summaryrefslogtreecommitdiffstats
path: root/mm/vmalloc.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:49:45 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:49:45 +0000
commit2c3c1048746a4622d8c89a29670120dc8fab93c4 (patch)
tree848558de17fb3008cdf4d861b01ac7781903ce39 /mm/vmalloc.c
parentInitial commit. (diff)
downloadlinux-2c3c1048746a4622d8c89a29670120dc8fab93c4.tar.xz
linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.zip
Adding upstream version 6.1.76.upstream/6.1.76
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'mm/vmalloc.c')
-rw-r--r--mm/vmalloc.c4218
1 files changed, 4218 insertions, 0 deletions
diff --git a/mm/vmalloc.c b/mm/vmalloc.c
new file mode 100644
index 000000000..67a10a04d
--- /dev/null
+++ b/mm/vmalloc.c
@@ -0,0 +1,4218 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 1993 Linus Torvalds
+ * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
+ * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
+ * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
+ * Numa awareness, Christoph Lameter, SGI, June 2005
+ * Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019
+ */
+
+#include <linux/vmalloc.h>
+#include <linux/mm.h>
+#include <linux/module.h>
+#include <linux/highmem.h>
+#include <linux/sched/signal.h>
+#include <linux/slab.h>
+#include <linux/spinlock.h>
+#include <linux/interrupt.h>
+#include <linux/proc_fs.h>
+#include <linux/seq_file.h>
+#include <linux/set_memory.h>
+#include <linux/debugobjects.h>
+#include <linux/kallsyms.h>
+#include <linux/list.h>
+#include <linux/notifier.h>
+#include <linux/rbtree.h>
+#include <linux/xarray.h>
+#include <linux/io.h>
+#include <linux/rcupdate.h>
+#include <linux/pfn.h>
+#include <linux/kmemleak.h>
+#include <linux/atomic.h>
+#include <linux/compiler.h>
+#include <linux/memcontrol.h>
+#include <linux/llist.h>
+#include <linux/bitops.h>
+#include <linux/rbtree_augmented.h>
+#include <linux/overflow.h>
+#include <linux/pgtable.h>
+#include <linux/uaccess.h>
+#include <linux/hugetlb.h>
+#include <linux/sched/mm.h>
+#include <asm/tlbflush.h>
+#include <asm/shmparam.h>
+
+#include "internal.h"
+#include "pgalloc-track.h"
+
+#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
+static unsigned int __ro_after_init ioremap_max_page_shift = BITS_PER_LONG - 1;
+
+static int __init set_nohugeiomap(char *str)
+{
+ ioremap_max_page_shift = PAGE_SHIFT;
+ return 0;
+}
+early_param("nohugeiomap", set_nohugeiomap);
+#else /* CONFIG_HAVE_ARCH_HUGE_VMAP */
+static const unsigned int ioremap_max_page_shift = PAGE_SHIFT;
+#endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
+
+#ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
+static bool __ro_after_init vmap_allow_huge = true;
+
+static int __init set_nohugevmalloc(char *str)
+{
+ vmap_allow_huge = false;
+ return 0;
+}
+early_param("nohugevmalloc", set_nohugevmalloc);
+#else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
+static const bool vmap_allow_huge = false;
+#endif /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
+
+bool is_vmalloc_addr(const void *x)
+{
+ unsigned long addr = (unsigned long)kasan_reset_tag(x);
+
+ return addr >= VMALLOC_START && addr < VMALLOC_END;
+}
+EXPORT_SYMBOL(is_vmalloc_addr);
+
+struct vfree_deferred {
+ struct llist_head list;
+ struct work_struct wq;
+};
+static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
+
+static void __vunmap(const void *, int);
+
+static void free_work(struct work_struct *w)
+{
+ struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
+ struct llist_node *t, *llnode;
+
+ llist_for_each_safe(llnode, t, llist_del_all(&p->list))
+ __vunmap((void *)llnode, 1);
+}
+
+/*** Page table manipulation functions ***/
+static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
+ phys_addr_t phys_addr, pgprot_t prot,
+ unsigned int max_page_shift, pgtbl_mod_mask *mask)
+{
+ pte_t *pte;
+ u64 pfn;
+ unsigned long size = PAGE_SIZE;
+
+ pfn = phys_addr >> PAGE_SHIFT;
+ pte = pte_alloc_kernel_track(pmd, addr, mask);
+ if (!pte)
+ return -ENOMEM;
+ do {
+ BUG_ON(!pte_none(*pte));
+
+#ifdef CONFIG_HUGETLB_PAGE
+ size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift);
+ if (size != PAGE_SIZE) {
+ pte_t entry = pfn_pte(pfn, prot);
+
+ entry = arch_make_huge_pte(entry, ilog2(size), 0);
+ set_huge_pte_at(&init_mm, addr, pte, entry);
+ pfn += PFN_DOWN(size);
+ continue;
+ }
+#endif
+ set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot));
+ pfn++;
+ } while (pte += PFN_DOWN(size), addr += size, addr != end);
+ *mask |= PGTBL_PTE_MODIFIED;
+ return 0;
+}
+
+static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end,
+ phys_addr_t phys_addr, pgprot_t prot,
+ unsigned int max_page_shift)
+{
+ if (max_page_shift < PMD_SHIFT)
+ return 0;
+
+ if (!arch_vmap_pmd_supported(prot))
+ return 0;
+
+ if ((end - addr) != PMD_SIZE)
+ return 0;
+
+ if (!IS_ALIGNED(addr, PMD_SIZE))
+ return 0;
+
+ if (!IS_ALIGNED(phys_addr, PMD_SIZE))
+ return 0;
+
+ if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr))
+ return 0;
+
+ return pmd_set_huge(pmd, phys_addr, prot);
+}
+
+static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
+ phys_addr_t phys_addr, pgprot_t prot,
+ unsigned int max_page_shift, pgtbl_mod_mask *mask)
+{
+ pmd_t *pmd;
+ unsigned long next;
+
+ pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
+ if (!pmd)
+ return -ENOMEM;
+ do {
+ next = pmd_addr_end(addr, end);
+
+ if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot,
+ max_page_shift)) {
+ *mask |= PGTBL_PMD_MODIFIED;
+ continue;
+ }
+
+ if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask))
+ return -ENOMEM;
+ } while (pmd++, phys_addr += (next - addr), addr = next, addr != end);
+ return 0;
+}
+
+static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end,
+ phys_addr_t phys_addr, pgprot_t prot,
+ unsigned int max_page_shift)
+{
+ if (max_page_shift < PUD_SHIFT)
+ return 0;
+
+ if (!arch_vmap_pud_supported(prot))
+ return 0;
+
+ if ((end - addr) != PUD_SIZE)
+ return 0;
+
+ if (!IS_ALIGNED(addr, PUD_SIZE))
+ return 0;
+
+ if (!IS_ALIGNED(phys_addr, PUD_SIZE))
+ return 0;
+
+ if (pud_present(*pud) && !pud_free_pmd_page(pud, addr))
+ return 0;
+
+ return pud_set_huge(pud, phys_addr, prot);
+}
+
+static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
+ phys_addr_t phys_addr, pgprot_t prot,
+ unsigned int max_page_shift, pgtbl_mod_mask *mask)
+{
+ pud_t *pud;
+ unsigned long next;
+
+ pud = pud_alloc_track(&init_mm, p4d, addr, mask);
+ if (!pud)
+ return -ENOMEM;
+ do {
+ next = pud_addr_end(addr, end);
+
+ if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot,
+ max_page_shift)) {
+ *mask |= PGTBL_PUD_MODIFIED;
+ continue;
+ }
+
+ if (vmap_pmd_range(pud, addr, next, phys_addr, prot,
+ max_page_shift, mask))
+ return -ENOMEM;
+ } while (pud++, phys_addr += (next - addr), addr = next, addr != end);
+ return 0;
+}
+
+static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end,
+ phys_addr_t phys_addr, pgprot_t prot,
+ unsigned int max_page_shift)
+{
+ if (max_page_shift < P4D_SHIFT)
+ return 0;
+
+ if (!arch_vmap_p4d_supported(prot))
+ return 0;
+
+ if ((end - addr) != P4D_SIZE)
+ return 0;
+
+ if (!IS_ALIGNED(addr, P4D_SIZE))
+ return 0;
+
+ if (!IS_ALIGNED(phys_addr, P4D_SIZE))
+ return 0;
+
+ if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr))
+ return 0;
+
+ return p4d_set_huge(p4d, phys_addr, prot);
+}
+
+static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
+ phys_addr_t phys_addr, pgprot_t prot,
+ unsigned int max_page_shift, pgtbl_mod_mask *mask)
+{
+ p4d_t *p4d;
+ unsigned long next;
+
+ p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
+ if (!p4d)
+ return -ENOMEM;
+ do {
+ next = p4d_addr_end(addr, end);
+
+ if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot,
+ max_page_shift)) {
+ *mask |= PGTBL_P4D_MODIFIED;
+ continue;
+ }
+
+ if (vmap_pud_range(p4d, addr, next, phys_addr, prot,
+ max_page_shift, mask))
+ return -ENOMEM;
+ } while (p4d++, phys_addr += (next - addr), addr = next, addr != end);
+ return 0;
+}
+
+static int vmap_range_noflush(unsigned long addr, unsigned long end,
+ phys_addr_t phys_addr, pgprot_t prot,
+ unsigned int max_page_shift)
+{
+ pgd_t *pgd;
+ unsigned long start;
+ unsigned long next;
+ int err;
+ pgtbl_mod_mask mask = 0;
+
+ might_sleep();
+ BUG_ON(addr >= end);
+
+ start = addr;
+ pgd = pgd_offset_k(addr);
+ do {
+ next = pgd_addr_end(addr, end);
+ err = vmap_p4d_range(pgd, addr, next, phys_addr, prot,
+ max_page_shift, &mask);
+ if (err)
+ break;
+ } while (pgd++, phys_addr += (next - addr), addr = next, addr != end);
+
+ if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
+ arch_sync_kernel_mappings(start, end);
+
+ return err;
+}
+
+int ioremap_page_range(unsigned long addr, unsigned long end,
+ phys_addr_t phys_addr, pgprot_t prot)
+{
+ int err;
+
+ err = vmap_range_noflush(addr, end, phys_addr, pgprot_nx(prot),
+ ioremap_max_page_shift);
+ flush_cache_vmap(addr, end);
+ if (!err)
+ err = kmsan_ioremap_page_range(addr, end, phys_addr, prot,
+ ioremap_max_page_shift);
+ return err;
+}
+
+static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
+ pgtbl_mod_mask *mask)
+{
+ pte_t *pte;
+
+ pte = pte_offset_kernel(pmd, addr);
+ do {
+ pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
+ WARN_ON(!pte_none(ptent) && !pte_present(ptent));
+ } while (pte++, addr += PAGE_SIZE, addr != end);
+ *mask |= PGTBL_PTE_MODIFIED;
+}
+
+static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
+ pgtbl_mod_mask *mask)
+{
+ pmd_t *pmd;
+ unsigned long next;
+ int cleared;
+
+ pmd = pmd_offset(pud, addr);
+ do {
+ next = pmd_addr_end(addr, end);
+
+ cleared = pmd_clear_huge(pmd);
+ if (cleared || pmd_bad(*pmd))
+ *mask |= PGTBL_PMD_MODIFIED;
+
+ if (cleared)
+ continue;
+ if (pmd_none_or_clear_bad(pmd))
+ continue;
+ vunmap_pte_range(pmd, addr, next, mask);
+
+ cond_resched();
+ } while (pmd++, addr = next, addr != end);
+}
+
+static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
+ pgtbl_mod_mask *mask)
+{
+ pud_t *pud;
+ unsigned long next;
+ int cleared;
+
+ pud = pud_offset(p4d, addr);
+ do {
+ next = pud_addr_end(addr, end);
+
+ cleared = pud_clear_huge(pud);
+ if (cleared || pud_bad(*pud))
+ *mask |= PGTBL_PUD_MODIFIED;
+
+ if (cleared)
+ continue;
+ if (pud_none_or_clear_bad(pud))
+ continue;
+ vunmap_pmd_range(pud, addr, next, mask);
+ } while (pud++, addr = next, addr != end);
+}
+
+static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
+ pgtbl_mod_mask *mask)
+{
+ p4d_t *p4d;
+ unsigned long next;
+
+ p4d = p4d_offset(pgd, addr);
+ do {
+ next = p4d_addr_end(addr, end);
+
+ p4d_clear_huge(p4d);
+ if (p4d_bad(*p4d))
+ *mask |= PGTBL_P4D_MODIFIED;
+
+ if (p4d_none_or_clear_bad(p4d))
+ continue;
+ vunmap_pud_range(p4d, addr, next, mask);
+ } while (p4d++, addr = next, addr != end);
+}
+
+/*
+ * vunmap_range_noflush is similar to vunmap_range, but does not
+ * flush caches or TLBs.
+ *
+ * The caller is responsible for calling flush_cache_vmap() before calling
+ * this function, and flush_tlb_kernel_range after it has returned
+ * successfully (and before the addresses are expected to cause a page fault
+ * or be re-mapped for something else, if TLB flushes are being delayed or
+ * coalesced).
+ *
+ * This is an internal function only. Do not use outside mm/.
+ */
+void __vunmap_range_noflush(unsigned long start, unsigned long end)
+{
+ unsigned long next;
+ pgd_t *pgd;
+ unsigned long addr = start;
+ pgtbl_mod_mask mask = 0;
+
+ BUG_ON(addr >= end);
+ pgd = pgd_offset_k(addr);
+ do {
+ next = pgd_addr_end(addr, end);
+ if (pgd_bad(*pgd))
+ mask |= PGTBL_PGD_MODIFIED;
+ if (pgd_none_or_clear_bad(pgd))
+ continue;
+ vunmap_p4d_range(pgd, addr, next, &mask);
+ } while (pgd++, addr = next, addr != end);
+
+ if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
+ arch_sync_kernel_mappings(start, end);
+}
+
+void vunmap_range_noflush(unsigned long start, unsigned long end)
+{
+ kmsan_vunmap_range_noflush(start, end);
+ __vunmap_range_noflush(start, end);
+}
+
+/**
+ * vunmap_range - unmap kernel virtual addresses
+ * @addr: start of the VM area to unmap
+ * @end: end of the VM area to unmap (non-inclusive)
+ *
+ * Clears any present PTEs in the virtual address range, flushes TLBs and
+ * caches. Any subsequent access to the address before it has been re-mapped
+ * is a kernel bug.
+ */
+void vunmap_range(unsigned long addr, unsigned long end)
+{
+ flush_cache_vunmap(addr, end);
+ vunmap_range_noflush(addr, end);
+ flush_tlb_kernel_range(addr, end);
+}
+
+static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr,
+ unsigned long end, pgprot_t prot, struct page **pages, int *nr,
+ pgtbl_mod_mask *mask)
+{
+ pte_t *pte;
+
+ /*
+ * nr is a running index into the array which helps higher level
+ * callers keep track of where we're up to.
