diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:49:45 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:49:45 +0000 |
commit | 2c3c1048746a4622d8c89a29670120dc8fab93c4 (patch) | |
tree | 848558de17fb3008cdf4d861b01ac7781903ce39 /drivers/remoteproc/pru_rproc.c | |
parent | Initial commit. (diff) | |
download | linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.tar.xz linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.zip |
Adding upstream version 6.1.76.upstream/6.1.76
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'drivers/remoteproc/pru_rproc.c')
-rw-r--r-- | drivers/remoteproc/pru_rproc.c | 920 |
1 files changed, 920 insertions, 0 deletions
diff --git a/drivers/remoteproc/pru_rproc.c b/drivers/remoteproc/pru_rproc.c new file mode 100644 index 000000000..128bf9912 --- /dev/null +++ b/drivers/remoteproc/pru_rproc.c @@ -0,0 +1,920 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * PRU-ICSS remoteproc driver for various TI SoCs + * + * Copyright (C) 2014-2020 Texas Instruments Incorporated - https://www.ti.com/ + * + * Author(s): + * Suman Anna <s-anna@ti.com> + * Andrew F. Davis <afd@ti.com> + * Grzegorz Jaszczyk <grzegorz.jaszczyk@linaro.org> for Texas Instruments + */ + +#include <linux/bitops.h> +#include <linux/debugfs.h> +#include <linux/irqdomain.h> +#include <linux/module.h> +#include <linux/of_device.h> +#include <linux/of_irq.h> +#include <linux/pruss_driver.h> +#include <linux/remoteproc.h> + +#include "remoteproc_internal.h" +#include "remoteproc_elf_helpers.h" +#include "pru_rproc.h" + +/* PRU_ICSS_PRU_CTRL registers */ +#define PRU_CTRL_CTRL 0x0000 +#define PRU_CTRL_STS 0x0004 +#define PRU_CTRL_WAKEUP_EN 0x0008 +#define PRU_CTRL_CYCLE 0x000C +#define PRU_CTRL_STALL 0x0010 +#define PRU_CTRL_CTBIR0 0x0020 +#define PRU_CTRL_CTBIR1 0x0024 +#define PRU_CTRL_CTPPR0 0x0028 +#define PRU_CTRL_CTPPR1 0x002C + +/* CTRL register bit-fields */ +#define CTRL_CTRL_SOFT_RST_N BIT(0) +#define CTRL_CTRL_EN BIT(1) +#define CTRL_CTRL_SLEEPING BIT(2) +#define CTRL_CTRL_CTR_EN BIT(3) +#define CTRL_CTRL_SINGLE_STEP BIT(8) +#define CTRL_CTRL_RUNSTATE BIT(15) + +/* PRU_ICSS_PRU_DEBUG registers */ +#define PRU_DEBUG_GPREG(x) (0x0000 + (x) * 4) +#define PRU_DEBUG_CT_REG(x) (0x0080 + (x) * 4) + +/* PRU/RTU/Tx_PRU Core IRAM address masks */ +#define PRU_IRAM_ADDR_MASK 0x3ffff +#define PRU0_IRAM_ADDR_MASK 0x34000 +#define PRU1_IRAM_ADDR_MASK 0x38000 +#define RTU0_IRAM_ADDR_MASK 0x4000 +#define RTU1_IRAM_ADDR_MASK 0x6000 +#define TX_PRU0_IRAM_ADDR_MASK 0xa000 +#define TX_PRU1_IRAM_ADDR_MASK 0xc000 + +/* PRU device addresses for various type of PRU RAMs */ +#define PRU_IRAM_DA 0 /* Instruction RAM */ +#define PRU_PDRAM_DA 0 /* Primary Data RAM */ +#define PRU_SDRAM_DA 0x2000 /* Secondary Data RAM */ +#define PRU_SHRDRAM_DA 0x10000 /* Shared Data RAM */ + +#define MAX_PRU_SYS_EVENTS 160 + +/** + * enum pru_iomem - PRU core memory/register range identifiers + * + * @PRU_IOMEM_IRAM: PRU Instruction RAM range + * @PRU_IOMEM_CTRL: PRU Control register range + * @PRU_IOMEM_DEBUG: PRU Debug register range + * @PRU_IOMEM_MAX: just keep this one at the end + */ +enum pru_iomem { + PRU_IOMEM_IRAM = 0, + PRU_IOMEM_CTRL, + PRU_IOMEM_DEBUG, + PRU_IOMEM_MAX, +}; + +/** + * enum pru_type - PRU core type identifier + * + * @PRU_TYPE_PRU: Programmable Real-time Unit + * @PRU_TYPE_RTU: Auxiliary Programmable Real-Time Unit + * @PRU_TYPE_TX_PRU: Transmit