summaryrefslogtreecommitdiffstats
path: root/mm/slab_common.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:49:45 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:49:45 +0000
commit2c3c1048746a4622d8c89a29670120dc8fab93c4 (patch)
tree848558de17fb3008cdf4d861b01ac7781903ce39 /mm/slab_common.c
parentInitial commit. (diff)
downloadlinux-2c3c1048746a4622d8c89a29670120dc8fab93c4.tar.xz
linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.zip
Adding upstream version 6.1.76.upstream/6.1.76
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'mm/slab_common.c')
-rw-r--r--mm/slab_common.c1456
1 files changed, 1456 insertions, 0 deletions
diff --git a/mm/slab_common.c b/mm/slab_common.c
new file mode 100644
index 000000000..4736c0e60
--- /dev/null
+++ b/mm/slab_common.c
@@ -0,0 +1,1456 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Slab allocator functions that are independent of the allocator strategy
+ *
+ * (C) 2012 Christoph Lameter <cl@linux.com>
+ */
+#include <linux/slab.h>
+
+#include <linux/mm.h>
+#include <linux/poison.h>
+#include <linux/interrupt.h>
+#include <linux/memory.h>
+#include <linux/cache.h>
+#include <linux/compiler.h>
+#include <linux/kfence.h>
+#include <linux/module.h>
+#include <linux/cpu.h>
+#include <linux/uaccess.h>
+#include <linux/seq_file.h>
+#include <linux/proc_fs.h>
+#include <linux/debugfs.h>
+#include <linux/kasan.h>
+#include <asm/cacheflush.h>
+#include <asm/tlbflush.h>
+#include <asm/page.h>
+#include <linux/memcontrol.h>
+#include <linux/stackdepot.h>
+
+#include "internal.h"
+#include "slab.h"
+
+#define CREATE_TRACE_POINTS
+#include <trace/events/kmem.h>
+
+enum slab_state slab_state;
+LIST_HEAD(slab_caches);
+DEFINE_MUTEX(slab_mutex);
+struct kmem_cache *kmem_cache;
+
+static LIST_HEAD(slab_caches_to_rcu_destroy);
+static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
+static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
+ slab_caches_to_rcu_destroy_workfn);
+
+/*
+ * Set of flags that will prevent slab merging
+ */
+#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
+ SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
+ SLAB_FAILSLAB | kasan_never_merge())
+
+#define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
+ SLAB_CACHE_DMA32 | SLAB_ACCOUNT)
+
+/*
+ * Merge control. If this is set then no merging of slab caches will occur.
+ */
+static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
+
+static int __init setup_slab_nomerge(char *str)
+{
+ slab_nomerge = true;
+ return 1;
+}
+
+static int __init setup_slab_merge(char *str)
+{
+ slab_nomerge = false;
+ return 1;
+}
+
+#ifdef CONFIG_SLUB
+__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
+__setup_param("slub_merge", slub_merge, setup_slab_merge, 0);
+#endif
+
+__setup("slab_nomerge", setup_slab_nomerge);
+__setup("slab_merge", setup_slab_merge);
+
+/*
+ * Determine the size of a slab object
+ */
+unsigned int kmem_cache_size(struct kmem_cache *s)
+{
+ return s->object_size;
+}
+EXPORT_SYMBOL(kmem_cache_size);
+
+#ifdef CONFIG_DEBUG_VM
+static int kmem_cache_sanity_check(const char *name, unsigned int size)
+{
+ if (!name || in_interrupt() || size > KMALLOC_MAX_SIZE) {
+ pr_err("kmem_cache_create(%s) integrity check failed\n", name);
+ return -EINVAL;
+ }
+
+ WARN_ON(strchr(name, ' ')); /* It confuses parsers */
+ return 0;
+}
+#else
+static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
+{
+ return 0;
+}
+#endif
+
+/*
+ * Figure out what the alignment of the objects will be given a set of
+ * flags, a user specified alignment and the size of the objects.
+ */
+static unsigned int calculate_alignment(slab_flags_t flags,
+ unsigned int align, unsigned int size)
+{
+ /*
+ * If the user wants hardware cache aligned objects then follow that
+ * suggestion if the object is sufficiently large.
+ *
+ * The hardware cache alignment cannot override the specified
+ * alignment though. If that is greater then use it.
+ */
+ if (flags & SLAB_HWCACHE_ALIGN) {
+ unsigned int ralign;
+
+ ralign = cache_line_size();
+ while (size <= ralign / 2)
+ ralign /= 2;
+ align = max(align, ralign);
+ }
+
+ align = max(align, arch_slab_minalign());
+
+ return ALIGN(align, sizeof(void *));
+}
+
+/*
+ * Find a mergeable slab cache
+ */
+int slab_unmergeable(struct kmem_cache *s)
+{
+ if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
+ return 1;
+
+ if (s->ctor)
+ return 1;
+
+ if (s->usersize)
+ return 1;
+
+ /*
+ * We may have set a slab to be unmergeable during bootstrap.
+ */
+ if (s->refcount < 0)
+ return 1;
+
+ return 0;
+}
+
+struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
+ slab_flags_t flags, const char *name, void (*ctor)(void *))
+{
+ struct kmem_cache *s;
+
+ if (slab_nomerge)
+ return NULL;
+
+ if (ctor)
+ return NULL;
+
+ size = ALIGN(size, sizeof(void *));
+ align = calculate_alignment(flags, align, size);
+ size = ALIGN(size, align);
+ flags = kmem_cache_flags(size, flags, name);
+
+ if (flags & SLAB_NEVER_MERGE)
+ return NULL;
+
+ list_for_each_entry_reverse(s, &slab_caches, list) {
+ if (slab_unmergeable(s))
+ continue;
+
+ if (size > s->size)
+ continue;
+
+ if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
+ continue;
+ /*
+ * Check if alignment is compatible.