+ */
+
+ pte = pte_alloc_kernel_track(pmd, addr, mask);
+ if (!pte)
+ return -ENOMEM;
+ do {
+ struct page *page = pages[*nr];
+
+ if (WARN_ON(!pte_none(*pte)))
+ return -EBUSY;
+ if (WARN_ON(!page))
+ return -ENOMEM;
+ if (WARN_ON(!pfn_valid(page_to_pfn(page))))
+ return -EINVAL;
+
+ set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
+ (*nr)++;
+ } while (pte++, addr += PAGE_SIZE, addr != end);
+ *mask |= PGTBL_PTE_MODIFIED;
+ return 0;
+}
+
+static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr,
+ unsigned long end, pgprot_t prot, struct page **pages, int *nr,
+ pgtbl_mod_mask *mask)
+{
+ pmd_t *pmd;
+ unsigned long next;
+
+ pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
+ if (!pmd)
+ return -ENOMEM;
+ do {
+ next = pmd_addr_end(addr, end);
+ if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask))
+ return -ENOMEM;
+ } while (pmd++, addr = next, addr != end);
+ return 0;
+}
+
+static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr,
+ unsigned long end, pgprot_t prot, struct page **pages, int *nr,
+ pgtbl_mod_mask *mask)
+{
+ pud_t *pud;
+ unsigned long next;
+
+ pud = pud_alloc_track(&init_mm, p4d, addr, mask);
+ if (!pud)
+ return -ENOMEM;
+ do {
+ next = pud_addr_end(addr, end);
+ if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask))
+ return -ENOMEM;
+ } while (pud++, addr = next, addr != end);
+ return 0;
+}
+
+static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr,
+ unsigned long end, pgprot_t prot, struct page **pages, int *nr,
+ pgtbl_mod_mask *mask)
+{
+ p4d_t *p4d;
+ unsigned long next;
+
+ p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
+ if (!p4d)
+ return -ENOMEM;
+ do {
+ next = p4d_addr_end(addr, end);
+ if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask))
+ return -ENOMEM;
+ } while (p4d++, addr = next, addr != end);
+ return 0;
+}
+
+static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end,
+ pgprot_t prot, struct page **pages)
+{
+ unsigned long start = addr;
+ pgd_t *pgd;
+ unsigned long next;
+ int err = 0;
+ int nr = 0;
+ pgtbl_mod_mask mask = 0;
+
+ BUG_ON(addr >= end);
+ pgd = pgd_offset_k(addr);
+ do {
+ next = pgd_addr_end(addr, end);
+ if (pgd_bad(*pgd))
+ mask |= PGTBL_PGD_MODIFIED;
+ err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
+ if (err)
+ return err;
+ } while (pgd++, addr = next, addr != end);
+
+ if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
+ arch_sync_kernel_mappings(start, end);
+
+ return 0;
+}
+
+/*
+ * vmap_pages_range_noflush is similar to vmap_pages_range, but does not
+ * flush caches.
+ *
+ * The caller is responsible for calling flush_cache_vmap() after this
+ * function returns successfully and before the addresses are accessed.
+ *
+ * This is an internal function only. Do not use outside mm/.
+ */
+int __vmap_pages_range_noflush(unsigned long addr, unsigned long end,
+ pgprot_t prot, struct page **pages, unsigned int page_shift)
+{
+ unsigned int i, nr = (end - addr) >> PAGE_SHIFT;
+
+ WARN_ON(page_shift < PAGE_SHIFT);
+
+ if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) ||
+ page_shift == PAGE_SHIFT)
+ return vmap_small_pages_range_noflush(addr, end, prot, pages);
+
+ for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) {
+ int err;
+
+ err = vmap_range_noflush(addr, addr + (1UL << page_shift),
+ page_to_phys(pages[i]), prot,
+ page_shift);
+ if (err)
+ return err;
+
+ addr += 1UL << page_shift;
+ }
+
+ return 0;
+}
+
+int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
+ pgprot_t prot, struct page **pages, unsigned int page_shift)
+{
+ int ret = kmsan_vmap_pages_range_noflush(addr, end, prot, pages,
+ page_shift);
+
+ if (ret)
+ return ret;
+ return __vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
+}
+
+/**
+ * vmap_pages_range - map pages to a kernel virtual address
+ * @addr: start of the VM area to map
+ * @end: end of the VM area to map (non-inclusive)
+ * @prot: page protection flags to use
+ * @pages: pages to map (always PAGE_SIZE pages)
+ * @page_shift: maximum shift that the pages may be mapped with, @pages must
+ * be aligned and contiguous up to at least this shift.
+ *
+ * RETURNS:
+ * 0 on success, -errno on failure.
+ */
+static int vmap_pages_range(unsigned long addr, unsigned long end,
+ pgprot_t prot, struct page **pages, unsigned int page_shift)
+{
+ int err;
+
+ err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
+ flush_cache_vmap(addr, end);
+ return err;
+}
+
+int is_vmalloc_or_module_addr(const void *x)
+{
+ /*
+ * ARM, x86-64 and sparc64 put modules in a special place,
+ * and fall back on vmalloc() if that fails. Others
+ * just put it in the vmalloc space.
+ */
+#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
+ unsigned long addr = (unsigned long)kasan_reset_tag(x);
+ if (addr >= MODULES_VADDR && addr < MODULES_END)
+ return 1;
+#endif
+ return is_vmalloc_addr(x);
+}
+
+/*
+ * Walk a vmap address to the struct page it maps. Huge vmap mappings will
+ * return the tail page that corresponds to the base page address, which
+ * matches small vmap mappings.
+ */
+struct page *vmalloc_to_page(const void *vmalloc_addr)
+{
+ unsigned long addr = (unsigned long) vmalloc_addr;
+ struct page *page = NULL;
+ pgd_t *pgd = pgd_offset_k(addr);
+ p4d_t *p4d;
+ pud_t *pud;
+ pmd_t *pmd;
+ pte_t *ptep, pte;
+
+ /*
+ * XXX we might need to change this if we add VIRTUAL_BUG_ON for
+ * architectures that do not vmalloc module space
+ */
+ VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
+
+ if (pgd_none(*pgd))
+ return NULL;
+ if (WARN_ON_ONCE(pgd_leaf(*pgd)))
+ return NULL; /* XXX: no allowance for huge pgd */
+ if (WARN_ON_ONCE(pgd_bad(*pgd)))
+ return NULL;
+
+ p4d = p4d_offset(pgd, addr);
+ if (p4d_none(*p4d))
+ return NULL;
+ if (p4d_leaf(*p4d))
+ return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT);
+ if (WARN_ON_ONCE(p4d_bad(*p4d)))
+ return NULL;
+
+ pud = pud_offset(p4d, addr);
+ if (pud_none(*pud))
+ return NULL;
+ if (pud_leaf(*pud))
+ return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
+ if (WARN_ON_ONCE(pud_bad(*pud)))
+ return NULL;
+
+ pmd = pmd_offset(pud, addr);
+ if (pmd_none(*pmd))
+ return NULL;
+ if (pmd_leaf(*pmd))
+ return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
+ if (WARN_ON_ONCE(pmd_bad(*pmd)))
+ return NULL;
+
+ ptep = pte_offset_map(pmd, addr);
+ pte = *ptep;
+ if (pte_present(pte))
+ page = pte_page(pte);
+ pte_unmap(ptep);
+
+ return page;
+}
+EXPORT_SYMBOL(vmalloc_to_page);
+
+/*
+ * Map a vmalloc()-space virtual address to the physical page frame number.
+ */
+unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
+{
+ return page_to_pfn(vmalloc_to_page(vmalloc_addr));
+}
+EXPORT_SYMBOL(vmalloc_to_pfn);
+
+
+/*** Global kva allocator ***/
+
+#define DEBUG_AUGMENT_PROPAGATE_CHECK 0
+#define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
+
+
+static DEFINE_SPINLOCK(vmap_area_lock);
+static DEFINE_SPINLOCK(free_vmap_area_lock);
+/* Export for kexec only */
+LIST_HEAD(vmap_area_list);
+static struct rb_root vmap_area_root = RB_ROOT;
+static bool vmap_initialized __read_mostly;
+
+static struct rb_root purge_vmap_area_root = RB_ROOT;
+static LIST_HEAD(purge_vmap_area_list);
+static DEFINE_SPINLOCK(purge_vmap_area_lock);
+
+/*
+ * This kmem_cache is used for vmap_area objects. Instead of
+ * allocating from slab we reuse an object from this cache to
+ * make things faster. Especially in "no edge" splitting of
+ * free block.
+ */
+static struct kmem_cache *vmap_area_cachep;
+
+/*
+ * This linked list is used in pair with free_vmap_area_root.
+ * It gives O(1) access to prev/next to perform fast coalescing.
+ */
+static LIST_HEAD(free_vmap_area_list);
+
+/*
+ * This augment red-black tree represents the free vmap space.
+ * All vmap_area objects in this tree are sorted by va->va_start
+ * address. It is used for allocation and merging when a vmap
+ * object is released.
+ *
+ * Each vmap_area node contains a maximum available free block
+ * of its sub-tree, right or left. Therefore it is possible to
+ * find a lowest match of free area.
+ */
+static struct rb_root free_vmap_area_root = RB_ROOT;
+
+/*
+ * Preload a CPU with one object for "no edge" split case. The
+ * aim is to get rid of allocations from the atomic context, thus
+ * to use more permissive allocation masks.
+ */
+static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
+
+static __always_inline unsigned long
+va_size(struct vmap_area *va)
+{
+ return (va->va_end - va->va_start);
+}
+
+static __always_inline unsigned long
+get_subtree_max_size(struct rb_node *node)
+{
+ struct vmap_area *va;
+
+ va = rb_entry_safe(node, struct vmap_area, rb_node);
+ return va ? va->subtree_max_size : 0;
+}
+
+RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
+ struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
+
+static void purge_vmap_area_lazy(void);
+static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
+static void drain_vmap_area_work(struct work_struct *work);
+static DECLARE_WORK(drain_vmap_work, drain_vmap_area_work);
+
+static atomic_long_t nr_vmalloc_pages;
+
+unsigned long vmalloc_nr_pages(void)
+{
+ return atomic_long_read(&nr_vmalloc_pages);
+}
+
+/* Look up the first VA which satisfies addr < va_end, NULL if none. */
+static struct vmap_area *find_vmap_area_exceed_addr(unsigned long addr)
+{
+ struct vmap_area *va = NULL;
+ struct rb_node *n = vmap_area_root.rb_node;
+
+ addr = (unsigned long)kasan_reset_tag((void *)addr);
+
+ while (n) {
+ struct vmap_area *tmp;
+
+ tmp = rb_entry(n, struct vmap_area, rb_node);
+ if (tmp->va_end > addr) {
+ va = tmp;
+ if (tmp->va_start <= addr)
+ break;
+
+ n = n->rb_left;
+ } else
+ n = n->rb_right;
+ }
+
+ return va;
+}
+
+static struct vmap_area *__find_vmap_area(unsigned long addr, struct rb_root *root)
+{
+ struct rb_node *n = root->rb_node;
+
+ addr = (unsigned long)kasan_reset_tag((void *)addr);
+
+ while (n) {
+ struct vmap_area *va;
+
+ va = rb_entry(n, struct vmap_area, rb_node);
+ if (addr < va->va_start)
+ n = n->rb_left;
+ else if (addr >= va->va_end)
+ n = n->rb_right;
+ else
+ return va;
+ }
+
+ return NULL;
+}
+
+/*
+ * This function returns back addresses of parent node
+ * and its left or right link for further processing.
+ *
+ * Otherwise NULL is returned. In that case all further
+ * steps regarding inserting of conflicting overlap range
+ * have to be declined and actually considered as a bug.
+ */
+static __always_inline struct rb_node **
+find_va_links(struct vmap_area *va,
+ struct rb_root *root, struct rb_node *from,
+ struct rb_node **parent)
+{
+ struct vmap_area *tmp_va;
+ struct rb_node **link;
+
+ if (root) {
+ link = &root->rb_node;
+ if (unlikely(!*link)) {
+ *parent = NULL;
+ return link;
+ }
+ } else {
+ link = &from;
+ }
+
+ /*
+ * Go to the bottom of the tree. When we hit the last point
+ * we end up with parent rb_node and correct direction, i name
+ * it link, where the new va->rb_node will be attached to.
+ */
+ do {
+ tmp_va = rb_entry(*link, struct vmap_area, rb_node);
+
+ /*
+ * During the traversal we also do some sanity check.
+ * Trigger the BUG() if there are sides(left/right)
+ * or full overlaps.
+ */
+ if (va->va_end <= tmp_va->va_start)
+ link = &(*link)->rb_left;
+ else if (va->va_start >= tmp_va->va_end)
+ link = &(*link)->rb_right;
+ else {
+ WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n",
+ va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end);
+
+ return NULL;
+ }
+ } while (*link);
+
+ *parent = &tmp_va->rb_node;
+ return link;
+}
+
+static __always_inline struct list_head *
+get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
+{
+ struct list_head *list;
+
+ if (unlikely(!parent))
+ /*
+ * The red-black tree where we try to find VA neighbors
+ * before merging or inserting is empty, i.e. it means
+ * there is no free vmap space. Normally it does not
+ * happen but we handle this case anyway.
+ */
+ return NULL;
+
+ list = &rb_entry(parent, struct vmap_area, rb_node)->list;
+ return (&parent->rb_right == link ? list->next : list);
+}
+
+static __always_inline void
+__link_va(struct vmap_area *va, struct rb_root *root,
+ struct rb_node *parent, struct rb_node **link,
+ struct list_head *head, bool augment)
+{
+ /*
+ * VA is still not in the list, but we can
+ * identify its future previous list_head node.
+ */
+ if (likely(parent)) {
+ head = &rb_entry(parent, struct vmap_area, rb_node)->list;
+ if (&parent->rb_right != link)
+ head = head->prev;
+ }
+
+ /* Insert to the rb-tree */
+ rb_link_node(&va->rb_node, parent, link);
+ if (augment) {
+ /*
+ * Some explanation here. Just perform simple insertion
+ * to the tree. We do not set va->subtree_max_size to
+ * its current size before calling rb_insert_augmented().
+ * It is because we populate the tree from the bottom
+ * to parent levels when the node _is_ in the tree.
+ *
+ * Therefore we set subtree_max_size to zero after insertion,
+ * to let __augment_tree_propagate_from() puts everything to
+ * the correct order later on.
+ */
+ rb_insert_augmented(&va->rb_node,
+ root, &free_vmap_area_rb_augment_cb);
+ va->subtree_max_size = 0;
+ } else {
+ rb_insert_color(&va->rb_node, root);
+ }
+
+ /* Address-sort this list */
+ list_add(&va->list, head);
+}
+
+static __always_inline void
+link_va(struct vmap_area *va, struct rb_root *root,
+ struct rb_node *parent, struct rb_node **link,
+ struct list_head *head)
+{
+ __link_va(va, root, parent, link, head, false);
+}
+
+static __always_inline void
+link_va_augment(struct vmap_area *va, struct rb_root *root,
+ struct rb_node *parent, struct rb_node **link,
+ struct list_head *head)
+{
+ __link_va(va, root, parent, link, head, true);
+}
+
+static __always_inline void
+__unlink_va(struct vmap_area *va, struct rb_root *root, bool augment)
+{
+ if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
+ return;
+
+ if (augment)
+ rb_erase_augmented(&va->rb_node,
+ root, &free_vmap_area_rb_augment_cb);
+ else
+ rb_erase(&va->rb_node, root);
+
+ list_del_init(&va->list);
+ RB_CLEAR_NODE(&va->rb_node);
+}
+
+static __always_inline void
+unlink_va(struct vmap_area *va, struct rb_root *root)
+{
+ __unlink_va(va, root, false);
+}
+
+static __always_inline void
+unlink_va_augment(struct vmap_area *va, struct rb_root *root)
+{
+ __unlink_va(va, root, true);
+}
+
+#if DEBUG_AUGMENT_PROPAGATE_CHECK
+/*
+ * Gets called when remove the node and rotate.
+ */
+static __always_inline unsigned long
+compute_subtree_max_size(struct vmap_area *va)
+{
+ return max3(va_size(va),
+ get_subtree_max_size(va->rb_node.rb_left),
+ get_subtree_max_size(va->rb_node.rb_right));
+}
+
+static void
+augment_tree_propagate_check(void)
+{
+ struct vmap_area *va;
+ unsigned long computed_size;
+
+ list_for_each_entry(va, &free_vmap_area_list, list) {
+ computed_size = compute_subtree_max_size(va);
+ if (computed_size != va->subtree_max_size)
+ pr_emerg("tree is corrupted: %lu, %lu\n",
+ va_size(va), va->subtree_max_size);
+ }
+}
+#endif
+
+/*
+ * This function populates subtree_max_size from bottom to upper
+ * levels starting from VA point. The propagation must be done
+ * when VA size is modified by changing its va_start/va_end. Or
+ * in case of newly inserting of VA to the tree.
