summaryrefslogtreecommitdiffstats
path: root/kernel/sched/membarrier.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:49:45 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:49:45 +0000
commit2c3c1048746a4622d8c89a29670120dc8fab93c4 (patch)
tree848558de17fb3008cdf4d861b01ac7781903ce39 /kernel/sched/membarrier.c
parentInitial commit. (diff)
downloadlinux-2c3c1048746a4622d8c89a29670120dc8fab93c4.tar.xz
linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.zip
Adding upstream version 6.1.76.upstream/6.1.76
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to '')
-rw-r--r--kernel/sched/membarrier.c629
1 files changed, 629 insertions, 0 deletions
diff --git a/kernel/sched/membarrier.c b/kernel/sched/membarrier.c
new file mode 100644
index 000000000..0c5be7ebb
--- /dev/null
+++ b/kernel/sched/membarrier.c
@@ -0,0 +1,629 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * Copyright (C) 2010-2017 Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
+ *
+ * membarrier system call
+ */
+
+/*
+ * For documentation purposes, here are some membarrier ordering
+ * scenarios to keep in mind:
+ *
+ * A) Userspace thread execution after IPI vs membarrier's memory
+ * barrier before sending the IPI
+ *
+ * Userspace variables:
+ *
+ * int x = 0, y = 0;
+ *
+ * The memory barrier at the start of membarrier() on CPU0 is necessary in
+ * order to enforce the guarantee that any writes occurring on CPU0 before
+ * the membarrier() is executed will be visible to any code executing on
+ * CPU1 after the IPI-induced memory barrier:
+ *
+ * CPU0 CPU1
+ *
+ * x = 1
+ * membarrier():
+ * a: smp_mb()
+ * b: send IPI IPI-induced mb
+ * c: smp_mb()
+ * r2 = y
+ * y = 1
+ * barrier()
+ * r1 = x
+ *
+ * BUG_ON(r1 == 0 && r2 == 0)
+ *
+ * The write to y and load from x by CPU1 are unordered by the hardware,
+ * so it's possible to have "r1 = x" reordered before "y = 1" at any
+ * point after (b). If the memory barrier at (a) is omitted, then "x = 1"
+ * can be reordered after (a) (although not after (c)), so we get r1 == 0
+ * and r2 == 0. This violates the guarantee that membarrier() is
+ * supposed by provide.
+ *
+ * The timing of the memory barrier at (a) has to ensure that it executes
+ * before the IPI-induced memory barrier on CPU1.
+ *
+ * B) Userspace thread execution before IPI vs membarrier's memory
+ * barrier after completing the IPI
+ *
+ * Userspace variables:
+ *
+ * int x = 0, y = 0;
+ *
+ * The memory barrier at the end of membarrier() on CPU0 is necessary in
+ * order to enforce the guarantee that any writes occurring on CPU1 before
+ * the membarrier() is executed will be visible to any code executing on
+ * CPU0 after the membarrier():
+ *
+ * CPU0 CPU1
+ *
+ * x = 1
+ * barrier()
+ * y = 1
+ * r2 = y
+ * membarrier():
+ * a: smp_mb()
+ * b: send IPI IPI-induced mb
+ * c: smp_mb()
+ * r1 = x
+ * BUG_ON(r1 == 0 && r2 == 1)
+ *
+ * The writes to x and y are unordered by the hardware, so it's possible to
+ * have "r2 = 1" even though the write to x doesn't execute until (b). If
+ * the memory barrier at (c) is omitted then "r1 = x" can be reordered
+ * before (b) (although not before (a)), so we get "r1 = 0". This violates
+ * the guarantee that membarrier() is supposed to provide.
+ *
+ * The timing of the memory barrier at (c) has to ensure that it executes
+ * after the IPI-induced memory barrier on CPU1.
