summaryrefslogtreecommitdiffstats
path: root/tools/testing/selftests/kvm/lib
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:49:45 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:49:45 +0000
commit2c3c1048746a4622d8c89a29670120dc8fab93c4 (patch)
tree848558de17fb3008cdf4d861b01ac7781903ce39 /tools/testing/selftests/kvm/lib
parentInitial commit. (diff)
downloadlinux-2c3c1048746a4622d8c89a29670120dc8fab93c4.tar.xz
linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.zip
Adding upstream version 6.1.76.upstream/6.1.76
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'tools/testing/selftests/kvm/lib')
-rw-r--r--tools/testing/selftests/kvm/lib/aarch64/gic.c161
-rw-r--r--tools/testing/selftests/kvm/lib/aarch64/gic_private.h32
-rw-r--r--tools/testing/selftests/kvm/lib/aarch64/gic_v3.c398
-rw-r--r--tools/testing/selftests/kvm/lib/aarch64/handlers.S126
-rw-r--r--tools/testing/selftests/kvm/lib/aarch64/processor.c530
-rw-r--r--tools/testing/selftests/kvm/lib/aarch64/spinlock.c27
-rw-r--r--tools/testing/selftests/kvm/lib/aarch64/ucall.c113
-rw-r--r--tools/testing/selftests/kvm/lib/aarch64/vgic.c170
-rw-r--r--tools/testing/selftests/kvm/lib/assert.c99
-rw-r--r--tools/testing/selftests/kvm/lib/elf.c192
-rw-r--r--tools/testing/selftests/kvm/lib/guest_modes.c133
-rw-r--r--tools/testing/selftests/kvm/lib/io.c157
-rw-r--r--tools/testing/selftests/kvm/lib/kvm_util.c2023
-rw-r--r--tools/testing/selftests/kvm/lib/perf_test_util.c294
-rw-r--r--tools/testing/selftests/kvm/lib/rbtree.c1
-rw-r--r--tools/testing/selftests/kvm/lib/riscv/processor.c364
-rw-r--r--tools/testing/selftests/kvm/lib/riscv/ucall.c98
-rw-r--r--tools/testing/selftests/kvm/lib/s390x/diag318_test_handler.c81
-rw-r--r--tools/testing/selftests/kvm/lib/s390x/processor.c220
-rw-r--r--tools/testing/selftests/kvm/lib/s390x/ucall.c59
-rw-r--r--tools/testing/selftests/kvm/lib/sparsebit.c2085
-rw-r--r--tools/testing/selftests/kvm/lib/string_override.c39
-rw-r--r--tools/testing/selftests/kvm/lib/test_util.c336
-rw-r--r--tools/testing/selftests/kvm/lib/x86_64/apic.c45
-rw-r--r--tools/testing/selftests/kvm/lib/x86_64/handlers.S81
-rw-r--r--tools/testing/selftests/kvm/lib/x86_64/perf_test_util.c111
-rw-r--r--tools/testing/selftests/kvm/lib/x86_64/processor.c1316
-rw-r--r--tools/testing/selftests/kvm/lib/x86_64/svm.c164
-rw-r--r--tools/testing/selftests/kvm/lib/x86_64/ucall.c59
-rw-r--r--tools/testing/selftests/kvm/lib/x86_64/vmx.c578
30 files changed, 10092 insertions, 0 deletions
diff --git a/tools/testing/selftests/kvm/lib/aarch64/gic.c b/tools/testing/selftests/kvm/lib/aarch64/gic.c
new file mode 100644
index 000000000..55668631d
--- /dev/null
+++ b/tools/testing/selftests/kvm/lib/aarch64/gic.c
@@ -0,0 +1,161 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * ARM Generic Interrupt Controller (GIC) support
+ */
+
+#include <errno.h>
+#include <linux/bits.h>
+#include <linux/sizes.h>
+
+#include "kvm_util.h"
+
+#include <gic.h>
+#include "gic_private.h"
+#include "processor.h"
+#include "spinlock.h"
+
+static const struct gic_common_ops *gic_common_ops;
+static struct spinlock gic_lock;
+
+static void gic_cpu_init(unsigned int cpu, void *redist_base)
+{
+ gic_common_ops->gic_cpu_init(cpu, redist_base);
+}
+
+static void
+gic_dist_init(enum gic_type type, unsigned int nr_cpus, void *dist_base)
+{
+ const struct gic_common_ops *gic_ops = NULL;
+
+ spin_lock(&gic_lock);
+
+ /* Distributor initialization is needed only once per VM */
+ if (gic_common_ops) {
+ spin_unlock(&gic_lock);
+ return;
+ }
+
+ if (type == GIC_V3)
+ gic_ops = &gicv3_ops;
+
+ GUEST_ASSERT(gic_ops);
+
+ gic_ops->gic_init(nr_cpus, dist_base);
+ gic_common_ops = gic_ops;
+
+ /* Make sure that the initialized data is visible to all the vCPUs */
+ dsb(sy);
+
+ spin_unlock(&gic_lock);
+}
+
+void gic_init(enum gic_type type, unsigned int nr_cpus,
+ void *dist_base, void *redist_base)
+{
+ uint32_t cpu = guest_get_vcpuid();
+
+ GUEST_ASSERT(type < GIC_TYPE_MAX);
+ GUEST_ASSERT(dist_base);
+ GUEST_ASSERT(redist_base);
+ GUEST_ASSERT(nr_cpus);
+
+ gic_dist_init(type, nr_cpus, dist_base);
+ gic_cpu_init(cpu, redist_base);
+}
+
+void gic_irq_enable(unsigned int intid)
+{
+ GUEST_ASSERT(gic_common_ops);
+ gic_common_ops->gic_irq_enable(intid);
+}
+
+void gic_irq_disable(unsigned int intid)
+{
+ GUEST_ASSERT(gic_common_ops);
+ gic_common_ops->gic_irq_disable(intid);
+}
+
+unsigned int gic_get_and_ack_irq(void)
+{
+ uint64_t irqstat;
+ unsigned int intid;
+
+ GUEST_ASSERT(gic_common_ops);
+
+ irqstat = gic_common_ops->gic_read_iar();
+ intid = irqstat & GENMASK(23, 0);
+
+ return intid;
+}
+
+void gic_set_eoi(unsigned int intid)
+{
+ GUEST_ASSERT(gic_common_ops);
+ gic_common_ops->gic_write_eoir(intid);
+}
+
+void gic_set_dir(unsigned int intid)
+{
+ GUEST_ASSERT(gic_common_ops);
+ gic_common_ops->gic_write_dir(intid);
+}
+
+void gic_set_eoi_split(bool split)
+{
+ GUEST_ASSERT(gic_common_ops);
+ gic_common_ops->gic_set_eoi_split(split);
+}
+
+void gic_set_priority_mask(uint64_t pmr)
+{
+ GUEST_ASSERT(gic_common_ops);
+ gic_common_ops->gic_set_priority_mask(pmr);
+}
+
+void gic_set_priority(unsigned int intid, unsigned int prio)
+{
+ GUEST_ASSERT(gic_common_ops);
+ gic_common_ops->gic_set_priority(intid, prio);
+}
+
+void gic_irq_set_active(unsigned int intid)
+{
+ GUEST_ASSERT(gic_common_ops);
+ gic_common_ops->gic_irq_set_active(intid);
+}
+
+void gic_irq_clear_active(unsigned int intid)
+{
+ GUEST_ASSERT(gic_common_ops);
+ gic_common_ops->gic_irq_clear_active(intid);
+}
+
+bool gic_irq_get_active(unsigned int intid)
+{
+ GUEST_ASSERT(gic_common_ops);
+ return gic_common_ops->gic_irq_get_active(intid);
+}
+
+void gic_irq_set_pending(unsigned int intid)
+{
+ GUEST_ASSERT(gic_common_ops);
+ gic_common_ops->gic_irq_set_pending(intid);
+}
+
+void gic_irq_clear_pending(unsigned int intid)
+{
+ GUEST_ASSERT(gic_common_ops);
+ gic_common_ops->gic_irq_clear_pending(intid);
+}
+
+bool gic_irq_get_pending(unsigned int intid)
+{
+ GUEST_ASSERT(gic_common_ops);
+ return gic_common_ops->gic_irq_get_pending(intid);
+}
+
+void gic_irq_set_config(unsigned int intid, bool is_edge)
+{
+ GUEST_ASSERT(gic_common_ops);
+ gic_common_ops->gic_irq_set_config(intid, is_edge);
+}
diff --git a/tools/testing/selftests/kvm/lib/aarch64/gic_private.h b/tools/testing/selftests/kvm/lib/aarch64/gic_private.h
new file mode 100644
index 000000000..75d07313c
--- /dev/null
+++ b/tools/testing/selftests/kvm/lib/aarch64/gic_private.h
@@ -0,0 +1,32 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+/*
+ * ARM Generic Interrupt Controller (GIC) private defines that's only
+ * shared among the GIC library code.
+ */
+
+#ifndef SELFTEST_KVM_GIC_PRIVATE_H
+#define SELFTEST_KVM_GIC_PRIVATE_H
+
+struct gic_common_ops {
+ void (*gic_init)(unsigned int nr_cpus, void *dist_base);
+ void (*gic_cpu_init)(unsigned int cpu, void *redist_base);
+ void (*gic_irq_enable)(unsigned int intid);
+ void (*gic_irq_disable)(unsigned int intid);
+ uint64_t (*gic_read_iar)(void);
+ void (*gic_write_eoir)(uint32_t irq);
+ void (*gic_write_dir)(uint32_t irq);
+ void (*gic_set_eoi_split)(bool split);
+ void (*gic_set_priority_mask)(uint64_t mask);
+ void (*gic_set_priority)(uint32_t intid, uint32_t prio);
+ void (*gic_irq_set_active)(uint32_t intid);
+ void (*gic_irq_clear_active)(uint32_t intid);
+ bool (*gic_irq_get_active)(uint32_t intid);
+ void (*gic_irq_set_pending)(uint32_t intid);
+ void (*gic_irq_clear_pending)(uint32_t intid);
+ bool (*gic_irq_get_pending)(uint32_t intid);
+ void (*gic_irq_set_config)(uint32_t intid, bool is_edge);
+};
+
+extern const struct gic_common_ops gicv3_ops;
+
+#endif /* SELFTEST_KVM_GIC_PRIVATE_H */
diff --git a/tools/testing/selftests/kvm/lib/aarch64/gic_v3.c b/tools/testing/selftests/kvm/lib/aarch64/gic_v3.c
new file mode 100644
index 000000000..263bf3ed8
--- /dev/null
+++ b/tools/testing/selftests/kvm/lib/aarch64/gic_v3.c
@@ -0,0 +1,398 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * ARM Generic Interrupt Controller (GIC) v3 support
+ */
+
+#include <linux/sizes.h>
+
+#include "kvm_util.h"
+#include "processor.h"
+#include "delay.h"
+
+#include "gic_v3.h"
+#include "gic_private.h"
+
+struct gicv3_data {
+ void *dist_base;
+ void *redist_base[GICV3_MAX_CPUS];
+ unsigned int nr_cpus;
+ unsigned int nr_spis;
+};
+
+#define sgi_base_from_redist(redist_base) (redist_base + SZ_64K)
+#define DIST_BIT (1U << 31)
+
+enum gicv3_intid_range {
+ SGI_RANGE,
+ PPI_RANGE,
+ SPI_RANGE,
+ INVALID_RANGE,
+};
+
+static struct gicv3_data gicv3_data;
+
+static void gicv3_gicd_wait_for_rwp(void)
+{
+ unsigned int count = 100000; /* 1s */
+
+ while (readl(gicv3_data.dist_base + GICD_CTLR) & GICD_CTLR_RWP) {
+ GUEST_ASSERT(count--);
+ udelay(10);
+ }
+}
+
+static void gicv3_gicr_wait_for_rwp(void *redist_base)
+{
+ unsigned int count = 100000; /* 1s */
+
+ while (readl(redist_base + GICR_CTLR) & GICR_CTLR_RWP) {
+ GUEST_ASSERT(count--);
+ udelay(10);
+ }
+}
+
+static void gicv3_wait_for_rwp(uint32_t cpu_or_dist)
+{
+ if (cpu_or_dist & DIST_BIT)
+ gicv3_gicd_wait_for_rwp();
+ else
+ gicv3_gicr_wait_for_rwp(gicv3_data.redist_base[cpu_or_dist]);
+}
+
+static enum gicv3_intid_range get_intid_range(unsigned int intid)
+{
+ switch (intid) {
+ case 0 ... 15:
+ return SGI_RANGE;
+ case 16 ... 31:
+ return PPI_RANGE;
+ case 32 ... 1019:
+ return SPI_RANGE;
+ }
+
+ /* We should not be reaching here */
+ GUEST_ASSERT(0);
+
+ return INVALID_RANGE;
+}
+
+static uint64_t gicv3_read_iar(void)
+{
+ uint64_t irqstat = read_sysreg_s(SYS_ICC_IAR1_EL1);
+
+ dsb(sy);
+ return irqstat;
+}
+
+static void gicv3_write_eoir(uint32_t irq)
+{
+ write_sysreg_s(irq, SYS_ICC_EOIR1_EL1);
+ isb();
+}
+
+static void gicv3_write_dir(uint32_t irq)
+{
+ write_sysreg_s(irq, SYS_ICC_DIR_EL1);
+ isb();
+}
+
+static void gicv3_set_priority_mask(uint64_t mask)
+{
+ write_sysreg_s(mask, SYS_ICC_PMR_EL1);
+}
+
+static void gicv3_set_eoi_split(bool split)
+{
+ uint32_t val;
+
+ /*
+ * All other fields are read-only, so no need to read CTLR first. In
+ * fact, the kernel does the same.
+ */
+ val = split ? (1U << 1) : 0;
+ write_sysreg_s(val, SYS_ICC_CTLR_EL1);
+ isb();
+}
+
+uint32_t gicv3_reg_readl(uint32_t cpu_or_dist, uint64_t offset)
+{
+ void *base = cpu_or_dist & DIST_BIT ? gicv3_data.dist_base
+ : sgi_base_from_redist(gicv3_data.redist_base[cpu_or_dist]);
+ return readl(base + offset);
+}
+
+void gicv3_reg_writel(uint32_t cpu_or_dist, uint64_t offset, uint32_t reg_val)
+{
+ void *base = cpu_or_dist & DIST_BIT ? gicv3_data.dist_base
+ : sgi_base_from_redist(gicv3_data.redist_base[cpu_or_dist]);
+ writel(reg_val, base + offset);
+}
+
+uint32_t gicv3_getl_fields(uint32_t cpu_or_dist, uint64_t offset, uint32_t mask)
+{
+ return gicv3_reg_readl(cpu_or_dist, offset) & mask;
+}
+
+void gicv3_setl_fields(uint32_t cpu_or_dist, uint64_t offset,
+ uint32_t mask, uint32_t reg_val)
+{
+ uint32_t tmp = gicv3_reg_readl(cpu_or_dist, offset) & ~mask;
+
+ tmp |= (reg_val & mask);
+ gicv3_reg_writel(cpu_or_dist, offset, tmp);
+}
+
+/*
+ * We use a single offset for the distributor and redistributor maps as they
+ * have the same value in both. The only exceptions are registers that only
+ * exist in one and not the other, like GICR_WAKER that doesn't exist in the
+ * distributor map. Such registers are conveniently marked as reserved in the
+ * map that doesn't implement it; like GICR_WAKER's offset of 0x0014 being
+ * marked as "Reserved" in the Distributor map.
+ */
+static void gicv3_access_reg(uint32_t intid, uint64_t offset,
+ uint32_t reg_bits, uint32_t bits_per_field,
+ bool write, uint32_t *val)
+{
+ uint32_t cpu = guest_get_vcpuid();
+ enum gicv3_intid_range intid_range = get_intid_range(intid);
+ uint32_t fields_per_reg, index, mask, shift;
+ uint32_t cpu_or_dist;
+
+ GUEST_ASSERT(bits_per_field <= reg_bits);
+ GUEST_ASSERT(!write || *val < (1U << bits_per_field));
+ /*
+ * This function does not support 64 bit accesses. Just asserting here
+ * until we implement readq/writeq.