+ *
+ * It means that __augment_tree_propagate_from() must be called:
+ * - After VA has been inserted to the tree(free path);
+ * - After VA has been shrunk(allocation path);
+ * - After VA has been increased(merging path).
+ *
+ * Please note that, it does not mean that upper parent nodes
+ * and their subtree_max_size are recalculated all the time up
+ * to the root node.
+ *
+ * 4--8
+ * /\
+ * / \
+ * / \
+ * 2--2 8--8
+ *
+ * For example if we modify the node 4, shrinking it to 2, then
+ * no any modification is required. If we shrink the node 2 to 1
+ * its subtree_max_size is updated only, and set to 1. If we shrink
+ * the node 8 to 6, then its subtree_max_size is set to 6 and parent
+ * node becomes 4--6.
+ */
+static __always_inline void
+augment_tree_propagate_from(struct vmap_area *va)
+{
+ /*
+ * Populate the tree from bottom towards the root until
+ * the calculated maximum available size of checked node
+ * is equal to its current one.
+ */
+ free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL);
+
+#if DEBUG_AUGMENT_PROPAGATE_CHECK
+ augment_tree_propagate_check();
+#endif
+}
+
+static void
+insert_vmap_area(struct vmap_area *va,
+ struct rb_root *root, struct list_head *head)
+{
+ struct rb_node **link;
+ struct rb_node *parent;
+
+ link = find_va_links(va, root, NULL, &parent);
+ if (link)
+ link_va(va, root, parent, link, head);
+}
+
+static void
+insert_vmap_area_augment(struct vmap_area *va,
+ struct rb_node *from, struct rb_root *root,
+ struct list_head *head)
+{
+ struct rb_node **link;
+ struct rb_node *parent;
+
+ if (from)
+ link = find_va_links(va, NULL, from, &parent);
+ else
+ link = find_va_links(va, root, NULL, &parent);
+
+ if (link) {
+ link_va_augment(va, root, parent, link, head);
+ augment_tree_propagate_from(va);
+ }
+}
+
+/*
+ * Merge de-allocated chunk of VA memory with previous
+ * and next free blocks. If coalesce is not done a new
+ * free area is inserted. If VA has been merged, it is
+ * freed.
+ *
+ * Please note, it can return NULL in case of overlap
+ * ranges, followed by WARN() report. Despite it is a
+ * buggy behaviour, a system can be alive and keep
+ * ongoing.
+ */
+static __always_inline struct vmap_area *
+__merge_or_add_vmap_area(struct vmap_area *va,
+ struct rb_root *root, struct list_head *head, bool augment)
+{
+ struct vmap_area *sibling;
+ struct list_head *next;
+ struct rb_node **link;
+ struct rb_node *parent;
+ bool merged = false;
+
+ /*
+ * Find a place in the tree where VA potentially will be
+ * inserted, unless it is merged with its sibling/siblings.
+ */
+ link = find_va_links(va, root, NULL, &parent);
+ if (!link)
+ return NULL;
+
+ /*
+ * Get next node of VA to check if merging can be done.
+ */
+ next = get_va_next_sibling(parent, link);
+ if (unlikely(next == NULL))
+ goto insert;
+
+ /*
+ * start end
+ * | |
+ * |<------VA------>|<-----Next----->|
+ * | |
+ * start end
+ */
+ if (next != head) {
+ sibling = list_entry(next, struct vmap_area, list);
+ if (sibling->va_start == va->va_end) {
+ sibling->va_start = va->va_start;
+
+ /* Free vmap_area object. */
+ kmem_cache_free(vmap_area_cachep, va);
+
+ /* Point to the new merged area. */
+ va = sibling;
+ merged = true;
+ }
+ }
+
+ /*
+ * start end
+ * | |
+ * |<-----Prev----->|<------VA------>|
+ * | |
+ * start end
+ */
+ if (next->prev != head) {
+ sibling = list_entry(next->prev, struct vmap_area, list);
+ if (sibling->va_end == va->va_start) {
+ /*
+ * If both neighbors are coalesced, it is important
+ * to unlink the "next" node first, followed by merging
+ * with "previous" one. Otherwise the tree might not be
+ * fully populated if a sibling's augmented value is
+ * "normalized" because of rotation operations.
+ */
+ if (merged)
+ __unlink_va(va, root, augment);
+
+ sibling->va_end = va->va_end;
+
+ /* Free vmap_area object. */
+ kmem_cache_free(vmap_area_cachep, va);
+
+ /* Point to the new merged area. */
+ va = sibling;
+ merged = true;
+ }
+ }
+
+insert:
+ if (!merged)
+ __link_va(va, root, parent, link, head, augment);
+
+ return va;
+}
+
+static __always_inline struct vmap_area *
+merge_or_add_vmap_area(struct vmap_area *va,
+ struct rb_root *root, struct list_head *head)
+{
+ return __merge_or_add_vmap_area(va, root, head, false);
+}
+
+static __always_inline struct vmap_area *
+merge_or_add_vmap_area_augment(struct vmap_area *va,
+ struct rb_root *root, struct list_head *head)
+{
+ va = __merge_or_add_vmap_area(va, root, head, true);
+ if (va)
+ augment_tree_propagate_from(va);
+
+ return va;
+}
+
+static __always_inline bool
+is_within_this_va(struct vmap_area *va, unsigned long size,
+ unsigned long align, unsigned long vstart)
+{
+ unsigned long nva_start_addr;
+
+ if (va->va_start > vstart)
+ nva_start_addr = ALIGN(va->va_start, align);
+ else
+ nva_start_addr = ALIGN(vstart, align);
+
+ /* Can be overflowed due to big size or alignment. */
+ if (nva_start_addr + size < nva_start_addr ||
+ nva_start_addr < vstart)
+ return false;
+
+ return (nva_start_addr + size <= va->va_end);
+}
+
+/*
+ * Find the first free block(lowest start address) in the tree,
+ * that will accomplish the request corresponding to passing
+ * parameters. Please note, with an alignment bigger than PAGE_SIZE,
+ * a search length is adjusted to account for worst case alignment
+ * overhead.
+ */
+static __always_inline struct vmap_area *
+find_vmap_lowest_match(struct rb_root *root, unsigned long size,
+ unsigned long align, unsigned long vstart, bool adjust_search_size)
+{
+ struct vmap_area *va;
+ struct rb_node *node;
+ unsigned long length;
+
+ /* Start from the root. */
+ node = root->rb_node;
+
+ /* Adjust the search size for alignment overhead. */
+ length = adjust_search_size ? size + align - 1 : size;
+
+ while (node) {
+ va = rb_entry(node, struct vmap_area, rb_node);
+
+ if (get_subtree_max_size(node->rb_left) >= length &&
+ vstart < va->va_start) {
+ node = node->rb_left;
+ } else {
+ if (is_within_this_va(va, size, align, vstart))
+ return va;
+
+ /*
+ * Does not make sense to go deeper towards the right
+ * sub-tree if it does not have a free block that is
+ * equal or bigger to the requested search length.
+ */
+ if (get_subtree_max_size(node->rb_right) >= length) {
+ node = node->rb_right;
+ continue;
+ }
+
+ /*
+ * OK. We roll back and find the first right sub-tree,
+ * that will satisfy the search criteria. It can happen
+ * due to "vstart" restriction or an alignment overhead
+ * that is bigger then PAGE_SIZE.
+ */
+ while ((node = rb_parent(node))) {
+ va = rb_entry(node, struct vmap_area, rb_node);
+ if (is_within_this_va(va, size, align, vstart))
+ return va;
+
+ if (get_subtree_max_size(node->rb_right) >= length &&
+ vstart <= va->va_start) {
+ /*
+ * Shift the vstart forward. Please note, we update it with
+ * parent's start address adding "1" because we do not want
+ * to enter same sub-tree after it has already been checked
+ * and no suitable free block found there.
+ */
+ vstart = va->va_start + 1;
+ node = node->rb_right;
+ break;
+ }
+ }
+ }
+ }
+
+ return NULL;
+}
+
+#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
+#include <linux/random.h>
+
+static struct vmap_area *
+find_vmap_lowest_linear_match(struct list_head *head, unsigned long size,
+ unsigned long align, unsigned long vstart)
+{
+ struct vmap_area *va;
+
+ list_for_each_entry(va, head, list) {
+ if (!is_within_this_va(va, size, align, vstart))
+ continue;
+
+ return va;
+ }
+
+ return NULL;
+}
+
+static void
+find_vmap_lowest_match_check(struct rb_root *root, struct list_head *head,
+ unsigned long size, unsigned long align)
+{
+ struct vmap_area *va_1, *va_2;
+ unsigned long vstart;
+ unsigned int rnd;
+
+ get_random_bytes(&rnd, sizeof(rnd));
+ vstart = VMALLOC_START + rnd;
+
+ va_1 = find_vmap_lowest_match(root, size, align, vstart, false);
+ va_2 = find_vmap_lowest_linear_match(head, size, align, vstart);
+
+ if (va_1 != va_2)
+ pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
+ va_1, va_2, vstart);
+}
+#endif
+
+enum fit_type {
+ NOTHING_FIT = 0,
+ FL_FIT_TYPE = 1, /* full fit */
+ LE_FIT_TYPE = 2, /* left edge fit */
+ RE_FIT_TYPE = 3, /* right edge fit */
+ NE_FIT_TYPE = 4 /* no edge fit */
+};
+
+static __always_inline enum fit_type
+classify_va_fit_type(struct vmap_area *va,
+ unsigned long nva_start_addr, unsigned long size)
+{
+ enum fit_type type;
+
+ /* Check if it is within VA. */
+ if (nva_start_addr < va->va_start ||
+ nva_start_addr + size > va->va_end)
+ return NOTHING_FIT;
+
+ /* Now classify. */
+ if (va->va_start == nva_start_addr) {
+ if (va->va_end == nva_start_addr + size)
+ type = FL_FIT_TYPE;
+ else
+ type = LE_FIT_TYPE;
+ } else if (va->va_end == nva_start_addr + size) {
+ type = RE_FIT_TYPE;
+ } else {
+ type = NE_FIT_TYPE;
+ }
+
+ return type;
+}
+
+static __always_inline int
+adjust_va_to_fit_type(struct rb_root *root, struct list_head *head,
+ struct vmap_area *va, unsigned long nva_start_addr,
+ unsigned long size)
+{
+ struct vmap_area *lva = NULL;
+ enum fit_type type = classify_va_fit_type(va, nva_start_addr, size);
+
+ if (type == FL_FIT_TYPE) {
+ /*
+ * No need to split VA, it fully fits.
+ *
+ * | |
+ * V NVA V
+ * |---------------|
+ */
+ unlink_va_augment(va, root);
+ kmem_cache_free(vmap_area_cachep, va);
+ } else if (type == LE_FIT_TYPE) {
+ /*
+ * Split left edge of fit VA.
+ *
+ * | |
+ * V NVA V R
+ * |-------|-------|
+ */
+ va->va_start += size;
+ } else if (type == RE_FIT_TYPE) {
+ /*
+ * Split right edge of fit VA.
+ *
+ * | |
+ * L V NVA V
+ * |-------|-------|
+ */
+ va->va_end = nva_start_addr;
+ } else if (type == NE_FIT_TYPE) {
+ /*
+ * Split no edge of fit VA.
+ *
+ * | |
+ * L V NVA V R
+ * |---|-------|---|
+ */
+ lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
+ if (unlikely(!lva)) {
+ /*
+ * For percpu allocator we do not do any pre-allocation
+ * and leave it as it is. The reason is it most likely
+ * never ends up with NE_FIT_TYPE splitting. In case of
+ * percpu allocations offsets and sizes are aligned to
+ * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
+ * are its main fitting cases.
+ *
+ * There are a few exceptions though, as an example it is
+ * a first allocation (early boot up) when we have "one"
+ * big free space that has to be split.
+ *
+ * Also we can hit this path in case of regular "vmap"
+ * allocations, if "this" current CPU was not preloaded.
+ * See the comment in alloc_vmap_area() why. If so, then
+ * GFP_NOWAIT is used instead to get an extra object for
+ * split purpose. That is rare and most time does not
+ * occur.
+ *
+ * What happens if an allocation gets failed. Basically,
+ * an "overflow" path is triggered to purge lazily freed
+ * areas to free some memory, then, the "retry" path is
+ * triggered to repeat one more time. See more details
+ * in alloc_vmap_area() function.
+ */
+ lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
+ if (!lva)
+ return -1;
+ }
+
+ /*
+ * Build the remainder.
+ */
+ lva->va_start = va->va_start;
+ lva->va_end = nva_start_addr;
+
+ /*
+ * Shrink this VA to remaining size.
+ */
+ va->va_start = nva_start_addr + size;
+ } else {
+ return -1;
+ }
+
+ if (type != FL_FIT_TYPE) {
+ augment_tree_propagate_from(va);
+
+ if (lva) /* type == NE_FIT_TYPE */
+ insert_vmap_area_augment(lva, &va->rb_node, root, head);
+ }
+
+ return 0;
+}
+
+/*
+ * Returns a start address of the newly allocated area, if success.
+ * Otherwise a vend is returned that indicates failure.
+ */
+static __always_inline unsigned long
+__alloc_vmap_area(struct rb_root *root, struct list_head *head,
+ unsigned long size, unsigned long align,
+ unsigned long vstart, unsigned long vend)
+{
+ bool adjust_search_size = true;
+ unsigned long nva_start_addr;
+ struct vmap_area *va;
+ int ret;
+
+ /*
+ * Do not adjust when:
+ * a) align <= PAGE_SIZE, because it does not make any sense.
+ * All blocks(their start addresses) are at least PAGE_SIZE
+ * aligned anyway;
+ * b) a short range where a requested size corresponds to exactly
+ * specified [vstart:vend] interval and an alignment > PAGE_SIZE.
+ * With adjusted search length an allocation would not succeed.
+ */
+ if (align <= PAGE_SIZE || (align > PAGE_SIZE && (vend - vstart) == size))
+ adjust_search_size = false;
+
+ va = find_vmap_lowest_match(root, size, align, vstart, adjust_search_size);
+ if (unlikely(!va))
+ return vend;
+
+ if (va->va_start > vstart)
+ nva_start_addr = ALIGN(va->va_start, align);
+ else
+ nva_start_addr = ALIGN(vstart, align);
+
+ /* Check the "vend" restriction. */
+ if (nva_start_addr + size > vend)
+ return vend;
+
+ /* Update the free vmap_area. */
+ ret = adjust_va_to_fit_type(root, head, va, nva_start_addr, size);
+ if (WARN_ON_ONCE(ret))
+ return vend;
+
+#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
+ find_vmap_lowest_match_check(root, head, size, align);
+#endif
+
+ return nva_start_addr;
+}
+
+/*
+ * Free a region of KVA allocated by alloc_vmap_area
+ */
+static void free_vmap_area(struct vmap_area *va)
+{
+ /*
+ * Remove from the busy tree/list.
+ */
+ spin_lock(&vmap_area_lock);
+ unlink_va(va, &vmap_area_root);
+ spin_unlock(&vmap_area_lock);
+
+ /*
+ * Insert/Merge it back to the free tree/list.
+ */
+ spin_lock(&free_vmap_area_lock);
+ merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list);
+ spin_unlock(&free_vmap_area_lock);
+}
+
+static inline void
+preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node)
+{
+ struct vmap_area *va = NULL;
+
+ /*
+ * Preload this CPU with one extra vmap_area object. It is used
+ * when fit type of free area is NE_FIT_TYPE. It guarantees that
+ * a CPU that does an allocation is preloaded.
+ *
+ * We do it in non-atomic context, thus it allows us to use more
+ * permissive allocation masks to be more stable under low memory
+ * condition and high memory pressure.
