summaryrefslogtreecommitdiffstats
path: root/drivers/misc/habanalabs/common/firmware_if.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:49:45 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:49:45 +0000
commit2c3c1048746a4622d8c89a29670120dc8fab93c4 (patch)
tree848558de17fb3008cdf4d861b01ac7781903ce39 /drivers/misc/habanalabs/common/firmware_if.c
parentInitial commit. (diff)
downloadlinux-2c3c1048746a4622d8c89a29670120dc8fab93c4.tar.xz
linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.zip
Adding upstream version 6.1.76.upstream/6.1.76
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'drivers/misc/habanalabs/common/firmware_if.c')
-rw-r--r--drivers/misc/habanalabs/common/firmware_if.c3021
1 files changed, 3021 insertions, 0 deletions
diff --git a/drivers/misc/habanalabs/common/firmware_if.c b/drivers/misc/habanalabs/common/firmware_if.c
new file mode 100644
index 000000000..f18e53bbb
--- /dev/null
+++ b/drivers/misc/habanalabs/common/firmware_if.c
@@ -0,0 +1,3021 @@
+// SPDX-License-Identifier: GPL-2.0
+
+/*
+ * Copyright 2016-2022 HabanaLabs, Ltd.
+ * All Rights Reserved.
+ */
+
+#include "habanalabs.h"
+#include "../include/common/hl_boot_if.h"
+
+#include <linux/firmware.h>
+#include <linux/crc32.h>
+#include <linux/slab.h>
+#include <linux/ctype.h>
+
+#define FW_FILE_MAX_SIZE 0x1400000 /* maximum size of 20MB */
+
+static char *extract_fw_ver_from_str(const char *fw_str)
+{
+ char *str, *fw_ver, *whitespace;
+ u32 ver_offset;
+
+ fw_ver = kmalloc(VERSION_MAX_LEN, GFP_KERNEL);
+ if (!fw_ver)
+ return NULL;
+
+ str = strnstr(fw_str, "fw-", VERSION_MAX_LEN);
+ if (!str)
+ goto free_fw_ver;
+
+ /* Skip the fw- part */
+ str += 3;
+ ver_offset = str - fw_str;
+
+ /* Copy until the next whitespace */
+ whitespace = strnstr(str, " ", VERSION_MAX_LEN - ver_offset);
+ if (!whitespace)
+ goto free_fw_ver;
+
+ strscpy(fw_ver, str, whitespace - str + 1);
+
+ return fw_ver;
+
+free_fw_ver:
+ kfree(fw_ver);
+ return NULL;
+}
+
+static int extract_fw_sub_versions(struct hl_device *hdev, char *preboot_ver)
+{
+ char major[8], minor[8], *first_dot, *second_dot;
+ int rc;
+
+ first_dot = strnstr(preboot_ver, ".", 10);
+ if (first_dot) {
+ strscpy(major, preboot_ver, first_dot - preboot_ver + 1);
+ rc = kstrtou32(major, 10, &hdev->fw_major_version);
+ } else {
+ rc = -EINVAL;
+ }
+
+ if (rc) {
+ dev_err(hdev->dev, "Error %d parsing preboot major version\n", rc);
+ goto out;
+ }
+
+ /* skip the first dot */
+ first_dot++;
+
+ second_dot = strnstr(first_dot, ".", 10);
+ if (second_dot) {
+ strscpy(minor, first_dot, second_dot - first_dot + 1);
+ rc = kstrtou32(minor, 10, &hdev->fw_minor_version);
+ } else {
+ rc = -EINVAL;
+ }
+
+ if (rc)
+ dev_err(hdev->dev, "Error %d parsing preboot minor version\n", rc);
+
+out:
+ kfree(preboot_ver);
+ return rc;
+}
+
+static int hl_request_fw(struct hl_device *hdev,
+ const struct firmware **firmware_p,
+ const char *fw_name)
+{
+ size_t fw_size;
+ int rc;
+
+ rc = request_firmware(firmware_p, fw_name, hdev->dev);
+ if (rc) {
+ dev_err(hdev->dev, "Firmware file %s is not found! (error %d)\n",
+ fw_name, rc);
+ goto out;
+ }
+
+ fw_size = (*firmware_p)->size;
+ if ((fw_size % 4) != 0) {
+ dev_err(hdev->dev, "Illegal %s firmware size %zu\n",
+ fw_name, fw_size);
+ rc = -EINVAL;
+ goto release_fw;
+ }
+
+ dev_dbg(hdev->dev, "%s firmware size == %zu\n", fw_name, fw_size);
+
+ if (fw_size > FW_FILE_MAX_SIZE) {
+ dev_err(hdev->dev,
+ "FW file size %zu exceeds maximum of %u bytes\n",
+ fw_size, FW_FILE_MAX_SIZE);
+ rc = -EINVAL;
+ goto release_fw;
+ }
+
+ return 0;
+
+release_fw:
+ release_firmware(*firmware_p);
+out:
+ return rc;
+}
+
+/**
+ * hl_release_firmware() - release FW
+ *
+ * @fw: fw descriptor
+ *
+ * note: this inline function added to serve as a comprehensive mirror for the
+ * hl_request_fw function.
+ */
+static inline void hl_release_firmware(const struct firmware *fw)
+{
+ release_firmware(fw);
+}
+
+/**
+ * hl_fw_copy_fw_to_device() - copy FW to device
+ *
+ * @hdev: pointer to hl_device structure.
+ * @fw: fw descriptor
+ * @dst: IO memory mapped address space to copy firmware to
+ * @src_offset: offset in src FW to copy from
+ * @size: amount of bytes to copy (0 to copy the whole binary)
+ *
+ * actual copy of FW binary data to device, shared by static and dynamic loaders
+ */
+static int hl_fw_copy_fw_to_device(struct hl_device *hdev,
+ const struct firmware *fw, void __iomem *dst,
+ u32 src_offset, u32 size)
+{
+ const void *fw_data;
+
+ /* size 0 indicates to copy the whole file */
+ if (!size)
+ size = fw->size;
+
+ if (src_offset + size > fw->size) {
+ dev_err(hdev->dev,
+ "size to copy(%u) and offset(%u) are invalid\n",
+ size, src_offset);
+ return -EINVAL;
+ }
+
+ fw_data = (const void *) fw->data;
+
+ memcpy_toio(dst, fw_data + src_offset, size);
+ return 0;
+}
+
+/**
+ * hl_fw_copy_msg_to_device() - copy message to device
+ *
+ * @hdev: pointer to hl_device structure.
+ * @msg: message
+ * @dst: IO memory mapped address space to copy firmware to
+ * @src_offset: offset in src message to copy from
+ * @size: amount of bytes to copy (0 to copy the whole binary)
+ *
+ * actual copy of message data to device.
+ */
+static int hl_fw_copy_msg_to_device(struct hl_device *hdev,
+ struct lkd_msg_comms *msg, void __iomem *dst,
+ u32 src_offset, u32 size)
+{
+ void *msg_data;
+
+ /* size 0 indicates to copy the whole file */
+ if (!size)
+ size = sizeof(struct lkd_msg_comms);
+
+ if (src_offset + size > sizeof(struct lkd_msg_comms)) {
+ dev_err(hdev->dev,
+ "size to copy(%u) and offset(%u) are invalid\n",
+ size, src_offset);
+ return -EINVAL;
+ }
+
+ msg_data = (void *) msg;
+
+ memcpy_toio(dst, msg_data + src_offset, size);
+
+ return 0;
+}
+
+/**
+ * hl_fw_load_fw_to_device() - Load F/W code to device's memory.
+ *
+ * @hdev: pointer to hl_device structure.
+ * @fw_name: the firmware image name
+ * @dst: IO memory mapped address space to copy firmware to
+ * @src_offset: offset in src FW to copy from
+ * @size: amount of bytes to copy (0 to copy the whole binary)
+ *
+ * Copy fw code from firmware file to device memory.
+ *
+ * Return: 0 on success, non-zero for failure.
+ */
+int hl_fw_load_fw_to_device(struct hl_device *hdev, const char *fw_name,
+ void __iomem *dst, u32 src_offset, u32 size)
+{
+ const struct firmware *fw;
+ int rc;
+
+ rc = hl_request_fw(hdev, &fw, fw_name);
+ if (rc)
+ return rc;
+
+ rc = hl_fw_copy_fw_to_device(hdev, fw, dst, src_offset, size);
+
+ hl_release_firmware(fw);
+ return rc;
+}
+
+int hl_fw_send_pci_access_msg(struct hl_device *hdev, u32 opcode, u64 value)
+{
+ struct cpucp_packet pkt = {};
+
+ pkt.ctl = cpu_to_le32(opcode << CPUCP_PKT_CTL_OPCODE_SHIFT);
+ pkt.value = cpu_to_le64(value);
+
+ return hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 0, NULL);
+}
+
+int hl_fw_send_cpu_message(struct hl_device *hdev, u32 hw_queue_id, u32 *msg,
+ u16 len, u32 timeout, u64 *result)
+{
+ struct hl_hw_queue *queue = &hdev->kernel_queues[hw_queue_id];
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ struct cpucp_packet *pkt;
+ dma_addr_t pkt_dma_addr;
+ struct hl_bd *sent_bd;
+ u32 tmp, expected_ack_val, pi, opcode;
+ int rc;
+
+ pkt = hl_cpu_accessible_dma_pool_alloc(hdev, len, &pkt_dma_addr);
+ if (!pkt) {
+ dev_err(hdev->dev,
+ "Failed to allocate DMA memory for packet to CPU\n");
+ return -ENOMEM;
+ }
+
+ memcpy(pkt, msg, len);
+
+ mutex_lock(&hdev->send_cpu_message_lock);
+
+ /* CPU-CP messages can be sent during soft-reset */
+ if (hdev->disabled && !hdev->reset_info.in_compute_reset) {
+ rc = 0;
+ goto out;
+ }
+
+ if (hdev->device_cpu_disabled) {
+ rc = -EIO;
+ goto out;
+ }
+
+ /* set fence to a non valid value */
+ pkt->fence = cpu_to_le32(UINT_MAX);
+ pi = queue->pi;
+
+ /*
+ * The CPU queue is a synchronous queue with an effective depth of
+ * a single entry (although it is allocated with room for multiple
+ * entries). We lock on it using 'send_cpu_message_lock' which
+ * serializes accesses to the CPU queue.
+ * Which means that we don't need to lock the access to the entire H/W
+ * queues module when submitting a JOB to the CPU queue.
+ */
+ hl_hw_queue_submit_bd(hdev, queue, hl_queue_inc_ptr(queue->pi), len, pkt_dma_addr);
+
+ if (prop->fw_app_cpu_boot_dev_sts0 & CPU_BOOT_DEV_STS0_PKT_PI_ACK_EN)
+ expected_ack_val = queue->pi;
+ else
+ expected_ack_val = CPUCP_PACKET_FENCE_VAL;
+
+ rc = hl_poll_timeout_memory(hdev, &pkt->fence, tmp,
+ (tmp == expected_ack_val), 1000,
+ timeout, true);
+
+ hl_hw_queue_inc_ci_kernel(hdev, hw_queue_id);
+
+ if (rc == -ETIMEDOUT) {
+ /* If FW performed reset just before sending it a packet, we will get a timeout.
+ * This is expected behavior, hence no need for error message.
+ */
+ if (!hl_device_operational(hdev, NULL) && !hdev->reset_info.in_compute_reset)
+ dev_dbg(hdev->dev, "Device CPU packet timeout (0x%x) due to FW reset\n",
+ tmp);
+ else
+ dev_err(hdev->dev, "Device CPU packet timeout (0x%x)\n", tmp);
+ hdev->device_cpu_disabled = true;
+ goto out;
+ }
+
+ tmp = le32_to_cpu(pkt->ctl);
+
+ rc = (tmp & CPUCP_PKT_CTL_RC_MASK) >> CPUCP_PKT_CTL_RC_SHIFT;
+ if (rc) {
+ opcode = (tmp & CPUCP_PKT_CTL_OPCODE_MASK) >> CPUCP_PKT_CTL_OPCODE_SHIFT;
+
+ if (!prop->supports_advanced_cpucp_rc) {
+ dev_dbg(hdev->dev, "F/W ERROR %d for CPU packet %d\n", rc, opcode);
+ goto scrub_descriptor;
+ }
+
+ switch (rc) {
+ case cpucp_packet_invalid:
+ dev_err(hdev->dev,
+ "CPU packet %d is not supported by F/W\n", opcode);
+ break;
+ case cpucp_packet_fault:
+ dev_err(hdev->dev,
+ "F/W failed processing CPU packet %d\n", opcode);
+ break;
+ case cpucp_packet_invalid_pkt:
+ dev_dbg(hdev->dev,
+ "CPU packet %d is not supported by F/W\n", opcode);
+ break;
+ case cpucp_packet_invalid_params:
+ dev_err(hdev->dev,
+ "F/W reports invalid parameters for CPU packet %d\n", opcode);
+ break;
+
+ default:
+ dev_err(hdev->dev,
+ "Unknown F/W ERROR %d for CPU packet %d\n", rc, opcode);
+ }
+
+ /* propagate the return code from the f/w to the callers who want to check it */
+ if (result)
+ *result = rc;
+
+ rc = -EIO;
+
+ } else if (result) {
+ *result = le64_to_cpu(pkt->result);
+ }
+
+scrub_descriptor:
+ /* Scrub previous buffer descriptor 'ctl' field which contains the
+ * previous PI value written during packet submission.
+ * We must do this or else F/W can read an old value upon queue wraparound.