Programmable Real-Time Unit + * @PRU_TYPE_MAX: just keep this one at the end + */ +enum pru_type { + PRU_TYPE_PRU = 0, + PRU_TYPE_RTU, + PRU_TYPE_TX_PRU, + PRU_TYPE_MAX, +}; + +/** + * struct pru_private_data - device data for a PRU core + * @type: type of the PRU core (PRU, RTU, Tx_PRU) + * @is_k3: flag used to identify the need for special load handling + */ +struct pru_private_data { + enum pru_type type; + unsigned int is_k3 : 1; +}; + +/** + * struct pru_rproc - PRU remoteproc structure + * @id: id of the PRU core within the PRUSS + * @dev: PRU core device pointer + * @pruss: back-reference to parent PRUSS structure + * @rproc: remoteproc pointer for this PRU core + * @data: PRU core specific data + * @mem_regions: data for each of the PRU memory regions + * @fw_name: name of firmware image used during loading + * @mapped_irq: virtual interrupt numbers of created fw specific mapping + * @pru_interrupt_map: pointer to interrupt mapping description (firmware) + * @pru_interrupt_map_sz: pru_interrupt_map size + * @dbg_single_step: debug state variable to set PRU into single step mode + * @dbg_continuous: debug state variable to restore PRU execution mode + * @evt_count: number of mapped events + */ +struct pru_rproc { + int id; + struct device *dev; + struct pruss *pruss; + struct rproc *rproc; + const struct pru_private_data *data; + struct pruss_mem_region mem_regions[PRU_IOMEM_MAX]; + const char *fw_name; + unsigned int *mapped_irq; + struct pru_irq_rsc *pru_interrupt_map; + size_t pru_interrupt_map_sz; + u32 dbg_single_step; + u32 dbg_continuous; + u8 evt_count; +}; + +static inline u32 pru_control_read_reg(struct pru_rproc *pru, unsigned int reg) +{ + return readl_relaxed(pru->mem_regions[PRU_IOMEM_CTRL].va + reg); +} + +static inline +void pru_control_write_reg(struct pru_rproc *pru, unsigned int reg, u32 val) +{ + writel_relaxed(val, pru->mem_regions[PRU_IOMEM_CTRL].va + reg); +} + +static inline u32 pru_debug_read_reg(struct pru_rproc *pru, unsigned int reg) +{ + return readl_relaxed(pru->mem_regions[PRU_IOMEM_DEBUG].va + reg); +} + +static int regs_show(struct seq_file *s, void *data) +{ + struct rproc *rproc = s->private; + struct pru_rproc *pru = rproc->priv; + int i, nregs = 32; + u32 pru_sts; + int pru_is_running; + + seq_puts(s, "============== Control Registers ==============\n"); + seq_printf(s, "CTRL := 0x%08x\n", + pru_control_read_reg(pru, PRU_CTRL_CTRL)); + pru_sts = pru_control_read_reg(pru, PRU_CTRL_STS); + seq_printf(s, "STS (PC) := 0x%08x (0x%08x)\n", pru_sts, pru_sts << 2); + seq_printf(s, "WAKEUP_EN := 0x%08x\n", + pru_control_read_reg(pru, PRU_CTRL_WAKEUP_EN)); + seq_printf(s, "CYCLE := 0x%08x\n", + pru_control_read_reg(pru, PRU_CTRL_CYCLE)); + seq_printf(s, "STALL := 0x%08x\n", + pru_control_read_reg(pru, PRU_CTRL_STALL)); + seq_printf(s, "CTBIR0 := 0x%08x\n", + pru_control_read_reg(pru, PRU_CTRL_CTBIR0)); + seq_printf(s, "CTBIR1 := 0x%08x\n", + pru_control_read_reg(pru, PRU_CTRL_CTBIR1)); + seq_printf(s, "CTPPR0 := 0x%08x\n", + pru_control_read_reg(pru, PRU_CTRL_CTPPR0)); + seq_printf(s, "CTPPR1 := 0x%08x\n", + pru_control_read_reg(pru, PRU_CTRL_CTPPR1)); + + seq_puts(s, "=============== Debug Registers ===============\n"); + pru_is_running = pru_control_read_reg(pru, PRU_CTRL_CTRL) & + CTRL_CTRL_RUNSTATE; + if (pru_is_running) { + seq_puts(s, "PRU is executing, cannot print/access debug registers.