+ */
+ if (!this_cpu_read(ne_fit_preload_node))
+ va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
+
+ spin_lock(lock);
+
+ if (va && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, va))
+ kmem_cache_free(vmap_area_cachep, va);
+}
+
+/*
+ * Allocate a region of KVA of the specified size and alignment, within the
+ * vstart and vend.
+ */
+static struct vmap_area *alloc_vmap_area(unsigned long size,
+ unsigned long align,
+ unsigned long vstart, unsigned long vend,
+ int node, gfp_t gfp_mask)
+{
+ struct vmap_area *va;
+ unsigned long freed;
+ unsigned long addr;
+ int purged = 0;
+ int ret;
+
+ BUG_ON(!size);
+ BUG_ON(offset_in_page(size));
+ BUG_ON(!is_power_of_2(align));
+
+ if (unlikely(!vmap_initialized))
+ return ERR_PTR(-EBUSY);
+
+ might_sleep();
+ gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
+
+ va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
+ if (unlikely(!va))
+ return ERR_PTR(-ENOMEM);
+
+ /*
+ * Only scan the relevant parts containing pointers to other objects
+ * to avoid false negatives.
+ */
+ kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
+
+retry:
+ preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node);
+ addr = __alloc_vmap_area(&free_vmap_area_root, &free_vmap_area_list,
+ size, align, vstart, vend);
+ spin_unlock(&free_vmap_area_lock);
+
+ /*
+ * If an allocation fails, the "vend" address is
+ * returned. Therefore trigger the overflow path.
+ */
+ if (unlikely(addr == vend))
+ goto overflow;
+
+ va->va_start = addr;
+ va->va_end = addr + size;
+ va->vm = NULL;
+
+ spin_lock(&vmap_area_lock);
+ insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
+ spin_unlock(&vmap_area_lock);
+
+ BUG_ON(!IS_ALIGNED(va->va_start, align));
+ BUG_ON(va->va_start < vstart);
+ BUG_ON(va->va_end > vend);
+
+ ret = kasan_populate_vmalloc(addr, size);
+ if (ret) {
+ free_vmap_area(va);
+ return ERR_PTR(ret);
+ }
+
+ return va;
+
+overflow:
+ if (!purged) {
+ purge_vmap_area_lazy();
+ purged = 1;
+ goto retry;
+ }
+
+ freed = 0;
+ blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
+
+ if (freed > 0) {
+ purged = 0;
+ goto retry;
+ }
+
+ if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
+ pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
+ size);
+
+ kmem_cache_free(vmap_area_cachep, va);
+ return ERR_PTR(-EBUSY);
+}
+
+int register_vmap_purge_notifier(struct notifier_block *nb)
+{
+ return blocking_notifier_chain_register(&vmap_notify_list, nb);
+}
+EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
+
+int unregister_vmap_purge_notifier(struct notifier_block *nb)
+{
+ return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
+}
+EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
+
+/*
+ * lazy_max_pages is the maximum amount of virtual address space we gather up
+ * before attempting to purge with a TLB flush.
+ *
+ * There is a tradeoff here: a larger number will cover more kernel page tables
+ * and take slightly longer to purge, but it will linearly reduce the number of
+ * global TLB flushes that must be performed. It would seem natural to scale
+ * this number up linearly with the number of CPUs (because vmapping activity
+ * could also scale linearly with the number of CPUs), however it is likely
+ * that in practice, workloads might be constrained in other ways that mean
+ * vmap activity will not scale linearly with CPUs. Also, I want to be
+ * conservative and not introduce a big latency on huge systems, so go with
+ * a less aggressive log scale. It will still be an improvement over the old
+ * code, and it will be simple to change the scale factor if we find that it
+ * becomes a problem on bigger systems.
+ */
+static unsigned long lazy_max_pages(void)
+{
+ unsigned int log;
+
+ log = fls(num_online_cpus());
+
+ return log * (32UL * 1024 * 1024 / PAGE_SIZE);
+}
+
+static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
+
+/*
+ * Serialize vmap purging. There is no actual critical section protected
+ * by this lock, but we want to avoid concurrent calls for performance
+ * reasons and to make the pcpu_get_vm_areas more deterministic.
+ */
+static DEFINE_MUTEX(vmap_purge_lock);
+
+/* for per-CPU blocks */
+static void purge_fragmented_blocks_allcpus(void);
+
+/*
+ * Purges all lazily-freed vmap areas.
+ */
+static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
+{
+ unsigned long resched_threshold;
+ struct list_head local_purge_list;
+ struct vmap_area *va, *n_va;
+
+ lockdep_assert_held(&vmap_purge_lock);
+
+ spin_lock(&purge_vmap_area_lock);
+ purge_vmap_area_root = RB_ROOT;
+ list_replace_init(&purge_vmap_area_list, &local_purge_list);
+ spin_unlock(&purge_vmap_area_lock);
+
+ if (unlikely(list_empty(&local_purge_list)))
+ return false;
+
+ start = min(start,
+ list_first_entry(&local_purge_list,
+ struct vmap_area, list)->va_start);
+
+ end = max(end,
+ list_last_entry(&local_purge_list,
+ struct vmap_area, list)->va_end);
+
+ flush_tlb_kernel_range(start, end);
+ resched_threshold = lazy_max_pages() << 1;
+
+ spin_lock(&free_vmap_area_lock);
+ list_for_each_entry_safe(va, n_va, &local_purge_list, list) {
+ unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
+ unsigned long orig_start = va->va_start;
+ unsigned long orig_end = va->va_end;
+
+ /*
+ * Finally insert or merge lazily-freed area. It is
+ * detached and there is no need to "unlink" it from
+ * anything.
+ */
+ va = merge_or_add_vmap_area_augment(va, &free_vmap_area_root,
+ &free_vmap_area_list);
+
+ if (!va)
+ continue;
+
+ if (is_vmalloc_or_module_addr((void *)orig_start))
+ kasan_release_vmalloc(orig_start, orig_end,
+ va->va_start, va->va_end);
+
+ atomic_long_sub(nr, &vmap_lazy_nr);
+
+ if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
+ cond_resched_lock(&free_vmap_area_lock);
+ }
+ spin_unlock(&free_vmap_area_lock);
+ return true;
+}
+
+/*
+ * Kick off a purge of the outstanding lazy areas.
+ */
+static void purge_vmap_area_lazy(void)
+{
+ mutex_lock(&vmap_purge_lock);
+ purge_fragmented_blocks_allcpus();
+ __purge_vmap_area_lazy(ULONG_MAX, 0);
+ mutex_unlock(&vmap_purge_lock);
+}
+
+static void drain_vmap_area_work(struct work_struct *work)
+{
+ unsigned long nr_lazy;
+
+ do {
+ mutex_lock(&vmap_purge_lock);
+ __purge_vmap_area_lazy(ULONG_MAX, 0);
+ mutex_unlock(&vmap_purge_lock);
+
+ /* Recheck if further work is required. */
+ nr_lazy = atomic_long_read(&vmap_lazy_nr);
+ } while (nr_lazy > lazy_max_pages());
+}
+
+/*
+ * Free a vmap area, caller ensuring that the area has been unmapped
+ * and flush_cache_vunmap had been called for the correct range
+ * previously.
+ */
+static void free_vmap_area_noflush(struct vmap_area *va)
+{
+ unsigned long nr_lazy;
+
+ spin_lock(&vmap_area_lock);
+ unlink_va(va, &vmap_area_root);
+ spin_unlock(&vmap_area_lock);
+
+ nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
+ PAGE_SHIFT, &vmap_lazy_nr);
+
+ /*
+ * Merge or place it to the purge tree/list.
+ */
+ spin_lock(&purge_vmap_area_lock);
+ merge_or_add_vmap_area(va,
+ &purge_vmap_area_root, &purge_vmap_area_list);
+ spin_unlock(&purge_vmap_area_lock);
+
+ /* After this point, we may free va at any time */
+ if (unlikely(nr_lazy > lazy_max_pages()))
+ schedule_work(&drain_vmap_work);
+}
+
+/*
+ * Free and unmap a vmap area
+ */
+static void free_unmap_vmap_area(struct vmap_area *va)
+{
+ flush_cache_vunmap(va->va_start, va->va_end);
+ vunmap_range_noflush(va->va_start, va->va_end);
+ if (debug_pagealloc_enabled_static())
+ flush_tlb_kernel_range(va->va_start, va->va_end);
+
+ free_vmap_area_noflush(va);
+}
+
+struct vmap_area *find_vmap_area(unsigned long addr)
+{
+ struct vmap_area *va;
+
+ spin_lock(&vmap_area_lock);
+ va = __find_vmap_area(addr, &vmap_area_root);
+ spin_unlock(&vmap_area_lock);
+
+ return va;
+}
+
+/*** Per cpu kva allocator ***/
+
+/*
+ * vmap space is limited especially on 32 bit architectures. Ensure there is
+ * room for at least 16 percpu vmap blocks per CPU.
+ */
+/*
+ * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
+ * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
+ * instead (we just need a rough idea)
+ */
+#if BITS_PER_LONG == 32
+#define VMALLOC_SPACE (128UL*1024*1024)
+#else
+#define VMALLOC_SPACE (128UL*1024*1024*1024)
+#endif
+
+#define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
+#define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
+#define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
+#define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
+#define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
+#define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
+#define VMAP_BBMAP_BITS \
+ VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
+ VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
+ VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
+
+#define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
+
+struct vmap_block_queue {
+ spinlock_t lock;
+ struct list_head free;
+};
+
+struct vmap_block {
+ spinlock_t lock;
+ struct vmap_area *va;
+ unsigned long free, dirty;
+ unsigned long dirty_min, dirty_max; /*< dirty range */
+ struct list_head free_list;
+ struct rcu_head rcu_head;
+ struct list_head purge;
+};
+
+/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
+static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
+
+/*
+ * XArray of vmap blocks, indexed by address, to quickly find a vmap block
+ * in the free path. Could get rid of this if we change the API to return a
+ * "cookie" from alloc, to be passed to free. But no big deal yet.
+ */
+static DEFINE_XARRAY(vmap_blocks);
+
+/*
+ * We should probably have a fallback mechanism to allocate virtual memory
+ * out of partially filled vmap blocks. However vmap block sizing should be
+ * fairly reasonable according to the vmalloc size, so it shouldn't be a
+ * big problem.
+ */
+
+static unsigned long addr_to_vb_idx(unsigned long addr)
+{
+ addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
+ addr /= VMAP_BLOCK_SIZE;
+ return addr;
+}
+
+static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
+{
+ unsigned long addr;
+
+ addr = va_start + (pages_off << PAGE_SHIFT);
+ BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
+ return (void *)addr;
+}
+
+/**
+ * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
+ * block. Of course pages number can't exceed VMAP_BBMAP_BITS
+ * @order: how many 2^order pages should be occupied in newly allocated block
+ * @gfp_mask: flags for the page level allocator
+ *
+ * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
+ */
+static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
+{
+ struct vmap_block_queue *vbq;
+ struct vmap_block *vb;
+ struct vmap_area *va;
+ unsigned long vb_idx;
+ int node, err;
+ void *vaddr;
+
+ node = numa_node_id();
+
+ vb = kmalloc_node(sizeof(struct vmap_block),
+ gfp_mask & GFP_RECLAIM_MASK, node);
+ if (unlikely(!vb))
+ return ERR_PTR(-ENOMEM);
+
+ va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
+ VMALLOC_START, VMALLOC_END,
+ node, gfp_mask);
+ if (IS_ERR(va)) {
+ kfree(vb);
+ return ERR_CAST(va);
+ }
+
+ vaddr = vmap_block_vaddr(va->va_start, 0);
+ spin_lock_init(&vb->lock);
+ vb->va = va;
+ /* At least something should be left free */
+ BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
+ vb->free = VMAP_BBMAP_BITS - (1UL << order);
+ vb->dirty = 0;
+ vb->dirty_min = VMAP_BBMAP_BITS;
+ vb->dirty_max = 0;
+ INIT_LIST_HEAD(&vb->free_list);
+
+ vb_idx = addr_to_vb_idx(va->va_start);
+ err = xa_insert(&vmap_blocks, vb_idx, vb, gfp_mask);
+ if (err) {
+ kfree(vb);
+ free_vmap_area(va);
+ return ERR_PTR(err);
+ }
+
+ vbq = raw_cpu_ptr(&vmap_block_queue);
+ spin_lock(&vbq->lock);
+ list_add_tail_rcu(&vb->free_list, &vbq->free);
+ spin_unlock(&vbq->lock);
+
+ return vaddr;
+}
+
+static void free_vmap_block(struct vmap_block *vb)
+{
+ struct vmap_block *tmp;
+
+ tmp = xa_erase(&vmap_blocks, addr_to_vb_idx(vb->va->va_start));
+ BUG_ON(tmp != vb);
+
+ free_vmap_area_noflush(vb->va);
+ kfree_rcu(vb, rcu_head);
+}
+
+static void purge_fragmented_blocks(int cpu)
+{
+ LIST_HEAD(purge);
+ struct vmap_block *vb;
+ struct vmap_block *n_vb;
+ struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
+
+ rcu_read_lock();
+ list_for_each_entry_rcu(vb, &vbq->free, free_list) {
+
+ if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
+ continue;
+
+ spin_lock(&vb->lock);
+ if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
+ vb->free = 0; /* prevent further allocs after releasing lock */
+ vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
+ vb->dirty_min = 0;
+ vb->dirty_max = VMAP_BBMAP_BITS;
+ spin_lock(&vbq->lock);
+ list_del_rcu(&vb->free_list);
+ spin_unlock(&vbq->lock);
+ spin_unlock(&vb->lock);
+ list_add_tail(&vb->purge, &purge);
+ } else
+ spin_unlock(&vb->lock);
+ }
+ rcu_read_unlock();
+
+ list_for_each_entry_safe(vb, n_vb, &purge, purge) {
+ list_del(&vb->purge);
+ free_vmap_block(vb);
+ }
+}
+
+static void purge_fragmented_blocks_allcpus(void)
+{
+ int cpu;
+
+ for_each_possible_cpu(cpu)
+ purge_fragmented_blocks(cpu);
+}
+
+static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
+{
+ struct vmap_block_queue *vbq;
+ struct vmap_block *vb;
+ void *vaddr = NULL;
+ unsigned int order;
+
+ BUG_ON(offset_in_page(size));
+ BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
+ if (WARN_ON(size == 0)) {
+ /*
+ * Allocating 0 bytes isn't what caller wants since
+ * get_order(0) returns funny result. Just warn and terminate
+ * early.