+ */
+ sent_bd = queue->kernel_address;
+ sent_bd += hl_pi_2_offset(pi);
+ sent_bd->ctl = cpu_to_le32(UINT_MAX);
+
+out:
+ mutex_unlock(&hdev->send_cpu_message_lock);
+
+ hl_cpu_accessible_dma_pool_free(hdev, len, pkt);
+
+ return rc;
+}
+
+int hl_fw_unmask_irq(struct hl_device *hdev, u16 event_type)
+{
+ struct cpucp_packet pkt;
+ u64 result;
+ int rc;
+
+ memset(&pkt, 0, sizeof(pkt));
+
+ pkt.ctl = cpu_to_le32(CPUCP_PACKET_UNMASK_RAZWI_IRQ <<
+ CPUCP_PKT_CTL_OPCODE_SHIFT);
+ pkt.value = cpu_to_le64(event_type);
+
+ rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
+ 0, &result);
+
+ if (rc)
+ dev_err(hdev->dev, "failed to unmask RAZWI IRQ %d", event_type);
+
+ return rc;
+}
+
+int hl_fw_unmask_irq_arr(struct hl_device *hdev, const u32 *irq_arr,
+ size_t irq_arr_size)
+{
+ struct cpucp_unmask_irq_arr_packet *pkt;
+ size_t total_pkt_size;
+ u64 result;
+ int rc;
+
+ total_pkt_size = sizeof(struct cpucp_unmask_irq_arr_packet) +
+ irq_arr_size;
+
+ /* data should be aligned to 8 bytes in order to CPU-CP to copy it */
+ total_pkt_size = (total_pkt_size + 0x7) & ~0x7;
+
+ /* total_pkt_size is casted to u16 later on */
+ if (total_pkt_size > USHRT_MAX) {
+ dev_err(hdev->dev, "too many elements in IRQ array\n");
+ return -EINVAL;
+ }
+
+ pkt = kzalloc(total_pkt_size, GFP_KERNEL);
+ if (!pkt)
+ return -ENOMEM;
+
+ pkt->length = cpu_to_le32(irq_arr_size / sizeof(irq_arr[0]));
+ memcpy(&pkt->irqs, irq_arr, irq_arr_size);
+
+ pkt->cpucp_pkt.ctl = cpu_to_le32(CPUCP_PACKET_UNMASK_RAZWI_IRQ_ARRAY <<
+ CPUCP_PKT_CTL_OPCODE_SHIFT);
+
+ rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) pkt,
+ total_pkt_size, 0, &result);
+
+ if (rc)
+ dev_err(hdev->dev, "failed to unmask IRQ array\n");
+
+ kfree(pkt);
+
+ return rc;
+}
+
+int hl_fw_test_cpu_queue(struct hl_device *hdev)
+{
+ struct cpucp_packet test_pkt = {};
+ u64 result;
+ int rc;
+
+ test_pkt.ctl = cpu_to_le32(CPUCP_PACKET_TEST <<
+ CPUCP_PKT_CTL_OPCODE_SHIFT);
+ test_pkt.value = cpu_to_le64(CPUCP_PACKET_FENCE_VAL);
+
+ rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &test_pkt,
+ sizeof(test_pkt), 0, &result);
+
+ if (!rc) {
+ if (result != CPUCP_PACKET_FENCE_VAL)
+ dev_err(hdev->dev,
+ "CPU queue test failed (%#08llx)\n", result);
+ } else {
+ dev_err(hdev->dev, "CPU queue test failed, error %d\n", rc);
+ }
+
+ return rc;
+}
+
+void *hl_fw_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size,
+ dma_addr_t *dma_handle)
+{
+ u64 kernel_addr;
+
+ kernel_addr = gen_pool_alloc(hdev->cpu_accessible_dma_pool, size);
+
+ *dma_handle = hdev->cpu_accessible_dma_address +
+ (kernel_addr - (u64) (uintptr_t) hdev->cpu_accessible_dma_mem);
+
+ return (void *) (uintptr_t) kernel_addr;
+}
+
+void hl_fw_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size,
+ void *vaddr)
+{
+ gen_pool_free(hdev->cpu_accessible_dma_pool, (u64) (uintptr_t) vaddr,
+ size);
+}
+
+int hl_fw_send_device_activity(struct hl_device *hdev, bool open)
+{
+ struct cpucp_packet pkt;
+ int rc;
+
+ memset(&pkt, 0, sizeof(pkt));
+ pkt.ctl = cpu_to_le32(CPUCP_PACKET_ACTIVE_STATUS_SET << CPUCP_PKT_CTL_OPCODE_SHIFT);
+ pkt.value = cpu_to_le64(open);
+ rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 0, NULL);
+ if (rc)
+ dev_err(hdev->dev, "failed to send device activity msg(%u)\n", open);
+
+ return rc;
+}
+
+int hl_fw_send_heartbeat(struct hl_device *hdev)
+{
+ struct cpucp_packet hb_pkt;
+ u64 result;
+ int rc;
+
+ memset(&hb_pkt, 0, sizeof(hb_pkt));
+ hb_pkt.ctl = cpu_to_le32(CPUCP_PACKET_TEST <<
+ CPUCP_PKT_CTL_OPCODE_SHIFT);
+ hb_pkt.value = cpu_to_le64(CPUCP_PACKET_FENCE_VAL);
+
+ rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &hb_pkt,
+ sizeof(hb_pkt), 0, &result);
+
+ if ((rc) || (result != CPUCP_PACKET_FENCE_VAL))
+ return -EIO;
+
+ if (le32_to_cpu(hb_pkt.status_mask) &
+ CPUCP_PKT_HB_STATUS_EQ_FAULT_MASK) {
+ dev_warn(hdev->dev, "FW reported EQ fault during heartbeat\n");
+ rc = -EIO;
+ }
+
+ return rc;
+}
+
+static bool fw_report_boot_dev0(struct hl_device *hdev, u32 err_val,
+ u32 sts_val)
+{
+ bool err_exists = false;
+
+ if (!(err_val & CPU_BOOT_ERR0_ENABLED))
+ return false;
+
+ if (err_val & CPU_BOOT_ERR0_DRAM_INIT_FAIL) {
+ dev_err(hdev->dev,
+ "Device boot error - DRAM initialization failed\n");
+ err_exists = true;
+ }
+
+ if (err_val & CPU_BOOT_ERR0_FIT_CORRUPTED) {
+ dev_err(hdev->dev, "Device boot error - FIT image corrupted\n");
+ err_exists = true;
+ }
+
+ if (err_val & CPU_BOOT_ERR0_TS_INIT_FAIL) {
+ dev_err(hdev->dev,
+ "Device boot error - Thermal Sensor initialization failed\n");
+ err_exists = true;
+ }
+
+ if (err_val & CPU_BOOT_ERR0_BMC_WAIT_SKIPPED) {
+ if (hdev->bmc_enable) {
+ dev_err(hdev->dev,
+ "Device boot error - Skipped waiting for BMC\n");
+ err_exists = true;
+ } else {
+ dev_info(hdev->dev,
+ "Device boot message - Skipped waiting for BMC\n");
+ /* This is an info so we don't want it to disable the
+ * device
+ */
+ err_val &= ~CPU_BOOT_ERR0_BMC_WAIT_SKIPPED;
+ }
+ }
+
+ if (err_val & CPU_BOOT_ERR0_NIC_DATA_NOT_RDY) {
+ dev_err(hdev->dev,
+ "Device boot error - Serdes data from BMC not available\n");
+ err_exists = true;
+ }
+
+ if (err_val & CPU_BOOT_ERR0_NIC_FW_FAIL) {
+ dev_err(hdev->dev,
+ "Device boot error - NIC F/W initialization failed\n");
+ err_exists = true;
+ }
+
+ if (err_val & CPU_BOOT_ERR0_SECURITY_NOT_RDY) {
+ dev_err(hdev->dev,
+ "Device boot warning - security not ready\n");
+ err_exists = true;
+ }
+
+ if (err_val & CPU_BOOT_ERR0_SECURITY_FAIL) {
+ dev_err(hdev->dev, "Device boot error - security failure\n");
+ err_exists = true;
+ }
+
+ if (err_val & CPU_BOOT_ERR0_EFUSE_FAIL) {
+ dev_err(hdev->dev, "Device boot error - eFuse failure\n");
+ err_exists = true;
+ }
+
+ if (err_val & CPU_BOOT_ERR0_SEC_IMG_VER_FAIL) {
+ dev_err(hdev->dev, "Device boot error - Failed to load preboot secondary image\n");
+ err_exists = true;
+ }
+
+ if (err_val & CPU_BOOT_ERR0_PLL_FAIL) {
+ dev_err(hdev->dev, "Device boot error - PLL failure\n");
+ err_exists = true;
+ }
+
+ if (err_val & CPU_BOOT_ERR0_DEVICE_UNUSABLE_FAIL) {
+ /* Ignore this bit, don't prevent driver loading */
+ dev_dbg(hdev->dev, "device unusable status is set\n");
+ err_val &= ~CPU_BOOT_ERR0_DEVICE_UNUSABLE_FAIL;
+ }
+
+ if (err_val & CPU_BOOT_ERR0_BINNING_FAIL) {
+ dev_err(hdev->dev, "Device boot error - binning failure\n");
+ err_exists = true;
+ }
+
+ if (sts_val & CPU_BOOT_DEV_STS0_ENABLED)
+ dev_dbg(hdev->dev, "Device status0 %#x\n", sts_val);
+
+ /* All warnings should go here in order not to reach the unknown error validation */
+ if (err_val & CPU_BOOT_ERR0_EEPROM_FAIL) {
+ dev_warn(hdev->dev,
+ "Device boot warning - EEPROM failure detected, default settings applied\n");
+ /* This is a warning so we don't want it to disable the
+ * device
+ */
+ err_val &= ~CPU_BOOT_ERR0_EEPROM_FAIL;
+ }
+
+ if (err_val & CPU_BOOT_ERR0_DRAM_SKIPPED) {
+ dev_warn(hdev->dev,
+ "Device boot warning - Skipped DRAM initialization\n");
+ /* This is a warning so we don't want it to disable the
+ * device
+ */
+ err_val &= ~CPU_BOOT_ERR0_DRAM_SKIPPED;
+ }
+
+ if (err_val & CPU_BOOT_ERR0_PRI_IMG_VER_FAIL) {
+ dev_warn(hdev->dev,
+ "Device boot warning - Failed to load preboot primary image\n");
+ /* This is a warning so we don't want it to disable the
+ * device as we have a secondary preboot image
+ */
+ err_val &= ~CPU_BOOT_ERR0_PRI_IMG_VER_FAIL;
+ }
+
+ if (err_val & CPU_BOOT_ERR0_TPM_FAIL) {
+ dev_warn(hdev->dev,
+ "Device boot warning - TPM failure\n");
+ /* This is a warning so we don't want it to disable the
+ * device
+ */
+ err_val &= ~CPU_BOOT_ERR0_TPM_FAIL;
+ }
+
+ if (!err_exists && (err_val & ~CPU_BOOT_ERR0_ENABLED)) {
+ dev_err(hdev->dev,
+ "Device boot error - unknown ERR0 error 0x%08x\n", err_val);
+ err_exists = true;
+ }
+
+ /* return error only if it's in the predefined mask */
+ if (err_exists && ((err_val & ~CPU_BOOT_ERR0_ENABLED) &
+ lower_32_bits(hdev->boot_error_status_mask)))
+ return true;
+
+ return false;
+}
+
+/* placeholder for ERR1 as no errors defined there yet */
+static bool fw_report_boot_dev1(struct hl_device *hdev, u32 err_val,
+ u32 sts_val)
+{
+ /*
+ * keep this variable to preserve the logic of the function.
