name = "F16h_M30h",
+ .f1_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F1,
+ .f2_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F2,
+ .max_mcs = 2,
+ .ops = {
+ .early_channel_count = f1x_early_channel_count,
+ .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
+ .dbam_to_cs = f16_dbam_to_chip_select,
+ }
+ },
+ [F17_CPUS] = {
+ .ctl_name = "F17h",
+ .f0_id = PCI_DEVICE_ID_AMD_17H_DF_F0,
+ .f6_id = PCI_DEVICE_ID_AMD_17H_DF_F6,
+ .max_mcs = 2,
+ .ops = {
+ .early_channel_count = f17_early_channel_count,
+ .dbam_to_cs = f17_addr_mask_to_cs_size,
+ }
+ },
+ [F17_M10H_CPUS] = {
+ .ctl_name = "F17h_M10h",
+ .f0_id = PCI_DEVICE_ID_AMD_17H_M10H_DF_F0,
+ .f6_id = PCI_DEVICE_ID_AMD_17H_M10H_DF_F6,
+ .max_mcs = 2,
+ .ops = {
+ .early_channel_count = f17_early_channel_count,
+ .dbam_to_cs = f17_addr_mask_to_cs_size,
+ }
+ },
+ [F17_M30H_CPUS] = {
+ .ctl_name = "F17h_M30h",
+ .f0_id = PCI_DEVICE_ID_AMD_17H_M30H_DF_F0,
+ .f6_id = PCI_DEVICE_ID_AMD_17H_M30H_DF_F6,
+ .max_mcs = 8,
+ .ops = {
+ .early_channel_count = f17_early_channel_count,
+ .dbam_to_cs = f17_addr_mask_to_cs_size,
+ }
+ },
+ [F17_M60H_CPUS] = {
+ .ctl_name = "F17h_M60h",
+ .f0_id = PCI_DEVICE_ID_AMD_17H_M60H_DF_F0,
+ .f6_id = PCI_DEVICE_ID_AMD_17H_M60H_DF_F6,
+ .max_mcs = 2,
+ .ops = {
+ .early_channel_count = f17_early_channel_count,
+ .dbam_to_cs = f17_addr_mask_to_cs_size,
+ }
+ },
+ [F17_M70H_CPUS] = {
+ .ctl_name = "F17h_M70h",
+ .f0_id = PCI_DEVICE_ID_AMD_17H_M70H_DF_F0,
+ .f6_id = PCI_DEVICE_ID_AMD_17H_M70H_DF_F6,
+ .max_mcs = 2,
+ .ops = {
+ .early_channel_count = f17_early_channel_count,
+ .dbam_to_cs = f17_addr_mask_to_cs_size,
+ }
+ },
+ [F19_CPUS] = {
+ .ctl_name = "F19h",
+ .f0_id = PCI_DEVICE_ID_AMD_19H_DF_F0,
+ .f6_id = PCI_DEVICE_ID_AMD_19H_DF_F6,
+ .max_mcs = 8,
+ .ops = {
+ .early_channel_count = f17_early_channel_count,
+ .dbam_to_cs = f17_addr_mask_to_cs_size,
+ }
+ },
+ [F19_M10H_CPUS] = {
+ .ctl_name = "F19h_M10h",
+ .f0_id = PCI_DEVICE_ID_AMD_19H_M10H_DF_F0,
+ .f6_id = PCI_DEVICE_ID_AMD_19H_M10H_DF_F6,
+ .max_mcs = 12,
+ .flags.zn_regs_v2 = 1,
+ .ops = {
+ .early_channel_count = f17_early_channel_count,
+ .dbam_to_cs = f17_addr_mask_to_cs_size,
+ }
+ },
+ [F19_M50H_CPUS] = {
+ .ctl_name = "F19h_M50h",
+ .f0_id = PCI_DEVICE_ID_AMD_19H_M50H_DF_F0,
+ .f6_id = PCI_DEVICE_ID_AMD_19H_M50H_DF_F6,
+ .max_mcs = 2,
+ .ops = {
+ .early_channel_count = f17_early_channel_count,
+ .dbam_to_cs = f17_addr_mask_to_cs_size,
+ }
+ },
+};
+
+/*
+ * These are tables of eigenvectors (one per line) which can be used for the
+ * construction of the syndrome tables. The modified syndrome search algorithm
+ * uses those to find the symbol in error and thus the DIMM.
+ *
+ * Algorithm courtesy of Ross LaFetra from AMD.
+ */
+static const u16 x4_vectors[] = {
+ 0x2f57, 0x1afe, 0x66cc, 0xdd88,
+ 0x11eb, 0x3396, 0x7f4c, 0xeac8,
+ 0x0001, 0x0002, 0x0004, 0x0008,
+ 0x1013, 0x3032, 0x4044, 0x8088,
+ 0x106b, 0x30d6, 0x70fc, 0xe0a8,
+ 0x4857, 0xc4fe, 0x13cc, 0x3288,
+ 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
+ 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
+ 0x15c1, 0x2a42, 0x89ac, 0x4758,
+ 0x2b03, 0x1602, 0x4f0c, 0xca08,
+ 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
+ 0x8ba7, 0x465e, 0x244c, 0x1cc8,
+ 0x2b87, 0x164e, 0x642c, 0xdc18,
+ 0x40b9, 0x80de, 0x1094, 0x20e8,
+ 0x27db, 0x1eb6, 0x9dac, 0x7b58,
+ 0x11c1, 0x2242, 0x84ac, 0x4c58,
+ 0x1be5, 0x2d7a, 0x5e34, 0xa718,
+ 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
+ 0x4c97, 0xc87e, 0x11fc, 0x33a8,
+ 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
+ 0x16b3, 0x3d62, 0x4f34, 0x8518,
+ 0x1e2f, 0x391a, 0x5cac, 0xf858,
+ 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
+ 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
+ 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
+ 0x4397, 0xc27e, 0x17fc, 0x3ea8,
+ 0x1617, 0x3d3e, 0x6464, 0xb8b8,
+ 0x23ff, 0x12aa, 0xab6c, 0x56d8,
+ 0x2dfb, 0x1ba6, 0x913c, 0x7328,
+ 0x185d, 0x2ca6, 0x7914, 0x9e28,
+ 0x171b, 0x3e36, 0x7d7c, 0xebe8,
+ 0x4199, 0x82ee, 0x19f4, 0x2e58,
+ 0x4807, 0xc40e, 0x130c, 0x3208,
+ 0x1905, 0x2e0a, 0x5804, 0xac08,
+ 0x213f, 0x132a, 0xadfc, 0x5ba8,
+ 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
+};
+
+static const u16 x8_vectors[] = {
+ 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
+ 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
+ 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
+ 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
+ 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
+ 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
+ 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
+ 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