+ */
+ return NULL;
+ }
+ order = get_order(size);
+
+ rcu_read_lock();
+ vbq = raw_cpu_ptr(&vmap_block_queue);
+ list_for_each_entry_rcu(vb, &vbq->free, free_list) {
+ unsigned long pages_off;
+
+ spin_lock(&vb->lock);
+ if (vb->free < (1UL << order)) {
+ spin_unlock(&vb->lock);
+ continue;
+ }
+
+ pages_off = VMAP_BBMAP_BITS - vb->free;
+ vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
+ vb->free -= 1UL << order;
+ if (vb->free == 0) {
+ spin_lock(&vbq->lock);
+ list_del_rcu(&vb->free_list);
+ spin_unlock(&vbq->lock);
+ }
+
+ spin_unlock(&vb->lock);
+ break;
+ }
+
+ rcu_read_unlock();
+
+ /* Allocate new block if nothing was found */
+ if (!vaddr)
+ vaddr = new_vmap_block(order, gfp_mask);
+
+ return vaddr;
+}
+
+static void vb_free(unsigned long addr, unsigned long size)
+{
+ unsigned long offset;
+ unsigned int order;
+ struct vmap_block *vb;
+
+ BUG_ON(offset_in_page(size));
+ BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
+
+ flush_cache_vunmap(addr, addr + size);
+
+ order = get_order(size);
+ offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
+ vb = xa_load(&vmap_blocks, addr_to_vb_idx(addr));
+
+ vunmap_range_noflush(addr, addr + size);
+
+ if (debug_pagealloc_enabled_static())
+ flush_tlb_kernel_range(addr, addr + size);
+
+ spin_lock(&vb->lock);
+
+ /* Expand dirty range */
+ vb->dirty_min = min(vb->dirty_min, offset);
+ vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
+
+ vb->dirty += 1UL << order;
+ if (vb->dirty == VMAP_BBMAP_BITS) {
+ BUG_ON(vb->free);
+ spin_unlock(&vb->lock);
+ free_vmap_block(vb);
+ } else
+ spin_unlock(&vb->lock);
+}
+
+static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
+{
+ int cpu;
+
+ if (unlikely(!vmap_initialized))
+ return;
+
+ might_sleep();
+
+ for_each_possible_cpu(cpu) {
+ struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
+ struct vmap_block *vb;
+
+ rcu_read_lock();
+ list_for_each_entry_rcu(vb, &vbq->free, free_list) {
+ spin_lock(&vb->lock);
+ if (vb->dirty && vb->dirty != VMAP_BBMAP_BITS) {
+ unsigned long va_start = vb->va->va_start;
+ unsigned long s, e;
+
+ s = va_start + (vb->dirty_min << PAGE_SHIFT);
+ e = va_start + (vb->dirty_max << PAGE_SHIFT);
+
+ start = min(s, start);
+ end = max(e, end);
+
+ flush = 1;
+ }
+ spin_unlock(&vb->lock);
+ }
+ rcu_read_unlock();
+ }
+
+ mutex_lock(&vmap_purge_lock);
+ purge_fragmented_blocks_allcpus();
+ if (!__purge_vmap_area_lazy(start, end) && flush)
+ flush_tlb_kernel_range(start, end);
+ mutex_unlock(&vmap_purge_lock);
+}
+
+/**
+ * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
+ *
+ * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
+ * to amortize TLB flushing overheads. What this means is that any page you
+ * have now, may, in a former life, have been mapped into kernel virtual
+ * address by the vmap layer and so there might be some CPUs with TLB entries
+ * still referencing that page (additional to the regular 1:1 kernel mapping).
+ *
+ * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
+ * be sure that none of the pages we have control over will have any aliases
+ * from the vmap layer.
+ */
+void vm_unmap_aliases(void)
+{
+ unsigned long start = ULONG_MAX, end = 0;
+ int flush = 0;
+
+ _vm_unmap_aliases(start, end, flush);
+}
+EXPORT_SYMBOL_GPL(vm_unmap_aliases);
+
+/**
+ * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
+ * @mem: the pointer returned by vm_map_ram
+ * @count: the count passed to that vm_map_ram call (cannot unmap partial)
+ */
+void vm_unmap_ram(const void *mem, unsigned int count)
+{
+ unsigned long size = (unsigned long)count << PAGE_SHIFT;
+ unsigned long addr = (unsigned long)kasan_reset_tag(mem);
+ struct vmap_area *va;
+
+ might_sleep();
+ BUG_ON(!addr);
+ BUG_ON(addr < VMALLOC_START);
+ BUG_ON(addr > VMALLOC_END);
+ BUG_ON(!PAGE_ALIGNED(addr));
+
+ kasan_poison_vmalloc(mem, size);
+
+ if (likely(count <= VMAP_MAX_ALLOC)) {
+ debug_check_no_locks_freed(mem, size);
+ vb_free(addr, size);
+ return;
+ }
+
+ va = find_vmap_area(addr);
+ BUG_ON(!va);
+ debug_check_no_locks_freed((void *)va->va_start,
+ (va->va_end - va->va_start));
+ free_unmap_vmap_area(va);
+}
+EXPORT_SYMBOL(vm_unmap_ram);
+
+/**
+ * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
+ * @pages: an array of pointers to the pages to be mapped
+ * @count: number of pages
+ * @node: prefer to allocate data structures on this node
+ *
+ * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
+ * faster than vmap so it's good. But if you mix long-life and short-life
+ * objects with vm_map_ram(), it could consume lots of address space through
+ * fragmentation (especially on a 32bit machine). You could see failures in
+ * the end. Please use this function for short-lived objects.
+ *
+ * Returns: a pointer to the address that has been mapped, or %NULL on failure
+ */
+void *vm_map_ram(struct page **pages, unsigned int count, int node)
+{
+ unsigned long size = (unsigned long)count << PAGE_SHIFT;
+ unsigned long addr;
+ void *mem;
+
+ if (likely(count <= VMAP_MAX_ALLOC)) {
+ mem = vb_alloc(size, GFP_KERNEL);
+ if (IS_ERR(mem))
+ return NULL;
+ addr = (unsigned long)mem;
+ } else {
+ struct vmap_area *va;
+ va = alloc_vmap_area(size, PAGE_SIZE,
+ VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
+ if (IS_ERR(va))
+ return NULL;
+
+ addr = va->va_start;
+ mem = (void *)addr;
+ }
+
+ if (vmap_pages_range(addr, addr + size, PAGE_KERNEL,
+ pages, PAGE_SHIFT) < 0) {
+ vm_unmap_ram(mem, count);
+ return NULL;
+ }
+
+ /*
+ * Mark the pages as accessible, now that they are mapped.
+ * With hardware tag-based KASAN, marking is skipped for
+ * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
+ */
+ mem = kasan_unpoison_vmalloc(mem, size, KASAN_VMALLOC_PROT_NORMAL);
+
+ return mem;
+}
+EXPORT_SYMBOL(vm_map_ram);
+
+static struct vm_struct *vmlist __initdata;
+
+static inline unsigned int vm_area_page_order(struct vm_struct *vm)
+{
+#ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
+ return vm->page_order;
+#else
+ return 0;
+#endif
+}
+
+static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order)
+{
+#ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
+ vm->page_order = order;
+#else
+ BUG_ON(order != 0);
+#endif
+}
+
+/**
+ * vm_area_add_early - add vmap area early during boot
+ * @vm: vm_struct to add
+ *
+ * This function is used to add fixed kernel vm area to vmlist before
+ * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
+ * should contain proper values and the other fields should be zero.
+ *
+ * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
+ */
+void __init vm_area_add_early(struct vm_struct *vm)
+{
+ struct vm_struct *tmp, **p;
+
+ BUG_ON(vmap_initialized);
+ for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
+ if (tmp->addr >= vm->addr) {
+ BUG_ON(tmp->addr < vm->addr + vm->size);
+ break;
+ } else
+ BUG_ON(tmp->addr + tmp->size > vm->addr);
+ }
+ vm->next = *p;
+ *p = vm;
+}
+
+/**
+ * vm_area_register_early - register vmap area early during boot
+ * @vm: vm_struct to register
+ * @align: requested alignment
+ *
+ * This function is used to register kernel vm area before
+ * vmalloc_init() is called. @vm->size and @vm->flags should contain
+ * proper values on entry and other fields should be zero. On return,
+ * vm->addr contains the allocated address.
+ *
+ * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
+ */
+void __init vm_area_register_early(struct vm_struct *vm, size_t align)
+{
+ unsigned long addr = ALIGN(VMALLOC_START, align);
+ struct vm_struct *cur, **p;
+
+ BUG_ON(vmap_initialized);
+
+ for (p = &vmlist; (cur = *p) != NULL; p = &cur->next) {
+ if ((unsigned long)cur->addr - addr >= vm->size)
+ break;
+ addr = ALIGN((unsigned long)cur->addr + cur->size, align);
+ }
+
+ BUG_ON(addr > VMALLOC_END - vm->size);
+ vm->addr = (void *)addr;
+ vm->next = *p;
+ *p = vm;
+ kasan_populate_early_vm_area_shadow(vm->addr, vm->size);
+}
+
+static void vmap_init_free_space(void)
+{
+ unsigned long vmap_start = 1;
+ const unsigned long vmap_end = ULONG_MAX;
+ struct vmap_area *busy, *free;
+
+ /*
+ * B F B B B F
+ * -|-----|.....|-----|-----|-----|.....|-
+ * | The KVA space |
+ * |<--------------------------------->|
+ */
+ list_for_each_entry(busy, &vmap_area_list, list) {
+ if (busy->va_start - vmap_start > 0) {
+ free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
+ if (!WARN_ON_ONCE(!free)) {
+ free->va_start = vmap_start;
+ free->va_end = busy->va_start;
+
+ insert_vmap_area_augment(free, NULL,
+ &free_vmap_area_root,
+ &free_vmap_area_list);
+ }
+ }
+
+ vmap_start = busy->va_end;
+ }
+
+ if (vmap_end - vmap_start > 0) {
+ free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
+ if (!WARN_ON_ONCE(!free)) {
+ free->va_start = vmap_start;
+ free->va_end = vmap_end;
+
+ insert_vmap_area_augment(free, NULL,
+ &free_vmap_area_root,
+ &free_vmap_area_list);
+ }
+ }
+}
+
+void __init vmalloc_init(void)
+{
+ struct vmap_area *va;
+ struct vm_struct *tmp;
+ int i;
+
+ /*
+ * Create the cache for vmap_area objects.
+ */
+ vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
+
+ for_each_possible_cpu(i) {
+ struct vmap_block_queue *vbq;
+ struct vfree_deferred *p;
+
+ vbq = &per_cpu(vmap_block_queue, i);
+ spin_lock_init(&vbq->lock);
+ INIT_LIST_HEAD(&vbq->free);
+ p = &per_cpu(vfree_deferred, i);
+ init_llist_head(&p->list);
+ INIT_WORK(&p->wq, free_work);
+ }
+
+ /* Import existing vmlist entries. */
+ for (tmp = vmlist; tmp; tmp = tmp->next) {
+ va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
+ if (WARN_ON_ONCE(!va))
+ continue;
+
+ va->va_start = (unsigned long)tmp->addr;
+ va->va_end = va->va_start + tmp->size;
+ va->vm = tmp;
+ insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
+ }
+
+ /*
+ * Now we can initialize a free vmap space.
+ */
+ vmap_init_free_space();
+ vmap_initialized = true;
+}
+
+static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
+ struct vmap_area *va, unsigned long flags, const void *caller)
+{
+ vm->flags = flags;
+ vm->addr = (void *)va->va_start;
+ vm->size = va->va_end - va->va_start;
+ vm->caller = caller;
+ va->vm = vm;
+}
+
+static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
+ unsigned long flags, const void *caller)
+{
+ spin_lock(&vmap_area_lock);
+ setup_vmalloc_vm_locked(vm, va, flags, caller);
+ spin_unlock(&vmap_area_lock);
+}
+
+static void clear_vm_uninitialized_flag(struct vm_struct *vm)
+{
+ /*
+ * Before removing VM_UNINITIALIZED,
+ * we should make sure that vm has proper values.
+ * Pair with smp_rmb() in show_numa_info().
+ */
+ smp_wmb();
+ vm->flags &= ~VM_UNINITIALIZED;
+}
+
+static struct vm_struct *__get_vm_area_node(unsigned long size,
+ unsigned long align, unsigned long shift, unsigned long flags,
+ unsigned long start, unsigned long end, int node,
+ gfp_t gfp_mask, const void *caller)
+{
+ struct vmap_area *va;
+ struct vm_struct *area;
+ unsigned long requested_size = size;
+
+ BUG_ON(in_interrupt());
+ size = ALIGN(size, 1ul << shift);
+ if (unlikely(!size))
+ return NULL;
+
+ if (flags & VM_IOREMAP)
+ align = 1ul << clamp_t(int, get_count_order_long(size),
+ PAGE_SHIFT, IOREMAP_MAX_ORDER);
+
+ area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
+ if (unlikely(!area))
+ return NULL;
+
+ if (!(flags & VM_NO_GUARD))
+ size += PAGE_SIZE;
+
+ va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
+ if (IS_ERR(va)) {
+ kfree(area);
+ return NULL;
+ }
+
+ setup_vmalloc_vm(area, va, flags, caller);
+
+ /*
+ * Mark pages for non-VM_ALLOC mappings as accessible. Do it now as a
+ * best-effort approach, as they can be mapped outside of vmalloc code.
+ * For VM_ALLOC mappings, the pages are marked as accessible after
+ * getting mapped in __vmalloc_node_range().
+ * With hardware tag-based KASAN, marking is skipped for
+ * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
+ */
+ if (!(flags & VM_ALLOC))
+ area->addr = kasan_unpoison_vmalloc(area->addr, requested_size,
+ KASAN_VMALLOC_PROT_NORMAL);
+
+ return area;
+}
+
+struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
+ unsigned long start, unsigned long end,
+ const void *caller)
+{
+ return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end,
+ NUMA_NO_NODE, GFP_KERNEL, caller);
+}
+
+/**
+ * get_vm_area - reserve a contiguous kernel virtual area
+ * @size: size of the area
+ * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
+ *
+ * Search an area of @size in the kernel virtual mapping area,
+ * and reserved it for out purposes. Returns the area descriptor
+ * on success or %NULL on failure.
+ *
+ * Return: the area descriptor on success or %NULL on failure.
+ */
+struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
+{
+ return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
+ VMALLOC_START, VMALLOC_END,
+ NUMA_NO_NODE, GFP_KERNEL,
+ __builtin_return_address(0));
+}
+
+struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
+ const void *caller)
+{
+ return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
+ VMALLOC_START, VMALLOC_END,
+ NUMA_NO_NODE, GFP_KERNEL, caller);
+}
+
+/**
+ * find_vm_area - find a continuous kernel virtual area
+ * @addr: base address
+ *
+ * Search for the kernel VM area starting at @addr, and return it.
+ * It is up to the caller to do all required locking to keep the returned
+ * pointer valid.
+ *
+ * Return: the area descriptor on success or %NULL on failure.
+ */
+struct vm_struct *find_vm_area(const void *addr)
+{
+ struct vmap_area *va;
+
+ va = find_vmap_area((unsigned long)addr);
+ if (!va)
+ return NULL;
+
+ return va->vm;
+}
+
+/**
+ * remove_vm_area - find and remove a continuous kernel virtual area
+ * @addr: base address
+ *
+ * Search for the kernel VM area starting at @addr, and remove it.
+ * This function returns the found VM area, but using it is NOT safe
+ * on SMP machines, except for its size or flags.
+ *
+ * Return: the area descriptor on success or %NULL on failure.
+ */
+struct vm_struct *remove_vm_area(const void *addr)
+{
+ struct vmap_area *va;
+
+ might_sleep();
+
+ spin_lock(&vmap_area_lock);
+ va = __find_vmap_area((unsigned long)addr, &vmap_area_root);
+ if (va && va->vm) {
+ struct vm_struct *vm = va->vm;
+
+ va->vm = NULL;
+ spin_unlock(&vmap_area_lock);
+
+ kasan_free_module_shadow(vm);
+ free_unmap_vmap_area(va);
+
+ return vm;
+ }
+
+ spin_unlock(&vmap_area_lock);
+ return NULL;
+}
+
+static inline void set_area_direct_map(const struct vm_struct *area,
+ int (*set_direct_map)(struct page *page))
+{
+ int i;
+
+ /* HUGE_VMALLOC passes small pages to set_direct_map */
+ for (i = 0; i < area->nr_pages; i++)
+ if (page_address(area->pages[i]))
+ set_direct_map(area->pages[i]);
+}
+
+/* Handle removing and resetting vm mappings related to the vm_struct. */
+static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
+{
+ unsigned long start = ULONG_MAX, end = 0;
+ unsigned int page_order = vm_area_page_order(area);
+ int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
+ int flush_dmap = 0;
+ int i;
+
+ remove_vm_area(area->addr);
+
+ /* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
+ if (!flush_reset)
+ return;
+
+ /*
+ * If not deallocating pages, just do the flush of the VM area and
+ * return.
+ */
+ if (!deallocate_pages) {
+ vm_unmap_aliases();
+ return;
+ }
+
+ /*
+ * If execution gets here, flush the vm mapping and reset the direct
+ * map. Find the start and end range of the direct mappings to make sure
+ * the vm_unmap_aliases() flush includes the direct map.