+ *
+ * C) Scheduling userspace thread -> kthread -> userspace thread vs membarrier
+ *
+ * CPU0 CPU1
+ *
+ * membarrier():
+ * a: smp_mb()
+ * d: switch to kthread (includes mb)
+ * b: read rq->curr->mm == NULL
+ * e: switch to user (includes mb)
+ * c: smp_mb()
+ *
+ * Using the scenario from (A), we can show that (a) needs to be paired
+ * with (e). Using the scenario from (B), we can show that (c) needs to
+ * be paired with (d).
+ *
+ * D) exit_mm vs membarrier
+ *
+ * Two thread groups are created, A and B. Thread group B is created by
+ * issuing clone from group A with flag CLONE_VM set, but not CLONE_THREAD.
+ * Let's assume we have a single thread within each thread group (Thread A
+ * and Thread B). Thread A runs on CPU0, Thread B runs on CPU1.
+ *
+ * CPU0 CPU1
+ *
+ * membarrier():
+ * a: smp_mb()
+ * exit_mm():
+ * d: smp_mb()
+ * e: current->mm = NULL
+ * b: read rq->curr->mm == NULL
+ * c: smp_mb()
+ *
+ * Using scenario (B), we can show that (c) needs to be paired with (d).
+ *
+ * E) kthread_{use,unuse}_mm vs membarrier
+ *
+ * CPU0 CPU1
+ *
+ * membarrier():
+ * a: smp_mb()
+ * kthread_unuse_mm()
+ * d: smp_mb()
+ * e: current->mm = NULL
+ * b: read rq->curr->mm == NULL
+ * kthread_use_mm()
+ * f: current->mm = mm
+ * g: smp_mb()
+ * c: smp_mb()
+ *
+ * Using the scenario from (A), we can show that (a) needs to be paired
+ * with (g). Using the scenario from (B), we can show that (c) needs to
+ * be paired with (d).
+ */
+
+/*
+ * Bitmask made from a "or" of all commands within enum membarrier_cmd,
+ * except MEMBARRIER_CMD_QUERY.
+ */
+#ifdef CONFIG_ARCH_HAS_MEMBARRIER_SYNC_CORE
+#define MEMBARRIER_PRIVATE_EXPEDITED_SYNC_CORE_BITMASK \
+ (MEMBARRIER_CMD_PRIVATE_EXPEDITED_SYNC_CORE \
+ | MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED_SYNC_CORE)
+#else
+#define MEMBARRIER_PRIVATE_EXPEDITED_SYNC_CORE_BITMASK 0
+#endif
+
+#ifdef CONFIG_RSEQ
+#define MEMBARRIER_PRIVATE_EXPEDITED_RSEQ_BITMASK \
+ (MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ \
+ | MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED_RSEQ)
+#else
+#define MEMBARRIER_PRIVATE_EXPEDITED_RSEQ_BITMASK 0
+#endif
+
+#define MEMBARRIER_CMD_BITMASK \
+ (MEMBARRIER_CMD_GLOBAL | MEMBARRIER_CMD_GLOBAL_EXPEDITED \
+ | MEMBARRIER_CMD_REGISTER_GLOBAL_EXPEDITED \
+ | MEMBARRIER_CMD_PRIVATE_EXPEDITED \
+ | MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED \
+ | MEMBARRIER_PRIVATE_EXPEDITED_SYNC_CORE_BITMASK \
+ | MEMBARRIER_PRIVATE_EXPEDITED_RSEQ_BITMASK)
+
+static void ipi_mb(void *info)
+{
+ smp_mb(); /* IPIs should be serializing but paranoid. */
+}
+
+static void ipi_sync_core(void *info)
+{
+ /*
+ * The smp_mb() in membarrier after all the IPIs is supposed to
+ * ensure that memory on remote CPUs that occur before the IPI
+ * become visible to membarrier()'s caller -- see scenario B in
+ * the big comment at the top of this file.
+ *
+ * A sync_core() would provide this guarantee, but
+ * sync_core_before_usermode() might end up being deferred until
+ * after membarrier()'s smp_mb().
