diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:49:45 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:49:45 +0000 |
commit | 2c3c1048746a4622d8c89a29670120dc8fab93c4 (patch) | |
tree | 848558de17fb3008cdf4d861b01ac7781903ce39 /drivers/net/ipa/gsi.c | |
parent | Initial commit. (diff) | |
download | linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.tar.xz linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.zip |
Adding upstream version 6.1.76.upstream/6.1.76
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'drivers/net/ipa/gsi.c')
-rw-r--r-- | drivers/net/ipa/gsi.c | 2308 |
1 files changed, 2308 insertions, 0 deletions
diff --git a/drivers/net/ipa/gsi.c b/drivers/net/ipa/gsi.c new file mode 100644 index 000000000..f1a393829 --- /dev/null +++ b/drivers/net/ipa/gsi.c @@ -0,0 +1,2308 @@ +// SPDX-License-Identifier: GPL-2.0 + +/* Copyright (c) 2015-2018, The Linux Foundation. All rights reserved. + * Copyright (C) 2018-2022 Linaro Ltd. + */ + +#include <linux/types.h> +#include <linux/bits.h> +#include <linux/bitfield.h> +#include <linux/mutex.h> +#include <linux/completion.h> +#include <linux/io.h> +#include <linux/bug.h> +#include <linux/interrupt.h> +#include <linux/platform_device.h> +#include <linux/netdevice.h> + +#include "gsi.h" +#include "gsi_reg.h" +#include "gsi_private.h" +#include "gsi_trans.h" +#include "ipa_gsi.h" +#include "ipa_data.h" +#include "ipa_version.h" + +/** + * DOC: The IPA Generic Software Interface + * + * The generic software interface (GSI) is an integral component of the IPA, + * providing a well-defined communication layer between the AP subsystem + * and the IPA core. The modem uses the GSI layer as well. + * + * -------- --------- + * | | | | + * | AP +<---. .----+ Modem | + * | +--. | | .->+ | + * | | | | | | | | + * -------- | | | | --------- + * v | v | + * --+-+---+-+-- + * | GSI | + * |-----------| + * | | + * | IPA | + * | | + * ------------- + * + * In the above diagram, the AP and Modem represent "execution environments" + * (EEs), which are independent operating environments that use the IPA for + * data transfer. + * + * Each EE uses a set of unidirectional GSI "channels," which allow transfer + * of data to or from the IPA. A channel is implemented as a ring buffer, + * with a DRAM-resident array of "transfer elements" (TREs) available to + * describe transfers to or from other EEs through the IPA. A transfer + * element can also contain an immediate command, requesting the IPA perform + * actions other than data transfer. + * + * Each TRE refers to a block of data--also located in DRAM. After writing + * one or more TREs to a channel, the writer (either the IPA or an EE) writes + * a doorbell register to inform the receiving side how many elements have + * been written. + * + * Each channel has a GSI "event ring" associated with it. An event ring + * is implemented very much like a channel ring, but is always directed from + * the IPA to an EE. The IPA notifies an EE (such as the AP) about channel + * events by adding an entry to the event ring associated with the channel. + * The GSI then writes its doorbell for the event ring, causing the target + * EE to be interrupted. Each entry in an event ring contains a pointer + * to the channel TRE whose completion the event represents. + * + * Each TRE in a channel ring has a set of flags. One flag indicates whether + * the completion of the transfer operation generates an entry (and possibly + * an interrupt) in the channel's event ring. Other flags allow transfer + * elements to be chained together, forming a single logical transaction. + * TRE flags are used to control whether and when interrupts are generated + * to signal completion of channel transfers. + * + * Elements in channel and event rings are completed (or consumed) strictly + * in order. Completion of one entry implies the completion of all preceding + * entries. A single completion interrupt can therefore communicate the + * completion of many transfers. + * + * Note that all GSI registers are little-endian, which is the assumed + * endianness of I/O space accesses. The accessor functions perform byte + * swapping if needed (i.e., for a big endian CPU). + */ + +/* Delay period for interrupt moderation (in 32KHz IPA internal timer ticks) */ +#define GSI_EVT_RING_INT_MODT (32 * 1) /* 1ms under 32KHz clock */ + +#define GSI_CMD_TIMEOUT 50 /* milliseconds */ + +#define GSI_CHANNEL_STOP_RETRIES 10 +#define GSI_CHANNEL_MODEM_HALT_RETRIES 10 +#define GSI_CHANNEL_MODEM_FLOW_RETRIES 5 /* disable flow control only */ + +#define GSI_MHI_EVENT_ID_START 10 /* 1st reserved event id */ +#define GSI_MHI_EVENT_ID_END 16 /* Last reserved event id */ + +#define GSI_ISR_MAX_ITER 50 /* Detect interrupt storms */ + +/* An entry in an event ring */ +struct gsi_event { + __le64 xfer_ptr; + __le16 len; + u8 reserved1; + u8 code; + __le16 reserved2; + u8 type; + u8 chid; +}; + +/** gsi_channel_scratch_gpi - GPI protocol scratch register + * @max_outstanding_tre: + * Defines the maximum number of TREs allowed in a single transaction + * on a channel (in bytes). This determines the amount of prefetch + * performed by the hardware. We configure this to equal the size of + * the TLV FIFO for the channel. + * @outstanding_threshold: + * Defines the threshold (in bytes) determining when the sequencer + * should update the channel doorbell. We configure this to equal + * the size of two TREs. + */ +struct gsi_channel_scratch_gpi { + u64 reserved1; + u16 reserved2; + u16 max_outstanding_tre; + u16 reserved3; + u16 outstanding_threshold; +}; + +/** gsi_channel_scratch - channel scratch configuration area + * + * The exact interpretation of this register is protocol-specific. + * We only use GPI channels; see struct gsi_channel_scratch_gpi, above. + */ +union gsi_channel_scratch { + struct gsi_channel_scratch_gpi gpi; + struct { + u32 word1; + u32 word2; + u32 word3; + u32 word4; + } data; +}; + +/* Check things that can be validated at build time. */ +static void gsi_validate_build(void) +{ + /* This is used as a divisor */ + BUILD_BUG_ON(!GSI_RING_ELEMENT_SIZE); + + /* Code assumes the size of channel and event ring element are + * the same (and fixed). Make sure the size of an event ring + * element is what's expected. + */ + BUILD_BUG_ON(sizeof(struct gsi_event) != GSI_RING_ELEMENT_SIZE); + + /* Hardware requires a 2^n ring size. We ensure the number of + * elements in an event ring is a power of 2 elsewhere; this + * ensure the elements themselves meet the requirement. + */ + BUILD_BUG_ON(!is_power_of_2(GSI_RING_ELEMENT_SIZE)); + + /* The channel element size must fit in this field */ + BUILD_BUG_ON(GSI_RING_ELEMENT_SIZE > field_max(ELEMENT_SIZE_FMASK)); + + /* The event ring element size must fit in this field */ + BUILD_BUG_ON(GSI_RING_ELEMENT_SIZE > field_max(EV_ELEMENT_SIZE_FMASK)); +} + +/* Return the channel id associated with a given channel */ +static u32 gsi_channel_id(struct gsi_channel *channel) +{ + return channel - &channel->gsi->channel[0]; +} + +/* An initialized channel has a non-null GSI pointer */ +static bool gsi_channel_initialized(struct gsi_channel *channel) +{ + return !!channel->gsi; +} + +/* Update the GSI IRQ type register with the cached value */ +static void gsi_irq_type_update(struct gsi *gsi, u32 val) +{ + gsi->type_enabled_bitmap = val; + iowrite32(val, gsi->virt + GSI_CNTXT_TYPE_IRQ_MSK_OFFSET); +} + +static void gsi_irq_type_enable(struct gsi *gsi, enum gsi_irq_type_id type_id) +{ + gsi_irq_type_update(gsi, gsi->type_enabled_bitmap | BIT(type_id)); +} + +static void gsi_irq_type_disable(struct gsi *gsi, enum gsi_irq_type_id type_id) +{ + gsi_irq_type_update(gsi, gsi->type_enabled_bitmap & ~BIT(type_id)); +} + +/* Event ring commands are performed one at a time. Their completion + * is signaled by the event ring control GSI interrupt type, which is + * only enabled when we issue an event ring command. Only the event + * ring being operated on has this interrupt enabled. + */ +static void gsi_irq_ev_ctrl_enable(struct gsi *gsi, u32 evt_ring_id) +{ + u32 val = BIT(evt_ring_id); + + /* There's a small chance that a previous command completed + * after the interrupt was disabled, so make sure we have no + * pending interrupts before we enable them. + */ + iowrite32(~0, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_CLR_OFFSET); + + iowrite32(val, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_MSK_OFFSET); + gsi_irq_type_enable(gsi, GSI_EV_CTRL); +} + +/* Disable event ring control interrupts */ +static void gsi_irq_ev_ctrl_disable(struct gsi *gsi) +{ + gsi_irq_type_disable(gsi, GSI_EV_CTRL); + iowrite32(0, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_MSK_OFFSET); +} + +/* Channel