+ */
+ for (i = 0; i < area->nr_pages; i += 1U << page_order) {
+ unsigned long addr = (unsigned long)page_address(area->pages[i]);
+ if (addr) {
+ unsigned long page_size;
+
+ page_size = PAGE_SIZE << page_order;
+ start = min(addr, start);
+ end = max(addr + page_size, end);
+ flush_dmap = 1;
+ }
+ }
+
+ /*
+ * Set direct map to something invalid so that it won't be cached if
+ * there are any accesses after the TLB flush, then flush the TLB and
+ * reset the direct map permissions to the default.
+ */
+ set_area_direct_map(area, set_direct_map_invalid_noflush);
+ _vm_unmap_aliases(start, end, flush_dmap);
+ set_area_direct_map(area, set_direct_map_default_noflush);
+}
+
+static void __vunmap(const void *addr, int deallocate_pages)
+{
+ struct vm_struct *area;
+
+ if (!addr)
+ return;
+
+ if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
+ addr))
+ return;
+
+ area = find_vm_area(addr);
+ if (unlikely(!area)) {
+ WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
+ addr);
+ return;
+ }
+
+ debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
+ debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
+
+ kasan_poison_vmalloc(area->addr, get_vm_area_size(area));
+
+ vm_remove_mappings(area, deallocate_pages);
+
+ if (deallocate_pages) {
+ int i;
+
+ for (i = 0; i < area->nr_pages; i++) {
+ struct page *page = area->pages[i];
+
+ BUG_ON(!page);
+ mod_memcg_page_state(page, MEMCG_VMALLOC, -1);
+ /*
+ * High-order allocs for huge vmallocs are split, so
+ * can be freed as an array of order-0 allocations
+ */
+ __free_pages(page, 0);
+ cond_resched();
+ }
+ atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
+
+ kvfree(area->pages);
+ }
+
+ kfree(area);
+}
+
+static inline void __vfree_deferred(const void *addr)
+{
+ /*
+ * Use raw_cpu_ptr() because this can be called from preemptible
+ * context. Preemption is absolutely fine here, because the llist_add()
+ * implementation is lockless, so it works even if we are adding to
+ * another cpu's list. schedule_work() should be fine with this too.
+ */
+ struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
+
+ if (llist_add((struct llist_node *)addr, &p->list))
+ schedule_work(&p->wq);
+}
+
+/**
+ * vfree_atomic - release memory allocated by vmalloc()
+ * @addr: memory base address
+ *
+ * This one is just like vfree() but can be called in any atomic context
+ * except NMIs.
+ */
+void vfree_atomic(const void *addr)
+{
+ BUG_ON(in_nmi());
+
+ kmemleak_free(addr);
+
+ if (!addr)
+ return;
+ __vfree_deferred(addr);
+}
+
+static void __vfree(const void *addr)
+{
+ if (unlikely(in_interrupt()))
+ __vfree_deferred(addr);
+ else
+ __vunmap(addr, 1);
+}
+
+/**
+ * vfree - Release memory allocated by vmalloc()
+ * @addr: Memory base address
+ *
+ * Free the virtually continuous memory area starting at @addr, as obtained
+ * from one of the vmalloc() family of APIs. This will usually also free the
+ * physical memory underlying the virtual allocation, but that memory is
+ * reference counted, so it will not be freed until the last user goes away.
+ *
+ * If @addr is NULL, no operation is performed.
+ *
+ * Context:
+ * May sleep if called *not* from interrupt context.
+ * Must not be called in NMI context (strictly speaking, it could be
+ * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
+ * conventions for vfree() arch-dependent would be a really bad idea).
+ */
+void vfree(const void *addr)
+{
+ BUG_ON(in_nmi());
+
+ kmemleak_free(addr);
+
+ might_sleep_if(!in_interrupt());
+
+ if (!addr)
+ return;
+
+ __vfree(addr);
+}
+EXPORT_SYMBOL(vfree);
+
+/**
+ * vunmap - release virtual mapping obtained by vmap()
+ * @addr: memory base address
+ *
+ * Free the virtually contiguous memory area starting at @addr,
+ * which was created from the page array passed to vmap().
+ *
+ * Must not be called in interrupt context.
+ */
+void vunmap(const void *addr)
+{
+ BUG_ON(in_interrupt());
+ might_sleep();
+ if (addr)
+ __vunmap(addr, 0);
+}
+EXPORT_SYMBOL(vunmap);
+
+/**
+ * vmap - map an array of pages into virtually contiguous space
+ * @pages: array of page pointers
+ * @count: number of pages to map
+ * @flags: vm_area->flags
+ * @prot: page protection for the mapping
+ *
+ * Maps @count pages from @pages into contiguous kernel virtual space.
+ * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself
+ * (which must be kmalloc or vmalloc memory) and one reference per pages in it
+ * are transferred from the caller to vmap(), and will be freed / dropped when
+ * vfree() is called on the return value.
+ *
+ * Return: the address of the area or %NULL on failure
+ */
+void *vmap(struct page **pages, unsigned int count,
+ unsigned long flags, pgprot_t prot)
+{
+ struct vm_struct *area;
+ unsigned long addr;
+ unsigned long size; /* In bytes */
+
+ might_sleep();
+
+ /*
+ * Your top guard is someone else's bottom guard. Not having a top
+ * guard compromises someone else's mappings too.
+ */
+ if (WARN_ON_ONCE(flags & VM_NO_GUARD))
+ flags &= ~VM_NO_GUARD;
+
+ if (count > totalram_pages())
+ return NULL;
+
+ size = (unsigned long)count << PAGE_SHIFT;
+ area = get_vm_area_caller(size, flags, __builtin_return_address(0));
+ if (!area)
+ return NULL;
+
+ addr = (unsigned long)area->addr;
+ if (vmap_pages_range(addr, addr + size, pgprot_nx(prot),
+ pages, PAGE_SHIFT) < 0) {
+ vunmap(area->addr);
+ return NULL;
+ }
+
+ if (flags & VM_MAP_PUT_PAGES) {
+ area->pages = pages;
+ area->nr_pages = count;
+ }
+ return area->addr;
+}
+EXPORT_SYMBOL(vmap);
+
+#ifdef CONFIG_VMAP_PFN
+struct vmap_pfn_data {
+ unsigned long *pfns;
+ pgprot_t prot;
+ unsigned int idx;
+};
+
+static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private)
+{
+ struct vmap_pfn_data *data = private;
+
+ if (WARN_ON_ONCE(pfn_valid(data->pfns[data->idx])))
+ return -EINVAL;
+ *pte = pte_mkspecial(pfn_pte(data->pfns[data->idx++], data->prot));
+ return 0;
+}
+
+/**
+ * vmap_pfn - map an array of PFNs into virtually contiguous space
+ * @pfns: array of PFNs
+ * @count: number of pages to map
+ * @prot: page protection for the mapping
+ *
+ * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns
+ * the start address of the mapping.
+ */
+void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot)
+{
+ struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) };
+ struct vm_struct *area;
+
+ area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP,
+ __builtin_return_address(0));
+ if (!area)
+ return NULL;
+ if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
+ count * PAGE_SIZE, vmap_pfn_apply, &data)) {
+ free_vm_area(area);
+ return NULL;
+ }
+
+ flush_cache_vmap((unsigned long)area->addr,
+ (unsigned long)area->addr + count * PAGE_SIZE);
+
+ return area->addr;
+}
+EXPORT_SYMBOL_GPL(vmap_pfn);
+#endif /* CONFIG_VMAP_PFN */
+
+static inline unsigned int
+vm_area_alloc_pages(gfp_t gfp, int nid,
+ unsigned int order, unsigned int nr_pages, struct page **pages)
+{
+ unsigned int nr_allocated = 0;
+ struct page *page;
+ int i;
+
+ /*
+ * For order-0 pages we make use of bulk allocator, if
+ * the page array is partly or not at all populated due
+ * to fails, fallback to a single page allocator that is
+ * more permissive.
+ */
+ if (!order) {
+ gfp_t bulk_gfp = gfp & ~__GFP_NOFAIL;
+
+ while (nr_allocated < nr_pages) {
+ unsigned int nr, nr_pages_request;
+
+ /*
+ * A maximum allowed request is hard-coded and is 100
+ * pages per call. That is done in order to prevent a
+ * long preemption off scenario in the bulk-allocator
+ * so the range is [1:100].
+ */
+ nr_pages_request = min(100U, nr_pages - nr_allocated);
+
+ /* memory allocation should consider mempolicy, we can't
+ * wrongly use nearest node when nid == NUMA_NO_NODE,
+ * otherwise memory may be allocated in only one node,
+ * but mempolicy wants to alloc memory by interleaving.
+ */
+ if (IS_ENABLED(CONFIG_NUMA) && nid == NUMA_NO_NODE)
+ nr = alloc_pages_bulk_array_mempolicy(bulk_gfp,
+ nr_pages_request,
+ pages + nr_allocated);
+
+ else
+ nr = alloc_pages_bulk_array_node(bulk_gfp, nid,
+ nr_pages_request,
+ pages + nr_allocated);
+
+ nr_allocated += nr;
+ cond_resched();
+
+ /*
+ * If zero or pages were obtained partly,
+ * fallback to a single page allocator.
+ */
+ if (nr != nr_pages_request)
+ break;
+ }
+ }
+
+ /* High-order pages or fallback path if "bulk" fails. */
+
+ while (nr_allocated < nr_pages) {
+ if (fatal_signal_pending(current))
+ break;
+
+ if (nid == NUMA_NO_NODE)
+ page = alloc_pages(gfp, order);
+ else
+ page = alloc_pages_node(nid, gfp, order);
+ if (unlikely(!page))
+ break;
+ /*
+ * Higher order allocations must be able to be treated as
+ * indepdenent small pages by callers (as they can with
+ * small-page vmallocs). Some drivers do their own refcounting
+ * on vmalloc_to_page() pages, some use page->mapping,
+ * page->lru, etc.
+ */
+ if (order)
+ split_page(page, order);
+
+ /*
+ * Careful, we allocate and map page-order pages, but
+ * tracking is done per PAGE_SIZE page so as to keep the
+ * vm_struct APIs independent of the physical/mapped size.
+ */
+ for (i = 0; i < (1U << order); i++)
+ pages[nr_allocated + i] = page + i;
+
+ cond_resched();
+ nr_allocated += 1U << order;
+ }
+
+ return nr_allocated;
+}
+
+static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
+ pgprot_t prot, unsigned int page_shift,
+ int node)
+{
+ const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
+ bool nofail = gfp_mask & __GFP_NOFAIL;
+ unsigned long addr = (unsigned long)area->addr;
+ unsigned long size = get_vm_area_size(area);
+ unsigned long array_size;
+ unsigned int nr_small_pages = size >> PAGE_SHIFT;
+ unsigned int page_order;
+ unsigned int flags;
+ int ret;
+
+ array_size = (unsigned long)nr_small_pages * sizeof(struct page *);
+ gfp_mask |= __GFP_NOWARN;
+ if (!(gfp_mask & (GFP_DMA | GFP_DMA32)))
+ gfp_mask |= __GFP_HIGHMEM;
+
+ /* Please note that the recursion is strictly bounded. */
+ if (array_size > PAGE_SIZE) {
+ area->pages = __vmalloc_node(array_size, 1, nested_gfp, node,
+ area->caller);
+ } else {
+ area->pages = kmalloc_node(array_size, nested_gfp, node);
+ }
+
+ if (!area->pages) {
+ warn_alloc(gfp_mask, NULL,
+ "vmalloc error: size %lu, failed to allocated page array size %lu",
+ nr_small_pages * PAGE_SIZE, array_size);
+ free_vm_area(area);
+ return NULL;
+ }
+
+ set_vm_area_page_order(area, page_shift - PAGE_SHIFT);
+ page_order = vm_area_page_order(area);
+
+ area->nr_pages = vm_area_alloc_pages(gfp_mask | __GFP_NOWARN,
+ node, page_order, nr_small_pages, area->pages);
+
+ atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
+ if (gfp_mask & __GFP_ACCOUNT) {
+ int i;
+
+ for (i = 0; i < area->nr_pages; i++)
+ mod_memcg_page_state(area->pages[i], MEMCG_VMALLOC, 1);
+ }
+
+ /*
+ * If not enough pages were obtained to accomplish an
+ * allocation request, free them via __vfree() if any.
+ */
+ if (area->nr_pages != nr_small_pages) {
+ /* vm_area_alloc_pages() can also fail due to a fatal signal */
+ if (!fatal_signal_pending(current))
+ warn_alloc(gfp_mask, NULL,
+ "vmalloc error: size %lu, page order %u, failed to allocate pages",
+ area->nr_pages * PAGE_SIZE, page_order);
+ goto fail;
+ }
+
+ /*
+ * page tables allocations ignore external gfp mask, enforce it
+ * by the scope API
+ */
+ if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
+ flags = memalloc_nofs_save();
+ else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
+ flags = memalloc_noio_save();
+
+ do {
+ ret = vmap_pages_range(addr, addr + size, prot, area->pages,
+ page_shift);
+ if (nofail && (ret < 0))
+ schedule_timeout_uninterruptible(1);
+ } while (nofail && (ret < 0));
+
+ if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
+ memalloc_nofs_restore(flags);
+ else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
+ memalloc_noio_restore(flags);
+
+ if (ret < 0) {
+ warn_alloc(gfp_mask, NULL,
+ "vmalloc error: size %lu, failed to map pages",
+ area->nr_pages * PAGE_SIZE);
+ goto fail;
+ }
+
+ return area->addr;
+
+fail:
+ __vfree(area->addr);
+ return NULL;
+}
+
+/**
+ * __vmalloc_node_range - allocate virtually contiguous memory
+ * @size: allocation size
+ * @align: desired alignment
+ * @start: vm area range start
+ * @end: vm area range end
+ * @gfp_mask: flags for the page level allocator
+ * @prot: protection mask for the allocated pages
+ * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
+ * @node: node to use for allocation or NUMA_NO_NODE
+ * @caller: caller's return address
+ *
+ * Allocate enough pages to cover @size from the page level
+ * allocator with @gfp_mask flags. Please note that the full set of gfp
+ * flags are not supported. GFP_KERNEL, GFP_NOFS and GFP_NOIO are all
+ * supported.
+ * Zone modifiers are not supported. From the reclaim modifiers
+ * __GFP_DIRECT_RECLAIM is required (aka GFP_NOWAIT is not supported)
+ * and only __GFP_NOFAIL is supported (i.e. __GFP_NORETRY and
+ * __GFP_RETRY_MAYFAIL are not supported).
+ *
+ * __GFP_NOWARN can be used to suppress failures messages.
+ *
+ * Map them into contiguous kernel virtual space, using a pagetable
+ * protection of @prot.
+ *
+ * Return: the address of the area or %NULL on failure
+ */
+void *__vmalloc_node_range(unsigned long size, unsigned long align,
+ unsigned long start, unsigned long end, gfp_t gfp_mask,
+ pgprot_t prot, unsigned long vm_flags, int node,
+ const void *caller)
+{
+ struct vm_struct *area;
+ void *ret;
+ kasan_vmalloc_flags_t kasan_flags = KASAN_VMALLOC_NONE;
+ unsigned long real_size = size;
+ unsigned long real_align = align;
+ unsigned int shift = PAGE_SHIFT;
+
+ if (WARN_ON_ONCE(!size))
+ return NULL;
+
+ if ((size >> PAGE_SHIFT) > totalram_pages()) {
+ warn_alloc(gfp_mask, NULL,
+ "vmalloc error: size %lu, exceeds total pages",
+ real_size);
+ return NULL;
+ }
+
+ if (vmap_allow_huge && (vm_flags & VM_ALLOW_HUGE_VMAP)) {
+ unsigned long size_per_node;
+
+ /*
+ * Try huge pages. Only try for PAGE_KERNEL allocations,
+ * others like modules don't yet expect huge pages in
+ * their allocations due to apply_to_page_range not
+ * supporting them.