\n"); + return 0; + } + + for (i = 0; i < nregs; i++) { + seq_printf(s, "GPREG%-2d := 0x%08x\tCT_REG%-2d := 0x%08x\n", + i, pru_debug_read_reg(pru, PRU_DEBUG_GPREG(i)), + i, pru_debug_read_reg(pru, PRU_DEBUG_CT_REG(i))); + } + + return 0; +} +DEFINE_SHOW_ATTRIBUTE(regs); + +/* + * Control PRU single-step mode + * + * This is a debug helper function used for controlling the single-step + * mode of the PRU. The PRU Debug registers are not accessible when the + * PRU is in RUNNING state. + * + * Writing a non-zero value sets the PRU into single-step mode irrespective + * of its previous state. The PRU mode is saved only on the first set into + * a single-step mode. Writing a zero value will restore the PRU into its + * original mode. + */ +static int pru_rproc_debug_ss_set(void *data, u64 val) +{ + struct rproc *rproc = data; + struct pru_rproc *pru = rproc->priv; + u32 reg_val; + + val = val ? 1 : 0; + if (!val && !pru->dbg_single_step) + return 0; + + reg_val = pru_control_read_reg(pru, PRU_CTRL_CTRL); + + if (val && !pru->dbg_single_step) + pru->dbg_continuous = reg_val; + + if (val) + reg_val |= CTRL_CTRL_SINGLE_STEP | CTRL_CTRL_EN; + else + reg_val = pru->dbg_continuous; + + pru->dbg_single_step = val; + pru_control_write_reg(pru, PRU_CTRL_CTRL, reg_val); + + return 0; +} + +static int pru_rproc_debug_ss_get(void *data, u64 *val) +{ + struct rproc *rproc = data; + struct pru_rproc *pru = rproc->priv; + + *val = pru->dbg_single_step; + + return 0; +} +DEFINE_DEBUGFS_ATTRIBUTE(pru_rproc_debug_ss_fops, pru_rproc_debug_ss_get, + pru_rproc_debug_ss_set, "%llu\n"); + +/* + * Create PRU-specific debugfs entries + * + * The entries are created only if the parent remoteproc debugfs directory + * exists, and will be cleaned up by the remoteproc core. + */ +static void pru_rproc_create_debug_entries(struct rproc *rproc) +{ + if (!rproc->dbg_dir) + return; + + debugfs_create_file("regs", 0400, rproc->dbg_dir, + rproc, ®s_fops); + debugfs_create_file("single_step", 0600, rproc->dbg_dir, + rproc, &pru_rproc_debug_ss_fops); +} + +static void pru_dispose_irq_mapping(struct pru_rproc *pru) +{ + if (!pru->mapped_irq) + return; + + while (pru->evt_count) { + pru->evt_count--; + if (pru->mapped_irq[pru->evt_count] > 0) + irq_dispose_mapping(pru->mapped_irq[pru->evt_count]); + } + + kfree(pru->mapped_irq); + pru->mapped_irq = NULL; +} + +/* + * Parse the custom PRU interrupt map resource and configure the INTC + * appropriately. + */ +static int pru_handle_intrmap(struct rproc *rproc) +{ + struct device *dev = rproc->dev.parent; + struct pru_rproc *pru = rproc->priv; + struct pru_irq_rsc *rsc = pru->pru_interrupt_map; + struct irq_fwspec fwspec; + struct device_node *parent, *irq_parent; + int i, ret = 0; + + /* not having pru_interrupt_map is not an error */ + if (!rsc) + return 0; + + /* currently supporting only type 0 */ + if (rsc->type != 0) { + dev_err(dev, "unsupported rsc type: %d\n", rsc->type); + return -EINVAL; + } + + if (rsc->num_evts > MAX_PRU_SYS_EVENTS) + return -EINVAL; + + if (sizeof(*rsc) + rsc->num_evts * sizeof(struct pruss_int_map) != + pru->pru_interrupt_map_sz) + return -EINVAL; + + pru->evt_count = rsc->num_evts; + pru->mapped_irq = kcalloc(pru->evt_count, sizeof(unsigned int), + GFP_KERNEL); + if (!pru->mapped_irq) { + pru->evt_count = 0; + return -ENOMEM; + } + + /* + * parse and fill in system event to interrupt channel and + * channel-to-host mapping. The