+ */
+ GUEST_ASSERT(reg_bits == 32);
+
+ fields_per_reg = reg_bits / bits_per_field;
+ index = intid % fields_per_reg;
+ shift = index * bits_per_field;
+ mask = ((1U << bits_per_field) - 1) << shift;
+
+ /* Set offset to the actual register holding intid's config. */
+ offset += (intid / fields_per_reg) * (reg_bits / 8);
+
+ cpu_or_dist = (intid_range == SPI_RANGE) ? DIST_BIT : cpu;
+
+ if (write)
+ gicv3_setl_fields(cpu_or_dist, offset, mask, *val << shift);
+ *val = gicv3_getl_fields(cpu_or_dist, offset, mask) >> shift;
+}
+
+static void gicv3_write_reg(uint32_t intid, uint64_t offset,
+ uint32_t reg_bits, uint32_t bits_per_field, uint32_t val)
+{
+ gicv3_access_reg(intid, offset, reg_bits,
+ bits_per_field, true, &val);
+}
+
+static uint32_t gicv3_read_reg(uint32_t intid, uint64_t offset,
+ uint32_t reg_bits, uint32_t bits_per_field)
+{
+ uint32_t val;
+
+ gicv3_access_reg(intid, offset, reg_bits,
+ bits_per_field, false, &val);
+ return val;
+}
+
+static void gicv3_set_priority(uint32_t intid, uint32_t prio)
+{
+ gicv3_write_reg(intid, GICD_IPRIORITYR, 32, 8, prio);
+}
+
+/* Sets the intid to be level-sensitive or edge-triggered. */
+static void gicv3_irq_set_config(uint32_t intid, bool is_edge)
+{
+ uint32_t val;
+
+ /* N/A for private interrupts. */
+ GUEST_ASSERT(get_intid_range(intid) == SPI_RANGE);
+ val = is_edge ? 2 : 0;
+ gicv3_write_reg(intid, GICD_ICFGR, 32, 2, val);
+}
+
+static void gicv3_irq_enable(uint32_t intid)
+{
+ bool is_spi = get_intid_range(intid) == SPI_RANGE;
+ uint32_t cpu = guest_get_vcpuid();
+
+ gicv3_write_reg(intid, GICD_ISENABLER, 32, 1, 1);
+ gicv3_wait_for_rwp(is_spi ? DIST_BIT : cpu);
+}
+
+static void gicv3_irq_disable(uint32_t intid)
+{
+ bool is_spi = get_intid_range(intid) == SPI_RANGE;
+ uint32_t cpu = guest_get_vcpuid();
+
+ gicv3_write_reg(intid, GICD_ICENABLER, 32, 1, 1);
+ gicv3_wait_for_rwp(is_spi ? DIST_BIT : cpu);
+}
+
+static void gicv3_irq_set_active(uint32_t intid)
+{
+ gicv3_write_reg(intid, GICD_ISACTIVER, 32, 1, 1);
+}
+
+static void gicv3_irq_clear_active(uint32_t intid)
+{
+ gicv3_write_reg(intid, GICD_ICACTIVER, 32, 1, 1);
+}
+
+static bool gicv3_irq_get_active(uint32_t intid)
+{
+ return gicv3_read_reg(intid, GICD_ISACTIVER, 32, 1);
+}
+
+static void gicv3_irq_set_pending(uint32_t intid)
+{
+ gicv3_write_reg(intid, GICD_ISPENDR, 32, 1, 1);
+}
+
+static void gicv3_irq_clear_pending(uint32_t intid)
+{
+ gicv3_write_reg(intid, GICD_ICPENDR, 32, 1, 1);
+}
+
+static bool gicv3_irq_get_pending(uint32_t intid)
+{
+ return gicv3_read_reg(intid, GICD_ISPENDR, 32, 1);
+}
+
+static void gicv3_enable_redist(void *redist_base)
+{
+ uint32_t val = readl(redist_base + GICR_WAKER);
+ unsigned int count = 100000; /* 1s */
+
+ val &= ~GICR_WAKER_ProcessorSleep;
+ writel(val, redist_base + GICR_WAKER);
+
+ /* Wait until the processor is 'active' */
+ while (readl(redist_base + GICR_WAKER) & GICR_WAKER_ChildrenAsleep) {
+ GUEST_ASSERT(count--);
+ udelay(10);
+ }
+}
+
+static inline void *gicr_base_cpu(void *redist_base, uint32_t cpu)
+{
+ /* Align all the redistributors sequentially */
+ return redist_base + cpu * SZ_64K * 2;
+}
+
+static void gicv3_cpu_init(unsigned int cpu, void *redist_base)
+{
+ void *sgi_base;
+ unsigned int i;
+ void *redist_base_cpu;
+
+ GUEST_ASSERT(cpu < gicv3_data.nr_cpus);
+
+ redist_base_cpu = gicr_base_cpu(redist_base, cpu);
+ sgi_base = sgi_base_from_redist(redist_base_cpu);
+
+ gicv3_enable_redist(redist_base_cpu);
+
+ /*
+ * Mark all the SGI and PPI interrupts as non-secure Group-1.
+ * Also, deactivate and disable them.
+ */
+ writel(~0, sgi_base + GICR_IGROUPR0);
+ writel(~0, sgi_base + GICR_ICACTIVER0);
+ writel(~0, sgi_base + GICR_ICENABLER0);
+
+ /* Set a default priority for all the SGIs and PPIs */
+ for (i = 0; i < 32; i += 4)
+ writel(GICD_INT_DEF_PRI_X4,
+ sgi_base + GICR_IPRIORITYR0 + i);
+
+ gicv3_gicr_wait_for_rwp(redist_base_cpu);
+
+ /* Enable the GIC system register (ICC_*) access */
+ write_sysreg_s(read_sysreg_s(SYS_ICC_SRE_EL1) | ICC_SRE_EL1_SRE,
+ SYS_ICC_SRE_EL1);
+
+ /* Set a default priority threshold */
+ write_sysreg_s(ICC_PMR_DEF_PRIO, SYS_ICC_PMR_EL1);
+
+ /* Enable non-secure Group-1 interrupts */
+ write_sysreg_s(ICC_IGRPEN1_EL1_ENABLE, SYS_ICC_GRPEN1_EL1);
+
+ gicv3_data.redist_base[cpu] = redist_base_cpu;
+}
+
+static void gicv3_dist_init(void)
+{
+ void *dist_base = gicv3_data.dist_base;
+ unsigned int i;
+
+ /* Disable the distributor until we set things up */
+ writel(0, dist_base + GICD_CTLR);
+ gicv3_gicd_wait_for_rwp();
+
+ /*
+ * Mark all the SPI interrupts as non-secure Group-1.
+ * Also, deactivate and disable them.
+ */
+ for (i = 32; i < gicv3_data.nr_spis; i += 32) {
+ writel(~0, dist_base + GICD_IGROUPR + i / 8);
+ writel(~0, dist_base + GICD_ICACTIVER + i / 8);
+ writel(~0, dist_base + GICD_ICENABLER + i / 8);
+ }
+
+ /* Set a default priority for all the SPIs */
+ for (i = 32; i < gicv3_data.nr_spis; i += 4)
+ writel(GICD_INT_DEF_PRI_X4,
+ dist_base + GICD_IPRIORITYR + i);
+
+ /* Wait for the settings to sync-in */
+ gicv3_gicd_wait_for_rwp();
+
+ /* Finally, enable the distributor globally with ARE */
+ writel(GICD_CTLR_ARE_NS | GICD_CTLR_ENABLE_G1A |
+ GICD_CTLR_ENABLE_G1, dist_base + GICD_CTLR);
+ gicv3_gicd_wait_for_rwp();
+}
+
+static void gicv3_init(unsigned int nr_cpus, void *dist_base)
+{
+ GUEST_ASSERT(nr_cpus <= GICV3_MAX_CPUS);
+
+ gicv3_data.nr_cpus = nr_cpus;
+ gicv3_data.dist_base = dist_base;
+ gicv3_data.nr_spis = GICD_TYPER_SPIS(
+ readl(gicv3_data.dist_base + GICD_TYPER));
+ if (gicv3_data.nr_spis > 1020)
+ gicv3_data.nr_spis = 1020;
+
+ /*
+ * Initialize only the distributor for now.
+ * The redistributor and CPU interfaces are initialized
+ * later for every PE.
+ */
+ gicv3_dist_init();
+}
+
+const struct gic_common_ops gicv3_ops = {
+ .gic_init = gicv3_init,
+ .gic_cpu_init = gicv3_cpu_init,
+ .gic_irq_enable = gicv3_irq_enable,
+ .gic_irq_disable = gicv3_irq_disable,
+ .gic_read_iar = gicv3_read_iar,
+ .gic_write_eoir = gicv3_write_eoir,
+ .gic_write_dir = gicv3_write_dir,
+ .gic_set_priority_mask = gicv3_set_priority_mask,
+ .gic_set_eoi_split = gicv3_set_eoi_split,
+ .gic_set_priority = gicv3_set_priority,
+ .gic_irq_set_active = gicv3_irq_set_active,
+ .gic_irq_clear_active = gicv3_irq_clear_active,
+ .gic_irq_get_active = gicv3_irq_get_active,
+ .gic_irq_set_pending = gicv3_irq_set_pending,
+ .gic_irq_clear_pending = gicv3_irq_clear_pending,
+ .gic_irq_get_pending = gicv3_irq_get_pending,
+ .gic_irq_set_config = gicv3_irq_set_config,
+};
diff --git a/tools/testing/selftests/kvm/lib/aarch64/handlers.S b/tools/testing/selftests/kvm/lib/aarch64/handlers.S
new file mode 100644
index 000000000..0e443eadf
--- /dev/null
+++ b/tools/testing/selftests/kvm/lib/aarch64/handlers.S
@@ -0,0 +1,126 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+.macro save_registers
+ add sp, sp, #-16 * 17
+
+ stp x0, x1, [sp, #16 * 0]
+ stp x2, x3, [sp, #16 * 1]
+ stp x4, x5, [sp, #16 * 2]
+ stp x6, x7, [sp, #16 * 3]
+ stp x8, x9, [sp, #16 * 4]
+ stp x10, x11, [sp, #16 * 5]
+ stp x12, x13, [sp, #16 * 6]
+ stp x14, x15, [sp, #16 * 7]
+ stp x16, x17, [sp, #16 * 8]
+ stp x18, x19, [sp, #16 * 9]
+ stp x20, x21, [sp, #16 * 10]
+ stp x22, x23, [sp, #16 * 11]
+ stp x24, x25, [sp, #16 * 12]
+ stp x26, x27, [sp, #16 * 13]
+ stp x28, x29, [sp, #16 * 14]
+
+ /*
+ * This stores sp_el1 into ex_regs.sp so exception handlers can "look"
+ * at it. It will _not_ be used to restore the sp on return from the
+ * exception so handlers can not update it.
+ */
+ add x1, sp, #16 * 17
+ stp x30, x1, [sp, #16 * 15] /* x30, SP */
+
+ mrs x1, elr_el1
+ mrs x2, spsr_el1
+ stp x1, x2, [sp, #16 * 16] /* PC, PSTATE */
+.endm
+
+.macro restore_registers
+ ldp x1, x2, [sp, #16 * 16] /* PC, PSTATE */
+ msr elr_el1, x1
+ msr spsr_el1, x2
+
+ /* sp is not restored */
+ ldp x30, xzr, [sp, #16 * 15] /* x30, SP */
+
+ ldp x28, x29, [sp, #16 * 14]
+ ldp x26, x27, [sp, #16 * 13]
+ ldp x24, x25, [sp, #16 * 12]
+ ldp x22, x23, [sp, #16 * 11]
+ ldp x20, x21, [sp, #16 * 10]
+ ldp x18, x19, [sp, #16 * 9]
+ ldp x16, x17, [sp, #16 * 8]
+ ldp x14, x15, [sp, #16 * 7]
+ ldp x12, x13, [sp, #16 * 6]
+ ldp x10, x11, [sp, #16 * 5]
+ ldp x8, x9, [sp, #16 * 4]
+ ldp x6, x7, [sp, #16 * 3]
+ ldp x4, x5, [sp, #16 * 2]
+ ldp x2, x3, [sp, #16 * 1]
+ ldp x0, x1, [sp, #16 * 0]
+
+ add sp, sp, #16 * 17
+
+ eret
+.endm
+
+.pushsection ".entry.text", "ax"
+.balign 0x800
+.global vectors
+vectors:
+.popsection
+
+.set vector, 0
+
+/*
+ * Build an exception handler for vector and append a jump to it into
+ * vectors (while making sure that it's 0x80 aligned).
+ */
+.macro HANDLER, label
+handler_\label:
+ save_registers
+ mov x0, sp
+ mov x1, #vector
+ bl route_exception
+ restore_registers
+
+.pushsection ".entry.text", "ax"
+.balign 0x80
+ b handler_\label
+.popsection
+
+.set vector, vector + 1
+.endm
+
+.macro HANDLER_INVALID
+.pushsection ".entry.text", "ax"
+.balign 0x80
+/* This will abort so no need to save and restore registers. */
+ mov x0, #vector
+ mov x1, #0 /* ec */
+ mov x2, #0 /* valid_ec */
+ b kvm_exit_unexpected_exception
+.popsection
+
+.set vector, vector + 1
+.endm
+
+/*
+ * Caution: be sure to not add anything between the declaration of vectors
+ * above and these macro calls that will build the vectors table below it.
+ */
+ HANDLER_INVALID // Synchronous EL1t
+ HANDLER_INVALID // IRQ EL1t
+ HANDLER_INVALID // FIQ EL1t
+ HANDLER_INVALID // Error EL1t
+
+ HANDLER el1h_sync // Synchronous EL1h
+ HANDLER el1h_irq // IRQ EL1h
+ HANDLER el1h_fiq // FIQ EL1h
+ HANDLER el1h_error // Error EL1h
+
+ HANDLER el0_sync_64 // Synchronous 64-bit EL0
+ HANDLER el0_irq_64 // IRQ 64-bit EL0
+ HANDLER el0_fiq_64 // FIQ 64-bit EL0
+ HANDLER el0_error_64 // Error 64-bit EL0
+
+ HANDLER el0_sync_32 // Synchronous 32-bit EL0
+ HANDLER el0_irq_32 // IRQ 32-bit EL0
+ HANDLER el0_fiq_32 // FIQ 32-bit EL0
+ HANDLER el0_error_32 // Error 32-bit EL0
diff --git a/tools/testing/selftests/kvm/lib/aarch64/processor.c b/tools/testing/selftests/kvm/lib/aarch64/processor.c
new file mode 100644
index 000000000..6f5551368
--- /dev/null
+++ b/tools/testing/selftests/kvm/lib/aarch64/processor.c
@@ -0,0 +1,530 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * AArch64 code
+ *
+ * Copyright (C) 2018, Red Hat, Inc.