+ * this way it would require less modifications when error will be
+ * added to DEV_ERR1
+ */
+ bool err_exists = false;
+
+ if (!(err_val & CPU_BOOT_ERR1_ENABLED))
+ return false;
+
+ if (sts_val & CPU_BOOT_DEV_STS1_ENABLED)
+ dev_dbg(hdev->dev, "Device status1 %#x\n", sts_val);
+
+ if (!err_exists && (err_val & ~CPU_BOOT_ERR1_ENABLED)) {
+ dev_err(hdev->dev,
+ "Device boot error - unknown ERR1 error 0x%08x\n",
+ err_val);
+ err_exists = true;
+ }
+
+ /* return error only if it's in the predefined mask */
+ if (err_exists && ((err_val & ~CPU_BOOT_ERR1_ENABLED) &
+ upper_32_bits(hdev->boot_error_status_mask)))
+ return true;
+
+ return false;
+}
+
+static int fw_read_errors(struct hl_device *hdev, u32 boot_err0_reg,
+ u32 boot_err1_reg, u32 cpu_boot_dev_status0_reg,
+ u32 cpu_boot_dev_status1_reg)
+{
+ u32 err_val, status_val;
+ bool err_exists = false;
+
+ /* Some of the firmware status codes are deprecated in newer f/w
+ * versions. In those versions, the errors are reported
+ * in different registers. Therefore, we need to check those
+ * registers and print the exact errors. Moreover, there
+ * may be multiple errors, so we need to report on each error
+ * separately. Some of the error codes might indicate a state
+ * that is not an error per-se, but it is an error in production
+ * environment
+ */
+ err_val = RREG32(boot_err0_reg);
+ status_val = RREG32(cpu_boot_dev_status0_reg);
+ err_exists = fw_report_boot_dev0(hdev, err_val, status_val);
+
+ err_val = RREG32(boot_err1_reg);
+ status_val = RREG32(cpu_boot_dev_status1_reg);
+ err_exists |= fw_report_boot_dev1(hdev, err_val, status_val);
+
+ if (err_exists)
+ return -EIO;
+
+ return 0;
+}
+
+int hl_fw_cpucp_info_get(struct hl_device *hdev,
+ u32 sts_boot_dev_sts0_reg,
+ u32 sts_boot_dev_sts1_reg, u32 boot_err0_reg,
+ u32 boot_err1_reg)
+{
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ struct cpucp_packet pkt = {};
+ dma_addr_t cpucp_info_dma_addr;
+ void *cpucp_info_cpu_addr;
+ char *kernel_ver;
+ u64 result;
+ int rc;
+
+ cpucp_info_cpu_addr = hl_cpu_accessible_dma_pool_alloc(hdev, sizeof(struct cpucp_info),
+ &cpucp_info_dma_addr);
+ if (!cpucp_info_cpu_addr) {
+ dev_err(hdev->dev,
+ "Failed to allocate DMA memory for CPU-CP info packet\n");
+ return -ENOMEM;
+ }
+
+ memset(cpucp_info_cpu_addr, 0, sizeof(struct cpucp_info));
+
+ pkt.ctl = cpu_to_le32(CPUCP_PACKET_INFO_GET <<
+ CPUCP_PKT_CTL_OPCODE_SHIFT);
+ pkt.addr = cpu_to_le64(cpucp_info_dma_addr);
+ pkt.data_max_size = cpu_to_le32(sizeof(struct cpucp_info));
+
+ rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
+ HL_CPUCP_INFO_TIMEOUT_USEC, &result);
+ if (rc) {
+ dev_err(hdev->dev,
+ "Failed to handle CPU-CP info pkt, error %d\n", rc);
+ goto out;
+ }
+
+ rc = fw_read_errors(hdev, boot_err0_reg, boot_err1_reg,
+ sts_boot_dev_sts0_reg, sts_boot_dev_sts1_reg);
+ if (rc) {
+ dev_err(hdev->dev, "Errors in device boot\n");
+ goto out;
+ }
+
+ memcpy(&prop->cpucp_info, cpucp_info_cpu_addr,
+ sizeof(prop->cpucp_info));
+
+ rc = hl_build_hwmon_channel_info(hdev, prop->cpucp_info.sensors);
+ if (rc) {
+ dev_err(hdev->dev,
+ "Failed to build hwmon channel info, error %d\n", rc);
+ rc = -EFAULT;
+ goto out;
+ }
+
+ kernel_ver = extract_fw_ver_from_str(prop->cpucp_info.kernel_version);
+ if (kernel_ver) {
+ dev_info(hdev->dev, "Linux version %s", kernel_ver);
+ kfree(kernel_ver);
+ }
+
+ /* assume EQ code doesn't need to check eqe index */
+ hdev->event_queue.check_eqe_index = false;
+
+ /* Read FW application security bits again */
+ if (prop->fw_cpu_boot_dev_sts0_valid) {
+ prop->fw_app_cpu_boot_dev_sts0 = RREG32(sts_boot_dev_sts0_reg);
+ if (prop->fw_app_cpu_boot_dev_sts0 &
+ CPU_BOOT_DEV_STS0_EQ_INDEX_EN)
+ hdev->event_queue.check_eqe_index = true;
+ }
+
+ if (prop->fw_cpu_boot_dev_sts1_valid)
+ prop->fw_app_cpu_boot_dev_sts1 = RREG32(sts_boot_dev_sts1_reg);
+
+out:
+ hl_cpu_accessible_dma_pool_free(hdev, sizeof(struct cpucp_info), cpucp_info_cpu_addr);
+
+ return rc;
+}
+
+static int hl_fw_send_msi_info_msg(struct hl_device *hdev)
+{
+ struct cpucp_array_data_packet *pkt;
+ size_t total_pkt_size, data_size;
+ u64 result;
+ int rc;
+
+ /* skip sending this info for unsupported ASICs */
+ if (!hdev->asic_funcs->get_msi_info)
+ return 0;
+
+ data_size = CPUCP_NUM_OF_MSI_TYPES * sizeof(u32);
+ total_pkt_size = sizeof(struct cpucp_array_data_packet) + data_size;
+
+ /* data should be aligned to 8 bytes in order to CPU-CP to copy it */
+ total_pkt_size = (total_pkt_size + 0x7) & ~0x7;
+
+ /* total_pkt_size is casted to u16 later on */
+ if (total_pkt_size > USHRT_MAX) {
+ dev_err(hdev->dev, "CPUCP array data is too big\n");
+ return -EINVAL;
+ }
+
+ pkt = kzalloc(total_pkt_size, GFP_KERNEL);
+ if (!pkt)
+ return -ENOMEM;
+
+ pkt->length = cpu_to_le32(CPUCP_NUM_OF_MSI_TYPES);
+
+ memset((void *) &pkt->data, 0xFF, data_size);
+ hdev->asic_funcs->get_msi_info(pkt->data);
+
+ pkt->cpucp_pkt.ctl = cpu_to_le32(CPUCP_PACKET_MSI_INFO_SET <<
+ CPUCP_PKT_CTL_OPCODE_SHIFT);
+
+ rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *)pkt,
+ total_pkt_size, 0, &result);
+
+ /*
+ * in case packet result is invalid it means that FW does not support
+ * this feature and will use default/hard coded MSI values. no reason
+ * to stop the boot
+ */
+ if (rc && result == cpucp_packet_invalid)
+ rc = 0;
+
+ if (rc)
+ dev_err(hdev->dev, "failed to send CPUCP array data\n");
+
+ kfree(pkt);
+
+ return rc;
+}
+
+int hl_fw_cpucp_handshake(struct hl_device *hdev,
+ u32 sts_boot_dev_sts0_reg,
+ u32 sts_boot_dev_sts1_reg, u32 boot_err0_reg,
+ u32 boot_err1_reg)
+{
+ int rc;
+
+ rc = hl_fw_cpucp_info_get(hdev, sts_boot_dev_sts0_reg,
+ sts_boot_dev_sts1_reg, boot_err0_reg,
+ boot_err1_reg);
+ if (rc)
+ return rc;
+
+ return hl_fw_send_msi_info_msg(hdev);
+}
+
+int hl_fw_get_eeprom_data(struct hl_device *hdev, void *data, size_t max_size)
+{
+ struct cpucp_packet pkt = {};
+ void *eeprom_info_cpu_addr;
+ dma_addr_t eeprom_info_dma_addr;
+ u64 result;
+ int rc;
+
+ eeprom_info_cpu_addr = hl_cpu_accessible_dma_pool_alloc(hdev, max_size,
+ &eeprom_info_dma_addr);
+ if (!eeprom_info_cpu_addr) {
+ dev_err(hdev->dev,
+ "Failed to allocate DMA memory for CPU-CP EEPROM packet\n");
+ return -ENOMEM;
+ }
+
+ memset(eeprom_info_cpu_addr, 0, max_size);
+
+ pkt.ctl = cpu_to_le32(CPUCP_PACKET_EEPROM_DATA_GET <<
+ CPUCP_PKT_CTL_OPCODE_SHIFT);
+ pkt.addr = cpu_to_le64(eeprom_info_dma_addr);
+ pkt.data_max_size = cpu_to_le32(max_size);
+
+ rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
+ HL_CPUCP_EEPROM_TIMEOUT_USEC, &result);
+
+ if (rc) {
+ dev_err(hdev->dev,
+ "Failed to handle CPU-CP EEPROM packet, error %d\n",
+ rc);
+ goto out;
+ }
+
+ /* result contains the actual size */
+ memcpy(data, eeprom_info_cpu_addr, min((size_t)result, max_size));
+
+out:
+ hl_cpu_accessible_dma_pool_free(hdev, max_size, eeprom_info_cpu_addr);
+
+ return rc;
+}
+
+int hl_fw_get_monitor_dump(struct hl_device *hdev, void *data)
+{
+ struct cpucp_monitor_dump *mon_dump_cpu_addr;
+ dma_addr_t mon_dump_dma_addr;
+ struct cpucp_packet pkt = {};
+ size_t data_size;
+ __le32 *src_ptr;
+ u32 *dst_ptr;
+ u64 result;
+ int i, rc;
+
+ data_size = sizeof(struct cpucp_monitor_dump);
+ mon_dump_cpu_addr = hl_cpu_accessible_dma_pool_alloc(hdev, data_size, &mon_dump_dma_addr);
+ if (!mon_dump_cpu_addr) {
+ dev_err(hdev->dev,
+ "Failed to allocate DMA memory for CPU-CP monitor-dump packet\n");
+ return -ENOMEM;
+ }
+
+ memset(mon_dump_cpu_addr, 0, data_size);
+
+ pkt.ctl = cpu_to_le32(CPUCP_PACKET_MONITOR_DUMP_GET << CPUCP_PKT_CTL_OPCODE_SHIFT);
+ pkt.addr = cpu_to_le64(mon_dump_dma_addr);
+ pkt.data_max_size = cpu_to_le32(data_size);
+
+ rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
+ HL_CPUCP_MON_DUMP_TIMEOUT_USEC, &result);
+ if (rc) {
+ dev_err(hdev->dev, "Failed to handle CPU-CP monitor-dump packet, error %d\n", rc);
+ goto out;
+ }
+
+ /* result contains the actual size */
+ src_ptr = (__le32 *) mon_dump_cpu_addr;
+ dst_ptr = data;
+ for (i = 0; i < (data_size / sizeof(u32)); i++) {
+ *dst_ptr = le32_to_cpu(*src_ptr);
+ src_ptr++;
+ dst_ptr++;
+ }
+
+out:
+ hl_cpu_accessible_dma_pool_free(hdev, data_size, mon_dump_cpu_addr);
+
+ return rc;
+}
+
+int hl_fw_cpucp_pci_counters_get(struct hl_device *hdev,
+ struct hl_info_pci_counters *counters)
+{
+ struct cpucp_packet pkt = {};
+ u64 result;
+ int rc;
+
+ pkt.ctl = cpu_to_le32(CPUCP_PACKET_PCIE_THROUGHPUT_GET <<
+ CPUCP_PKT_CTL_OPCODE_SHIFT);
+
+ /* Fetch PCI rx counter */
+ pkt.index = cpu_to_le32(cpucp_pcie_throughput_rx);
+ rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
+ HL_CPUCP_INFO_TIMEOUT_USEC, &result);
+ if (rc) {
+ dev_err(hdev->dev,
+ "Failed to handle CPU-CP PCI info pkt, error %d\n", rc);
+ return rc;
+ }
+ counters->rx_throughput = result;
+
+ memset(&pkt, 0, sizeof(pkt));
+ pkt.ctl = cpu_to_le32(CPUCP_PACKET_PCIE_THROUGHPUT_GET <<
+ CPUCP_PKT_CTL_OPCODE_SHIFT);
+
+ /* Fetch PCI tx counter */
+ pkt.index = cpu_to_le32(cpucp_pcie_throughput_tx);
+ rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
+ HL_CPUCP_INFO_TIMEOUT_USEC, &result);
+ if (rc) {
+ dev_err(hdev->dev,
+ "Failed to handle CPU-CP PCI info pkt, error %d\n", rc);
+ return rc;
+ }
+ counters->tx_throughput = result;
+
+ /* Fetch PCI replay counter */
+ memset(&pkt, 0, sizeof(pkt));
+ pkt.ctl = cpu_to_le32(CPUCP_PACKET_PCIE_REPLAY_CNT_GET <<
+ CPUCP_PKT_CTL_OPCODE_SHIFT);
+
+ rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
+ HL_CPUCP_INFO_TIMEOUT_USEC, &result);
+ if (rc) {
+ dev_err(hdev->dev,
+ "Failed to handle CPU-CP PCI info pkt, error %d\n", rc);
+ return rc;
+ }
+ counters->replay_cnt = (u32) result;
+
+ return rc;
+}
+
+int hl_fw_cpucp_total_energy_get(struct hl_device *hdev, u64 *total_energy)
+{
+ struct cpucp_packet pkt = {};
+ u64 result;
+ int rc;
+
+ pkt.ctl = cpu_to_le32(CPUCP_PACKET_TOTAL_ENERGY_GET <<