+ * Courtesy of Adrian Drzewiecki
+ */
+ if ((s->size & ~(align - 1)) != s->size)
+ continue;
+
+ if (s->size - size >= sizeof(void *))
+ continue;
+
+ if (IS_ENABLED(CONFIG_SLAB) && align &&
+ (align > s->align || s->align % align))
+ continue;
+
+ return s;
+ }
+ return NULL;
+}
+
+static struct kmem_cache *create_cache(const char *name,
+ unsigned int object_size, unsigned int align,
+ slab_flags_t flags, unsigned int useroffset,
+ unsigned int usersize, void (*ctor)(void *),
+ struct kmem_cache *root_cache)
+{
+ struct kmem_cache *s;
+ int err;
+
+ if (WARN_ON(useroffset + usersize > object_size))
+ useroffset = usersize = 0;
+
+ err = -ENOMEM;
+ s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
+ if (!s)
+ goto out;
+
+ s->name = name;
+ s->size = s->object_size = object_size;
+ s->align = align;
+ s->ctor = ctor;
+ s->useroffset = useroffset;
+ s->usersize = usersize;
+
+ err = __kmem_cache_create(s, flags);
+ if (err)
+ goto out_free_cache;
+
+ s->refcount = 1;
+ list_add(&s->list, &slab_caches);
+out:
+ if (err)
+ return ERR_PTR(err);
+ return s;
+
+out_free_cache:
+ kmem_cache_free(kmem_cache, s);
+ goto out;
+}
+
+/**
+ * kmem_cache_create_usercopy - Create a cache with a region suitable
+ * for copying to userspace
+ * @name: A string which is used in /proc/slabinfo to identify this cache.
+ * @size: The size of objects to be created in this cache.
+ * @align: The required alignment for the objects.
+ * @flags: SLAB flags
+ * @useroffset: Usercopy region offset
+ * @usersize: Usercopy region size
+ * @ctor: A constructor for the objects.
+ *
+ * Cannot be called within a interrupt, but can be interrupted.
+ * The @ctor is run when new pages are allocated by the cache.
+ *
+ * The flags are
+ *
+ * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
+ * to catch references to uninitialised memory.
+ *
+ * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
+ * for buffer overruns.
+ *
+ * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
+ * cacheline. This can be beneficial if you're counting cycles as closely
+ * as davem.
+ *
+ * Return: a pointer to the cache on success, NULL on failure.
+ */
+struct kmem_cache *
+kmem_cache_create_usercopy(const char *name,
+ unsigned int size, unsigned int align,
+ slab_flags_t flags,
+ unsigned int useroffset, unsigned int usersize,
+ void (*ctor)(void *))
+{
+ struct kmem_cache *s = NULL;
+ const char *cache_name;
+ int err;
+
+#ifdef CONFIG_SLUB_DEBUG
+ /*
+ * If no slub_debug was enabled globally, the static key is not yet
+ * enabled by setup_slub_debug(). Enable it if the cache is being
+ * created with any of the debugging flags passed explicitly.
+ * It's also possible that this is the first cache created with
+ * SLAB_STORE_USER and we should init stack_depot for it.
+ */
+ if (flags & SLAB_DEBUG_FLAGS)
+ static_branch_enable(&slub_debug_enabled);
+ if (flags & SLAB_STORE_USER)
+ stack_depot_init();
+#endif
+
+ mutex_lock(&slab_mutex);
+
+ err = kmem_cache_sanity_check(name, size);
+ if (err) {
+ goto out_unlock;
+ }
+
+ /* Refuse requests with allocator specific flags */
+ if (flags & ~SLAB_FLAGS_PERMITTED) {
+ err = -EINVAL;
+ goto out_unlock;
+ }
+
+ /*
+ * Some allocators will constraint the set of valid flags to a subset
+ * of all flags. We expect them to define CACHE_CREATE_MASK in this
+ * case, and we'll just provide them with a sanitized version of the
+ * passed flags.
+ */
+ flags &= CACHE_CREATE_MASK;
+
+ /* Fail closed on bad usersize of useroffset values. */
+ if (WARN_ON(!usersize && useroffset) ||
+ WARN_ON(size < usersize || size - usersize < useroffset))
+ usersize = useroffset = 0;
+
+ if (!usersize)
+ s = __kmem_cache_alias(name, size, align, flags, ctor);
+ if (s)
+ goto out_unlock;
+
+ cache_name = kstrdup_const(name, GFP_KERNEL);
+ if (!cache_name) {
+ err = -ENOMEM;
+ goto out_unlock;
+ }
+
+ s = create_cache(cache_name, size,
+ calculate_alignment(flags, align, size),
+ flags, useroffset, usersize, ctor, NULL);
+ if (IS_ERR(s)) {
+ err = PTR_ERR(s);
+ kfree_const(cache_name);
+ }
+
+out_unlock:
+ mutex_unlock(&slab_mutex);
+
+ if (err) {
+ if (flags & SLAB_PANIC)
+ panic("%s: Failed to create slab '%s'. Error %d\n",
+ __func__, name, err);
+ else {
+ pr_warn("%s(%s) failed with error %d\n",
+ __func__, name, err);
+ dump_stack();
+ }
+ return NULL;
+ }
+ return s;
+}
+EXPORT_SYMBOL(kmem_cache_create_usercopy);
+
+/**
+ * kmem_cache_create - Create a cache.
+ * @name: A string which is used in /proc/slabinfo to identify this cache.
+ * @size: The size of objects to be created in this cache.
+ * @align: The required alignment for the objects.
+ * @flags: SLAB flags
+ * @ctor: A constructor for the objects.
+ *
+ * Cannot be called within a interrupt, but can be interrupted.
+ * The @ctor is run when new pages are allocated by the cache.
+ *
+ * The flags are
+ *
+ * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
+ * to catch references to uninitialised memory.
+ *
+ * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
+ * for buffer overruns.
+ *
+ * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
+ * cacheline. This can be beneficial if you're counting cycles as closely
+ * as davem.
+ *
+ * Return: a pointer to the cache on success, NULL on failure.