+ */
+ smp_mb(); /* IPIs should be serializing but paranoid. */
+
+ sync_core_before_usermode();
+}
+
+static void ipi_rseq(void *info)
+{
+ /*
+ * Ensure that all stores done by the calling thread are visible
+ * to the current task before the current task resumes. We could
+ * probably optimize this away on most architectures, but by the
+ * time we've already sent an IPI, the cost of the extra smp_mb()
+ * is negligible.
+ */
+ smp_mb();
+ rseq_preempt(current);
+}
+
+static void ipi_sync_rq_state(void *info)
+{
+ struct mm_struct *mm = (struct mm_struct *) info;
+
+ if (current->mm != mm)
+ return;
+ this_cpu_write(runqueues.membarrier_state,
+ atomic_read(&mm->membarrier_state));
+ /*
+ * Issue a memory barrier after setting
+ * MEMBARRIER_STATE_GLOBAL_EXPEDITED in the current runqueue to
+ * guarantee that no memory access following registration is reordered
+ * before registration.
+ */
+ smp_mb();
+}
+
+void membarrier_exec_mmap(struct mm_struct *mm)
+{
+ /*
+ * Issue a memory barrier before clearing membarrier_state to
+ * guarantee that no memory access prior to exec is reordered after
+ * clearing this state.
+ */
+ smp_mb();
+ atomic_set(&mm->membarrier_state, 0);
+ /*
+ * Keep the runqueue membarrier_state in sync with this mm
+ * membarrier_state.
+ */
+ this_cpu_write(runqueues.membarrier_state, 0);
+}
+
+void membarrier_update_current_mm(struct mm_struct *next_mm)
+{
+ struct rq *rq = this_rq();
+ int membarrier_state = 0;
+
+ if (next_mm)
+ membarrier_state = atomic_read(&next_mm->membarrier_state);
+ if (READ_ONCE(rq->membarrier_state) == membarrier_state)
+ return;
+ WRITE_ONCE(rq->membarrier_state, membarrier_state);
+}
+
+static int membarrier_global_expedited(void)
+{
+ int cpu;
+ cpumask_var_t tmpmask;
+
+ if (num_online_cpus() == 1)
+ return 0;
+
+ /*
+ * Matches memory barriers around rq->curr modification in
+ * scheduler.
+ */
+ smp_mb(); /* system call entry is not a mb. */
+
+ if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
+ return -ENOMEM;
+
+ cpus_read_lock();
+ rcu_read_lock();
+ for_each_online_cpu(cpu) {
+ struct task_struct *p;
+
+ /*
+ * Skipping the current CPU is OK even through we can be
+ * migrated at any point. The current CPU, at the point
+ * where we read raw_smp_processor_id(), is ensured to
+ * be in program order with respect to the caller
+ * thread. Therefore, we can skip this CPU from the
+ * iteration.
+ */
+ if (cpu == raw_smp_processor_id())
+ continue;
+
+ if (!(READ_ONCE(cpu_rq(cpu)->membarrier_state) &
+ MEMBARRIER_STATE_GLOBAL_EXPEDITED))
+ continue;
+
+ /*
+ * Skip the CPU if it runs a kernel thread which is not using
+ * a task mm.
+ */
+ p = rcu_dereference(cpu_rq(cpu)->curr);
+ if (!p->mm)
+ continue;
+
+ __cpumask_set_cpu(cpu, tmpmask);
+ }
+ rcu_read_unlock();
+
+ preempt_disable();
+ smp_call_function_many(tmpmask, ipi_mb, NULL, 1);
+ preempt_enable();
+
+ free_cpumask_var(tmpmask);
+ cpus_read_unlock();
+
+ /*
+ * Memory barrier on the caller thread _after_ we finished
+ * waiting for the last IPI. Matches memory barriers around
+ * rq->curr modification in scheduler.