+ CPUCP_PKT_CTL_OPCODE_SHIFT);
+
+ rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
+ HL_CPUCP_INFO_TIMEOUT_USEC, &result);
+ if (rc) {
+ dev_err(hdev->dev,
+ "Failed to handle CpuCP total energy pkt, error %d\n",
+ rc);
+ return rc;
+ }
+
+ *total_energy = result;
+
+ return rc;
+}
+
+int get_used_pll_index(struct hl_device *hdev, u32 input_pll_index,
+ enum pll_index *pll_index)
+{
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ u8 pll_byte, pll_bit_off;
+ bool dynamic_pll;
+ int fw_pll_idx;
+
+ dynamic_pll = !!(prop->fw_app_cpu_boot_dev_sts0 &
+ CPU_BOOT_DEV_STS0_DYN_PLL_EN);
+
+ if (!dynamic_pll) {
+ /*
+ * in case we are working with legacy FW (each asic has unique
+ * PLL numbering) use the driver based index as they are
+ * aligned with fw legacy numbering
+ */
+ *pll_index = input_pll_index;
+ return 0;
+ }
+
+ /* retrieve a FW compatible PLL index based on
+ * ASIC specific user request
+ */
+ fw_pll_idx = hdev->asic_funcs->map_pll_idx_to_fw_idx(input_pll_index);
+ if (fw_pll_idx < 0) {
+ dev_err(hdev->dev, "Invalid PLL index (%u) error %d\n",
+ input_pll_index, fw_pll_idx);
+ return -EINVAL;
+ }
+
+ /* PLL map is a u8 array */
+ pll_byte = prop->cpucp_info.pll_map[fw_pll_idx >> 3];
+ pll_bit_off = fw_pll_idx & 0x7;
+
+ if (!(pll_byte & BIT(pll_bit_off))) {
+ dev_err(hdev->dev, "PLL index %d is not supported\n",
+ fw_pll_idx);
+ return -EINVAL;
+ }
+
+ *pll_index = fw_pll_idx;
+
+ return 0;
+}
+
+int hl_fw_cpucp_pll_info_get(struct hl_device *hdev, u32 pll_index,
+ u16 *pll_freq_arr)
+{
+ struct cpucp_packet pkt;
+ enum pll_index used_pll_idx;
+ u64 result;
+ int rc;
+
+ rc = get_used_pll_index(hdev, pll_index, &used_pll_idx);
+ if (rc)
+ return rc;
+
+ memset(&pkt, 0, sizeof(pkt));
+
+ pkt.ctl = cpu_to_le32(CPUCP_PACKET_PLL_INFO_GET <<
+ CPUCP_PKT_CTL_OPCODE_SHIFT);
+ pkt.pll_type = __cpu_to_le16((u16)used_pll_idx);
+
+ rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
+ HL_CPUCP_INFO_TIMEOUT_USEC, &result);
+ if (rc) {
+ dev_err(hdev->dev, "Failed to read PLL info, error %d\n", rc);
+ return rc;
+ }
+
+ pll_freq_arr[0] = FIELD_GET(CPUCP_PKT_RES_PLL_OUT0_MASK, result);
+ pll_freq_arr[1] = FIELD_GET(CPUCP_PKT_RES_PLL_OUT1_MASK, result);
+ pll_freq_arr[2] = FIELD_GET(CPUCP_PKT_RES_PLL_OUT2_MASK, result);
+ pll_freq_arr[3] = FIELD_GET(CPUCP_PKT_RES_PLL_OUT3_MASK, result);
+
+ return 0;
+}
+
+int hl_fw_cpucp_power_get(struct hl_device *hdev, u64 *power)
+{
+ struct cpucp_packet pkt;
+ u64 result;
+ int rc;
+
+ memset(&pkt, 0, sizeof(pkt));
+
+ pkt.ctl = cpu_to_le32(CPUCP_PACKET_POWER_GET <<
+ CPUCP_PKT_CTL_OPCODE_SHIFT);
+ pkt.type = cpu_to_le16(CPUCP_POWER_INPUT);
+
+ rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
+ HL_CPUCP_INFO_TIMEOUT_USEC, &result);
+ if (rc) {
+ dev_err(hdev->dev, "Failed to read power, error %d\n", rc);
+ return rc;
+ }
+
+ *power = result;
+
+ return rc;
+}
+
+int hl_fw_dram_replaced_row_get(struct hl_device *hdev,
+ struct cpucp_hbm_row_info *info)
+{
+ struct cpucp_hbm_row_info *cpucp_repl_rows_info_cpu_addr;
+ dma_addr_t cpucp_repl_rows_info_dma_addr;
+ struct cpucp_packet pkt = {};
+ u64 result;
+ int rc;
+
+ cpucp_repl_rows_info_cpu_addr = hl_cpu_accessible_dma_pool_alloc(hdev,
+ sizeof(struct cpucp_hbm_row_info),
+ &cpucp_repl_rows_info_dma_addr);
+ if (!cpucp_repl_rows_info_cpu_addr) {
+ dev_err(hdev->dev,
+ "Failed to allocate DMA memory for CPU-CP replaced rows info packet\n");
+ return -ENOMEM;
+ }
+
+ memset(cpucp_repl_rows_info_cpu_addr, 0, sizeof(struct cpucp_hbm_row_info));
+
+ pkt.ctl = cpu_to_le32(CPUCP_PACKET_HBM_REPLACED_ROWS_INFO_GET <<
+ CPUCP_PKT_CTL_OPCODE_SHIFT);
+ pkt.addr = cpu_to_le64(cpucp_repl_rows_info_dma_addr);
+ pkt.data_max_size = cpu_to_le32(sizeof(struct cpucp_hbm_row_info));
+
+ rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
+ HL_CPUCP_INFO_TIMEOUT_USEC, &result);
+ if (rc) {
+ dev_err(hdev->dev,
+ "Failed to handle CPU-CP replaced rows info pkt, error %d\n", rc);
+ goto out;
+ }
+
+ memcpy(info, cpucp_repl_rows_info_cpu_addr, sizeof(*info));
+
+out:
+ hl_cpu_accessible_dma_pool_free(hdev, sizeof(struct cpucp_hbm_row_info),
+ cpucp_repl_rows_info_cpu_addr);
+
+ return rc;
+}
+
+int hl_fw_dram_pending_row_get(struct hl_device *hdev, u32 *pend_rows_num)
+{
+ struct cpucp_packet pkt;
+ u64 result;
+ int rc;
+
+ memset(&pkt, 0, sizeof(pkt));
+
+ pkt.ctl = cpu_to_le32(CPUCP_PACKET_HBM_PENDING_ROWS_STATUS << CPUCP_PKT_CTL_OPCODE_SHIFT);
+
+ rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 0, &result);
+ if (rc) {
+ dev_err(hdev->dev,
+ "Failed to handle CPU-CP pending rows info pkt, error %d\n", rc);
+ goto out;
+ }
+
+ *pend_rows_num = (u32) result;
+out:
+ return rc;
+}
+
+int hl_fw_cpucp_engine_core_asid_set(struct hl_device *hdev, u32 asid)
+{
+ struct cpucp_packet pkt;
+ int rc;
+
+ memset(&pkt, 0, sizeof(pkt));
+
+ pkt.ctl = cpu_to_le32(CPUCP_PACKET_ENGINE_CORE_ASID_SET << CPUCP_PKT_CTL_OPCODE_SHIFT);
+ pkt.value = cpu_to_le64(asid);
+
+ rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
+ HL_CPUCP_INFO_TIMEOUT_USEC, NULL);
+ if (rc)
+ dev_err(hdev->dev,
+ "Failed on ASID configuration request for engine core, error %d\n",
+ rc);
+
+ return rc;
+}
+
+void hl_fw_ask_hard_reset_without_linux(struct hl_device *hdev)
+{
+ struct static_fw_load_mgr *static_loader =
+ &hdev->fw_loader.static_loader;
+ int rc;
+
+ if (hdev->asic_prop.dynamic_fw_load) {
+ rc = hl_fw_dynamic_send_protocol_cmd(hdev, &hdev->fw_loader,
+ COMMS_RST_DEV, 0, false,
+ hdev->fw_loader.cpu_timeout);
+ if (rc)
+ dev_warn(hdev->dev, "Failed sending COMMS_RST_DEV\n");
+ } else {
+ WREG32(static_loader->kmd_msg_to_cpu_reg, KMD_MSG_RST_DEV);
+ }
+}
+
+void hl_fw_ask_halt_machine_without_linux(struct hl_device *hdev)
+{
+ struct static_fw_load_mgr *static_loader =
+ &hdev->fw_loader.static_loader;
+ int rc;
+
+ if (hdev->device_cpu_is_halted)
+ return;
+
+ /* Stop device CPU to make sure nothing bad happens */
+ if (hdev->asic_prop.dynamic_fw_load) {
+ rc = hl_fw_dynamic_send_protocol_cmd(hdev, &hdev->fw_loader,
+ COMMS_GOTO_WFE, 0, true,
+ hdev->fw_loader.cpu_timeout);
+ if (rc)
+ dev_warn(hdev->dev, "Failed sending COMMS_GOTO_WFE\n");
+ } else {
+ WREG32(static_loader->kmd_msg_to_cpu_reg, KMD_MSG_GOTO_WFE);
+ msleep(static_loader->cpu_reset_wait_msec);
+
+ /* Must clear this register in order to prevent preboot
+ * from reading WFE after reboot
+ */
+ WREG32(static_loader->kmd_msg_to_cpu_reg, KMD_MSG_NA);
+ }
+
+ hdev->device_cpu_is_halted = true;
+}
+
+static void detect_cpu_boot_status(struct hl_device *hdev, u32 status)
+{
+ /* Some of the status codes below are deprecated in newer f/w
+ * versions but we keep them here for backward compatibility
+ */
+ switch (status) {
+ case CPU_BOOT_STATUS_NA:
+ dev_err(hdev->dev,
+ "Device boot progress - BTL/ROM did NOT run\n");
+ break;
+ case CPU_BOOT_STATUS_IN_WFE:
+ dev_err(hdev->dev,
+ "Device boot progress - Stuck inside WFE loop\n");
+ break;
+ case CPU_BOOT_STATUS_IN_BTL:
+ dev_err(hdev->dev,
+ "Device boot progress - Stuck in BTL\n");
+ break;
+ case CPU_BOOT_STATUS_IN_PREBOOT:
+ dev_err(hdev->dev,
+ "Device boot progress - Stuck in Preboot\n");
+ break;
+ case CPU_BOOT_STATUS_IN_SPL:
+ dev_err(hdev->dev,
+ "Device boot progress - Stuck in SPL\n");
+ break;
+ case CPU_BOOT_STATUS_IN_UBOOT:
+ dev_err(hdev->dev,
+ "Device boot progress - Stuck in u-boot\n");
+ break;
+ case CPU_BOOT_STATUS_DRAM_INIT_FAIL:
+ dev_err(hdev->dev,
+ "Device boot progress - DRAM initialization failed\n");
+ break;
+ case CPU_BOOT_STATUS_UBOOT_NOT_READY:
+ dev_err(hdev->dev,
+ "Device boot progress - Cannot boot\n");
+ break;
+ case CPU_BOOT_STATUS_TS_INIT_FAIL:
+ dev_err(hdev->dev,
+ "Device boot progress - Thermal Sensor initialization failed\n");
+ break;
+ case CPU_BOOT_STATUS_SECURITY_READY:
+ dev_err(hdev->dev,
+ "Device boot progress - Stuck in preboot after security initialization\n");
+ break;
+ default:
+ dev_err(hdev->dev,
+ "Device boot progress - Invalid status code %d\n",
+ status);
+ break;
+ }
+}
+
+static int hl_fw_wait_preboot_ready(struct hl_device *hdev)
+{
+ struct pre_fw_load_props *pre_fw_load = &hdev->fw_loader.pre_fw_load;
+ u32 status;
+ int rc;
+
+ /* Need to check two possible scenarios:
+ *
+ * CPU_BOOT_STATUS_WAITING_FOR_BOOT_FIT - for newer firmwares where
+ * the preboot is waiting for the boot fit
+ *
+ * All other status values - for older firmwares where the uboot was
+ * loaded from the FLASH
+ */
+ rc = hl_poll_timeout(
+ hdev,
+ pre_fw_load->cpu_boot_status_reg,
+ status,
+ (status == CPU_BOOT_STATUS_NIC_FW_RDY) ||
+ (status == CPU_BOOT_STATUS_READY_TO_BOOT) ||
+ (status == CPU_BOOT_STATUS_WAITING_FOR_BOOT_FIT),
+ hdev->fw_poll_interval_usec,
+ pre_fw_load->wait_for_preboot_timeout);
+
+ if (rc) {
+ dev_err(hdev->dev, "CPU boot ready status timeout\n");
+ detect_cpu_boot_status(hdev, status);
+
+ /* If we read all FF, then something is totally wrong, no point
+ * of reading specific errors
+ */
+ if (status != -1)
+ fw_read_errors(hdev, pre_fw_load->boot_err0_reg,
+ pre_fw_load->boot_err1_reg,
+ pre_fw_load->sts_boot_dev_sts0_reg,
+ pre_fw_load->sts_boot_dev_sts1_reg);
+ return -EIO;
+ }
+
+ hdev->fw_loader.fw_comp_loaded |= FW_TYPE_PREBOOT_CPU;
+
+ return 0;
+}
+
+static int hl_fw_read_preboot_caps(struct hl_device *hdev)
+{
+ struct pre_fw_load_props *pre_fw_load;
+ struct asic_fixed_properties *prop;
+ u32 reg_val;
+ int rc;
+
+ prop = &hdev->asic_prop;
+ pre_fw_load = &hdev->fw_loader.pre_fw_load;
+
+ rc = hl_fw_wait_preboot_ready(hdev);
+ if (rc)
+ return rc;
+
+ /*
+ * the registers DEV_STS* contain FW capabilities/features.
+ * We can rely on this registers only if bit CPU_BOOT_DEV_STS*_ENABLED
+ * is set.
+ * In the first read of this register we store the value of this
+ * register ONLY if the register is enabled (which will be propagated
+ * to next stages) and also mark the register as valid.
