summaryrefslogtreecommitdiffstats
path: root/drivers/misc/habanalabs/common/memory.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:49:45 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:49:45 +0000
commit2c3c1048746a4622d8c89a29670120dc8fab93c4 (patch)
tree848558de17fb3008cdf4d861b01ac7781903ce39 /drivers/misc/habanalabs/common/memory.c
parentInitial commit. (diff)
downloadlinux-2c3c1048746a4622d8c89a29670120dc8fab93c4.tar.xz
linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.zip
Adding upstream version 6.1.76.upstream/6.1.76
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'drivers/misc/habanalabs/common/memory.c')
-rw-r--r--drivers/misc/habanalabs/common/memory.c2932
1 files changed, 2932 insertions, 0 deletions
diff --git a/drivers/misc/habanalabs/common/memory.c b/drivers/misc/habanalabs/common/memory.c
new file mode 100644
index 000000000..a49038da3
--- /dev/null
+++ b/drivers/misc/habanalabs/common/memory.c
@@ -0,0 +1,2932 @@
+// SPDX-License-Identifier: GPL-2.0
+
+/*
+ * Copyright 2016-2022 HabanaLabs, Ltd.
+ * All Rights Reserved.
+ */
+
+#include <uapi/misc/habanalabs.h>
+#include "habanalabs.h"
+#include "../include/hw_ip/mmu/mmu_general.h"
+
+#include <linux/uaccess.h>
+#include <linux/slab.h>
+#include <linux/vmalloc.h>
+#include <linux/pci-p2pdma.h>
+
+MODULE_IMPORT_NS(DMA_BUF);
+
+#define HL_MMU_DEBUG 0
+
+/* use small pages for supporting non-pow2 (32M/40M/48M) DRAM phys page sizes */
+#define DRAM_POOL_PAGE_SIZE SZ_8M
+
+static int allocate_timestamps_buffers(struct hl_fpriv *hpriv,
+ struct hl_mem_in *args, u64 *handle);
+
+static int set_alloc_page_size(struct hl_device *hdev, struct hl_mem_in *args, u32 *page_size)
+{
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ u64 psize;
+
+ /*
+ * for ASIC that supports setting the allocation page size by user we will address
+ * user's choice only if it is not 0 (as 0 means taking the default page size)
+ */
+ if (prop->supports_user_set_page_size && args->alloc.page_size) {
+ psize = args->alloc.page_size;
+
+ if (!is_power_of_2(psize)) {
+ dev_err(hdev->dev, "user page size (%#llx) is not power of 2\n", psize);
+ return -EINVAL;
+ }
+ } else {
+ psize = prop->device_mem_alloc_default_page_size;
+ }
+
+ *page_size = psize;
+
+ return 0;
+}
+
+/*
+ * The va ranges in context object contain a list with the available chunks of
+ * device virtual memory.
+ * There is one range for host allocations and one for DRAM allocations.
+ *
+ * On initialization each range contains one chunk of all of its available
+ * virtual range which is a half of the total device virtual range.
+ *
+ * On each mapping of physical pages, a suitable virtual range chunk (with a
+ * minimum size) is selected from the list. If the chunk size equals the
+ * requested size, the chunk is returned. Otherwise, the chunk is split into
+ * two chunks - one to return as result and a remainder to stay in the list.
+ *
+ * On each Unmapping of a virtual address, the relevant virtual chunk is
+ * returned to the list. The chunk is added to the list and if its edges match
+ * the edges of the adjacent chunks (means a contiguous chunk can be created),
+ * the chunks are merged.
+ *
+ * On finish, the list is checked to have only one chunk of all the relevant
+ * virtual range (which is a half of the device total virtual range).
+ * If not (means not all mappings were unmapped), a warning is printed.
+ */
+
+/*
+ * alloc_device_memory() - allocate device memory.
+ * @ctx: pointer to the context structure.
+ * @args: host parameters containing the requested size.
+ * @ret_handle: result handle.
+ *
+ * This function does the following:
+ * - Allocate the requested size rounded up to 'dram_page_size' pages.
+ * - Return unique handle for later map/unmap/free.
+ */
+static int alloc_device_memory(struct hl_ctx *ctx, struct hl_mem_in *args,
+ u32 *ret_handle)
+{
+ struct hl_device *hdev = ctx->hdev;
+ struct hl_vm *vm = &hdev->vm;
+ struct hl_vm_phys_pg_pack *phys_pg_pack;
+ u64 paddr = 0, total_size, num_pgs, i;
+ u32 num_curr_pgs, page_size;
+ bool contiguous;
+ int handle, rc;
+
+ num_curr_pgs = 0;
+
+ rc = set_alloc_page_size(hdev, args, &page_size);
+ if (rc)
+ return rc;
+
+ num_pgs = DIV_ROUND_UP_ULL(args->alloc.mem_size, page_size);
+ total_size = num_pgs * page_size;
+
+ if (!total_size) {
+ dev_err(hdev->dev, "Cannot allocate 0 bytes\n");
+ return -EINVAL;
+ }
+
+ contiguous = args->flags & HL_MEM_CONTIGUOUS;
+
+ if (contiguous) {
+ if (is_power_of_2(page_size))
+ paddr = (uintptr_t) gen_pool_dma_alloc_align(vm->dram_pg_pool,
+ total_size, NULL, page_size);
+ else
+ paddr = gen_pool_alloc(vm->dram_pg_pool, total_size);
+ if (!paddr) {
+ dev_err(hdev->dev,
+ "Cannot allocate %llu contiguous pages with total size of %llu\n",
+ num_pgs, total_size);
+ return -ENOMEM;
+ }
+ }
+
+ phys_pg_pack = kzalloc(sizeof(*phys_pg_pack), GFP_KERNEL);
+ if (!phys_pg_pack) {
+ rc = -ENOMEM;
+ goto pages_pack_err;
+ }
+
+ phys_pg_pack->vm_type = VM_TYPE_PHYS_PACK;
+ phys_pg_pack->asid = ctx->asid;
+ phys_pg_pack->npages = num_pgs;
+ phys_pg_pack->page_size = page_size;
+ phys_pg_pack->total_size = total_size;
+ phys_pg_pack->flags = args->flags;
+ phys_pg_pack->contiguous = contiguous;
+
+ phys_pg_pack->pages = kvmalloc_array(num_pgs, sizeof(u64), GFP_KERNEL);
+ if (ZERO_OR_NULL_PTR(phys_pg_pack->pages)) {
+ rc = -ENOMEM;
+ goto pages_arr_err;
+ }
+
+ if (phys_pg_pack->contiguous) {
+ for (i = 0 ; i < num_pgs ; i++)
+ phys_pg_pack->pages[i] = paddr + i * page_size;
+ } else {
+ for (i = 0 ; i < num_pgs ; i++) {
+ if (is_power_of_2(page_size))
+ phys_pg_pack->pages[i] =
+ (uintptr_t)gen_pool_dma_alloc_align(vm->dram_pg_pool,
+ page_size, NULL,
+ page_size);
+ else
+ phys_pg_pack->pages[i] = gen_pool_alloc(vm->dram_pg_pool,
+ page_size);
+
+ if (!phys_pg_pack->pages[i]) {
+ dev_err(hdev->dev,
+ "Cannot allocate device memory (out of memory)\n");
+ rc = -ENOMEM;
+ goto page_err;
+ }
+
+ num_curr_pgs++;
+ }
+ }
+
+ spin_lock(&vm->idr_lock);
+ handle = idr_alloc(&vm->phys_pg_pack_handles, phys_pg_pack, 1, 0,
+ GFP_ATOMIC);
+ spin_unlock(&vm->idr_lock);
+
+ if (handle < 0) {
+ dev_err(hdev->dev, "Failed to get handle for page\n");
+ rc = -EFAULT;
+ goto idr_err;
+ }
+
+ for (i = 0 ; i < num_pgs ; i++)
+ kref_get(&vm->dram_pg_pool_refcount);
+
+ phys_pg_pack->handle = handle;
+
+ atomic64_add(phys_pg_pack->total_size, &ctx->dram_phys_mem);
+ atomic64_add(phys_pg_pack->total_size, &hdev->dram_used_mem);
+
+ *ret_handle = handle;
+
+ return 0;
+
+idr_err:
+page_err:
+ if (!phys_pg_pack->contiguous)
+ for (i = 0 ; i < num_curr_pgs ; i++)
+ gen_pool_free(vm->dram_pg_pool, phys_pg_pack->pages[i],
+ page_size);
+
+ kvfree(phys_pg_pack->pages);
+pages_arr_err:
+ kfree(phys_pg_pack);
+pages_pack_err:
+ if (contiguous)
+ gen_pool_free(vm->dram_pg_pool, paddr, total_size);
+
+ return rc;
+}
+
+/**
+ * dma_map_host_va() - DMA mapping of the given host virtual address.
+ * @hdev: habanalabs device structure.
+ * @addr: the host virtual address of the memory area.
+ * @size: the size of the memory area.
+ * @p_userptr: pointer to result userptr structure.
+ *
+ * This function does the following:
+ * - Allocate userptr structure.
+ * - Pin the given host memory using the userptr structure.
+ * - Perform DMA mapping to have the DMA addresses of the pages.
+ */
+static int dma_map_host_va(struct hl_device *hdev, u64 addr, u64 size,
+ struct hl_userptr **p_userptr)
+{
+ struct hl_userptr *userptr;
+ int rc;
+
+ userptr = kzalloc(sizeof(*userptr), GFP_KERNEL);
+ if (!userptr) {
+ rc = -ENOMEM;
+ goto userptr_err;
+ }
+
+ rc = hl_pin_host_memory(hdev, addr, size, userptr);
+ if (rc) {
+ dev_err(hdev->dev, "Failed to pin host memory\n");
+ goto pin_err;
+ }
+
+ userptr->dma_mapped = true;
+ userptr->dir = DMA_BIDIRECTIONAL;
+ userptr->vm_type = VM_TYPE_USERPTR;
+
+ *p_userptr = userptr;
+
+ rc = hdev->asic_funcs->asic_dma_map_sgtable(hdev, userptr->sgt, DMA_BIDIRECTIONAL);
+ if (rc) {
+ dev_err(hdev->dev, "failed to map sgt with DMA region\n");
+ goto dma_map_err;
+ }
+
+ return 0;
+
+dma_map_err:
+ hl_unpin_host_memory(hdev, userptr);
+pin_err:
+ kfree(userptr);
+userptr_err:
+
+ return rc;
+}
+
+/**
+ * dma_unmap_host_va() - DMA unmapping of the given host virtual address.
+ * @hdev: habanalabs device structure.
+ * @userptr: userptr to free.
+ *
+ * This function does the following:
+ * - Unpins the physical pages.
+ * - Frees the userptr structure.
+ */
+static void dma_unmap_host_va(struct hl_device *hdev,
+ struct hl_userptr *userptr)
+{
+ hl_unpin_host_memory(hdev, userptr);
+ kfree(userptr);
+}
+
+/**
+ * dram_pg_pool_do_release() - free DRAM pages pool
+ * @ref: pointer to reference object.
+ *
+ * This function does the following:
+ * - Frees the idr structure of physical pages handles.
+ * - Frees the generic pool of DRAM physical pages.
+ */
+static void dram_pg_pool_do_release(struct kref *ref)
+{
+ struct hl_vm *vm = container_of(ref, struct hl_vm,
+ dram_pg_pool_refcount);
+
+ /*
+ * free the idr here as only here we know for sure that there are no
+ * allocated physical pages and hence there are no handles in use
+ */
+ idr_destroy(&vm->phys_pg_pack_handles);
+ gen_pool_destroy(vm->dram_pg_pool);
+}
+
+/**
+ * free_phys_pg_pack() - free physical page pack.
+ * @hdev: habanalabs device structure.
+ * @phys_pg_pack: physical page pack to free.
+ *
+ * This function does the following:
+ * - For DRAM memory only
+ * - iterate over the pack, free each physical block structure by
+ * returning it to the general pool.
+ * - Free the hl_vm_phys_pg_pack structure.
+ */
+static void free_phys_pg_pack(struct hl_device *hdev,
+ struct hl_vm_phys_pg_pack *phys_pg_pack)
+{
+ struct hl_vm *vm = &hdev->vm;
+ u64 i;
+
+ if (phys_pg_pack->created_from_userptr)
+ goto end;
+
+ if (phys_pg_pack->contiguous) {
+ gen_pool_free(vm->dram_pg_pool, phys_pg_pack->pages[0],
+ phys_pg_pack->total_size);
+
+ for (i = 0; i < phys_pg_pack->npages ; i++)
+ kref_put(&vm->dram_pg_pool_refcount,
+ dram_pg_pool_do_release);
+ } else {
+ for (i = 0 ; i < phys_pg_pack->npages ; i++) {
+ gen_pool_free(vm->dram_pg_pool,
+ phys_pg_pack->pages[i],
+ phys_pg_pack->page_size);
+ kref_put(&vm->dram_pg_pool_refcount,
+ dram_pg_pool_do_release);
+ }
+ }
+
+end:
+ kvfree(phys_pg_pack->pages);
+ kfree(phys_pg_pack);
+
+ return;
+}
+
+/**
+ * free_device_memory() - free device memory.
+ * @ctx: pointer to the context structure.
+ * @args: host parameters containing the requested size.
