diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:49:45 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:49:45 +0000 |
commit | 2c3c1048746a4622d8c89a29670120dc8fab93c4 (patch) | |
tree | 848558de17fb3008cdf4d861b01ac7781903ce39 /fs/btrfs/ordered-data.c | |
parent | Initial commit. (diff) | |
download | linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.tar.xz linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.zip |
Adding upstream version 6.1.76.upstream/6.1.76
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'fs/btrfs/ordered-data.c')
-rw-r--r-- | fs/btrfs/ordered-data.c | 1172 |
1 files changed, 1172 insertions, 0 deletions
diff --git a/fs/btrfs/ordered-data.c b/fs/btrfs/ordered-data.c new file mode 100644 index 000000000..1b2af4785 --- /dev/null +++ b/fs/btrfs/ordered-data.c @@ -0,0 +1,1172 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright (C) 2007 Oracle. All rights reserved. + */ + +#include <linux/slab.h> +#include <linux/blkdev.h> +#include <linux/writeback.h> +#include <linux/sched/mm.h> +#include "misc.h" +#include "ctree.h" +#include "transaction.h" +#include "btrfs_inode.h" +#include "extent_io.h" +#include "disk-io.h" +#include "compression.h" +#include "delalloc-space.h" +#include "qgroup.h" +#include "subpage.h" + +static struct kmem_cache *btrfs_ordered_extent_cache; + +static u64 entry_end(struct btrfs_ordered_extent *entry) +{ + if (entry->file_offset + entry->num_bytes < entry->file_offset) + return (u64)-1; + return entry->file_offset + entry->num_bytes; +} + +/* returns NULL if the insertion worked, or it returns the node it did find + * in the tree + */ +static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset, + struct rb_node *node) +{ + struct rb_node **p = &root->rb_node; + struct rb_node *parent = NULL; + struct btrfs_ordered_extent *entry; + + while (*p) { + parent = *p; + entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node); + + if (file_offset < entry->file_offset) + p = &(*p)->rb_left; + else if (file_offset >= entry_end(entry)) + p = &(*p)->rb_right; + else + return parent; + } + + rb_link_node(node, parent, p); + rb_insert_color(node, root); + return NULL; +} + +/* + * look for a given offset in the tree, and if it can't be found return the + * first lesser offset + */ +static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset, + struct rb_node **prev_ret) +{ + struct rb_node *n = root->rb_node; + struct rb_node *prev = NULL; + struct rb_node *test; + struct btrfs_ordered_extent *entry; + struct btrfs_ordered_extent *prev_entry = NULL; + + while (n) { + entry = rb_entry(n, struct btrfs_ordered_extent, rb_node); + prev = n; + prev_entry = entry; + + if (file_offset < entry->file_offset) + n = n->rb_left; + else if (file_offset >= entry_end(entry)) + n = n->rb_right; + else + return n; + } + if (!prev_ret) + return NULL; + + while (prev && file_offset >= entry_end(prev_entry)) { + test = rb_next(prev); + if (!test) + break; + prev_entry = rb_entry(test, struct btrfs_ordered_extent, + rb_node); + if (file_offset < entry_end(prev_entry)) + break; + + prev = test; + } + if (prev) + prev_entry = rb_entry(prev, struct btrfs_ordered_extent, + rb_node); + while (prev && file_offset < entry_end(prev_entry)) { + test = rb_prev(prev); + if (!test) + break; + prev_entry = rb_entry(test, struct btrfs_ordered_extent, + rb_node); + prev = test; + } + *prev_ret = prev; + return NULL; +} + +static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset, + u64 len) +{ + if (file_offset + len <= entry->file_offset || + entry->file_offset + entry->num_bytes <= file_offset) + return 0; + return 1; +} + +/* + * look find the first ordered struct that has this offset, otherwise + * the first one less than this offset + */ +static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree, + u64 file_offset) +{ + struct rb_root *root = &tree->tree; + struct rb_node *prev = NULL; + struct rb_node *ret; + struct btrfs_ordered_extent *entry; + + if (tree->last) { + entry = rb_entry(tree->last, struct btrfs_ordered_extent, + rb_node); + if (in_range(file_offset, entry->file_offset, entry->num_bytes)) + return tree->last; + } + ret = __tree_search(root, file_offset, &prev); + if (!ret) + ret = prev; + if (ret) + tree->last = ret; + return ret; +} + +/** + * Add an ordered extent to the per-inode tree. + * + * @inode: Inode that this extent is for. + * @file_offset: Logical offset in file where the extent starts. + * @num_bytes: Logical length of extent in file. + * @ram_bytes: Full length of unencoded data. + * @disk_bytenr: Offset of extent on disk. + * @disk_num_bytes: Size of extent on disk. + * @offset: Offset into unencoded data where file data starts. + * @flags: Flags specifying type of extent (1 << BTRFS_ORDERED_*). + * @compress_type: Compression algorithm used for data. + * + * Most of these parameters correspond to &struct btrfs_file_extent_item. The + * tree is given a single reference on the ordered extent that was inserted. + * + * Return: 0 or -ENOMEM. + */ +int btrfs_add_ordered_extent(struct btrfs_inode *inode, u64 file_offset, + u64 num_bytes, u64 ram_bytes, u64 disk_bytenr, + u64 disk_num_bytes, u64 offset, unsigned flags, + int compress_type) +{ + struct btrfs_root *root = inode->root; + struct btrfs_fs_info *fs_info = root->fs_info; + struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree; + struct rb_node *node; + struct btrfs_ordered_extent *entry; + int ret; + u64 qgroup_rsv = 0; + + if (flags & + ((1 << BTRFS_ORDERED_NOCOW) | (1 << BTRFS_ORDERED_PREALLOC))) { + /* For nocow write, we can release the qgroup rsv right now */ + ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes, &qgroup_rsv); + if (ret < 0) + return ret; + ret = 0; + } else { + /* + * The ordered extent has reserved qgroup space, release now + * and pass the reserved number for qgroup_record to free. + */ + ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes, &qgroup_rsv); + if (ret < 0) + return ret; + } + entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS); + if (!entry) + return -ENOMEM; + + entry->file_offset = file_offset; + entry->num_bytes = num_bytes; + entry->ram_bytes = ram_bytes; + entry->disk_bytenr = disk_bytenr; + entry->disk_num_bytes = disk_num_bytes; + entry->offset = offset; + entry->bytes_left = num_bytes; + entry->inode = igrab(&inode->vfs_inode); + entry->compress_type = compress_type; + entry->truncated_len = (u64)-1; + entry->qgroup_rsv = qgroup_rsv; + entry->physical = (u64)-1; + + ASSERT((flags & ~BTRFS_ORDERED_TYPE_FLAGS) == 0); + entry->flags = flags; + + percpu_counter_add_batch(&fs_info->ordered_bytes, num_bytes, + fs_info->delalloc_batch); + + /* one ref for the tree */ + refcount_set(&entry->refs, 1); + init_waitqueue_head(&entry->wait); + INIT_LIST_HEAD(&entry->list); + INIT_LIST_HEAD(&entry->log_list); + INIT_LIST_HEAD(&entry->root_extent_list); + INIT_LIST_HEAD(&entry->work_list); + init_completion(&entry->completion); + + trace_btrfs_ordered_extent_add(inode, entry); + + spin_lock_irq(&tree->lock); + node = tree_insert(&tree->tree, file_offset, + &entry->rb_node); + if (node) + btrfs_panic(fs_info, -EEXIST, + "inconsistency in ordered tree at offset %llu", + file_offset); + spin_unlock_irq(&tree->lock); + + spin_lock(&root->ordered_extent_lock); + list_add_tail(&entry->root_extent_list, + &root->ordered_extents); + root->nr_ordered_extents++; + if (root->nr_ordered_extents == 1) { + spin_lock(&fs_info->ordered_root_lock); + BUG_ON(!list_empty(&root->ordered_root)); + list_add_tail(&root->ordered_root, &fs_info->ordered_roots); + spin_unlock(&fs_info->ordered_root_lock); + } + spin_unlock(&root->ordered_extent_lock); + + /* + * We don't need the count_max_extents here, we can assume that all of + * that work has been done at higher layers, so this is truly the + * smallest the extent is going to get. + */ + spin_lock(&inode->lock); + btrfs_mod_outstanding_extents(inode, 1); + spin_unlock(&inode->lock); + + return 0; +} + +/* + * Add a struct btrfs_ordered_sum into the list of checksums to be inserted + * when an ordered extent is finished. If the list covers more than one + * ordered extent, it is split across multiples. + */ +void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry, + struct btrfs_ordered_sum *sum) +{ + struct btrfs_ordered_inode_tree *tree; + + tree = &BTRFS_I(entry->inode)->ordered_tree; + spin_lock_irq(&tree->lock); + list_add_tail(&sum->list, &entry->list); + spin_unlock_irq(&tree->lock); +} + +static