+ */
+ smp_mb(); /* exit from system call is not a mb */
+ return 0;
+}
+
+static int membarrier_private_expedited(int flags, int cpu_id)
+{
+ cpumask_var_t tmpmask;
+ struct mm_struct *mm = current->mm;
+ smp_call_func_t ipi_func = ipi_mb;
+
+ if (flags == MEMBARRIER_FLAG_SYNC_CORE) {
+ if (!IS_ENABLED(CONFIG_ARCH_HAS_MEMBARRIER_SYNC_CORE))
+ return -EINVAL;
+ if (!(atomic_read(&mm->membarrier_state) &
+ MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE_READY))
+ return -EPERM;
+ ipi_func = ipi_sync_core;
+ } else if (flags == MEMBARRIER_FLAG_RSEQ) {
+ if (!IS_ENABLED(CONFIG_RSEQ))
+ return -EINVAL;
+ if (!(atomic_read(&mm->membarrier_state) &
+ MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ_READY))
+ return -EPERM;
+ ipi_func = ipi_rseq;
+ } else {
+ WARN_ON_ONCE(flags);
+ if (!(atomic_read(&mm->membarrier_state) &
+ MEMBARRIER_STATE_PRIVATE_EXPEDITED_READY))
+ return -EPERM;
+ }
+
+ if (flags != MEMBARRIER_FLAG_SYNC_CORE &&
+ (atomic_read(&mm->mm_users) == 1 || num_online_cpus() == 1))
+ return 0;
+
+ /*
+ * Matches memory barriers around rq->curr modification in
+ * scheduler.
+ */
+ smp_mb(); /* system call entry is not a mb. */
+
+ if (cpu_id < 0 && !zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
+ return -ENOMEM;
+
+ cpus_read_lock();
+
+ if (cpu_id >= 0) {
+ struct task_struct *p;
+
+ if (cpu_id >= nr_cpu_ids || !cpu_online(cpu_id))
+ goto out;
+ rcu_read_lock();
+ p = rcu_dereference(cpu_rq(cpu_id)->curr);
+ if (!p || p->mm != mm) {
+ rcu_read_unlock();
+ goto out;
+ }
+ rcu_read_unlock();
+ } else {
+ int cpu;
+
+ rcu_read_lock();
+ for_each_online_cpu(cpu) {
+ struct task_struct *p;
+
+ p = rcu_dereference(cpu_rq(cpu)->curr);
+ if (p && p->mm == mm)
+ __cpumask_set_cpu(cpu, tmpmask);
+ }
+ rcu_read_unlock();
+ }
+
+ if (cpu_id >= 0) {
+ /*
+ * smp_call_function_single() will call ipi_func() if cpu_id
+ * is the calling CPU.
+ */
+ smp_call_function_single(cpu_id, ipi_func, NULL, 1);
+ } else {
+ /*
+ * For regular membarrier, we can save a few cycles by
+ * skipping the current cpu -- we're about to do smp_mb()
+ * below, and if we migrate to a different cpu, this cpu
+ * and the new cpu will execute a full barrier in the
+ * scheduler.
+ *
+ * For SYNC_CORE, we do need a barrier on the current cpu --
+ * otherwise, if we are migrated and replaced by a different
+ * task in the same mm just before, during, or after
+ * membarrier, we will end up with some thread in the mm
+ * running without a core sync.
+ *
+ * For RSEQ, don't rseq_preempt() the caller. User code
+ * is not supposed to issue syscalls at all from inside an
+ * rseq critical section.
+ */
+ if (flags != MEMBARRIER_FLAG_SYNC_CORE) {
+ preempt_disable();
+ smp_call_function_many(tmpmask, ipi_func, NULL, true);
+ preempt_enable();
+ } else {
+ on_each_cpu_mask(tmpmask, ipi_func, NULL, true);
+ }
+ }
+
+out:
+ if (cpu_id < 0)
+ free_cpumask_var(tmpmask);
+ cpus_read_unlock();
+
+ /*
+ * Memory barrier on the caller thread _after_ we finished
+ * waiting for the last IPI. Matches memory barriers around
+ * rq->curr modification in scheduler.