+ *
+ * This function does the following:
+ * - Free the device memory related to the given handle.
+ */
+static int free_device_memory(struct hl_ctx *ctx, struct hl_mem_in *args)
+{
+ struct hl_device *hdev = ctx->hdev;
+ struct hl_vm *vm = &hdev->vm;
+ struct hl_vm_phys_pg_pack *phys_pg_pack;
+ u32 handle = args->free.handle;
+
+ spin_lock(&vm->idr_lock);
+ phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle);
+ if (!phys_pg_pack) {
+ spin_unlock(&vm->idr_lock);
+ dev_err(hdev->dev, "free device memory failed, no match for handle %u\n", handle);
+ return -EINVAL;
+ }
+
+ if (atomic_read(&phys_pg_pack->mapping_cnt) > 0) {
+ spin_unlock(&vm->idr_lock);
+ dev_err(hdev->dev, "handle %u is mapped, cannot free\n", handle);
+ return -EINVAL;
+ }
+
+ if (phys_pg_pack->exporting_cnt) {
+ spin_unlock(&vm->idr_lock);
+ dev_dbg(hdev->dev, "handle %u is exported, cannot free\n", handle);
+ return -EINVAL;
+ }
+
+ /* must remove from idr before the freeing of the physical pages as the refcount of the pool
+ * is also the trigger of the idr destroy
+ */
+ idr_remove(&vm->phys_pg_pack_handles, handle);
+ spin_unlock(&vm->idr_lock);
+
+ atomic64_sub(phys_pg_pack->total_size, &ctx->dram_phys_mem);
+ atomic64_sub(phys_pg_pack->total_size, &hdev->dram_used_mem);
+
+ free_phys_pg_pack(hdev, phys_pg_pack);
+
+ return 0;
+}
+
+/**
+ * clear_va_list_locked() - free virtual addresses list.
+ * @hdev: habanalabs device structure.
+ * @va_list: list of virtual addresses to free.
+ *
+ * This function does the following:
+ * - Iterate over the list and free each virtual addresses block.
+ *
+ * This function should be called only when va_list lock is taken.
+ */
+static void clear_va_list_locked(struct hl_device *hdev,
+ struct list_head *va_list)
+{
+ struct hl_vm_va_block *va_block, *tmp;
+
+ list_for_each_entry_safe(va_block, tmp, va_list, node) {
+ list_del(&va_block->node);
+ kfree(va_block);
+ }
+}
+
+/**
+ * print_va_list_locked() - print virtual addresses list.
+ * @hdev: habanalabs device structure.
+ * @va_list: list of virtual addresses to print.
+ *
+ * This function does the following:
+ * - Iterate over the list and print each virtual addresses block.
+ *
+ * This function should be called only when va_list lock is taken.
+ */
+static void print_va_list_locked(struct hl_device *hdev,
+ struct list_head *va_list)
+{
+#if HL_MMU_DEBUG
+ struct hl_vm_va_block *va_block;
+
+ dev_dbg(hdev->dev, "print va list:\n");
+
+ list_for_each_entry(va_block, va_list, node)
+ dev_dbg(hdev->dev,
+ "va block, start: 0x%llx, end: 0x%llx, size: %llu\n",
+ va_block->start, va_block->end, va_block->size);
+#endif
+}
+
+/**
+ * merge_va_blocks_locked() - merge a virtual block if possible.
+ * @hdev: pointer to the habanalabs device structure.
+ * @va_list: pointer to the virtual addresses block list.
+ * @va_block: virtual block to merge with adjacent blocks.
+ *
+ * This function does the following:
+ * - Merge the given blocks with the adjacent blocks if their virtual ranges
+ * create a contiguous virtual range.
+ *
+ * This Function should be called only when va_list lock is taken.
+ */
+static void merge_va_blocks_locked(struct hl_device *hdev,
+ struct list_head *va_list, struct hl_vm_va_block *va_block)
+{
+ struct hl_vm_va_block *prev, *next;
+
+ prev = list_prev_entry(va_block, node);
+ if (&prev->node != va_list && prev->end + 1 == va_block->start) {
+ prev->end = va_block->end;
+ prev->size = prev->end - prev->start + 1;
+ list_del(&va_block->node);
+ kfree(va_block);
+ va_block = prev;
+ }
+
+ next = list_next_entry(va_block, node);
+ if (&next->node != va_list && va_block->end + 1 == next->start) {
+ next->start = va_block->start;
+ next->size = next->end - next->start + 1;
+ list_del(&va_block->node);
+ kfree(va_block);
+ }
+}
+
+/**
+ * add_va_block_locked() - add a virtual block to the virtual addresses list.
+ * @hdev: pointer to the habanalabs device structure.
+ * @va_list: pointer to the virtual addresses block list.
+ * @start: start virtual address.
+ * @end: end virtual address.
+ *
+ * This function does the following:
+ * - Add the given block to the virtual blocks list and merge with other blocks
+ * if a contiguous virtual block can be created.
+ *
+ * This Function should be called only when va_list lock is taken.
+ */
+static int add_va_block_locked(struct hl_device *hdev,
+ struct list_head *va_list, u64 start, u64 end)
+{
+ struct hl_vm_va_block *va_block, *res = NULL;
+ u64 size = end - start + 1;
+
+ print_va_list_locked(hdev, va_list);
+
+ list_for_each_entry(va_block, va_list, node) {
+ /* TODO: remove upon matureness */
+ if (hl_mem_area_crosses_range(start, size, va_block->start,
+ va_block->end)) {
+ dev_err(hdev->dev,
+ "block crossing ranges at start 0x%llx, end 0x%llx\n",
+ va_block->start, va_block->end);
+ return -EINVAL;
+ }
+
+ if (va_block->end < start)
+ res = va_block;
+ }
+
+ va_block = kmalloc(sizeof(*va_block), GFP_KERNEL);
+ if (!va_block)
+ return -ENOMEM;
+
+ va_block->start = start;
+ va_block->end = end;
+ va_block->size = size;
+
+ if (!res)
+ list_add(&va_block->node, va_list);
+ else
+ list_add(&va_block->node, &res->node);
+
+ merge_va_blocks_locked(hdev, va_list, va_block);
+
+ print_va_list_locked(hdev, va_list);
+
+ return 0;
+}
+
+/**
+ * add_va_block() - wrapper for add_va_block_locked.
+ * @hdev: pointer to the habanalabs device structure.
+ * @va_range: pointer to the virtual addresses range object.
+ * @start: start virtual address.
+ * @end: end virtual address.
+ *
+ * This function does the following:
+ * - Takes the list lock and calls add_va_block_locked.
+ */
+static inline int add_va_block(struct hl_device *hdev,
+ struct hl_va_range *va_range, u64 start, u64 end)
+{
+ int rc;
+
+ mutex_lock(&va_range->lock);
+ rc = add_va_block_locked(hdev, &va_range->list, start, end);
+ mutex_unlock(&va_range->lock);
+
+ return rc;
+}
+
+/**
+ * is_hint_crossing_range() - check if hint address crossing specified reserved.
+ * @range_type: virtual space range type.
+ * @start_addr: start virtual address.
+ * @size: block size.
+ * @prop: asic properties structure to retrieve reserved ranges from.
+ */
+static inline bool is_hint_crossing_range(enum hl_va_range_type range_type,
+ u64 start_addr, u32 size, struct asic_fixed_properties *prop) {
+ bool range_cross;
+
+ if (range_type == HL_VA_RANGE_TYPE_DRAM)
+ range_cross =
+ hl_mem_area_crosses_range(start_addr, size,
+ prop->hints_dram_reserved_va_range.start_addr,
+ prop->hints_dram_reserved_va_range.end_addr);
+ else if (range_type == HL_VA_RANGE_TYPE_HOST)
+ range_cross =
+ hl_mem_area_crosses_range(start_addr, size,
+ prop->hints_host_reserved_va_range.start_addr,
+ prop->hints_host_reserved_va_range.end_addr);
+ else
+ range_cross =
+ hl_mem_area_crosses_range(start_addr, size,
+ prop->hints_host_hpage_reserved_va_range.start_addr,
+ prop->hints_host_hpage_reserved_va_range.end_addr);
+
+ return range_cross;
+}
+
+/**
+ * get_va_block() - get a virtual block for the given size and alignment.
+ *
+ * @hdev: pointer to the habanalabs device structure.
+ * @va_range: pointer to the virtual addresses range.
+ * @size: requested block size.
+ * @hint_addr: hint for requested address by the user.
+ * @va_block_align: required alignment of the virtual block start address.
+ * @range_type: va range type (host, dram)
+ * @flags: additional memory flags, currently only uses HL_MEM_FORCE_HINT
+ *
+ * This function does the following:
+ * - Iterate on the virtual block list to find a suitable virtual block for the
+ * given size, hint address and alignment.
+ * - Reserve the requested block and update the list.
+ * - Return the start address of the virtual block.
+ */
+static u64 get_va_block(struct hl_device *hdev,
+ struct hl_va_range *va_range,
+ u64 size, u64 hint_addr, u32 va_block_align,
+ enum hl_va_range_type range_type,
+ u32 flags)
+{
+ struct hl_vm_va_block *va_block, *new_va_block = NULL;
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ u64 tmp_hint_addr, valid_start, valid_size, prev_start, prev_end,
+ align_mask, reserved_valid_start = 0, reserved_valid_size = 0,
+ dram_hint_mask = prop->dram_hints_align_mask;
+ bool add_prev = false;
+ bool is_align_pow_2 = is_power_of_2(va_range->page_size);
+ bool is_hint_dram_addr = hl_is_dram_va(hdev, hint_addr);
+ bool force_hint = flags & HL_MEM_FORCE_HINT;
+
+ if (is_align_pow_2)
+ align_mask = ~((u64)va_block_align - 1);
+ else
+ /*
+ * with non-power-of-2 range we work only with page granularity
+ * and the start address is page aligned,
+ * so no need for alignment checking.
+ */
+ size = DIV_ROUND_UP_ULL(size, va_range->page_size) *
+ va_range->page_size;
+
+ tmp_hint_addr = hint_addr & ~dram_hint_mask;
+
+ /* Check if we need to ignore hint address */
+ if ((is_align_pow_2 && (hint_addr & (va_block_align - 1))) ||
+ (!is_align_pow_2 && is_hint_dram_addr &&
+ do_div(tmp_hint_addr, va_range->page_size))) {
+
+ if (force_hint) {
+ /* Hint must be respected, so here we just fail */
+ dev_err(hdev->dev,
+ "Hint address 0x%llx is not page aligned - cannot be respected\n",
+ hint_addr);
+ return 0;
+ }
+
+ dev_dbg(hdev->dev,
+ "Hint address 0x%llx will be ignored because it is not aligned\n",
+ hint_addr);
+ hint_addr = 0;
+ }
+
+ mutex_lock(&va_range->lock);
+
+ print_va_list_locked(hdev, &va_range->list);
+
+ list_for_each_entry(va_block, &va_range->list, node) {
+ /* Calc the first possible aligned addr */
+ valid_start = va_block->start;
+
+ if (is_align_pow_2 && (valid_start & (va_block_align - 1))) {
+ valid_start &= align_mask;
+ valid_start += va_block_align;
+ if (valid_start > va_block->end)
+ continue;
+ }
+
+ valid_size = va_block->end - valid_start + 1;
+ if (valid_size < size)
+ continue;
+
+ /*
+ * In case hint address is 0, and hints_range_reservation
+ * property enabled, then avoid allocating va blocks from the
+ * range reserved for hint addresses
+ */
+ if (prop->hints_range_reservation && !hint_addr)
+ if (is_hint_crossing_range(range_type, valid_start,
+ size, prop))
+ continue;
+
+ /* Pick the minimal length block which has the required size */
+ if (!new_va_block || (valid_size < reserved_valid_size)) {
+ new_va_block = va_block;
+ reserved_valid_start = valid_start;
+ reserved_valid_size = valid_size;
+ }
+
+ if (hint_addr && hint_addr >= valid_start &&
+ (hint_addr + size) <= va_block->end) {
+ new_va_block = va_block;
+ reserved_valid_start = hint_addr;
+ reserved_valid_size = valid_size;
+ break;
+ }
+ }
+
+ if (!new_va_block) {
+ dev_err(hdev->dev, "no available va block for size %llu\n",
+ size);
+ goto out;
+ }
+
+ if (force_hint && reserved_valid_start != hint_addr) {
+ /* Hint address must be respected. If we are here - this means
+ * we could not respect it.
+ */
+ dev_err(hdev->dev,
+ "Hint address 0x%llx could not be respected\n",
+ hint_addr);
+ reserved_valid_start = 0;
+ goto out;
+ }
+
+ /*
+ * Check if there is some leftover range due to reserving the new
+ * va block, then return it to the main virtual addresses list.
+ */
+ if (reserved_valid_start > new_va_block->start) {
+ prev_start = new_va_block->start;
+ prev_end = reserved_valid_start - 1;
+
+ new_va_block->start = reserved_valid_start;
+ new_va_block->size = reserved_valid_size;
+
+ add_prev = true;
+ }
+
+ if (new_va_block->size > size) {
+ new_va_block->start += size;
+ new_va_block->size = new_va_block->end - new_va_block->start + 1;
+ } else {
+ list_del(&new_va_block->node);
+ kfree(new_va_block);
+ }
+
+ if (add_prev)
+ add_va_block_locked(hdev, &va_range->list, prev_start,
+ prev_end);
+
+ print_va_list_locked(hdev, &va_range->list);
+out:
+ mutex_unlock(&va_range->lock);
+
+ return reserved_valid_start;
+}
+
+/*
+ * hl_reserve_va_block() - reserve a virtual block of a given size.