void finish_ordered_fn(struct btrfs_work *work) +{ + struct btrfs_ordered_extent *ordered_extent; + + ordered_extent = container_of(work, struct btrfs_ordered_extent, work); + btrfs_finish_ordered_io(ordered_extent); +} + +/* + * Mark all ordered extents io inside the specified range finished. + * + * @page: The involved page for the operation. + * For uncompressed buffered IO, the page status also needs to be + * updated to indicate whether the pending ordered io is finished. + * Can be NULL for direct IO and compressed write. + * For these cases, callers are ensured they won't execute the + * endio function twice. + * + * This function is called for endio, thus the range must have ordered + * extent(s) covering it. + */ +void btrfs_mark_ordered_io_finished(struct btrfs_inode *inode, + struct page *page, u64 file_offset, + u64 num_bytes, bool uptodate) +{ + struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree; + struct btrfs_fs_info *fs_info = inode->root->fs_info; + struct btrfs_workqueue *wq; + struct rb_node *node; + struct btrfs_ordered_extent *entry = NULL; + unsigned long flags; + u64 cur = file_offset; + + if (btrfs_is_free_space_inode(inode)) + wq = fs_info->endio_freespace_worker; + else + wq = fs_info->endio_write_workers; + + if (page) + ASSERT(page->mapping && page_offset(page) <= file_offset && + file_offset + num_bytes <= page_offset(page) + PAGE_SIZE); + + spin_lock_irqsave(&tree->lock, flags); + while (cur < file_offset + num_bytes) { + u64 entry_end; + u64 end; + u32 len; + + node = tree_search(tree, cur); + /* No ordered extents at all */ + if (!node) + break; + + entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); + entry_end = entry->file_offset + entry->num_bytes; + /* + * |<-- OE --->| | + * cur + * Go to next OE. + */ + if (cur >= entry_end) { + node = rb_next(node); + /* No more ordered extents, exit */ + if (!node) + break; + entry = rb_entry(node, struct btrfs_ordered_extent, + rb_node); + + /* Go to next ordered extent and continue */ + cur = entry->file_offset; + continue; + } + /* + * | |<--- OE --->| + * cur + * Go to the start of OE. + */ + if (cur < entry->file_offset) { + cur = entry->file_offset; + continue; + } + + /* + * Now we are definitely inside one ordered extent. + * + * |<--- OE --->| + * | + * cur + */ + end = min(entry->file_offset + entry->num_bytes, + file_offset + num_bytes) - 1; + ASSERT(end + 1 - cur < U32_MAX); + len = end + 1 - cur; + + if (page) { + /* + * Ordered (Private2) bit indicates whether we still + * have pending io unfinished for the ordered extent. + * + * If there's no such bit, we need to skip to next range. + */ + if (!btrfs_page_test_ordered(fs_info, page, cur, len)) { + cur += len; + continue; + } + btrfs_page_clear_ordered(fs_info, page, cur, len); + } + + /* Now we're fine to update the accounting */ + if (unlikely(len > entry->bytes_left)) { + WARN_ON(1); + btrfs_crit(fs_info, +"bad ordered extent accounting, root=%llu ino=%llu OE offset=%llu OE len=%llu to_dec=%u left=%llu", + inode->root->root_key.objectid, + btrfs_ino(inode), + entry->file_offset, + entry->num_bytes, + len, entry->bytes_left); + entry->bytes_left = 0; + } else { + entry->bytes_left -= len; + } + + if (!uptodate) + set_bit(BTRFS_ORDERED_IOERR, &entry->flags); + + /* + * All the IO of the ordered extent is finished, we need to queue + * the finish_func to be executed. + */ + if (entry->bytes_left == 0) { + set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); + cond_wake_up(&entry->wait); + refcount_inc(&entry->refs); + trace_btrfs_ordered_extent_mark_finished(inode, entry); + spin_unlock_irqrestore(&tree->lock, flags); + btrfs_init_work(&entry->work, finish_ordered_fn, NULL, NULL); + btrfs_queue_work(wq, &entry->work); + spin_lock_irqsave(&tree->lock, flags); + } + cur += len; + } + spin_unlock_irqrestore(&tree->lock, flags); +} + +/* + * Finish IO for one ordered extent across a given range. The range can only + * contain one ordered extent. + * + * @cached: The cached ordered extent. If not NULL, we can skip the tree + * search and use the ordered extent directly. + * Will be also used to store the finished ordered extent. + * @file_offset: File offset for the finished IO + * @io_size: Length of the finish IO range + * + * Return true if the ordered extent is finished in the range, and update + * @cached. + * Return false otherwise. + * + * NOTE: The range can NOT cross multiple ordered extents. + * Thus caller should ensure the range doesn't cross ordered extents. + */ +bool btrfs_dec_test_ordered_pending(struct btrfs_inode *inode, + struct btrfs_ordered_extent **cached, + u64 file_offset, u64 io_size) +{ + struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree; + struct rb_node *node; + struct btrfs_ordered_extent *entry = NULL; + unsigned long flags; + bool finished = false; + + spin_lock_irqsave(&tree->lock, flags); + if (cached && *cached) { + entry = *cached; + goto have_entry; + } + + node = tree_search(tree, file_offset); + if (!node) + goto out; + + entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); +have_entry: + if (!in_range(file_offset, entry->file_offset, entry->num_bytes)) + goto out; + + if (io_size > entry->bytes_left) + btrfs_crit(inode->root->fs_info, + "bad ordered accounting left %llu size %llu", + entry->bytes_left, io_size); + + entry->bytes_left -= io_size; + + if (entry->bytes_left == 0) { + /* + * Ensure only one caller can set the flag and finished_ret + * accordingly + */ + finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); + /* test_and_set_bit implies a barrier */ + cond_wake_up_nomb(&entry->wait); + } +out: + if (finished && cached && entry) { + *cached = entry; + refcount_inc(&entry->refs); + trace_btrfs_ordered_extent_dec_test_pending(inode, entry); + } + spin_unlock_irqrestore(&tree->lock, flags); + return finished; +} + +/* + * used to drop a reference on an ordered extent. This will free + * the extent if the last reference is dropped + */ +void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry) +{ + struct list_head *cur; + struct btrfs_ordered_sum *sum; + + trace_btrfs_ordered_extent_put(BTRFS_I(entry->inode), entry); + + if (refcount_dec_and_test(&entry->refs)) { + ASSERT(list_empty(&entry->root_extent_list)); + ASSERT(list_empty(&entry->log_list)); + ASSERT(RB_EMPTY_NODE(&entry->rb_node)); + if (entry->inode) + btrfs_add_delayed_iput(entry->inode); + while (!list_empty(&entry->list)) { + cur = entry->list.next; + sum = list_entry(cur, struct btrfs_ordered_sum, list); + list_del(&sum->list); + kvfree(sum); + } + kmem_cache_free(btrfs_ordered_extent_cache, entry); + } +} + +/* + * remove an ordered extent from the tree. No references are dropped + * and waiters are woken up. + */ +void btrfs_remove_ordered_extent(struct btrfs_inode *btrfs_inode, + struct btrfs_ordered_extent *entry) +{ + struct btrfs_ordered_inode_tree *tree; + struct btrfs_root *root = btrfs_inode->root; + struct btrfs_fs_info *fs_info = root->fs_info; + struct rb_node *node; + bool pending; + bool freespace_inode; + + /* + * If this is a free space inode the thread has not acquired the ordered + * extents lockdep map. + */ + freespace_inode = btrfs_is_free_space_inode(btrfs_inode); + + btrfs_lockdep_acquire(fs_info, btrfs_trans_pending_ordered); + /* This is paired with btrfs_add_ordered_extent. */ + spin_lock(&btrfs_inode->lock); + btrfs_mod_outstanding_extents(btrfs_inode, -1); + spin_unlock(&btrfs_inode->lock); + if (root != fs_info->tree_root) { + u64 release; + + if (test_bit(BTRFS_ORDERED_ENCODED, &entry->flags)) + release = entry->disk_num_bytes; + else + release = entry->num_bytes; + btrfs_delalloc_release_metadata(btrfs_inode, release, + test_bit(BTRFS_ORDERED_IOERR, + &entry->flags)); + } + + percpu_counter_add_batch(&fs_info->ordered_bytes, -entry->num_bytes, + fs_info->delalloc_batch); + + tree = &btrfs_inode->ordered_tree; + spin_lock_irq(&tree->lock); + node = &entry->rb_node; + rb_erase(node, &tree->tree); + RB_CLEAR_NODE(node); + if (tree->last == node) + tree->last = NULL; + set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags); + pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags); + spin_unlock_irq(&tree->lock); + + /* + * The current running transaction is waiting on us, we need to let it + * know that we're complete and wake it up. + */ + if (pending) { + struct btrfs_transaction *trans; + + /* + * The checks for trans are just a formality, it should be set, + * but if it isn't