+ 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
+ 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
+ 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
+ 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
+ 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
+ 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
+ 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
+ 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
+ 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
+ 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
+ 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
+};
+
+static int decode_syndrome(u16 syndrome, const u16 *vectors, unsigned num_vecs,
+ unsigned v_dim)
+{
+ unsigned int i, err_sym;
+
+ for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
+ u16 s = syndrome;
+ unsigned v_idx = err_sym * v_dim;
+ unsigned v_end = (err_sym + 1) * v_dim;
+
+ /* walk over all 16 bits of the syndrome */
+ for (i = 1; i < (1U << 16); i <<= 1) {
+
+ /* if bit is set in that eigenvector... */
+ if (v_idx < v_end && vectors[v_idx] & i) {
+ u16 ev_comp = vectors[v_idx++];
+
+ /* ... and bit set in the modified syndrome, */
+ if (s & i) {
+ /* remove it. */
+ s ^= ev_comp;
+
+ if (!s)
+ return err_sym;
+ }
+
+ } else if (s & i)
+ /* can't get to zero, move to next symbol */
+ break;
+ }
+ }
+
+ edac_dbg(0, "syndrome(%x) not found\n", syndrome);
+ return -1;
+}
+
+static int map_err_sym_to_channel(int err_sym, int sym_size)
+{
+ if (sym_size == 4)
+ switch (err_sym) {
+ case 0x20:
+ case 0x21:
+ return 0;
+ case 0x22:
+ case 0x23:
+ return 1;
+ default:
+ return err_sym >> 4;
+ }
+ /* x8 symbols */
+ else
+ switch (err_sym) {
+ /* imaginary bits not in a DIMM */
+ case 0x10:
+ WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
+ err_sym);
+ return -1;
+ case 0x11:
+ return 0;
+ case 0x12:
+ return 1;
+ default:
+ return err_sym >> 3;
+ }
+ return -1;
+}
+
+static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
+{
+ struct amd64_pvt *pvt = mci->pvt_info;
+ int err_sym = -1;
+
+ if (pvt->ecc_sym_sz == 8)
+ err_sym = decode_syndrome(syndrome, x8_vectors,
+ ARRAY_SIZE(x8_vectors),
+ pvt->ecc_sym_sz);
+ else if (pvt->ecc_sym_sz == 4)
+ err_sym = decode_syndrome(syndrome, x4_vectors,
+ ARRAY_SIZE(x4_vectors),
+ pvt->ecc_sym_sz);
+ else {
+ amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
+ return err_sym;
+ }
+
+ return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
+}
+
+static void __log_ecc_error(struct mem_ctl_info *mci, struct err_info *err,
+ u8 ecc_type)
+{
+ enum hw_event_mc_err_type err_type;
+ const char *string;
+
+ if (ecc_type == 2)
+ err_type = HW_EVENT_ERR_CORRECTED;
+ else if (ecc_type == 1)
+ err_type = HW_EVENT_ERR_UNCORRECTED;
+ else if (ecc_type == 3)
+ err_type = HW_EVENT_ERR_DEFERRED;
+ else {
+ WARN(1, "Something is rotten in the state of Denmark.\n");
+ return;
+ }
+
+ switch (err->err_code) {
+ case DECODE_OK:
+ string = "";
+ break;
+ case ERR_NODE:
+ string = "Failed to map error addr to a node";
+ break;
+ case ERR_CSROW:
+ string = "Failed to map error addr to a csrow";
+ break;
+ case ERR_CHANNEL:
+ string = "Unknown syndrome - possible error reporting race";
+ break;
+ case ERR_SYND:
+ string = "MCA_SYND not valid - unknown syndrome and csrow";
+ break;
+ case ERR_NORM_ADDR:
+ string = "Cannot decode normalized address";
+ break;
+ default:
+ string = "WTF error";
+ break;
+ }
+
+ edac_mc_handle_error(err_type, mci, 1,
+ err->page, err->offset, err->syndrome,
+ err->csrow, err->channel, -1,
+ string, "");
+}
+
+static inline void decode_bus_error(int node_id, struct mce *m)
+{
+ struct mem_ctl_info *mci;
+ struct amd64_pvt *pvt;
+ u8 ecc_type = (m->status >> 45) & 0x3;
+ u8 xec = XEC(m->status, 0x1f);
+ u16 ec = EC(m->status);
+ u64 sys_addr;
+ struct err_info err;
+
+ mci = edac_mc_find(node_id);
+ if (!mci)
+ return;
+
+ pvt = mci->pvt_info;
+
+ /* Bail out early if this was an 'observed' error */
+ if (PP(ec) == NBSL_PP_OBS)
+ return;
+
+ /* Do only ECC errors */
+ if (xec && xec != F10_NBSL_EXT_ERR_ECC)
+ return;
+
+ memset(&err, 0, sizeof(err));
+
+ sys_addr = get_error_address(pvt, m);
+
+ if (ecc_type == 2)
+ err.syndrome = extract_syndrome(m->status);
+
+ pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, &err);
+
+ __log_ecc_error(mci, &err, ecc_type);
+}
+
+/*
+ * To find the UMC channel represented by this bank we need to match on its
+ * instance_id. The instance_id of a bank is held in the lower 32 bits of its
+ * IPID.
+ *
+ * Currently, we can derive the channel number by looking at the 6th nibble in
+ * the instance_id. For example, instance_id=0xYXXXXX where Y is the channel
+ * number.