+ * @hdev: pointer to the habanalabs device structure.
+ * @ctx: current context
+ * @type: virtual addresses range type.
+ * @size: requested block size.
+ * @alignment: required alignment in bytes of the virtual block start address,
+ * 0 means no alignment.
+ *
+ * This function does the following:
+ * - Iterate on the virtual block list to find a suitable virtual block for the
+ * given size and alignment.
+ * - Reserve the requested block and update the list.
+ * - Return the start address of the virtual block.
+ */
+u64 hl_reserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx,
+ enum hl_va_range_type type, u64 size, u32 alignment)
+{
+ return get_va_block(hdev, ctx->va_range[type], size, 0,
+ max(alignment, ctx->va_range[type]->page_size),
+ type, 0);
+}
+
+/**
+ * hl_get_va_range_type() - get va_range type for the given address and size.
+ * @ctx: context to fetch va_range from.
+ * @address: the start address of the area we want to validate.
+ * @size: the size in bytes of the area we want to validate.
+ * @type: returned va_range type.
+ *
+ * Return: true if the area is inside a valid range, false otherwise.
+ */
+static int hl_get_va_range_type(struct hl_ctx *ctx, u64 address, u64 size,
+ enum hl_va_range_type *type)
+{
+ int i;
+
+ for (i = 0 ; i < HL_VA_RANGE_TYPE_MAX; i++) {
+ if (hl_mem_area_inside_range(address, size,
+ ctx->va_range[i]->start_addr,
+ ctx->va_range[i]->end_addr)) {
+ *type = i;
+ return 0;
+ }
+ }
+
+ return -EINVAL;
+}
+
+/**
+ * hl_unreserve_va_block() - wrapper for add_va_block to unreserve a va block.
+ * @hdev: pointer to the habanalabs device structure
+ * @ctx: pointer to the context structure.
+ * @start_addr: start virtual address.
+ * @size: number of bytes to unreserve.
+ *
+ * This function does the following:
+ * - Takes the list lock and calls add_va_block_locked.
+ */
+int hl_unreserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx,
+ u64 start_addr, u64 size)
+{
+ enum hl_va_range_type type;
+ int rc;
+
+ rc = hl_get_va_range_type(ctx, start_addr, size, &type);
+ if (rc) {
+ dev_err(hdev->dev,
+ "cannot find va_range for va %#llx size %llu",
+ start_addr, size);
+ return rc;
+ }
+
+ rc = add_va_block(hdev, ctx->va_range[type], start_addr,
+ start_addr + size - 1);
+ if (rc)
+ dev_warn(hdev->dev,
+ "add va block failed for vaddr: 0x%llx\n", start_addr);
+
+ return rc;
+}
+
+/**
+ * init_phys_pg_pack_from_userptr() - initialize physical page pack from host
+ * memory
+ * @ctx: pointer to the context structure.
+ * @userptr: userptr to initialize from.
+ * @pphys_pg_pack: result pointer.
+ * @force_regular_page: tell the function to ignore huge page optimization,
+ * even if possible. Needed for cases where the device VA
+ * is allocated before we know the composition of the
+ * physical pages
+ *
+ * This function does the following:
+ * - Pin the physical pages related to the given virtual block.
+ * - Create a physical page pack from the physical pages related to the given
+ * virtual block.
+ */
+static int init_phys_pg_pack_from_userptr(struct hl_ctx *ctx,
+ struct hl_userptr *userptr,
+ struct hl_vm_phys_pg_pack **pphys_pg_pack,
+ bool force_regular_page)
+{
+ u32 npages, page_size = PAGE_SIZE,
+ huge_page_size = ctx->hdev->asic_prop.pmmu_huge.page_size;
+ u32 pgs_in_huge_page = huge_page_size >> __ffs(page_size);
+ struct hl_vm_phys_pg_pack *phys_pg_pack;
+ bool first = true, is_huge_page_opt;
+ u64 page_mask, total_npages;
+ struct scatterlist *sg;
+ dma_addr_t dma_addr;
+ int rc, i, j;
+
+ phys_pg_pack = kzalloc(sizeof(*phys_pg_pack), GFP_KERNEL);
+ if (!phys_pg_pack)
+ return -ENOMEM;
+
+ phys_pg_pack->vm_type = userptr->vm_type;
+ phys_pg_pack->created_from_userptr = true;
+ phys_pg_pack->asid = ctx->asid;
+ atomic_set(&phys_pg_pack->mapping_cnt, 1);
+
+ is_huge_page_opt = (force_regular_page ? false : true);
+
+ /* Only if all dma_addrs are aligned to 2MB and their
+ * sizes is at least 2MB, we can use huge page mapping.
+ * We limit the 2MB optimization to this condition,
+ * since later on we acquire the related VA range as one
+ * consecutive block.
+ */
+ total_npages = 0;
+ for_each_sgtable_dma_sg(userptr->sgt, sg, i) {
+ npages = hl_get_sg_info(sg, &dma_addr);
+
+ total_npages += npages;
+
+ if ((npages % pgs_in_huge_page) ||
+ (dma_addr & (huge_page_size - 1)))
+ is_huge_page_opt = false;
+ }
+
+ if (is_huge_page_opt) {
+ page_size = huge_page_size;
+ do_div(total_npages, pgs_in_huge_page);
+ }
+
+ page_mask = ~(((u64) page_size) - 1);
+
+ phys_pg_pack->pages = kvmalloc_array(total_npages, sizeof(u64),
+ GFP_KERNEL);
+ if (ZERO_OR_NULL_PTR(phys_pg_pack->pages)) {
+ rc = -ENOMEM;
+ goto page_pack_arr_mem_err;
+ }
+
+ phys_pg_pack->npages = total_npages;
+ phys_pg_pack->page_size = page_size;
+ phys_pg_pack->total_size = total_npages * page_size;
+
+ j = 0;
+ for_each_sgtable_dma_sg(userptr->sgt, sg, i) {
+ npages = hl_get_sg_info(sg, &dma_addr);
+
+ /* align down to physical page size and save the offset */
+ if (first) {
+ first = false;
+ phys_pg_pack->offset = dma_addr & (page_size - 1);
+ dma_addr &= page_mask;
+ }
+
+ while (npages) {
+ phys_pg_pack->pages[j++] = dma_addr;
+ dma_addr += page_size;
+
+ if (is_huge_page_opt)
+ npages -= pgs_in_huge_page;
+ else
+ npages--;
+ }
+ }
+
+ *pphys_pg_pack = phys_pg_pack;
+
+ return 0;
+
+page_pack_arr_mem_err:
+ kfree(phys_pg_pack);
+
+ return rc;
+}
+
+/**
+ * map_phys_pg_pack() - maps the physical page pack..
+ * @ctx: pointer to the context structure.
+ * @vaddr: start address of the virtual area to map from.
+ * @phys_pg_pack: the pack of physical pages to map to.
+ *
+ * This function does the following:
+ * - Maps each chunk of virtual memory to matching physical chunk.
+ * - Stores number of successful mappings in the given argument.
+ * - Returns 0 on success, error code otherwise.
+ */
+static int map_phys_pg_pack(struct hl_ctx *ctx, u64 vaddr,
+ struct hl_vm_phys_pg_pack *phys_pg_pack)
+{
+ struct hl_device *hdev = ctx->hdev;
+ u64 next_vaddr = vaddr, paddr, mapped_pg_cnt = 0, i;
+ u32 page_size = phys_pg_pack->page_size;
+ int rc = 0;
+ bool is_host_addr;
+
+ for (i = 0 ; i < phys_pg_pack->npages ; i++) {
+ paddr = phys_pg_pack->pages[i];
+
+ rc = hl_mmu_map_page(ctx, next_vaddr, paddr, page_size,
+ (i + 1) == phys_pg_pack->npages);
+ if (rc) {
+ dev_err(hdev->dev,
+ "map failed for handle %u, npages: %llu, mapped: %llu",
+ phys_pg_pack->handle, phys_pg_pack->npages,
+ mapped_pg_cnt);
+ goto err;
+ }
+
+ mapped_pg_cnt++;
+ next_vaddr += page_size;
+ }
+
+ return 0;
+
+err:
+ is_host_addr = !hl_is_dram_va(hdev, vaddr);
+
+ next_vaddr = vaddr;
+ for (i = 0 ; i < mapped_pg_cnt ; i++) {
+ if (hl_mmu_unmap_page(ctx, next_vaddr, page_size,
+ (i + 1) == mapped_pg_cnt))
+ dev_warn_ratelimited(hdev->dev,
+ "failed to unmap handle %u, va: 0x%llx, pa: 0x%llx, page size: %u\n",
+ phys_pg_pack->handle, next_vaddr,
+ phys_pg_pack->pages[i], page_size);
+
+ next_vaddr += page_size;
+
+ /*
+ * unmapping on Palladium can be really long, so avoid a CPU
+ * soft lockup bug by sleeping a little between unmapping pages
+ *
+ * In addition, on host num of pages could be huge,
+ * because page size could be 4KB, so when unmapping host
+ * pages sleep every 32K pages to avoid soft lockup
+ */
+ if (hdev->pldm || (is_host_addr && (i & 0x7FFF) == 0))
+ usleep_range(50, 200);
+ }
+
+ return rc;
+}
+
+/**
+ * unmap_phys_pg_pack() - unmaps the physical page pack.
+ * @ctx: pointer to the context structure.
+ * @vaddr: start address of the virtual area to unmap.
+ * @phys_pg_pack: the pack of physical pages to unmap.
+ */
+static void unmap_phys_pg_pack(struct hl_ctx *ctx, u64 vaddr,
+ struct hl_vm_phys_pg_pack *phys_pg_pack)
+{
+ struct hl_device *hdev = ctx->hdev;
+ u64 next_vaddr, i;
+ bool is_host_addr;
+ u32 page_size;
+
+ is_host_addr = !hl_is_dram_va(hdev, vaddr);
+ page_size = phys_pg_pack->page_size;
+ next_vaddr = vaddr;
+
+ for (i = 0 ; i < phys_pg_pack->npages ; i++, next_vaddr += page_size) {
+ if (hl_mmu_unmap_page(ctx, next_vaddr, page_size,
+ (i + 1) == phys_pg_pack->npages))
+ dev_warn_ratelimited(hdev->dev,
+ "unmap failed for vaddr: 0x%llx\n", next_vaddr);
+
+ /*
+ * unmapping on Palladium can be really long, so avoid a CPU
+ * soft lockup bug by sleeping a little between unmapping pages
+ *
+ * In addition, on host num of pages could be huge,
+ * because page size could be 4KB, so when unmapping host
+ * pages sleep every 32K pages to avoid soft lockup
+ */
+ if (hdev->pldm || (is_host_addr && (i & 0x7FFF) == 0))
+ usleep_range(50, 200);
+ }
+}
+
+static int get_paddr_from_handle(struct hl_ctx *ctx, struct hl_mem_in *args,
+ u64 *paddr)
+{
+ struct hl_device *hdev = ctx->hdev;
+ struct hl_vm *vm = &hdev->vm;
+ struct hl_vm_phys_pg_pack *phys_pg_pack;
+ u32 handle;
+
+ handle = lower_32_bits(args->map_device.handle);
+ spin_lock(&vm->idr_lock);
+ phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle);
+ if (!phys_pg_pack) {
+ spin_unlock(&vm->idr_lock);
+ dev_err(hdev->dev, "no match for handle %u\n", handle);
+ return -EINVAL;
+ }
+
+ *paddr = phys_pg_pack->pages[0];
+
+ spin_unlock(&vm->idr_lock);
+
+ return 0;
+}
+
+/**
+ * map_device_va() - map the given memory.
+ * @ctx: pointer to the context structure.
+ * @args: host parameters with handle/host virtual address.
+ * @device_addr: pointer to result device virtual address.
+ *
+ * This function does the following:
+ * - If given a physical device memory handle, map to a device virtual block
+ * and return the start address of this block.
+ * - If given a host virtual address and size, find the related physical pages,
+ * map a device virtual block to this pages and return the start address of
+ * this block.