+ */
+
+#include <linux/compiler.h>
+#include <assert.h>
+
+#include "guest_modes.h"
+#include "kvm_util.h"
+#include "processor.h"
+
+#define DEFAULT_ARM64_GUEST_STACK_VADDR_MIN 0xac0000
+
+static vm_vaddr_t exception_handlers;
+
+static uint64_t page_align(struct kvm_vm *vm, uint64_t v)
+{
+ return (v + vm->page_size) & ~(vm->page_size - 1);
+}
+
+static uint64_t pgd_index(struct kvm_vm *vm, vm_vaddr_t gva)
+{
+ unsigned int shift = (vm->pgtable_levels - 1) * (vm->page_shift - 3) + vm->page_shift;
+ uint64_t mask = (1UL << (vm->va_bits - shift)) - 1;
+
+ return (gva >> shift) & mask;
+}
+
+static uint64_t pud_index(struct kvm_vm *vm, vm_vaddr_t gva)
+{
+ unsigned int shift = 2 * (vm->page_shift - 3) + vm->page_shift;
+ uint64_t mask = (1UL << (vm->page_shift - 3)) - 1;
+
+ TEST_ASSERT(vm->pgtable_levels == 4,
+ "Mode %d does not have 4 page table levels", vm->mode);
+
+ return (gva >> shift) & mask;
+}
+
+static uint64_t pmd_index(struct kvm_vm *vm, vm_vaddr_t gva)
+{
+ unsigned int shift = (vm->page_shift - 3) + vm->page_shift;
+ uint64_t mask = (1UL << (vm->page_shift - 3)) - 1;
+
+ TEST_ASSERT(vm->pgtable_levels >= 3,
+ "Mode %d does not have >= 3 page table levels", vm->mode);
+
+ return (gva >> shift) & mask;
+}
+
+static uint64_t pte_index(struct kvm_vm *vm, vm_vaddr_t gva)
+{
+ uint64_t mask = (1UL << (vm->page_shift - 3)) - 1;
+ return (gva >> vm->page_shift) & mask;
+}
+
+static uint64_t pte_addr(struct kvm_vm *vm, uint64_t entry)
+{
+ uint64_t mask = ((1UL << (vm->va_bits - vm->page_shift)) - 1) << vm->page_shift;
+ return entry & mask;
+}
+
+static uint64_t ptrs_per_pgd(struct kvm_vm *vm)
+{
+ unsigned int shift = (vm->pgtable_levels - 1) * (vm->page_shift - 3) + vm->page_shift;
+ return 1 << (vm->va_bits - shift);
+}
+
+static uint64_t __maybe_unused ptrs_per_pte(struct kvm_vm *vm)
+{
+ return 1 << (vm->page_shift - 3);
+}
+
+void virt_arch_pgd_alloc(struct kvm_vm *vm)
+{
+ if (!vm->pgd_created) {
+ vm_paddr_t paddr = vm_phy_pages_alloc(vm,
+ page_align(vm, ptrs_per_pgd(vm) * 8) / vm->page_size,
+ KVM_GUEST_PAGE_TABLE_MIN_PADDR, 0);
+ vm->pgd = paddr;
+ vm->pgd_created = true;
+ }
+}
+
+static void _virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
+ uint64_t flags)
+{
+ uint8_t attr_idx = flags & 7;
+ uint64_t *ptep;
+
+ TEST_ASSERT((vaddr % vm->page_size) == 0,
+ "Virtual address not on page boundary,\n"
+ " vaddr: 0x%lx vm->page_size: 0x%x", vaddr, vm->page_size);
+ TEST_ASSERT(sparsebit_is_set(vm->vpages_valid,
+ (vaddr >> vm->page_shift)),
+ "Invalid virtual address, vaddr: 0x%lx", vaddr);
+ TEST_ASSERT((paddr % vm->page_size) == 0,
+ "Physical address not on page boundary,\n"
+ " paddr: 0x%lx vm->page_size: 0x%x", paddr, vm->page_size);
+ TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn,
+ "Physical address beyond beyond maximum supported,\n"
+ " paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x",
+ paddr, vm->max_gfn, vm->page_size);
+
+ ptep = addr_gpa2hva(vm, vm->pgd) + pgd_index(vm, vaddr) * 8;
+ if (!*ptep)
+ *ptep = vm_alloc_page_table(vm) | 3;
+
+ switch (vm->pgtable_levels) {
+ case 4:
+ ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) + pud_index(vm, vaddr) * 8;
+ if (!*ptep)
+ *ptep = vm_alloc_page_table(vm) | 3;
+ /* fall through */
+ case 3:
+ ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) + pmd_index(vm, vaddr) * 8;
+ if (!*ptep)
+ *ptep = vm_alloc_page_table(vm) | 3;
+ /* fall through */
+ case 2:
+ ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) + pte_index(vm, vaddr) * 8;
+ break;
+ default:
+ TEST_FAIL("Page table levels must be 2, 3, or 4");
+ }
+
+ *ptep = paddr | 3;
+ *ptep |= (attr_idx << 2) | (1 << 10) /* Access Flag */;
+}
+
+void virt_arch_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr)
+{
+ uint64_t attr_idx = 4; /* NORMAL (See DEFAULT_MAIR_EL1) */
+
+ _virt_pg_map(vm, vaddr, paddr, attr_idx);
+}
+
+vm_paddr_t addr_arch_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva)
+{
+ uint64_t *ptep;
+
+ if (!vm->pgd_created)
+ goto unmapped_gva;
+
+ ptep = addr_gpa2hva(vm, vm->pgd) + pgd_index(vm, gva) * 8;
+ if (!ptep)
+ goto unmapped_gva;
+
+ switch (vm->pgtable_levels) {
+ case 4:
+ ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) + pud_index(vm, gva) * 8;
+ if (!ptep)
+ goto unmapped_gva;
+ /* fall through */
+ case 3:
+ ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) + pmd_index(vm, gva) * 8;
+ if (!ptep)
+ goto unmapped_gva;
+ /* fall through */
+ case 2:
+ ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) + pte_index(vm, gva) * 8;
+ if (!ptep)
+ goto unmapped_gva;
+ break;
+ default:
+ TEST_FAIL("Page table levels must be 2, 3, or 4");
+ }
+
+ return pte_addr(vm, *ptep) + (gva & (vm->page_size - 1));
+
+unmapped_gva:
+ TEST_FAIL("No mapping for vm virtual address, gva: 0x%lx", gva);
+ exit(1);
+}
+
+static void pte_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent, uint64_t page, int level)
+{
+#ifdef DEBUG
+ static const char * const type[] = { "", "pud", "pmd", "pte" };
+ uint64_t pte, *ptep;
+
+ if (level == 4)
+ return;
+
+ for (pte = page; pte < page + ptrs_per_pte(vm) * 8; pte += 8) {
+ ptep = addr_gpa2hva(vm, pte);
+ if (!*ptep)
+ continue;
+ fprintf(stream, "%*s%s: %lx: %lx at %p\n", indent, "", type[level], pte, *ptep, ptep);
+ pte_dump(stream, vm, indent + 1, pte_addr(vm, *ptep), level + 1);
+ }
+#endif
+}
+
+void virt_arch_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
+{
+ int level = 4 - (vm->pgtable_levels - 1);
+ uint64_t pgd, *ptep;
+
+ if (!vm->pgd_created)
+ return;
+
+ for (pgd = vm->pgd; pgd < vm->pgd + ptrs_per_pgd(vm) * 8; pgd += 8) {
+ ptep = addr_gpa2hva(vm, pgd);
+ if (!*ptep)
+ continue;
+ fprintf(stream, "%*spgd: %lx: %lx at %p\n", indent, "", pgd, *ptep, ptep);
+ pte_dump(stream, vm, indent + 1, pte_addr(vm, *ptep), level);
+ }
+}
+
+void aarch64_vcpu_setup(struct kvm_vcpu *vcpu, struct kvm_vcpu_init *init)
+{
+ struct kvm_vcpu_init default_init = { .target = -1, };
+ struct kvm_vm *vm = vcpu->vm;
+ uint64_t sctlr_el1, tcr_el1;
+
+ if (!init)
+ init = &default_init;
+
+ if (init->target == -1) {
+ struct kvm_vcpu_init preferred;
+ vm_ioctl(vm, KVM_ARM_PREFERRED_TARGET, &preferred);
+ init->target = preferred.target;
+ }
+
+ vcpu_ioctl(vcpu, KVM_ARM_VCPU_INIT, init);
+
+ /*
+ * Enable FP/ASIMD to avoid trapping when accessing Q0-Q15
+ * registers, which the variable argument list macros do.
+ */
+ vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_CPACR_EL1), 3 << 20);
+
+ vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_SCTLR_EL1), &sctlr_el1);
+ vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_TCR_EL1), &tcr_el1);
+
+ /* Configure base granule size */
+ switch (vm->mode) {
+ case VM_MODE_P52V48_4K:
+ TEST_FAIL("AArch64 does not support 4K sized pages "
+ "with 52-bit physical address ranges");
+ case VM_MODE_PXXV48_4K:
+ TEST_FAIL("AArch64 does not support 4K sized pages "
+ "with ANY-bit physical address ranges");
+ case VM_MODE_P52V48_64K:
+ case VM_MODE_P48V48_64K:
+ case VM_MODE_P40V48_64K:
+ case VM_MODE_P36V48_64K:
+ tcr_el1 |= 1ul << 14; /* TG0 = 64KB */
+ break;
+ case VM_MODE_P48V48_16K:
+ case VM_MODE_P40V48_16K:
+ case VM_MODE_P36V48_16K:
+ case VM_MODE_P36V47_16K:
+ tcr_el1 |= 2ul << 14; /* TG0 = 16KB */
+ break;
+ case VM_MODE_P48V48_4K:
+ case VM_MODE_P40V48_4K:
+ case VM_MODE_P36V48_4K:
+ tcr_el1 |= 0ul << 14; /* TG0 = 4KB */
+ break;
+ default:
+ TEST_FAIL("Unknown guest mode, mode: 0x%x", vm->mode);
+ }
+
+ /* Configure output size */
+ switch (vm->mode) {
+ case VM_MODE_P52V48_64K:
+ tcr_el1 |= 6ul << 32; /* IPS = 52 bits */
+ break;
+ case VM_MODE_P48V48_4K:
+ case VM_MODE_P48V48_16K:
+ case VM_MODE_P48V48_64K:
+ tcr_el1 |= 5ul << 32; /* IPS = 48 bits */
+ break;
+ case VM_MODE_P40V48_4K:
+ case VM_MODE_P40V48_16K:
+ case VM_MODE_P40V48_64K:
+ tcr_el1 |= 2ul << 32; /* IPS = 40 bits */
+ break;
+ case VM_MODE_P36V48_4K:
+ case VM_MODE_P36V48_16K:
+ case VM_MODE_P36V48_64K:
+ case VM_MODE_P36V47_16K:
+ tcr_el1 |= 1ul << 32; /* IPS = 36 bits */
+ break;
+ default:
+ TEST_FAIL("Unknown guest mode, mode: 0x%x", vm->mode);
+ }
+
+ sctlr_el1 |= (1 << 0) | (1 << 2) | (1 << 12) /* M | C | I */;
+ /* TCR_EL1 |= IRGN0:WBWA | ORGN0:WBWA | SH0:Inner-Shareable */;
+ tcr_el1 |= (1 << 8) | (1 << 10) | (3 << 12);
+ tcr_el1 |= (64 - vm->va_bits) /* T0SZ */;
+
+ vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_SCTLR_EL1), sctlr_el1);
+ vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_TCR_EL1), tcr_el1);
+ vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_MAIR_EL1), DEFAULT_MAIR_EL1);
+ vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_TTBR0_EL1), vm->pgd);
+ vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_TPIDR_EL1), vcpu->id);
+}
+
+void vcpu_arch_dump(FILE *stream, struct kvm_vcpu *vcpu, uint8_t indent)
+{
+ uint64_t pstate, pc;
+
+ vcpu_get_reg(vcpu, ARM64_CORE_REG(regs.pstate), &pstate);
+ vcpu_get_reg(vcpu, ARM64_CORE_REG(regs.pc), &pc);
+
+ fprintf(stream, "%*spstate: 0x%.16lx pc: 0x%.16lx\n",
+ indent, "", pstate, pc);
+}
+
+struct kvm_vcpu *aarch64_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id,
+ struct kvm_vcpu_init *init, void *guest_code)
+{
+ size_t stack_size = vm->page_size == 4096 ?
+ DEFAULT_STACK_PGS * vm->page_size :
+ vm->page_size;
+ uint64_t stack_vaddr = vm_vaddr_alloc(vm, stack_size,
+ DEFAULT_ARM64_GUEST_STACK_VADDR_MIN);
+ struct kvm_vcpu *vcpu = __vm_vcpu_add(vm, vcpu_id);
+
+ aarch64_vcpu_setup(vcpu, init);
+
+ vcpu_set_reg(vcpu, ARM64_CORE_REG(sp_el1), stack_vaddr + stack_size);
+ vcpu_set_reg(vcpu, ARM64_CORE_REG(regs.pc), (uint64_t)guest_code);
+
+ return vcpu;
+}
+
+struct kvm_vcpu *vm_arch_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id,
+ void *guest_code)
+{
+ return aarch64_vcpu_add(vm, vcpu_id, NULL, guest_code);
+}
+
+void vcpu_args_set(struct kvm_vcpu *vcpu, unsigned int num, ...)
+{
+ va_list ap;
+ int i;
+
+ TEST_ASSERT(num >= 1 && num <= 8, "Unsupported number of args,\n"
+ " num: %u\n", num);
+
+ va_start(ap, num);
+
+ for (i = 0; i < num; i++) {
+ vcpu_set_reg(vcpu, ARM64_CORE_REG(regs.regs[i]),
+ va_arg(ap, uint64_t));
+ }
+
+ va_end(ap);
+}
+
+void kvm_exit_unexpected_exception(int vector, uint64_t ec, bool valid_ec)
+{
+ ucall(UCALL_UNHANDLED, 3, vector, ec, valid_ec);
+ while (1)
+ ;
+}
+
+void assert_on_unhandled_exception(struct kvm_vcpu *vcpu)
+{
+ struct ucall uc;
+
+ if (get_ucall(vcpu, &uc) != UCALL_UNHANDLED)
+ return;
+
+ if (uc.args[2]) /* valid_ec */ {
+ assert(VECTOR_IS_SYNC(uc.args[0]));
+ TEST_FAIL("Unexpected exception (vector:0x%lx, ec:0x%lx)",
+ uc.args[0], uc.args[1]);
+ } else {
+ assert(!VECTOR_IS_SYNC(uc.args[0]));
+ TEST_FAIL("Unexpected exception (vector:0x%lx)",
+ uc.args[0]);
+ }
+}
+
+struct handlers {
+ handler_fn exception_handlers[VECTOR_NUM][ESR_EC_NUM];
+};
+
+void vcpu_init_descriptor_tables(struct kvm_vcpu *vcpu)
+{
+ extern char vectors;
+
+ vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_VBAR_EL1), (uint64_t)&vectors);
+}
+
+void route_exception(struct ex_regs *regs, int vector)
+{
+ struct handlers *handlers = (struct handlers *)exception_handlers;
+ bool valid_ec;
+ int ec = 0;
+
+ switch (vector) {
+ case VECTOR_SYNC_CURRENT:
+ case VECTOR_SYNC_LOWER_64:
+ ec = (read_sysreg(esr_el1) >> ESR_EC_SHIFT) & ESR_EC_MASK;
+ valid_ec = true;
+ break;
+ case VECTOR_IRQ_CURRENT:
+ case VECTOR_IRQ_LOWER_64:
+ case VECTOR_FIQ_CURRENT:
+ case VECTOR_FIQ_LOWER_64:
+ case VECTOR_ERROR_CURRENT:
+ case VECTOR_ERROR_LOWER_64:
+ ec = 0;
+ valid_ec = false;
+ break;
+ default:
+ valid_ec = false;
+ goto unexpected_exception;
+ }
+
+ if (handlers && handlers->exception_handlers[vector][ec])
+ return handlers->exception_handlers[vector][ec](regs);
+
+unexpected_exception:
+ kvm_exit_unexpected_exception(vector, ec, valid_ec);
+}
+
+void vm_init_descriptor_tables(struct kvm_vm *vm)
+{
+ vm->handlers = vm_vaddr_alloc(vm, sizeof(struct handlers),
+ vm->page_size);
+
+ *(vm_vaddr_t *)addr_gva2hva(vm, (vm_vaddr_t)(&exception_handlers)) = vm->handlers;
+}
+
+void vm_install_sync_handler(struct kvm_vm *vm, int vector, int ec,
+ void (*handler)(struct ex_regs *))
+{
+ struct handlers *handlers = addr_gva2hva(vm, vm->handlers);
+
+ assert(VECTOR_IS_SYNC(vector));
+ assert(vector < VECTOR_NUM);
+ assert(ec < ESR_EC_NUM);
+ handlers->exception_handlers[vector][ec] = handler;
+}
+
+void vm_install_exception_handler(struct kvm_vm *vm, int vector,
+ void (*handler)(struct ex_regs *))
+{
+ struct handlers *handlers = addr_gva2hva(vm, vm->handlers);
+
+ assert(!VECTOR_IS_SYNC(vector));
+ assert(vector < VECTOR_NUM);
+ handlers->exception_handlers[vector][0] = handler;
+}
+
+uint32_t guest_get_vcpuid(void)
+{
+ return read_sysreg(tpidr_el1);
+}
+
+void aarch64_get_supported_page_sizes(uint32_t ipa,
+ bool *ps4k, bool *ps16k, bool *ps64k)
+{
+ struct kvm_vcpu_init preferred_init;
+ int kvm_fd, vm_fd, vcpu_fd, err;
+ uint64_t val;
+ struct kvm_one_reg reg = {
+ .id = KVM_ARM64_SYS_REG(SYS_ID_AA64MMFR0_EL1),
+ .addr = (uint64_t)&val,
+ };
+
+ kvm_fd = open_kvm_dev_path_or_exit();
+ vm_fd = __kvm_ioctl(kvm_fd, KVM_CREATE_VM, (void *)(unsigned long)ipa);
+ TEST_ASSERT(vm_fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_VM, vm_fd));
+
+ vcpu_fd = ioctl(vm_fd, KVM_CREATE_VCPU, 0);
+ TEST_ASSERT(vcpu_fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_VCPU, vcpu_fd));
+
+ err = ioctl(vm_fd, KVM_ARM_PREFERRED_TARGET, &preferred_init);
+ TEST_ASSERT(err == 0, KVM_IOCTL_ERROR(KVM_ARM_PREFERRED_TARGET, err));
+ err = ioctl(vcpu_fd, KVM_ARM_VCPU_INIT, &preferred_init);
+ TEST_ASSERT(err == 0, KVM_IOCTL_ERROR(KVM_ARM_VCPU_INIT, err));
+
+ err = ioctl(vcpu_fd, KVM_GET_ONE_REG, &reg);
+ TEST_ASSERT(err == 0, KVM_IOCTL_ERROR(KVM_GET_ONE_REG, vcpu_fd));
+
+ *ps4k = ((val >> 28) & 0xf) != 0xf;
+ *ps64k = ((val >> 24) & 0xf) == 0;
+ *ps16k = ((val >> 20) & 0xf) != 0;
+
+ close(vcpu_fd);
+ close(vm_fd);
+ close(kvm_fd);
+}
+
+/*
+ * arm64 doesn't have a true default mode, so start by computing the
+ * available IPA space and page sizes early.