+ */
+static int find_umc_channel(struct mce *m)
+{
+ return (m->ipid & GENMASK(31, 0)) >> 20;
+}
+
+static void decode_umc_error(int node_id, struct mce *m)
+{
+ u8 ecc_type = (m->status >> 45) & 0x3;
+ struct mem_ctl_info *mci;
+ struct amd64_pvt *pvt;
+ struct err_info err;
+ u64 sys_addr;
+
+ mci = edac_mc_find(node_id);
+ if (!mci)
+ return;
+
+ pvt = mci->pvt_info;
+
+ memset(&err, 0, sizeof(err));
+
+ if (m->status & MCI_STATUS_DEFERRED)
+ ecc_type = 3;
+
+ err.channel = find_umc_channel(m);
+
+ if (!(m->status & MCI_STATUS_SYNDV)) {
+ err.err_code = ERR_SYND;
+ goto log_error;
+ }
+
+ if (ecc_type == 2) {
+ u8 length = (m->synd >> 18) & 0x3f;
+
+ if (length)
+ err.syndrome = (m->synd >> 32) & GENMASK(length - 1, 0);
+ else
+ err.err_code = ERR_CHANNEL;
+ }
+
+ err.csrow = m->synd & 0x7;
+
+ if (umc_normaddr_to_sysaddr(m->addr, pvt->mc_node_id, err.channel, &sys_addr)) {
+ err.err_code = ERR_NORM_ADDR;
+ goto log_error;
+ }
+
+ error_address_to_page_and_offset(sys_addr, &err);
+
+log_error:
+ __log_ecc_error(mci, &err, ecc_type);
+}
+
+/*
+ * Use pvt->F3 which contains the F3 CPU PCI device to get the related
+ * F1 (AddrMap) and F2 (Dct) devices. Return negative value on error.
+ * Reserve F0 and F6 on systems with a UMC.
+ */
+static int
+reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 pci_id1, u16 pci_id2)
+{
+ if (pvt->umc) {
+ pvt->F0 = pci_get_related_function(pvt->F3->vendor, pci_id1, pvt->F3);
+ if (!pvt->F0) {
+ edac_dbg(1, "F0 not found, device 0x%x\n", pci_id1);
+ return -ENODEV;
+ }
+
+ pvt->F6 = pci_get_related_function(pvt->F3->vendor, pci_id2, pvt->F3);
+ if (!pvt->F6) {
+ pci_dev_put(pvt->F0);
+ pvt->F0 = NULL;
+
+ edac_dbg(1, "F6 not found: device 0x%x\n", pci_id2);
+ return -ENODEV;
+ }
+
+ if (!pci_ctl_dev)
+ pci_ctl_dev = &pvt->F0->dev;
+
+ edac_dbg(1, "F0: %s\n", pci_name(pvt->F0));
+ edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
+ edac_dbg(1, "F6: %s\n", pci_name(pvt->F6));
+
+ return 0;
+ }
+
+ /* Reserve the ADDRESS MAP Device */
+ pvt->F1 = pci_get_related_function(pvt->F3->vendor, pci_id1, pvt->F3);
+ if (!pvt->F1) {
+ edac_dbg(1, "F1 not found: device 0x%x\n", pci_id1);
+ return -ENODEV;
+ }
+
+ /* Reserve the DCT Device */
+ pvt->F2 = pci_get_related_function(pvt->F3->vendor, pci_id2, pvt->F3);
+ if (!pvt->F2) {
+ pci_dev_put(pvt->F1);
+ pvt->F1 = NULL;
+
+ edac_dbg(1, "F2 not found: device 0x%x\n", pci_id2);
+ return -ENODEV;
+ }
+
+ if (!pci_ctl_dev)
+ pci_ctl_dev = &pvt->F2->dev;
+
+ edac_dbg(1, "F1: %s\n", pci_name(pvt->F1));
+ edac_dbg(1, "F2: %s\n", pci_name(pvt->F2));
+ edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
+
+ return 0;
+}
+
+static void free_mc_sibling_devs(struct amd64_pvt *pvt)
+{
+ if (pvt->umc) {
+ pci_dev_put(pvt->F0);
+ pci_dev_put(pvt->F6);
+ } else {
+ pci_dev_put(pvt->F1);
+ pci_dev_put(pvt->F2);
+ }
+}
+
+static void determine_ecc_sym_sz(struct amd64_pvt *pvt)
+{
+ pvt->ecc_sym_sz = 4;
+
+ if (pvt->umc) {
+ u8 i;
+
+ for_each_umc(i) {
+ /* Check enabled channels only: */
+ if (pvt->umc[i].sdp_ctrl & UMC_SDP_INIT) {
+ if (pvt->umc[i].ecc_ctrl & BIT(9)) {
+ pvt->ecc_sym_sz = 16;
+ return;
+ } else if (pvt->umc[i].ecc_ctrl & BIT(7)) {
+ pvt->ecc_sym_sz = 8;
+ return;
+ }
+ }
+ }
+ } else if (pvt->fam >= 0x10) {
+ u32 tmp;
+
+ amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
+ /* F16h has only DCT0, so no need to read dbam1. */
+ if (pvt->fam != 0x16)
+ amd64_read_dct_pci_cfg(pvt, 1, DBAM0, &pvt->dbam1);
+
+ /* F10h, revD and later can do x8 ECC too. */
+ if ((pvt->fam > 0x10 || pvt->model > 7) && tmp & BIT(25))
+ pvt->ecc_sym_sz = 8;
+ }
+}
+
+/*
+ * Retrieve the hardware registers of the memory controller.
+ */
+static void __read_mc_regs_df(struct amd64_pvt *pvt)
+{
+ u8 nid = pvt->mc_node_id;
+ struct amd64_umc *umc;
+ u32 i, umc_base;
+
+ /* Read registers from each UMC */
+ for_each_umc(i) {
+
+ umc_base = get_umc_base(i);
+ umc = &pvt->umc[i];
+
+ amd_smn_read(nid, umc_base + get_umc_reg(UMCCH_DIMM_CFG), &umc->dimm_cfg);
+ amd_smn_read(nid, umc_base + UMCCH_UMC_CFG, &umc->umc_cfg);
+ amd_smn_read(nid, umc_base + UMCCH_SDP_CTRL, &umc->sdp_ctrl);
+ amd_smn_read(nid, umc_base + UMCCH_ECC_CTRL, &umc->ecc_ctrl);
+ amd_smn_read(nid, umc_base + UMCCH_UMC_CAP_HI, &umc->umc_cap_hi);
+ }
+}
+
+/*
+ * Retrieve the hardware registers of the memory controller (this includes the
+ * 'Address Map' and 'Misc' device regs)
+ */
+static void read_mc_regs(struct amd64_pvt *pvt)
+{
+ unsigned int range;
+ u64 msr_val;
+
+ /*
+ * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
+ * those are Read-As-Zero.