+ */
+struct kmem_cache *
+kmem_cache_create(const char *name, unsigned int size, unsigned int align,
+ slab_flags_t flags, void (*ctor)(void *))
+{
+ return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
+ ctor);
+}
+EXPORT_SYMBOL(kmem_cache_create);
+
+#ifdef SLAB_SUPPORTS_SYSFS
+/*
+ * For a given kmem_cache, kmem_cache_destroy() should only be called
+ * once or there will be a use-after-free problem. The actual deletion
+ * and release of the kobject does not need slab_mutex or cpu_hotplug_lock
+ * protection. So they are now done without holding those locks.
+ *
+ * Note that there will be a slight delay in the deletion of sysfs files
+ * if kmem_cache_release() is called indrectly from a work function.
+ */
+static void kmem_cache_release(struct kmem_cache *s)
+{
+ sysfs_slab_unlink(s);
+ sysfs_slab_release(s);
+}
+#else
+static void kmem_cache_release(struct kmem_cache *s)
+{
+ slab_kmem_cache_release(s);
+}
+#endif
+
+static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
+{
+ LIST_HEAD(to_destroy);
+ struct kmem_cache *s, *s2;
+
+ /*
+ * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
+ * @slab_caches_to_rcu_destroy list. The slab pages are freed
+ * through RCU and the associated kmem_cache are dereferenced
+ * while freeing the pages, so the kmem_caches should be freed only
+ * after the pending RCU operations are finished. As rcu_barrier()
+ * is a pretty slow operation, we batch all pending destructions
+ * asynchronously.
+ */
+ mutex_lock(&slab_mutex);
+ list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
+ mutex_unlock(&slab_mutex);
+
+ if (list_empty(&to_destroy))
+ return;
+
+ rcu_barrier();
+
+ list_for_each_entry_safe(s, s2, &to_destroy, list) {
+ debugfs_slab_release(s);
+ kfence_shutdown_cache(s);
+ kmem_cache_release(s);
+ }
+}
+
+static int shutdown_cache(struct kmem_cache *s)
+{
+ /* free asan quarantined objects */
+ kasan_cache_shutdown(s);
+
+ if (__kmem_cache_shutdown(s) != 0)
+ return -EBUSY;
+
+ list_del(&s->list);
+
+ if (s->flags & SLAB_TYPESAFE_BY_RCU) {
+ list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
+ schedule_work(&slab_caches_to_rcu_destroy_work);
+ } else {
+ kfence_shutdown_cache(s);
+ debugfs_slab_release(s);
+ }
+
+ return 0;
+}
+
+void slab_kmem_cache_release(struct kmem_cache *s)
+{
+ __kmem_cache_release(s);
+ kfree_const(s->name);
+ kmem_cache_free(kmem_cache, s);
+}
+
+void kmem_cache_destroy(struct kmem_cache *s)
+{
+ int err = -EBUSY;
+ bool rcu_set;
+
+ if (unlikely(!s) || !kasan_check_byte(s))
+ return;
+
+ cpus_read_lock();
+ mutex_lock(&slab_mutex);
+
+ rcu_set = s->flags & SLAB_TYPESAFE_BY_RCU;
+
+ s->refcount--;
+ if (s->refcount)
+ goto out_unlock;
+
+ err = shutdown_cache(s);
+ WARN(err, "%s %s: Slab cache still has objects when called from %pS",
+ __func__, s->name, (void *)_RET_IP_);
+out_unlock:
+ mutex_unlock(&slab_mutex);
+ cpus_read_unlock();
+ if (!err && !rcu_set)
+ kmem_cache_release(s);
+}
+EXPORT_SYMBOL(kmem_cache_destroy);
+
+/**
+ * kmem_cache_shrink - Shrink a cache.
+ * @cachep: The cache to shrink.
+ *
+ * Releases as many slabs as possible for a cache.
+ * To help debugging, a zero exit status indicates all slabs were released.
+ *
+ * Return: %0 if all slabs were released, non-zero otherwise
+ */
+int kmem_cache_shrink(struct kmem_cache *cachep)
+{
+ kasan_cache_shrink(cachep);
+
+ return __kmem_cache_shrink(cachep);
+}
+EXPORT_SYMBOL(kmem_cache_shrink);
+
+bool slab_is_available(void)
+{
+ return slab_state >= UP;
+}
+
+#ifdef CONFIG_PRINTK
+/**
+ * kmem_valid_obj - does the pointer reference a valid slab object?
+ * @object: pointer to query.
+ *
+ * Return: %true if the pointer is to a not-yet-freed object from
+ * kmalloc() or kmem_cache_alloc(), either %true or %false if the pointer
+ * is to an already-freed object, and %false otherwise.
+ */
+bool kmem_valid_obj(void *object)
+{
+ struct folio *folio;
+
+ /* Some arches consider ZERO_SIZE_PTR to be a valid address. */
+ if (object < (void *)PAGE_SIZE || !virt_addr_valid(object))
+ return false;
+ folio = virt_to_folio(object);
+ return folio_test_slab(folio);
+}
+EXPORT_SYMBOL_GPL(kmem_valid_obj);
+
+static void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
+{
+ if (__kfence_obj_info(kpp, object, slab))
+ return;
+ __kmem_obj_info(kpp, object, slab);
+}
+
+/**
+ * kmem_dump_obj - Print available slab provenance information
+ * @object: slab object for which to find provenance information.
+ *
+ * This function uses pr_cont(), so that the caller is expected to have
+ * printed out whatever preamble is appropriate. The provenance information
+ * depends on the type of object and on how much debugging is enabled.
+ * For a slab-cache object, the fact that it is a slab object is printed,
+ * and, if available, the slab name, return address, and stack trace from
+ * the allocation and last free path of that object.
+ *
+ * This function will splat if passed a pointer to a non-slab object.
+ * If you are not sure what type of object you have, you should instead
+ * use mem_dump_obj().