+ */
+void __attribute__((constructor)) init_guest_modes(void)
+{
+ guest_modes_append_default();
+}
+
+void smccc_hvc(uint32_t function_id, uint64_t arg0, uint64_t arg1,
+ uint64_t arg2, uint64_t arg3, uint64_t arg4, uint64_t arg5,
+ uint64_t arg6, struct arm_smccc_res *res)
+{
+ asm volatile("mov w0, %w[function_id]\n"
+ "mov x1, %[arg0]\n"
+ "mov x2, %[arg1]\n"
+ "mov x3, %[arg2]\n"
+ "mov x4, %[arg3]\n"
+ "mov x5, %[arg4]\n"
+ "mov x6, %[arg5]\n"
+ "mov x7, %[arg6]\n"
+ "hvc #0\n"
+ "mov %[res0], x0\n"
+ "mov %[res1], x1\n"
+ "mov %[res2], x2\n"
+ "mov %[res3], x3\n"
+ : [res0] "=r"(res->a0), [res1] "=r"(res->a1),
+ [res2] "=r"(res->a2), [res3] "=r"(res->a3)
+ : [function_id] "r"(function_id), [arg0] "r"(arg0),
+ [arg1] "r"(arg1), [arg2] "r"(arg2), [arg3] "r"(arg3),
+ [arg4] "r"(arg4), [arg5] "r"(arg5), [arg6] "r"(arg6)
+ : "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7");
+}
diff --git a/tools/testing/selftests/kvm/lib/aarch64/spinlock.c b/tools/testing/selftests/kvm/lib/aarch64/spinlock.c
new file mode 100644
index 000000000..a076e780b
--- /dev/null
+++ b/tools/testing/selftests/kvm/lib/aarch64/spinlock.c
@@ -0,0 +1,27 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * ARM64 Spinlock support
+ */
+#include <stdint.h>
+
+#include "spinlock.h"
+
+void spin_lock(struct spinlock *lock)
+{
+ int val, res;
+
+ asm volatile(
+ "1: ldaxr %w0, [%2]\n"
+ " cbnz %w0, 1b\n"
+ " mov %w0, #1\n"
+ " stxr %w1, %w0, [%2]\n"
+ " cbnz %w1, 1b\n"
+ : "=&r" (val), "=&r" (res)
+ : "r" (&lock->v)
+ : "memory");
+}
+
+void spin_unlock(struct spinlock *lock)
+{
+ asm volatile("stlr wzr, [%0]\n" : : "r" (&lock->v) : "memory");
+}
diff --git a/tools/testing/selftests/kvm/lib/aarch64/ucall.c b/tools/testing/selftests/kvm/lib/aarch64/ucall.c
new file mode 100644
index 000000000..ed237b744
--- /dev/null
+++ b/tools/testing/selftests/kvm/lib/aarch64/ucall.c
@@ -0,0 +1,113 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * ucall support. A ucall is a "hypercall to userspace".
+ *
+ * Copyright (C) 2018, Red Hat, Inc.
+ */
+#include "kvm_util.h"
+
+static vm_vaddr_t *ucall_exit_mmio_addr;
+
+static bool ucall_mmio_init(struct kvm_vm *vm, vm_paddr_t gpa)
+{
+ if (kvm_userspace_memory_region_find(vm, gpa, gpa + 1))
+ return false;
+
+ virt_pg_map(vm, gpa, gpa);
+
+ ucall_exit_mmio_addr = (vm_vaddr_t *)gpa;
+ sync_global_to_guest(vm, ucall_exit_mmio_addr);
+
+ return true;
+}
+
+void ucall_init(struct kvm_vm *vm, void *arg)
+{
+ vm_paddr_t gpa, start, end, step, offset;
+ unsigned int bits;
+ bool ret;
+
+ if (arg) {
+ gpa = (vm_paddr_t)arg;
+ ret = ucall_mmio_init(vm, gpa);
+ TEST_ASSERT(ret, "Can't set ucall mmio address to %lx", gpa);
+ return;
+ }
+
+ /*
+ * Find an address within the allowed physical and virtual address
+ * spaces, that does _not_ have a KVM memory region associated with
+ * it. Identity mapping an address like this allows the guest to
+ * access it, but as KVM doesn't know what to do with it, it
+ * will assume it's something userspace handles and exit with
+ * KVM_EXIT_MMIO. Well, at least that's how it works for AArch64.
+ * Here we start with a guess that the addresses around 5/8th
+ * of the allowed space are unmapped and then work both down and
+ * up from there in 1/16th allowed space sized steps.
+ *
+ * Note, we need to use VA-bits - 1 when calculating the allowed
+ * virtual address space for an identity mapping because the upper
+ * half of the virtual address space is the two's complement of the
+ * lower and won't match physical addresses.
+ */
+ bits = vm->va_bits - 1;
+ bits = min(vm->pa_bits, bits);
+ end = 1ul << bits;
+ start = end * 5 / 8;
+ step = end / 16;
+ for (offset = 0; offset < end - start; offset += step) {
+ if (ucall_mmio_init(vm, start - offset))
+ return;
+ if (ucall_mmio_init(vm, start + offset))
+ return;
+ }
+ TEST_FAIL("Can't find a ucall mmio address");
+}
+
+void ucall_uninit(struct kvm_vm *vm)
+{
+ ucall_exit_mmio_addr = 0;
+ sync_global_to_guest(vm, ucall_exit_mmio_addr);
+}
+
+void ucall(uint64_t cmd, int nargs, ...)
+{
+ struct ucall uc = {};
+ va_list va;
+ int i;
+
+ WRITE_ONCE(uc.cmd, cmd);
+ nargs = min(nargs, UCALL_MAX_ARGS);
+
+ va_start(va, nargs);
+ for (i = 0; i < nargs; ++i)
+ WRITE_ONCE(uc.args[i], va_arg(va, uint64_t));
+ va_end(va);
+
+ WRITE_ONCE(*ucall_exit_mmio_addr, (vm_vaddr_t)&uc);
+}
+
+uint64_t get_ucall(struct kvm_vcpu *vcpu, struct ucall *uc)
+{
+ struct kvm_run *run = vcpu->run;
+ struct ucall ucall = {};
+
+ if (uc)
+ memset(uc, 0, sizeof(*uc));
+
+ if (run->exit_reason == KVM_EXIT_MMIO &&
+ run->mmio.phys_addr == (uint64_t)ucall_exit_mmio_addr) {
+ vm_vaddr_t gva;
+
+ TEST_ASSERT(run->mmio.is_write && run->mmio.len == 8,
+ "Unexpected ucall exit mmio address access");
+ memcpy(&gva, run->mmio.data, sizeof(gva));
+ memcpy(&ucall, addr_gva2hva(vcpu->vm, gva), sizeof(ucall));
+
+ vcpu_run_complete_io(vcpu);
+ if (uc)
+ memcpy(uc, &ucall, sizeof(ucall));
+ }
+
+ return ucall.cmd;
+}
diff --git a/tools/testing/selftests/kvm/lib/aarch64/vgic.c b/tools/testing/selftests/kvm/lib/aarch64/vgic.c
new file mode 100644
index 000000000..b5f28d21a
--- /dev/null
+++ b/tools/testing/selftests/kvm/lib/aarch64/vgic.c
@@ -0,0 +1,170 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * ARM Generic Interrupt Controller (GIC) v3 host support
+ */
+
+#include <linux/kvm.h>
+#include <linux/sizes.h>
+#include <asm/kvm_para.h>
+#include <asm/kvm.h>
+
+#include "kvm_util.h"
+#include "vgic.h"
+#include "gic.h"
+#include "gic_v3.h"
+
+/*
+ * vGIC-v3 default host setup
+ *
+ * Input args:
+ * vm - KVM VM
+ * nr_vcpus - Number of vCPUs supported by this VM
+ * gicd_base_gpa - Guest Physical Address of the Distributor region
+ * gicr_base_gpa - Guest Physical Address of the Redistributor region
+ *
+ * Output args: None
+ *
+ * Return: GIC file-descriptor or negative error code upon failure
+ *
+ * The function creates a vGIC-v3 device and maps the distributor and
+ * redistributor regions of the guest. Since it depends on the number of
+ * vCPUs for the VM, it must be called after all the vCPUs have been created.
+ */
+int vgic_v3_setup(struct kvm_vm *vm, unsigned int nr_vcpus, uint32_t nr_irqs,
+ uint64_t gicd_base_gpa, uint64_t gicr_base_gpa)
+{
+ int gic_fd;
+ uint64_t redist_attr;
+ struct list_head *iter;
+ unsigned int nr_gic_pages, nr_vcpus_created = 0;
+
+ TEST_ASSERT(nr_vcpus, "Number of vCPUs cannot be empty\n");
+
+ /*
+ * Make sure that the caller is infact calling this
+ * function after all the vCPUs are added.
+ */
+ list_for_each(iter, &vm->vcpus)
+ nr_vcpus_created++;
+ TEST_ASSERT(nr_vcpus == nr_vcpus_created,
+ "Number of vCPUs requested (%u) doesn't match with the ones created for the VM (%u)\n",
+ nr_vcpus, nr_vcpus_created);
+
+ /* Distributor setup */
+ gic_fd = __kvm_create_device(vm, KVM_DEV_TYPE_ARM_VGIC_V3);
+ if (gic_fd < 0)
+ return gic_fd;
+
+ kvm_device_attr_set(gic_fd, KVM_DEV_ARM_VGIC_GRP_NR_IRQS, 0, &nr_irqs);
+
+ kvm_device_attr_set(gic_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
+ KVM_DEV_ARM_VGIC_CTRL_INIT, NULL);
+
+ kvm_device_attr_set(gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
+ KVM_VGIC_V3_ADDR_TYPE_DIST, &gicd_base_gpa);
+ nr_gic_pages = vm_calc_num_guest_pages(vm->mode, KVM_VGIC_V3_DIST_SIZE);
+ virt_map(vm, gicd_base_gpa, gicd_base_gpa, nr_gic_pages);
+
+ /* Redistributor setup */
+ redist_attr = REDIST_REGION_ATTR_ADDR(nr_vcpus, gicr_base_gpa, 0, 0);
+ kvm_device_attr_set(gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
+ KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &redist_attr);
+ nr_gic_pages = vm_calc_num_guest_pages(vm->mode,
+ KVM_VGIC_V3_REDIST_SIZE * nr_vcpus);
+ virt_map(vm, gicr_base_gpa, gicr_base_gpa, nr_gic_pages);
+
+ kvm_device_attr_set(gic_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
+ KVM_DEV_ARM_VGIC_CTRL_INIT, NULL);
+
+ return gic_fd;
+}
+
+/* should only work for level sensitive interrupts */
+int _kvm_irq_set_level_info(int gic_fd, uint32_t intid, int level)
+{
+ uint64_t attr = 32 * (intid / 32);
+ uint64_t index = intid % 32;
+ uint64_t val;
+ int ret;
+
+ ret = __kvm_device_attr_get(gic_fd, KVM_DEV_ARM_VGIC_GRP_LEVEL_INFO,
+ attr, &val);
+ if (ret != 0)
+ return ret;
+
+ val |= 1U << index;
+ ret = __kvm_device_attr_set(gic_fd, KVM_DEV_ARM_VGIC_GRP_LEVEL_INFO,
+ attr, &val);
+ return ret;
+}
+
+void kvm_irq_set_level_info(int gic_fd, uint32_t intid, int level)
+{
+ int ret = _kvm_irq_set_level_info(gic_fd, intid, level);
+
+ TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_DEV_ARM_VGIC_GRP_LEVEL_INFO, ret));
+}
+
+int _kvm_arm_irq_line(struct kvm_vm *vm, uint32_t intid, int level)
+{
+ uint32_t irq = intid & KVM_ARM_IRQ_NUM_MASK;
+
+ TEST_ASSERT(!INTID_IS_SGI(intid), "KVM_IRQ_LINE's interface itself "
+ "doesn't allow injecting SGIs. There's no mask for it.");
+
+ if (INTID_IS_PPI(intid))
+ irq |= KVM_ARM_IRQ_TYPE_PPI << KVM_ARM_IRQ_TYPE_SHIFT;
+ else
+ irq |= KVM_ARM_IRQ_TYPE_SPI << KVM_ARM_IRQ_TYPE_SHIFT;
+
+ return _kvm_irq_line(vm, irq, level);
+}
+
+void kvm_arm_irq_line(struct kvm_vm *vm, uint32_t intid, int level)
+{
+ int ret = _kvm_arm_irq_line(vm, intid, level);
+
+ TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_IRQ_LINE, ret));
+}
+
+static void vgic_poke_irq(int gic_fd, uint32_t intid, struct kvm_vcpu *vcpu,
+ uint64_t reg_off)
+{
+ uint64_t reg = intid / 32;
+ uint64_t index = intid % 32;
+ uint64_t attr = reg_off + reg * 4;
+ uint64_t val;
+ bool intid_is_private = INTID_IS_SGI(intid) || INTID_IS_PPI(intid);
+
+ uint32_t group = intid_is_private ? KVM_DEV_ARM_VGIC_GRP_REDIST_REGS
+ : KVM_DEV_ARM_VGIC_GRP_DIST_REGS;
+
+ if (intid_is_private) {
+ /* TODO: only vcpu 0 implemented for now. */
+ assert(vcpu->id == 0);
+ attr += SZ_64K;
+ }
+
+ /* Check that the addr part of the attr is within 32 bits. */
+ assert((attr & ~KVM_DEV_ARM_VGIC_OFFSET_MASK) == 0);
+
+ /*
+ * All calls will succeed, even with invalid intid's, as long as the
+ * addr part of the attr is within 32 bits (checked above). An invalid
+ * intid will just make the read/writes point to above the intended
+ * register space (i.e., ICPENDR after ISPENDR).