+ */
+static int map_device_va(struct hl_ctx *ctx, struct hl_mem_in *args, u64 *device_addr)
+{
+ struct hl_vm_phys_pg_pack *phys_pg_pack;
+ enum hl_va_range_type va_range_type = 0;
+ struct hl_device *hdev = ctx->hdev;
+ struct hl_userptr *userptr = NULL;
+ u32 handle = 0, va_block_align;
+ struct hl_vm_hash_node *hnode;
+ struct hl_vm *vm = &hdev->vm;
+ struct hl_va_range *va_range;
+ bool is_userptr, do_prefetch;
+ u64 ret_vaddr, hint_addr;
+ enum vm_type *vm_type;
+ int rc;
+
+ /* set map flags */
+ is_userptr = args->flags & HL_MEM_USERPTR;
+ do_prefetch = hdev->supports_mmu_prefetch && (args->flags & HL_MEM_PREFETCH);
+
+ /* Assume failure */
+ *device_addr = 0;
+
+ if (is_userptr) {
+ u64 addr = args->map_host.host_virt_addr,
+ size = args->map_host.mem_size;
+ u32 page_size = hdev->asic_prop.pmmu.page_size,
+ huge_page_size = hdev->asic_prop.pmmu_huge.page_size;
+
+ rc = dma_map_host_va(hdev, addr, size, &userptr);
+ if (rc) {
+ dev_err(hdev->dev, "failed to get userptr from va\n");
+ return rc;
+ }
+
+ rc = init_phys_pg_pack_from_userptr(ctx, userptr,
+ &phys_pg_pack, false);
+ if (rc) {
+ dev_err(hdev->dev,
+ "unable to init page pack for vaddr 0x%llx\n",
+ addr);
+ goto init_page_pack_err;
+ }
+
+ vm_type = (enum vm_type *) userptr;
+ hint_addr = args->map_host.hint_addr;
+ handle = phys_pg_pack->handle;
+
+ /* get required alignment */
+ if (phys_pg_pack->page_size == page_size) {
+ va_range = ctx->va_range[HL_VA_RANGE_TYPE_HOST];
+ va_range_type = HL_VA_RANGE_TYPE_HOST;
+ /*
+ * huge page alignment may be needed in case of regular
+ * page mapping, depending on the host VA alignment
+ */
+ if (addr & (huge_page_size - 1))
+ va_block_align = page_size;
+ else
+ va_block_align = huge_page_size;
+ } else {
+ /*
+ * huge page alignment is needed in case of huge page
+ * mapping
+ */
+ va_range = ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE];
+ va_range_type = HL_VA_RANGE_TYPE_HOST_HUGE;
+ va_block_align = huge_page_size;
+ }
+ } else {
+ handle = lower_32_bits(args->map_device.handle);
+
+ spin_lock(&vm->idr_lock);
+ phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle);
+ if (!phys_pg_pack) {
+ spin_unlock(&vm->idr_lock);
+ dev_err(hdev->dev,
+ "no match for handle %u\n", handle);
+ return -EINVAL;
+ }
+
+ /* increment now to avoid freeing device memory while mapping */
+ atomic_inc(&phys_pg_pack->mapping_cnt);
+
+ spin_unlock(&vm->idr_lock);
+
+ vm_type = (enum vm_type *) phys_pg_pack;
+
+ hint_addr = args->map_device.hint_addr;
+
+ /* DRAM VA alignment is the same as the MMU page size */
+ va_range = ctx->va_range[HL_VA_RANGE_TYPE_DRAM];
+ va_range_type = HL_VA_RANGE_TYPE_DRAM;
+ va_block_align = hdev->asic_prop.dmmu.page_size;
+ }
+
+ /*
+ * relevant for mapping device physical memory only, as host memory is
+ * implicitly shared
+ */
+ if (!is_userptr && !(phys_pg_pack->flags & HL_MEM_SHARED) &&
+ phys_pg_pack->asid != ctx->asid) {
+ dev_err(hdev->dev,
+ "Failed to map memory, handle %u is not shared\n",
+ handle);
+ rc = -EPERM;
+ goto shared_err;
+ }
+
+ hnode = kzalloc(sizeof(*hnode), GFP_KERNEL);
+ if (!hnode) {
+ rc = -ENOMEM;
+ goto hnode_err;
+ }
+
+ if (hint_addr && phys_pg_pack->offset) {
+ if (args->flags & HL_MEM_FORCE_HINT) {
+ /* Fail if hint must be respected but it can't be */
+ dev_err(hdev->dev,
+ "Hint address 0x%llx cannot be respected because source memory is not aligned 0x%x\n",
+ hint_addr, phys_pg_pack->offset);
+ rc = -EINVAL;
+ goto va_block_err;
+ }
+ dev_dbg(hdev->dev,
+ "Hint address 0x%llx will be ignored because source memory is not aligned 0x%x\n",
+ hint_addr, phys_pg_pack->offset);
+ }
+
+ ret_vaddr = get_va_block(hdev, va_range, phys_pg_pack->total_size,
+ hint_addr, va_block_align,
+ va_range_type, args->flags);
+ if (!ret_vaddr) {
+ dev_err(hdev->dev, "no available va block for handle %u\n",
+ handle);
+ rc = -ENOMEM;
+ goto va_block_err;
+ }
+
+ mutex_lock(&hdev->mmu_lock);
+
+ rc = map_phys_pg_pack(ctx, ret_vaddr, phys_pg_pack);
+ if (rc) {
+ dev_err(hdev->dev, "mapping page pack failed for handle %u\n", handle);
+ mutex_unlock(&hdev->mmu_lock);
+ goto map_err;
+ }
+
+ rc = hl_mmu_invalidate_cache_range(hdev, false, *vm_type | MMU_OP_SKIP_LOW_CACHE_INV,
+ ctx->asid, ret_vaddr, phys_pg_pack->total_size);
+ mutex_unlock(&hdev->mmu_lock);
+ if (rc)
+ goto map_err;
+
+ /*
+ * prefetch is done upon user's request. it is performed in WQ as and so can
+ * be outside the MMU lock. the operation itself is already protected by the mmu lock
+ */
+ if (do_prefetch) {
+ rc = hl_mmu_prefetch_cache_range(ctx, *vm_type, ctx->asid, ret_vaddr,
+ phys_pg_pack->total_size);
+ if (rc)
+ goto map_err;
+ }
+
+ ret_vaddr += phys_pg_pack->offset;
+
+ hnode->ptr = vm_type;
+ hnode->vaddr = ret_vaddr;
+
+ mutex_lock(&ctx->mem_hash_lock);
+ hash_add(ctx->mem_hash, &hnode->node, ret_vaddr);
+ mutex_unlock(&ctx->mem_hash_lock);
+
+ *device_addr = ret_vaddr;
+
+ if (is_userptr)
+ free_phys_pg_pack(hdev, phys_pg_pack);
+
+ return rc;
+
+map_err:
+ if (add_va_block(hdev, va_range, ret_vaddr,
+ ret_vaddr + phys_pg_pack->total_size - 1))
+ dev_warn(hdev->dev,
+ "release va block failed for handle 0x%x, vaddr: 0x%llx\n",
+ handle, ret_vaddr);
+
+va_block_err:
+ kfree(hnode);
+hnode_err:
+shared_err:
+ atomic_dec(&phys_pg_pack->mapping_cnt);
+ if (is_userptr)
+ free_phys_pg_pack(hdev, phys_pg_pack);
+init_page_pack_err:
+ if (is_userptr)
+ dma_unmap_host_va(hdev, userptr);
+
+ return rc;
+}
+
+/**
+ * unmap_device_va() - unmap the given device virtual address.
+ * @ctx: pointer to the context structure.
+ * @args: host parameters with device virtual address to unmap.
+ * @ctx_free: true if in context free flow, false otherwise.
+ *
+ * This function does the following:
+ * - unmap the physical pages related to the given virtual address.
+ * - return the device virtual block to the virtual block list.
+ */
+static int unmap_device_va(struct hl_ctx *ctx, struct hl_mem_in *args,
+ bool ctx_free)
+{
+ struct hl_vm_phys_pg_pack *phys_pg_pack = NULL;
+ u64 vaddr = args->unmap.device_virt_addr;
+ struct hl_vm_hash_node *hnode = NULL;
+ struct asic_fixed_properties *prop;
+ struct hl_device *hdev = ctx->hdev;
+ struct hl_userptr *userptr = NULL;
+ struct hl_va_range *va_range;
+ enum vm_type *vm_type;
+ bool is_userptr;
+ int rc = 0;
+
+ prop = &hdev->asic_prop;
+
+ /* protect from double entrance */
+ mutex_lock(&ctx->mem_hash_lock);
+ hash_for_each_possible(ctx->mem_hash, hnode, node, (unsigned long)vaddr)
+ if (vaddr == hnode->vaddr)
+ break;
+
+ if (!hnode) {
+ mutex_unlock(&ctx->mem_hash_lock);
+ dev_err(hdev->dev,
+ "unmap failed, no mem hnode for vaddr 0x%llx\n",
+ vaddr);
+ return -EINVAL;
+ }
+
+ hash_del(&hnode->node);
+ mutex_unlock(&ctx->mem_hash_lock);
+
+ vm_type = hnode->ptr;
+
+ if (*vm_type == VM_TYPE_USERPTR) {
+ is_userptr = true;
+ userptr = hnode->ptr;
+
+ rc = init_phys_pg_pack_from_userptr(ctx, userptr, &phys_pg_pack,
+ false);
+ if (rc) {
+ dev_err(hdev->dev,
+ "unable to init page pack for vaddr 0x%llx\n",
+ vaddr);
+ goto vm_type_err;
+ }
+
+ if (phys_pg_pack->page_size ==
+ hdev->asic_prop.pmmu.page_size)
+ va_range = ctx->va_range[HL_VA_RANGE_TYPE_HOST];
+ else
+ va_range = ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE];
+ } else if (*vm_type == VM_TYPE_PHYS_PACK) {
+ is_userptr = false;
+ va_range = ctx->va_range[HL_VA_RANGE_TYPE_DRAM];
+ phys_pg_pack = hnode->ptr;
+ } else {
+ dev_warn(hdev->dev,
+ "unmap failed, unknown vm desc for vaddr 0x%llx\n",
+ vaddr);
+ rc = -EFAULT;
+ goto vm_type_err;
+ }
+
+ if (atomic_read(&phys_pg_pack->mapping_cnt) == 0) {
+ dev_err(hdev->dev, "vaddr 0x%llx is not mapped\n", vaddr);
+ rc = -EINVAL;
+ goto mapping_cnt_err;
+ }
+
+ if (!is_userptr && !is_power_of_2(phys_pg_pack->page_size))
+ vaddr = prop->dram_base_address +
+ DIV_ROUND_DOWN_ULL(vaddr - prop->dram_base_address,
+ phys_pg_pack->page_size) *
+ phys_pg_pack->page_size;
+ else
+ vaddr &= ~(((u64) phys_pg_pack->page_size) - 1);
+
+ mutex_lock(&hdev->mmu_lock);
+
+ unmap_phys_pg_pack(ctx, vaddr, phys_pg_pack);
+
+ /*
+ * During context free this function is called in a loop to clean all
+ * the context mappings. Hence the cache invalidation can be called once
+ * at the loop end rather than for each iteration
+ */
+ if (!ctx_free)
+ rc = hl_mmu_invalidate_cache_range(hdev, true, *vm_type, ctx->asid, vaddr,
+ phys_pg_pack->total_size);
+
+ mutex_unlock(&hdev->mmu_lock);
+
+ /*
+ * If the context is closing we don't need to check for the MMU cache
+ * invalidation return code and update the VA free list as in this flow
+ * we invalidate the MMU cache outside of this unmap function and the VA
+ * free list will be freed anyway.
+ */
+ if (!ctx_free) {
+ int tmp_rc;
+
+ tmp_rc = add_va_block(hdev, va_range, vaddr,
+ vaddr + phys_pg_pack->total_size - 1);
+ if (tmp_rc) {
+ dev_warn(hdev->dev,
+ "add va block failed for vaddr: 0x%llx\n",
+ vaddr);
+ if (!rc)
+ rc = tmp_rc;
+ }
+ }
+
+ atomic_dec(&phys_pg_pack->mapping_cnt);
+ kfree(hnode);
+
+ if (is_userptr) {
+ free_phys_pg_pack(hdev, phys_pg_pack);
+ dma_unmap_host_va(hdev, userptr);
+ }
+
+ return rc;
+
+mapping_cnt_err:
+ if (is_userptr)
+ free_phys_pg_pack(hdev, phys_pg_pack);
+vm_type_err:
+ mutex_lock(&ctx->mem_hash_lock);
+ hash_add(ctx->mem_hash, &hnode->node, vaddr);
+ mutex_unlock(&ctx->mem_hash_lock);
+
+ return rc;
+}
+
+static int map_block(struct hl_device *hdev, u64 address, u64 *handle, u32 *size)
+{
+ u32 block_id;
+ int rc;
+
+ *handle = 0;
+ if (size)
+ *size = 0;
+
+ rc = hdev->asic_funcs->get_hw_block_id(hdev, address, size, &block_id);
+ if (rc)
+ return rc;
+
+ *handle = block_id | HL_MMAP_TYPE_BLOCK;
+ *handle <<= PAGE_SHIFT;
+
+ return 0;
+}
+
+static void hw_block_vm_close(struct vm_area_struct *vma)
+{
+ struct hl_vm_hw_block_list_node *lnode =
+ (struct hl_vm_hw_block_list_node *) vma->vm_private_data;
+ struct hl_ctx *ctx = lnode->ctx;
+ long new_mmap_size;
+
+ new_mmap_size = lnode->mapped_size - (vma->vm_end - vma->vm_start);
+ if (new_mmap_size > 0) {
+ lnode->mapped_size = new_mmap_size;
+ return;
+ }
+
+ mutex_lock(&ctx->hw_block_list_lock);
+ list_del(&lnode->node);
+ mutex_unlock(&ctx->hw_block_list_lock);
+ hl_ctx_put(ctx);
+ kfree(lnode);
+ vma->vm_private_data = NULL;
+}
+
+static const struct vm_operations_struct hw_block_vm_ops = {
+ .close = hw_block_vm_close
+};
+
+/**
+ * hl_hw_block_mmap() - mmap a hw block to user.