we don't want to deref/assert under the spin + * lock, so be nice and check if trans is set, but ASSERT() so + * if it isn't set a developer will notice. + */ + spin_lock(&fs_info->trans_lock); + trans = fs_info->running_transaction; + if (trans) + refcount_inc(&trans->use_count); + spin_unlock(&fs_info->trans_lock); + + ASSERT(trans || BTRFS_FS_ERROR(fs_info)); + if (trans) { + if (atomic_dec_and_test(&trans->pending_ordered)) + wake_up(&trans->pending_wait); + btrfs_put_transaction(trans); + } + } + + btrfs_lockdep_release(fs_info, btrfs_trans_pending_ordered); + + spin_lock(&root->ordered_extent_lock); + list_del_init(&entry->root_extent_list); + root->nr_ordered_extents--; + + trace_btrfs_ordered_extent_remove(btrfs_inode, entry); + + if (!root->nr_ordered_extents) { + spin_lock(&fs_info->ordered_root_lock); + BUG_ON(list_empty(&root->ordered_root)); + list_del_init(&root->ordered_root); + spin_unlock(&fs_info->ordered_root_lock); + } + spin_unlock(&root->ordered_extent_lock); + wake_up(&entry->wait); + if (!freespace_inode) + btrfs_lockdep_release(fs_info, btrfs_ordered_extent); +} + +static void btrfs_run_ordered_extent_work(struct btrfs_work *work) +{ + struct btrfs_ordered_extent *ordered; + + ordered = container_of(work, struct btrfs_ordered_extent, flush_work); + btrfs_start_ordered_extent(ordered, 1); + complete(&ordered->completion); +} + +/* + * wait for all the ordered extents in a root. This is done when balancing + * space between drives. + */ +u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr, + const u64 range_start, const u64 range_len) +{ + struct btrfs_fs_info *fs_info = root->fs_info; + LIST_HEAD(splice); + LIST_HEAD(skipped); + LIST_HEAD(works); + struct btrfs_ordered_extent *ordered, *next; + u64 count = 0; + const u64 range_end = range_start + range_len; + + mutex_lock(&root->ordered_extent_mutex); + spin_lock(&root->ordered_extent_lock); + list_splice_init(&root->ordered_extents, &splice); + while (!list_empty(&splice) && nr) { + ordered = list_first_entry(&splice, struct btrfs_ordered_extent, + root_extent_list); + + if (range_end <= ordered->disk_bytenr || + ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) { + list_move_tail(&ordered->root_extent_list, &skipped); + cond_resched_lock(&root->ordered_extent_lock); + continue; + } + + list_move_tail(&ordered->root_extent_list, + &root->ordered_extents); + refcount_inc(&ordered->refs); + spin_unlock(&root->ordered_extent_lock); + + btrfs_init_work(&ordered->flush_work, + btrfs_run_ordered_extent_work, NULL, NULL); + list_add_tail(&ordered->work_list, &works); + btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work); + + cond_resched(); + spin_lock(&root->ordered_extent_lock); + if (nr != U64_MAX) + nr--; + count++; + } + list_splice_tail(&skipped, &root->ordered_extents); + list_splice_tail(&splice, &root->ordered_extents); + spin_unlock(&root->ordered_extent_lock); + + list_for_each_entry_safe(ordered, next, &works, work_list) { + list_del_init(&ordered->work_list); + wait_for_completion(&ordered->completion); + btrfs_put_ordered_extent(ordered); + cond_resched(); + } + mutex_unlock(&root->ordered_extent_mutex); + + return count; +} + +void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr, + const u64 range_start, const u64 range_len) +{ + struct btrfs_root *root; + struct list_head splice; + u64 done; + + INIT_LIST_HEAD(&splice); + + mutex_lock(&fs_info->ordered_operations_mutex); + spin_lock(&fs_info->ordered_root_lock); + list_splice_init(&fs_info->ordered_roots, &splice); + while (!list_empty(&splice) && nr) { + root = list_first_entry(&splice, struct btrfs_root, + ordered_root); + root = btrfs_grab_root(root); + BUG_ON(!root); + list_move_tail(&root->ordered_root, + &fs_info->ordered_roots); + spin_unlock(&fs_info->ordered_root_lock); + + done = btrfs_wait_ordered_extents(root, nr, + range_start, range_len); + btrfs_put_root(root); + + spin_lock(&fs_info->ordered_root_lock); + if (nr != U64_MAX) { + nr -= done; + } + } + list_splice_tail(&splice, &fs_info->ordered_roots); + spin_unlock(&fs_info->ordered_root_lock); + mutex_unlock(&fs_info->ordered_operations_mutex); +} + +/* + * Used to start IO or wait for a given ordered extent to finish. + * + * If wait