+ */
+ smp_mb(); /* exit from system call is not a mb */
+
+ return 0;
+}
+
+static int sync_runqueues_membarrier_state(struct mm_struct *mm)
+{
+ int membarrier_state = atomic_read(&mm->membarrier_state);
+ cpumask_var_t tmpmask;
+ int cpu;
+
+ if (atomic_read(&mm->mm_users) == 1 || num_online_cpus() == 1) {
+ this_cpu_write(runqueues.membarrier_state, membarrier_state);
+
+ /*
+ * For single mm user, we can simply issue a memory barrier
+ * after setting MEMBARRIER_STATE_GLOBAL_EXPEDITED in the
+ * mm and in the current runqueue to guarantee that no memory
+ * access following registration is reordered before
+ * registration.
+ */
+ smp_mb();
+ return 0;
+ }
+
+ if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
+ return -ENOMEM;
+
+ /*
+ * For mm with multiple users, we need to ensure all future
+ * scheduler executions will observe @mm's new membarrier
+ * state.
+ */
+ synchronize_rcu();
+
+ /*
+ * For each cpu runqueue, if the task's mm match @mm, ensure that all
+ * @mm's membarrier state set bits are also set in the runqueue's
+ * membarrier state. This ensures that a runqueue scheduling
+ * between threads which are users of @mm has its membarrier state
+ * updated.
+ */
+ cpus_read_lock();
+ rcu_read_lock();
+ for_each_online_cpu(cpu) {
+ struct rq *rq = cpu_rq(cpu);
+ struct task_struct *p;
+
+ p = rcu_dereference(rq->curr);
+ if (p && p->mm == mm)
+ __cpumask_set_cpu(cpu, tmpmask);
+ }
+ rcu_read_unlock();
+
+ on_each_cpu_mask(tmpmask, ipi_sync_rq_state, mm, true);
+
+ free_cpumask_var(tmpmask);
+ cpus_read_unlock();
+
+ return 0;
+}
+
+static int membarrier_register_global_expedited(void)
+{
+ struct task_struct *p = current;
+ struct mm_struct *mm = p->mm;
+ int ret;
+
+ if (atomic_read(&mm->membarrier_state) &
+ MEMBARRIER_STATE_GLOBAL_EXPEDITED_READY)
+ return 0;
+ atomic_or(MEMBARRIER_STATE_GLOBAL_EXPEDITED, &mm->membarrier_state);
+ ret = sync_runqueues_membarrier_state(mm);
+ if (ret)
+ return ret;
+ atomic_or(MEMBARRIER_STATE_GLOBAL_EXPEDITED_READY,
+ &mm->membarrier_state);
+
+ return 0;
+}
+
+static int membarrier_register_private_expedited(int flags)
+{
+ struct task_struct *p = current;
+ struct mm_struct *mm = p->mm;
+ int ready_state = MEMBARRIER_STATE_PRIVATE_EXPEDITED_READY,
+ set_state = MEMBARRIER_STATE_PRIVATE_EXPEDITED,
+ ret;
+
+ if (flags == MEMBARRIER_FLAG_SYNC_CORE) {
+ if (!IS_ENABLED(CONFIG_ARCH_HAS_MEMBARRIER_SYNC_CORE))
+ return -EINVAL;
+ ready_state =
+ MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE_READY;
+ } else if (flags == MEMBARRIER_FLAG_RSEQ) {
+ if (!IS_ENABLED(CONFIG_RSEQ))
+ return -EINVAL;
+ ready_state =
+ MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ_READY;
+ } else {
+ WARN_ON_ONCE(flags);
+ }
+
+ /*
+ * We need to consider threads belonging to different thread
+ * groups, which use the same mm. (CLONE_VM but not
+ * CLONE_THREAD).
+ */
+ if ((atomic_read(&mm->membarrier_state) & ready_state) == ready_state)
+ return 0;
+ if (flags & MEMBARRIER_FLAG_SYNC_CORE)
+ set_state |= MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE;
+ if (flags & MEMBARRIER_FLAG_RSEQ)
+ set_state |= MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ;
+ atomic_or(set_state, &mm->membarrier_state);
+ ret = sync_runqueues_membarrier_state(mm);
+ if (ret)
+ return ret;
+ atomic_or(ready_state, &mm->membarrier_state);
+
+ return 0;
+}
+
+/**
+ * sys_membarrier - issue memory barriers on a set of threads
+ * @cmd: Takes command values defined in enum membarrier_cmd.