+ * @hpriv: pointer to the private data of the fd
+ * @vma: pointer to vm_area_struct of the process
+ *
+ * Driver increments context reference for every HW block mapped in order
+ * to prevent user from closing FD without unmapping first
+ */
+int hl_hw_block_mmap(struct hl_fpriv *hpriv, struct vm_area_struct *vma)
+{
+ struct hl_vm_hw_block_list_node *lnode;
+ struct hl_device *hdev = hpriv->hdev;
+ struct hl_ctx *ctx = hpriv->ctx;
+ u32 block_id, block_size;
+ int rc;
+
+ /* We use the page offset to hold the block id and thus we need to clear
+ * it before doing the mmap itself
+ */
+ block_id = vma->vm_pgoff;
+ vma->vm_pgoff = 0;
+
+ /* Driver only allows mapping of a complete HW block */
+ block_size = vma->vm_end - vma->vm_start;
+
+ if (!access_ok((void __user *) (uintptr_t) vma->vm_start, block_size)) {
+ dev_err(hdev->dev,
+ "user pointer is invalid - 0x%lx\n",
+ vma->vm_start);
+
+ return -EINVAL;
+ }
+
+ lnode = kzalloc(sizeof(*lnode), GFP_KERNEL);
+ if (!lnode)
+ return -ENOMEM;
+
+ rc = hdev->asic_funcs->hw_block_mmap(hdev, vma, block_id, block_size);
+ if (rc) {
+ kfree(lnode);
+ return rc;
+ }
+
+ hl_ctx_get(ctx);
+
+ lnode->ctx = ctx;
+ lnode->vaddr = vma->vm_start;
+ lnode->block_size = block_size;
+ lnode->mapped_size = lnode->block_size;
+ lnode->id = block_id;
+
+ vma->vm_private_data = lnode;
+ vma->vm_ops = &hw_block_vm_ops;
+
+ mutex_lock(&ctx->hw_block_list_lock);
+ list_add_tail(&lnode->node, &ctx->hw_block_mem_list);
+ mutex_unlock(&ctx->hw_block_list_lock);
+
+ vma->vm_pgoff = block_id;
+
+ return 0;
+}
+
+static int set_dma_sg(struct scatterlist *sg, u64 bar_address, u64 chunk_size,
+ struct device *dev, enum dma_data_direction dir)
+{
+ dma_addr_t addr;
+ int rc;
+
+ addr = dma_map_resource(dev, bar_address, chunk_size, dir,
+ DMA_ATTR_SKIP_CPU_SYNC);
+ rc = dma_mapping_error(dev, addr);
+ if (rc)
+ return rc;
+
+ sg_set_page(sg, NULL, chunk_size, 0);
+ sg_dma_address(sg) = addr;
+ sg_dma_len(sg) = chunk_size;
+
+ return 0;
+}
+
+static struct sg_table *alloc_sgt_from_device_pages(struct hl_device *hdev, u64 *pages, u64 npages,
+ u64 page_size, struct device *dev,
+ enum dma_data_direction dir)
+{
+ u64 chunk_size, bar_address, dma_max_seg_size;
+ struct asic_fixed_properties *prop;
+ int rc, i, j, nents, cur_page;
+ struct scatterlist *sg;
+ struct sg_table *sgt;
+
+ prop = &hdev->asic_prop;
+
+ dma_max_seg_size = dma_get_max_seg_size(dev);
+
+ /* We would like to align the max segment size to PAGE_SIZE, so the
+ * SGL will contain aligned addresses that can be easily mapped to
+ * an MMU
+ */
+ dma_max_seg_size = ALIGN_DOWN(dma_max_seg_size, PAGE_SIZE);
+ if (dma_max_seg_size < PAGE_SIZE) {
+ dev_err_ratelimited(hdev->dev,
+ "dma_max_seg_size %llu can't be smaller than PAGE_SIZE\n",
+ dma_max_seg_size);
+ return ERR_PTR(-EINVAL);
+ }
+
+ sgt = kzalloc(sizeof(*sgt), GFP_KERNEL);
+ if (!sgt)
+ return ERR_PTR(-ENOMEM);
+
+ /* If the size of each page is larger than the dma max segment size,
+ * then we can't combine pages and the number of entries in the SGL
+ * will just be the
+ * <number of pages> * <chunks of max segment size in each page>
+ */
+ if (page_size > dma_max_seg_size)
+ nents = npages * DIV_ROUND_UP_ULL(page_size, dma_max_seg_size);
+ else
+ /* Get number of non-contiguous chunks */
+ for (i = 1, nents = 1, chunk_size = page_size ; i < npages ; i++) {
+ if (pages[i - 1] + page_size != pages[i] ||
+ chunk_size + page_size > dma_max_seg_size) {
+ nents++;
+ chunk_size = page_size;
+ continue;
+ }
+
+ chunk_size += page_size;
+ }
+
+ rc = sg_alloc_table(sgt, nents, GFP_KERNEL | __GFP_ZERO);
+ if (rc)
+ goto error_free;
+
+ cur_page = 0;
+
+ if (page_size > dma_max_seg_size) {
+ u64 size_left, cur_device_address = 0;
+
+ size_left = page_size;
+
+ /* Need to split each page into the number of chunks of
+ * dma_max_seg_size
+ */
+ for_each_sgtable_dma_sg(sgt, sg, i) {
+ if (size_left == page_size)
+ cur_device_address =
+ pages[cur_page] - prop->dram_base_address;
+ else
+ cur_device_address += dma_max_seg_size;
+
+ chunk_size = min(size_left, dma_max_seg_size);
+
+ bar_address = hdev->dram_pci_bar_start + cur_device_address;
+
+ rc = set_dma_sg(sg, bar_address, chunk_size, dev, dir);
+ if (rc)
+ goto error_unmap;
+
+ if (size_left > dma_max_seg_size) {
+ size_left -= dma_max_seg_size;
+ } else {
+ cur_page++;
+ size_left = page_size;
+ }
+ }
+ } else {
+ /* Merge pages and put them into the scatterlist */
+ for_each_sgtable_dma_sg(sgt, sg, i) {
+ chunk_size = page_size;
+ for (j = cur_page + 1 ; j < npages ; j++) {
+ if (pages[j - 1] + page_size != pages[j] ||
+ chunk_size + page_size > dma_max_seg_size)
+ break;
+
+ chunk_size += page_size;
+ }
+
+ bar_address = hdev->dram_pci_bar_start +
+ (pages[cur_page] - prop->dram_base_address);
+
+ rc = set_dma_sg(sg, bar_address, chunk_size, dev, dir);
+ if (rc)
+ goto error_unmap;
+
+ cur_page = j;
+ }
+ }
+
+ /* Because we are not going to include a CPU list we want to have some
+ * chance that other users will detect this by setting the orig_nents
+ * to 0 and using only nents (length of DMA list) when going over the
+ * sgl
+ */
+ sgt->orig_nents = 0;
+
+ return sgt;
+
+error_unmap:
+ for_each_sgtable_dma_sg(sgt, sg, i) {
+ if (!sg_dma_len(sg))
+ continue;
+
+ dma_unmap_resource(dev, sg_dma_address(sg),
+ sg_dma_len(sg), dir,
+ DMA_ATTR_SKIP_CPU_SYNC);
+ }
+
+ sg_free_table(sgt);
+
+error_free:
+ kfree(sgt);
+ return ERR_PTR(rc);
+}
+
+static int hl_dmabuf_attach(struct dma_buf *dmabuf,
+ struct dma_buf_attachment *attachment)
+{
+ struct hl_dmabuf_priv *hl_dmabuf;
+ struct hl_device *hdev;
+ int rc;
+
+ hl_dmabuf = dmabuf->priv;
+ hdev = hl_dmabuf->ctx->hdev;
+
+ rc = pci_p2pdma_distance_many(hdev->pdev, &attachment->dev, 1, true);
+
+ if (rc < 0)
+ attachment->peer2peer = false;
+ return 0;
+}
+
+static struct sg_table *hl_map_dmabuf(struct dma_buf_attachment *attachment,
+ enum dma_data_direction dir)
+{
+ struct dma_buf *dma_buf = attachment->dmabuf;
+ struct hl_vm_phys_pg_pack *phys_pg_pack;
+ struct hl_dmabuf_priv *hl_dmabuf;
+ struct hl_device *hdev;
+ struct sg_table *sgt;
+
+ hl_dmabuf = dma_buf->priv;
+ hdev = hl_dmabuf->ctx->hdev;
+ phys_pg_pack = hl_dmabuf->phys_pg_pack;
+
+ if (!attachment->peer2peer) {
+ dev_dbg(hdev->dev, "Failed to map dmabuf because p2p is disabled\n");
+ return ERR_PTR(-EPERM);
+ }
+
+ if (phys_pg_pack)
+ sgt = alloc_sgt_from_device_pages(hdev,
+ phys_pg_pack->pages,
+ phys_pg_pack->npages,
+ phys_pg_pack->page_size,
+ attachment->dev,
+ dir);
+ else
+ sgt = alloc_sgt_from_device_pages(hdev,
+ &hl_dmabuf->device_address,
+ 1,
+ hl_dmabuf->dmabuf->size,
+ attachment->dev,
+ dir);
+
+ if (IS_ERR(sgt))
+ dev_err(hdev->dev, "failed (%ld) to initialize sgt for dmabuf\n", PTR_ERR(sgt));
+
+ return sgt;
+}
+
+static void hl_unmap_dmabuf(struct dma_buf_attachment *attachment,
+ struct sg_table *sgt,
+ enum dma_data_direction dir)
+{
+ struct scatterlist *sg;
+ int i;
+
+ /* The memory behind the dma-buf has *always* resided on the device itself, i.e. it lives
+ * only in the 'device' domain (after all, it maps a PCI bar address which points to the
+ * device memory).
+ *
+ * Therefore, it was never in the 'CPU' domain and hence, there is no need to perform
+ * a sync of the memory to the CPU's cache, as it never resided inside that cache.
+ */
+ for_each_sgtable_dma_sg(sgt, sg, i)
+ dma_unmap_resource(attachment->dev, sg_dma_address(sg),
+ sg_dma_len(sg), dir,
+ DMA_ATTR_SKIP_CPU_SYNC);
+
+ /* Need to restore orig_nents because sg_free_table use that field */
+ sgt->orig_nents = sgt->nents;
+ sg_free_table(sgt);
+ kfree(sgt);
+}
+
+static void hl_release_dmabuf(struct dma_buf *dmabuf)
+{
+ struct hl_dmabuf_priv *hl_dmabuf = dmabuf->priv;
+ struct hl_ctx *ctx = hl_dmabuf->ctx;
+ struct hl_device *hdev = ctx->hdev;
+ struct hl_vm *vm = &hdev->vm;
+
+ if (hl_dmabuf->phys_pg_pack) {
+ spin_lock(&vm->idr_lock);
+ hl_dmabuf->phys_pg_pack->exporting_cnt--;
+ spin_unlock(&vm->idr_lock);
+ }
+
+ hl_ctx_put(hl_dmabuf->ctx);
+
+ kfree(hl_dmabuf);
+}
+
+static const struct dma_buf_ops habanalabs_dmabuf_ops = {
+ .attach = hl_dmabuf_attach,
+ .map_dma_buf = hl_map_dmabuf,
+ .unmap_dma_buf = hl_unmap_dmabuf,
+ .release = hl_release_dmabuf,
+};
+
+static int export_dmabuf_common(struct hl_ctx *ctx,
+ struct hl_dmabuf_priv *hl_dmabuf,
+ u64 total_size, int flags, int *dmabuf_fd)
+{
+ DEFINE_DMA_BUF_EXPORT_INFO(exp_info);
+ struct hl_device *hdev = ctx->hdev;
+ int rc, fd;
+
+ exp_info.ops = &habanalabs_dmabuf_ops;
+ exp_info.size = total_size;
+ exp_info.flags = flags;
+ exp_info.priv = hl_dmabuf;
+
+ hl_dmabuf->dmabuf = dma_buf_export(&exp_info);
+ if (IS_ERR(hl_dmabuf->dmabuf)) {
+ dev_err(hdev->dev, "failed to export dma-buf\n");
+ return PTR_ERR(hl_dmabuf->dmabuf);
+ }
+
+ fd = dma_buf_fd(hl_dmabuf->dmabuf, flags);
+ if (fd < 0) {
+ dev_err(hdev->dev, "failed to get a file descriptor for a dma-buf\n");
+ rc = fd;
+ goto err_dma_buf_put;
+ }
+
+ hl_dmabuf->ctx = ctx;
+ hl_ctx_get(hl_dmabuf->ctx);
+
+ *dmabuf_fd = fd;
+
+ return 0;
+
+err_dma_buf_put:
+ dma_buf_put(hl_dmabuf->dmabuf);
+ return rc;
+}
+
+/**
+ * export_dmabuf_from_addr() - export a dma-buf object for the given memory
+ * address and size.
+ * @ctx: pointer to the context structure.
+ * @device_addr: device memory physical address.
+ * @size: size of device memory.
+ * @flags: DMA-BUF file/FD flags.
+ * @dmabuf_fd: pointer to result FD that represents the dma-buf object.