+ */
+void kmem_dump_obj(void *object)
+{
+ char *cp = IS_ENABLED(CONFIG_MMU) ? "" : "/vmalloc";
+ int i;
+ struct slab *slab;
+ unsigned long ptroffset;
+ struct kmem_obj_info kp = { };
+
+ if (WARN_ON_ONCE(!virt_addr_valid(object)))
+ return;
+ slab = virt_to_slab(object);
+ if (WARN_ON_ONCE(!slab)) {
+ pr_cont(" non-slab memory.\n");
+ return;
+ }
+ kmem_obj_info(&kp, object, slab);
+ if (kp.kp_slab_cache)
+ pr_cont(" slab%s %s", cp, kp.kp_slab_cache->name);
+ else
+ pr_cont(" slab%s", cp);
+ if (is_kfence_address(object))
+ pr_cont(" (kfence)");
+ if (kp.kp_objp)
+ pr_cont(" start %px", kp.kp_objp);
+ if (kp.kp_data_offset)
+ pr_cont(" data offset %lu", kp.kp_data_offset);
+ if (kp.kp_objp) {
+ ptroffset = ((char *)object - (char *)kp.kp_objp) - kp.kp_data_offset;
+ pr_cont(" pointer offset %lu", ptroffset);
+ }
+ if (kp.kp_slab_cache && kp.kp_slab_cache->usersize)
+ pr_cont(" size %u", kp.kp_slab_cache->usersize);
+ if (kp.kp_ret)
+ pr_cont(" allocated at %pS\n", kp.kp_ret);
+ else
+ pr_cont("\n");
+ for (i = 0; i < ARRAY_SIZE(kp.kp_stack); i++) {
+ if (!kp.kp_stack[i])
+ break;
+ pr_info(" %pS\n", kp.kp_stack[i]);
+ }
+
+ if (kp.kp_free_stack[0])
+ pr_cont(" Free path:\n");
+
+ for (i = 0; i < ARRAY_SIZE(kp.kp_free_stack); i++) {
+ if (!kp.kp_free_stack[i])
+ break;
+ pr_info(" %pS\n", kp.kp_free_stack[i]);
+ }
+
+}
+EXPORT_SYMBOL_GPL(kmem_dump_obj);
+#endif
+
+#ifndef CONFIG_SLOB
+/* Create a cache during boot when no slab services are available yet */
+void __init create_boot_cache(struct kmem_cache *s, const char *name,
+ unsigned int size, slab_flags_t flags,
+ unsigned int useroffset, unsigned int usersize)
+{
+ int err;
+ unsigned int align = ARCH_KMALLOC_MINALIGN;
+
+ s->name = name;
+ s->size = s->object_size = size;
+
+ /*
+ * For power of two sizes, guarantee natural alignment for kmalloc
+ * caches, regardless of SL*B debugging options.
+ */
+ if (is_power_of_2(size))
+ align = max(align, size);
+ s->align = calculate_alignment(flags, align, size);
+
+ s->useroffset = useroffset;
+ s->usersize = usersize;
+
+ err = __kmem_cache_create(s, flags);
+
+ if (err)
+ panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
+ name, size, err);
+
+ s->refcount = -1; /* Exempt from merging for now */
+}
+
+struct kmem_cache *__init create_kmalloc_cache(const char *name,
+ unsigned int size, slab_flags_t flags,
+ unsigned int useroffset, unsigned int usersize)
+{
+ struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
+
+ if (!s)
+ panic("Out of memory when creating slab %s\n", name);
+
+ create_boot_cache(s, name, size, flags | SLAB_KMALLOC, useroffset,
+ usersize);
+ kasan_cache_create_kmalloc(s);
+ list_add(&s->list, &slab_caches);
+ s->refcount = 1;
+ return s;
+}
+
+struct kmem_cache *
+kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init =
+{ /* initialization for https://bugs.llvm.org/show_bug.cgi?id=42570 */ };
+EXPORT_SYMBOL(kmalloc_caches);
+
+/*
+ * Conversion table for small slabs sizes / 8 to the index in the
+ * kmalloc array. This is necessary for slabs < 192 since we have non power
+ * of two cache sizes there. The size of larger slabs can be determined using
+ * fls.
+ */
+static u8 size_index[24] __ro_after_init = {
+ 3, /* 8 */
+ 4, /* 16 */
+ 5, /* 24 */
+ 5, /* 32 */
+ 6, /* 40 */
+ 6, /* 48 */
+ 6, /* 56 */
+ 6, /* 64 */
+ 1, /* 72 */
+ 1, /* 80 */
+ 1, /* 88 */
+ 1, /* 96 */
+ 7, /* 104 */
+ 7, /* 112 */
+ 7, /* 120 */
+ 7, /* 128 */
+ 2, /* 136 */
+ 2, /* 144 */
+ 2, /* 152 */
+ 2, /* 160 */
+ 2, /* 168 */
+ 2, /* 176 */
+ 2, /* 184 */
+ 2 /* 192 */
+};
+
+static inline unsigned int size_index_elem(unsigned int bytes)
+{
+ return (bytes - 1) / 8;
+}
+
+/*
+ * Find the kmem_cache structure that serves a given size of
+ * allocation
+ */
+struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
+{
+ unsigned int index;
+
+ if (size <= 192) {
+ if (!size)
+ return ZERO_SIZE_PTR;
+
+ index = size_index[size_index_elem(size)];
+ } else {
+ if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE))
+ return NULL;
+ index = fls(size - 1);
+ }
+
+ return kmalloc_caches[kmalloc_type(flags)][index];
+}
+
+size_t kmalloc_size_roundup(size_t size)
+{
+ struct kmem_cache *c;
+
+ /* Short-circuit the 0 size case. */
+ if (unlikely(size == 0))
+ return 0;
+ /* Short-circuit saturated "too-large" case. */
+ if (unlikely(size == SIZE_MAX))
+ return SIZE_MAX;
+ /* Above the smaller buckets, size is a multiple of page size. */
+ if (size > KMALLOC_MAX_CACHE_SIZE)
+ return PAGE_SIZE << get_order(size);
+
+ /* The flags don't matter since size_index is common to all. */
+ c = kmalloc_slab(size, GFP_KERNEL);
+ return c ? c->object_size : 0;
+}
+EXPORT_SYMBOL(kmalloc_size_roundup);
+
+#ifdef CONFIG_ZONE_DMA
+#define KMALLOC_DMA_NAME(sz) .name[KMALLOC_DMA] = "dma-kmalloc-" #sz,
+#else
+#define KMALLOC_DMA_NAME(sz)
+#endif
+
+#ifdef CONFIG_MEMCG_KMEM
+#define KMALLOC_CGROUP_NAME(sz) .name[KMALLOC_CGROUP] = "kmalloc-cg-" #sz,
+#else
+#define KMALLOC_CGROUP_NAME(sz)
+#endif
+
+#define INIT_KMALLOC_INFO(__size, __short_size) \
+{ \
+ .name[KMALLOC_NORMAL] = "kmalloc-" #__short_size, \
+ .name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size, \
+ KMALLOC_CGROUP_NAME(__short_size) \
+ KMALLOC_DMA_NAME(__short_size) \
+ .size = __size, \
+}
+
+/*
+ * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
+ * kmalloc_index() supports up to 2^21=2MB, so the final entry of the table is
+ * kmalloc-2M.