+ */
+ rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
+ edac_dbg(0, " TOP_MEM: 0x%016llx\n", pvt->top_mem);
+
+ /* Check first whether TOP_MEM2 is enabled: */
+ rdmsrl(MSR_AMD64_SYSCFG, msr_val);
+ if (msr_val & BIT(21)) {
+ rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
+ edac_dbg(0, " TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
+ } else {
+ edac_dbg(0, " TOP_MEM2 disabled\n");
+ }
+
+ if (pvt->umc) {
+ __read_mc_regs_df(pvt);
+ amd64_read_pci_cfg(pvt->F0, DF_DHAR, &pvt->dhar);
+
+ goto skip;
+ }
+
+ amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
+
+ read_dram_ctl_register(pvt);
+
+ for (range = 0; range < DRAM_RANGES; range++) {
+ u8 rw;
+
+ /* read settings for this DRAM range */
+ read_dram_base_limit_regs(pvt, range);
+
+ rw = dram_rw(pvt, range);
+ if (!rw)
+ continue;
+
+ edac_dbg(1, " DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
+ range,
+ get_dram_base(pvt, range),
+ get_dram_limit(pvt, range));
+
+ edac_dbg(1, " IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
+ dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
+ (rw & 0x1) ? "R" : "-",
+ (rw & 0x2) ? "W" : "-",
+ dram_intlv_sel(pvt, range),
+ dram_dst_node(pvt, range));
+ }
+
+ amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
+ amd64_read_dct_pci_cfg(pvt, 0, DBAM0, &pvt->dbam0);
+
+ amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
+
+ amd64_read_dct_pci_cfg(pvt, 0, DCLR0, &pvt->dclr0);
+ amd64_read_dct_pci_cfg(pvt, 0, DCHR0, &pvt->dchr0);
+
+ if (!dct_ganging_enabled(pvt)) {
+ amd64_read_dct_pci_cfg(pvt, 1, DCLR0, &pvt->dclr1);
+ amd64_read_dct_pci_cfg(pvt, 1, DCHR0, &pvt->dchr1);
+ }
+
+skip:
+ read_dct_base_mask(pvt);
+
+ determine_memory_type(pvt);
+
+ if (!pvt->umc)
+ edac_dbg(1, " DIMM type: %s\n", edac_mem_types[pvt->dram_type]);
+
+ determine_ecc_sym_sz(pvt);
+}
+
+/*
+ * NOTE: CPU Revision Dependent code
+ *
+ * Input:
+ * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
+ * k8 private pointer to -->
+ * DRAM Bank Address mapping register
+ * node_id
+ * DCL register where dual_channel_active is
+ *
+ * The DBAM register consists of 4 sets of 4 bits each definitions:
+ *
+ * Bits: CSROWs
+ * 0-3 CSROWs 0 and 1
+ * 4-7 CSROWs 2 and 3
+ * 8-11 CSROWs 4 and 5
+ * 12-15 CSROWs 6 and 7
+ *
+ * Values range from: 0 to 15
+ * The meaning of the values depends on CPU revision and dual-channel state,
+ * see relevant BKDG more info.
+ *
+ * The memory controller provides for total of only 8 CSROWs in its current
+ * architecture. Each "pair" of CSROWs normally represents just one DIMM in
+ * single channel or two (2) DIMMs in dual channel mode.
+ *
+ * The following code logic collapses the various tables for CSROW based on CPU
+ * revision.
+ *
+ * Returns:
+ * The number of PAGE_SIZE pages on the specified CSROW number it
+ * encompasses
+ *
+ */
+static u32 get_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr_orig)
+{
+ u32 dbam = dct ? pvt->dbam1 : pvt->dbam0;
+ int csrow_nr = csrow_nr_orig;
+ u32 cs_mode, nr_pages;
+
+ if (!pvt->umc) {
+ csrow_nr >>= 1;
+ cs_mode = DBAM_DIMM(csrow_nr, dbam);
+ } else {
+ cs_mode = f17_get_cs_mode(csrow_nr >> 1, dct, pvt);
+ }
+
+ nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode, csrow_nr);
+ nr_pages <<= 20 - PAGE_SHIFT;
+
+ edac_dbg(0, "csrow: %d, channel: %d, DBAM idx: %d\n",
+ csrow_nr_orig, dct, cs_mode);
+ edac_dbg(0, "nr_pages/channel: %u\n", nr_pages);
+
+ return nr_pages;
+}
+
+static int init_csrows_df(struct mem_ctl_info *mci)
+{
+ struct amd64_pvt *pvt = mci->pvt_info;
+ enum edac_type edac_mode = EDAC_NONE;
+ enum dev_type dev_type = DEV_UNKNOWN;
+ struct dimm_info *dimm;
+ int empty = 1;
+ u8 umc, cs;
+
+ if (mci->edac_ctl_cap & EDAC_FLAG_S16ECD16ED) {
+ edac_mode = EDAC_S16ECD16ED;
+ dev_type = DEV_X16;
+ } else if (mci->edac_ctl_cap & EDAC_FLAG_S8ECD8ED) {
+ edac_mode = EDAC_S8ECD8ED;
+ dev_type = DEV_X8;
+ } else if (mci->edac_ctl_cap & EDAC_FLAG_S4ECD4ED) {
+ edac_mode = EDAC_S4ECD4ED;
+ dev_type = DEV_X4;
+ } else if (mci->edac_ctl_cap & EDAC_FLAG_SECDED) {
+ edac_mode = EDAC_SECDED;
+ }
+
+ for_each_umc(umc) {
+ for_each_chip_select(cs, umc, pvt) {
+ if (!csrow_enabled(cs, umc, pvt))
+ continue;
+
+ empty = 0;
+ dimm = mci->csrows[cs]->channels[umc]->dimm;
+
+ edac_dbg(1, "MC node: %d, csrow: %d\n",
+ pvt->mc_node_id, cs);
+
+ dimm->nr_pages = get_csrow_nr_pages(pvt, umc, cs);
+ dimm->mtype = pvt->umc[umc].dram_type;
+ dimm->edac_mode = edac_mode;
+ dimm->dtype = dev_type;
+ dimm->grain = 64;
+ }
+ }
+
+ return empty;
+}
+
+/*
+ * Initialize the array of csrow attribute instances, based on the values
+ * from pci config hardware registers.
+ */
+static int init_csrows(struct mem_ctl_info *mci)
+{
+ struct amd64_pvt *pvt = mci->pvt_info;
+ enum edac_type edac_mode = EDAC_NONE;
+ struct csrow_info *csrow;
+ struct dimm_info *dimm;
+ int i, j, empty = 1;
+ int nr_pages = 0;
+ u32 val;
+
+ if (pvt->umc)
+ return init_csrows_df(mci);
+
+ amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
+
+ pvt->nbcfg = val;
+
+ edac_dbg(0, "node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
+ pvt->mc_node_id, val,
+ !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
+
+ /*
+ * We iterate over DCT0 here but we look at DCT1 in parallel, if needed.