+ *
+ * Create and export a dma-buf object for an existing memory allocation inside
+ * the device memory, and return a FD which is associated with the dma-buf
+ * object.
+ *
+ * Return: 0 on success, non-zero for failure.
+ */
+static int export_dmabuf_from_addr(struct hl_ctx *ctx, u64 device_addr,
+ u64 size, int flags, int *dmabuf_fd)
+{
+ struct hl_dmabuf_priv *hl_dmabuf;
+ struct hl_device *hdev = ctx->hdev;
+ struct asic_fixed_properties *prop;
+ u64 bar_address;
+ int rc;
+
+ prop = &hdev->asic_prop;
+
+ if (!IS_ALIGNED(device_addr, PAGE_SIZE)) {
+ dev_dbg(hdev->dev,
+ "exported device memory address 0x%llx should be aligned to 0x%lx\n",
+ device_addr, PAGE_SIZE);
+ return -EINVAL;
+ }
+
+ if (size < PAGE_SIZE) {
+ dev_dbg(hdev->dev,
+ "exported device memory size %llu should be equal to or greater than %lu\n",
+ size, PAGE_SIZE);
+ return -EINVAL;
+ }
+
+ if (device_addr < prop->dram_user_base_address ||
+ device_addr + size > prop->dram_end_address ||
+ device_addr + size < device_addr) {
+ dev_dbg(hdev->dev,
+ "DRAM memory range 0x%llx (+0x%llx) is outside of DRAM boundaries\n",
+ device_addr, size);
+ return -EINVAL;
+ }
+
+ bar_address = hdev->dram_pci_bar_start +
+ (device_addr - prop->dram_base_address);
+
+ if (bar_address + size >
+ hdev->dram_pci_bar_start + prop->dram_pci_bar_size ||
+ bar_address + size < bar_address) {
+ dev_dbg(hdev->dev,
+ "DRAM memory range 0x%llx (+0x%llx) is outside of PCI BAR boundaries\n",
+ device_addr, size);
+ return -EINVAL;
+ }
+
+ hl_dmabuf = kzalloc(sizeof(*hl_dmabuf), GFP_KERNEL);
+ if (!hl_dmabuf)
+ return -ENOMEM;
+
+ hl_dmabuf->device_address = device_addr;
+
+ rc = export_dmabuf_common(ctx, hl_dmabuf, size, flags, dmabuf_fd);
+ if (rc)
+ goto err_free_dmabuf_wrapper;
+
+ return 0;
+
+err_free_dmabuf_wrapper:
+ kfree(hl_dmabuf);
+ return rc;
+}
+
+/**
+ * export_dmabuf_from_handle() - export a dma-buf object for the given memory
+ * handle.
+ * @ctx: pointer to the context structure.
+ * @handle: device memory allocation handle.
+ * @flags: DMA-BUF file/FD flags.
+ * @dmabuf_fd: pointer to result FD that represents the dma-buf object.
+ *
+ * Create and export a dma-buf object for an existing memory allocation inside
+ * the device memory, and return a FD which is associated with the dma-buf
+ * object.
+ *
+ * Return: 0 on success, non-zero for failure.
+ */
+static int export_dmabuf_from_handle(struct hl_ctx *ctx, u64 handle, int flags,
+ int *dmabuf_fd)
+{
+ struct hl_vm_phys_pg_pack *phys_pg_pack;
+ struct hl_dmabuf_priv *hl_dmabuf;
+ struct hl_device *hdev = ctx->hdev;
+ struct asic_fixed_properties *prop;
+ struct hl_vm *vm = &hdev->vm;
+ u64 bar_address;
+ int rc, i;
+
+ prop = &hdev->asic_prop;
+
+ if (upper_32_bits(handle)) {
+ dev_dbg(hdev->dev, "no match for handle 0x%llx\n", handle);
+ return -EINVAL;
+ }
+
+ spin_lock(&vm->idr_lock);
+
+ phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, (u32) handle);
+ if (!phys_pg_pack) {
+ spin_unlock(&vm->idr_lock);
+ dev_dbg(hdev->dev, "no match for handle 0x%x\n", (u32) handle);
+ return -EINVAL;
+ }
+
+ /* increment now to avoid freeing device memory while exporting */
+ phys_pg_pack->exporting_cnt++;
+
+ spin_unlock(&vm->idr_lock);
+
+ if (phys_pg_pack->vm_type != VM_TYPE_PHYS_PACK) {
+ dev_dbg(hdev->dev, "handle 0x%llx does not represent DRAM memory\n", handle);
+ rc = -EINVAL;
+ goto err_dec_exporting_cnt;
+ }
+
+ for (i = 0 ; i < phys_pg_pack->npages ; i++) {
+
+ bar_address = hdev->dram_pci_bar_start +
+ (phys_pg_pack->pages[i] -
+ prop->dram_base_address);
+
+ if (bar_address + phys_pg_pack->page_size >
+ hdev->dram_pci_bar_start + prop->dram_pci_bar_size ||
+ bar_address + phys_pg_pack->page_size < bar_address) {
+
+ dev_dbg(hdev->dev,
+ "DRAM memory range 0x%llx (+0x%x) is outside of PCI BAR boundaries\n",
+ phys_pg_pack->pages[i],
+ phys_pg_pack->page_size);
+
+ rc = -EINVAL;
+ goto err_dec_exporting_cnt;
+ }
+ }
+
+ hl_dmabuf = kzalloc(sizeof(*hl_dmabuf), GFP_KERNEL);
+ if (!hl_dmabuf) {
+ rc = -ENOMEM;
+ goto err_dec_exporting_cnt;
+ }
+
+ hl_dmabuf->phys_pg_pack = phys_pg_pack;
+
+ rc = export_dmabuf_common(ctx, hl_dmabuf, phys_pg_pack->total_size,
+ flags, dmabuf_fd);
+ if (rc)
+ goto err_free_dmabuf_wrapper;
+
+ return 0;
+
+err_free_dmabuf_wrapper:
+ kfree(hl_dmabuf);
+
+err_dec_exporting_cnt:
+ spin_lock(&vm->idr_lock);
+ phys_pg_pack->exporting_cnt--;
+ spin_unlock(&vm->idr_lock);
+
+ return rc;
+}
+
+static int mem_ioctl_no_mmu(struct hl_fpriv *hpriv, union hl_mem_args *args)
+{
+ struct hl_device *hdev = hpriv->hdev;
+ u64 block_handle, device_addr = 0;
+ struct hl_ctx *ctx = hpriv->ctx;
+ u32 handle = 0, block_size;
+ int rc;
+
+ switch (args->in.op) {
+ case HL_MEM_OP_ALLOC:
+ if (args->in.alloc.mem_size == 0) {
+ dev_err(hdev->dev, "alloc size must be larger than 0\n");
+ rc = -EINVAL;
+ goto out;
+ }
+
+ /* Force contiguous as there are no real MMU
+ * translations to overcome physical memory gaps
+ */
+ args->in.flags |= HL_MEM_CONTIGUOUS;
+ rc = alloc_device_memory(ctx, &args->in, &handle);
+
+ memset(args, 0, sizeof(*args));
+ args->out.handle = (__u64) handle;
+ break;
+
+ case HL_MEM_OP_FREE:
+ rc = free_device_memory(ctx, &args->in);
+ break;
+
+ case HL_MEM_OP_MAP:
+ if (args->in.flags & HL_MEM_USERPTR) {
+ dev_err(hdev->dev, "Failed to map host memory when MMU is disabled\n");
+ rc = -EPERM;
+ } else {
+ rc = get_paddr_from_handle(ctx, &args->in, &device_addr);
+ memset(args, 0, sizeof(*args));
+ args->out.device_virt_addr = device_addr;
+ }
+
+ break;
+
+ case HL_MEM_OP_UNMAP:
+ rc = 0;
+ break;
+
+ case HL_MEM_OP_MAP_BLOCK:
+ rc = map_block(hdev, args->in.map_block.block_addr, &block_handle, &block_size);
+ args->out.block_handle = block_handle;
+ args->out.block_size = block_size;
+ break;
+
+ case HL_MEM_OP_EXPORT_DMABUF_FD:
+ dev_err(hdev->dev, "Failed to export dma-buf object when MMU is disabled\n");
+ rc = -EPERM;
+ break;
+
+ case HL_MEM_OP_TS_ALLOC:
+ rc = allocate_timestamps_buffers(hpriv, &args->in, &args->out.handle);
+ break;
+ default:
+ dev_err(hdev->dev, "Unknown opcode for memory IOCTL\n");
+ rc = -EINVAL;
+ break;
+ }
+
+out:
+ return rc;
+}
+
+static void ts_buff_release(struct hl_mmap_mem_buf *buf)
+{
+ struct hl_ts_buff *ts_buff = buf->private;
+
+ vfree(ts_buff->kernel_buff_address);
+ vfree(ts_buff->user_buff_address);
+ kfree(ts_buff);
+}
+
+static int hl_ts_mmap(struct hl_mmap_mem_buf *buf, struct vm_area_struct *vma, void *args)
+{
+ struct hl_ts_buff *ts_buff = buf->private;
+
+ vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP | VM_DONTCOPY | VM_NORESERVE;
+ return remap_vmalloc_range(vma, ts_buff->user_buff_address, 0);
+}
+
+static int hl_ts_alloc_buf(struct hl_mmap_mem_buf *buf, gfp_t gfp, void *args)
+{
+ struct hl_ts_buff *ts_buff = NULL;
+ u32 num_elements;
+ size_t size;
+ void *p;
+
+ num_elements = *(u32 *)args;
+
+ ts_buff = kzalloc(sizeof(*ts_buff), gfp);
+ if (!ts_buff)
+ return -ENOMEM;
+
+ /* Allocate the user buffer */
+ size = num_elements * sizeof(u64);
+ p = vmalloc_user(size);
+ if (!p)
+ goto free_mem;
+
+ ts_buff->user_buff_address = p;
+ buf->mappable_size = size;
+
+ /* Allocate the internal kernel buffer */
+ size = num_elements * sizeof(struct hl_user_pending_interrupt);
+ p = vmalloc(size);
+ if (!p)
+ goto free_user_buff;
+
+ ts_buff->kernel_buff_address = p;
+ ts_buff->kernel_buff_size = size;
+
+ buf->private = ts_buff;
+
+ return 0;
+
+free_user_buff:
+ vfree(ts_buff->user_buff_address);
+free_mem:
+ kfree(ts_buff);
+ return -ENOMEM;
+}
+
+static struct hl_mmap_mem_buf_behavior hl_ts_behavior = {
+ .topic = "TS",
+ .mem_id = HL_MMAP_TYPE_TS_BUFF,
+ .mmap = hl_ts_mmap,
+ .alloc = hl_ts_alloc_buf,
+ .release = ts_buff_release,
+};
+
+/**
+ * allocate_timestamps_buffers() - allocate timestamps buffers
+ * This function will allocate ts buffer that will later on be mapped to the user
+ * in order to be able to read the timestamp.
+ * in additon it'll allocate an extra buffer for registration management.
+ * since we cannot fail during registration for out-of-memory situation, so
+ * we'll prepare a pool which will be used as user interrupt nodes and instead
+ * of dynamically allocating nodes while registration we'll pick the node from
+ * this pool. in addtion it'll add node to the mapping hash which will be used
+ * to map user ts buffer to the internal kernel ts buffer.
+ * @hpriv: pointer to the private data of the fd
+ * @args: ioctl input
+ * @handle: user timestamp buffer handle as an output
+ */
+static int allocate_timestamps_buffers(struct hl_fpriv *hpriv, struct hl_mem_in *args, u64 *handle)
+{
+ struct hl_mem_mgr *mmg = &hpriv->mem_mgr;
+ struct hl_mmap_mem_buf *buf;
+
+ if (args->num_of_elements > TS_MAX_ELEMENTS_NUM) {
+ dev_err(mmg->dev, "Num of elements exceeds Max allowed number (0x%x > 0x%x)\n",
+ args->num_of_elements, TS_MAX_ELEMENTS_NUM);
+ return -EINVAL;
+ }
+
+ buf = hl_mmap_mem_buf_alloc(mmg, &hl_ts_behavior, GFP_KERNEL, &args->num_of_elements);
+ if (!buf)
+ return -ENOMEM;
+
+ *handle = buf->handle;
+
+ return 0;
+}
+
+int hl_mem_ioctl(struct hl_fpriv *hpriv, void *data)
+{
+ enum hl_device_status status;
+ union hl_mem_args *args = data;
+ struct hl_device *hdev = hpriv->hdev;
+ struct hl_ctx *ctx = hpriv->ctx;
+ u64 block_handle, device_addr = 0;
+ u32 handle = 0, block_size;
+ int rc, dmabuf_fd = -EBADF;
+
+ if (!hl_device_operational(hdev, &status)) {
+ dev_warn_ratelimited(hdev->dev,
+ "Device is %s. Can't execute MEMORY IOCTL\n",
+ hdev->status[status]);
+ return -EBUSY;
+ }
+
+ if (!hdev->mmu_enable)
+ return mem_ioctl_no_mmu(hpriv, args);
+
+ switch (args->in.op) {
+ case HL_MEM_OP_ALLOC:
+ if (args->in.alloc.mem_size == 0) {
+ dev_err(hdev->dev,
+ "alloc size must be larger than 0\n");
+ rc = -EINVAL;
+ goto out;
+ }
+
+ /* If DRAM does not support virtual memory the driver won't
+ * handle the allocation/freeing of that memory. However, for
+ * system administration/monitoring purposes, the driver will
+ * keep track of the amount of DRAM memory that is allocated
+ * and freed by the user. Because this code totally relies on
+ * the user's input, the driver can't ensure the validity
+ * of this accounting.