+ */
+ kvm_device_attr_get(gic_fd, group, attr, &val);
+ val |= 1ULL << index;
+ kvm_device_attr_set(gic_fd, group, attr, &val);
+}
+
+void kvm_irq_write_ispendr(int gic_fd, uint32_t intid, struct kvm_vcpu *vcpu)
+{
+ vgic_poke_irq(gic_fd, intid, vcpu, GICD_ISPENDR);
+}
+
+void kvm_irq_write_isactiver(int gic_fd, uint32_t intid, struct kvm_vcpu *vcpu)
+{
+ vgic_poke_irq(gic_fd, intid, vcpu, GICD_ISACTIVER);
+}
diff --git a/tools/testing/selftests/kvm/lib/assert.c b/tools/testing/selftests/kvm/lib/assert.c
new file mode 100644
index 000000000..2bd25b191
--- /dev/null
+++ b/tools/testing/selftests/kvm/lib/assert.c
@@ -0,0 +1,99 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * tools/testing/selftests/kvm/lib/assert.c
+ *
+ * Copyright (C) 2018, Google LLC.
+ */
+
+#define _GNU_SOURCE /* for getline(3) and strchrnul(3)*/
+
+#include "test_util.h"
+
+#include <execinfo.h>
+#include <sys/syscall.h>
+
+#include "kselftest.h"
+
+/* Dumps the current stack trace to stderr. */
+static void __attribute__((noinline)) test_dump_stack(void);
+static void test_dump_stack(void)
+{
+ /*
+ * Build and run this command:
+ *
+ * addr2line -s -e /proc/$PPID/exe -fpai {backtrace addresses} | \
+ * cat -n 1>&2
+ *
+ * Note that the spacing is different and there's no newline.
+ */
+ size_t i;
+ size_t n = 20;
+ void *stack[n];
+ const char *addr2line = "addr2line -s -e /proc/$PPID/exe -fpai";
+ const char *pipeline = "|cat -n 1>&2";
+ char cmd[strlen(addr2line) + strlen(pipeline) +
+ /* N bytes per addr * 2 digits per byte + 1 space per addr: */
+ n * (((sizeof(void *)) * 2) + 1) +
+ /* Null terminator: */
+ 1];
+ char *c = cmd;
+
+ n = backtrace(stack, n);
+ /*
+ * Skip the first 2 frames, which should be test_dump_stack() and
+ * test_assert(); both of which are declared noinline. Bail if the
+ * resulting stack trace would be empty. Otherwise, addr2line will block
+ * waiting for addresses to be passed in via stdin.
+ */
+ if (n <= 2) {
+ fputs(" (stack trace empty)\n", stderr);
+ return;
+ }
+
+ c += sprintf(c, "%s", addr2line);
+ for (i = 2; i < n; i++)
+ c += sprintf(c, " %lx", ((unsigned long) stack[i]) - 1);
+
+ c += sprintf(c, "%s", pipeline);
+#pragma GCC diagnostic push
+#pragma GCC diagnostic ignored "-Wunused-result"
+ system(cmd);
+#pragma GCC diagnostic pop
+}
+
+static pid_t _gettid(void)
+{
+ return syscall(SYS_gettid);
+}
+
+void __attribute__((noinline))
+test_assert(bool exp, const char *exp_str,
+ const char *file, unsigned int line, const char *fmt, ...)
+{
+ va_list ap;
+
+ if (!(exp)) {
+ va_start(ap, fmt);
+
+ fprintf(stderr, "==== Test Assertion Failure ====\n"
+ " %s:%u: %s\n"
+ " pid=%d tid=%d errno=%d - %s\n",
+ file, line, exp_str, getpid(), _gettid(),
+ errno, strerror(errno));
+ test_dump_stack();
+ if (fmt) {
+ fputs(" ", stderr);
+ vfprintf(stderr, fmt, ap);
+ fputs("\n", stderr);
+ }
+ va_end(ap);
+
+ if (errno == EACCES) {
+ print_skip("Access denied - Exiting");
+ exit(KSFT_SKIP);
+ }
+ exit(254);
+ }
+
+ return;
+}
diff --git a/tools/testing/selftests/kvm/lib/elf.c b/tools/testing/selftests/kvm/lib/elf.c
new file mode 100644
index 000000000..9f54c098d
--- /dev/null
+++ b/tools/testing/selftests/kvm/lib/elf.c
@@ -0,0 +1,192 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * tools/testing/selftests/kvm/lib/elf.c
+ *
+ * Copyright (C) 2018, Google LLC.
+ */
+
+#include "test_util.h"
+
+#include <bits/endian.h>
+#include <linux/elf.h>
+
+#include "kvm_util.h"
+
+static void elfhdr_get(const char *filename, Elf64_Ehdr *hdrp)
+{
+ off_t offset_rv;
+
+ /* Open the ELF file. */
+ int fd;
+ fd = open(filename, O_RDONLY);
+ TEST_ASSERT(fd >= 0, "Failed to open ELF file,\n"
+ " filename: %s\n"
+ " rv: %i errno: %i", filename, fd, errno);
+
+ /* Read in and validate ELF Identification Record.
+ * The ELF Identification record is the first 16 (EI_NIDENT) bytes
+ * of the ELF header, which is at the beginning of the ELF file.
+ * For now it is only safe to read the first EI_NIDENT bytes. Once
+ * read and validated, the value of e_ehsize can be used to determine
+ * the real size of the ELF header.
+ */
+ unsigned char ident[EI_NIDENT];
+ test_read(fd, ident, sizeof(ident));
+ TEST_ASSERT((ident[EI_MAG0] == ELFMAG0) && (ident[EI_MAG1] == ELFMAG1)
+ && (ident[EI_MAG2] == ELFMAG2) && (ident[EI_MAG3] == ELFMAG3),
+ "ELF MAGIC Mismatch,\n"
+ " filename: %s\n"
+ " ident[EI_MAG0 - EI_MAG3]: %02x %02x %02x %02x\n"
+ " Expected: %02x %02x %02x %02x",
+ filename,
+ ident[EI_MAG0], ident[EI_MAG1], ident[EI_MAG2], ident[EI_MAG3],
+ ELFMAG0, ELFMAG1, ELFMAG2, ELFMAG3);
+ TEST_ASSERT(ident[EI_CLASS] == ELFCLASS64,
+ "Current implementation only able to handle ELFCLASS64,\n"
+ " filename: %s\n"
+ " ident[EI_CLASS]: %02x\n"
+ " expected: %02x",
+ filename,
+ ident[EI_CLASS], ELFCLASS64);
+ TEST_ASSERT(((BYTE_ORDER == LITTLE_ENDIAN)
+ && (ident[EI_DATA] == ELFDATA2LSB))
+ || ((BYTE_ORDER == BIG_ENDIAN)
+ && (ident[EI_DATA] == ELFDATA2MSB)), "Current "
+ "implementation only able to handle\n"
+ "cases where the host and ELF file endianness\n"
+ "is the same:\n"
+ " host BYTE_ORDER: %u\n"
+ " host LITTLE_ENDIAN: %u\n"
+ " host BIG_ENDIAN: %u\n"
+ " ident[EI_DATA]: %u\n"
+ " ELFDATA2LSB: %u\n"
+ " ELFDATA2MSB: %u",
+ BYTE_ORDER, LITTLE_ENDIAN, BIG_ENDIAN,
+ ident[EI_DATA], ELFDATA2LSB, ELFDATA2MSB);
+ TEST_ASSERT(ident[EI_VERSION] == EV_CURRENT,
+ "Current implementation only able to handle current "
+ "ELF version,\n"
+ " filename: %s\n"
+ " ident[EI_VERSION]: %02x\n"
+ " expected: %02x",
+ filename, ident[EI_VERSION], EV_CURRENT);
+
+ /* Read in the ELF header.
+ * With the ELF Identification portion of the ELF header
+ * validated, especially that the value at EI_VERSION is
+ * as expected, it is now safe to read the entire ELF header.
+ */
+ offset_rv = lseek(fd, 0, SEEK_SET);
+ TEST_ASSERT(offset_rv == 0, "Seek to ELF header failed,\n"
+ " rv: %zi expected: %i", offset_rv, 0);
+ test_read(fd, hdrp, sizeof(*hdrp));
+ TEST_ASSERT(hdrp->e_phentsize == sizeof(Elf64_Phdr),
+ "Unexpected physical header size,\n"
+ " hdrp->e_phentsize: %x\n"
+ " expected: %zx",
+ hdrp->e_phentsize, sizeof(Elf64_Phdr));
+ TEST_ASSERT(hdrp->e_shentsize == sizeof(Elf64_Shdr),
+ "Unexpected section header size,\n"
+ " hdrp->e_shentsize: %x\n"
+ " expected: %zx",
+ hdrp->e_shentsize, sizeof(Elf64_Shdr));
+}
+
+/* VM ELF Load
+ *
+ * Input Args:
+ * filename - Path to ELF file
+ *
+ * Output Args: None
+ *
+ * Input/Output Args:
+ * vm - Pointer to opaque type that describes the VM.
+ *
+ * Return: None, TEST_ASSERT failures for all error conditions
+ *
+ * Loads the program image of the ELF file specified by filename,
+ * into the virtual address space of the VM pointed to by vm. On entry
+ * the VM needs to not be using any of the virtual address space used
+ * by the image and it needs to have sufficient available physical pages, to
+ * back the virtual pages used to load the image.
+ */
+void kvm_vm_elf_load(struct kvm_vm *vm, const char *filename)
+{
+ off_t offset, offset_rv;
+ Elf64_Ehdr hdr;
+
+ /* Open the ELF file. */
+ int fd;
+ fd = open(filename, O_RDONLY);
+ TEST_ASSERT(fd >= 0, "Failed to open ELF file,\n"
+ " filename: %s\n"
+ " rv: %i errno: %i", filename, fd, errno);
+
+ /* Read in the ELF header. */
+ elfhdr_get(filename, &hdr);
+
+ /* For each program header.
+ * The following ELF header members specify the location
+ * and size of the program headers:
+ *
+ * e_phoff - File offset to start of program headers
+ * e_phentsize - Size of each program header
+ * e_phnum - Number of program header entries
+ */
+ for (unsigned int n1 = 0; n1 < hdr.e_phnum; n1++) {
+ /* Seek to the beginning of the program header. */
+ offset = hdr.e_phoff + (n1 * hdr.e_phentsize);
+ offset_rv = lseek(fd, offset, SEEK_SET);
+ TEST_ASSERT(offset_rv == offset,
+ "Failed to seek to begining of program header %u,\n"
+ " filename: %s\n"
+ " rv: %jd errno: %i",
+ n1, filename, (intmax_t) offset_rv, errno);
+
+ /* Read in the program header. */
+ Elf64_Phdr phdr;
+ test_read(fd, &phdr, sizeof(phdr));
+
+ /* Skip if this header doesn't describe a loadable segment. */
+ if (phdr.p_type != PT_LOAD)
+ continue;
+
+ /* Allocate memory for this segment within the VM. */
+ TEST_ASSERT(phdr.p_memsz > 0, "Unexpected loadable segment "
+ "memsize of 0,\n"
+ " phdr index: %u p_memsz: 0x%" PRIx64,
+ n1, (uint64_t) phdr.p_memsz);
+ vm_vaddr_t seg_vstart = align_down(phdr.p_vaddr, vm->page_size);
+ vm_vaddr_t seg_vend = phdr.p_vaddr + phdr.p_memsz - 1;
+ seg_vend |= vm->page_size - 1;
+ size_t seg_size = seg_vend - seg_vstart + 1;
+
+ vm_vaddr_t vaddr = vm_vaddr_alloc(vm, seg_size, seg_vstart);
+ TEST_ASSERT(vaddr == seg_vstart, "Unable to allocate "
+ "virtual memory for segment at requested min addr,\n"
+ " segment idx: %u\n"
+ " seg_vstart: 0x%lx\n"
+ " vaddr: 0x%lx",
+ n1, seg_vstart, vaddr);
+ memset(addr_gva2hva(vm, vaddr), 0, seg_size);
+ /* TODO(lhuemill): Set permissions of each memory segment
+ * based on the least-significant 3 bits of phdr.p_flags.
+ */
+
+ /* Load portion of initial state that is contained within
+ * the ELF file.
+ */
+ if (phdr.p_filesz) {
+ offset_rv = lseek(fd, phdr.p_offset, SEEK_SET);
+ TEST_ASSERT(offset_rv == phdr.p_offset,
+ "Seek to program segment offset failed,\n"
+ " program header idx: %u errno: %i\n"
+ " offset_rv: 0x%jx\n"
+ " expected: 0x%jx\n",
+ n1, errno, (intmax_t) offset_rv,
+ (intmax_t) phdr.p_offset);
+ test_read(fd, addr_gva2hva(vm, phdr.p_vaddr),
+ phdr.p_filesz);
+ }
+ }
+}
diff --git a/tools/testing/selftests/kvm/lib/guest_modes.c b/tools/testing/selftests/kvm/lib/guest_modes.c
new file mode 100644
index 000000000..99a575bbb
--- /dev/null
+++ b/tools/testing/selftests/kvm/lib/guest_modes.c
@@ -0,0 +1,133 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (C) 2020, Red Hat, Inc.
+ */
+#include "guest_modes.h"
+
+#ifdef __aarch64__
+#include "processor.h"
+enum vm_guest_mode vm_mode_default;
+#endif
+
+struct guest_mode guest_modes[NUM_VM_MODES];
+
+void guest_modes_append_default(void)
+{
+#ifndef __aarch64__
+ guest_mode_append(VM_MODE_DEFAULT, true, true);
+#else
+ {
+ unsigned int limit = kvm_check_cap(KVM_CAP_ARM_VM_IPA_SIZE);
+ bool ps4k, ps16k, ps64k;
+ int i;
+
+ aarch64_get_supported_page_sizes(limit, &ps4k, &ps16k, &ps64k);
+
+ vm_mode_default = NUM_VM_MODES;
+
+ if (limit >= 52)
+ guest_mode_append(VM_MODE_P52V48_64K, ps64k, ps64k);
+ if (limit >= 48) {
+ guest_mode_append(VM_MODE_P48V48_4K, ps4k, ps4k);
+ guest_mode_append(VM_MODE_P48V48_16K, ps16k, ps16k);
+ guest_mode_append(VM_MODE_P48V48_64K, ps64k, ps64k);
+ }
+ if (limit >= 40) {
+ guest_mode_append(VM_MODE_P40V48_4K, ps4k, ps4k);
+ guest_mode_append(VM_MODE_P40V48_16K, ps16k, ps16k);
+ guest_mode_append(VM_MODE_P40V48_64K, ps64k, ps64k);
+ if (ps4k)
+ vm_mode_default = VM_MODE_P40V48_4K;
+ }
+ if (limit >= 36) {
+ guest_mode_append(VM_MODE_P36V48_4K, ps4k, ps4k);
+ guest_mode_append(VM_MODE_P36V48_16K, ps16k, ps16k);
+ guest_mode_append(VM_MODE_P36V48_64K, ps64k, ps64k);
+ guest_mode_append(VM_MODE_P36V47_16K, ps16k, ps16k);
+ }
+
+ /*
+ * Pick the first supported IPA size if the default
+ * isn't available.