+ */
+ for_each_chip_select(i, 0, pvt) {
+ bool row_dct0 = !!csrow_enabled(i, 0, pvt);
+ bool row_dct1 = false;
+
+ if (pvt->fam != 0xf)
+ row_dct1 = !!csrow_enabled(i, 1, pvt);
+
+ if (!row_dct0 && !row_dct1)
+ continue;
+
+ csrow = mci->csrows[i];
+ empty = 0;
+
+ edac_dbg(1, "MC node: %d, csrow: %d\n",
+ pvt->mc_node_id, i);
+
+ if (row_dct0) {
+ nr_pages = get_csrow_nr_pages(pvt, 0, i);
+ csrow->channels[0]->dimm->nr_pages = nr_pages;
+ }
+
+ /* K8 has only one DCT */
+ if (pvt->fam != 0xf && row_dct1) {
+ int row_dct1_pages = get_csrow_nr_pages(pvt, 1, i);
+
+ csrow->channels[1]->dimm->nr_pages = row_dct1_pages;
+ nr_pages += row_dct1_pages;
+ }
+
+ edac_dbg(1, "Total csrow%d pages: %u\n", i, nr_pages);
+
+ /* Determine DIMM ECC mode: */
+ if (pvt->nbcfg & NBCFG_ECC_ENABLE) {
+ edac_mode = (pvt->nbcfg & NBCFG_CHIPKILL)
+ ? EDAC_S4ECD4ED
+ : EDAC_SECDED;
+ }
+
+ for (j = 0; j < pvt->channel_count; j++) {
+ dimm = csrow->channels[j]->dimm;
+ dimm->mtype = pvt->dram_type;
+ dimm->edac_mode = edac_mode;
+ dimm->grain = 64;
+ }
+ }
+
+ return empty;
+}
+
+/* get all cores on this DCT */
+static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, u16 nid)
+{
+ int cpu;
+
+ for_each_online_cpu(cpu)
+ if (topology_die_id(cpu) == nid)
+ cpumask_set_cpu(cpu, mask);
+}
+
+/* check MCG_CTL on all the cpus on this node */
+static bool nb_mce_bank_enabled_on_node(u16 nid)
+{
+ cpumask_var_t mask;
+ int cpu, nbe;
+ bool ret = false;
+
+ if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
+ amd64_warn("%s: Error allocating mask\n", __func__);
+ return false;
+ }
+
+ get_cpus_on_this_dct_cpumask(mask, nid);
+
+ rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
+
+ for_each_cpu(cpu, mask) {
+ struct msr *reg = per_cpu_ptr(msrs, cpu);
+ nbe = reg->l & MSR_MCGCTL_NBE;
+
+ edac_dbg(0, "core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
+ cpu, reg->q,
+ (nbe ? "enabled" : "disabled"));
+
+ if (!nbe)
+ goto out;
+ }
+ ret = true;
+
+out:
+ free_cpumask_var(mask);
+ return ret;
+}
+
+static int toggle_ecc_err_reporting(struct ecc_settings *s, u16 nid, bool on)
+{
+ cpumask_var_t cmask;
+ int cpu;
+
+ if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
+ amd64_warn("%s: error allocating mask\n", __func__);
+ return -ENOMEM;
+ }
+
+ get_cpus_on_this_dct_cpumask(cmask, nid);
+
+ rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
+
+ for_each_cpu(cpu, cmask) {
+
+ struct msr *reg = per_cpu_ptr(msrs, cpu);
+
+ if (on) {
+ if (reg->l & MSR_MCGCTL_NBE)
+ s->flags.nb_mce_enable = 1;
+
+ reg->l |= MSR_MCGCTL_NBE;
+ } else {
+ /*
+ * Turn off NB MCE reporting only when it was off before
+ */
+ if (!s->flags.nb_mce_enable)
+ reg->l &= ~MSR_MCGCTL_NBE;
+ }
+ }
+ wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
+
+ free_cpumask_var(cmask);
+
+ return 0;
+}
+
+static bool enable_ecc_error_reporting(struct ecc_settings *s, u16 nid,
+ struct pci_dev *F3)
+{
+ bool ret = true;
+ u32 value, mask = 0x3; /* UECC/CECC enable */
+
+ if (toggle_ecc_err_reporting(s, nid, ON)) {
+ amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
+ return false;
+ }
+
+ amd64_read_pci_cfg(F3, NBCTL, &value);
+
+ s->old_nbctl = value & mask;
+ s->nbctl_valid = true;
+
+ value |= mask;
+ amd64_write_pci_cfg(F3, NBCTL, value);
+
+ amd64_read_pci_cfg(F3, NBCFG, &value);
+
+ edac_dbg(0, "1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
+ nid, value, !!(value & NBCFG_ECC_ENABLE));
+
+ if (!(value & NBCFG_ECC_ENABLE)) {
+ amd64_warn("DRAM ECC disabled on this node, enabling...\n");
+
+ s->flags.nb_ecc_prev = 0;
+
+ /* Attempt to turn on DRAM ECC Enable */
+ value |= NBCFG_ECC_ENABLE;
+ amd64_write_pci_cfg(F3, NBCFG, value);
+
+ amd64_read_pci_cfg(F3, NBCFG, &value);
+
+ if (!(value & NBCFG_ECC_ENABLE)) {
+ amd64_warn("Hardware rejected DRAM ECC enable,"