+ * In case it is not enabled the stored value will be left 0- all
+ * caps/features are off
+ */
+ reg_val = RREG32(pre_fw_load->sts_boot_dev_sts0_reg);
+ if (reg_val & CPU_BOOT_DEV_STS0_ENABLED) {
+ prop->fw_cpu_boot_dev_sts0_valid = true;
+ prop->fw_preboot_cpu_boot_dev_sts0 = reg_val;
+ }
+
+ reg_val = RREG32(pre_fw_load->sts_boot_dev_sts1_reg);
+ if (reg_val & CPU_BOOT_DEV_STS1_ENABLED) {
+ prop->fw_cpu_boot_dev_sts1_valid = true;
+ prop->fw_preboot_cpu_boot_dev_sts1 = reg_val;
+ }
+
+ prop->dynamic_fw_load = !!(prop->fw_preboot_cpu_boot_dev_sts0 &
+ CPU_BOOT_DEV_STS0_FW_LD_COM_EN);
+
+ /* initialize FW loader once we know what load protocol is used */
+ hdev->asic_funcs->init_firmware_loader(hdev);
+
+ dev_dbg(hdev->dev, "Attempting %s FW load\n",
+ prop->dynamic_fw_load ? "dynamic" : "legacy");
+ return 0;
+}
+
+static int hl_fw_static_read_device_fw_version(struct hl_device *hdev,
+ enum hl_fw_component fwc)
+{
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ struct fw_load_mgr *fw_loader = &hdev->fw_loader;
+ struct static_fw_load_mgr *static_loader;
+ char *dest, *boot_ver, *preboot_ver;
+ u32 ver_off, limit;
+ const char *name;
+ char btl_ver[32];
+
+ static_loader = &hdev->fw_loader.static_loader;
+
+ switch (fwc) {
+ case FW_COMP_BOOT_FIT:
+ ver_off = RREG32(static_loader->boot_fit_version_offset_reg);
+ dest = prop->uboot_ver;
+ name = "Boot-fit";
+ limit = static_loader->boot_fit_version_max_off;
+ break;
+ case FW_COMP_PREBOOT:
+ ver_off = RREG32(static_loader->preboot_version_offset_reg);
+ dest = prop->preboot_ver;
+ name = "Preboot";
+ limit = static_loader->preboot_version_max_off;
+ break;
+ default:
+ dev_warn(hdev->dev, "Undefined FW component: %d\n", fwc);
+ return -EIO;
+ }
+
+ ver_off &= static_loader->sram_offset_mask;
+
+ if (ver_off < limit) {
+ memcpy_fromio(dest,
+ hdev->pcie_bar[fw_loader->sram_bar_id] + ver_off,
+ VERSION_MAX_LEN);
+ } else {
+ dev_err(hdev->dev, "%s version offset (0x%x) is above SRAM\n",
+ name, ver_off);
+ strscpy(dest, "unavailable", VERSION_MAX_LEN);
+ return -EIO;
+ }
+
+ if (fwc == FW_COMP_BOOT_FIT) {
+ boot_ver = extract_fw_ver_from_str(prop->uboot_ver);
+ if (boot_ver) {
+ dev_info(hdev->dev, "boot-fit version %s\n", boot_ver);
+ kfree(boot_ver);
+ }
+ } else if (fwc == FW_COMP_PREBOOT) {
+ preboot_ver = strnstr(prop->preboot_ver, "Preboot",
+ VERSION_MAX_LEN);
+ if (preboot_ver && preboot_ver != prop->preboot_ver) {
+ strscpy(btl_ver, prop->preboot_ver,
+ min((int) (preboot_ver - prop->preboot_ver),
+ 31));
+ dev_info(hdev->dev, "%s\n", btl_ver);
+ }
+
+ preboot_ver = extract_fw_ver_from_str(prop->preboot_ver);
+ if (preboot_ver) {
+ dev_info(hdev->dev, "preboot version %s\n",
+ preboot_ver);
+ kfree(preboot_ver);
+ }
+ }
+
+ return 0;
+}
+
+/**
+ * hl_fw_preboot_update_state - update internal data structures during
+ * handshake with preboot
+ *
+ *
+ * @hdev: pointer to the habanalabs device structure
+ *
+ * @return 0 on success, otherwise non-zero error code
+ */
+static void hl_fw_preboot_update_state(struct hl_device *hdev)
+{
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ u32 cpu_boot_dev_sts0, cpu_boot_dev_sts1;
+
+ cpu_boot_dev_sts0 = prop->fw_preboot_cpu_boot_dev_sts0;
+ cpu_boot_dev_sts1 = prop->fw_preboot_cpu_boot_dev_sts1;
+
+ /* We read boot_dev_sts registers multiple times during boot:
+ * 1. preboot - a. Check whether the security status bits are valid
+ * b. Check whether fw security is enabled
+ * c. Check whether hard reset is done by preboot
+ * 2. boot cpu - a. Fetch boot cpu security status
+ * b. Check whether hard reset is done by boot cpu
+ * 3. FW application - a. Fetch fw application security status
+ * b. Check whether hard reset is done by fw app
+ */
+ prop->hard_reset_done_by_fw = !!(cpu_boot_dev_sts0 & CPU_BOOT_DEV_STS0_FW_HARD_RST_EN);
+
+ prop->fw_security_enabled = !!(cpu_boot_dev_sts0 & CPU_BOOT_DEV_STS0_SECURITY_EN);
+
+ dev_dbg(hdev->dev, "Firmware preboot boot device status0 %#x\n",
+ cpu_boot_dev_sts0);
+
+ dev_dbg(hdev->dev, "Firmware preboot boot device status1 %#x\n",
+ cpu_boot_dev_sts1);
+
+ dev_dbg(hdev->dev, "Firmware preboot hard-reset is %s\n",
+ prop->hard_reset_done_by_fw ? "enabled" : "disabled");
+
+ dev_dbg(hdev->dev, "firmware-level security is %s\n",
+ prop->fw_security_enabled ? "enabled" : "disabled");
+
+ dev_dbg(hdev->dev, "GIC controller is %s\n",
+ prop->gic_interrupts_enable ? "enabled" : "disabled");
+}
+
+static int hl_fw_static_read_preboot_status(struct hl_device *hdev)
+{
+ int rc;
+
+ rc = hl_fw_static_read_device_fw_version(hdev, FW_COMP_PREBOOT);
+ if (rc)
+ return rc;
+
+ return 0;
+}
+
+int hl_fw_read_preboot_status(struct hl_device *hdev)
+{
+ int rc;
+
+ if (!(hdev->fw_components & FW_TYPE_PREBOOT_CPU))
+ return 0;
+
+ /* get FW pre-load parameters */
+ hdev->asic_funcs->init_firmware_preload_params(hdev);
+
+ /*
+ * In order to determine boot method (static VS dynamic) we need to
+ * read the boot caps register
+ */
+ rc = hl_fw_read_preboot_caps(hdev);
+ if (rc)
+ return rc;
+
+ hl_fw_preboot_update_state(hdev);
+
+ /* no need to read preboot status in dynamic load */
+ if (hdev->asic_prop.dynamic_fw_load)
+ return 0;
+
+ return hl_fw_static_read_preboot_status(hdev);
+}
+
+/* associate string with COMM status */
+static char *hl_dynamic_fw_status_str[COMMS_STS_INVLD_LAST] = {
+ [COMMS_STS_NOOP] = "NOOP",
+ [COMMS_STS_ACK] = "ACK",
+ [COMMS_STS_OK] = "OK",
+ [COMMS_STS_ERR] = "ERR",
+ [COMMS_STS_VALID_ERR] = "VALID_ERR",
+ [COMMS_STS_TIMEOUT_ERR] = "TIMEOUT_ERR",
+};
+
+/**
+ * hl_fw_dynamic_report_error_status - report error status
+ *
+ * @hdev: pointer to the habanalabs device structure
+ * @status: value of FW status register
+ * @expected_status: the expected status
+ */
+static void hl_fw_dynamic_report_error_status(struct hl_device *hdev,
+ u32 status,
+ enum comms_sts expected_status)
+{
+ enum comms_sts comm_status =
+ FIELD_GET(COMMS_STATUS_STATUS_MASK, status);
+
+ if (comm_status < COMMS_STS_INVLD_LAST)
+ dev_err(hdev->dev, "Device status %s, expected status: %s\n",
+ hl_dynamic_fw_status_str[comm_status],
+ hl_dynamic_fw_status_str[expected_status]);
+ else
+ dev_err(hdev->dev, "Device status unknown %d, expected status: %s\n",
+ comm_status,
+ hl_dynamic_fw_status_str[expected_status]);
+}
+
+/**
+ * hl_fw_dynamic_send_cmd - send LKD to FW cmd
+ *
+ * @hdev: pointer to the habanalabs device structure
+ * @fw_loader: managing structure for loading device's FW
+ * @cmd: LKD to FW cmd code
+ * @size: size of next FW component to be loaded (0 if not necessary)
+ *
+ * LDK to FW exact command layout is defined at struct comms_command.
+ * note: the size argument is used only when the next FW component should be
+ * loaded, otherwise it shall be 0. the size is used by the FW in later
+ * protocol stages and when sending only indicating the amount of memory
+ * to be allocated by the FW to receive the next boot component.
+ */
+static void hl_fw_dynamic_send_cmd(struct hl_device *hdev,
+ struct fw_load_mgr *fw_loader,
+ enum comms_cmd cmd, unsigned int size)
+{
+ struct cpu_dyn_regs *dyn_regs;
+ u32 val;
+
+ dyn_regs = &fw_loader->dynamic_loader.comm_desc.cpu_dyn_regs;
+
+ val = FIELD_PREP(COMMS_COMMAND_CMD_MASK, cmd);
+ val |= FIELD_PREP(COMMS_COMMAND_SIZE_MASK, size);
+
+ WREG32(le32_to_cpu(dyn_regs->kmd_msg_to_cpu), val);
+}
+
+/**
+ * hl_fw_dynamic_extract_fw_response - update the FW response
+ *
+ * @hdev: pointer to the habanalabs device structure
+ * @fw_loader: managing structure for loading device's FW
+ * @response: FW response
+ * @status: the status read from CPU status register
+ *
+ * @return 0 on success, otherwise non-zero error code
+ */
+static int hl_fw_dynamic_extract_fw_response(struct hl_device *hdev,
+ struct fw_load_mgr *fw_loader,
+ struct fw_response *response,
+ u32 status)
+{
+ response->status = FIELD_GET(COMMS_STATUS_STATUS_MASK, status);
+ response->ram_offset = FIELD_GET(COMMS_STATUS_OFFSET_MASK, status) <<
+ COMMS_STATUS_OFFSET_ALIGN_SHIFT;
+ response->ram_type = FIELD_GET(COMMS_STATUS_RAM_TYPE_MASK, status);
+
+ if ((response->ram_type != COMMS_SRAM) &&
+ (response->ram_type != COMMS_DRAM)) {
+ dev_err(hdev->dev, "FW status: invalid RAM type %u\n",
+ response->ram_type);
+ return -EIO;
+ }
+
+ return 0;
+}
+
+/**
+ * hl_fw_dynamic_wait_for_status - wait for status in dynamic FW load
+ *
+ * @hdev: pointer to the habanalabs device structure
+ * @fw_loader: managing structure for loading device's FW
+ * @expected_status: expected status to wait for
+ * @timeout: timeout for status wait
+ *
+ * @return 0 on success, otherwise non-zero error code
+ *
+ * waiting for status from FW include polling the FW status register until
+ * expected status is received or timeout occurs (whatever occurs first).
+ */
+static int hl_fw_dynamic_wait_for_status(struct hl_device *hdev,
+ struct fw_load_mgr *fw_loader,
+ enum comms_sts expected_status,
+ u32 timeout)
+{
+ struct cpu_dyn_regs *dyn_regs;
+ u32 status;
+ int rc;
+
+ dyn_regs = &fw_loader->dynamic_loader.comm_desc.cpu_dyn_regs;
+
+ /* Wait for expected status */
+ rc = hl_poll_timeout(
+ hdev,
+ le32_to_cpu(dyn_regs->cpu_cmd_status_to_host),
+ status,
+ FIELD_GET(COMMS_STATUS_STATUS_MASK, status) == expected_status,
+ hdev->fw_comms_poll_interval_usec,
+ timeout);
+
+ if (rc) {
+ hl_fw_dynamic_report_error_status(hdev, status,
+ expected_status);
+ return -EIO;
+ }
+
+ /*
+ * skip storing FW response for NOOP to preserve the actual desired
+ * FW status
+ */
+ if (expected_status == COMMS_STS_NOOP)
+ return 0;
+
+ rc = hl_fw_dynamic_extract_fw_response(hdev, fw_loader,
+ &fw_loader->dynamic_loader.response,
+ status);
+ return rc;
+}
+
+/**
+ * hl_fw_dynamic_send_clear_cmd - send clear command to FW
+ *
+ * @hdev: pointer to the habanalabs device structure
+ * @fw_loader: managing structure for loading device's FW
+ *
+ * @return 0 on success, otherwise non-zero error code
+ *
+ * after command cycle between LKD to FW CPU (i.e. LKD got an expected status
+ * from FW) we need to clear the CPU status register in order to avoid garbage
+ * between command cycles.
+ * This is done by sending clear command and polling the CPU to LKD status
+ * register to hold the status NOOP
+ */
+static int hl_fw_dynamic_send_clear_cmd(struct hl_device *hdev,
+ struct fw_load_mgr *fw_loader)
+{
+ hl_fw_dynamic_send_cmd(hdev, fw_loader, COMMS_CLR_STS, 0);
+
+ return hl_fw_dynamic_wait_for_status(hdev, fw_loader, COMMS_STS_NOOP,
+ fw_loader->cpu_timeout);
+}
+
+/**
+ * hl_fw_dynamic_send_protocol_cmd - send LKD to FW cmd and wait for ACK
+ *
+ * @hdev: pointer to the habanalabs device structure
+ * @fw_loader: managing structure for loading device's FW
+ * @cmd: LKD to FW cmd code
+ * @size: size of next FW component to be loaded (0 if not necessary)
+ * @wait_ok: if true also wait for OK response from FW
+ * @timeout: timeout for status wait
+ *
+ * @return 0 on success, otherwise non-zero error code
+ *
+ * brief:
+ * when sending protocol command we have the following steps:
+ * - send clear (clear command and verify clear status register)
+ * - send the actual protocol command
+ * - wait for ACK on the protocol command
+ * - send clear
+ * - send NOOP
+ * if, in addition, the specific protocol command should wait for OK then:
+ * - wait for OK
+ * - send clear
+ * - send NOOP
+ *
+ * NOTES:
+ * send clear: this is necessary in order to clear the status register to avoid
+ * leftovers between command
+ * NOOP command: necessary to avoid loop on the clear command by the FW
+ */
+int hl_fw_dynamic_send_protocol_cmd(struct hl_device *hdev,
+ struct fw_load_mgr *fw_loader,
+ enum comms_cmd cmd, unsigned int size,
+ bool wait_ok, u32 timeout)
+{
+ int rc;
+
+ /* first send clear command to clean former commands */
+ rc = hl_fw_dynamic_send_clear_cmd(hdev, fw_loader);
+
+ /* send the actual command */
+ hl_fw_dynamic_send_cmd(hdev, fw_loader, cmd, size);
+
+ /* wait for ACK for the command */
+ rc = hl_fw_dynamic_wait_for_status(hdev, fw_loader, COMMS_STS_ACK,
+ timeout);
+ if (rc)
+ return rc;
+
+ /* clear command to prepare for NOOP command */
+ rc = hl_fw_dynamic_send_clear_cmd(hdev, fw_loader);
+ if (rc)
+ return rc;
+
+ /* send the actual NOOP command */
+ hl_fw_dynamic_send_cmd(hdev, fw_loader, COMMS_NOOP, 0);
+
+ if (!wait_ok)
+ return 0;
+
+ rc = hl_fw_dynamic_wait_for_status(hdev, fw_loader, COMMS_STS_OK,
+ timeout);
+ if (rc)
+ return rc;
+
+ /* clear command to prepare for NOOP command */
+ rc = hl_fw_dynamic_send_clear_cmd(hdev, fw_loader);
+ if (rc)
+ return rc;
+
+ /* send the actual NOOP command */
+ hl_fw_dynamic_send_cmd(hdev, fw_loader, COMMS_NOOP, 0);
+
+ return 0;
+}
+
+/**
+ * hl_fw_compat_crc32 - CRC compatible with FW
+ *
+ * @data: pointer to the data
+ * @size: size of the data
+ *
+ * @return the CRC32 result
+ *
+ * NOTE: kernel's CRC32 differs from standard CRC32 calculation.
+ * in order to be aligned we need to flip the bits of both the input
+ * initial CRC and kernel's CRC32 result.
+ * in addition both sides use initial CRC of 0,
+ */
+static u32 hl_fw_compat_crc32(u8 *data, size_t size)
+{
+ return ~crc32_le(~((u32)0), data, size);
+}
+
+/**
+ * hl_fw_dynamic_validate_memory_bound - validate memory bounds for memory
+ * transfer (image or descriptor) between
+ * host and FW
+ *
+ * @hdev: pointer to the habanalabs device structure
+ * @addr: device address of memory transfer
+ * @size: memory transfer size
+ * @region: PCI memory region
+ *
+ * @return 0 on success, otherwise non-zero error code
+ */
+static int hl_fw_dynamic_validate_memory_bound(struct hl_device *hdev,
+ u64 addr, size_t size,
+ struct pci_mem_region *region)
+{
+ u64 end_addr;
+
+ /* now make sure that the memory transfer is within region's bounds */
+ end_addr = addr + size;
+ if (end_addr >= region->region_base + region->region_size) {
+ dev_err(hdev->dev,
+ "dynamic FW load: memory transfer end address out of memory region bounds. addr: %llx\n",
+ end_addr);
+ return -EIO;
+ }
+
+ /*
+ * now make sure memory transfer is within predefined BAR bounds.