is one, this effectively waits on page writeback for all the pages + * in the extent, and it waits on the io completion code to insert + * metadata into the btree corresponding to the extent + */ +void btrfs_start_ordered_extent(struct btrfs_ordered_extent *entry, int wait) +{ + u64 start = entry->file_offset; + u64 end = start + entry->num_bytes - 1; + struct btrfs_inode *inode = BTRFS_I(entry->inode); + bool freespace_inode; + + trace_btrfs_ordered_extent_start(inode, entry); + + /* + * If this is a free space inode do not take the ordered extents lockdep + * map. + */ + freespace_inode = btrfs_is_free_space_inode(inode); + + /* + * pages in the range can be dirty, clean or writeback. We + * start IO on any dirty ones so the wait doesn't stall waiting + * for the flusher thread to find them + */ + if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags)) + filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start, end); + if (wait) { + if (!freespace_inode) + btrfs_might_wait_for_event(inode->root->fs_info, btrfs_ordered_extent); + wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, + &entry->flags)); + } +} + +/* + * Used to wait on ordered extents across a large range of bytes. + */ +int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len) +{ + int ret = 0; + int ret_wb = 0; + u64 end; + u64 orig_end; + struct btrfs_ordered_extent *ordered; + + if (start + len < start) { + orig_end = INT_LIMIT(loff_t); + } else { + orig_end = start + len - 1; + if (orig_end > INT_LIMIT(loff_t)) + orig_end = INT_LIMIT(loff_t); + } + + /* start IO across the range first to instantiate any delalloc + * extents + */ + ret = btrfs_fdatawrite_range(inode, start, orig_end); + if (ret) + return ret; + + /* + * If we have a writeback error don't return immediately. Wait first + * for any ordered extents that haven't completed yet. This is to make + * sure no one can dirty the same page ranges and call writepages() + * before the ordered extents complete - to avoid failures (-EEXIST) + * when adding the new ordered extents to the ordered tree. + */ + ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end); + + end = orig_end; + while (1) { + ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), end); + if (!ordered) + break; + if (ordered->file_offset > orig_end) { + btrfs_put_ordered_extent(ordered); + break; + } + if (ordered->file_offset + ordered->num_bytes <= start) { + btrfs_put_ordered_extent(ordered); + break; + } + btrfs_start_ordered_extent(ordered, 1); + end = ordered->file_offset; + /* + * If the ordered extent had an error save the error but don't + * exit without waiting first for all other ordered extents in + * the range to complete. + */ + if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) + ret = -EIO; + btrfs_put_ordered_extent(ordered); + if (end == 0 || end == start) + break; + end--; + } + return ret_wb ? ret_wb : ret; +} + +/* + * find an ordered extent corresponding to file_offset. return NULL if + * nothing is found, otherwise take a reference on the extent and return it + */ +struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode, + u64 file_offset) +{ + struct btrfs_ordered_inode_tree *tree; + struct rb_node *node; + struct btrfs_ordered_extent *entry = NULL; + unsigned long flags; + + tree = &inode->ordered_tree; + spin_lock_irqsave(&tree->lock, flags); + node = tree_search(tree, file_offset); + if (!node) + goto out; + + entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); + if (!in_range(file_offset, entry->file_offset, entry->num_bytes)) + entry = NULL; + if (entry) { + refcount_inc(&entry->refs); + trace_btrfs_ordered_extent_lookup(inode, entry); + } +out: + spin_unlock_irqrestore(&tree->lock, flags); + return entry; +} + +/* Since the DIO code tries to lock a wide area we need to look for any ordered + * extents that exist in the range, rather than just the start of the range. + */ +struct btrfs_ordered_extent *btrfs_lookup_ordered_range( + struct btrfs_inode *inode, u64 file_offset, u64 len) +{ + struct btrfs_ordered_inode_tree *tree; + struct rb_node *node; + struct btrfs_ordered_extent *entry = NULL; + + tree = &inode->ordered_tree; + spin_lock_irq(&tree->lock); + node = tree_search(tree, file_offset); + if (!node) { + node = tree_search(tree, file_offset + len); + if (!node) + goto out; + } + + while (1) { + entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); + if (range_overlaps(entry, file_offset, len)) + break; + + if (entry->file_offset >= file_offset + len) { + entry = NULL; + break; + } + entry = NULL; + node = rb_next(node); + if (!node) + break; + } +out: + if (entry) { + refcount_inc(&entry->refs); + trace_btrfs_ordered_extent_lookup_range(inode, entry); + } + spin_unlock_irq(&tree->lock); + return entry; +} + +/* + * Adds all ordered extents to the given list. The list ends up sorted by the + * file_offset of the ordered extents. + */ +void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode, + struct list_head *list) +{ + struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree; + struct rb_node *n; + + ASSERT(inode_is_locked(&inode->vfs_inode)); + + spin_lock_irq(&tree->lock); + for (n = rb_first(&tree->tree); n; n = rb_next(n)) { + struct btrfs_ordered_extent *ordered; + + ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node); + + if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags)) + continue; + + ASSERT(list_empty(&ordered->log_list)); + list_add_tail(&ordered->log_list, list); + refcount_inc(&ordered->refs); + trace_btrfs_ordered_extent_lookup_for_logging(inode, ordered); + } + spin_unlock_irq(&tree->lock); +} + +/* + * lookup and return any extent before 'file_offset'. NULL is returned + * if none is found + */ +struct btrfs_ordered_extent * +btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset) +{ + struct btrfs_ordered_inode_tree *tree; + struct rb_node *node; + struct btrfs_ordered_extent *entry = NULL; + + tree = &inode->ordered_tree; + spin_lock_irq(&tree->lock); + node = tree_search(tree, file_offset); + if (!node) + goto out; + + entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); + refcount_inc(&entry->refs); + trace_btrfs_ordered_extent_lookup_first(inode, entry); +out: + spin_unlock_irq(&tree->lock); + return entry; +} + +/* + * Lookup the first ordered extent that overlaps the range + * [@file_offset, @file_offset + @len). + * + * The difference between this and btrfs_lookup_first_ordered_extent() is + * that this one won't return any ordered extent that does not overlap the range. + * And the difference against btrfs_lookup_ordered_extent() is, this function + * ensures the first ordered extent gets returned. + */ +struct btrfs_ordered_extent *btrfs_lookup_first_ordered_range( + struct btrfs_inode *inode, u64 file_offset, u64 len) +{ + struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree; + struct rb_node *node; + struct rb_node *cur; + struct rb_node *prev; + struct rb_node *next; + struct btrfs_ordered_extent *entry = NULL; + + spin_lock_irq(&tree->lock); + node = tree->tree.rb_node; + /* + * Here we don't want to use tree_search() which will use tree->last + * and screw up the search order. + * And __tree_search() can't return the adjacent ordered extents + * either, thus here we do our own search. + */ + while (node) { + entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); + + if (file_offset < entry->file_offset) { + node = node->rb_left; + } else if (file_offset >= entry_end(entry)) { + node = node->rb_right; + } else { + /* + * Direct hit, got an ordered extent that starts at + * @file_offset + */ + goto out; + } + } + if (!entry) { + /* Empty tree */ + goto out; + } + + cur = &entry->rb_node; + /* We got an entry around @file_offset, check adjacent entries */ + if (entry->file_offset < file_offset) { + prev = cur; + next = rb_next(cur); + } else { + prev = rb_prev(cur); + next = cur; + } + if (prev) { + entry = rb_entry(prev, struct btrfs_ordered_extent, rb_node); + if (range_overlaps(entry, file_offset, len)) + goto out; + } + if (next) { + entry = rb_entry(next, struct btrfs_ordered_extent, rb_node); + if (range_overlaps(entry, file_offset, len)) + goto out; + } + /* No ordered extent in the range */ + entry = NULL; +out: + if (entry) { + refcount_inc(&entry->refs); + trace_btrfs_ordered_extent_lookup_first_range(inode, entry); + } + + spin_unlock_irq(&tree->lock); + return entry; +} + +/* + * btrfs_flush_ordered_range - Lock the passed range and ensures all pending + * ordered extents in it are run to completion. + * + * @inode: Inode whose ordered tree is to be searched + * @start: Beginning of range to flush + * @end: Last byte of range to lock + * @cached_state: If passed, will return the extent state responsible for the + * locked range. It's the caller's responsibility to free the cached state. + * + * This function always returns with the given range locked, ensuring after it's + * called no order extent can be pending. + */ +void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start, + u64 end, + struct extent_state **cached_state) +{ + struct btrfs_ordered_extent *ordered; + struct extent_state *cache = NULL; + struct extent_state **cachedp = &cache; + + if (cached_state) + cachedp = cached_state; + + while (1) { + lock_extent(&inode->io_tree, start, end, cachedp); + ordered = btrfs_lookup_ordered_range(inode, start, + end - start + 1); + if (!ordered) { + /* + * If no external cached_state has been passed then + * decrement the extra ref taken for cachedp since we + * aren't exposing it outside of this function + */ + if (!cached_state) + refcount_dec(&cache->refs); + break; + } + unlock_extent(&inode->io_tree, start, end, cachedp); + btrfs_start_ordered_extent(ordered, 1); + btrfs_put_ordered_extent(ordered); + } +} + +/* + * Lock the passed range and ensure all pending ordered extents in it are run + * to completion in nowait mode. + * + * Return true if btrfs_lock_ordered_range does not return any extents, + * otherwise false. + */ +bool btrfs_try_lock_ordered_range(struct btrfs_inode *inode, u64 start, u64 end) +{ + struct btrfs_ordered_extent *ordered; + + if (!try_lock_extent(&inode->io_tree, start, end)) + return false; + + ordered = btrfs_lookup_ordered_range(inode, start, end - start + 1); + if (!ordered) + return true; + + btrfs_put_ordered_extent(ordered); + unlock_extent(&inode->io_tree, start, end, NULL); + + return false; +} + + +static int clone_ordered_extent(struct btrfs_ordered_extent *ordered, u64 pos, + u64 len) +{ + struct inode *inode = ordered->inode; + struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; + u64 file_offset = ordered->file_offset + pos; + u64 disk_bytenr = ordered->disk_bytenr + pos; + unsigned long flags = ordered->flags & BTRFS_ORDERED_TYPE_FLAGS; + + /* + * The splitting extent is already counted and will be added again in + * btrfs_add_ordered_extent_*(). Subtract len to avoid double counting. + */ + percpu_counter_add_batch(&fs_info->ordered_bytes, -len, + fs_info->delalloc_batch); + WARN_ON_ONCE(flags & (1 << BTRFS_ORDERED_COMPRESSED)); + return btrfs_add_ordered_extent(BTRFS_I(inode), file_offset, len, len, + disk_bytenr, len, 0, flags, + ordered->compress_type); +} + +int btrfs_split_ordered_extent(struct btrfs_ordered_extent *ordered, u64 pre, + u64 post) +{ + struct inode *inode = ordered->inode; + struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree; + struct rb_node *node; + struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); + int ret = 0; + + trace_btrfs_ordered_extent_split(BTRFS_I(inode), ordered); + + spin_lock_irq(&tree->lock); + /* Remove from tree once */ + node = &ordered->rb_node; + rb_erase(node, &tree->tree); + RB_CLEAR_NODE(node); + if (tree->last == node) + tree->last = NULL; + + ordered->file_offset += pre; + ordered->disk_bytenr += pre; + ordered->num_bytes -= (pre + post); + ordered->disk_num_bytes -= (pre + post); + ordered->bytes_left -= (pre + post); + + /* Re-insert the node */ + node = tree_insert(&tree->tree, ordered->file_offset, &ordered->rb_node); + if (node) + btrfs_panic(fs_info, -EEXIST, + "zoned: inconsistency in ordered tree at offset %llu", + ordered->file_offset); + + spin_unlock_irq(&tree->lock); + + if (pre) + ret = clone_ordered_extent(ordered, 0, pre); + if (ret == 0 && post) + ret = clone_ordered_extent(ordered, pre + ordered->disk_num_bytes, + post); + + return ret; +} + +int __init ordered_data_init(void) +{ + btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent", + sizeof(struct btrfs_ordered_extent), 0, + SLAB_MEM_SPREAD, + NULL); + if (!btrfs_ordered_extent_cache) + return -ENOMEM; + + return 0; +} + +void __cold ordered_data_exit(void) +{ + kmem_cache_destroy(btrfs_ordered_extent_cache); +} |