+ */
+const struct kmalloc_info_struct kmalloc_info[] __initconst = {
+ INIT_KMALLOC_INFO(0, 0),
+ INIT_KMALLOC_INFO(96, 96),
+ INIT_KMALLOC_INFO(192, 192),
+ INIT_KMALLOC_INFO(8, 8),
+ INIT_KMALLOC_INFO(16, 16),
+ INIT_KMALLOC_INFO(32, 32),
+ INIT_KMALLOC_INFO(64, 64),
+ INIT_KMALLOC_INFO(128, 128),
+ INIT_KMALLOC_INFO(256, 256),
+ INIT_KMALLOC_INFO(512, 512),
+ INIT_KMALLOC_INFO(1024, 1k),
+ INIT_KMALLOC_INFO(2048, 2k),
+ INIT_KMALLOC_INFO(4096, 4k),
+ INIT_KMALLOC_INFO(8192, 8k),
+ INIT_KMALLOC_INFO(16384, 16k),
+ INIT_KMALLOC_INFO(32768, 32k),
+ INIT_KMALLOC_INFO(65536, 64k),
+ INIT_KMALLOC_INFO(131072, 128k),
+ INIT_KMALLOC_INFO(262144, 256k),
+ INIT_KMALLOC_INFO(524288, 512k),
+ INIT_KMALLOC_INFO(1048576, 1M),
+ INIT_KMALLOC_INFO(2097152, 2M)
+};
+
+/*
+ * Patch up the size_index table if we have strange large alignment
+ * requirements for the kmalloc array. This is only the case for
+ * MIPS it seems. The standard arches will not generate any code here.
+ *
+ * Largest permitted alignment is 256 bytes due to the way we
+ * handle the index determination for the smaller caches.
+ *
+ * Make sure that nothing crazy happens if someone starts tinkering
+ * around with ARCH_KMALLOC_MINALIGN
+ */
+void __init setup_kmalloc_cache_index_table(void)
+{
+ unsigned int i;
+
+ BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
+ !is_power_of_2(KMALLOC_MIN_SIZE));
+
+ for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
+ unsigned int elem = size_index_elem(i);
+
+ if (elem >= ARRAY_SIZE(size_index))
+ break;
+ size_index[elem] = KMALLOC_SHIFT_LOW;
+ }
+
+ if (KMALLOC_MIN_SIZE >= 64) {
+ /*
+ * The 96 byte sized cache is not used if the alignment
+ * is 64 byte.
+ */
+ for (i = 64 + 8; i <= 96; i += 8)
+ size_index[size_index_elem(i)] = 7;
+
+ }
+
+ if (KMALLOC_MIN_SIZE >= 128) {
+ /*
+ * The 192 byte sized cache is not used if the alignment
+ * is 128 byte. Redirect kmalloc to use the 256 byte cache
+ * instead.
+ */
+ for (i = 128 + 8; i <= 192; i += 8)
+ size_index[size_index_elem(i)] = 8;
+ }
+}
+
+static void __init
+new_kmalloc_cache(int idx, enum kmalloc_cache_type type, slab_flags_t flags)
+{
+ if (type == KMALLOC_RECLAIM) {
+ flags |= SLAB_RECLAIM_ACCOUNT;
+ } else if (IS_ENABLED(CONFIG_MEMCG_KMEM) && (type == KMALLOC_CGROUP)) {
+ if (mem_cgroup_kmem_disabled()) {
+ kmalloc_caches[type][idx] = kmalloc_caches[KMALLOC_NORMAL][idx];
+ return;
+ }
+ flags |= SLAB_ACCOUNT;
+ } else if (IS_ENABLED(CONFIG_ZONE_DMA) && (type == KMALLOC_DMA)) {
+ flags |= SLAB_CACHE_DMA;
+ }
+
+ kmalloc_caches[type][idx] = create_kmalloc_cache(
+ kmalloc_info[idx].name[type],
+ kmalloc_info[idx].size, flags, 0,
+ kmalloc_info[idx].size);
+
+ /*
+ * If CONFIG_MEMCG_KMEM is enabled, disable cache merging for
+ * KMALLOC_NORMAL caches.
+ */
+ if (IS_ENABLED(CONFIG_MEMCG_KMEM) && (type == KMALLOC_NORMAL))
+ kmalloc_caches[type][idx]->refcount = -1;
+}
+
+/*
+ * Create the kmalloc array. Some of the regular kmalloc arrays
+ * may already have been created because they were needed to
+ * enable allocations for slab creation.