+ */
+ if (!hdev->asic_prop.dram_supports_virtual_memory) {
+ atomic64_add(args->in.alloc.mem_size,
+ &ctx->dram_phys_mem);
+ atomic64_add(args->in.alloc.mem_size,
+ &hdev->dram_used_mem);
+
+ dev_dbg(hdev->dev, "DRAM alloc is not supported\n");
+ rc = 0;
+
+ memset(args, 0, sizeof(*args));
+ args->out.handle = 0;
+ goto out;
+ }
+
+ rc = alloc_device_memory(ctx, &args->in, &handle);
+
+ memset(args, 0, sizeof(*args));
+ args->out.handle = (__u64) handle;
+ break;
+
+ case HL_MEM_OP_FREE:
+ /* If DRAM does not support virtual memory the driver won't
+ * handle the allocation/freeing of that memory. However, for
+ * system administration/monitoring purposes, the driver will
+ * keep track of the amount of DRAM memory that is allocated
+ * and freed by the user. Because this code totally relies on
+ * the user's input, the driver can't ensure the validity
+ * of this accounting.
+ */
+ if (!hdev->asic_prop.dram_supports_virtual_memory) {
+ atomic64_sub(args->in.alloc.mem_size,
+ &ctx->dram_phys_mem);
+ atomic64_sub(args->in.alloc.mem_size,
+ &hdev->dram_used_mem);
+
+ dev_dbg(hdev->dev, "DRAM alloc is not supported\n");
+ rc = 0;
+
+ goto out;
+ }
+
+ rc = free_device_memory(ctx, &args->in);
+ break;
+
+ case HL_MEM_OP_MAP:
+ rc = map_device_va(ctx, &args->in, &device_addr);
+
+ memset(args, 0, sizeof(*args));
+ args->out.device_virt_addr = device_addr;
+ break;
+
+ case HL_MEM_OP_UNMAP:
+ rc = unmap_device_va(ctx, &args->in, false);
+ break;
+
+ case HL_MEM_OP_MAP_BLOCK:
+ rc = map_block(hdev, args->in.map_block.block_addr,
+ &block_handle, &block_size);
+ args->out.block_handle = block_handle;
+ args->out.block_size = block_size;
+ break;
+
+ case HL_MEM_OP_EXPORT_DMABUF_FD:
+ if (hdev->asic_prop.dram_supports_virtual_memory)
+ rc = export_dmabuf_from_handle(ctx,
+ args->in.export_dmabuf_fd.handle,
+ args->in.flags,
+ &dmabuf_fd);
+ else
+ rc = export_dmabuf_from_addr(ctx,
+ args->in.export_dmabuf_fd.handle,
+ args->in.export_dmabuf_fd.mem_size,
+ args->in.flags,
+ &dmabuf_fd);
+ memset(args, 0, sizeof(*args));
+ args->out.fd = dmabuf_fd;
+ break;
+
+ case HL_MEM_OP_TS_ALLOC:
+ rc = allocate_timestamps_buffers(hpriv, &args->in, &args->out.handle);
+ break;
+ default:
+ dev_err(hdev->dev, "Unknown opcode for memory IOCTL\n");
+ rc = -EINVAL;
+ break;
+ }
+
+out:
+ return rc;
+}
+
+static int get_user_memory(struct hl_device *hdev, u64 addr, u64 size,
+ u32 npages, u64 start, u32 offset,
+ struct hl_userptr *userptr)
+{
+ int rc;
+
+ if (!access_ok((void __user *) (uintptr_t) addr, size)) {
+ dev_err(hdev->dev, "user pointer is invalid - 0x%llx\n", addr);
+ return -EFAULT;
+ }
+
+ userptr->pages = kvmalloc_array(npages, sizeof(struct page *), GFP_KERNEL);
+ if (!userptr->pages)
+ return -ENOMEM;
+
+ rc = pin_user_pages_fast(start, npages,
+ FOLL_FORCE | FOLL_WRITE | FOLL_LONGTERM,
+ userptr->pages);
+
+ if (rc != npages) {
+ dev_err(hdev->dev,
+ "Failed (%d) to pin host memory with user ptr 0x%llx, size 0x%llx, npages %d\n",
+ rc, addr, size, npages);
+ if (rc < 0)
+ goto destroy_pages;
+ npages = rc;
+ rc = -EFAULT;
+ goto put_pages;
+ }
+ userptr->npages = npages;
+
+ rc = sg_alloc_table_from_pages(userptr->sgt,
+ userptr->pages,
+ npages, offset, size, GFP_KERNEL);
+ if (rc < 0) {
+ dev_err(hdev->dev, "failed to create SG table from pages\n");
+ goto put_pages;
+ }
+
+ return 0;
+
+put_pages:
+ unpin_user_pages(userptr->pages, npages);
+destroy_pages:
+ kvfree(userptr->pages);
+ return rc;
+}
+
+/**
+ * hl_pin_host_memory() - pins a chunk of host memory.
+ * @hdev: pointer to the habanalabs device structure.
+ * @addr: the host virtual address of the memory area.
+ * @size: the size of the memory area.
+ * @userptr: pointer to hl_userptr structure.
+ *
+ * This function does the following:
+ * - Pins the physical pages.
+ * - Create an SG list from those pages.
+ */
+int hl_pin_host_memory(struct hl_device *hdev, u64 addr, u64 size,
+ struct hl_userptr *userptr)
+{
+ u64 start, end;
+ u32 npages, offset;
+ int rc;
+
+ if (!size) {
+ dev_err(hdev->dev, "size to pin is invalid - %llu\n", size);
+ return -EINVAL;
+ }
+
+ /*
+ * If the combination of the address and size requested for this memory
+ * region causes an integer overflow, return error.
+ */
+ if (((addr + size) < addr) ||
+ PAGE_ALIGN(addr + size) < (addr + size)) {
+ dev_err(hdev->dev,
+ "user pointer 0x%llx + %llu causes integer overflow\n",
+ addr, size);
+ return -EINVAL;
+ }
+
+ userptr->pid = current->pid;
+ userptr->sgt = kzalloc(sizeof(*userptr->sgt), GFP_KERNEL);
+ if (!userptr->sgt)
+ return -ENOMEM;
+
+ start = addr & PAGE_MASK;
+ offset = addr & ~PAGE_MASK;
+ end = PAGE_ALIGN(addr + size);
+ npages = (end - start) >> PAGE_SHIFT;
+
+ userptr->size = size;
+ userptr->addr = addr;
+ userptr->dma_mapped = false;
+ INIT_LIST_HEAD(&userptr->job_node);
+
+ rc = get_user_memory(hdev, addr, size, npages, start, offset,
+ userptr);
+ if (rc) {
+ dev_err(hdev->dev,
+ "failed to get user memory for address 0x%llx\n",
+ addr);
+ goto free_sgt;
+ }
+
+ hl_debugfs_add_userptr(hdev, userptr);
+
+ return 0;
+
+free_sgt:
+ kfree(userptr->sgt);
+ return rc;
+}
+
+/*
+ * hl_unpin_host_memory - unpins a chunk of host memory.
+ * @hdev: pointer to the habanalabs device structure
+ * @userptr: pointer to hl_userptr structure
+ *
+ * This function does the following:
+ * - Unpins the physical pages related to the host memory
+ * - Free the SG list
+ */
+void hl_unpin_host_memory(struct hl_device *hdev, struct hl_userptr *userptr)
+{
+ hl_debugfs_remove_userptr(hdev, userptr);
+
+ if (userptr->dma_mapped)
+ hdev->asic_funcs->hl_dma_unmap_sgtable(hdev, userptr->sgt, userptr->dir);
+
+ unpin_user_pages_dirty_lock(userptr->pages, userptr->npages, true);
+ kvfree(userptr->pages);
+
+ list_del(&userptr->job_node);
+
+ sg_free_table(userptr->sgt);
+ kfree(userptr->sgt);
+}
+
+/**
+ * hl_userptr_delete_list() - clear userptr list.
+ * @hdev: pointer to the habanalabs device structure.
+ * @userptr_list: pointer to the list to clear.
+ *
+ * This function does the following:
+ * - Iterates over the list and unpins the host memory and frees the userptr
+ * structure.
+ */
+void hl_userptr_delete_list(struct hl_device *hdev,
+ struct list_head *userptr_list)
+{
+ struct hl_userptr *userptr, *tmp;
+
+ list_for_each_entry_safe(userptr, tmp, userptr_list, job_node) {
+ hl_unpin_host_memory(hdev, userptr);
+ kfree(userptr);
+ }
+
+ INIT_LIST_HEAD(userptr_list);
+}
+
+/**
+ * hl_userptr_is_pinned() - returns whether the given userptr is pinned.
+ * @hdev: pointer to the habanalabs device structure.
+ * @addr: user address to check.
+ * @size: user block size to check.
+ * @userptr_list: pointer to the list to clear.
+ * @userptr: pointer to userptr to check.
+ *
+ * This function does the following:
+ * - Iterates over the list and checks if the given userptr is in it, means is
+ * pinned. If so, returns true, otherwise returns false.
+ */
+bool hl_userptr_is_pinned(struct hl_device *hdev, u64 addr,
+ u32 size, struct list_head *userptr_list,
+ struct hl_userptr **userptr)
+{
+ list_for_each_entry((*userptr), userptr_list, job_node) {
+ if ((addr == (*userptr)->addr) && (size == (*userptr)->size))
+ return true;
+ }
+
+ return false;
+}
+
+/**
+ * va_range_init() - initialize virtual addresses range.
+ * @hdev: pointer to the habanalabs device structure.
+ * @va_ranges: pointer to va_ranges array.
+ * @range_type: virtual address range type.
+ * @start: range start address, inclusive.
+ * @end: range end address, inclusive.
+ * @page_size: page size for this va_range.
+ *
+ * This function does the following:
+ * - Initializes the virtual addresses list of the given range with the given
+ * addresses.
+ */
+static int va_range_init(struct hl_device *hdev, struct hl_va_range **va_ranges,
+ enum hl_va_range_type range_type, u64 start,
+ u64 end, u32 page_size)
+{
+ struct hl_va_range *va_range = va_ranges[range_type];
+ int rc;
+
+ INIT_LIST_HEAD(&va_range->list);
+
+ /*
+ * PAGE_SIZE alignment
+ * it is the callers responsibility to align the addresses if the
+ * page size is not a power of 2
+ */
+
+ if (is_power_of_2(page_size)) {
+ if (start & (PAGE_SIZE - 1)) {
+ start &= PAGE_MASK;
+ start += PAGE_SIZE;
+ }
+
+ /*
+ * The end of the range is inclusive, hence we need to align it
+ * to the end of the last full page in the range. For example if
+ * end = 0x3ff5 with page size 0x1000, we need to align it to
+ * 0x2fff. The remainig 0xff5 bytes do not form a full page.
+ */
+ if ((end + 1) & (PAGE_SIZE - 1))
+ end = ((end + 1) & PAGE_MASK) - 1;
+ }
+
+ if (start >= end) {
+ dev_err(hdev->dev, "too small vm range for va list\n");
+ return -EFAULT;
+ }
+
+ rc = add_va_block(hdev, va_range, start, end);
+
+ if (rc) {
+ dev_err(hdev->dev, "Failed to init host va list\n");
+ return rc;
+ }
+
+ va_range->start_addr = start;
+ va_range->end_addr = end;
+ va_range->page_size = page_size;
+
+ return 0;
+}
+
+/**
+ * va_range_fini() - clear a virtual addresses range.
+ * @hdev: pointer to the habanalabs structure.
+ * @va_range: pointer to virtual addresses range.
+ *
+ * This function does the following:
+ * - Frees the virtual addresses block list and its lock.
+ */
+static void va_range_fini(struct hl_device *hdev, struct hl_va_range *va_range)
+{
+ mutex_lock(&va_range->lock);
+ clear_va_list_locked(hdev, &va_range->list);
+ mutex_unlock(&va_range->lock);
+
+ mutex_destroy(&va_range->lock);
+ kfree(va_range);
+}
+
+/**
+ * vm_ctx_init_with_ranges() - initialize virtual memory for context.
+ * @ctx: pointer to the habanalabs context structure.
+ * @host_range_start: host virtual addresses range start.
+ * @host_range_end: host virtual addresses range end.
+ * @host_page_size: host page size.
+ * @host_huge_range_start: host virtual addresses range start for memory
+ * allocated with huge pages.
+ * @host_huge_range_end: host virtual addresses range end for memory allocated
+ * with huge pages.
+ * @host_huge_page_size: host huge page size.
+ * @dram_range_start: dram virtual addresses range start.
+ * @dram_range_end: dram virtual addresses range end.
+ * @dram_page_size: dram page size.
+ *
+ * This function initializes the following:
+ * - MMU for context.
+ * - Virtual address to area descriptor hashtable.
+ * - Virtual block list of available virtual memory.