+ "check memory DIMM configuration.\n");
+ ret = false;
+ } else {
+ amd64_info("Hardware accepted DRAM ECC Enable\n");
+ }
+ } else {
+ s->flags.nb_ecc_prev = 1;
+ }
+
+ edac_dbg(0, "2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
+ nid, value, !!(value & NBCFG_ECC_ENABLE));
+
+ return ret;
+}
+
+static void restore_ecc_error_reporting(struct ecc_settings *s, u16 nid,
+ struct pci_dev *F3)
+{
+ u32 value, mask = 0x3; /* UECC/CECC enable */
+
+ if (!s->nbctl_valid)
+ return;
+
+ amd64_read_pci_cfg(F3, NBCTL, &value);
+ value &= ~mask;
+ value |= s->old_nbctl;
+
+ amd64_write_pci_cfg(F3, NBCTL, value);
+
+ /* restore previous BIOS DRAM ECC "off" setting we force-enabled */
+ if (!s->flags.nb_ecc_prev) {
+ amd64_read_pci_cfg(F3, NBCFG, &value);
+ value &= ~NBCFG_ECC_ENABLE;
+ amd64_write_pci_cfg(F3, NBCFG, value);
+ }
+
+ /* restore the NB Enable MCGCTL bit */
+ if (toggle_ecc_err_reporting(s, nid, OFF))
+ amd64_warn("Error restoring NB MCGCTL settings!\n");
+}
+
+static bool ecc_enabled(struct amd64_pvt *pvt)
+{
+ u16 nid = pvt->mc_node_id;
+ bool nb_mce_en = false;
+ u8 ecc_en = 0, i;
+ u32 value;
+
+ if (boot_cpu_data.x86 >= 0x17) {
+ u8 umc_en_mask = 0, ecc_en_mask = 0;
+ struct amd64_umc *umc;
+
+ for_each_umc(i) {
+ umc = &pvt->umc[i];
+
+ /* Only check enabled UMCs. */
+ if (!(umc->sdp_ctrl & UMC_SDP_INIT))
+ continue;
+
+ umc_en_mask |= BIT(i);
+
+ if (umc->umc_cap_hi & UMC_ECC_ENABLED)
+ ecc_en_mask |= BIT(i);
+ }
+
+ /* Check whether at least one UMC is enabled: */
+ if (umc_en_mask)
+ ecc_en = umc_en_mask == ecc_en_mask;
+ else
+ edac_dbg(0, "Node %d: No enabled UMCs.\n", nid);
+
+ /* Assume UMC MCA banks are enabled. */
+ nb_mce_en = true;
+ } else {
+ amd64_read_pci_cfg(pvt->F3, NBCFG, &value);
+
+ ecc_en = !!(value & NBCFG_ECC_ENABLE);
+
+ nb_mce_en = nb_mce_bank_enabled_on_node(nid);
+ if (!nb_mce_en)
+ edac_dbg(0, "NB MCE bank disabled, set MSR 0x%08x[4] on node %d to enable.\n",
+ MSR_IA32_MCG_CTL, nid);
+ }
+
+ edac_dbg(3, "Node %d: DRAM ECC %s.\n", nid, (ecc_en ? "enabled" : "disabled"));
+
+ if (!ecc_en || !nb_mce_en)
+ return false;
+ else
+ return true;
+}
+
+static inline void
+f17h_determine_edac_ctl_cap(struct mem_ctl_info *mci, struct amd64_pvt *pvt)
+{
+ u8 i, ecc_en = 1, cpk_en = 1, dev_x4 = 1, dev_x16 = 1;
+
+ for_each_umc(i) {
+ if (pvt->umc[i].sdp_ctrl & UMC_SDP_INIT) {
+ ecc_en &= !!(pvt->umc[i].umc_cap_hi & UMC_ECC_ENABLED);
+ cpk_en &= !!(pvt->umc[i].umc_cap_hi & UMC_ECC_CHIPKILL_CAP);
+
+ dev_x4 &= !!(pvt->umc[i].dimm_cfg & BIT(6));
+ dev_x16 &= !!(pvt->umc[i].dimm_cfg & BIT(7));
+ }
+ }
+
+ /* Set chipkill only if ECC is enabled: */
+ if (ecc_en) {
+ mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
+
+ if (!cpk_en)
+ return;
+
+ if (dev_x4)
+ mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
+ else if (dev_x16)
+ mci->edac_ctl_cap |= EDAC_FLAG_S16ECD16ED;
+ else
+ mci->edac_ctl_cap |= EDAC_FLAG_S8ECD8ED;
+ }
+}
+
+static void setup_mci_misc_attrs(struct mem_ctl_info *mci)
+{
+ struct amd64_pvt *pvt = mci->pvt_info;
+
+ mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
+ mci->edac_ctl_cap = EDAC_FLAG_NONE;
+
+ if (pvt->umc) {
+ f17h_determine_edac_ctl_cap(mci, pvt);
+ } else {
+ if (pvt->nbcap & NBCAP_SECDED)
+ mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
+
+ if (pvt->nbcap & NBCAP_CHIPKILL)
+ mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
+ }
+
+ mci->edac_cap = determine_edac_cap(pvt);
+ mci->mod_name = EDAC_MOD_STR;
+ mci->ctl_name = fam_type->ctl_name;
+ mci->dev_name = pci_name(pvt->F3);
+ mci->ctl_page_to_phys = NULL;
+
+ /* memory scrubber interface */
+ mci->set_sdram_scrub_rate = set_scrub_rate;
+ mci->get_sdram_scrub_rate = get_scrub_rate;
+}
+
+/*
+ * returns a pointer to the family descriptor on success, NULL otherwise.