+ */
+void __init create_kmalloc_caches(slab_flags_t flags)
+{
+ int i;
+ enum kmalloc_cache_type type;
+
+ /*
+ * Including KMALLOC_CGROUP if CONFIG_MEMCG_KMEM defined
+ */
+ for (type = KMALLOC_NORMAL; type < NR_KMALLOC_TYPES; type++) {
+ for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
+ if (!kmalloc_caches[type][i])
+ new_kmalloc_cache(i, type, flags);
+
+ /*
+ * Caches that are not of the two-to-the-power-of size.
+ * These have to be created immediately after the
+ * earlier power of two caches
+ */
+ if (KMALLOC_MIN_SIZE <= 32 && i == 6 &&
+ !kmalloc_caches[type][1])
+ new_kmalloc_cache(1, type, flags);
+ if (KMALLOC_MIN_SIZE <= 64 && i == 7 &&
+ !kmalloc_caches[type][2])
+ new_kmalloc_cache(2, type, flags);
+ }
+ }
+
+ /* Kmalloc array is now usable */
+ slab_state = UP;
+}
+
+void free_large_kmalloc(struct folio *folio, void *object)
+{
+ unsigned int order = folio_order(folio);
+
+ if (WARN_ON_ONCE(order == 0))
+ pr_warn_once("object pointer: 0x%p\n", object);
+
+ kmemleak_free(object);
+ kasan_kfree_large(object);
+ kmsan_kfree_large(object);
+
+ mod_lruvec_page_state(folio_page(folio, 0), NR_SLAB_UNRECLAIMABLE_B,
+ -(PAGE_SIZE << order));
+ __free_pages(folio_page(folio, 0), order);
+}
+
+static void *__kmalloc_large_node(size_t size, gfp_t flags, int node);
+static __always_inline
+void *__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
+{
+ struct kmem_cache *s;
+ void *ret;
+
+ if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
+ ret = __kmalloc_large_node(size, flags, node);
+ trace_kmalloc(caller, ret, size,
+ PAGE_SIZE << get_order(size), flags, node);
+ return ret;
+ }
+
+ s = kmalloc_slab(size, flags);
+
+ if (unlikely(ZERO_OR_NULL_PTR(s)))
+ return s;
+
+ ret = __kmem_cache_alloc_node(s, flags, node, size, caller);
+ ret = kasan_kmalloc(s, ret, size, flags);
+ trace_kmalloc(caller, ret, size, s->size, flags, node);
+ return ret;
+}
+
+void *__kmalloc_node(size_t size, gfp_t flags, int node)
+{
+ return __do_kmalloc_node(size, flags, node, _RET_IP_);
+}
+EXPORT_SYMBOL(__kmalloc_node);
+
+void *__kmalloc(size_t size, gfp_t flags)
+{
+ return __do_kmalloc_node(size, flags, NUMA_NO_NODE, _RET_IP_);
+}
+EXPORT_SYMBOL(__kmalloc);
+
+void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
+ int node, unsigned long caller)
+{
+ return __do_kmalloc_node(size, flags, node, caller);
+}
+EXPORT_SYMBOL(__kmalloc_node_track_caller);
+
+/**
+ * kfree - free previously allocated memory
+ * @object: pointer returned by kmalloc.
+ *
+ * If @object is NULL, no operation is performed.
+ *
+ * Don't free memory not originally allocated by kmalloc()
+ * or you will run into trouble.
+ */
+void kfree(const void *object)
+{
+ struct folio *folio;
+ struct slab *slab;
+ struct kmem_cache *s;
+
+ trace_kfree(_RET_IP_, object);
+
+ if (unlikely(ZERO_OR_NULL_PTR(object)))
+ return;
+
+ folio = virt_to_folio(object);
+ if (unlikely(!folio_test_slab(folio))) {
+ free_large_kmalloc(folio, (void *)object);
+ return;
+ }
+
+ slab = folio_slab(folio);
+ s = slab->slab_cache;
+ __kmem_cache_free(s, (void *)object, _RET_IP_);
+}
+EXPORT_SYMBOL(kfree);
+
+/**
+ * __ksize -- Report full size of underlying allocation
+ * @object: pointer to the object
+ *
+ * This should only be used internally to query the true size of allocations.
+ * It is not meant to be a way to discover the usable size of an allocation
+ * after the fact. Instead, use kmalloc_size_roundup(). Using memory beyond
+ * the originally requested allocation size may trigger KASAN, UBSAN_BOUNDS,
+ * and/or FORTIFY_SOURCE.
+ *
+ * Return: size of the actual memory used by @object in bytes
+ */
+size_t __ksize(const void *object)
+{
+ struct folio *folio;
+
+ if (unlikely(object == ZERO_SIZE_PTR))
+ return 0;
+
+ folio = virt_to_folio(object);
+
+ if (unlikely(!folio_test_slab(folio))) {
+ if (WARN_ON(folio_size(folio) <= KMALLOC_MAX_CACHE_SIZE))
+ return 0;
+ if (WARN_ON(object != folio_address(folio)))
+ return 0;
+ return folio_size(folio);
+ }
+
+ return slab_ksize(folio_slab(folio)->slab_cache);
+}
+
+void *kmalloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
+{
+ void *ret = __kmem_cache_alloc_node(s, gfpflags, NUMA_NO_NODE,
+ size, _RET_IP_);
+
+ trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE);
+
+ ret = kasan_kmalloc(s, ret, size, gfpflags);
+ return ret;
+}
+EXPORT_SYMBOL(kmalloc_trace);
+
+void *kmalloc_node_trace(struct kmem_cache *s, gfp_t gfpflags,
+ int node, size_t size)
+{
+ void *ret = __kmem_cache_alloc_node(s, gfpflags, node, size, _RET_IP_);
+
+ trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node);
+
+ ret = kasan_kmalloc(s, ret, size, gfpflags);
+ return ret;
+}
+EXPORT_SYMBOL(kmalloc_node_trace);
+#endif /* !CONFIG_SLOB */
+
+gfp_t kmalloc_fix_flags(gfp_t flags)
+{
+ gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
+
+ flags &= ~GFP_SLAB_BUG_MASK;
+ pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
+ invalid_mask, &invalid_mask, flags, &flags);
+ dump_stack();
+
+ return flags;
+}
+
+/*
+ * To avoid unnecessary overhead, we pass through large allocation requests
+ * directly to the page allocator. We use __GFP_COMP, because we will need to
+ * know the allocation order to free the pages properly in kfree.