+ * this is to make sure we do not need to set the bar (e.g. for DRAM
+ * memory transfers)
+ */
+ if (end_addr >= region->region_base - region->offset_in_bar +
+ region->bar_size) {
+ dev_err(hdev->dev,
+ "FW image beyond PCI BAR bounds\n");
+ return -EIO;
+ }
+
+ return 0;
+}
+
+/**
+ * hl_fw_dynamic_validate_descriptor - validate FW descriptor
+ *
+ * @hdev: pointer to the habanalabs device structure
+ * @fw_loader: managing structure for loading device's FW
+ * @fw_desc: the descriptor form FW
+ *
+ * @return 0 on success, otherwise non-zero error code
+ */
+static int hl_fw_dynamic_validate_descriptor(struct hl_device *hdev,
+ struct fw_load_mgr *fw_loader,
+ struct lkd_fw_comms_desc *fw_desc)
+{
+ struct pci_mem_region *region;
+ enum pci_region region_id;
+ size_t data_size;
+ u32 data_crc32;
+ u8 *data_ptr;
+ u64 addr;
+ int rc;
+
+ if (le32_to_cpu(fw_desc->header.magic) != HL_COMMS_DESC_MAGIC)
+ dev_warn(hdev->dev, "Invalid magic for dynamic FW descriptor (%x)\n",
+ fw_desc->header.magic);
+
+ if (fw_desc->header.version != HL_COMMS_DESC_VER)
+ dev_warn(hdev->dev, "Invalid version for dynamic FW descriptor (%x)\n",
+ fw_desc->header.version);
+
+ /*
+ * Calc CRC32 of data without header. use the size of the descriptor
+ * reported by firmware, without calculating it ourself, to allow adding
+ * more fields to the lkd_fw_comms_desc structure.
+ * note that no alignment/stride address issues here as all structures
+ * are 64 bit padded.
+ */
+ data_ptr = (u8 *)fw_desc + sizeof(struct comms_desc_header);
+ data_size = le16_to_cpu(fw_desc->header.size);
+
+ data_crc32 = hl_fw_compat_crc32(data_ptr, data_size);
+ if (data_crc32 != le32_to_cpu(fw_desc->header.crc32)) {
+ dev_err(hdev->dev, "CRC32 mismatch for dynamic FW descriptor (%x:%x)\n",
+ data_crc32, fw_desc->header.crc32);
+ return -EIO;
+ }
+
+ /* find memory region to which to copy the image */
+ addr = le64_to_cpu(fw_desc->img_addr);
+ region_id = hl_get_pci_memory_region(hdev, addr);
+ if ((region_id != PCI_REGION_SRAM) && ((region_id != PCI_REGION_DRAM))) {
+ dev_err(hdev->dev, "Invalid region to copy FW image address=%llx\n", addr);
+ return -EIO;
+ }
+
+ region = &hdev->pci_mem_region[region_id];
+
+ /* store the region for the copy stage */
+ fw_loader->dynamic_loader.image_region = region;
+
+ /*
+ * here we know that the start address is valid, now make sure that the
+ * image is within region's bounds
+ */
+ rc = hl_fw_dynamic_validate_memory_bound(hdev, addr,
+ fw_loader->dynamic_loader.fw_image_size,
+ region);
+ if (rc) {
+ dev_err(hdev->dev, "invalid mem transfer request for FW image\n");
+ return rc;
+ }
+
+ /* here we can mark the descriptor as valid as the content has been validated */
+ fw_loader->dynamic_loader.fw_desc_valid = true;
+
+ return 0;
+}
+
+static int hl_fw_dynamic_validate_response(struct hl_device *hdev,
+ struct fw_response *response,
+ struct pci_mem_region *region)
+{
+ u64 device_addr;
+ int rc;
+
+ device_addr = region->region_base + response->ram_offset;
+
+ /*
+ * validate that the descriptor is within region's bounds
+ * Note that as the start address was supplied according to the RAM
+ * type- testing only the end address is enough
+ */
+ rc = hl_fw_dynamic_validate_memory_bound(hdev, device_addr,
+ sizeof(struct lkd_fw_comms_desc),
+ region);
+ return rc;
+}
+
+/**
+ * hl_fw_dynamic_read_and_validate_descriptor - read and validate FW descriptor
+ *
+ * @hdev: pointer to the habanalabs device structure
+ * @fw_loader: managing structure for loading device's FW
+ *
+ * @return 0 on success, otherwise non-zero error code
+ */
+static int hl_fw_dynamic_read_and_validate_descriptor(struct hl_device *hdev,
+ struct fw_load_mgr *fw_loader)
+{
+ struct lkd_fw_comms_desc *fw_desc;
+ struct pci_mem_region *region;
+ struct fw_response *response;
+ enum pci_region region_id;
+ void __iomem *src;
+ int rc;
+
+ fw_desc = &fw_loader->dynamic_loader.comm_desc;
+ response = &fw_loader->dynamic_loader.response;
+
+ region_id = (response->ram_type == COMMS_SRAM) ?
+ PCI_REGION_SRAM : PCI_REGION_DRAM;
+
+ region = &hdev->pci_mem_region[region_id];
+
+ rc = hl_fw_dynamic_validate_response(hdev, response, region);
+ if (rc) {
+ dev_err(hdev->dev,
+ "invalid mem transfer request for FW descriptor\n");
+ return rc;
+ }
+
+ /*
+ * extract address to copy the descriptor from
+ * in addition, as the descriptor value is going to be over-ridden by new data- we mark it
+ * as invalid.
+ * it will be marked again as valid once validated
+ */
+ fw_loader->dynamic_loader.fw_desc_valid = false;
+ src = hdev->pcie_bar[region->bar_id] + region->offset_in_bar +
+ response->ram_offset;
+ memcpy_fromio(fw_desc, src, sizeof(struct lkd_fw_comms_desc));
+
+ return hl_fw_dynamic_validate_descriptor(hdev, fw_loader, fw_desc);
+}
+
+/**
+ * hl_fw_dynamic_request_descriptor - handshake with CPU to get FW descriptor
+ *
+ * @hdev: pointer to the habanalabs device structure
+ * @fw_loader: managing structure for loading device's FW
+ * @next_image_size: size to allocate for next FW component
+ *
+ * @return 0 on success, otherwise non-zero error code
+ */
+static int hl_fw_dynamic_request_descriptor(struct hl_device *hdev,
+ struct fw_load_mgr *fw_loader,
+ size_t next_image_size)
+{
+ int rc;
+
+ rc = hl_fw_dynamic_send_protocol_cmd(hdev, fw_loader, COMMS_PREP_DESC,
+ next_image_size, true,
+ fw_loader->cpu_timeout);
+ if (rc)
+ return rc;
+
+ return hl_fw_dynamic_read_and_validate_descriptor(hdev, fw_loader);
+}
+
+/**
+ * hl_fw_dynamic_read_device_fw_version - read FW version to exposed properties
+ *
+ * @hdev: pointer to the habanalabs device structure
+ * @fwc: the firmware component
+ * @fw_version: fw component's version string
+ */
+static int hl_fw_dynamic_read_device_fw_version(struct hl_device *hdev,
+ enum hl_fw_component fwc,
+ const char *fw_version)
+{
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ char *preboot_ver, *boot_ver;
+ char btl_ver[32];
+
+ switch (fwc) {
+ case FW_COMP_BOOT_FIT:
+ strscpy(prop->uboot_ver, fw_version, VERSION_MAX_LEN);
+ boot_ver = extract_fw_ver_from_str(prop->uboot_ver);
+ if (boot_ver) {
+ dev_info(hdev->dev, "boot-fit version %s\n", boot_ver);
+ kfree(boot_ver);
+ }
+
+ break;
+ case FW_COMP_PREBOOT:
+ strscpy(prop->preboot_ver, fw_version, VERSION_MAX_LEN);
+ preboot_ver = strnstr(prop->preboot_ver, "Preboot",
+ VERSION_MAX_LEN);
+ if (preboot_ver && preboot_ver != prop->preboot_ver) {
+ strscpy(btl_ver, prop->preboot_ver,
+ min((int) (preboot_ver - prop->preboot_ver), 31));
+ dev_info(hdev->dev, "%s\n", btl_ver);
+ }
+
+ preboot_ver = extract_fw_ver_from_str(prop->preboot_ver);
+ if (preboot_ver) {
+ int rc;
+
+ dev_info(hdev->dev, "preboot version %s\n", preboot_ver);
+
+ /* This function takes care of freeing preboot_ver */
+ rc = extract_fw_sub_versions(hdev, preboot_ver);
+ if (rc)
+ return rc;
+ }
+
+ break;
+ default:
+ dev_warn(hdev->dev, "Undefined FW component: %d\n", fwc);
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+/**
+ * hl_fw_dynamic_copy_image - copy image to memory allocated by the FW
+ *
+ * @hdev: pointer to the habanalabs device structure
+ * @fw: fw descriptor
+ * @fw_loader: managing structure for loading device's FW
+ */
+static int hl_fw_dynamic_copy_image(struct hl_device *hdev,
+ const struct firmware *fw,
+ struct fw_load_mgr *fw_loader)
+{
+ struct lkd_fw_comms_desc *fw_desc;
+ struct pci_mem_region *region;
+ void __iomem *dest;
+ u64 addr;
+ int rc;
+
+ fw_desc = &fw_loader->dynamic_loader.comm_desc;
+ addr = le64_to_cpu(fw_desc->img_addr);
+
+ /* find memory region to which to copy the image */
+ region = fw_loader->dynamic_loader.image_region;
+
+ dest = hdev->pcie_bar[region->bar_id] + region->offset_in_bar +
+ (addr - region->region_base);
+
+ rc = hl_fw_copy_fw_to_device(hdev, fw, dest,
+ fw_loader->boot_fit_img.src_off,
+ fw_loader->boot_fit_img.copy_size);
+
+ return rc;
+}
+
+/**
+ * hl_fw_dynamic_copy_msg - copy msg to memory allocated by the FW
+ *
+ * @hdev: pointer to the habanalabs device structure
+ * @msg: message
+ * @fw_loader: managing structure for loading device's FW
+ */
+static int hl_fw_dynamic_copy_msg(struct hl_device *hdev,
+ struct lkd_msg_comms *msg, struct fw_load_mgr *fw_loader)
+{
+ struct lkd_fw_comms_desc *fw_desc;
+ struct pci_mem_region *region;
+ void __iomem *dest;
+ u64 addr;
+ int rc;
+
+ fw_desc = &fw_loader->dynamic_loader.comm_desc;
+ addr = le64_to_cpu(fw_desc->img_addr);
+
+ /* find memory region to which to copy the image */
+ region = fw_loader->dynamic_loader.image_region;
+
+ dest = hdev->pcie_bar[region->bar_id] + region->offset_in_bar +
+ (addr - region->region_base);
+
+ rc = hl_fw_copy_msg_to_device(hdev, msg, dest, 0, 0);
+
+ return rc;
+}
+
+/**
+ * hl_fw_boot_fit_update_state - update internal data structures after boot-fit
+ * is loaded
+ *
+ * @hdev: pointer to the habanalabs device structure
+ * @cpu_boot_dev_sts0_reg: register holding CPU boot dev status 0
+ * @cpu_boot_dev_sts1_reg: register holding CPU boot dev status 1
+ *
+ * @return 0 on success, otherwise non-zero error code
+ */
+static void hl_fw_boot_fit_update_state(struct hl_device *hdev,
+ u32 cpu_boot_dev_sts0_reg,
+ u32 cpu_boot_dev_sts1_reg)
+{
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+
+ hdev->fw_loader.fw_comp_loaded |= FW_TYPE_BOOT_CPU;
+
+ /* Read boot_cpu status bits */
+ if (prop->fw_preboot_cpu_boot_dev_sts0 & CPU_BOOT_DEV_STS0_ENABLED) {
+ prop->fw_bootfit_cpu_boot_dev_sts0 =
+ RREG32(cpu_boot_dev_sts0_reg);
+
+ prop->hard_reset_done_by_fw = !!(prop->fw_bootfit_cpu_boot_dev_sts0 &
+ CPU_BOOT_DEV_STS0_FW_HARD_RST_EN);
+
+ dev_dbg(hdev->dev, "Firmware boot CPU status0 %#x\n",
+ prop->fw_bootfit_cpu_boot_dev_sts0);
+ }
+
+ if (prop->fw_cpu_boot_dev_sts1_valid) {
+ prop->fw_bootfit_cpu_boot_dev_sts1 =
+ RREG32(cpu_boot_dev_sts1_reg);
+
+ dev_dbg(hdev->dev, "Firmware boot CPU status1 %#x\n",
+ prop->fw_bootfit_cpu_boot_dev_sts1);
+ }
+
+ dev_dbg(hdev->dev, "Firmware boot CPU hard-reset is %s\n",
+ prop->hard_reset_done_by_fw ? "enabled" : "disabled");
+}
+
+static void hl_fw_dynamic_update_linux_interrupt_if(struct hl_device *hdev)
+{
+ struct cpu_dyn_regs *dyn_regs =