+ */
+ for (i = 0; vm_mode_default == NUM_VM_MODES && i < NUM_VM_MODES; i++) {
+ if (guest_modes[i].supported && guest_modes[i].enabled)
+ vm_mode_default = i;
+ }
+
+ TEST_ASSERT(vm_mode_default != NUM_VM_MODES,
+ "No supported mode!");
+ }
+#endif
+#ifdef __s390x__
+ {
+ int kvm_fd, vm_fd;
+ struct kvm_s390_vm_cpu_processor info;
+
+ kvm_fd = open_kvm_dev_path_or_exit();
+ vm_fd = __kvm_ioctl(kvm_fd, KVM_CREATE_VM, NULL);
+ kvm_device_attr_get(vm_fd, KVM_S390_VM_CPU_MODEL,
+ KVM_S390_VM_CPU_PROCESSOR, &info);
+ close(vm_fd);
+ close(kvm_fd);
+ /* Starting with z13 we have 47bits of physical address */
+ if (info.ibc >= 0x30)
+ guest_mode_append(VM_MODE_P47V64_4K, true, true);
+ }
+#endif
+#ifdef __riscv
+ {
+ unsigned int sz = kvm_check_cap(KVM_CAP_VM_GPA_BITS);
+
+ if (sz >= 52)
+ guest_mode_append(VM_MODE_P52V48_4K, true, true);
+ if (sz >= 48)
+ guest_mode_append(VM_MODE_P48V48_4K, true, true);
+ }
+#endif
+}
+
+void for_each_guest_mode(void (*func)(enum vm_guest_mode, void *), void *arg)
+{
+ int i;
+
+ for (i = 0; i < NUM_VM_MODES; ++i) {
+ if (!guest_modes[i].enabled)
+ continue;
+ TEST_ASSERT(guest_modes[i].supported,
+ "Guest mode ID %d (%s) not supported.",
+ i, vm_guest_mode_string(i));
+ func(i, arg);
+ }
+}
+
+void guest_modes_help(void)
+{
+ int i;
+
+ printf(" -m: specify the guest mode ID to test\n"
+ " (default: test all supported modes)\n"
+ " This option may be used multiple times.\n"
+ " Guest mode IDs:\n");
+ for (i = 0; i < NUM_VM_MODES; ++i) {
+ printf(" %d: %s%s\n", i, vm_guest_mode_string(i),
+ guest_modes[i].supported ? " (supported)" : "");
+ }
+}
+
+void guest_modes_cmdline(const char *arg)
+{
+ static bool mode_selected;
+ unsigned int mode;
+ int i;
+
+ if (!mode_selected) {
+ for (i = 0; i < NUM_VM_MODES; ++i)
+ guest_modes[i].enabled = false;
+ mode_selected = true;
+ }
+
+ mode = strtoul(optarg, NULL, 10);
+ TEST_ASSERT(mode < NUM_VM_MODES, "Guest mode ID %d too big", mode);
+ guest_modes[mode].enabled = true;
+}
diff --git a/tools/testing/selftests/kvm/lib/io.c b/tools/testing/selftests/kvm/lib/io.c
new file mode 100644
index 000000000..fedb2a741
--- /dev/null
+++ b/tools/testing/selftests/kvm/lib/io.c
@@ -0,0 +1,157 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * tools/testing/selftests/kvm/lib/io.c
+ *
+ * Copyright (C) 2018, Google LLC.
+ */
+
+#include "test_util.h"
+
+/* Test Write
+ *
+ * A wrapper for write(2), that automatically handles the following
+ * special conditions:
+ *
+ * + Interrupted system call (EINTR)
+ * + Write of less than requested amount
+ * + Non-block return (EAGAIN)
+ *
+ * For each of the above, an additional write is performed to automatically
+ * continue writing the requested data.
+ * There are also many cases where write(2) can return an unexpected
+ * error (e.g. EIO). Such errors cause a TEST_ASSERT failure.
+ *
+ * Note, for function signature compatibility with write(2), this function
+ * returns the number of bytes written, but that value will always be equal
+ * to the number of requested bytes. All other conditions in this and
+ * future enhancements to this function either automatically issue another
+ * write(2) or cause a TEST_ASSERT failure.
+ *
+ * Args:
+ * fd - Opened file descriptor to file to be written.
+ * count - Number of bytes to write.
+ *
+ * Output:
+ * buf - Starting address of data to be written.
+ *
+ * Return:
+ * On success, number of bytes written.
+ * On failure, a TEST_ASSERT failure is caused.
+ */
+ssize_t test_write(int fd, const void *buf, size_t count)
+{
+ ssize_t rc;
+ ssize_t num_written = 0;
+ size_t num_left = count;
+ const char *ptr = buf;
+
+ /* Note: Count of zero is allowed (see "RETURN VALUE" portion of
+ * write(2) manpage for details.
+ */
+ TEST_ASSERT(count >= 0, "Unexpected count, count: %li", count);
+
+ do {
+ rc = write(fd, ptr, num_left);
+
+ switch (rc) {
+ case -1:
+ TEST_ASSERT(errno == EAGAIN || errno == EINTR,
+ "Unexpected write failure,\n"
+ " rc: %zi errno: %i", rc, errno);
+ continue;
+
+ case 0:
+ TEST_FAIL("Unexpected EOF,\n"
+ " rc: %zi num_written: %zi num_left: %zu",
+ rc, num_written, num_left);
+ break;
+
+ default:
+ TEST_ASSERT(rc >= 0, "Unexpected ret from write,\n"
+ " rc: %zi errno: %i", rc, errno);
+ num_written += rc;
+ num_left -= rc;
+ ptr += rc;
+ break;
+ }
+ } while (num_written < count);
+
+ return num_written;
+}
+
+/* Test Read
+ *
+ * A wrapper for read(2), that automatically handles the following
+ * special conditions:
+ *
+ * + Interrupted system call (EINTR)
+ * + Read of less than requested amount
+ * + Non-block return (EAGAIN)
+ *
+ * For each of the above, an additional read is performed to automatically
+ * continue reading the requested data.
+ * There are also many cases where read(2) can return an unexpected
+ * error (e.g. EIO). Such errors cause a TEST_ASSERT failure. Note,
+ * it is expected that the file opened by fd at the current file position
+ * contains at least the number of requested bytes to be read. A TEST_ASSERT
+ * failure is produced if an End-Of-File condition occurs, before all the
+ * data is read. It is the callers responsibility to assure that sufficient
+ * data exists.
+ *
+ * Note, for function signature compatibility with read(2), this function
+ * returns the number of bytes read, but that value will always be equal
+ * to the number of requested bytes. All other conditions in this and
+ * future enhancements to this function either automatically issue another
+ * read(2) or cause a TEST_ASSERT failure.
+ *
+ * Args:
+ * fd - Opened file descriptor to file to be read.
+ * count - Number of bytes to read.
+ *
+ * Output:
+ * buf - Starting address of where to write the bytes read.
+ *
+ * Return:
+ * On success, number of bytes read.
+ * On failure, a TEST_ASSERT failure is caused.
+ */
+ssize_t test_read(int fd, void *buf, size_t count)
+{
+ ssize_t rc;
+ ssize_t num_read = 0;
+ size_t num_left = count;
+ char *ptr = buf;
+
+ /* Note: Count of zero is allowed (see "If count is zero" portion of
+ * read(2) manpage for details.
+ */
+ TEST_ASSERT(count >= 0, "Unexpected count, count: %li", count);
+
+ do {
+ rc = read(fd, ptr, num_left);
+
+ switch (rc) {
+ case -1:
+ TEST_ASSERT(errno == EAGAIN || errno == EINTR,
+ "Unexpected read failure,\n"
+ " rc: %zi errno: %i", rc, errno);
+ break;
+
+ case 0:
+ TEST_FAIL("Unexpected EOF,\n"
+ " rc: %zi num_read: %zi num_left: %zu",
+ rc, num_read, num_left);
+ break;
+
+ default:
+ TEST_ASSERT(rc > 0, "Unexpected ret from read,\n"
+ " rc: %zi errno: %i", rc, errno);
+ num_read += rc;
+ num_left -= rc;
+ ptr += rc;
+ break;
+ }
+ } while (num_read < count);
+
+ return num_read;
+}
diff --git a/tools/testing/selftests/kvm/lib/kvm_util.c b/tools/testing/selftests/kvm/lib/kvm_util.c
new file mode 100644
index 000000000..f1cb16271
--- /dev/null
+++ b/tools/testing/selftests/kvm/lib/kvm_util.c
@@ -0,0 +1,2023 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * tools/testing/selftests/kvm/lib/kvm_util.c
+ *
+ * Copyright (C) 2018, Google LLC.
+ */
+
+#define _GNU_SOURCE /* for program_invocation_name */
+#include "test_util.h"
+#include "kvm_util.h"
+#include "processor.h"
+
+#include <assert.h>
+#include <sys/mman.h>
+#include <sys/types.h>
+#include <sys/stat.h>
+#include <unistd.h>
+#include <linux/kernel.h>
+
+#define KVM_UTIL_MIN_PFN 2
+
+static int vcpu_mmap_sz(void);
+
+int open_path_or_exit(const char *path, int flags)
+{
+ int fd;
+
+ fd = open(path, flags);
+ __TEST_REQUIRE(fd >= 0, "%s not available (errno: %d)", path, errno);
+
+ return fd;
+}
+
+/*
+ * Open KVM_DEV_PATH if available, otherwise exit the entire program.
+ *
+ * Input Args:
+ * flags - The flags to pass when opening KVM_DEV_PATH.
+ *
+ * Return:
+ * The opened file descriptor of /dev/kvm.
+ */
+static int _open_kvm_dev_path_or_exit(int flags)
+{
+ return open_path_or_exit(KVM_DEV_PATH, flags);
+}
+
+int open_kvm_dev_path_or_exit(void)
+{
+ return _open_kvm_dev_path_or_exit(O_RDONLY);
+}
+
+static bool get_module_param_bool(const char *module_name, const char *param)
+{
+ const int path_size = 128;
+ char path[path_size];
+ char value;
+ ssize_t r;
+ int fd;
+
+ r = snprintf(path, path_size, "/sys/module/%s/parameters/%s",
+ module_name, param);
+ TEST_ASSERT(r < path_size,
+ "Failed to construct sysfs path in %d bytes.", path_size);
+
+ fd = open_path_or_exit(path, O_RDONLY);
+
+ r = read(fd, &value, 1);
+ TEST_ASSERT(r == 1, "read(%s) failed", path);
+
+ r = close(fd);
+ TEST_ASSERT(!r, "close(%s) failed", path);
+
+ if (value == 'Y')
+ return true;
+ else if (value == 'N')
+ return false;
+
+ TEST_FAIL("Unrecognized value '%c' for boolean module param", value);
+}
+
+bool get_kvm_intel_param_bool(const char *param)
+{
+ return get_module_param_bool("kvm_intel", param);
+}
+
+bool get_kvm_amd_param_bool(const char *param)
+{
+ return get_module_param_bool("kvm_amd", param);
+}
+
+/*
+ * Capability
+ *
+ * Input Args:
+ * cap - Capability
+ *
+ * Output Args: None
+ *
+ * Return:
+ * On success, the Value corresponding to the capability (KVM_CAP_*)
+ * specified by the value of cap. On failure a TEST_ASSERT failure
+ * is produced.
+ *
+ * Looks up and returns the value corresponding to the capability
+ * (KVM_CAP_*) given by cap.
+ */
+unsigned int kvm_check_cap(long cap)
+{
+ int ret;
+ int kvm_fd;
+
+ kvm_fd = open_kvm_dev_path_or_exit();
+ ret = __kvm_ioctl(kvm_fd, KVM_CHECK_EXTENSION, (void *)cap);
+ TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_CHECK_EXTENSION, ret));
+
+ close(kvm_fd);
+
+ return (unsigned int)ret;
+}
+
+void vm_enable_dirty_ring(struct kvm_vm *vm, uint32_t ring_size)
+{
+ if (vm_check_cap(vm, KVM_CAP_DIRTY_LOG_RING_ACQ_REL))
+ vm_enable_cap(vm, KVM_CAP_DIRTY_LOG_RING_ACQ_REL, ring_size);
+ else
+ vm_enable_cap(vm, KVM_CAP_DIRTY_LOG_RING, ring_size);
+ vm->dirty_ring_size = ring_size;
+}
+
+static void vm_open(struct kvm_vm *vm)
+{
+ vm->kvm_fd = _open_kvm_dev_path_or_exit(O_RDWR);
+
+ TEST_REQUIRE(kvm_has_cap(KVM_CAP_IMMEDIATE_EXIT));
+
+ vm->fd = __kvm_ioctl(vm->kvm_fd, KVM_CREATE_VM, (void *)vm->type);
+ TEST_ASSERT(vm->fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_VM, vm->fd));
+}
+
+const char *vm_guest_mode_string(uint32_t i)
+{
+ static const char * const strings[] = {
+ [VM_MODE_P52V48_4K] = "PA-bits:52, VA-bits:48, 4K pages",
+ [VM_MODE_P52V48_64K] = "PA-bits:52, VA-bits:48, 64K pages",
+ [VM_MODE_P48V48_4K] = "PA-bits:48, VA-bits:48, 4K pages",
+ [VM_MODE_P48V48_16K] = "PA-bits:48, VA-bits:48, 16K pages",
+ [VM_MODE_P48V48_64K] = "PA-bits:48, VA-bits:48, 64K pages",
+ [VM_MODE_P40V48_4K] = "PA-bits:40, VA-bits:48, 4K pages",
+ [VM_MODE_P40V48_16K] = "PA-bits:40, VA-bits:48, 16K pages",
+ [VM_MODE_P40V48_64K] = "PA-bits:40, VA-bits:48, 64K pages",
+ [VM_MODE_PXXV48_4K] = "PA-bits:ANY, VA-bits:48, 4K pages",
+ [VM_MODE_P47V64_4K] = "PA-bits:47, VA-bits:64, 4K pages",
+ [VM_MODE_P44V64_4K] = "PA-bits:44, VA-bits:64, 4K pages",
+ [VM_MODE_P36V48_4K] = "PA-bits:36, VA-bits:48, 4K pages",
+ [VM_MODE_P36V48_16K] = "PA-bits:36, VA-bits:48, 16K pages",
+ [VM_MODE_P36V48_64K] = "PA-bits:36, VA-bits:48, 64K pages",
+ [VM_MODE_P36V47_16K] = "PA-bits:36, VA-bits:47, 16K pages",
+ };
+ _Static_assert(sizeof(strings)/sizeof(char *) == NUM_VM_MODES,
+ "Missing new mode strings?");
+
+ TEST_ASSERT(i < NUM_VM_MODES, "Guest mode ID %d too big", i);
+
+ return strings[i];
+}
+
+const struct vm_guest_mode_params vm_guest_mode_params[] = {
+ [VM_MODE_P52V48_4K] = { 52, 48, 0x1000, 12 },
+ [VM_MODE_P52V48_64K] = { 52, 48, 0x10000, 16 },
+ [VM_MODE_P48V48_4K] = { 48, 48, 0x1000, 12 },
+ [VM_MODE_P48V48_16K] = { 48, 48, 0x4000, 14 },
+ [VM_MODE_P48V48_64K] = { 48, 48, 0x10000, 16 },
+ [VM_MODE_P40V48_4K] = { 40, 48, 0x1000, 12 },
+ [VM_MODE_P40V48_16K] = { 40, 48, 0x4000, 14 },
+ [VM_MODE_P40V48_64K] = { 40, 48, 0x10000, 16 },
+ [VM_MODE_PXXV48_4K] = { 0, 0, 0x1000, 12 },
+ [VM_MODE_P47V64_4K] = { 47, 64, 0x1000, 12 },
+ [VM_MODE_P44V64_4K] = { 44, 64, 0x1000, 12 },
+ [VM_MODE_P36V48_4K] = { 36, 48, 0x1000, 12 },
+ [VM_MODE_P36V48_16K] = { 36, 48, 0x4000, 14 },
+ [VM_MODE_P36V48_64K] = { 36, 48, 0x10000, 16 },
+ [VM_MODE_P36V47_16K] = { 36, 47, 0x4000, 14 },
+};
+_Static_assert(sizeof(vm_guest_mode_params)/sizeof(struct vm_guest_mode_params) == NUM_VM_MODES,
+ "Missing new mode params?");
+
+struct kvm_vm *____vm_create(enum vm_guest_mode mode, uint64_t nr_pages)
+{
+ struct kvm_vm *vm;
+
+ pr_debug("%s: mode='%s' pages='%ld'\n", __func__,
+ vm_guest_mode_string(mode), nr_pages);
+
+ vm = calloc(1, sizeof(*vm));
+ TEST_ASSERT(vm != NULL, "Insufficient Memory");
+
+ INIT_LIST_HEAD(&vm->vcpus);
+ vm->regions.gpa_tree = RB_ROOT;
+ vm->regions.hva_tree = RB_ROOT;
+ hash_init(vm->regions.slot_hash);
+
+ vm->mode = mode;
+ vm->type = 0;
+
+ vm->pa_bits = vm_guest_mode_params[mode].pa_bits;
+ vm->va_bits = vm_guest_mode_params[mode].va_bits;
+ vm->page_size = vm_guest_mode_params[mode].page_size;
+ vm->page_shift = vm_guest_mode_params[mode].page_shift;
+
+ /* Setup mode specific traits. */
+ switch (vm->mode) {
+ case VM_MODE_P52V48_4K:
+ vm->pgtable_levels = 4;
+ break;
+ case VM_MODE_P52V48_64K:
+ vm->pgtable_levels = 3;
+ break;
+ case VM_MODE_P48V48_4K:
+ vm->pgtable_levels = 4;
+ break;
+ case VM_MODE_P48V48_64K:
+ vm->pgtable_levels = 3;
+ break;
+ case VM_MODE_P40V48_4K:
+ case VM_MODE_P36V48_4K:
+ vm->pgtable_levels = 4;
+ break;
+ case VM_MODE_P40V48_64K:
+ case VM_MODE_P36V48_64K:
+ vm->pgtable_levels = 3;
+ break;
+ case VM_MODE_P48V48_16K:
+ case VM_MODE_P40V48_16K:
+ case VM_MODE_P36V48_16K:
+ vm->pgtable_levels = 4;
+ break;
+ case VM_MODE_P36V47_16K:
+ vm->pgtable_levels = 3;
+ break;
+ case VM_MODE_PXXV48_4K:
+#ifdef __x86_64__
+ kvm_get_cpu_address_width(&vm->pa_bits, &vm->va_bits);
+ /*
+ * Ignore KVM support for 5-level paging (vm->va_bits == 57),
+ * it doesn't take effect unless a CR4.LA57 is set, which it
+ * isn't for this VM_MODE.