+ */
+
+static void *__kmalloc_large_node(size_t size, gfp_t flags, int node)
+{
+ struct page *page;
+ void *ptr = NULL;
+ unsigned int order = get_order(size);
+
+ if (unlikely(flags & GFP_SLAB_BUG_MASK))
+ flags = kmalloc_fix_flags(flags);
+
+ flags |= __GFP_COMP;
+ page = alloc_pages_node(node, flags, order);
+ if (page) {
+ ptr = page_address(page);
+ mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
+ PAGE_SIZE << order);
+ }
+
+ ptr = kasan_kmalloc_large(ptr, size, flags);
+ /* As ptr might get tagged, call kmemleak hook after KASAN. */
+ kmemleak_alloc(ptr, size, 1, flags);
+ kmsan_kmalloc_large(ptr, size, flags);
+
+ return ptr;
+}
+
+void *kmalloc_large(size_t size, gfp_t flags)
+{
+ void *ret = __kmalloc_large_node(size, flags, NUMA_NO_NODE);
+
+ trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
+ flags, NUMA_NO_NODE);
+ return ret;
+}
+EXPORT_SYMBOL(kmalloc_large);
+
+void *kmalloc_large_node(size_t size, gfp_t flags, int node)
+{
+ void *ret = __kmalloc_large_node(size, flags, node);
+
+ trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
+ flags, node);
+ return ret;
+}
+EXPORT_SYMBOL(kmalloc_large_node);
+
+#ifdef CONFIG_SLAB_FREELIST_RANDOM
+/* Randomize a generic freelist */
+static void freelist_randomize(struct rnd_state *state, unsigned int *list,
+ unsigned int count)
+{
+ unsigned int rand;
+ unsigned int i;
+
+ for (i = 0; i < count; i++)
+ list[i] = i;
+
+ /* Fisher-Yates shuffle */
+ for (i = count - 1; i > 0; i--) {
+ rand = prandom_u32_state(state);
+ rand %= (i + 1);
+ swap(list[i], list[rand]);
+ }
+}
+
+/* Create a random sequence per cache */
+int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
+ gfp_t gfp)
+{
+ struct rnd_state state;
+
+ if (count < 2 || cachep->random_seq)
+ return 0;
+
+ cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
+ if (!cachep->random_seq)
+ return -ENOMEM;
+
+ /* Get best entropy at this stage of boot */
+ prandom_seed_state(&state, get_random_long());
+
+ freelist_randomize(&state, cachep->random_seq, count);
+ return 0;
+}
+
+/* Destroy the per-cache random freelist sequence */
+void cache_random_seq_destroy(struct kmem_cache *cachep)
+{
+ kfree(cachep->random_seq);
+ cachep->random_seq = NULL;
+}
+#endif /* CONFIG_SLAB_FREELIST_RANDOM */
+
+#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
+#ifdef CONFIG_SLAB
+#define SLABINFO_RIGHTS (0600)
+#else
+#define SLABINFO_RIGHTS (0400)
+#endif
+
+static void print_slabinfo_header(struct seq_file *m)
+{
+ /*
+ * Output format version, so at least we can change it
+ * without _too_ many complaints.
+ */
+#ifdef CONFIG_DEBUG_SLAB
+ seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
+#else
+ seq_puts(m, "slabinfo - version: 2.1\n");
+#endif
+ seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
+ seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
+ seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
+#ifdef CONFIG_DEBUG_SLAB
+ seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
+ seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
+#endif
+ seq_putc(m, '\n');
+}
+
+static void *slab_start(struct seq_file *m, loff_t *pos)
+{
+ mutex_lock(&slab_mutex);
+ return seq_list_start(&slab_caches, *pos);
+}
+
+static void *slab_next(struct seq_file *m, void *p, loff_t *pos)
+{
+ return seq_list_next(p, &slab_caches, pos);
+}
+
+static void slab_stop(struct seq_file *m, void *p)
+{
+ mutex_unlock(&slab_mutex);
+}
+
+static void cache_show(struct kmem_cache *s, struct seq_file *m)
+{
+ struct slabinfo sinfo;
+
+ memset(&sinfo, 0, sizeof(sinfo));
+ get_slabinfo(s, &sinfo);
+
+ seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
+ s->name, sinfo.active_objs, sinfo.num_objs, s->size,
+ sinfo.objects_per_slab, (1 << sinfo.cache_order));
+
+ seq_printf(m, " : tunables %4u %4u %4u",
+ sinfo.limit, sinfo.batchcount, sinfo.shared);
+ seq_printf(m, " : slabdata %6lu %6lu %6lu",
+ sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
+ slabinfo_show_stats(m, s);
+ seq_putc(m, '\n');
+}
+
+static int slab_show(struct seq_file *m, void *p)
+{
+ struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
+
+ if (p == slab_caches.next)
+ print_slabinfo_header(m);
+ cache_show(s, m);
+ return 0;
+}
+
+void dump_unreclaimable_slab(void)
+{
+ struct kmem_cache *s;
+ struct slabinfo sinfo;
+
+ /*
+ * Here acquiring slab_mutex is risky since we don't prefer to get
+ * sleep in oom path. But, without mutex hold, it may introduce a
+ * risk of crash.
+ * Use mutex_trylock to protect the list traverse, dump nothing
+ * without acquiring the mutex.