+ * @flags: Currently needs to be 0 for all commands other than
+ * MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ: in the latter
+ * case it can be MEMBARRIER_CMD_FLAG_CPU, indicating that @cpu_id
+ * contains the CPU on which to interrupt (= restart)
+ * the RSEQ critical section.
+ * @cpu_id: if @flags == MEMBARRIER_CMD_FLAG_CPU, indicates the cpu on which
+ * RSEQ CS should be interrupted (@cmd must be
+ * MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ).
+ *
+ * If this system call is not implemented, -ENOSYS is returned. If the
+ * command specified does not exist, not available on the running
+ * kernel, or if the command argument is invalid, this system call
+ * returns -EINVAL. For a given command, with flags argument set to 0,
+ * if this system call returns -ENOSYS or -EINVAL, it is guaranteed to
+ * always return the same value until reboot. In addition, it can return
+ * -ENOMEM if there is not enough memory available to perform the system
+ * call.
+ *
+ * All memory accesses performed in program order from each targeted thread
+ * is guaranteed to be ordered with respect to sys_membarrier(). If we use
+ * the semantic "barrier()" to represent a compiler barrier forcing memory
+ * accesses to be performed in program order across the barrier, and
+ * smp_mb() to represent explicit memory barriers forcing full memory
+ * ordering across the barrier, we have the following ordering table for
+ * each pair of barrier(), sys_membarrier() and smp_mb():
+ *
+ * The pair ordering is detailed as (O: ordered, X: not ordered):
+ *
+ * barrier() smp_mb() sys_membarrier()
+ * barrier() X X O
+ * smp_mb() X O O
+ * sys_membarrier() O O O
+ */
+SYSCALL_DEFINE3(membarrier, int, cmd, unsigned int, flags, int, cpu_id)
+{
+ switch (cmd) {
+ case MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ:
+ if (unlikely(flags && flags != MEMBARRIER_CMD_FLAG_CPU))
+ return -EINVAL;
+ break;
+ default:
+ if (unlikely(flags))
+ return -EINVAL;
+ }
+
+ if (!(flags & MEMBARRIER_CMD_FLAG_CPU))
+ cpu_id = -1;
+
+ switch (cmd) {
+ case MEMBARRIER_CMD_QUERY:
+ {
+ int cmd_mask = MEMBARRIER_CMD_BITMASK;
+
+ if (tick_nohz_full_enabled())
+ cmd_mask &= ~MEMBARRIER_CMD_GLOBAL;
+ return cmd_mask;
+ }
+ case MEMBARRIER_CMD_GLOBAL:
+ /* MEMBARRIER_CMD_GLOBAL is not compatible with nohz_full. */
+ if (tick_nohz_full_enabled())
+ return -EINVAL;
+ if (num_online_cpus() > 1)
+ synchronize_rcu();
+ return 0;
+ case MEMBARRIER_CMD_GLOBAL_EXPEDITED:
+ return membarrier_global_expedited();
+ case MEMBARRIER_CMD_REGISTER_GLOBAL_EXPEDITED:
+ return membarrier_register_global_expedited();
+ case MEMBARRIER_CMD_PRIVATE_EXPEDITED:
+ return membarrier_private_expedited(0, cpu_id);
+ case MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED:
+ return membarrier_register_private_expedited(0);
+ case MEMBARRIER_CMD_PRIVATE_EXPEDITED_SYNC_CORE:
+ return membarrier_private_expedited(MEMBARRIER_FLAG_SYNC_CORE, cpu_id);
+ case MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED_SYNC_CORE:
+ return membarrier_register_private_expedited(MEMBARRIER_FLAG_SYNC_CORE);
+ case MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ:
+ return membarrier_private_expedited(MEMBARRIER_FLAG_RSEQ, cpu_id);
+ case MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED_RSEQ:
+ return membarrier_register_private_expedited(MEMBARRIER_FLAG_RSEQ);
+ default:
+ return -EINVAL;
+ }
+}