commands are performed one at a time. Their completion is + * signaled by the channel control GSI interrupt type, which is only + * enabled when we issue a channel command. Only the channel being + * operated on has this interrupt enabled. + */ +static void gsi_irq_ch_ctrl_enable(struct gsi *gsi, u32 channel_id) +{ + u32 val = BIT(channel_id); + + /* There's a small chance that a previous command completed + * after the interrupt was disabled, so make sure we have no + * pending interrupts before we enable them. + */ + iowrite32(~0, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_CLR_OFFSET); + + iowrite32(val, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_MSK_OFFSET); + gsi_irq_type_enable(gsi, GSI_CH_CTRL); +} + +/* Disable channel control interrupts */ +static void gsi_irq_ch_ctrl_disable(struct gsi *gsi) +{ + gsi_irq_type_disable(gsi, GSI_CH_CTRL); + iowrite32(0, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_MSK_OFFSET); +} + +static void gsi_irq_ieob_enable_one(struct gsi *gsi, u32 evt_ring_id) +{ + bool enable_ieob = !gsi->ieob_enabled_bitmap; + u32 val; + + gsi->ieob_enabled_bitmap |= BIT(evt_ring_id); + val = gsi->ieob_enabled_bitmap; + iowrite32(val, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET); + + /* Enable the interrupt type if this is the first channel enabled */ + if (enable_ieob) + gsi_irq_type_enable(gsi, GSI_IEOB); +} + +static void gsi_irq_ieob_disable(struct gsi *gsi, u32 event_mask) +{ + u32 val; + + gsi->ieob_enabled_bitmap &= ~event_mask; + + /* Disable the interrupt type if this was the last enabled channel */ + if (!gsi->ieob_enabled_bitmap) + gsi_irq_type_disable(gsi, GSI_IEOB); + + val = gsi->ieob_enabled_bitmap; + iowrite32(val, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET); +} + +static void gsi_irq_ieob_disable_one(struct gsi *gsi, u32 evt_ring_id) +{ + gsi_irq_ieob_disable(gsi, BIT(evt_ring_id)); +} + +/* Enable all GSI_interrupt types */ +static void gsi_irq_enable(struct gsi *gsi) +{ + u32 val; + + /* Global interrupts include hardware error reports. Enable + * that so we can at least report the error should it occur. + */ + iowrite32(BIT(ERROR_INT), gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET); + gsi_irq_type_update(gsi, gsi->type_enabled_bitmap | BIT(GSI_GLOB_EE)); + + /* General GSI interrupts are reported to all EEs; if they occur + * they are unrecoverable (without reset). A breakpoint interrupt + * also exists, but we don't support that. We want to be notified + * of errors so we can report them, even if they can't be handled. + */ + val = BIT(BUS_ERROR); + val |= BIT(CMD_FIFO_OVRFLOW); + val |= BIT(MCS_STACK_OVRFLOW); + iowrite32(val, gsi->virt + GSI_CNTXT_GSI_IRQ_EN_OFFSET); + gsi_irq_type_update(gsi, gsi->type_enabled_bitmap | BIT(GSI_GENERAL)); +} + +/* Disable all GSI interrupt types */ +static void gsi_irq_disable(struct gsi *gsi) +{ + gsi_irq_type_update(gsi, 0); + + /* Clear the type-specific interrupt masks set by gsi_irq_enable() */ + iowrite32(0, gsi->virt + GSI_CNTXT_GSI_IRQ_EN_OFFSET); + iowrite32(0, gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET); +} + +/* Return the virtual address associated with a ring index */ +void *gsi_ring_virt(struct gsi_ring *ring, u32 index) +{ + /* Note: index *must* be used modulo the ring count here */ + return ring->virt + (index % ring->count) * GSI_RING_ELEMENT_SIZE; +} + +/* Return the 32-bit DMA address associated with a ring index */ +static u32 gsi_ring_addr(struct gsi_ring *ring, u32 index) +{ + return lower_32_bits(ring->addr) + index * GSI_RING_ELEMENT_SIZE; +} + +/* Return the ring index of a 32-bit ring offset */ +static u32 gsi_ring_index(struct gsi_ring *ring, u32 offset) +{ + return (offset - gsi_ring_addr(ring, 0)) / GSI_RING_ELEMENT_SIZE; +} + +/* Issue a GSI command by writing a value to a register, then wait for + * completion to be signaled. Returns true if the command completes + * or false if it times out. + */ +static bool gsi_command(struct gsi *gsi, u32 reg, u32 val) +{ + unsigned long timeout = msecs_to_jiffies(GSI_CMD_TIMEOUT); + struct completion *completion = &gsi->completion; + + reinit_completion(completion); + + iowrite32(val, gsi->virt + reg); + + return !!wait_for_completion_timeout(completion, timeout); +} + +/* Return the hardware's notion of the current state of an event ring */ +static enum gsi_evt_ring_state +gsi_evt_ring_state(struct gsi *gsi, u32 evt_ring_id) +{ + u32 val; + + val = ioread32(gsi->virt + GSI_EV_CH_E_CNTXT_0_OFFSET(evt_ring_id)); + + return u32_get_bits(val, EV_CHSTATE_FMASK); +} + +/* Issue an event ring command and wait for it to complete */ +static void gsi_evt_ring_command(struct gsi *gsi, u32 evt_ring_id, + enum gsi_evt_cmd_opcode opcode) +{ + struct device *dev = gsi->dev; + bool timeout; + u32 val; + + /* Enable the completion interrupt for the command */ + gsi_irq_ev_ctrl_enable(gsi, evt_ring_id); + + val = u32_encode_bits(evt_ring_id, EV_CHID_FMASK); + val |= u32_encode_bits(opcode, EV_OPCODE_FMASK); + + timeout = !gsi_command(gsi, GSI_EV_CH_CMD_OFFSET, val); + + gsi_irq_ev_ctrl_disable(gsi); + + if (!timeout) + return; + + dev_err(dev, "GSI command %u for event ring %u timed out, state %u\n", + opcode, evt_ring_id, gsi_evt_ring_state(gsi, evt_ring_id)); +} + +/* Allocate an event ring in NOT_ALLOCATED state */ +static int gsi_evt_ring_alloc_command(struct gsi *gsi, u32 evt_ring_id) +{ + enum gsi_evt_ring_state state; + + /* Get initial event ring state */ + state = gsi_evt_ring_state(gsi, evt_ring_id); + if (state != GSI_EVT_RING_STATE_NOT_ALLOCATED) { + dev_err(gsi->dev, "event ring %u bad state %u before alloc\n", + evt_ring_id, state); + return -EINVAL; + } + + gsi_evt_ring_command(gsi, evt_ring_id, GSI_EVT_ALLOCATE); + + /* If successful the event ring state will have changed */ + state = gsi_evt_ring_state(gsi, evt_ring_id); + if (state == GSI_EVT_RING_STATE_ALLOCATED) + return 0; + + dev_err(gsi->dev, "event ring %u bad state %u after alloc\n", + evt_ring_id, state); + + return -EIO; +} + +/* Reset a GSI event ring in ALLOCATED or ERROR state. */ +static void gsi_evt_ring_reset_command(struct gsi *gsi, u32 evt_ring_id) +{ + enum gsi_evt_ring_state state; + + state = gsi_evt_ring_state(gsi, evt_ring_id); + if (state != GSI_EVT_RING_STATE_ALLOCATED && + state != GSI_EVT_RING_STATE_ERROR) { + dev_err(gsi->dev, "event ring %u bad state %u before reset\n", + evt_ring_id, state); + return; + } + + gsi_evt_ring_command(gsi, evt_ring_id, GSI_EVT_RESET); + + /* If successful the event ring state will have changed */ + state = gsi_evt_ring_state(gsi, evt_ring_id); + if (state == GSI_EVT_RING_STATE_ALLOCATED) + return; + + dev_err(gsi->dev, "event ring %u bad state %u after reset\n", + evt_ring_id, state); +} + +/* Issue a hardware de-allocation request for an allocated event ring */ +static void gsi_evt_ring_de_alloc_command(struct gsi *gsi, u32 evt_ring_id) +{ + enum gsi_evt_ring_state state; + + state = gsi_evt_ring_state(gsi, evt_ring_id); + if (state != GSI_EVT_RING_STATE_ALLOCATED) { + dev_err(gsi->dev, "event ring %u state %u before dealloc\n", + evt_ring_id, state); + return; + } + + gsi_evt_ring_command(gsi, evt_ring_id, GSI_EVT_DE_ALLOC); + + /* If successful the event ring state will have changed */ + state = gsi_evt_ring_state(gsi, evt_ring_id); + if (state == GSI_EVT_RING_STATE_NOT_ALLOCATED) + return; + + dev_err(gsi->dev, "event ring %u bad state %u after dealloc\n", + evt_ring_id, state); +} + +/* Fetch the current state of a channel from hardware */ +static enum gsi_channel_state gsi_channel_state(struct gsi_channel *channel) +{ + u32 channel_id = gsi_channel_id(channel); + void __iomem *virt = channel->gsi->virt; + u32 val; + + val = ioread32(virt + GSI_CH_C_CNTXT_0_OFFSET(channel_id)); + + return u32_get_bits(val, CHSTATE_FMASK); +} + +/* Issue a channel command and wait for it to complete */ +static void +gsi_channel_command(struct gsi_channel *channel, enum gsi_ch_cmd_opcode opcode) +{ + u32 channel_id = gsi_channel_id(channel); + struct gsi *gsi = channel->gsi; + struct device *dev = gsi->dev; + bool timeout; + u32 val; + + /* Enable the completion interrupt for the command */ + gsi_irq_ch_ctrl_enable(gsi, channel_id); + + val = u32_encode_bits(channel_id, CH_CHID_FMASK); + val |= u32_encode_bits(opcode, CH_OPCODE_FMASK); + timeout = !gsi_command(gsi, GSI_CH_CMD_OFFSET, val); + + gsi_irq_ch_ctrl_disable(gsi); + + if (!timeout) + return; + + dev_err(dev, "GSI command %u for channel %u timed out, state %u\n", + opcode, channel_id, gsi_channel_state(channel)); +} + +/* Allocate GSI channel in NOT_ALLOCATED state */ +static int gsi_channel_alloc_command(struct gsi *gsi, u32 channel_id) +{ + struct gsi_channel *channel = &gsi->channel[channel_id]; + struct