+ */
+ if (!mutex_trylock(&slab_mutex)) {
+ pr_warn("excessive unreclaimable slab but cannot dump stats\n");
+ return;
+ }
+
+ pr_info("Unreclaimable slab info:\n");
+ pr_info("Name Used Total\n");
+
+ list_for_each_entry(s, &slab_caches, list) {
+ if (s->flags & SLAB_RECLAIM_ACCOUNT)
+ continue;
+
+ get_slabinfo(s, &sinfo);
+
+ if (sinfo.num_objs > 0)
+ pr_info("%-17s %10luKB %10luKB\n", s->name,
+ (sinfo.active_objs * s->size) / 1024,
+ (sinfo.num_objs * s->size) / 1024);
+ }
+ mutex_unlock(&slab_mutex);
+}
+
+/*
+ * slabinfo_op - iterator that generates /proc/slabinfo
+ *
+ * Output layout:
+ * cache-name
+ * num-active-objs
+ * total-objs
+ * object size
+ * num-active-slabs
+ * total-slabs
+ * num-pages-per-slab
+ * + further values on SMP and with statistics enabled
+ */
+static const struct seq_operations slabinfo_op = {
+ .start = slab_start,
+ .next = slab_next,
+ .stop = slab_stop,
+ .show = slab_show,
+};
+
+static int slabinfo_open(struct inode *inode, struct file *file)
+{
+ return seq_open(file, &slabinfo_op);
+}
+
+static const struct proc_ops slabinfo_proc_ops = {
+ .proc_flags = PROC_ENTRY_PERMANENT,
+ .proc_open = slabinfo_open,
+ .proc_read = seq_read,
+ .proc_write = slabinfo_write,
+ .proc_lseek = seq_lseek,
+ .proc_release = seq_release,
+};
+
+static int __init slab_proc_init(void)
+{
+ proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &slabinfo_proc_ops);
+ return 0;
+}
+module_init(slab_proc_init);
+
+#endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
+
+static __always_inline __realloc_size(2) void *
+__do_krealloc(const void *p, size_t new_size, gfp_t flags)
+{
+ void *ret;
+ size_t ks;
+
+ /* Don't use instrumented ksize to allow precise KASAN poisoning. */
+ if (likely(!ZERO_OR_NULL_PTR(p))) {
+ if (!kasan_check_byte(p))
+ return NULL;
+ ks = kfence_ksize(p) ?: __ksize(p);
+ } else
+ ks = 0;
+
+ /* If the object still fits, repoison it precisely. */
+ if (ks >= new_size) {
+ p = kasan_krealloc((void *)p, new_size, flags);
+ return (void *)p;
+ }
+
+ ret = kmalloc_track_caller(new_size, flags);
+ if (ret && p) {
+ /* Disable KASAN checks as the object's redzone is accessed. */
+ kasan_disable_current();
+ memcpy(ret, kasan_reset_tag(p), ks);
+ kasan_enable_current();
+ }
+
+ return ret;
+}
+
+/**
+ * krealloc - reallocate memory. The contents will remain unchanged.
+ * @p: object to reallocate memory for.
+ * @new_size: how many bytes of memory are required.
+ * @flags: the type of memory to allocate.
+ *
+ * The contents of the object pointed to are preserved up to the
+ * lesser of the new and old sizes (__GFP_ZERO flag is effectively ignored).
+ * If @p is %NULL, krealloc() behaves exactly like kmalloc(). If @new_size
+ * is 0 and @p is not a %NULL pointer, the object pointed to is freed.
+ *
+ * Return: pointer to the allocated memory or %NULL in case of error
+ */
+void *krealloc(const void *p, size_t new_size, gfp_t flags)
+{
+ void *ret;
+
+ if (unlikely(!new_size)) {
+ kfree(p);
+ return ZERO_SIZE_PTR;
+ }
+
+ ret = __do_krealloc(p, new_size, flags);
+ if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
+ kfree(p);
+
+ return ret;
+}
+EXPORT_SYMBOL(krealloc);
+
+/**
+ * kfree_sensitive - Clear sensitive information in memory before freeing
+ * @p: object to free memory of
+ *
+ * The memory of the object @p points to is zeroed before freed.
+ * If @p is %NULL, kfree_sensitive() does nothing.
+ *
+ * Note: this function zeroes the whole allocated buffer which can be a good
+ * deal bigger than the requested buffer size passed to kmalloc(). So be
+ * careful when using this function in performance sensitive code.
+ */
+void kfree_sensitive(const void *p)
+{
+ size_t ks;
+ void *mem = (void *)p;
+
+ ks = ksize(mem);
+ if (ks)
+ memzero_explicit(mem, ks);
+ kfree(mem);
+}
+EXPORT_SYMBOL(kfree_sensitive);
+
+size_t ksize(const void *objp)
+{
+ size_t size;
+
+ /*
+ * We need to first check that the pointer to the object is valid, and
+ * only then unpoison the memory. The report printed from ksize() is
+ * more useful, then when it's printed later when the behaviour could
+ * be undefined due to a potential use-after-free or double-free.
+ *
+ * We use kasan_check_byte(), which is supported for the hardware
+ * tag-based KASAN mode, unlike kasan_check_read/write().
+ *
+ * If the pointed to memory is invalid, we return 0 to avoid users of
+ * ksize() writing to and potentially corrupting the memory region.
+ *
+ * We want to perform the check before __ksize(), to avoid potentially
+ * crashing in __ksize() due to accessing invalid metadata.
+ */
+ if (unlikely(ZERO_OR_NULL_PTR(objp)) || !kasan_check_byte(objp))
+ return 0;
+
+ size = kfence_ksize(objp) ?: __ksize(objp);
+ /*
+ * We assume that ksize callers could use whole allocated area,
+ * so we need to unpoison this area.
+ */
+ kasan_unpoison_range(objp, size);
+ return size;
+}
+EXPORT_SYMBOL(ksize);
+
+/* Tracepoints definitions. */
+EXPORT_TRACEPOINT_SYMBOL(kmalloc);
+EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
+EXPORT_TRACEPOINT_SYMBOL(kfree);
+EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
+
+int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
+{
+ if (__should_failslab(s, gfpflags))
+ return -ENOMEM;
+ return 0;
+}
+ALLOW_ERROR_INJECTION(should_failslab, ERRNO);