+ */
+static struct amd64_family_type *per_family_init(struct amd64_pvt *pvt)
+{
+ pvt->ext_model = boot_cpu_data.x86_model >> 4;
+ pvt->stepping = boot_cpu_data.x86_stepping;
+ pvt->model = boot_cpu_data.x86_model;
+ pvt->fam = boot_cpu_data.x86;
+
+ switch (pvt->fam) {
+ case 0xf:
+ fam_type = &family_types[K8_CPUS];
+ pvt->ops = &family_types[K8_CPUS].ops;
+ break;
+
+ case 0x10:
+ fam_type = &family_types[F10_CPUS];
+ pvt->ops = &family_types[F10_CPUS].ops;
+ break;
+
+ case 0x15:
+ if (pvt->model == 0x30) {
+ fam_type = &family_types[F15_M30H_CPUS];
+ pvt->ops = &family_types[F15_M30H_CPUS].ops;
+ break;
+ } else if (pvt->model == 0x60) {
+ fam_type = &family_types[F15_M60H_CPUS];
+ pvt->ops = &family_types[F15_M60H_CPUS].ops;
+ break;
+ /* Richland is only client */
+ } else if (pvt->model == 0x13) {
+ return NULL;
+ } else {
+ fam_type = &family_types[F15_CPUS];
+ pvt->ops = &family_types[F15_CPUS].ops;
+ }
+ break;
+
+ case 0x16:
+ if (pvt->model == 0x30) {
+ fam_type = &family_types[F16_M30H_CPUS];
+ pvt->ops = &family_types[F16_M30H_CPUS].ops;
+ break;
+ }
+ fam_type = &family_types[F16_CPUS];
+ pvt->ops = &family_types[F16_CPUS].ops;
+ break;
+
+ case 0x17:
+ if (pvt->model >= 0x10 && pvt->model <= 0x2f) {
+ fam_type = &family_types[F17_M10H_CPUS];
+ pvt->ops = &family_types[F17_M10H_CPUS].ops;
+ break;
+ } else if (pvt->model >= 0x30 && pvt->model <= 0x3f) {
+ fam_type = &family_types[F17_M30H_CPUS];
+ pvt->ops = &family_types[F17_M30H_CPUS].ops;
+ break;
+ } else if (pvt->model >= 0x60 && pvt->model <= 0x6f) {
+ fam_type = &family_types[F17_M60H_CPUS];
+ pvt->ops = &family_types[F17_M60H_CPUS].ops;
+ break;
+ } else if (pvt->model >= 0x70 && pvt->model <= 0x7f) {
+ fam_type = &family_types[F17_M70H_CPUS];
+ pvt->ops = &family_types[F17_M70H_CPUS].ops;
+ break;
+ }
+ fallthrough;
+ case 0x18:
+ fam_type = &family_types[F17_CPUS];
+ pvt->ops = &family_types[F17_CPUS].ops;
+
+ if (pvt->fam == 0x18)
+ family_types[F17_CPUS].ctl_name = "F18h";
+ break;
+
+ case 0x19:
+ if (pvt->model >= 0x10 && pvt->model <= 0x1f) {
+ fam_type = &family_types[F19_M10H_CPUS];
+ pvt->ops = &family_types[F19_M10H_CPUS].ops;
+ break;
+ } else if (pvt->model >= 0x20 && pvt->model <= 0x2f) {
+ fam_type = &family_types[F17_M70H_CPUS];
+ pvt->ops = &family_types[F17_M70H_CPUS].ops;
+ fam_type->ctl_name = "F19h_M20h";
+ break;
+ } else if (pvt->model >= 0x50 && pvt->model <= 0x5f) {
+ fam_type = &family_types[F19_M50H_CPUS];
+ pvt->ops = &family_types[F19_M50H_CPUS].ops;
+ fam_type->ctl_name = "F19h_M50h";
+ break;
+ } else if (pvt->model >= 0xa0 && pvt->model <= 0xaf) {
+ fam_type = &family_types[F19_M10H_CPUS];
+ pvt->ops = &family_types[F19_M10H_CPUS].ops;
+ fam_type->ctl_name = "F19h_MA0h";
+ break;
+ }
+ fam_type = &family_types[F19_CPUS];
+ pvt->ops = &family_types[F19_CPUS].ops;
+ family_types[F19_CPUS].ctl_name = "F19h";
+ break;
+
+ default:
+ amd64_err("Unsupported family!\n");
+ return NULL;
+ }
+
+ return fam_type;
+}
+
+static const struct attribute_group *amd64_edac_attr_groups[] = {
+#ifdef CONFIG_EDAC_DEBUG
+ &dbg_group,
+ &inj_group,
+#endif
+ NULL
+};
+
+static int hw_info_get(struct amd64_pvt *pvt)
+{
+ u16 pci_id1, pci_id2;
+ int ret;
+
+ if (pvt->fam >= 0x17) {
+ pvt->umc = kcalloc(fam_type->max_mcs, sizeof(struct amd64_umc), GFP_KERNEL);
+ if (!pvt->umc)
+ return -ENOMEM;
+
+ pci_id1 = fam_type->f0_id;
+ pci_id2 = fam_type->f6_id;
+ } else {
+ pci_id1 = fam_type->f1_id;
+ pci_id2 = fam_type->f2_id;
+ }
+
+ ret = reserve_mc_sibling_devs(pvt, pci_id1, pci_id2);
+ if (ret)
+ return ret;
+
+ read_mc_regs(pvt);
+
+ return 0;
+}
+
+static void hw_info_put(struct amd64_pvt *pvt)
+{
+ if (pvt->F0 || pvt->F1)
+ free_mc_sibling_devs(pvt);
+
+ kfree(pvt->umc);
+}
+
+static int init_one_instance(struct amd64_pvt *pvt)
+{
+ struct mem_ctl_info *mci = NULL;
+ struct edac_mc_layer layers[2];
+ int ret = -EINVAL;
+
+ /*
+ * We need to determine how many memory channels there are. Then use
+ * that information for calculating the size of the dynamic instance
+ * tables in the 'mci' structure.
+ */
+ pvt->channel_count = pvt->ops->early_channel_count(pvt);
+ if (pvt->channel_count < 0)
+ return ret;
+
+ ret = -ENOMEM;
+ layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
+ layers[0].size = pvt->csels[0].b_cnt;
+ layers[0].is_virt_csrow = true;
+ layers[1].type = EDAC_MC_LAYER_CHANNEL;
+
+ /*
+ * Always allocate two channels since we can have setups with DIMMs on
+ * only one channel. Also, this simplifies handling later for the price
+ * of a couple of KBs tops.
+ */
+ layers[1].size = fam_type->max_mcs;
+ layers[1].is_virt_csrow = false;
+
+ mci = edac_mc_alloc(pvt->mc_node_id, ARRAY_SIZE(layers), layers, 0);
+ if (!mci)
+ return ret;
+
+ mci->pvt_info = pvt;
+ mci->pdev = &pvt->F3->dev;
+
+ setup_mci_misc_attrs(mci);
+
+ if (init_csrows(mci))
+ mci->edac_cap = EDAC_FLAG_NONE;
+
+ ret = -ENODEV;
+ if (edac_mc_add_mc_with_groups(mci, amd64_edac_attr_groups)) {
+ edac_dbg(1, "failed edac_mc_add_mc()\n");
+ edac_mc_free(mci);
+ return ret;
+ }
+
+ return 0;
+}
+
+static bool instance_has_memory(struct amd64_pvt *pvt)
+{
+ bool cs_enabled = false;
+ int cs = 0, dct = 0;
+
+ for (dct = 0; dct < fam_type->max_mcs; dct++) {
+ for_each_chip_select(cs, dct, pvt)
+ cs_enabled |= csrow_enabled(cs, dct, pvt);
+ }
+
+ return cs_enabled;
+}
+
+static int probe_one_instance(unsigned int nid)
+{
+ struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
+ struct amd64_pvt *pvt = NULL;
+ struct ecc_settings *s;
+ int ret;
+
+ ret = -ENOMEM;
+ s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
+ if (!s)
+ goto err_out;
+
+ ecc_stngs[nid] = s;
+
+ pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
+ if (!pvt)
+ goto err_settings;
+
+ pvt->mc_node_id = nid;
+ pvt->F3 = F3;
+
+ ret = -ENODEV;
+ fam_type = per_family_init(pvt);
+ if (!fam_type)
+ goto err_enable;
+
+ ret = hw_info_get(pvt);
+ if (ret < 0)
+ goto err_enable;
+
+ ret = 0;
+ if (!instance_has_memory(pvt)) {
+ amd64_info("Node %d: No DIMMs detected.\n", nid);
+ goto err_enable;
+ }
+
+ if (!ecc_enabled(pvt)) {
+ ret = -ENODEV;
+
+ if (!ecc_enable_override)
+ goto err_enable;
+
+ if (boot_cpu_data.x86 >= 0x17) {
+ amd64_warn("Forcing ECC on is not recommended on newer systems. Please enable ECC in BIOS.");
+ goto err_enable;
+ } else
+ amd64_warn("Forcing ECC on!\n");
+
+ if (!enable_ecc_error_reporting(s, nid, F3))
+ goto err_enable;
+ }
+
+ ret = init_one_instance(pvt);
+ if (ret < 0) {
+ amd64_err("Error probing instance: %d\n", nid);
+
+ if (boot_cpu_data.x86 < 0x17)
+ restore_ecc_error_reporting(s, nid, F3);
+
+ goto err_enable;
+ }
+
+ amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
+ (pvt->fam == 0xf ?