device *dev = gsi->dev; + enum gsi_channel_state state; + + /* Get initial channel state */ + state = gsi_channel_state(channel); + if (state != GSI_CHANNEL_STATE_NOT_ALLOCATED) { + dev_err(dev, "channel %u bad state %u before alloc\n", + channel_id, state); + return -EINVAL; + } + + gsi_channel_command(channel, GSI_CH_ALLOCATE); + + /* If successful the channel state will have changed */ + state = gsi_channel_state(channel); + if (state == GSI_CHANNEL_STATE_ALLOCATED) + return 0; + + dev_err(dev, "channel %u bad state %u after alloc\n", + channel_id, state); + + return -EIO; +} + +/* Start an ALLOCATED channel */ +static int gsi_channel_start_command(struct gsi_channel *channel) +{ + struct device *dev = channel->gsi->dev; + enum gsi_channel_state state; + + state = gsi_channel_state(channel); + if (state != GSI_CHANNEL_STATE_ALLOCATED && + state != GSI_CHANNEL_STATE_STOPPED) { + dev_err(dev, "channel %u bad state %u before start\n", + gsi_channel_id(channel), state); + return -EINVAL; + } + + gsi_channel_command(channel, GSI_CH_START); + + /* If successful the channel state will have changed */ + state = gsi_channel_state(channel); + if (state == GSI_CHANNEL_STATE_STARTED) + return 0; + + dev_err(dev, "channel %u bad state %u after start\n", + gsi_channel_id(channel), state); + + return -EIO; +} + +/* Stop a GSI channel in STARTED state */ +static int gsi_channel_stop_command(struct gsi_channel *channel) +{ + struct device *dev = channel->gsi->dev; + enum gsi_channel_state state; + + state = gsi_channel_state(channel); + + /* Channel could have entered STOPPED state since last call + * if it timed out. If so, we're done. + */ + if (state == GSI_CHANNEL_STATE_STOPPED) + return 0; + + if (state != GSI_CHANNEL_STATE_STARTED && + state != GSI_CHANNEL_STATE_STOP_IN_PROC) { + dev_err(dev, "channel %u bad state %u before stop\n", + gsi_channel_id(channel), state); + return -EINVAL; + } + + gsi_channel_command(channel, GSI_CH_STOP); + + /* If successful the channel state will have changed */ + state = gsi_channel_state(channel); + if (state == GSI_CHANNEL_STATE_STOPPED) + return 0; + + /* We may have to try again if stop is in progress */ + if (state == GSI_CHANNEL_STATE_STOP_IN_PROC) + return -EAGAIN; + + dev_err(dev, "channel %u bad state %u after stop\n", + gsi_channel_id(channel), state); + + return -EIO; +} + +/* Reset a GSI channel in ALLOCATED or ERROR state. */ +static void gsi_channel_reset_command(struct gsi_channel *channel) +{ + struct device *dev = channel->gsi->dev; + enum gsi_channel_state state; + + /* A short delay is required before a RESET command */ + usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC); + + state = gsi_channel_state(channel); + if (state != GSI_CHANNEL_STATE_STOPPED && + state != GSI_CHANNEL_STATE_ERROR) { + /* No need to reset a channel already in ALLOCATED state */ + if (state != GSI_CHANNEL_STATE_ALLOCATED) + dev_err(dev, "channel %u bad state %u before reset\n", + gsi_channel_id(channel), state); + return; + } + + gsi_channel_command(channel, GSI_CH_RESET); + + /* If successful the channel state will have changed */ + state = gsi_channel_state(channel); + if (state != GSI_CHANNEL_STATE_ALLOCATED) + dev_err(dev, "channel %u bad state %u after reset\n", + gsi_channel_id(channel), state); +} + +/* Deallocate an ALLOCATED GSI channel */ +static void gsi_channel_de_alloc_command(struct gsi *gsi, u32 channel_id) +{ + struct gsi_channel *channel = &gsi->channel[channel_id]; + struct device *dev = gsi->dev; + enum gsi_channel_state state; + + state = gsi_channel_state(channel); + if (state != GSI_CHANNEL_STATE_ALLOCATED) { + dev_err(dev, "channel %u bad state %u before dealloc\n", + channel_id, state); + return; + } + + gsi_channel_command(channel, GSI_CH_DE_ALLOC); + + /* If successful the channel state will have changed */ + state = gsi_channel_state(channel); + + if (state != GSI_CHANNEL_STATE_NOT_ALLOCATED) + dev_err(dev, "channel %u bad state %u after dealloc\n", + channel_id, state); +} + +/* Ring an event ring doorbell, reporting the last entry processed by the AP. + * The index argument (modulo the ring count) is the first unfilled entry, so + * we supply one less than that with the doorbell. Update the event ring + * index field with the value provided. + */ +static void gsi_evt_ring_doorbell(struct gsi *gsi, u32 evt_ring_id, u32 index) +{ + struct gsi_ring *ring = &gsi->evt_ring[evt_ring_id].ring; + u32 val; + + ring->index = index; /* Next unused entry */ + + /* Note: index *must* be used modulo the ring count here */ + val = gsi_ring_addr(ring, (index - 1) % ring->count); + iowrite32(val, gsi->virt + GSI_EV_CH_E_DOORBELL_0_OFFSET(evt_ring_id)); +} + +/* Program an event ring for use */ +static void gsi_evt_ring_program(struct gsi *gsi, u32 evt_ring_id) +{ + struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id]; + struct gsi_ring *ring = &evt_ring->ring; + size_t size; + u32 val; + + /* We program all event rings as GPI type/protocol */ + val = u32_encode_bits(GSI_CHANNEL_TYPE_GPI, EV_CHTYPE_FMASK); + val |= EV_INTYPE_FMASK; + val |= u32_encode_bits(GSI_RING_ELEMENT_SIZE, EV_ELEMENT_SIZE_FMASK); + iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_0_OFFSET(evt_ring_id)); + + size = ring->count * GSI_RING_ELEMENT_SIZE; + val = ev_r_length_encoded(gsi->version, size); + iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_1_OFFSET(evt_ring_id)); + + /* The context 2 and 3 registers store the low-order and + * high-order 32 bits of the address of the event ring, + * respectively. + */ + val = lower_32_bits(ring->addr); + iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_2_OFFSET(evt_ring_id)); + val = upper_32_bits(ring->addr); + iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_3_OFFSET(evt_ring_id)); + + /* Enable interrupt moderation by setting the moderation delay */ + val = u32_encode_bits(GSI_EVT_RING_INT_MODT, MODT_FMASK); + val |= u32_encode_bits(1, MODC_FMASK); /* comes from channel */ + iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_8_OFFSET(evt_ring_id)); + + /* No MSI write data, and MSI address high and low address is 0 */ + iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_9_OFFSET(evt_ring_id)); + iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_10_OFFSET(evt_ring_id)); + iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_11_OFFSET(evt_ring_id)); + + /* We don't need to get event read pointer updates */ + iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_12_OFFSET(evt_ring_id)); + iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_13_OFFSET(evt_ring_id)); + + /* Finally, tell the hardware our "last processed" event (arbitrary) */ + gsi_evt_ring_doorbell(gsi, evt_ring_id, ring->index); +} + +/* Find the transaction whose completion indicates a channel is quiesced */ +static struct gsi_trans *gsi_channel_trans_last(struct gsi_channel *channel) +{ + struct gsi_trans_info *trans_info = &channel->trans_info; + u32 pending_id = trans_info->pending_id; + struct gsi_trans *trans; + u16 trans_id; + + if (channel->toward_ipa && pending_id != trans_info->free_id) { + /* There is a small chance a TX transaction got allocated + * just before we disabled transmits, so check for that. + * The last allocated, committed, or pending transaction + * precedes the first free transaction. + */ + trans_id = trans_info->free_id - 1; + } else if (trans_info->polled_id != pending_id) { + /* Otherwise (TX or RX) we want to wait for anything that + * has completed, or has been polled but not released yet. + * + * The last completed or polled transaction precedes the + * first pending transaction. + */ + trans_id = pending_id - 1; + } else { + return NULL; + } + + /* Caller will wait for this, so take a reference */ + trans = &trans_info->trans[trans_id % channel->tre_count]; + refcount_inc(&trans->refcount); + + return trans; +} + +/* Wait for transaction activity on a channel to complete */ +static void gsi_channel_trans_quiesce(struct gsi_channel *channel) +{ + struct gsi_trans *trans; + + /* Get the last transaction, and wait for it to complete */ + trans = gsi_channel_trans_last(channel); + if (trans) { + wait_for_completion(&trans->completion); + gsi_trans_free(trans); + } +} + +/* Program a channel for use; there is no gsi_channel_deprogram() */ +static void gsi_channel_program(struct gsi_channel *channel, bool doorbell) +{ + size_t size = channel->tre_ring.count * GSI_RING_ELEMENT_SIZE; + u32 channel_id = gsi_channel_id(channel); + union gsi_channel_scratch scr = { }; + struct gsi_channel_scratch_gpi *gpi; + struct gsi *gsi = channel->gsi; + u32 wrr_weight = 0; + u32 val; + + /* We program all channels as GPI type/protocol */ + val = chtype_protocol_encoded(gsi->version, GSI_CHANNEL_TYPE_GPI); + if (channel->toward_ipa) + val |= CHTYPE_DIR_FMASK; + val |= u32_encode_bits(channel->evt_ring_id, ERINDEX_FMASK); + val |= u32_encode_bits(GSI_RING_ELEMENT_SIZE, ELEMENT_SIZE_FMASK); + iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_0_OFFSET(channel_id)); + + val = r_length_encoded(gsi->version, size); + iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_1_OFFSET(channel_id)); + + /* The context 2 and 3 registers store the low-order and + * high-order 32 bits of the address of the channel ring, + * respectively. + */ + val = lower_32_bits(channel->tre_ring.addr); + iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_2_OFFSET(channel_id)); + val = upper_32_bits(channel->tre_ring.addr); + iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_3_OFFSET(channel_id)); + + /* Command channel gets low weighted round-robin priority */ + if (channel->command) + wrr_weight = field_max(WRR_WEIGHT_FMASK); + val = u32_encode_bits(wrr_weight, WRR_WEIGHT_FMASK); + + /* Max prefetch is 1 segment (do not set MAX_PREFETCH_FMASK) */ + + /* No need to use the doorbell engine starting at IPA v4.0 */ + if (gsi->version < IPA_VERSION_4_0 && doorbell) + val |= USE_DB_ENG_FMASK; + + /* v4.0 introduces an escape buffer for prefetch. We use it + * on all but the AP command channel. + */ + if (gsi->version >= IPA_VERSION_4_0 && !channel->command) { + /* If not otherwise set, prefetch buffers are used */ + if (gsi->version < IPA_VERSION_4_5) + val |= USE_ESCAPE_BUF_ONLY_FMASK; + else + val |= u32_encode_bits(GSI_ESCAPE_BUF_ONLY, + PREFETCH_MODE_FMASK); + } + /* All channels set DB_IN_BYTES */ + if (gsi->version >= IPA_VERSION_4_9) + val |= DB_IN_BYTES; + + iowrite32(val, gsi->virt + GSI_CH_C_QOS_OFFSET(channel_id)); + + /* Now update the scratch registers for GPI protocol */ + gpi = &scr.gpi; + gpi->max_outstanding_tre = channel->trans_tre_max * + GSI_RING_ELEMENT_SIZE; + gpi->outstanding_threshold = 2 * GSI_RING_ELEMENT_SIZE; + + val = scr.data.word1; + iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_0_OFFSET(channel_id)); + + val = scr.data.word2; + iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_1_OFFSET(channel_id)); + + val = scr.data.word3; + iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_2_OFFSET(channel_id)); + + /* We must preserve the upper 16 bits of the last scratch register. + * The next sequence assumes those bits remain unchanged between the + * read and the write. + */ + val = ioread32(gsi->virt + GSI_CH_C_SCRATCH_3_OFFSET(channel_id)); + val = (scr.data.word4 & GENMASK(31, 16)) | (val & GENMASK(15, 0)); + iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_3_OFFSET(channel_id)); + + /* All done! */ +} + +static int __gsi_channel_start(struct gsi_channel *channel, bool resume) +{ + struct gsi *gsi = channel->gsi; + int ret; + + /* Prior to IPA v4.0 suspend/resume is not implemented by GSI */ + if (resume && gsi->version < IPA_VERSION_4_0) + return 0; + + mutex_lock(&gsi->mutex); + + ret = gsi_channel_start_command(channel); + + mutex_unlock(&gsi->mutex); + + return ret; +} + +/* Start an allocated GSI channel */ +int gsi_channel_start(struct gsi *gsi, u32 channel_id) +{ + struct gsi_channel *channel = &gsi->channel[channel_id]; + int ret; + + /* Enable NAPI and the completion interrupt */ + napi_enable(&channel->napi); + gsi_irq_ieob_enable_one(gsi, channel->evt_ring_id); + + ret = __gsi_channel_start(channel, false); + if (ret) { + gsi_irq_ieob_disable_one(gsi, channel->evt_ring_id); + napi_disable(&channel->napi); + } + + return ret; +} + +static int gsi_channel_stop_retry(struct gsi_channel *channel) +{ + u32 retries = GSI_CHANNEL_STOP_RETRIES; + int ret; + + do { + ret = gsi_channel_stop_command(channel); + if (ret != -EAGAIN) + break; + usleep_range(3 * USEC_PER_MSEC, 5 * USEC_PER_MSEC); + } while (retries--); + + return ret; +} + +static int __gsi_channel_stop(struct gsi_channel *channel, bool suspend) +{ + struct gsi *gsi = channel->gsi; + int ret; + + /* Wait for any underway transactions to complete before stopping. */ + gsi_channel_trans_quiesce(channel); + + /* Prior to IPA v4.0 suspend/resume is not implemented by GSI */ + if (suspend && gsi->version < IPA_VERSION_4_0) + return 0; + + mutex_lock(&gsi->mutex); + + ret = gsi_channel_stop_retry(channel); + + mutex_unlock(&gsi->mutex); + + return ret; +} + +/* Stop a started channel */ +int gsi_channel_stop(struct gsi *gsi, u32 channel_id) +{ + struct gsi_channel *channel = &gsi->channel[channel_id]; + int ret; + + ret = __gsi_channel_stop(channel, false); + if (ret) + return ret; + + /* Disable the completion interrupt and NAPI if successful */ + gsi_irq_ieob_disable_one(gsi, channel->evt_ring_id); + napi_disable(&channel->napi); + + return 0; +} + +/* Reset and reconfigure a channel, (possibly) enabling the doorbell engine */ +void gsi_channel_reset(struct gsi *gsi, u32 channel_id, bool doorbell) +{ + struct gsi_channel *channel = &gsi->channel[channel_id]; + + mutex_lock(&gsi->mutex); + + gsi_channel_reset_command(channel); + /* Due to a hardware quirk we may need to reset RX channels twice. */ + if (gsi->version < IPA_VERSION_4_0 && !channel->toward_ipa) + gsi_channel_reset_command(channel); + + /* Hardware assumes this is 0 following reset */ + channel->tre_ring.index = 0; + gsi_channel_program(channel, doorbell); + gsi_channel_trans_cancel_pending(channel); + + mutex_unlock(&gsi->mutex); +} + +/* Stop a started channel for suspend */ +int gsi_channel_suspend(struct gsi *gsi, u32 channel_id) +{ + struct gsi_channel *channel = &gsi->channel[channel_id]; + int ret; + + ret = __gsi_channel_stop(channel, true); + if (ret) + return ret; + + /* Ensure NAPI polling has finished. */ + napi_synchronize(&channel->napi); + + return 0; +} + +/* Resume a suspended channel (starting if stopped) */ +int gsi_channel_resume(struct gsi *gsi, u32 channel_id) +{ + struct gsi_channel *channel = &gsi->channel[channel_id]; + + return __gsi_channel_start(channel, true); +} + +/* Prevent all GSI interrupts while suspended */ +void gsi_suspend(struct gsi *gsi) +{ + disable_irq(gsi->irq); +} + +/* Allow all GSI interrupts again when resuming */ +void gsi_resume(struct gsi *gsi) +{ + enable_irq(gsi->irq); +} + +void gsi_trans_tx_committed(struct gsi_trans *trans) +{ + struct gsi_channel *channel = &trans->gsi->channel[trans->channel_id]; + + channel->trans_count++; + channel->byte_count += trans->len; + + trans->trans_count = channel->trans_count; + trans->byte_count = channel->byte_count; +} + +void gsi_trans_tx_queued(struct gsi_trans *trans) +{ + u32 channel_id = trans->channel_id; + struct gsi *gsi = trans->gsi; + struct gsi_channel *channel; + u32 trans_count; + u32 byte_count; + + channel = &gsi->channel[channel_id]; + + byte_count = channel->byte_count - channel->queued_byte_count; + trans_count = channel->trans_count - channel->queued_trans_count; + channel->queued_byte_count = channel->byte_count; + channel->queued_trans_count = channel->trans_count; + + ipa_gsi_channel_tx_queued(gsi, channel_id, trans_count, byte_count); +} + +/** + * gsi_trans_tx_completed() - Report completed TX transactions + * @trans: TX channel transaction that has completed + * + * Report that a transaction on a TX channel has completed. At the time a + * transaction is committed, we record *in the transaction* its channel's + * committed transaction and byte counts. Transactions are completed in + * order, and the difference between the channel's byte/transaction count + * when the transaction was committed and when it completes tells us + * exactly how much data has been transferred while the transaction was + * pending. + * + * We report this information to the network stack, which uses it to manage + * the rate at which data is sent to hardware. + */ +static void gsi_trans_tx_completed(struct gsi_trans *trans) +{ + u32 channel_id = trans->channel_id; + struct gsi *gsi = trans->gsi; + struct gsi_channel *channel; + u32 trans_count; + u32 byte_count; + + channel = &gsi->channel[channel_id]; + trans_count = trans->trans_count - channel->compl_trans_count; + byte_count = trans->byte_count - channel->compl_byte_count; + + channel->compl_trans_count += trans_count; + channel->compl_byte_count += byte_count; + + ipa_gsi_channel_tx_completed(gsi, channel_id, trans_count, byte_count); +} + +/* Channel control interrupt handler */ +static void gsi_isr_chan_ctrl(struct gsi *gsi) +{ + u32 channel_mask; + + channel_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_CH_IRQ_OFFSET); + iowrite32(channel_mask, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_CLR_OFFSET); + + while (channel_mask) { + u32 channel_id = __ffs(channel_mask); + + channel_mask ^= BIT(channel_id); + + complete(&gsi->completion); + } +} + +/* Event