+ */
+
+ size_per_node = size;
+ if (node == NUMA_NO_NODE)
+ size_per_node /= num_online_nodes();
+ if (arch_vmap_pmd_supported(prot) && size_per_node >= PMD_SIZE)
+ shift = PMD_SHIFT;
+ else
+ shift = arch_vmap_pte_supported_shift(size_per_node);
+
+ align = max(real_align, 1UL << shift);
+ size = ALIGN(real_size, 1UL << shift);
+ }
+
+again:
+ area = __get_vm_area_node(real_size, align, shift, VM_ALLOC |
+ VM_UNINITIALIZED | vm_flags, start, end, node,
+ gfp_mask, caller);
+ if (!area) {
+ bool nofail = gfp_mask & __GFP_NOFAIL;
+ warn_alloc(gfp_mask, NULL,
+ "vmalloc error: size %lu, vm_struct allocation failed%s",
+ real_size, (nofail) ? ". Retrying." : "");
+ if (nofail) {
+ schedule_timeout_uninterruptible(1);
+ goto again;
+ }
+ goto fail;
+ }
+
+ /*
+ * Prepare arguments for __vmalloc_area_node() and
+ * kasan_unpoison_vmalloc().
+ */
+ if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL)) {
+ if (kasan_hw_tags_enabled()) {
+ /*
+ * Modify protection bits to allow tagging.
+ * This must be done before mapping.
+ */
+ prot = arch_vmap_pgprot_tagged(prot);
+
+ /*
+ * Skip page_alloc poisoning and zeroing for physical
+ * pages backing VM_ALLOC mapping. Memory is instead
+ * poisoned and zeroed by kasan_unpoison_vmalloc().
+ */
+ gfp_mask |= __GFP_SKIP_KASAN_UNPOISON | __GFP_SKIP_ZERO;
+ }
+
+ /* Take note that the mapping is PAGE_KERNEL. */
+ kasan_flags |= KASAN_VMALLOC_PROT_NORMAL;
+ }
+
+ /* Allocate physical pages and map them into vmalloc space. */
+ ret = __vmalloc_area_node(area, gfp_mask, prot, shift, node);
+ if (!ret)
+ goto fail;
+
+ /*
+ * Mark the pages as accessible, now that they are mapped.
+ * The condition for setting KASAN_VMALLOC_INIT should complement the
+ * one in post_alloc_hook() with regards to the __GFP_SKIP_ZERO check
+ * to make sure that memory is initialized under the same conditions.
+ * Tag-based KASAN modes only assign tags to normal non-executable
+ * allocations, see __kasan_unpoison_vmalloc().
+ */
+ kasan_flags |= KASAN_VMALLOC_VM_ALLOC;
+ if (!want_init_on_free() && want_init_on_alloc(gfp_mask) &&
+ (gfp_mask & __GFP_SKIP_ZERO))
+ kasan_flags |= KASAN_VMALLOC_INIT;
+ /* KASAN_VMALLOC_PROT_NORMAL already set if required. */
+ area->addr = kasan_unpoison_vmalloc(area->addr, real_size, kasan_flags);
+
+ /*
+ * In this function, newly allocated vm_struct has VM_UNINITIALIZED
+ * flag. It means that vm_struct is not fully initialized.
+ * Now, it is fully initialized, so remove this flag here.
+ */
+ clear_vm_uninitialized_flag(area);
+
+ size = PAGE_ALIGN(size);
+ if (!(vm_flags & VM_DEFER_KMEMLEAK))
+ kmemleak_vmalloc(area, size, gfp_mask);
+
+ return area->addr;
+
+fail:
+ if (shift > PAGE_SHIFT) {
+ shift = PAGE_SHIFT;
+ align = real_align;
+ size = real_size;
+ goto again;
+ }
+
+ return NULL;
+}
+
+/**
+ * __vmalloc_node - allocate virtually contiguous memory
+ * @size: allocation size
+ * @align: desired alignment
+ * @gfp_mask: flags for the page level allocator
+ * @node: node to use for allocation or NUMA_NO_NODE
+ * @caller: caller's return address
+ *
+ * Allocate enough pages to cover @size from the page level allocator with
+ * @gfp_mask flags. Map them into contiguous kernel virtual space.
+ *
+ * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
+ * and __GFP_NOFAIL are not supported
+ *
+ * Any use of gfp flags outside of GFP_KERNEL should be consulted
+ * with mm people.
+ *
+ * Return: pointer to the allocated memory or %NULL on error
+ */
+void *__vmalloc_node(unsigned long size, unsigned long align,
+ gfp_t gfp_mask, int node, const void *caller)
+{
+ return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
+ gfp_mask, PAGE_KERNEL, 0, node, caller);
+}
+/*
+ * This is only for performance analysis of vmalloc and stress purpose.
+ * It is required by vmalloc test module, therefore do not use it other
+ * than that.
+ */
+#ifdef CONFIG_TEST_VMALLOC_MODULE
+EXPORT_SYMBOL_GPL(__vmalloc_node);
+#endif
+
+void *__vmalloc(unsigned long size, gfp_t gfp_mask)
+{
+ return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE,
+ __builtin_return_address(0));
+}
+EXPORT_SYMBOL(__vmalloc);
+
+/**
+ * vmalloc - allocate virtually contiguous memory
+ * @size: allocation size
+ *
+ * Allocate enough pages to cover @size from the page level
+ * allocator and map them into contiguous kernel virtual space.
+ *
+ * For tight control over page level allocator and protection flags
+ * use __vmalloc() instead.
+ *
+ * Return: pointer to the allocated memory or %NULL on error
+ */
+void *vmalloc(unsigned long size)
+{
+ return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE,
+ __builtin_return_address(0));
+}
+EXPORT_SYMBOL(vmalloc);
+
+/**
+ * vmalloc_huge - allocate virtually contiguous memory, allow huge pages
+ * @size: allocation size
+ * @gfp_mask: flags for the page level allocator
+ *
+ * Allocate enough pages to cover @size from the page level
+ * allocator and map them into contiguous kernel virtual space.
+ * If @size is greater than or equal to PMD_SIZE, allow using
+ * huge pages for the memory
+ *
+ * Return: pointer to the allocated memory or %NULL on error
+ */
+void *vmalloc_huge(unsigned long size, gfp_t gfp_mask)
+{
+ return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
+ gfp_mask, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP,
+ NUMA_NO_NODE, __builtin_return_address(0));
+}
+EXPORT_SYMBOL_GPL(vmalloc_huge);
+
+/**
+ * vzalloc - allocate virtually contiguous memory with zero fill
+ * @size: allocation size
+ *
+ * Allocate enough pages to cover @size from the page level
+ * allocator and map them into contiguous kernel virtual space.
+ * The memory allocated is set to zero.
+ *
+ * For tight control over page level allocator and protection flags
+ * use __vmalloc() instead.
+ *
+ * Return: pointer to the allocated memory or %NULL on error
+ */
+void *vzalloc(unsigned long size)
+{
+ return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
+ __builtin_return_address(0));
+}
+EXPORT_SYMBOL(vzalloc);
+
+/**
+ * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
+ * @size: allocation size
+ *
+ * The resulting memory area is zeroed so it can be mapped to userspace
+ * without leaking data.
+ *
+ * Return: pointer to the allocated memory or %NULL on error
+ */
+void *vmalloc_user(unsigned long size)
+{
+ return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
+ GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
+ VM_USERMAP, NUMA_NO_NODE,
+ __builtin_return_address(0));
+}
+EXPORT_SYMBOL(vmalloc_user);
+
+/**
+ * vmalloc_node - allocate memory on a specific node
+ * @size: allocation size
+ * @node: numa node
+ *
+ * Allocate enough pages to cover @size from the page level
+ * allocator and map them into contiguous kernel virtual space.
+ *
+ * For tight control over page level allocator and protection flags
+ * use __vmalloc() instead.
+ *
+ * Return: pointer to the allocated memory or %NULL on error
+ */
+void *vmalloc_node(unsigned long size, int node)
+{
+ return __vmalloc_node(size, 1, GFP_KERNEL, node,
+ __builtin_return_address(0));
+}
+EXPORT_SYMBOL(vmalloc_node);
+
+/**
+ * vzalloc_node - allocate memory on a specific node with zero fill
+ * @size: allocation size
+ * @node: numa node
+ *
+ * Allocate enough pages to cover @size from the page level
+ * allocator and map them into contiguous kernel virtual space.
+ * The memory allocated is set to zero.
+ *
+ * Return: pointer to the allocated memory or %NULL on error
+ */
+void *vzalloc_node(unsigned long size, int node)
+{
+ return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node,
+ __builtin_return_address(0));
+}
+EXPORT_SYMBOL(vzalloc_node);
+
+#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
+#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
+#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
+#define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
+#else
+/*
+ * 64b systems should always have either DMA or DMA32 zones. For others
+ * GFP_DMA32 should do the right thing and use the normal zone.
+ */
+#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
+#endif
+
+/**
+ * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
+ * @size: allocation size
+ *
+ * Allocate enough 32bit PA addressable pages to cover @size from the
+ * page level allocator and map them into contiguous kernel virtual space.
+ *
+ * Return: pointer to the allocated memory or %NULL on error
+ */
+void *vmalloc_32(unsigned long size)
+{
+ return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
+ __builtin_return_address(0));
+}
+EXPORT_SYMBOL(vmalloc_32);
+
+/**
+ * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
+ * @size: allocation size
+ *
+ * The resulting memory area is 32bit addressable and zeroed so it can be
+ * mapped to userspace without leaking data.
+ *
+ * Return: pointer to the allocated memory or %NULL on error
+ */
+void *vmalloc_32_user(unsigned long size)
+{
+ return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
+ GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
+ VM_USERMAP, NUMA_NO_NODE,
+ __builtin_return_address(0));
+}
+EXPORT_SYMBOL(vmalloc_32_user);
+
+/*
+ * small helper routine , copy contents to buf from addr.
+ * If the page is not present, fill zero.
+ */
+
+static int aligned_vread(char *buf, char *addr, unsigned long count)
+{
+ struct page *p;
+ int copied = 0;
+
+ while (count) {
+ unsigned long offset, length;
+
+ offset = offset_in_page(addr);
+ length = PAGE_SIZE - offset;
+ if (length > count)
+ length = count;
+ p = vmalloc_to_page(addr);
+ /*
+ * To do safe access to this _mapped_ area, we need
+ * lock. But adding lock here means that we need to add
+ * overhead of vmalloc()/vfree() calls for this _debug_
+ * interface, rarely used. Instead of that, we'll use
+ * kmap() and get small overhead in this access function.
+ */
+ if (p) {
+ /* We can expect USER0 is not used -- see vread() */
+ void *map = kmap_atomic(p);
+ memcpy(buf, map + offset, length);
+ kunmap_atomic(map);
+ } else
+ memset(buf, 0, length);
+
+ addr += length;
+ buf += length;
+ copied += length;
+ count -= length;
+ }
+ return copied;
+}
+
+/**
+ * vread() - read vmalloc area in a safe way.
+ * @buf: buffer for reading data
+ * @addr: vm address.
+ * @count: number of bytes to be read.
+ *
+ * This function checks that addr is a valid vmalloc'ed area, and
+ * copy data from that area to a given buffer. If the given memory range
+ * of [addr...addr+count) includes some valid address, data is copied to
+ * proper area of @buf. If there are memory holes, they'll be zero-filled.
+ * IOREMAP area is treated as memory hole and no copy is done.
+ *
+ * If [addr...addr+count) doesn't includes any intersects with alive
+ * vm_struct area, returns 0. @buf should be kernel's buffer.
+ *
+ * Note: In usual ops, vread() is never necessary because the caller
+ * should know vmalloc() area is valid and can use memcpy().
+ * This is for routines which have to access vmalloc area without
+ * any information, as /proc/kcore.
+ *
+ * Return: number of bytes for which addr and buf should be increased
+ * (same number as @count) or %0 if [addr...addr+count) doesn't
+ * include any intersection with valid vmalloc area
+ */
+long vread(char *buf, char *addr, unsigned long count)
+{
+ struct vmap_area *va;
+ struct vm_struct *vm;
+ char *vaddr, *buf_start = buf;
+ unsigned long buflen = count;
+ unsigned long n;
+
+ addr = kasan_reset_tag(addr);
+
+ /* Don't allow overflow */
+ if ((unsigned long) addr + count < count)
+ count = -(unsigned long) addr;
+
+ spin_lock(&vmap_area_lock);
+ va = find_vmap_area_exceed_addr((unsigned long)addr);
+ if (!va)
+ goto finished;
+
+ /* no intersects with alive vmap_area */
+ if ((unsigned long)addr + count <= va->va_start)
+ goto finished;
+
+ list_for_each_entry_from(va, &vmap_area_list, list) {
+ if (!count)
+ break;
+
+ if (!va->vm)
+ continue;
+
+ vm = va->vm;
+ vaddr = (char *) vm->addr;
+ if (addr >= vaddr + get_vm_area_size(vm))
+ continue;
+ while (addr < vaddr) {
+ if (count == 0)
+ goto finished;
+ *buf = '\0';
+ buf++;
+ addr++;
+ count--;
+ }
+ n = vaddr + get_vm_area_size(vm) - addr;
+ if (n > count)
+ n = count;
+ if (!(vm->flags & VM_IOREMAP))
+ aligned_vread(buf, addr, n);
+ else /* IOREMAP area is treated as memory hole */
+ memset(buf, 0, n);
+ buf += n;
+ addr += n;
+ count -= n;
+ }
+finished:
+ spin_unlock(&vmap_area_lock);
+
+ if (buf == buf_start)
+ return 0;
+ /* zero-fill memory holes */
+ if (buf != buf_start + buflen)
+ memset(buf, 0, buflen - (buf - buf_start));
+
+ return buflen;
+}
+
+/**
+ * remap_vmalloc_range_partial - map vmalloc pages to userspace
+ * @vma: vma to cover
+ * @uaddr: target user address to start at
+ * @kaddr: virtual address of vmalloc kernel memory
+ * @pgoff: offset from @kaddr to start at
+ * @size: size of map area
+ *
+ * Returns: 0 for success, -Exxx on failure
+ *
+ * This function checks that @kaddr is a valid vmalloc'ed area,
+ * and that it is big enough to cover the range starting at
+ * @uaddr in @vma. Will return failure if that criteria isn't
+ * met.
+ *
+ * Similar to remap_pfn_range() (see mm/memory.c)
+ */
+int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
+ void *kaddr, unsigned long pgoff,
+ unsigned long size)
+{
+ struct vm_struct *area;
+ unsigned long off;
+ unsigned long end_index;
+
+ if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
+ return -EINVAL;
+
+ size = PAGE_ALIGN(size);
+
+ if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
+ return -EINVAL;
+
+ area = find_vm_area(kaddr);
+ if (!area)
+ return -EINVAL;
+
+ if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
+ return -EINVAL;
+
+ if (check_add_overflow(size, off, &end_index) ||
+ end_index > get_vm_area_size(area))
+ return -EINVAL;
+ kaddr += off;
+
+ do {
+ struct page *page = vmalloc_to_page(kaddr);
+ int ret;
+
+ ret = vm_insert_page(vma, uaddr, page);
+ if (ret)
+ return ret;
+
+ uaddr += PAGE_SIZE;
+ kaddr += PAGE_SIZE;
+ size -= PAGE_SIZE;
+ } while (size > 0);
+
+ vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
+
+ return 0;
+}
+
+/**
+ * remap_vmalloc_range - map vmalloc pages to userspace
+ * @vma: vma to cover (map full range of vma)
+ * @addr: vmalloc memory
+ * @pgoff: number of pages into addr before first page to map
+ *
+ * Returns: 0 for success, -Exxx on failure
+ *
+ * This function checks that addr is a valid vmalloc'ed area, and
+ * that it is big enough to cover the vma. Will return failure if
+ * that criteria isn't met.