+ */
+ TEST_ASSERT(vm->va_bits == 48 || vm->va_bits == 57,
+ "Linear address width (%d bits) not supported",
+ vm->va_bits);
+ pr_debug("Guest physical address width detected: %d\n",
+ vm->pa_bits);
+ vm->pgtable_levels = 4;
+ vm->va_bits = 48;
+#else
+ TEST_FAIL("VM_MODE_PXXV48_4K not supported on non-x86 platforms");
+#endif
+ break;
+ case VM_MODE_P47V64_4K:
+ vm->pgtable_levels = 5;
+ break;
+ case VM_MODE_P44V64_4K:
+ vm->pgtable_levels = 5;
+ break;
+ default:
+ TEST_FAIL("Unknown guest mode, mode: 0x%x", mode);
+ }
+
+#ifdef __aarch64__
+ if (vm->pa_bits != 40)
+ vm->type = KVM_VM_TYPE_ARM_IPA_SIZE(vm->pa_bits);
+#endif
+
+ vm_open(vm);
+
+ /* Limit to VA-bit canonical virtual addresses. */
+ vm->vpages_valid = sparsebit_alloc();
+ sparsebit_set_num(vm->vpages_valid,
+ 0, (1ULL << (vm->va_bits - 1)) >> vm->page_shift);
+ sparsebit_set_num(vm->vpages_valid,
+ (~((1ULL << (vm->va_bits - 1)) - 1)) >> vm->page_shift,
+ (1ULL << (vm->va_bits - 1)) >> vm->page_shift);
+
+ /* Limit physical addresses to PA-bits. */
+ vm->max_gfn = vm_compute_max_gfn(vm);
+
+ /* Allocate and setup memory for guest. */
+ vm->vpages_mapped = sparsebit_alloc();
+ if (nr_pages != 0)
+ vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS,
+ 0, 0, nr_pages, 0);
+
+ return vm;
+}
+
+static uint64_t vm_nr_pages_required(enum vm_guest_mode mode,
+ uint32_t nr_runnable_vcpus,
+ uint64_t extra_mem_pages)
+{
+ uint64_t nr_pages;
+
+ TEST_ASSERT(nr_runnable_vcpus,
+ "Use vm_create_barebones() for VMs that _never_ have vCPUs\n");
+
+ TEST_ASSERT(nr_runnable_vcpus <= kvm_check_cap(KVM_CAP_MAX_VCPUS),
+ "nr_vcpus = %d too large for host, max-vcpus = %d",
+ nr_runnable_vcpus, kvm_check_cap(KVM_CAP_MAX_VCPUS));
+
+ /*
+ * Arbitrarily allocate 512 pages (2mb when page size is 4kb) for the
+ * test code and other per-VM assets that will be loaded into memslot0.
+ */
+ nr_pages = 512;
+
+ /* Account for the per-vCPU stacks on behalf of the test. */
+ nr_pages += nr_runnable_vcpus * DEFAULT_STACK_PGS;
+
+ /*
+ * Account for the number of pages needed for the page tables. The
+ * maximum page table size for a memory region will be when the
+ * smallest page size is used. Considering each page contains x page
+ * table descriptors, the total extra size for page tables (for extra
+ * N pages) will be: N/x+N/x^2+N/x^3+... which is definitely smaller
+ * than N/x*2.
+ */
+ nr_pages += (nr_pages + extra_mem_pages) / PTES_PER_MIN_PAGE * 2;
+
+ return vm_adjust_num_guest_pages(mode, nr_pages);
+}
+
+struct kvm_vm *__vm_create(enum vm_guest_mode mode, uint32_t nr_runnable_vcpus,
+ uint64_t nr_extra_pages)
+{
+ uint64_t nr_pages = vm_nr_pages_required(mode, nr_runnable_vcpus,
+ nr_extra_pages);
+ struct kvm_vm *vm;
+
+ vm = ____vm_create(mode, nr_pages);
+
+ kvm_vm_elf_load(vm, program_invocation_name);
+
+#ifdef __x86_64__
+ vm_create_irqchip(vm);
+#endif
+ return vm;
+}
+
+/*
+ * VM Create with customized parameters
+ *
+ * Input Args:
+ * mode - VM Mode (e.g. VM_MODE_P52V48_4K)
+ * nr_vcpus - VCPU count
+ * extra_mem_pages - Non-slot0 physical memory total size
+ * guest_code - Guest entry point
+ * vcpuids - VCPU IDs
+ *
+ * Output Args: None
+ *
+ * Return:
+ * Pointer to opaque structure that describes the created VM.
+ *
+ * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K).
+ * extra_mem_pages is only used to calculate the maximum page table size,
+ * no real memory allocation for non-slot0 memory in this function.
+ */
+struct kvm_vm *__vm_create_with_vcpus(enum vm_guest_mode mode, uint32_t nr_vcpus,
+ uint64_t extra_mem_pages,
+ void *guest_code, struct kvm_vcpu *vcpus[])
+{
+ struct kvm_vm *vm;
+ int i;
+
+ TEST_ASSERT(!nr_vcpus || vcpus, "Must provide vCPU array");
+
+ vm = __vm_create(mode, nr_vcpus, extra_mem_pages);
+
+ for (i = 0; i < nr_vcpus; ++i)
+ vcpus[i] = vm_vcpu_add(vm, i, guest_code);
+
+ return vm;
+}
+
+struct kvm_vm *__vm_create_with_one_vcpu(struct kvm_vcpu **vcpu,
+ uint64_t extra_mem_pages,
+ void *guest_code)
+{
+ struct kvm_vcpu *vcpus[1];
+ struct kvm_vm *vm;
+
+ vm = __vm_create_with_vcpus(VM_MODE_DEFAULT, 1, extra_mem_pages,
+ guest_code, vcpus);
+
+ *vcpu = vcpus[0];
+ return vm;
+}
+
+/*
+ * VM Restart
+ *
+ * Input Args:
+ * vm - VM that has been released before
+ *
+ * Output Args: None
+ *
+ * Reopens the file descriptors associated to the VM and reinstates the
+ * global state, such as the irqchip and the memory regions that are mapped
+ * into the guest.
+ */
+void kvm_vm_restart(struct kvm_vm *vmp)
+{
+ int ctr;
+ struct userspace_mem_region *region;
+
+ vm_open(vmp);
+ if (vmp->has_irqchip)
+ vm_create_irqchip(vmp);
+
+ hash_for_each(vmp->regions.slot_hash, ctr, region, slot_node) {
+ int ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
+ TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
+ " rc: %i errno: %i\n"
+ " slot: %u flags: 0x%x\n"
+ " guest_phys_addr: 0x%llx size: 0x%llx",
+ ret, errno, region->region.slot,
+ region->region.flags,
+ region->region.guest_phys_addr,
+ region->region.memory_size);
+ }
+}
+
+__weak struct kvm_vcpu *vm_arch_vcpu_recreate(struct kvm_vm *vm,
+ uint32_t vcpu_id)
+{
+ return __vm_vcpu_add(vm, vcpu_id);
+}
+
+struct kvm_vcpu *vm_recreate_with_one_vcpu(struct kvm_vm *vm)
+{
+ kvm_vm_restart(vm);
+
+ return vm_vcpu_recreate(vm, 0);
+}
+
+/*
+ * Userspace Memory Region Find
+ *
+ * Input Args:
+ * vm - Virtual Machine
+ * start - Starting VM physical address
+ * end - Ending VM physical address, inclusive.
+ *
+ * Output Args: None
+ *
+ * Return:
+ * Pointer to overlapping region, NULL if no such region.
+ *
+ * Searches for a region with any physical memory that overlaps with
+ * any portion of the guest physical addresses from start to end
+ * inclusive. If multiple overlapping regions exist, a pointer to any
+ * of the regions is returned. Null is returned only when no overlapping
+ * region exists.
+ */
+static struct userspace_mem_region *
+userspace_mem_region_find(struct kvm_vm *vm, uint64_t start, uint64_t end)
+{
+ struct rb_node *node;
+
+ for (node = vm->regions.gpa_tree.rb_node; node; ) {
+ struct userspace_mem_region *region =
+ container_of(node, struct userspace_mem_region, gpa_node);
+ uint64_t existing_start = region->region.guest_phys_addr;
+ uint64_t existing_end = region->region.guest_phys_addr
+ + region->region.memory_size - 1;
+ if (start <= existing_end && end >= existing_start)
+ return region;
+
+ if (start < existing_start)
+ node = node->rb_left;
+ else
+ node = node->rb_right;
+ }
+
+ return NULL;
+}
+
+/*
+ * KVM Userspace Memory Region Find
+ *
+ * Input Args:
+ * vm - Virtual Machine
+ * start - Starting VM physical address
+ * end - Ending VM physical address, inclusive.
+ *
+ * Output Args: None
+ *
+ * Return:
+ * Pointer to overlapping region, NULL if no such region.
+ *
+ * Public interface to userspace_mem_region_find. Allows tests to look up
+ * the memslot datastructure for a given range of guest physical memory.
+ */
+struct kvm_userspace_memory_region *
+kvm_userspace_memory_region_find(struct kvm_vm *vm, uint64_t start,
+ uint64_t end)
+{
+ struct userspace_mem_region *region;
+
+ region = userspace_mem_region_find(vm, start, end);
+ if (!region)
+ return NULL;
+
+ return &region->region;
+}
+
+__weak void vcpu_arch_free(struct kvm_vcpu *vcpu)
+{
+
+}
+
+/*
+ * VM VCPU Remove
+ *
+ * Input Args:
+ * vcpu - VCPU to remove
+ *
+ * Output Args: None
+ *
+ * Return: None, TEST_ASSERT failures for all error conditions
+ *
+ * Removes a vCPU from a VM and frees its resources.
+ */
+static void vm_vcpu_rm(struct kvm_vm *vm, struct kvm_vcpu *vcpu)
+{
+ int ret;
+
+ if (vcpu->dirty_gfns) {
+ ret = munmap(vcpu->dirty_gfns, vm->dirty_ring_size);
+ TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
+ vcpu->dirty_gfns = NULL;
+ }
+
+ ret = munmap(vcpu->run, vcpu_mmap_sz());
+ TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
+
+ ret = close(vcpu->fd);
+ TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("close()", ret));
+
+ list_del(&vcpu->list);
+
+ vcpu_arch_free(vcpu);
+ free(vcpu);
+}
+
+void kvm_vm_release(struct kvm_vm *vmp)
+{
+ struct kvm_vcpu *vcpu, *tmp;
+ int ret;
+
+ list_for_each_entry_safe(vcpu, tmp, &vmp->vcpus, list)
+ vm_vcpu_rm(vmp, vcpu);
+
+ ret = close(vmp->fd);
+ TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("close()", ret));
+
+ ret = close(vmp->kvm_fd);
+ TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("close()", ret));
+}
+
+static void __vm_mem_region_delete(struct kvm_vm *vm,
+ struct userspace_mem_region *region,
+ bool unlink)
+{
+ int ret;
+
+ if (unlink) {
+ rb_erase(&region->gpa_node, &vm->regions.gpa_tree);
+ rb_erase(&region->hva_node, &vm->regions.hva_tree);
+ hash_del(&region->slot_node);
+ }
+
+ region->region.memory_size = 0;
+ vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION, &region->region);
+
+ sparsebit_free(&region->unused_phy_pages);
+ ret = munmap(region->mmap_start, region->mmap_size);
+ TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
+
+ free(region);
+}
+
+/*
+ * Destroys and frees the VM pointed to by vmp.
+ */
+void kvm_vm_free(struct kvm_vm *vmp)
+{
+ int ctr;
+ struct hlist_node *node;
+ struct userspace_mem_region *region;
+
+ if (vmp == NULL)
+ return;
+
+ /* Free cached stats metadata and close FD */
+ if (vmp->stats_fd) {
+ free(vmp->stats_desc);
+ close(vmp->stats_fd);
+ }
+
+ /* Free userspace_mem_regions. */
+ hash_for_each_safe(vmp->regions.slot_hash, ctr, node, region, slot_node)
+ __vm_mem_region_delete(vmp, region, false);
+
+ /* Free sparsebit arrays. */
+ sparsebit_free(&vmp->vpages_valid);
+ sparsebit_free(&vmp->vpages_mapped);
+
+ kvm_vm_release(vmp);
+
+ /* Free the structure describing the VM. */
+ free(vmp);
+}
+
+int kvm_memfd_alloc(size_t size, bool hugepages)
+{
+ int memfd_flags = MFD_CLOEXEC;
+ int fd, r;
+
+ if (hugepages)
+ memfd_flags |= MFD_HUGETLB;
+
+ fd = memfd_create("kvm_selftest", memfd_flags);
+ TEST_ASSERT(fd != -1, __KVM_SYSCALL_ERROR("memfd_create()", fd));
+
+ r = ftruncate(fd, size);
+ TEST_ASSERT(!r, __KVM_SYSCALL_ERROR("ftruncate()", r));
+
+ r = fallocate(fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 0, size);
+ TEST_ASSERT(!r, __KVM_SYSCALL_ERROR("fallocate()", r));
+
+ return fd;
+}
+
+/*
+ * Memory Compare, host virtual to guest virtual
+ *
+ * Input Args:
+ * hva - Starting host virtual address
+ * vm - Virtual Machine
+ * gva - Starting guest virtual address
+ * len - number of bytes to compare
+ *
+ * Output Args: None
+ *
+ * Input/Output Args: None
+ *
+ * Return:
+ * Returns 0 if the bytes starting at hva for a length of len
+ * are equal the guest virtual bytes starting at gva. Returns
+ * a value < 0, if bytes at hva are less than those at gva.
+ * Otherwise a value > 0 is returned.
+ *
+ * Compares the bytes starting at the host virtual address hva, for
+ * a length of len, to the guest bytes starting at the guest virtual
+ * address given by gva.
+ */
+int kvm_memcmp_hva_gva(void *hva, struct kvm_vm *vm, vm_vaddr_t gva, size_t len)
+{
+ size_t amt;
+
+ /*
+ * Compare a batch of bytes until either a match is found
+ * or all the bytes have been compared.
+ */
+ for (uintptr_t offset = 0; offset < len; offset += amt) {
+ uintptr_t ptr1 = (uintptr_t)hva + offset;
+
+ /*
+ * Determine host address for guest virtual address
+ * at offset.
+ */
+ uintptr_t ptr2 = (uintptr_t)addr_gva2hva(vm, gva + offset);
+
+ /*
+ * Determine amount to compare on this pass.