+ &hdev->fw_loader.dynamic_loader.comm_desc.cpu_dyn_regs;
+
+ /* Check whether all 3 interrupt interfaces are set, if not use a
+ * single interface
+ */
+ if (!hdev->asic_prop.gic_interrupts_enable &&
+ !(hdev->asic_prop.fw_app_cpu_boot_dev_sts0 &
+ CPU_BOOT_DEV_STS0_MULTI_IRQ_POLL_EN)) {
+ dyn_regs->gic_host_halt_irq = dyn_regs->gic_host_pi_upd_irq;
+ dyn_regs->gic_host_ints_irq = dyn_regs->gic_host_pi_upd_irq;
+
+ dev_warn(hdev->dev,
+ "Using a single interrupt interface towards cpucp");
+ }
+}
+/**
+ * hl_fw_dynamic_load_image - load FW image using dynamic protocol
+ *
+ * @hdev: pointer to the habanalabs device structure
+ * @fw_loader: managing structure for loading device's FW
+ * @load_fwc: the FW component to be loaded
+ * @img_ld_timeout: image load timeout
+ *
+ * @return 0 on success, otherwise non-zero error code
+ */
+static int hl_fw_dynamic_load_image(struct hl_device *hdev,
+ struct fw_load_mgr *fw_loader,
+ enum hl_fw_component load_fwc,
+ u32 img_ld_timeout)
+{
+ enum hl_fw_component cur_fwc;
+ const struct firmware *fw;
+ char *fw_name;
+ int rc = 0;
+
+ /*
+ * when loading image we have one of 2 scenarios:
+ * 1. current FW component is preboot and we want to load boot-fit
+ * 2. current FW component is boot-fit and we want to load linux
+ */
+ if (load_fwc == FW_COMP_BOOT_FIT) {
+ cur_fwc = FW_COMP_PREBOOT;
+ fw_name = fw_loader->boot_fit_img.image_name;
+ } else {
+ cur_fwc = FW_COMP_BOOT_FIT;
+ fw_name = fw_loader->linux_img.image_name;
+ }
+
+ /* request FW in order to communicate to FW the size to be allocated */
+ rc = hl_request_fw(hdev, &fw, fw_name);
+ if (rc)
+ return rc;
+
+ /* store the image size for future validation */
+ fw_loader->dynamic_loader.fw_image_size = fw->size;
+
+ rc = hl_fw_dynamic_request_descriptor(hdev, fw_loader, fw->size);
+ if (rc)
+ goto release_fw;
+
+ /* read preboot version */
+ rc = hl_fw_dynamic_read_device_fw_version(hdev, cur_fwc,
+ fw_loader->dynamic_loader.comm_desc.cur_fw_ver);
+ if (rc)
+ goto release_fw;
+
+ /* update state according to boot stage */
+ if (cur_fwc == FW_COMP_BOOT_FIT) {
+ struct cpu_dyn_regs *dyn_regs;
+
+ dyn_regs = &fw_loader->dynamic_loader.comm_desc.cpu_dyn_regs;
+ hl_fw_boot_fit_update_state(hdev,
+ le32_to_cpu(dyn_regs->cpu_boot_dev_sts0),
+ le32_to_cpu(dyn_regs->cpu_boot_dev_sts1));
+ }
+
+ /* copy boot fit to space allocated by FW */
+ rc = hl_fw_dynamic_copy_image(hdev, fw, fw_loader);
+ if (rc)
+ goto release_fw;
+
+ rc = hl_fw_dynamic_send_protocol_cmd(hdev, fw_loader, COMMS_DATA_RDY,
+ 0, true,
+ fw_loader->cpu_timeout);
+ if (rc)
+ goto release_fw;
+
+ rc = hl_fw_dynamic_send_protocol_cmd(hdev, fw_loader, COMMS_EXEC,
+ 0, false,
+ img_ld_timeout);
+
+release_fw:
+ hl_release_firmware(fw);
+ return rc;
+}
+
+static int hl_fw_dynamic_wait_for_boot_fit_active(struct hl_device *hdev,
+ struct fw_load_mgr *fw_loader)
+{
+ struct dynamic_fw_load_mgr *dyn_loader;
+ u32 status;
+ int rc;
+
+ dyn_loader = &fw_loader->dynamic_loader;
+
+ /*
+ * Make sure CPU boot-loader is running
+ * Note that the CPU_BOOT_STATUS_SRAM_AVAIL is generally set by Linux
+ * yet there is a debug scenario in which we loading uboot (without Linux)
+ * which at later stage is relocated to DRAM. In this case we expect
+ * uboot to set the CPU_BOOT_STATUS_SRAM_AVAIL and so we add it to the
+ * poll flags
+ */
+ rc = hl_poll_timeout(
+ hdev,
+ le32_to_cpu(dyn_loader->comm_desc.cpu_dyn_regs.cpu_boot_status),
+ status,
+ (status == CPU_BOOT_STATUS_READY_TO_BOOT) ||
+ (status == CPU_BOOT_STATUS_SRAM_AVAIL),
+ hdev->fw_poll_interval_usec,
+ dyn_loader->wait_for_bl_timeout);
+ if (rc) {
+ dev_err(hdev->dev, "failed to wait for boot\n");
+ return rc;
+ }
+
+ dev_dbg(hdev->dev, "uboot status = %d\n", status);
+ return 0;
+}
+
+static int hl_fw_dynamic_wait_for_linux_active(struct hl_device *hdev,
+ struct fw_load_mgr *fw_loader)
+{
+ struct dynamic_fw_load_mgr *dyn_loader;
+ u32 status;
+ int rc;
+
+ dyn_loader = &fw_loader->dynamic_loader;
+
+ /* Make sure CPU linux is running */
+
+ rc = hl_poll_timeout(
+ hdev,
+ le32_to_cpu(dyn_loader->comm_desc.cpu_dyn_regs.cpu_boot_status),
+ status,
+ (status == CPU_BOOT_STATUS_SRAM_AVAIL),
+ hdev->fw_poll_interval_usec,
+ fw_loader->cpu_timeout);
+ if (rc) {
+ dev_err(hdev->dev, "failed to wait for Linux\n");
+ return rc;
+ }
+
+ dev_dbg(hdev->dev, "Boot status = %d\n", status);
+ return 0;
+}
+
+/**
+ * hl_fw_linux_update_state - update internal data structures after Linux
+ * is loaded.
+ * Note: Linux initialization is comprised mainly
+ * of two stages - loading kernel (SRAM_AVAIL)
+ * & loading ARMCP.
+ * Therefore reading boot device status in any of
+ * these stages might result in different values.
+ *
+ * @hdev: pointer to the habanalabs device structure
+ * @cpu_boot_dev_sts0_reg: register holding CPU boot dev status 0
+ * @cpu_boot_dev_sts1_reg: register holding CPU boot dev status 1
+ *
+ * @return 0 on success, otherwise non-zero error code
+ */
+static void hl_fw_linux_update_state(struct hl_device *hdev,
+ u32 cpu_boot_dev_sts0_reg,
+ u32 cpu_boot_dev_sts1_reg)
+{
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+
+ hdev->fw_loader.fw_comp_loaded |= FW_TYPE_LINUX;
+
+ /* Read FW application security bits */
+ if (prop->fw_cpu_boot_dev_sts0_valid) {
+ prop->fw_app_cpu_boot_dev_sts0 = RREG32(cpu_boot_dev_sts0_reg);
+
+ prop->hard_reset_done_by_fw = !!(prop->fw_app_cpu_boot_dev_sts0 &
+ CPU_BOOT_DEV_STS0_FW_HARD_RST_EN);
+
+ if (prop->fw_app_cpu_boot_dev_sts0 &
+ CPU_BOOT_DEV_STS0_GIC_PRIVILEGED_EN)
+ prop->gic_interrupts_enable = false;
+
+ dev_dbg(hdev->dev,
+ "Firmware application CPU status0 %#x\n",
+ prop->fw_app_cpu_boot_dev_sts0);
+
+ dev_dbg(hdev->dev, "GIC controller is %s\n",
+ prop->gic_interrupts_enable ?
+ "enabled" : "disabled");
+ }
+
+ if (prop->fw_cpu_boot_dev_sts1_valid) {
+ prop->fw_app_cpu_boot_dev_sts1 = RREG32(cpu_boot_dev_sts1_reg);
+
+ dev_dbg(hdev->dev,
+ "Firmware application CPU status1 %#x\n",
+ prop->fw_app_cpu_boot_dev_sts1);
+ }
+
+ dev_dbg(hdev->dev, "Firmware application CPU hard-reset is %s\n",
+ prop->hard_reset_done_by_fw ? "enabled" : "disabled");
+
+ dev_info(hdev->dev, "Successfully loaded firmware to device\n");
+}
+
+/**
+ * hl_fw_dynamic_send_msg - send a COMMS message with attached data
+ *
+ * @hdev: pointer to the habanalabs device structure
+ * @fw_loader: managing structure for loading device's FW
+ * @msg_type: message type
+ * @data: data to be sent
+ *
+ * @return 0 on success, otherwise non-zero error code
+ */
+static int hl_fw_dynamic_send_msg(struct hl_device *hdev,
+ struct fw_load_mgr *fw_loader, u8 msg_type, void *data)
+{
+ struct lkd_msg_comms msg;
+ int rc;
+
+ memset(&msg, 0, sizeof(msg));
+
+ /* create message to be sent */
+ msg.header.type = msg_type;
+ msg.header.size = cpu_to_le16(sizeof(struct comms_msg_header));
+ msg.header.magic = cpu_to_le32(HL_COMMS_MSG_MAGIC);
+
+ switch (msg_type) {
+ case HL_COMMS_RESET_CAUSE_TYPE:
+ msg.reset_cause = *(__u8 *) data;
+ break;
+
+ default:
+ dev_err(hdev->dev,
+ "Send COMMS message - invalid message type %u\n",
+ msg_type);
+ return -EINVAL;
+ }
+
+ rc = hl_fw_dynamic_request_descriptor(hdev, fw_loader,
+ sizeof(struct lkd_msg_comms));
+ if (rc)
+ return rc;
+
+ /* copy message to space allocated by FW */
+ rc = hl_fw_dynamic_copy_msg(hdev, &msg, fw_loader);
+ if (rc)
+ return rc;
+
+ rc = hl_fw_dynamic_send_protocol_cmd(hdev, fw_loader, COMMS_DATA_RDY,
+ 0, true,
+ fw_loader->cpu_timeout);
+ if (rc)
+ return rc;
+
+ rc = hl_fw_dynamic_send_protocol_cmd(hdev, fw_loader, COMMS_EXEC,
+ 0, true,
+ fw_loader->cpu_timeout);
+ if (rc)
+ return rc;
+
+ return 0;
+}
+
+/**
+ * hl_fw_dynamic_init_cpu - initialize the device CPU using dynamic protocol
+ *
+ * @hdev: pointer to the habanalabs device structure
+ * @fw_loader: managing structure for loading device's FW
+ *
+ * @return 0 on success, otherwise non-zero error code
+ *
+ * brief: the dynamic protocol is master (LKD) slave (FW CPU) protocol.
+ * the communication is done using registers:
+ * - LKD command register
+ * - FW status register
+ * the protocol is race free. this goal is achieved by splitting the requests
+ * and response to known synchronization points between the LKD and the FW.
+ * each response to LKD request is known and bound to a predefined timeout.
+ * in case of timeout expiration without the desired status from FW- the
+ * protocol (and hence the boot) will fail.
+ */
+static int hl_fw_dynamic_init_cpu(struct hl_device *hdev,
+ struct fw_load_mgr *fw_loader)
+{
+ struct cpu_dyn_regs *dyn_regs;
+ int rc;
+
+ dev_info(hdev->dev,
+ "Loading %sfirmware to device, may take some time...\n",
+ hdev->asic_prop.fw_security_enabled ? "secured " : "");
+
+ /* initialize FW descriptor as invalid */
+ fw_loader->dynamic_loader.fw_desc_valid = false;
+
+ /*
+ * In this stage, "cpu_dyn_regs" contains only LKD's hard coded values!
+ * It will be updated from FW after hl_fw_dynamic_request_descriptor().
+ */
+ dyn_regs = &fw_loader->dynamic_loader.comm_desc.cpu_dyn_regs;
+
+ rc = hl_fw_dynamic_send_protocol_cmd(hdev, fw_loader, COMMS_RST_STATE,
+ 0, true,
+ fw_loader->cpu_timeout);
+ if (rc)
+ goto protocol_err;
+
+ if (hdev->reset_info.curr_reset_cause) {
+ rc = hl_fw_dynamic_send_msg(hdev, fw_loader,
+ HL_COMMS_RESET_CAUSE_TYPE, &hdev->reset_info.curr_reset_cause);
+ if (rc)
+ goto protocol_err;
+
+ /* Clear current reset cause */
+ hdev->reset_info.curr_reset_cause = HL_RESET_CAUSE_UNKNOWN;
+ }
+
+ if (!(hdev->fw_components & FW_TYPE_BOOT_CPU)) {
+ rc = hl_fw_dynamic_request_descriptor(hdev, fw_loader, 0);
+ if (rc)
+ goto protocol_err;
+
+ /* read preboot version */
+ return hl_fw_dynamic_read_device_fw_version(hdev, FW_COMP_PREBOOT,
+ fw_loader->dynamic_loader.comm_desc.cur_fw_ver);
+ }
+
+ /* load boot fit to FW */
+ rc = hl_fw_dynamic_load_image(hdev, fw_loader, FW_COMP_BOOT_FIT,
+ fw_loader->boot_fit_timeout);
+ if (rc) {
+ dev_err(hdev->dev, "failed to load boot fit\n");
+ goto protocol_err;
+ }
+
+ /*
+ * when testing FW load (without Linux) on PLDM we don't want to
+ * wait until boot fit is active as it may take several hours.
+ * instead, we load the bootfit and let it do all initialization in
+ * the background.