+ */
+static int vm_ctx_init_with_ranges(struct hl_ctx *ctx,
+ u64 host_range_start,
+ u64 host_range_end,
+ u32 host_page_size,
+ u64 host_huge_range_start,
+ u64 host_huge_range_end,
+ u32 host_huge_page_size,
+ u64 dram_range_start,
+ u64 dram_range_end,
+ u32 dram_page_size)
+{
+ struct hl_device *hdev = ctx->hdev;
+ int i, rc;
+
+ for (i = 0 ; i < HL_VA_RANGE_TYPE_MAX ; i++) {
+ ctx->va_range[i] =
+ kzalloc(sizeof(struct hl_va_range), GFP_KERNEL);
+ if (!ctx->va_range[i]) {
+ rc = -ENOMEM;
+ goto free_va_range;
+ }
+ }
+
+ rc = hl_mmu_ctx_init(ctx);
+ if (rc) {
+ dev_err(hdev->dev, "failed to init context %d\n", ctx->asid);
+ goto free_va_range;
+ }
+
+ mutex_init(&ctx->mem_hash_lock);
+ hash_init(ctx->mem_hash);
+
+ mutex_init(&ctx->va_range[HL_VA_RANGE_TYPE_HOST]->lock);
+
+ rc = va_range_init(hdev, ctx->va_range, HL_VA_RANGE_TYPE_HOST,
+ host_range_start, host_range_end, host_page_size);
+ if (rc) {
+ dev_err(hdev->dev, "failed to init host vm range\n");
+ goto mmu_ctx_fini;
+ }
+
+ if (hdev->pmmu_huge_range) {
+ mutex_init(&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->lock);
+
+ rc = va_range_init(hdev,
+ ctx->va_range, HL_VA_RANGE_TYPE_HOST_HUGE,
+ host_huge_range_start, host_huge_range_end,
+ host_huge_page_size);
+ if (rc) {
+ dev_err(hdev->dev,
+ "failed to init host huge vm range\n");
+ goto clear_host_va_range;
+ }
+ } else {
+ kfree(ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]);
+ ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE] =
+ ctx->va_range[HL_VA_RANGE_TYPE_HOST];
+ }
+
+ mutex_init(&ctx->va_range[HL_VA_RANGE_TYPE_DRAM]->lock);
+
+ rc = va_range_init(hdev, ctx->va_range, HL_VA_RANGE_TYPE_DRAM,
+ dram_range_start, dram_range_end, dram_page_size);
+ if (rc) {
+ dev_err(hdev->dev, "failed to init dram vm range\n");
+ goto clear_host_huge_va_range;
+ }
+
+ hl_debugfs_add_ctx_mem_hash(hdev, ctx);
+
+ return 0;
+
+clear_host_huge_va_range:
+ mutex_destroy(&ctx->va_range[HL_VA_RANGE_TYPE_DRAM]->lock);
+
+ if (hdev->pmmu_huge_range) {
+ mutex_lock(&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->lock);
+ clear_va_list_locked(hdev,
+ &ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->list);
+ mutex_unlock(&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->lock);
+ }
+clear_host_va_range:
+ if (hdev->pmmu_huge_range)
+ mutex_destroy(&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->lock);
+ mutex_lock(&ctx->va_range[HL_VA_RANGE_TYPE_HOST]->lock);
+ clear_va_list_locked(hdev, &ctx->va_range[HL_VA_RANGE_TYPE_HOST]->list);
+ mutex_unlock(&ctx->va_range[HL_VA_RANGE_TYPE_HOST]->lock);
+mmu_ctx_fini:
+ mutex_destroy(&ctx->va_range[HL_VA_RANGE_TYPE_HOST]->lock);
+ mutex_destroy(&ctx->mem_hash_lock);
+ hl_mmu_ctx_fini(ctx);
+free_va_range:
+ for (i = 0 ; i < HL_VA_RANGE_TYPE_MAX ; i++)
+ kfree(ctx->va_range[i]);
+
+ return rc;
+}
+
+int hl_vm_ctx_init(struct hl_ctx *ctx)
+{
+ struct asic_fixed_properties *prop = &ctx->hdev->asic_prop;
+ u64 host_range_start, host_range_end, host_huge_range_start,
+ host_huge_range_end, dram_range_start, dram_range_end;
+ u32 host_page_size, host_huge_page_size, dram_page_size;
+
+ atomic64_set(&ctx->dram_phys_mem, 0);
+
+ /*
+ * - If MMU is enabled, init the ranges as usual.
+ * - If MMU is disabled, in case of host mapping, the returned address
+ * is the given one.
+ * In case of DRAM mapping, the returned address is the physical
+ * address of the memory related to the given handle.
+ */
+ if (!ctx->hdev->mmu_enable)
+ return 0;
+
+ dram_range_start = prop->dmmu.start_addr;
+ dram_range_end = prop->dmmu.end_addr - 1;
+ dram_page_size = prop->dram_page_size ?
+ prop->dram_page_size : prop->dmmu.page_size;
+ host_range_start = prop->pmmu.start_addr;
+ host_range_end = prop->pmmu.end_addr - 1;
+ host_page_size = prop->pmmu.page_size;
+ host_huge_range_start = prop->pmmu_huge.start_addr;
+ host_huge_range_end = prop->pmmu_huge.end_addr - 1;
+ host_huge_page_size = prop->pmmu_huge.page_size;
+
+ return vm_ctx_init_with_ranges(ctx, host_range_start, host_range_end,
+ host_page_size, host_huge_range_start,
+ host_huge_range_end, host_huge_page_size,
+ dram_range_start, dram_range_end, dram_page_size);
+}
+
+/**
+ * hl_vm_ctx_fini() - virtual memory teardown of context.
+ * @ctx: pointer to the habanalabs context structure.
+ *
+ * This function perform teardown the following:
+ * - Virtual block list of available virtual memory.
+ * - Virtual address to area descriptor hashtable.
+ * - MMU for context.
+ *
+ * In addition this function does the following:
+ * - Unmaps the existing hashtable nodes if the hashtable is not empty. The
+ * hashtable should be empty as no valid mappings should exist at this
+ * point.
+ * - Frees any existing physical page list from the idr which relates to the
+ * current context asid.
+ * - This function checks the virtual block list for correctness. At this point
+ * the list should contain one element which describes the whole virtual
+ * memory range of the context. Otherwise, a warning is printed.
+ */
+void hl_vm_ctx_fini(struct hl_ctx *ctx)
+{
+ struct hl_vm_phys_pg_pack *phys_pg_list, *tmp_phys_node;
+ struct hl_device *hdev = ctx->hdev;
+ struct hl_vm_hash_node *hnode;
+ struct hl_vm *vm = &hdev->vm;
+ struct hlist_node *tmp_node;
+ struct list_head free_list;
+ struct hl_mem_in args;
+ int i;
+
+ if (!hdev->mmu_enable)
+ return;
+
+ hl_debugfs_remove_ctx_mem_hash(hdev, ctx);
+
+ /*
+ * Clearly something went wrong on hard reset so no point in printing
+ * another side effect error
+ */
+ if (!hdev->reset_info.hard_reset_pending && !hash_empty(ctx->mem_hash))
+ dev_dbg(hdev->dev,
+ "user released device without removing its memory mappings\n");
+
+ hash_for_each_safe(ctx->mem_hash, i, tmp_node, hnode, node) {
+ dev_dbg(hdev->dev,
+ "hl_mem_hash_node of vaddr 0x%llx of asid %d is still alive\n",
+ hnode->vaddr, ctx->asid);
+ args.unmap.device_virt_addr = hnode->vaddr;
+ unmap_device_va(ctx, &args, true);
+ }
+
+ mutex_lock(&hdev->mmu_lock);
+
+ /* invalidate the cache once after the unmapping loop */
+ hl_mmu_invalidate_cache(hdev, true, MMU_OP_USERPTR);
+ hl_mmu_invalidate_cache(hdev, true, MMU_OP_PHYS_PACK);
+
+ mutex_unlock(&hdev->mmu_lock);
+
+ INIT_LIST_HEAD(&free_list);
+
+ spin_lock(&vm->idr_lock);
+ idr_for_each_entry(&vm->phys_pg_pack_handles, phys_pg_list, i)
+ if (phys_pg_list->asid == ctx->asid) {
+ dev_dbg(hdev->dev,
+ "page list 0x%px of asid %d is still alive\n",
+ phys_pg_list, ctx->asid);
+
+ atomic64_sub(phys_pg_list->total_size, &hdev->dram_used_mem);
+ idr_remove(&vm->phys_pg_pack_handles, i);
+ list_add(&phys_pg_list->node, &free_list);
+ }
+ spin_unlock(&vm->idr_lock);
+
+ list_for_each_entry_safe(phys_pg_list, tmp_phys_node, &free_list, node)
+ free_phys_pg_pack(hdev, phys_pg_list);
+
+ va_range_fini(hdev, ctx->va_range[HL_VA_RANGE_TYPE_DRAM]);
+ va_range_fini(hdev, ctx->va_range[HL_VA_RANGE_TYPE_HOST]);
+
+ if (hdev->pmmu_huge_range)
+ va_range_fini(hdev, ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]);
+
+ mutex_destroy(&ctx->mem_hash_lock);
+ hl_mmu_ctx_fini(ctx);
+
+ /* In this case we need to clear the global accounting of DRAM usage
+ * because the user notifies us on allocations. If the user is no more,
+ * all DRAM is available
+ */
+ if (ctx->asid != HL_KERNEL_ASID_ID &&
+ !hdev->asic_prop.dram_supports_virtual_memory)
+ atomic64_set(&hdev->dram_used_mem, 0);
+}
+
+/**
+ * hl_vm_init() - initialize virtual memory module.
+ * @hdev: pointer to the habanalabs device structure.
+ *
+ * This function initializes the following:
+ * - MMU module.
+ * - DRAM physical pages pool of 2MB.
+ * - Idr for device memory allocation handles.
+ */
+int hl_vm_init(struct hl_device *hdev)
+{
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ struct hl_vm *vm = &hdev->vm;
+ int rc;
+
+ if (is_power_of_2(prop->dram_page_size))
+ vm->dram_pg_pool =
+ gen_pool_create(__ffs(prop->dram_page_size), -1);
+ else
+ vm->dram_pg_pool =
+ gen_pool_create(__ffs(DRAM_POOL_PAGE_SIZE), -1);
+
+ if (!vm->dram_pg_pool) {
+ dev_err(hdev->dev, "Failed to create dram page pool\n");
+ return -ENOMEM;
+ }
+
+ kref_init(&vm->dram_pg_pool_refcount);
+
+ rc = gen_pool_add(vm->dram_pg_pool, prop->dram_user_base_address,
+ prop->dram_end_address - prop->dram_user_base_address,
+ -1);
+
+ if (rc) {
+ dev_err(hdev->dev,
+ "Failed to add memory to dram page pool %d\n", rc);
+ goto pool_add_err;
+ }
+
+ spin_lock_init(&vm->idr_lock);
+ idr_init(&vm->phys_pg_pack_handles);
+
+ atomic64_set(&hdev->dram_used_mem, 0);
+
+ vm->init_done = true;
+
+ return 0;
+
+pool_add_err:
+ gen_pool_destroy(vm->dram_pg_pool);
+
+ return rc;
+}
+
+/**
+ * hl_vm_fini() - virtual memory module teardown.
+ * @hdev: pointer to the habanalabs device structure.
+ *
+ * This function perform teardown to the following:
+ * - Idr for device memory allocation handles.
+ * - DRAM physical pages pool of 2MB.
+ * - MMU module.
+ */
+void hl_vm_fini(struct hl_device *hdev)
+{
+ struct hl_vm *vm = &hdev->vm;
+
+ if (!vm->init_done)
+ return;
+
+ /*
+ * At this point all the contexts should be freed and hence no DRAM
+ * memory should be in use. Hence the DRAM pool should be freed here.
+ */
+ if (kref_put(&vm->dram_pg_pool_refcount, dram_pg_pool_do_release) != 1)
+ dev_warn(hdev->dev, "dram_pg_pool was not destroyed on %s\n",
+ __func__);
+
+ vm->init_done = false;
+}
+
+/**
+ * hl_hw_block_mem_init() - HW block memory initialization.
+ * @ctx: pointer to the habanalabs context structure.
+ *
+ * This function initializes the HW block virtual mapped addresses list and
+ * it's lock.
+ */
+void hl_hw_block_mem_init(struct hl_ctx *ctx)
+{
+ mutex_init(&ctx->hw_block_list_lock);
+ INIT_LIST_HEAD(&ctx->hw_block_mem_list);
+}
+
+/**
+ * hl_hw_block_mem_fini() - HW block memory teardown.
+ * @ctx: pointer to the habanalabs context structure.
+ *
+ * This function clears the HW block virtual mapped addresses list and destroys
+ * it's lock.
+ */
+void hl_hw_block_mem_fini(struct hl_ctx *ctx)
+{
+ struct hl_vm_hw_block_list_node *lnode, *tmp;
+
+ if (!list_empty(&ctx->hw_block_mem_list))
+ dev_crit(ctx->hdev->dev, "HW block mem list isn't empty\n");
+
+ list_for_each_entry_safe(lnode, tmp, &ctx->hw_block_mem_list, node) {
+ list_del(&lnode->node);
+ kfree(lnode);
+ }
+
+ mutex_destroy(&ctx->hw_block_list_lock);
+}