interrupt controller to be used + * for these mappings for a given PRU remoteproc is always its + * corresponding sibling PRUSS INTC node. + */ + parent = of_get_parent(dev_of_node(pru->dev)); + if (!parent) { + kfree(pru->mapped_irq); + pru->mapped_irq = NULL; + pru->evt_count = 0; + return -ENODEV; + } + + irq_parent = of_get_child_by_name(parent, "interrupt-controller"); + of_node_put(parent); + if (!irq_parent) { + kfree(pru->mapped_irq); + pru->mapped_irq = NULL; + pru->evt_count = 0; + return -ENODEV; + } + + fwspec.fwnode = of_node_to_fwnode(irq_parent); + fwspec.param_count = 3; + for (i = 0; i < pru->evt_count; i++) { + fwspec.param[0] = rsc->pru_intc_map[i].event; + fwspec.param[1] = rsc->pru_intc_map[i].chnl; + fwspec.param[2] = rsc->pru_intc_map[i].host; + + dev_dbg(dev, "mapping%d: event %d, chnl %d, host %d\n", + i, fwspec.param[0], fwspec.param[1], fwspec.param[2]); + + pru->mapped_irq[i] = irq_create_fwspec_mapping(&fwspec); + if (!pru->mapped_irq[i]) { + dev_err(dev, "failed to get virq for fw mapping %d: event %d chnl %d host %d\n", + i, fwspec.param[0], fwspec.param[1], + fwspec.param[2]); + ret = -EINVAL; + goto map_fail; + } + } + of_node_put(irq_parent); + + return ret; + +map_fail: + pru_dispose_irq_mapping(pru); + of_node_put(irq_parent); + + return ret; +} + +static int pru_rproc_start(struct rproc *rproc) +{ + struct device *dev = &rproc->dev; + struct pru_rproc *pru = rproc->priv; + const char *names[PRU_TYPE_MAX] = { "PRU", "RTU", "Tx_PRU" }; + u32 val; + int ret; + + dev_dbg(dev, "starting %s%d: entry-point = 0x%llx\n", + names[pru->data->type], pru->id, (rproc->bootaddr >> 2)); + + ret = pru_handle_intrmap(rproc); + /* + * reset references to pru interrupt map - they will stop being valid + * after rproc_start returns + */ + pru->pru_interrupt_map = NULL; + pru->pru_interrupt_map_sz = 0; + if (ret) + return ret; + + val = CTRL_CTRL_EN | ((rproc->bootaddr >> 2) << 16); + pru_control_write_reg(pru, PRU_CTRL_CTRL, val); + + return 0; +} + +static int pru_rproc_stop(struct rproc *rproc) +{ + struct device *dev = &rproc->dev; + struct pru_rproc *pru = rproc->priv; + const char *names[PRU_TYPE_MAX] = { "PRU", "RTU", "Tx_PRU" }; + u32 val; + + dev_dbg(dev, "stopping %s%d\n", names[pru->data->type], pru->id); + + val = pru_control_read_reg(pru, PRU_CTRL_CTRL); + val &= ~CTRL_CTRL_EN; + pru_control_write_reg(pru, PRU_CTRL_CTRL, val); + + /* dispose irq mapping - new firmware can provide new mapping */ + pru_dispose_irq_mapping(pru); + + return 0; +} + +/* + * Convert PRU device address (data spaces only) to kernel virtual address. + * + * Each PRU has access to all data memories within the PRUSS, accessible at + * different ranges. So, look through both its primary and secondary Data + * RAMs as well as any shared Data RAM to convert a PRU device address to + * kernel virtual address. Data RAM0 is primary Data RAM for PRU0 and Data + * RAM1 is primary Data RAM for PRU1. + */ +static void *pru_d_da_to_va(struct pru_rproc *pru, u32 da, size_t len) +{ + struct pruss_mem_region dram0, dram1, shrd_ram; + struct pruss *pruss = pru->pruss; + u32 offset; + void *va = NULL; + + if (len == 0) + return NULL; + + dram0 = pruss->mem_regions[PRUSS_MEM_DRAM0]; + dram1 = pruss->mem_regions[PRUSS_MEM_DRAM1]; + /* PRU1 has its local RAM addresses reversed */ + if (pru->id == 1) + swap(dram0, dram1); + shrd_ram = pruss->mem_regions[PRUSS_MEM_SHRD_RAM2]; + + if (da >= PRU_PDRAM_DA && da + len <= PRU_PDRAM_DA + dram0.size) { + offset = da - PRU_PDRAM_DA; + va = (__force void *)(dram0.va + offset); + } else if (da >= PRU_SDRAM_DA && + da + len <= PRU_SDRAM_DA + dram1.size) { + offset = da - PRU_SDRAM_DA; + va = (__force void *)(dram1.va + offset); + } else if (da >= PRU_SHRDRAM_DA && + da + len <= PRU_SHRDRAM_DA + shrd_ram.size) { + offset = da - PRU_SHRDRAM_DA; + va = (__force void *)(shrd_ram.va + offset); + } + + return va; +} + +/* + * Convert PRU device address (instruction space) to kernel virtual address. + * + * A PRU does not have an unified address space. Each PRU has its very own + * private Instruction RAM, and its device address is identical to that of + * its primary Data RAM device address. + */ +static void *pru_i_da_to_va(struct pru_rproc *pru, u32 da, size_t len) +{ + u32 offset; + void *va = NULL; + + if (len == 0) + return NULL; + + /* + * GNU binutils do not support multiple address spaces. The GNU + * linker's default linker script places IRAM at an arbitrary high + * offset, in order to differentiate it from DRAM. Hence we need to + * strip the artificial offset in the IRAM addresses coming from the + * ELF file. + * + * The TI proprietary linker would never set those higher IRAM address + * bits anyway. PRU architecture limits the program counter to 16-bit + * word-address range. This in turn corresponds to 18-bit IRAM + * byte-address range for ELF. + * + * Two more bits are added just in case to make the final 20-bit mask. + * Idea is to have a safeguard in case TI decides to add banking + * in future SoCs. + */ + da &= 0xfffff; + + if (da >= PRU_IRAM_DA && + da + len <= PRU_IRAM_DA + pru->mem_regions[PRU_IOMEM_IRAM].size) { + offset = da - PRU_IRAM_DA; + va = (__force void *)(pru->mem_regions[PRU_IOMEM_IRAM].va + + offset); + } + + return va; +} + +/* + * Provide address translations for only PRU Data RAMs through the remoteproc + * core for any PRU client drivers. The PRU Instruction RAM access is restricted + * only to the PRU loader code. + */ +static void *pru_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem) +{ + struct pru_rproc *pru = rproc->priv; + + return pru_d_da_to_va(pru, da, len); +} + +/* PRU-specific address translator used by PRU loader. */ +static void *pru_da_to_va(struct rproc *rproc, u64 da, size_t len, bool is_iram) +{ + struct pru_rproc *pru = rproc->priv; + void *va; + + if (is_iram) + va = pru_i_da_to_va(pru, da, len); + else + va = pru_d_da_to_va(pru, da, len); + + return va; +} + +static struct rproc_ops pru_rproc_ops = { + .start = pru_rproc_start, + .stop = pru_rproc_stop, + .da_to_va = pru_rproc_da_to_va, +}; + +/* + * Custom memory copy implementation for ICSSG PRU/RTU/Tx_PRU Cores + * + * The ICSSG PRU/RTU/Tx_PRU cores have a memory copying issue with IRAM + * memories, that is not seen on previous generation SoCs. The data is reflected + * properly in the IRAM memories only for integer (4-byte) copies. Any unaligned + * copies result in all the other pre-existing bytes zeroed out within that + * 4-byte boundary, thereby resulting in wrong text/code in the IRAMs. Also, the + * IRAM memory port interface does not allow any 8-byte copies (as commonly used + * by ARM64 memcpy implementation) and throws an exception. The DRAM memory + * ports do not show this behavior. + */ +static int pru_rproc_memcpy(void *dest, const void *src, size_t