+ */
+ if (hdev->pldm && !(hdev->fw_components & FW_TYPE_LINUX))
+ return 0;
+
+ rc = hl_fw_dynamic_wait_for_boot_fit_active(hdev, fw_loader);
+ if (rc)
+ goto protocol_err;
+
+ /* Enable DRAM scrambling before Linux boot and after successful
+ * UBoot
+ */
+ hdev->asic_funcs->init_cpu_scrambler_dram(hdev);
+
+ if (!(hdev->fw_components & FW_TYPE_LINUX)) {
+ dev_info(hdev->dev, "Skip loading Linux F/W\n");
+ return 0;
+ }
+
+ if (fw_loader->skip_bmc) {
+ rc = hl_fw_dynamic_send_protocol_cmd(hdev, fw_loader,
+ COMMS_SKIP_BMC, 0,
+ true,
+ fw_loader->cpu_timeout);
+ if (rc) {
+ dev_err(hdev->dev, "failed to load boot fit\n");
+ goto protocol_err;
+ }
+ }
+
+ /* load Linux image to FW */
+ rc = hl_fw_dynamic_load_image(hdev, fw_loader, FW_COMP_LINUX,
+ fw_loader->cpu_timeout);
+ if (rc) {
+ dev_err(hdev->dev, "failed to load Linux\n");
+ goto protocol_err;
+ }
+
+ rc = hl_fw_dynamic_wait_for_linux_active(hdev, fw_loader);
+ if (rc)
+ goto protocol_err;
+
+ hl_fw_linux_update_state(hdev, le32_to_cpu(dyn_regs->cpu_boot_dev_sts0),
+ le32_to_cpu(dyn_regs->cpu_boot_dev_sts1));
+
+ hl_fw_dynamic_update_linux_interrupt_if(hdev);
+
+ return 0;
+
+protocol_err:
+ if (fw_loader->dynamic_loader.fw_desc_valid)
+ fw_read_errors(hdev, le32_to_cpu(dyn_regs->cpu_boot_err0),
+ le32_to_cpu(dyn_regs->cpu_boot_err1),
+ le32_to_cpu(dyn_regs->cpu_boot_dev_sts0),
+ le32_to_cpu(dyn_regs->cpu_boot_dev_sts1));
+ return rc;
+}
+
+/**
+ * hl_fw_static_init_cpu - initialize the device CPU using static protocol
+ *
+ * @hdev: pointer to the habanalabs device structure
+ * @fw_loader: managing structure for loading device's FW
+ *
+ * @return 0 on success, otherwise non-zero error code
+ */
+static int hl_fw_static_init_cpu(struct hl_device *hdev,
+ struct fw_load_mgr *fw_loader)
+{
+ u32 cpu_msg_status_reg, cpu_timeout, msg_to_cpu_reg, status;
+ u32 cpu_boot_dev_status0_reg, cpu_boot_dev_status1_reg;
+ struct static_fw_load_mgr *static_loader;
+ u32 cpu_boot_status_reg;
+ int rc;
+
+ if (!(hdev->fw_components & FW_TYPE_BOOT_CPU))
+ return 0;
+
+ /* init common loader parameters */
+ cpu_timeout = fw_loader->cpu_timeout;
+
+ /* init static loader parameters */
+ static_loader = &fw_loader->static_loader;
+ cpu_msg_status_reg = static_loader->cpu_cmd_status_to_host_reg;
+ msg_to_cpu_reg = static_loader->kmd_msg_to_cpu_reg;
+ cpu_boot_dev_status0_reg = static_loader->cpu_boot_dev_status0_reg;
+ cpu_boot_dev_status1_reg = static_loader->cpu_boot_dev_status1_reg;
+ cpu_boot_status_reg = static_loader->cpu_boot_status_reg;
+
+ dev_info(hdev->dev, "Going to wait for device boot (up to %lds)\n",
+ cpu_timeout / USEC_PER_SEC);
+
+ /* Wait for boot FIT request */
+ rc = hl_poll_timeout(
+ hdev,
+ cpu_boot_status_reg,
+ status,
+ status == CPU_BOOT_STATUS_WAITING_FOR_BOOT_FIT,
+ hdev->fw_poll_interval_usec,
+ fw_loader->boot_fit_timeout);
+
+ if (rc) {
+ dev_dbg(hdev->dev,
+ "No boot fit request received, resuming boot\n");
+ } else {
+ rc = hdev->asic_funcs->load_boot_fit_to_device(hdev);
+ if (rc)
+ goto out;
+
+ /* Clear device CPU message status */
+ WREG32(cpu_msg_status_reg, CPU_MSG_CLR);
+
+ /* Signal device CPU that boot loader is ready */
+ WREG32(msg_to_cpu_reg, KMD_MSG_FIT_RDY);
+
+ /* Poll for CPU device ack */
+ rc = hl_poll_timeout(
+ hdev,
+ cpu_msg_status_reg,
+ status,
+ status == CPU_MSG_OK,
+ hdev->fw_poll_interval_usec,
+ fw_loader->boot_fit_timeout);
+
+ if (rc) {
+ dev_err(hdev->dev,
+ "Timeout waiting for boot fit load ack\n");
+ goto out;
+ }
+
+ /* Clear message */
+ WREG32(msg_to_cpu_reg, KMD_MSG_NA);
+ }
+
+ /*
+ * Make sure CPU boot-loader is running
+ * Note that the CPU_BOOT_STATUS_SRAM_AVAIL is generally set by Linux
+ * yet there is a debug scenario in which we loading uboot (without Linux)
+ * which at later stage is relocated to DRAM. In this case we expect
+ * uboot to set the CPU_BOOT_STATUS_SRAM_AVAIL and so we add it to the
+ * poll flags
+ */
+ rc = hl_poll_timeout(
+ hdev,
+ cpu_boot_status_reg,
+ status,
+ (status == CPU_BOOT_STATUS_DRAM_RDY) ||
+ (status == CPU_BOOT_STATUS_NIC_FW_RDY) ||
+ (status == CPU_BOOT_STATUS_READY_TO_BOOT) ||
+ (status == CPU_BOOT_STATUS_SRAM_AVAIL),
+ hdev->fw_poll_interval_usec,
+ cpu_timeout);
+
+ dev_dbg(hdev->dev, "uboot status = %d\n", status);
+
+ /* Read U-Boot version now in case we will later fail */
+ hl_fw_static_read_device_fw_version(hdev, FW_COMP_BOOT_FIT);
+
+ /* update state according to boot stage */
+ hl_fw_boot_fit_update_state(hdev, cpu_boot_dev_status0_reg,
+ cpu_boot_dev_status1_reg);
+
+ if (rc) {
+ detect_cpu_boot_status(hdev, status);
+ rc = -EIO;
+ goto out;
+ }
+
+ /* Enable DRAM scrambling before Linux boot and after successful
+ * UBoot
+ */
+ hdev->asic_funcs->init_cpu_scrambler_dram(hdev);
+
+ if (!(hdev->fw_components & FW_TYPE_LINUX)) {
+ dev_info(hdev->dev, "Skip loading Linux F/W\n");
+ rc = 0;
+ goto out;
+ }
+
+ if (status == CPU_BOOT_STATUS_SRAM_AVAIL) {
+ rc = 0;
+ goto out;
+ }
+
+ dev_info(hdev->dev,
+ "Loading firmware to device, may take some time...\n");
+
+ rc = hdev->asic_funcs->load_firmware_to_device(hdev);
+ if (rc)
+ goto out;
+
+ if (fw_loader->skip_bmc) {
+ WREG32(msg_to_cpu_reg, KMD_MSG_SKIP_BMC);
+
+ rc = hl_poll_timeout(
+ hdev,
+ cpu_boot_status_reg,
+ status,
+ (status == CPU_BOOT_STATUS_BMC_WAITING_SKIPPED),
+ hdev->fw_poll_interval_usec,
+ cpu_timeout);
+
+ if (rc) {
+ dev_err(hdev->dev,
+ "Failed to get ACK on skipping BMC, %d\n",
+ status);
+ WREG32(msg_to_cpu_reg, KMD_MSG_NA);
+ rc = -EIO;
+ goto out;
+ }
+ }
+
+ WREG32(msg_to_cpu_reg, KMD_MSG_FIT_RDY);
+
+ rc = hl_poll_timeout(
+ hdev,
+ cpu_boot_status_reg,
+ status,
+ (status == CPU_BOOT_STATUS_SRAM_AVAIL),
+ hdev->fw_poll_interval_usec,
+ cpu_timeout);
+
+ /* Clear message */
+ WREG32(msg_to_cpu_reg, KMD_MSG_NA);
+
+ if (rc) {
+ if (status == CPU_BOOT_STATUS_FIT_CORRUPTED)
+ dev_err(hdev->dev,
+ "Device reports FIT image is corrupted\n");
+ else
+ dev_err(hdev->dev,
+ "Failed to load firmware to device, %d\n",
+ status);
+
+ rc = -EIO;
+ goto out;
+ }
+
+ rc = fw_read_errors(hdev, fw_loader->static_loader.boot_err0_reg,
+ fw_loader->static_loader.boot_err1_reg,
+ cpu_boot_dev_status0_reg,
+ cpu_boot_dev_status1_reg);
+ if (rc)
+ return rc;
+
+ hl_fw_linux_update_state(hdev, cpu_boot_dev_status0_reg,
+ cpu_boot_dev_status1_reg);
+
+ return 0;
+
+out:
+ fw_read_errors(hdev, fw_loader->static_loader.boot_err0_reg,
+ fw_loader->static_loader.boot_err1_reg,
+ cpu_boot_dev_status0_reg,
+ cpu_boot_dev_status1_reg);
+
+ return rc;
+}
+
+/**
+ * hl_fw_init_cpu - initialize the device CPU
+ *
+ * @hdev: pointer to the habanalabs device structure
+ *
+ * @return 0 on success, otherwise non-zero error code
+ *
+ * perform necessary initializations for device's CPU. takes into account if
+ * init protocol is static or dynamic.
+ */
+int hl_fw_init_cpu(struct hl_device *hdev)
+{
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ struct fw_load_mgr *fw_loader = &hdev->fw_loader;
+
+ return prop->dynamic_fw_load ?
+ hl_fw_dynamic_init_cpu(hdev, fw_loader) :
+ hl_fw_static_init_cpu(hdev, fw_loader);
+}
+
+void hl_fw_set_pll_profile(struct hl_device *hdev)
+{
+ hl_fw_set_frequency(hdev, hdev->asic_prop.clk_pll_index,
+ hdev->asic_prop.max_freq_value);
+}
+
+int hl_fw_get_clk_rate(struct hl_device *hdev, u32 *cur_clk, u32 *max_clk)
+{
+ long value;
+
+ if (!hl_device_operational(hdev, NULL))
+ return -ENODEV;
+
+ if (!hdev->pdev) {
+ *cur_clk = 0;
+ *max_clk = 0;
+ return 0;
+ }
+
+ value = hl_fw_get_frequency(hdev, hdev->asic_prop.clk_pll_index, false);
+
+ if (value < 0) {
+ dev_err(hdev->dev, "Failed to retrieve device max clock %ld\n", value);
+ return value;
+ }
+
+ *max_clk = (value / 1000 / 1000);
+
+ value = hl_fw_get_frequency(hdev, hdev->asic_prop.clk_pll_index, true);
+
+ if (value < 0) {
+ dev_err(hdev->dev, "Failed to retrieve device current clock %ld\n", value);
+ return value;
+ }
+
+ *cur_clk = (value / 1000 / 1000);
+
+ return 0;
+}
+
+long hl_fw_get_frequency(struct hl_device *hdev, u32 pll_index, bool curr)
+{
+ struct cpucp_packet pkt;
+ u32 used_pll_idx;
+ u64 result;
+ int rc;
+
+ rc = get_used_pll_index(hdev, pll_index, &used_pll_idx);
+ if (rc)
+ return rc;
+
+ memset(&pkt, 0, sizeof(pkt));
+
+ if (curr)
+ pkt.ctl = cpu_to_le32(CPUCP_PACKET_FREQUENCY_CURR_GET <<
+ CPUCP_PKT_CTL_OPCODE_SHIFT);
+ else
+ pkt.ctl = cpu_to_le32(CPUCP_PACKET_FREQUENCY_GET << CPUCP_PKT_CTL_OPCODE_SHIFT);
+
+ pkt.pll_index = cpu_to_le32((u32)used_pll_idx);
+
+ rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 0, &result);
+
+ if (rc) {
+ dev_err(hdev->dev, "Failed to get frequency of PLL %d, error %d\n",
+ used_pll_idx, rc);
+ return rc;
+ }
+
+ return (long) result;
+}
+
+void hl_fw_set_frequency(struct hl_device *hdev, u32 pll_index, u64 freq)
+{
+ struct cpucp_packet pkt;
+ u32 used_pll_idx;
+ int rc;
+
+ rc = get_used_pll_index(hdev, pll_index, &used_pll_idx);
+ if (rc)
+ return;
+
+ memset(&pkt, 0, sizeof(pkt));
+
+ pkt.ctl = cpu_to_le32(CPUCP_PACKET_FREQUENCY_SET << CPUCP_PKT_CTL_OPCODE_SHIFT);
+ pkt.pll_index = cpu_to_le32((u32)used_pll_idx);
+ pkt.value = cpu_to_le64(freq);
+
+ rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 0, NULL);
+
+ if (rc)
+ dev_err(hdev->dev, "Failed to set frequency to PLL %d, error %d\n",
+ used_pll_idx, rc);
+}
+
+long hl_fw_get_max_power(struct hl_device *hdev)
+{
+ struct cpucp_packet pkt;
+ u64 result;
+ int rc;
+
+ memset(&pkt, 0, sizeof(pkt));
+
+ pkt.ctl = cpu_to_le32(CPUCP_PACKET_MAX_POWER_GET << CPUCP_PKT_CTL_OPCODE_SHIFT);
+
+ rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 0, &result);
+
+ if (rc) {
+ dev_err(hdev->dev, "Failed to get max power, error %d\n", rc);
+ return rc;
+ }
+
+ return result;
+}
+
+void hl_fw_set_max_power(struct hl_device *hdev)
+{
+ struct cpucp_packet pkt;
+ int rc;
+
+ /* TODO: remove this after simulator supports this packet */
+ if (!hdev->pdev)
+ return;
+
+ memset(&pkt, 0, sizeof(pkt));
+
+ pkt.ctl = cpu_to_le32(CPUCP_PACKET_MAX_POWER_SET << CPUCP_PKT_CTL_OPCODE_SHIFT);
+ pkt.value = cpu_to_le64(hdev->max_power);
+
+ rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 0, NULL);
+
+ if (rc)
+ dev_err(hdev->dev, "Failed to set max power, error %d\n", rc);
+}
+
+static int hl_fw_get_sec_attest_data(struct hl_device *hdev, u32 packet_id, void *data, u32 size,
+ u32 nonce, u32 timeout)
+{
+ struct cpucp_packet pkt = {};
+ dma_addr_t req_dma_addr;
+ void *req_cpu_addr;
+ int rc;
+
+ req_cpu_addr = hl_cpu_accessible_dma_pool_alloc(hdev, size, &req_dma_addr);
+ if (!req_cpu_addr) {
+ dev_err(hdev->dev,
+ "Failed to allocate DMA memory for CPU-CP packet %u\n", packet_id);
+ return -ENOMEM;
+ }
+
+ memset(data, 0, size);
+
+ pkt.ctl = cpu_to_le32(packet_id << CPUCP_PKT_CTL_OPCODE_SHIFT);
+ pkt.addr = cpu_to_le64(req_dma_addr);
+ pkt.data_max_size = cpu_to_le32(size);
+ pkt.nonce = cpu_to_le32(nonce);
+
+ rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
+ timeout, NULL);
+ if (rc) {
+ dev_err(hdev->dev,
+ "Failed to handle CPU-CP pkt %u, error %d\n", packet_id, rc);
+ goto out;
+ }
+
+ memcpy(data, req_cpu_addr, size);
+
+out:
+ hl_cpu_accessible_dma_pool_free(hdev, size, req_cpu_addr);
+
+ return rc;
+}
+
+int hl_fw_get_sec_attest_info(struct hl_device *hdev, struct cpucp_sec_attest_info *sec_attest_info,
+ u32 nonce)
+{
+ return hl_fw_get_sec_attest_data(hdev, CPUCP_PACKET_SEC_ATTEST_GET, sec_attest_info,
+ sizeof(struct cpucp_sec_attest_info), nonce,
+ HL_CPUCP_SEC_ATTEST_INFO_TINEOUT_USEC);
+}