ring control interrupt handler */ +static void gsi_isr_evt_ctrl(struct gsi *gsi) +{ + u32 event_mask; + + event_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_OFFSET); + iowrite32(event_mask, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_CLR_OFFSET); + + while (event_mask) { + u32 evt_ring_id = __ffs(event_mask); + + event_mask ^= BIT(evt_ring_id); + + complete(&gsi->completion); + } +} + +/* Global channel error interrupt handler */ +static void +gsi_isr_glob_chan_err(struct gsi *gsi, u32 err_ee, u32 channel_id, u32 code) +{ + if (code == GSI_OUT_OF_RESOURCES) { + dev_err(gsi->dev, "channel %u out of resources\n", channel_id); + complete(&gsi->completion); + return; + } + + /* Report, but otherwise ignore all other error codes */ + dev_err(gsi->dev, "channel %u global error ee 0x%08x code 0x%08x\n", + channel_id, err_ee, code); +} + +/* Global event error interrupt handler */ +static void +gsi_isr_glob_evt_err(struct gsi *gsi, u32 err_ee, u32 evt_ring_id, u32 code) +{ + if (code == GSI_OUT_OF_RESOURCES) { + struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id]; + u32 channel_id = gsi_channel_id(evt_ring->channel); + + complete(&gsi->completion); + dev_err(gsi->dev, "evt_ring for channel %u out of resources\n", + channel_id); + return; + } + + /* Report, but otherwise ignore all other error codes */ + dev_err(gsi->dev, "event ring %u global error ee %u code 0x%08x\n", + evt_ring_id, err_ee, code); +} + +/* Global error interrupt handler */ +static void gsi_isr_glob_err(struct gsi *gsi) +{ + enum gsi_err_type type; + enum gsi_err_code code; + u32 which; + u32 val; + u32 ee; + + /* Get the logged error, then reinitialize the log */ + val = ioread32(gsi->virt + GSI_ERROR_LOG_OFFSET); + iowrite32(0, gsi->virt + GSI_ERROR_LOG_OFFSET); + iowrite32(~0, gsi->virt + GSI_ERROR_LOG_CLR_OFFSET); + + ee = u32_get_bits(val, ERR_EE_FMASK); + type = u32_get_bits(val, ERR_TYPE_FMASK); + which = u32_get_bits(val, ERR_VIRT_IDX_FMASK); + code = u32_get_bits(val, ERR_CODE_FMASK); + + if (type == GSI_ERR_TYPE_CHAN) + gsi_isr_glob_chan_err(gsi, ee, which, code); + else if (type == GSI_ERR_TYPE_EVT) + gsi_isr_glob_evt_err(gsi, ee, which, code); + else /* type GSI_ERR_TYPE_GLOB should be fatal */ + dev_err(gsi->dev, "unexpected global error 0x%08x\n", type); +} + +/* Generic EE interrupt handler */ +static void gsi_isr_gp_int1(struct gsi *gsi) +{ + u32 result; + u32 val; + + /* This interrupt is used to handle completions of GENERIC GSI + * commands. We use these to allocate and halt channels on the + * modem's behalf due to a hardware quirk on IPA v4.2. The modem + * "owns" channels even when the AP allocates them, and have no + * way of knowing whether a modem channel's state has been changed. + * + * We also use GENERIC commands to enable/disable channel flow + * control for IPA v4.2+. + * + * It is recommended that we halt the modem channels we allocated + * when shutting down, but it's possible the channel isn't running + * at the time we issue the HALT command. We'll get an error in + * that case, but it's harmless (the channel is already halted). + * Similarly, we could get an error back when updating flow control + * on a channel because it's not in the proper state. + * + * In either case, we silently ignore a INCORRECT_CHANNEL_STATE + * error if we receive it. + */ + val = ioread32(gsi->virt + GSI_CNTXT_SCRATCH_0_OFFSET); + result = u32_get_bits(val, GENERIC_EE_RESULT_FMASK); + + switch (result) { + case GENERIC_EE_SUCCESS: + case GENERIC_EE_INCORRECT_CHANNEL_STATE: + gsi->result = 0; + break; + + case GENERIC_EE_RETRY: + gsi->result = -EAGAIN; + break; + + default: + dev_err(gsi->dev, "global INT1 generic result %u\n", result); + gsi->result = -EIO; + break; + } + + complete(&gsi->completion); +} + +/* Inter-EE interrupt handler */ +static void gsi_isr_glob_ee(struct gsi *gsi) +{ + u32 val; + + val = ioread32(gsi->virt + GSI_CNTXT_GLOB_IRQ_STTS_OFFSET); + + if (val & BIT(ERROR_INT)) + gsi_isr_glob_err(gsi); + + iowrite32(val, gsi->virt + GSI_CNTXT_GLOB_IRQ_CLR_OFFSET); + + val &= ~BIT(ERROR_INT); + + if (val & BIT(GP_INT1)) { + val ^= BIT(GP_INT1); + gsi_isr_gp_int1(gsi); + } + + if (val) + dev_err(gsi->dev, "unexpected global interrupt 0x%08x\n", val); +} + +/* I/O completion interrupt event */ +static void gsi_isr_ieob(struct gsi *gsi) +{ + u32 event_mask; + + event_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_OFFSET); + gsi_irq_ieob_disable(gsi, event_mask); + iowrite32(event_mask, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_CLR_OFFSET); + + while (event_mask) { + u32 evt_ring_id = __ffs(event_mask); + + event_mask ^= BIT(evt_ring_id); + + napi_schedule(&gsi->evt_ring[evt_ring_id].channel->napi); + } +} + +/* General event interrupts represent serious problems, so report them */ +static void gsi_isr_general(struct gsi *gsi) +{ + struct device *dev = gsi->dev; + u32 val; + + val = ioread32(gsi->virt + GSI_CNTXT_GSI_IRQ_STTS_OFFSET); + iowrite32(val, gsi->virt + GSI_CNTXT_GSI_IRQ_CLR_OFFSET); + + dev_err(dev, "unexpected general interrupt 0x%08x\n", val); +} + +/** + * gsi_isr() - Top level GSI interrupt service routine + * @irq: Interrupt number (ignored) + * @dev_id: GSI pointer supplied to request_irq() + * + * This is the main handler function registered for the GSI IRQ. Each type + * of interrupt has a separate handler function that is called from here. + */ +static irqreturn_t gsi_isr(int irq, void *dev_id) +{ + struct gsi *gsi = dev_id; + u32 intr_mask; + u32 cnt = 0; + + /* enum gsi_irq_type_id defines GSI interrupt types */ + while ((intr_mask = ioread32(gsi->virt + GSI_CNTXT_TYPE_IRQ_OFFSET))) { + /* intr_mask contains bitmask of pending GSI interrupts */ + do { + u32 gsi_intr = BIT(__ffs(intr_mask)); + + intr_mask ^= gsi_intr; + + switch (gsi_intr) { + case BIT(GSI_CH_CTRL): + gsi_isr_chan_ctrl(gsi); + break; + case BIT(GSI_EV_CTRL): + gsi_isr_evt_ctrl(gsi); + break; + case BIT(GSI_GLOB_EE): + gsi_isr_glob_ee(gsi); + break; + case BIT(GSI_IEOB): + gsi_isr_ieob(gsi); + break; + case BIT(GSI_GENERAL): + gsi_isr_general(gsi); + break; + default: + dev_err(gsi->dev, + "unrecognized interrupt type 0x%08x\n", + gsi_intr); + break; + } + } while (intr_mask); + + if (++cnt > GSI_ISR_MAX_ITER) { + dev_err(gsi->dev, "interrupt flood\n"); + break; + } + } + + return IRQ_HANDLED; +} + +/* Init function for GSI IRQ lookup; there is no gsi_irq_exit() */ +static int gsi_irq_init(struct gsi *gsi, struct platform_device *pdev) +{ + int ret; + + ret = platform_get_irq_byname(pdev, "gsi"); + if (ret <= 0) + return ret ? : -EINVAL; + + gsi->irq = ret; + + return 0; +} + +/* Return the transaction associated with a transfer completion event */ +static struct gsi_trans * +gsi_event_trans(struct gsi *gsi, struct gsi_event *event) +{ + u32 channel_id = event->chid; + struct gsi_channel *channel; + struct gsi_trans *trans; + u32 tre_offset; + u32 tre_index; + + channel = &gsi->channel[channel_id]; + if (WARN(!channel->gsi, "event has bad channel %u\n", channel_id)) + return NULL; + + /* Event xfer_ptr records the TRE it's associated with */ + tre_offset = lower_32_bits(le64_to_cpu(event->xfer_ptr)); + tre_index = gsi_ring_index(&channel->tre_ring, tre_offset); + + trans = gsi_channel_trans_mapped(channel, tre_index); + + if (WARN(!trans, "channel %u event with no transaction\n", channel_id)) + return NULL; + + return trans; +} + +/** + * gsi_evt_ring_update() - Update transaction state from hardware + * @gsi: GSI pointer + * @evt_ring_id: Event ring ID + * @index: Event index in ring reported by hardware + * + * Events for RX channels contain the actual number of bytes received into + * the buffer. Every event has a transaction associated with it, and here + * we update transactions to record their actual received lengths. + * + * When an event for a TX channel arrives we use information in the + * transaction to report the number of requests and bytes that have + * been transferred. + * + * This function is called whenever we learn that the GSI hardware has filled + * new events since the last time we checked. The ring's index field tells + * the first entry in need of processing. The index provided is the + * first *unfilled* event in the ring (following the last filled one). + * + * Events are sequential within the event ring, and transactions are + * sequential within the transaction array. + * + * Note that @index always refers to an element *within* the event ring. + */ +static void gsi_evt_ring_update(struct gsi *gsi, u32 evt_ring_id, u32 index) +{ + struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id]; + struct gsi_ring *ring = &evt_ring->ring; + struct gsi_event *event_done; + struct gsi_event *event; + u32 event_avail; + u32 