count) +{ + const u32 *s = src; + u32 *d = dest; + size_t size = count / 4; + u32 *tmp_src = NULL; + + /* + * TODO: relax limitation of 4-byte aligned dest addresses and copy + * sizes + */ + if ((long)dest % 4 || count % 4) + return -EINVAL; + + /* src offsets in ELF firmware image can be non-aligned */ + if ((long)src % 4) { + tmp_src = kmemdup(src, count, GFP_KERNEL); + if (!tmp_src) + return -ENOMEM; + s = tmp_src; + } + + while (size--) + *d++ = *s++; + + kfree(tmp_src); + + return 0; +} + +static int +pru_rproc_load_elf_segments(struct rproc *rproc, const struct firmware *fw) +{ + struct pru_rproc *pru = rproc->priv; + struct device *dev = &rproc->dev; + struct elf32_hdr *ehdr; + struct elf32_phdr *phdr; + int i, ret = 0; + const u8 *elf_data = fw->data; + + ehdr = (struct elf32_hdr *)elf_data; + phdr = (struct elf32_phdr *)(elf_data + ehdr->e_phoff); + + /* go through the available ELF segments */ + for (i = 0; i < ehdr->e_phnum; i++, phdr++) { + u32 da = phdr->p_paddr; + u32 memsz = phdr->p_memsz; + u32 filesz = phdr->p_filesz; + u32 offset = phdr->p_offset; + bool is_iram; + void *ptr; + + if (phdr->p_type != PT_LOAD || !filesz) + continue; + + dev_dbg(dev, "phdr: type %d da 0x%x memsz 0x%x filesz 0x%x\n", + phdr->p_type, da, memsz, filesz); + + if (filesz > memsz) { + dev_err(dev, "bad phdr filesz 0x%x memsz 0x%x\n", + filesz, memsz); + ret = -EINVAL; + break; + } + + if (offset + filesz > fw->size) { + dev_err(dev, "truncated fw: need 0x%x avail 0x%zx\n", + offset + filesz, fw->size); + ret = -EINVAL; + break; + } + + /* grab the kernel address for this device address */ + is_iram = phdr->p_flags & PF_X; + ptr = pru_da_to_va(rproc, da, memsz, is_iram); + if (!ptr) { + dev_err(dev, "bad phdr da 0x%x mem 0x%x\n", da, memsz); + ret = -EINVAL; + break; + } + + if (pru->data->is_k3) { + ret = pru_rproc_memcpy(ptr, elf_data + phdr->p_offset, + filesz); + if (ret) { + dev_err(dev, "PRU memory copy failed for da 0x%x memsz 0x%x\n", + da, memsz); + break; + } + } else { + memcpy(ptr, elf_data + phdr->p_offset, filesz); + } + + /* skip the memzero logic performed by remoteproc ELF loader */ + } + + return ret; +} + +static const void * +pru_rproc_find_interrupt_map(struct device *dev, const struct firmware *fw) +{ + struct elf32_shdr *shdr, *name_table_shdr; + const char *name_table; + const u8 *elf_data = fw->data; + struct elf32_hdr *ehdr = (struct elf32_hdr *)elf_data; + u16 shnum = ehdr->e_shnum; + u16 shstrndx = ehdr->e_shstrndx; + int i; + + /* first, get the section header */ + shdr = (struct elf32_shdr *)(elf_data + ehdr->e_shoff); + /* compute name table section header entry in shdr array */ + name_table_shdr = shdr + shstrndx; + /* finally, compute the name table section address in elf */ + name_table = elf_data + name_table_shdr->sh_offset; + + for (i = 0; i < shnum; i++, shdr++) { + u32 size = shdr->sh_size; + u32 offset = shdr->sh_offset; + u32 name = shdr->sh_name; + + if (strcmp(name_table + name, ".pru_irq_map")) + continue; + + /* make sure we have the entire irq map */ + if (offset + size > fw->size || offset + size < size) { + dev_err(dev, ".pru_irq_map section truncated\n"); + return ERR_PTR(-EINVAL); + } + + /* make sure irq map has at least the header */ + if (sizeof(struct pru_irq_rsc) > size) { + dev_err(dev, "header-less .pru_irq_map section\n"); + return ERR_PTR(-EINVAL); + } + + return shdr; + } + + dev_dbg(dev, "no .pru_irq_map section found for this fw\n"); + + return NULL; +} + +/* + * Use a custom parse_fw callback function for dealing with PRU firmware + * specific sections. + * + * The firmware blob can contain optional ELF sections: .resource_table section + * and .pru_irq_map one. The second one contains the PRUSS interrupt mapping + * description, which needs to be setup before powering on the PRU core. To + * avoid RAM wastage this ELF section is not mapped to any ELF segment (by the + * firmware linker) and therefore is not loaded to PRU memory. + */ +static int pru_rproc_parse_fw(struct rproc *rproc, const struct firmware *fw) +{ + struct device *dev = &rproc->dev; + struct pru_rproc *pru = rproc->priv; + const u8 *elf_data = fw->data; + const void *shdr; + u8 class = fw_elf_get_class(fw); + u64 sh_offset; + int ret; + + /* load optional rsc table */ + ret = rproc_elf_load_rsc_table(rproc, fw); + if (ret == -EINVAL) + dev_dbg(&rproc->dev, "no resource table found for this fw\n"); + else if (ret) + return ret; + + /* find .pru_interrupt_map section, not having it is not an error */ + shdr = pru_rproc_find_interrupt_map(dev, fw); + if (IS_ERR(shdr)) + return PTR_ERR(shdr); + + if (!shdr) + return 0; + + /* preserve pointer to PRU interrupt map together with it size */ + sh_offset = elf_shdr_get_sh_offset(class, shdr); + pru->pru_interrupt_map = (struct pru_irq_rsc *)(elf_data + sh_offset); + pru->pru_interrupt_map_sz = elf_shdr_get_sh_size(class, shdr); + + return 0; +} + +/* + * Compute PRU id based on the IRAM addresses. The PRU IRAMs are + * always at a particular offset within the PRUSS address space. + */ +static int pru_rproc_set_id(struct pru_rproc *pru) +{ + int ret = 0; + + switch (pru->mem_regions[PRU_IOMEM_IRAM].pa & PRU_IRAM_ADDR_MASK) { + case TX_PRU0_IRAM_ADDR_MASK: + fallthrough; + case RTU0_IRAM_ADDR_MASK: + fallthrough; + case PRU0_IRAM_ADDR_MASK: + pru->id = 0; + break; + case TX_PRU1_IRAM_ADDR_MASK: + fallthrough; + case RTU1_IRAM_ADDR_MASK: + fallthrough; + case PRU1_IRAM_ADDR_MASK: + pru->id = 1; + break; + default: + ret = -EINVAL; + } + + return ret; +} + +static int pru_rproc_probe(struct platform_device *pdev) +{ + struct device *dev = &pdev->dev; + struct device_node *np = dev->of_node; + struct platform_device *ppdev = to_platform_device(dev->parent); + struct pru_rproc *pru; + const char *fw_name; + struct rproc *rproc = NULL; + struct resource *res; + int i, ret; + const struct pru_private_data *data; + const char *mem_names[PRU_IOMEM_MAX] = { "iram", "control", "debug" }; + + data = of_device_get_match_data(&pdev->dev); + if (!data) + return -ENODEV; + + ret = of_property_read_string(np, "firmware-name", &fw_name); + if (ret) { + dev_err(dev, "unable to retrieve firmware-name %d\n", ret); + return ret; + } + + rproc = devm_rproc_alloc(dev, pdev->name, &pru_rproc_ops, fw_name, + sizeof(*pru)); + if (!rproc) { + dev_err(dev, "rproc_alloc failed\n"); + return -ENOMEM; + } + /* use a custom load function to deal with PRU-specific quirks */ + rproc->ops->load = pru_rproc_load_elf_segments; + + /* use a custom parse function to deal with PRU-specific resources */ + rproc->ops->parse_fw = pru_rproc_parse_fw; + + /* error recovery is not supported for PRUs */ + rproc->recovery_disabled = true; + + /* + * rproc_add will auto-boot the processor normally, but this is not + * desired with PRU client driven boot-flow methodology. A PRU + * application/client driver will boot the corresponding PRU + * remote-processor as part of its state machine either through the + * remoteproc sysfs interface or through the equivalent kernel API. + */ + rproc->auto_boot = false; + + pru = rproc->priv; + pru->dev = dev; + pru->data = data; + pru->pruss = platform_get_drvdata(ppdev); + pru->rproc = rproc; + pru->fw_name = fw_name; + + for (i = 0; i < ARRAY_SIZE(mem_names); i++) { + res = platform_get_resource_byname(pdev, IORESOURCE_MEM, + mem_names[i]); + pru->mem_regions[i].va = devm_ioremap_resource(dev, res); + if (IS_ERR(pru->mem_regions[i].va)) { + dev_err(dev, "failed to parse and map memory resource %d %s\n", + i, mem_names[i]); + ret = PTR_ERR(pru->mem_regions[i].va); + return ret; + } + pru->mem_regions[i].pa = res->start; + pru->mem_regions[i].size = resource_size(res); + + dev_dbg(dev, "memory %8s: pa %pa size 0x%zx va %pK\n", + mem_names[i], &pru->mem_regions[i].pa, + pru->mem_regions[i].size, pru->mem_regions[i].va); + } + + ret = pru_rproc_set_id(pru); + if (ret < 0) + return ret; + + platform_set_drvdata(pdev, rproc); + + ret = devm_rproc_add(dev, pru->rproc); + if (ret) { + dev_err(dev, "rproc_add failed: %d\n", ret); + return ret; + } + + pru_rproc_create_debug_entries(rproc); + + dev_dbg(dev, "PRU rproc node %pOF probed successfully\n", np); + + return 0; +} + +static int pru_rproc_remove(struct platform_device *pdev) +{ + struct device *dev = &pdev->dev; + struct rproc *rproc = platform_get_drvdata(pdev); + + dev_dbg(dev, "%s: removing rproc %s\n", __func__, rproc->name); + + return 0; +} + +static const struct pru_private_data pru_data = { + .type = PRU_TYPE_PRU, +}; + +static const struct pru_private_data k3_pru_data = { + .type = PRU_TYPE_PRU, + .is_k3 = 1, +}; + +static const struct pru_private_data k3_rtu_data = { + .type = PRU_TYPE_RTU, + .is_k3 = 1, +}; + +static const struct pru_private_data k3_tx_pru_data = { + .type = PRU_TYPE_TX_PRU, + .is_k3 = 1, +}; + +static const struct of_device_id pru_rproc_match[] = { + { .compatible = "ti,am3356-pru", .data = &pru_data }, + { .compatible = "ti,am4376-pru", .data = &pru_data }, + { .compatible = "ti,am5728-pru", .data = &pru_data }, + { .compatible = "ti,am642-pru", .data = &k3_pru_data }, + { .compatible = "ti,am642-rtu", .data = &k3_rtu_data }, + { .compatible = "ti,am642-tx-pru", .data = &k3_tx_pru_data }, + { .compatible = "ti,k2g-pru", .data = &pru_data }, + { .compatible = "ti,am654-pru", .data = &k3_pru_data }, + { .compatible = "ti,am654-rtu", .data = &k3_rtu_data }, + { .compatible = "ti,am654-tx-pru", .data = &k3_tx_pru_data }, + { .compatible = "ti,j721e-pru", .data = &k3_pru_data }, + { .compatible = "ti,j721e-rtu", .data = &k3_rtu_data }, + { .compatible = "ti,j721e-tx-pru", .data = &k3_tx_pru_data }, + { .compatible = "ti,am625-pru", .data = &k3_pru_data }, + {}, +}; +MODULE_DEVICE_TABLE(of, pru_rproc_match); + +static struct platform_driver pru_rproc_driver = { + .driver = { + .name = "pru-rproc", + .of_match_table = pru_rproc_match, + .suppress_bind_attrs = true, + }, + .probe = pru_rproc_probe, + .remove = pru_rproc_remove, +}; +module_platform_driver(pru_rproc_driver); + +MODULE_AUTHOR("Suman Anna <s-anna@ti.com>"); +MODULE_AUTHOR("Andrew F. Davis <afd@ti.com>"); +MODULE_AUTHOR("Grzegorz Jaszczyk <grzegorz.jaszczyk@linaro.org>"); +MODULE_DESCRIPTION("PRU-ICSS Remote Processor Driver"); +MODULE_LICENSE("GPL v2"); |