+ (pvt->ext_model >= K8_REV_F ? "revF or later "
+ : "revE or earlier ")
+ : ""), pvt->mc_node_id);
+
+ dump_misc_regs(pvt);
+
+ return ret;
+
+err_enable:
+ hw_info_put(pvt);
+ kfree(pvt);
+
+err_settings:
+ kfree(s);
+ ecc_stngs[nid] = NULL;
+
+err_out:
+ return ret;
+}
+
+static void remove_one_instance(unsigned int nid)
+{
+ struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
+ struct ecc_settings *s = ecc_stngs[nid];
+ struct mem_ctl_info *mci;
+ struct amd64_pvt *pvt;
+
+ /* Remove from EDAC CORE tracking list */
+ mci = edac_mc_del_mc(&F3->dev);
+ if (!mci)
+ return;
+
+ pvt = mci->pvt_info;
+
+ restore_ecc_error_reporting(s, nid, F3);
+
+ kfree(ecc_stngs[nid]);
+ ecc_stngs[nid] = NULL;
+
+ /* Free the EDAC CORE resources */
+ mci->pvt_info = NULL;
+
+ hw_info_put(pvt);
+ kfree(pvt);
+ edac_mc_free(mci);
+}
+
+static void setup_pci_device(void)
+{
+ if (pci_ctl)
+ return;
+
+ pci_ctl = edac_pci_create_generic_ctl(pci_ctl_dev, EDAC_MOD_STR);
+ if (!pci_ctl) {
+ pr_warn("%s(): Unable to create PCI control\n", __func__);
+ pr_warn("%s(): PCI error report via EDAC not set\n", __func__);
+ }
+}
+
+static const struct x86_cpu_id amd64_cpuids[] = {
+ X86_MATCH_VENDOR_FAM(AMD, 0x0F, NULL),
+ X86_MATCH_VENDOR_FAM(AMD, 0x10, NULL),
+ X86_MATCH_VENDOR_FAM(AMD, 0x15, NULL),
+ X86_MATCH_VENDOR_FAM(AMD, 0x16, NULL),
+ X86_MATCH_VENDOR_FAM(AMD, 0x17, NULL),
+ X86_MATCH_VENDOR_FAM(HYGON, 0x18, NULL),
+ X86_MATCH_VENDOR_FAM(AMD, 0x19, NULL),
+ { }
+};
+MODULE_DEVICE_TABLE(x86cpu, amd64_cpuids);
+
+static int __init amd64_edac_init(void)
+{
+ const char *owner;
+ int err = -ENODEV;
+ int i;
+
+ owner = edac_get_owner();
+ if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
+ return -EBUSY;
+
+ if (!x86_match_cpu(amd64_cpuids))
+ return -ENODEV;
+
+ if (!amd_nb_num())
+ return -ENODEV;
+
+ opstate_init();
+
+ err = -ENOMEM;
+ ecc_stngs = kcalloc(amd_nb_num(), sizeof(ecc_stngs[0]), GFP_KERNEL);
+ if (!ecc_stngs)
+ goto err_free;
+
+ msrs = msrs_alloc();
+ if (!msrs)
+ goto err_free;
+
+ for (i = 0; i < amd_nb_num(); i++) {
+ err = probe_one_instance(i);
+ if (err) {
+ /* unwind properly */
+ while (--i >= 0)
+ remove_one_instance(i);
+
+ goto err_pci;
+ }
+ }
+
+ if (!edac_has_mcs()) {
+ err = -ENODEV;
+ goto err_pci;
+ }
+
+ /* register stuff with EDAC MCE */
+ if (boot_cpu_data.x86 >= 0x17)
+ amd_register_ecc_decoder(decode_umc_error);
+ else
+ amd_register_ecc_decoder(decode_bus_error);
+
+ setup_pci_device();
+
+#ifdef CONFIG_X86_32
+ amd64_err("%s on 32-bit is unsupported. USE AT YOUR OWN RISK!\n", EDAC_MOD_STR);
+#endif
+
+ printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);
+
+ return 0;
+
+err_pci:
+ pci_ctl_dev = NULL;
+
+ msrs_free(msrs);
+ msrs = NULL;
+
+err_free:
+ kfree(ecc_stngs);
+ ecc_stngs = NULL;
+
+ return err;
+}
+
+static void __exit amd64_edac_exit(void)
+{
+ int i;
+
+ if (pci_ctl)
+ edac_pci_release_generic_ctl(pci_ctl);
+
+ /* unregister from EDAC MCE */
+ if (boot_cpu_data.x86 >= 0x17)
+ amd_unregister_ecc_decoder(decode_umc_error);
+ else
+ amd_unregister_ecc_decoder(decode_bus_error);
+
+ for (i = 0; i < amd_nb_num(); i++)
+ remove_one_instance(i);
+
+ kfree(ecc_stngs);
+ ecc_stngs = NULL;
+
+ pci_ctl_dev = NULL;
+
+ msrs_free(msrs);
+ msrs = NULL;
+}
+
+module_init(amd64_edac_init);
+module_exit(amd64_edac_exit);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
+ "Dave Peterson, Thayne Harbaugh");
+MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
+ EDAC_AMD64_VERSION);
+
+module_param(edac_op_state, int, 0444);
+MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");