old_index; + + /* Starting with the oldest un-processed event, determine which + * transaction (and which channel) is associated with the event. + * For RX channels, update each completed transaction with the + * number of bytes that were actually received. For TX channels + * associated with a network device, report to the network stack + * the number of transfers and bytes this completion represents. + */ + old_index = ring->index; + event = gsi_ring_virt(ring, old_index); + + /* Compute the number of events to process before we wrap, + * and determine when we'll be done processing events. + */ + event_avail = ring->count - old_index % ring->count; + event_done = gsi_ring_virt(ring, index); + do { + struct gsi_trans *trans; + + trans = gsi_event_trans(gsi, event); + if (!trans) + return; + + if (trans->direction == DMA_FROM_DEVICE) + trans->len = __le16_to_cpu(event->len); + else + gsi_trans_tx_completed(trans); + + gsi_trans_move_complete(trans); + + /* Move on to the next event and transaction */ + if (--event_avail) + event++; + else + event = gsi_ring_virt(ring, 0); + } while (event != event_done); + + /* Tell the hardware we've handled these events */ + gsi_evt_ring_doorbell(gsi, evt_ring_id, index); +} + +/* Initialize a ring, including allocating DMA memory for its entries */ +static int gsi_ring_alloc(struct gsi *gsi, struct gsi_ring *ring, u32 count) +{ + u32 size = count * GSI_RING_ELEMENT_SIZE; + struct device *dev = gsi->dev; + dma_addr_t addr; + + /* Hardware requires a 2^n ring size, with alignment equal to size. + * The DMA address returned by dma_alloc_coherent() is guaranteed to + * be a power-of-2 number of pages, which satisfies the requirement. + */ + ring->virt = dma_alloc_coherent(dev, size, &addr, GFP_KERNEL); + if (!ring->virt) + return -ENOMEM; + + ring->addr = addr; + ring->count = count; + ring->index = 0; + + return 0; +} + +/* Free a previously-allocated ring */ +static void gsi_ring_free(struct gsi *gsi, struct gsi_ring *ring) +{ + size_t size = ring->count * GSI_RING_ELEMENT_SIZE; + + dma_free_coherent(gsi->dev, size, ring->virt, ring->addr); +} + +/* Allocate an available event ring id */ +static int gsi_evt_ring_id_alloc(struct gsi *gsi) +{ + u32 evt_ring_id; + + if (gsi->event_bitmap == ~0U) { + dev_err(gsi->dev, "event rings exhausted\n"); + return -ENOSPC; + } + + evt_ring_id = ffz(gsi->event_bitmap); + gsi->event_bitmap |= BIT(evt_ring_id); + + return (int)evt_ring_id; +} + +/* Free a previously-allocated event ring id */ +static void gsi_evt_ring_id_free(struct gsi *gsi, u32 evt_ring_id) +{ + gsi->event_bitmap &= ~BIT(evt_ring_id); +} + +/* Ring a channel doorbell, reporting the first un-filled entry */ +void gsi_channel_doorbell(struct gsi_channel *channel) +{ + struct gsi_ring *tre_ring = &channel->tre_ring; + u32 channel_id = gsi_channel_id(channel); + struct gsi *gsi = channel->gsi; + u32 val; + + /* Note: index *must* be used modulo the ring count here */ + val = gsi_ring_addr(tre_ring, tre_ring->index % tre_ring->count); + iowrite32(val, gsi->virt + GSI_CH_C_DOORBELL_0_OFFSET(channel_id)); +} + +/* Consult hardware, move newly completed transactions to completed state */ +void gsi_channel_update(struct gsi_channel *channel) +{ + u32 evt_ring_id = channel->evt_ring_id; + struct gsi *gsi = channel->gsi; + struct gsi_evt_ring *evt_ring; + struct gsi_trans *trans; + struct gsi_ring *ring; + u32 offset; + u32 index; + + evt_ring = &gsi->evt_ring[evt_ring_id]; + ring = &evt_ring->ring; + + /* See if there's anything new to process; if not, we're done. Note + * that index always refers to an entry *within* the event ring. + */ + offset = GSI_EV_CH_E_CNTXT_4_OFFSET(evt_ring_id); + index = gsi_ring_index(ring, ioread32(gsi->virt + offset)); + if (index == ring->index % ring->count) + return; + + /* Get the transaction for the latest completed event. */ + trans = gsi_event_trans(gsi, gsi_ring_virt(ring, index - 1)); + if (!trans) + return; + + /* For RX channels, update each completed transaction with the number + * of bytes that were actually received. For TX channels, report + * the number of transactions and bytes this completion represents + * up the network stack. + */ + gsi_evt_ring_update(gsi, evt_ring_id, index); +} + +/** + * gsi_channel_poll_one() - Return a single completed transaction on a channel + * @channel: Channel to be polled + * + * Return: Transaction pointer, or null if none are available + * + * This function returns the first of a channel's completed transactions. + * If no transactions are in completed state, the hardware is consulted to + * determine whether any new transactions have completed. If so, they're + * moved to completed state and the first such transaction is returned. + * If there are no more completed transactions, a null pointer is returned. + */ +static struct gsi_trans *gsi_channel_poll_one(struct gsi_channel *channel) +{ + struct gsi_trans *trans; + + /* Get the first completed transaction */ + trans = gsi_channel_trans_complete(channel); + if (trans) + gsi_trans_move_polled(trans); + + return trans; +} + +/** + * gsi_channel_poll() - NAPI poll function for a channel + * @napi: NAPI structure for the channel + * @budget: Budget supplied by NAPI core + * + * Return: Number of items polled (<= budget) + * + * Single transactions completed by hardware are polled until either + * the budget is exhausted, or there are no more. Each transaction + * polled is passed to gsi_trans_complete(), to perform remaining + * completion processing and retire/free the transaction. + */ +static int gsi_channel_poll(struct napi_struct *napi, int budget) +{ + struct gsi_channel *channel; + int count; + + channel = container_of(napi, struct gsi_channel, napi); + for (count = 0; count < budget; count++) { + struct gsi_trans *trans; + + trans = gsi_channel_poll_one(channel); + if (!trans) + break; + gsi_trans_complete(trans); + } + + if (count < budget && napi_complete(napi)) + gsi_irq_ieob_enable_one(channel->gsi, channel->evt_ring_id); + + return count; +} + +/* The event bitmap represents which event ids are available for allocation. + * Set bits are not available, clear bits can be used. This function + * initializes the map so all events supported by the hardware are available, + * then precludes any reserved events from being allocated. + */ +static u32 gsi_event_bitmap_init(u32 evt_ring_max) +{ + u32 event_bitmap = GENMASK(BITS_PER_LONG - 1, evt_ring_max); + + event_bitmap |= GENMASK(GSI_MHI_EVENT_ID_END, GSI_MHI_EVENT_ID_START); + + return event_bitmap; +} + +/* Setup function for a single channel */ +static int gsi_channel_setup_one(struct gsi *gsi, u32 channel_id) +{ + struct gsi_channel *channel = &gsi->channel[channel_id]; + u32 evt_ring_id = channel->evt_ring_id; + int ret; + + if (!gsi_channel_initialized(channel)) + return 0; + + ret = gsi_evt_ring_alloc_command(gsi, evt_ring_id); + if (ret) + return ret; + + gsi_evt_ring_program(gsi, evt_ring_id); + + ret = gsi_channel_alloc_command(gsi, channel_id); + if (ret) + goto err_evt_ring_de_alloc; + + gsi_channel_program(channel, true); + + if (channel->toward_ipa) + netif_napi_add_tx(&gsi->dummy_dev, &channel->napi, + gsi_channel_poll); + else + netif_napi_add(&gsi->dummy_dev, &channel->napi, + gsi_channel_poll); + + return 0; + +err_evt_ring_de_alloc: + /* We've done nothing with the event ring yet so don't reset */ + gsi_evt_ring_de_alloc_command(gsi, evt_ring_id); + + return ret; +} + +/* Inverse of gsi_channel_setup_one() */ +static void gsi_channel_teardown_one(struct gsi *gsi, u32 channel_id) +{ + struct gsi_channel *channel = &gsi->channel[channel_id]; + u32 evt_ring_id = channel->evt_ring_id; + + if (!gsi_channel_initialized(channel)) + return; + + netif_napi_del(&channel->napi); + + gsi_channel_de_alloc_command(gsi, channel_id); + gsi_evt_ring_reset_command(gsi, evt_ring_id); + gsi_evt_ring_de_alloc_command(gsi, evt_ring_id); +} + +/* We use generic commands only to operate on modem channels. We don't have + * the ability to determine channel state for a modem channel, so we simply + * issue the command and wait for it to complete. + */ +static int gsi_generic_command(struct gsi *gsi, u32 channel_id, + enum gsi_generic_cmd_opcode opcode, + u8 params) +{ + bool timeout; + u32 val; + + /* The error global interrupt type is always enabled (until we tear + * down), so we will keep it enabled. + * + * A generic EE command completes with a GSI global interrupt of + * type GP_INT1. We only perform one generic command at a time + * (to allocate, halt, or enable/disable flow control on a modem + * channel), and only from this function. So we enable the GP_INT1 + * IRQ type here, and disable it again after the command completes. + */ + val = BIT(ERROR_INT) | BIT(GP_INT1); + iowrite32(val, gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET); + + /* First zero the result code field */ + val = ioread32(gsi->virt + GSI_CNTXT_SCRATCH_0_OFFSET); + val &= ~GENERIC_EE_RESULT_FMASK; + iowrite32(val, gsi->virt + GSI_CNTXT_SCRATCH_0_OFFSET); + + /* Now issue the command */ + val = u32_encode_bits(opcode, GENERIC_OPCODE_FMASK); + val |= u32_encode_bits(channel_id, GENERIC_CHID_FMASK); + val |= u32_encode_bits(GSI_EE_MODEM, GENERIC_EE_FMASK); + if (gsi->version >= IPA_VERSION_4_11) + val |= u32_encode_bits(params, GENERIC_PARAMS_FMASK); + + timeout = !gsi_command(gsi, GSI_GENERIC_CMD_OFFSET, val); + + /* Disable the GP_INT1 IRQ type again */ + iowrite32(BIT(ERROR_INT), gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET); + + if (!timeout) + return gsi->result; + + dev_err(gsi->dev, "GSI generic command %u to channel %u timed out\n", + opcode, channel_id); + + return -ETIMEDOUT; +} + +static int gsi_modem_channel_alloc(struct gsi *gsi, u32 channel_id) +{ + return gsi_generic_command(gsi, channel_id, + GSI_GENERIC_ALLOCATE_CHANNEL, 0); +} + +static void gsi_modem_channel_halt(struct gsi *gsi, u32 channel_id) +{ + u32 retries = GSI_CHANNEL_MODEM_HALT_RETRIES; + int ret; + + do + ret = gsi_generic_command(gsi, channel_id, + GSI_GENERIC_HALT_CHANNEL, 0); + while (ret == -EAGAIN && retries--); + + if (ret) + dev_err(gsi->dev, "error %d halting modem channel %u\n", + ret, channel_id); +} + +/* Enable or disable flow control for a modem GSI TX channel (IPA v4.2+) */ +void +gsi_modem_channel_flow_control(struct gsi *gsi, u32 channel_id, bool enable) +{ + u32 retries = 0; + u32 command; + int ret; + + command = enable ? GSI_GENERIC_ENABLE_FLOW_CONTROL + : GSI_GENERIC_DISABLE_FLOW_CONTROL; + /* Disabling flow control on IPA v4.11+ can return -EAGAIN if enable + * is underway. In this case we need to retry the command. + */ + if (!enable && gsi->version >= IPA_VERSION_4_11) + retries = GSI_CHANNEL_MODEM_FLOW_RETRIES; + + do + ret = gsi_generic_command(gsi, channel_id, command, 0); + while (ret == -EAGAIN && retries--); + + if (ret) + dev_err(gsi->dev, + "error %d %sabling mode channel %u flow control\n", + ret, enable ? "en" : "dis", channel_id); +} + +/* Setup function for channels */ +static int gsi_channel_setup(struct gsi *gsi) +{ + u32 channel_id = 0; + u32 mask; + int ret; + + gsi_irq_enable(gsi); + + mutex_lock(&gsi->mutex); + + do { + ret = gsi_channel_setup_one(gsi, channel_id); + if (ret) + goto err_unwind; + } while (++channel_id < gsi->channel_count); + + /* Make sure no channels were defined that hardware does not support */ + while (channel_id < GSI_CHANNEL_COUNT_MAX) { + struct gsi_channel *channel = &gsi->channel[channel_id++]; + + if (!gsi_channel_initialized(channel)) + continue; + + ret = -EINVAL; + dev_err(gsi->dev, "channel %u not supported by hardware\n", + channel_id - 1); + channel_id = gsi->channel_count; + goto err_unwind; + } + + /* Allocate modem channels if necessary */ + mask = gsi->modem_channel_bitmap; + while (mask) { + u32 modem_channel_id = __ffs(mask); + + ret = gsi_modem_channel_alloc(gsi, modem_channel_id); + if (ret) + goto err_unwind_modem; + + /* Clear bit from mask only after success (for unwind) */ + mask ^= BIT(modem_channel_id); + } + + mutex_unlock(&gsi->mutex); + + return 0; + +err_unwind_modem: + /* Compute which modem channels need to be deallocated */ + mask ^= gsi->modem_channel_bitmap; + while (mask) { + channel_id = __fls(mask); + + mask ^= BIT(channel_id); + + gsi_modem_channel_halt(gsi, channel_id); + } + +err_unwind: + while (channel_id--) + gsi_channel_teardown_one(gsi, channel_id); + + mutex_unlock(&gsi->mutex); + + gsi_irq_disable(gsi); + + return ret; +} + +/* Inverse of gsi_channel_setup() */ +static void gsi_channel_teardown(struct gsi *gsi) +{ + u32 mask = gsi->modem_channel_bitmap; + u32 channel_id; + + mutex_lock(&gsi->mutex); + + while (mask) { + channel_id = __fls(mask); + + mask ^= BIT(channel_id); + + gsi_modem_channel_halt(gsi, channel_id); + } + + channel_id = gsi->channel_count - 1; + do + gsi_channel_teardown_one(gsi, channel_id); + while (channel_id--); + + mutex_unlock(&gsi->mutex); + + gsi_irq_disable(gsi); +} + +/* Turn off all GSI interrupts initially */ +static int gsi_irq_setup(struct gsi *gsi) +{ + int ret; + + /* Writing 1 indicates IRQ interrupts; 0 would be MSI */ + iowrite32(1, gsi->virt + GSI_CNTXT_INTSET_OFFSET); + + /* Disable all interrupt types */ + gsi_irq_type_update(gsi, 0); + + /* Clear all type-specific interrupt masks */ + iowrite32(0, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_MSK_OFFSET); + iowrite32(0, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_MSK_OFFSET); + iowrite32(0, gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET); + iowrite32(0, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET); + + /* The inter-EE interrupts are not supported for IPA v3.0-v3.1 */ + if (gsi->version > IPA_VERSION_3_1) { + u32 offset; + + /* These registers are in the non-adjusted address range */ + offset = GSI_INTER_EE_SRC_CH_IRQ_MSK_OFFSET; + iowrite32(0, gsi->virt_raw + offset); + offset = GSI_INTER_EE_SRC_EV_CH_IRQ_MSK_OFFSET; + iowrite32(0, gsi->virt_raw + offset); + } + + iowrite32(0, gsi->virt + GSI_CNTXT_GSI_IRQ_EN_OFFSET); + + ret = request_irq(gsi->irq, gsi_isr, 0, "gsi", gsi); + if (ret) + dev_err(gsi->dev, "error %d requesting \"gsi\" IRQ\n", ret); + + return ret; +} + +static void gsi_irq_teardown(struct gsi *gsi) +{ + free_irq(gsi->irq, gsi); +} + +/* Get # supported channel and event rings; there is no gsi_ring_teardown() */ +static int gsi_ring_setup(struct gsi *gsi) +{ + struct device *dev = gsi->dev; + u32 count; + u32 val; + + if (gsi->version < IPA_VERSION_3_5_1) { + /* No HW_PARAM_2 register prior to IPA v3.5.1, assume the max */ + gsi->channel_count = GSI_CHANNEL_COUNT_MAX; + gsi->evt_ring_count = GSI_EVT_RING_COUNT_MAX; + + return 0; + } + + val = ioread32(gsi->virt + GSI_GSI_HW_PARAM_2_OFFSET); + + count = u32_get_bits(val, NUM_CH_PER_EE_FMASK); + if (!count) { + dev_err(dev, "GSI reports zero channels supported\n"); + return -EINVAL; + } + if (count > GSI_CHANNEL_COUNT_MAX) { + dev_warn(dev, "limiting to %u channels; hardware supports %u\n", + GSI_CHANNEL_COUNT_MAX, count); + count = GSI_CHANNEL_COUNT_MAX; + } + gsi->channel_count = count; + + count = u32_get_bits(val, NUM_EV_PER_EE_FMASK); + if (!count) { + dev_err(dev, "GSI reports zero event rings supported\n"); + return -EINVAL; + } + if (count > GSI_EVT_RING_COUNT_MAX) { + dev_warn(dev, + "limiting to %u event rings; hardware supports %u\n", + GSI_EVT_RING_COUNT_MAX, count); + count = GSI_EVT_RING_COUNT_MAX; + } + gsi->evt_ring_count = count; + + return 0; +} + +/* Setup function for GSI. GSI firmware must be loaded and initialized */ +int gsi_setup(struct gsi *gsi) +{ + u32 val; + int ret; + + /* Here is where we first touch the GSI hardware */ + val = ioread32(gsi->virt + GSI_GSI_STATUS_OFFSET); + if (!(val & ENABLED_FMASK)) { + dev_err(gsi->dev, "GSI has not been enabled\n"); + return -EIO; + } + + ret = gsi_irq_setup(gsi); + if (ret) + return ret; + + ret = gsi_ring_setup(gsi); /* No matching teardown required */ + if (ret) + goto err_irq_teardown; + + /* Initialize the error log */ + iowrite32(0, gsi->virt + GSI_ERROR_LOG_OFFSET); + + ret = gsi_channel_setup(gsi); + if (ret) + goto err_irq_teardown; + + return 0; + +err_irq_teardown: + gsi_irq_teardown(gsi); + + return ret; +} + +/* Inverse of gsi_setup() */ +void gsi_teardown(struct gsi *gsi) +{ + gsi_channel_teardown(gsi); + gsi_irq_teardown(gsi); +} + +/* Initialize a channel's event ring */ +static int gsi_channel_evt_ring_init(struct gsi_channel *channel) +{ + struct gsi *gsi = channel->gsi; + struct gsi_evt_ring *evt_ring; + int ret; + + ret = gsi_evt_ring_id_alloc(gsi); + if (ret < 0) + return ret; + channel->evt_ring_id = ret; + + evt_ring = &gsi->evt_ring[channel->evt_ring_id]; + evt_ring->channel = channel; + + ret = gsi_ring_alloc(gsi, &evt_ring->ring, channel->event_count); + if (!ret) + return 0; /* Success! */ + + dev_err(gsi->dev, "error %d allocating channel %u event ring\n", + ret, gsi_channel_id(channel)); + + gsi_evt_ring_id_free(gsi, channel->evt_ring_id); + + return ret; +} + +/* Inverse of gsi_channel_evt_ring_init() */ +static void gsi_channel_evt_ring_exit(struct gsi_channel *channel) +{ + u32 evt_ring_id = channel->evt_ring_id; + struct gsi *gsi = channel->gsi; + struct gsi_evt_ring *evt_ring; + + evt_ring = &gsi->evt_ring[evt_ring_id]; + gsi_ring_free(gsi, &evt_ring->ring); + gsi_evt_ring_id_free(gsi, evt_ring_id); +} + +static bool gsi_channel_data_valid(struct gsi *gsi, bool command, + const struct ipa_gsi_endpoint_data *data) +{ + const struct gsi_channel_data *channel_data; + u32 channel_id = data->channel_id; + struct device *dev = gsi->dev; + + /* Make sure channel ids are in the range driver supports */ + if (channel_id >= GSI_CHANNEL_COUNT_MAX) { + dev_err(dev, "bad channel id %u; must be less than %u\n", + channel_id, GSI_CHANNEL_COUNT_MAX); + return false; + } + + if (data->ee_id != GSI_EE_AP && data->ee_id != GSI_EE_MODEM) { + dev_err(dev, "bad EE id %u; not AP or modem\n", data->ee_id); + return false; + } + + if (command && !data->toward_ipa) { + dev_err(dev, "command channel %u is not TX\n", channel_id); + return false; + } + + channel_data = &data->channel; + + if (!channel_data->tlv_count || + channel_data->tlv_count > GSI_TLV_MAX) { + dev_err(dev, "channel %u bad tlv_count %u; must be 1..