+ *
+ * Similar to remap_pfn_range() (see mm/memory.c)
+ */
+int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
+ unsigned long pgoff)
+{
+ return remap_vmalloc_range_partial(vma, vma->vm_start,
+ addr, pgoff,
+ vma->vm_end - vma->vm_start);
+}
+EXPORT_SYMBOL(remap_vmalloc_range);
+
+void free_vm_area(struct vm_struct *area)
+{
+ struct vm_struct *ret;
+ ret = remove_vm_area(area->addr);
+ BUG_ON(ret != area);
+ kfree(area);
+}
+EXPORT_SYMBOL_GPL(free_vm_area);
+
+#ifdef CONFIG_SMP
+static struct vmap_area *node_to_va(struct rb_node *n)
+{
+ return rb_entry_safe(n, struct vmap_area, rb_node);
+}
+
+/**
+ * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
+ * @addr: target address
+ *
+ * Returns: vmap_area if it is found. If there is no such area
+ * the first highest(reverse order) vmap_area is returned
+ * i.e. va->va_start < addr && va->va_end < addr or NULL
+ * if there are no any areas before @addr.
+ */
+static struct vmap_area *
+pvm_find_va_enclose_addr(unsigned long addr)
+{
+ struct vmap_area *va, *tmp;
+ struct rb_node *n;
+
+ n = free_vmap_area_root.rb_node;
+ va = NULL;
+
+ while (n) {
+ tmp = rb_entry(n, struct vmap_area, rb_node);
+ if (tmp->va_start <= addr) {
+ va = tmp;
+ if (tmp->va_end >= addr)
+ break;
+
+ n = n->rb_right;
+ } else {
+ n = n->rb_left;
+ }
+ }
+
+ return va;
+}
+
+/**
+ * pvm_determine_end_from_reverse - find the highest aligned address
+ * of free block below VMALLOC_END
+ * @va:
+ * in - the VA we start the search(reverse order);
+ * out - the VA with the highest aligned end address.
+ * @align: alignment for required highest address
+ *
+ * Returns: determined end address within vmap_area
+ */
+static unsigned long
+pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
+{
+ unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
+ unsigned long addr;
+
+ if (likely(*va)) {
+ list_for_each_entry_from_reverse((*va),
+ &free_vmap_area_list, list) {
+ addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
+ if ((*va)->va_start < addr)
+ return addr;
+ }
+ }
+
+ return 0;
+}
+
+/**
+ * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
+ * @offsets: array containing offset of each area
+ * @sizes: array containing size of each area
+ * @nr_vms: the number of areas to allocate
+ * @align: alignment, all entries in @offsets and @sizes must be aligned to this
+ *
+ * Returns: kmalloc'd vm_struct pointer array pointing to allocated
+ * vm_structs on success, %NULL on failure
+ *
+ * Percpu allocator wants to use congruent vm areas so that it can
+ * maintain the offsets among percpu areas. This function allocates
+ * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
+ * be scattered pretty far, distance between two areas easily going up
+ * to gigabytes. To avoid interacting with regular vmallocs, these
+ * areas are allocated from top.
+ *
+ * Despite its complicated look, this allocator is rather simple. It
+ * does everything top-down and scans free blocks from the end looking
+ * for matching base. While scanning, if any of the areas do not fit the
+ * base address is pulled down to fit the area. Scanning is repeated till
+ * all the areas fit and then all necessary data structures are inserted
+ * and the result is returned.
+ */
+struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
+ const size_t *sizes, int nr_vms,
+ size_t align)
+{
+ const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
+ const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
+ struct vmap_area **vas, *va;
+ struct vm_struct **vms;
+ int area, area2, last_area, term_area;
+ unsigned long base, start, size, end, last_end, orig_start, orig_end;
+ bool purged = false;
+
+ /* verify parameters and allocate data structures */
+ BUG_ON(offset_in_page(align) || !is_power_of_2(align));
+ for (last_area = 0, area = 0; area < nr_vms; area++) {
+ start = offsets[area];
+ end = start + sizes[area];
+
+ /* is everything aligned properly? */
+ BUG_ON(!IS_ALIGNED(offsets[area], align));
+ BUG_ON(!IS_ALIGNED(sizes[area], align));
+
+ /* detect the area with the highest address */
+ if (start > offsets[last_area])
+ last_area = area;
+
+ for (area2 = area + 1; area2 < nr_vms; area2++) {
+ unsigned long start2 = offsets[area2];
+ unsigned long end2 = start2 + sizes[area2];
+
+ BUG_ON(start2 < end && start < end2);
+ }
+ }
+ last_end = offsets[last_area] + sizes[last_area];
+
+ if (vmalloc_end - vmalloc_start < last_end) {
+ WARN_ON(true);
+ return NULL;
+ }
+
+ vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
+ vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
+ if (!vas || !vms)
+ goto err_free2;
+
+ for (area = 0; area < nr_vms; area++) {
+ vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
+ vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
+ if (!vas[area] || !vms[area])
+ goto err_free;
+ }
+retry:
+ spin_lock(&free_vmap_area_lock);
+
+ /* start scanning - we scan from the top, begin with the last area */
+ area = term_area = last_area;
+ start = offsets[area];
+ end = start + sizes[area];
+
+ va = pvm_find_va_enclose_addr(vmalloc_end);
+ base = pvm_determine_end_from_reverse(&va, align) - end;
+
+ while (true) {
+ /*
+ * base might have underflowed, add last_end before
+ * comparing.
+ */
+ if (base + last_end < vmalloc_start + last_end)
+ goto overflow;
+
+ /*
+ * Fitting base has not been found.
+ */
+ if (va == NULL)
+ goto overflow;
+
+ /*
+ * If required width exceeds current VA block, move
+ * base downwards and then recheck.
+ */
+ if (base + end > va->va_end) {
+ base = pvm_determine_end_from_reverse(&va, align) - end;
+ term_area = area;
+ continue;
+ }
+
+ /*
+ * If this VA does not fit, move base downwards and recheck.
+ */
+ if (base + start < va->va_start) {
+ va = node_to_va(rb_prev(&va->rb_node));
+ base = pvm_determine_end_from_reverse(&va, align) - end;
+ term_area = area;
+ continue;
+ }
+
+ /*
+ * This area fits, move on to the previous one. If
+ * the previous one is the terminal one, we're done.
+ */
+ area = (area + nr_vms - 1) % nr_vms;
+ if (area == term_area)
+ break;
+
+ start = offsets[area];
+ end = start + sizes[area];
+ va = pvm_find_va_enclose_addr(base + end);
+ }
+
+ /* we've found a fitting base, insert all va's */
+ for (area = 0; area < nr_vms; area++) {
+ int ret;
+
+ start = base + offsets[area];
+ size = sizes[area];
+
+ va = pvm_find_va_enclose_addr(start);
+ if (WARN_ON_ONCE(va == NULL))
+ /* It is a BUG(), but trigger recovery instead. */
+ goto recovery;
+
+ ret = adjust_va_to_fit_type(&free_vmap_area_root,
+ &free_vmap_area_list,
+ va, start, size);
+ if (WARN_ON_ONCE(unlikely(ret)))
+ /* It is a BUG(), but trigger recovery instead. */
+ goto recovery;
+
+ /* Allocated area. */
+ va = vas[area];
+ va->va_start = start;
+ va->va_end = start + size;
+ }
+
+ spin_unlock(&free_vmap_area_lock);
+
+ /* populate the kasan shadow space */
+ for (area = 0; area < nr_vms; area++) {
+ if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
+ goto err_free_shadow;
+ }
+
+ /* insert all vm's */
+ spin_lock(&vmap_area_lock);
+ for (area = 0; area < nr_vms; area++) {
+ insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);
+
+ setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
+ pcpu_get_vm_areas);
+ }
+ spin_unlock(&vmap_area_lock);
+
+ /*
+ * Mark allocated areas as accessible. Do it now as a best-effort
+ * approach, as they can be mapped outside of vmalloc code.
+ * With hardware tag-based KASAN, marking is skipped for
+ * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
+ */
+ for (area = 0; area < nr_vms; area++)
+ vms[area]->addr = kasan_unpoison_vmalloc(vms[area]->addr,
+ vms[area]->size, KASAN_VMALLOC_PROT_NORMAL);
+
+ kfree(vas);
+ return vms;
+
+recovery:
+ /*
+ * Remove previously allocated areas. There is no
+ * need in removing these areas from the busy tree,
+ * because they are inserted only on the final step
+ * and when pcpu_get_vm_areas() is success.
+ */
+ while (area--) {
+ orig_start = vas[area]->va_start;
+ orig_end = vas[area]->va_end;
+ va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
+ &free_vmap_area_list);
+ if (va)
+ kasan_release_vmalloc(orig_start, orig_end,
+ va->va_start, va->va_end);
+ vas[area] = NULL;
+ }
+
+overflow:
+ spin_unlock(&free_vmap_area_lock);
+ if (!purged) {
+ purge_vmap_area_lazy();
+ purged = true;
+
+ /* Before "retry", check if we recover. */
+ for (area = 0; area < nr_vms; area++) {
+ if (vas[area])
+ continue;
+
+ vas[area] = kmem_cache_zalloc(
+ vmap_area_cachep, GFP_KERNEL);
+ if (!vas[area])
+ goto err_free;
+ }
+
+ goto retry;
+ }
+
+err_free:
+ for (area = 0; area < nr_vms; area++) {
+ if (vas[area])
+ kmem_cache_free(vmap_area_cachep, vas[area]);
+
+ kfree(vms[area]);
+ }
+err_free2:
+ kfree(vas);
+ kfree(vms);
+ return NULL;
+
+err_free_shadow:
+ spin_lock(&free_vmap_area_lock);
+ /*
+ * We release all the vmalloc shadows, even the ones for regions that
+ * hadn't been successfully added. This relies on kasan_release_vmalloc
+ * being able to tolerate this case.
+ */
+ for (area = 0; area < nr_vms; area++) {
+ orig_start = vas[area]->va_start;
+ orig_end = vas[area]->va_end;
+ va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
+ &free_vmap_area_list);
+ if (va)
+ kasan_release_vmalloc(orig_start, orig_end,
+ va->va_start, va->va_end);
+ vas[area] = NULL;
+ kfree(vms[area]);
+ }
+ spin_unlock(&free_vmap_area_lock);
+ kfree(vas);
+ kfree(vms);
+ return NULL;
+}
+
+/**
+ * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
+ * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
+ * @nr_vms: the number of allocated areas
+ *
+ * Free vm_structs and the array allocated by pcpu_get_vm_areas().
+ */
+void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
+{
+ int i;
+
+ for (i = 0; i < nr_vms; i++)
+ free_vm_area(vms[i]);
+ kfree(vms);
+}
+#endif /* CONFIG_SMP */
+
+#ifdef CONFIG_PRINTK
+bool vmalloc_dump_obj(void *object)
+{
+ void *objp = (void *)PAGE_ALIGN((unsigned long)object);
+ const void *caller;
+ struct vm_struct *vm;
+ struct vmap_area *va;
+ unsigned long addr;
+ unsigned int nr_pages;
+
+ if (!spin_trylock(&vmap_area_lock))
+ return false;
+ va = __find_vmap_area((unsigned long)objp, &vmap_area_root);
+ if (!va) {
+ spin_unlock(&vmap_area_lock);
+ return false;
+ }
+
+ vm = va->vm;
+ if (!vm) {
+ spin_unlock(&vmap_area_lock);
+ return false;
+ }
+ addr = (unsigned long)vm->addr;
+ caller = vm->caller;
+ nr_pages = vm->nr_pages;
+ spin_unlock(&vmap_area_lock);
+ pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n",
+ nr_pages, addr, caller);
+ return true;
+}
+#endif
+
+#ifdef CONFIG_PROC_FS
+static void *s_start(struct seq_file *m, loff_t *pos)
+ __acquires(&vmap_purge_lock)
+ __acquires(&vmap_area_lock)
+{
+ mutex_lock(&vmap_purge_lock);
+ spin_lock(&vmap_area_lock);
+
+ return seq_list_start(&vmap_area_list, *pos);
+}
+
+static void *s_next(struct seq_file *m, void *p, loff_t *pos)
+{
+ return seq_list_next(p, &vmap_area_list, pos);
+}
+
+static void s_stop(struct seq_file *m, void *p)
+ __releases(&vmap_area_lock)
+ __releases(&vmap_purge_lock)
+{
+ spin_unlock(&vmap_area_lock);
+ mutex_unlock(&vmap_purge_lock);
+}
+
+static void show_numa_info(struct seq_file *m, struct vm_struct *v)
+{
+ if (IS_ENABLED(CONFIG_NUMA)) {
+ unsigned int nr, *counters = m->private;
+ unsigned int step = 1U << vm_area_page_order(v);
+
+ if (!counters)
+ return;
+
+ if (v->flags & VM_UNINITIALIZED)
+ return;
+ /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
+ smp_rmb();
+
+ memset(counters, 0, nr_node_ids * sizeof(unsigned int));
+
+ for (nr = 0; nr < v->nr_pages; nr += step)
+ counters[page_to_nid(v->pages[nr])] += step;
+ for_each_node_state(nr, N_HIGH_MEMORY)
+ if (counters[nr])
+ seq_printf(m, " N%u=%u", nr, counters[nr]);
+ }
+}
+
+static void show_purge_info(struct seq_file *m)
+{
+ struct vmap_area *va;
+
+ spin_lock(&purge_vmap_area_lock);
+ list_for_each_entry(va, &purge_vmap_area_list, list) {
+ seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
+ (void *)va->va_start, (void *)va->va_end,
+ va->va_end - va->va_start);
+ }
+ spin_unlock(&purge_vmap_area_lock);
+}
+
+static int s_show(struct seq_file *m, void *p)
+{
+ struct vmap_area *va;
+ struct vm_struct *v;
+
+ va = list_entry(p, struct vmap_area, list);
+
+ /*
+ * s_show can encounter race with remove_vm_area, !vm on behalf
+ * of vmap area is being tear down or vm_map_ram allocation.
+ */
+ if (!va->vm) {
+ seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
+ (void *)va->va_start, (void *)va->va_end,
+ va->va_end - va->va_start);
+
+ goto final;
+ }
+
+ v = va->vm;
+
+ seq_printf(m, "0x%pK-0x%pK %7ld",
+ v->addr, v->addr + v->size, v->size);
+
+ if (v->caller)
+ seq_printf(m, " %pS", v->caller);
+
+ if (v->nr_pages)
+ seq_printf(m, " pages=%d", v->nr_pages);
+
+ if (v->phys_addr)
+ seq_printf(m, " phys=%pa", &v->phys_addr);
+
+ if (v->flags & VM_IOREMAP)
+ seq_puts(m, " ioremap");
+
+ if (v->flags & VM_ALLOC)
+ seq_puts(m, " vmalloc");
+
+ if (v->flags & VM_MAP)
+ seq_puts(m, " vmap");
+
+ if (v->flags & VM_USERMAP)
+ seq_puts(m, " user");
+
+ if (v->flags & VM_DMA_COHERENT)
+ seq_puts(m, " dma-coherent");
+
+ if (is_vmalloc_addr(v->pages))
+ seq_puts(m, " vpages");
+
+ show_numa_info(m, v);
+ seq_putc(m, '\n');
+
+ /*
+ * As a final step, dump "unpurged" areas.
+ */
+final:
+ if (list_is_last(&va->list, &vmap_area_list))
+ show_purge_info(m);
+
+ return 0;
+}
+
+static const struct seq_operations vmalloc_op = {
+ .start = s_start,
+ .next = s_next,
+ .stop = s_stop,
+ .show = s_show,
+};
+
+static int __init proc_vmalloc_init(void)
+{
+ if (IS_ENABLED(CONFIG_NUMA))
+ proc_create_seq_private("vmallocinfo", 0400, NULL,
+ &vmalloc_op,
+ nr_node_ids * sizeof(unsigned int), NULL);
+ else
+ proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
+ return 0;
+}
+module_init(proc_vmalloc_init);
+
+#endif