%u\n", + channel_id, channel_data->tlv_count, GSI_TLV_MAX); + return false; + } + + if (command && IPA_COMMAND_TRANS_TRE_MAX > channel_data->tlv_count) { + dev_err(dev, "command TRE max too big for channel %u (%u > %u)\n", + channel_id, IPA_COMMAND_TRANS_TRE_MAX, + channel_data->tlv_count); + return false; + } + + /* We have to allow at least one maximally-sized transaction to + * be outstanding (which would use tlv_count TREs). Given how + * gsi_channel_tre_max() is computed, tre_count has to be almost + * twice the TLV FIFO size to satisfy this requirement. + */ + if (channel_data->tre_count < 2 * channel_data->tlv_count - 1) { + dev_err(dev, "channel %u TLV count %u exceeds TRE count %u\n", + channel_id, channel_data->tlv_count, + channel_data->tre_count); + return false; + } + + if (!is_power_of_2(channel_data->tre_count)) { + dev_err(dev, "channel %u bad tre_count %u; not power of 2\n", + channel_id, channel_data->tre_count); + return false; + } + + if (!is_power_of_2(channel_data->event_count)) { + dev_err(dev, "channel %u bad event_count %u; not power of 2\n", + channel_id, channel_data->event_count); + return false; + } + + return true; +} + +/* Init function for a single channel */ +static int gsi_channel_init_one(struct gsi *gsi, + const struct ipa_gsi_endpoint_data *data, + bool command) +{ + struct gsi_channel *channel; + u32 tre_count; + int ret; + + if (!gsi_channel_data_valid(gsi, command, data)) + return -EINVAL; + + /* Worst case we need an event for every outstanding TRE */ + if (data->channel.tre_count > data->channel.event_count) { + tre_count = data->channel.event_count; + dev_warn(gsi->dev, "channel %u limited to %u TREs\n", + data->channel_id, tre_count); + } else { + tre_count = data->channel.tre_count; + } + + channel = &gsi->channel[data->channel_id]; + memset(channel, 0, sizeof(*channel)); + + channel->gsi = gsi; + channel->toward_ipa = data->toward_ipa; + channel->command = command; + channel->trans_tre_max = data->channel.tlv_count; + channel->tre_count = tre_count; + channel->event_count = data->channel.event_count; + + ret = gsi_channel_evt_ring_init(channel); + if (ret) + goto err_clear_gsi; + + ret = gsi_ring_alloc(gsi, &channel->tre_ring, data->channel.tre_count); + if (ret) { + dev_err(gsi->dev, "error %d allocating channel %u ring\n", + ret, data->channel_id); + goto err_channel_evt_ring_exit; + } + + ret = gsi_channel_trans_init(gsi, data->channel_id); + if (ret) + goto err_ring_free; + + if (command) { + u32 tre_max = gsi_channel_tre_max(gsi, data->channel_id); + + ret = ipa_cmd_pool_init(channel, tre_max); + } + if (!ret) + return 0; /* Success! */ + + gsi_channel_trans_exit(channel); +err_ring_free: + gsi_ring_free(gsi, &channel->tre_ring); +err_channel_evt_ring_exit: + gsi_channel_evt_ring_exit(channel); +err_clear_gsi: + channel->gsi = NULL; /* Mark it not (fully) initialized */ + + return ret; +} + +/* Inverse of gsi_channel_init_one() */ +static void gsi_channel_exit_one(struct gsi_channel *channel) +{ + if (!gsi_channel_initialized(channel)) + return; + + if (channel->command) + ipa_cmd_pool_exit(channel); + gsi_channel_trans_exit(channel); + gsi_ring_free(channel->gsi, &channel->tre_ring); + gsi_channel_evt_ring_exit(channel); +} + +/* Init function for channels */ +static int gsi_channel_init(struct gsi *gsi, u32 count, + const struct ipa_gsi_endpoint_data *data) +{ + bool modem_alloc; + int ret = 0; + u32 i; + + /* IPA v4.2 requires the AP to allocate channels for the modem */ + modem_alloc = gsi->version == IPA_VERSION_4_2; + + gsi->event_bitmap = gsi_event_bitmap_init(GSI_EVT_RING_COUNT_MAX); + gsi->ieob_enabled_bitmap = 0; + + /* The endpoint data array is indexed by endpoint name */ + for (i = 0; i < count; i++) { + bool command = i == IPA_ENDPOINT_AP_COMMAND_TX; + + if (ipa_gsi_endpoint_data_empty(&data[i])) + continue; /* Skip over empty slots */ + + /* Mark modem channels to be allocated (hardware workaround) */ + if (data[i].ee_id == GSI_EE_MODEM) { + if (modem_alloc) + gsi->modem_channel_bitmap |= + BIT(data[i].channel_id); + continue; + } + + ret = gsi_channel_init_one(gsi, &data[i], command); + if (ret) + goto err_unwind; + } + + return ret; + +err_unwind: + while (i--) { + if (ipa_gsi_endpoint_data_empty(&data[i])) + continue; + if (modem_alloc && data[i].ee_id == GSI_EE_MODEM) { + gsi->modem_channel_bitmap &= ~BIT(data[i].channel_id); + continue; + } + gsi_channel_exit_one(&gsi->channel[data->channel_id]); + } + + return ret; +} + +/* Inverse of gsi_channel_init() */ +static void gsi_channel_exit(struct gsi *gsi) +{ + u32 channel_id = GSI_CHANNEL_COUNT_MAX - 1; + + do + gsi_channel_exit_one(&gsi->channel[channel_id]); + while (channel_id--); + gsi->modem_channel_bitmap = 0; +} + +/* Init function for GSI. GSI hardware does not need to be "ready" */ +int gsi_init(struct gsi *gsi, struct platform_device *pdev, + enum ipa_version version, u32 count, + const struct ipa_gsi_endpoint_data *data) +{ + struct device *dev = &pdev->dev; + struct resource *res; + resource_size_t size; + u32 adjust; + int ret; + + gsi_validate_build(); + + gsi->dev = dev; + gsi->version = version; + + /* GSI uses NAPI on all channels. Create a dummy network device + * for the channel NAPI contexts to be associated with. + */ + init_dummy_netdev(&gsi->dummy_dev); + + /* Get GSI memory range and map it */ + res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "gsi"); + if (!res) { + dev_err(dev, "DT error getting \"gsi\" memory property\n"); + return -ENODEV; + } + + size = resource_size(res); + if (res->start > U32_MAX || size > U32_MAX - res->start) { + dev_err(dev, "DT memory resource \"gsi\" out of range\n"); + return -EINVAL; + } + + /* Make sure we can make our pointer adjustment if necessary */ + adjust = gsi->version < IPA_VERSION_4_5 ? 0 : GSI_EE_REG_ADJUST; + if (res->start < adjust) { + dev_err(dev, "DT memory resource \"gsi\" too low (< %u)\n", + adjust); + return -EINVAL; + } + + gsi->virt_raw = ioremap(res->start, size); + if (!gsi->virt_raw) { + dev_err(dev, "unable to remap \"gsi\" memory\n"); + return -ENOMEM; + } + /* Most registers are accessed using an adjusted register range */ + gsi->virt = gsi->virt_raw - adjust; + + init_completion(&gsi->completion); + + ret = gsi_irq_init(gsi, pdev); /* No matching exit required */ + if (ret) + goto err_iounmap; + + ret = gsi_channel_init(gsi, count, data); + if (ret) + goto err_iounmap; + + mutex_init(&gsi->mutex); + + return 0; + +err_iounmap: + iounmap(gsi->virt_raw); + + return ret; +} + +/* Inverse of gsi_init() */ +void gsi_exit(struct gsi *gsi) +{ + mutex_destroy(&gsi->mutex); + gsi_channel_exit(gsi); + iounmap(gsi->virt_raw); +} + +/* The maximum number of outstanding TREs on a channel. This limits + * a channel's maximum number of transactions outstanding (worst case + * is one TRE per transaction). + * + * The absolute limit is the number of TREs in the channel's TRE ring, + * and in theory we should be able use all of them. But in practice, + * doing that led to the hardware reporting exhaustion of event ring + * slots for writing completion information. So the hardware limit + * would be (tre_count - 1). + * + * We reduce it a bit further though. Transaction resource pools are + * sized to be a little larger than this maximum, to allow resource + * allocations to always be contiguous. The number of entries in a + * TRE ring buffer is a power of 2, and the extra resources in a pool + * tends to nearly double the memory allocated for it. Reducing the + * maximum number of outstanding TREs allows the number of entries in + * a pool to avoid crossing that power-of-2 boundary, and this can + * substantially reduce pool memory requirements. The number we + * reduce it by matches the number added in gsi_trans_pool_init(). + */ +u32 gsi_channel_tre_max(struct gsi *gsi, u32 channel_id) +{ + struct gsi_channel *channel = &gsi->channel[channel_id]; + + /* Hardware limit is channel->tre_count - 1 */ + return channel->tre_count - (channel->trans_tre_max - 1); +} |