+ * Don't allow the comparsion to cross a page boundary.
+ */
+ amt = len - offset;
+ if ((ptr1 >> vm->page_shift) != ((ptr1 + amt) >> vm->page_shift))
+ amt = vm->page_size - (ptr1 % vm->page_size);
+ if ((ptr2 >> vm->page_shift) != ((ptr2 + amt) >> vm->page_shift))
+ amt = vm->page_size - (ptr2 % vm->page_size);
+
+ assert((ptr1 >> vm->page_shift) == ((ptr1 + amt - 1) >> vm->page_shift));
+ assert((ptr2 >> vm->page_shift) == ((ptr2 + amt - 1) >> vm->page_shift));
+
+ /*
+ * Perform the comparison. If there is a difference
+ * return that result to the caller, otherwise need
+ * to continue on looking for a mismatch.
+ */
+ int ret = memcmp((void *)ptr1, (void *)ptr2, amt);
+ if (ret != 0)
+ return ret;
+ }
+
+ /*
+ * No mismatch found. Let the caller know the two memory
+ * areas are equal.
+ */
+ return 0;
+}
+
+static void vm_userspace_mem_region_gpa_insert(struct rb_root *gpa_tree,
+ struct userspace_mem_region *region)
+{
+ struct rb_node **cur, *parent;
+
+ for (cur = &gpa_tree->rb_node, parent = NULL; *cur; ) {
+ struct userspace_mem_region *cregion;
+
+ cregion = container_of(*cur, typeof(*cregion), gpa_node);
+ parent = *cur;
+ if (region->region.guest_phys_addr <
+ cregion->region.guest_phys_addr)
+ cur = &(*cur)->rb_left;
+ else {
+ TEST_ASSERT(region->region.guest_phys_addr !=
+ cregion->region.guest_phys_addr,
+ "Duplicate GPA in region tree");
+
+ cur = &(*cur)->rb_right;
+ }
+ }
+
+ rb_link_node(&region->gpa_node, parent, cur);
+ rb_insert_color(&region->gpa_node, gpa_tree);
+}
+
+static void vm_userspace_mem_region_hva_insert(struct rb_root *hva_tree,
+ struct userspace_mem_region *region)
+{
+ struct rb_node **cur, *parent;
+
+ for (cur = &hva_tree->rb_node, parent = NULL; *cur; ) {
+ struct userspace_mem_region *cregion;
+
+ cregion = container_of(*cur, typeof(*cregion), hva_node);
+ parent = *cur;
+ if (region->host_mem < cregion->host_mem)
+ cur = &(*cur)->rb_left;
+ else {
+ TEST_ASSERT(region->host_mem !=
+ cregion->host_mem,
+ "Duplicate HVA in region tree");
+
+ cur = &(*cur)->rb_right;
+ }
+ }
+
+ rb_link_node(&region->hva_node, parent, cur);
+ rb_insert_color(&region->hva_node, hva_tree);
+}
+
+
+int __vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
+ uint64_t gpa, uint64_t size, void *hva)
+{
+ struct kvm_userspace_memory_region region = {
+ .slot = slot,
+ .flags = flags,
+ .guest_phys_addr = gpa,
+ .memory_size = size,
+ .userspace_addr = (uintptr_t)hva,
+ };
+
+ return ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region);
+}
+
+void vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
+ uint64_t gpa, uint64_t size, void *hva)
+{
+ int ret = __vm_set_user_memory_region(vm, slot, flags, gpa, size, hva);
+
+ TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION failed, errno = %d (%s)",
+ errno, strerror(errno));
+}
+
+/*
+ * VM Userspace Memory Region Add
+ *
+ * Input Args:
+ * vm - Virtual Machine
+ * src_type - Storage source for this region.
+ * NULL to use anonymous memory.
+ * guest_paddr - Starting guest physical address
+ * slot - KVM region slot
+ * npages - Number of physical pages
+ * flags - KVM memory region flags (e.g. KVM_MEM_LOG_DIRTY_PAGES)
+ *
+ * Output Args: None
+ *
+ * Return: None
+ *
+ * Allocates a memory area of the number of pages specified by npages
+ * and maps it to the VM specified by vm, at a starting physical address
+ * given by guest_paddr. The region is created with a KVM region slot
+ * given by slot, which must be unique and < KVM_MEM_SLOTS_NUM. The
+ * region is created with the flags given by flags.
+ */
+void vm_userspace_mem_region_add(struct kvm_vm *vm,
+ enum vm_mem_backing_src_type src_type,
+ uint64_t guest_paddr, uint32_t slot, uint64_t npages,
+ uint32_t flags)
+{
+ int ret;
+ struct userspace_mem_region *region;
+ size_t backing_src_pagesz = get_backing_src_pagesz(src_type);
+ size_t alignment;
+
+ TEST_ASSERT(vm_adjust_num_guest_pages(vm->mode, npages) == npages,
+ "Number of guest pages is not compatible with the host. "
+ "Try npages=%d", vm_adjust_num_guest_pages(vm->mode, npages));
+
+ TEST_ASSERT((guest_paddr % vm->page_size) == 0, "Guest physical "
+ "address not on a page boundary.\n"
+ " guest_paddr: 0x%lx vm->page_size: 0x%x",
+ guest_paddr, vm->page_size);
+ TEST_ASSERT((((guest_paddr >> vm->page_shift) + npages) - 1)
+ <= vm->max_gfn, "Physical range beyond maximum "
+ "supported physical address,\n"
+ " guest_paddr: 0x%lx npages: 0x%lx\n"
+ " vm->max_gfn: 0x%lx vm->page_size: 0x%x",
+ guest_paddr, npages, vm->max_gfn, vm->page_size);
+
+ /*
+ * Confirm a mem region with an overlapping address doesn't
+ * already exist.
+ */
+ region = (struct userspace_mem_region *) userspace_mem_region_find(
+ vm, guest_paddr, (guest_paddr + npages * vm->page_size) - 1);
+ if (region != NULL)
+ TEST_FAIL("overlapping userspace_mem_region already "
+ "exists\n"
+ " requested guest_paddr: 0x%lx npages: 0x%lx "
+ "page_size: 0x%x\n"
+ " existing guest_paddr: 0x%lx size: 0x%lx",
+ guest_paddr, npages, vm->page_size,
+ (uint64_t) region->region.guest_phys_addr,
+ (uint64_t) region->region.memory_size);
+
+ /* Confirm no region with the requested slot already exists. */
+ hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
+ slot) {
+ if (region->region.slot != slot)
+ continue;
+
+ TEST_FAIL("A mem region with the requested slot "
+ "already exists.\n"
+ " requested slot: %u paddr: 0x%lx npages: 0x%lx\n"
+ " existing slot: %u paddr: 0x%lx size: 0x%lx",
+ slot, guest_paddr, npages,
+ region->region.slot,
+ (uint64_t) region->region.guest_phys_addr,
+ (uint64_t) region->region.memory_size);
+ }
+
+ /* Allocate and initialize new mem region structure. */
+ region = calloc(1, sizeof(*region));
+ TEST_ASSERT(region != NULL, "Insufficient Memory");
+ region->mmap_size = npages * vm->page_size;
+
+#ifdef __s390x__
+ /* On s390x, the host address must be aligned to 1M (due to PGSTEs) */
+ alignment = 0x100000;
+#else
+ alignment = 1;
+#endif
+
+ /*
+ * When using THP mmap is not guaranteed to returned a hugepage aligned
+ * address so we have to pad the mmap. Padding is not needed for HugeTLB
+ * because mmap will always return an address aligned to the HugeTLB
+ * page size.
+ */
+ if (src_type == VM_MEM_SRC_ANONYMOUS_THP)
+ alignment = max(backing_src_pagesz, alignment);
+
+ ASSERT_EQ(guest_paddr, align_up(guest_paddr, backing_src_pagesz));
+
+ /* Add enough memory to align up if necessary */
+ if (alignment > 1)
+ region->mmap_size += alignment;
+
+ region->fd = -1;
+ if (backing_src_is_shared(src_type))
+ region->fd = kvm_memfd_alloc(region->mmap_size,
+ src_type == VM_MEM_SRC_SHARED_HUGETLB);
+
+ region->mmap_start = mmap(NULL, region->mmap_size,
+ PROT_READ | PROT_WRITE,
+ vm_mem_backing_src_alias(src_type)->flag,
+ region->fd, 0);
+ TEST_ASSERT(region->mmap_start != MAP_FAILED,
+ __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED));
+
+ TEST_ASSERT(!is_backing_src_hugetlb(src_type) ||
+ region->mmap_start == align_ptr_up(region->mmap_start, backing_src_pagesz),
+ "mmap_start %p is not aligned to HugeTLB page size 0x%lx",
+ region->mmap_start, backing_src_pagesz);
+
+ /* Align host address */
+ region->host_mem = align_ptr_up(region->mmap_start, alignment);
+
+ /* As needed perform madvise */
+ if ((src_type == VM_MEM_SRC_ANONYMOUS ||
+ src_type == VM_MEM_SRC_ANONYMOUS_THP) && thp_configured()) {
+ ret = madvise(region->host_mem, npages * vm->page_size,
+ src_type == VM_MEM_SRC_ANONYMOUS ? MADV_NOHUGEPAGE : MADV_HUGEPAGE);
+ TEST_ASSERT(ret == 0, "madvise failed, addr: %p length: 0x%lx src_type: %s",
+ region->host_mem, npages * vm->page_size,
+ vm_mem_backing_src_alias(src_type)->name);
+ }
+
+ region->unused_phy_pages = sparsebit_alloc();
+ sparsebit_set_num(region->unused_phy_pages,
+ guest_paddr >> vm->page_shift, npages);
+ region->region.slot = slot;
+ region->region.flags = flags;
+ region->region.guest_phys_addr = guest_paddr;
+ region->region.memory_size = npages * vm->page_size;
+ region->region.userspace_addr = (uintptr_t) region->host_mem;
+ ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION, &region->region);
+ TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
+ " rc: %i errno: %i\n"
+ " slot: %u flags: 0x%x\n"
+ " guest_phys_addr: 0x%lx size: 0x%lx",
+ ret, errno, slot, flags,
+ guest_paddr, (uint64_t) region->region.memory_size);
+
+ /* Add to quick lookup data structures */
+ vm_userspace_mem_region_gpa_insert(&vm->regions.gpa_tree, region);
+ vm_userspace_mem_region_hva_insert(&vm->regions.hva_tree, region);
+ hash_add(vm->regions.slot_hash, &region->slot_node, slot);
+
+ /* If shared memory, create an alias. */
+ if (region->fd >= 0) {
+ region->mmap_alias = mmap(NULL, region->mmap_size,
+ PROT_READ | PROT_WRITE,
+ vm_mem_backing_src_alias(src_type)->flag,
+ region->fd, 0);
+ TEST_ASSERT(region->mmap_alias != MAP_FAILED,
+ __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED));
+
+ /* Align host alias address */
+ region->host_alias = align_ptr_up(region->mmap_alias, alignment);
+ }
+}
+
+/*
+ * Memslot to region
+ *
+ * Input Args:
+ * vm - Virtual Machine
+ * memslot - KVM memory slot ID
+ *
+ * Output Args: None
+ *
+ * Return:
+ * Pointer to memory region structure that describe memory region
+ * using kvm memory slot ID given by memslot. TEST_ASSERT failure
+ * on error (e.g. currently no memory region using memslot as a KVM
+ * memory slot ID).
+ */
+struct userspace_mem_region *
+memslot2region(struct kvm_vm *vm, uint32_t memslot)
+{
+ struct userspace_mem_region *region;
+
+ hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
+ memslot)
+ if (region->region.slot == memslot)
+ return region;
+
+ fprintf(stderr, "No mem region with the requested slot found,\n"
+ " requested slot: %u\n", memslot);
+ fputs("---- vm dump ----\n", stderr);
+ vm_dump(stderr, vm, 2);
+ TEST_FAIL("Mem region not found");
+ return NULL;
+}
+
+/*
+ * VM Memory Region Flags Set
+ *
+ * Input Args:
+ * vm - Virtual Machine
+ * flags - Starting guest physical address
+ *
+ * Output Args: None
+ *
+ * Return: None
+ *
+ * Sets the flags of the memory region specified by the value of slot,
+ * to the values given by flags.
+ */
+void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags)
+{
+ int ret;
+ struct userspace_mem_region *region;
+
+ region = memslot2region(vm, slot);
+
+ region->region.flags = flags;
+
+ ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION, &region->region);
+
+ TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
+ " rc: %i errno: %i slot: %u flags: 0x%x",
+ ret, errno, slot, flags);
+}
+
+/*
+ * VM Memory Region Move
+ *
+ * Input Args:
+ * vm - Virtual Machine
+ * slot - Slot of the memory region to move
+ * new_gpa - Starting guest physical address
+ *
+ * Output Args: None
+ *
+ * Return: None
+ *
+ * Change the gpa of a memory region.
+ */
+void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa)
+{
+ struct userspace_mem_region *region;
+ int ret;
+
+ region = memslot2region(vm, slot);
+
+ region->region.guest_phys_addr = new_gpa;
+
+ ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION, &region->region);
+
+ TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION failed\n"
+ "ret: %i errno: %i slot: %u new_gpa: 0x%lx",
+ ret, errno, slot, new_gpa);
+}
+
+/*
+ * VM Memory Region Delete
+ *
+ * Input Args:
+ * vm - Virtual Machine
+ * slot - Slot of the memory region to delete
+ *
+ * Output Args: None
+ *
+ * Return: None
+ *
+ * Delete a memory region.
+ */
+void vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot)
+{
+ __vm_mem_region_delete(vm, memslot2region(vm, slot), true);
+}
+
+/* Returns the size of a vCPU's kvm_run structure. */
+static int vcpu_mmap_sz(void)
+{
+ int dev_fd, ret;
+
+ dev_fd = open_kvm_dev_path_or_exit();
+
+ ret = ioctl(dev_fd, KVM_GET_VCPU_MMAP_SIZE, NULL);
+ TEST_ASSERT(ret >= sizeof(struct kvm_run),
+ KVM_IOCTL_ERROR(KVM_GET_VCPU_MMAP_SIZE, ret));
+
+ close(dev_fd);
+
+ return ret;
+}
+
+static bool vcpu_exists(struct kvm_vm *vm, uint32_t vcpu_id)
+{
+ struct kvm_vcpu *vcpu;
+
+ list_for_each_entry(vcpu, &vm->vcpus, list) {
+ if (vcpu->id == vcpu_id)
+ return true;
+ }
+
+ return false;
+}
+
+/*
+ * Adds a virtual CPU to the VM specified by vm with the ID given by vcpu_id.
+ * No additional vCPU setup is done. Returns the vCPU.
+ */
+struct kvm_vcpu *__vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id)
+{
+ struct kvm_vcpu *vcpu;
+
+ /* Confirm a vcpu with the specified id doesn't already exist. */
+ TEST_ASSERT(!vcpu_exists(vm, vcpu_id), "vCPU%d already exists\n", vcpu_id);
+
+ /* Allocate and initialize new vcpu structure. */
+ vcpu = calloc(1, sizeof(*vcpu));
+ TEST_ASSERT(vcpu != NULL, "Insufficient Memory");
+
+ vcpu->vm = vm;
+ vcpu->id = vcpu_id;
+ vcpu->fd = __vm_ioctl(vm, KVM_CREATE_VCPU, (void *)(unsigned long)vcpu_id);
+ TEST_ASSERT(vcpu->fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_VCPU, vcpu->fd));
+
+ TEST_ASSERT(vcpu_mmap_sz() >= sizeof(*vcpu->run), "vcpu mmap size "
+ "smaller than expected, vcpu_mmap_sz: %i expected_min: %zi",
+ vcpu_mmap_sz(), sizeof(*vcpu->run));
+ vcpu->run = (struct kvm_run *) mmap(NULL, vcpu_mmap_sz(),
+ PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, 0);
+ TEST_ASSERT(vcpu->run != MAP_FAILED,
+ __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED));
+
+ /* Add to linked-list of VCPUs. */
+ list_add(&vcpu->list, &vm->vcpus);
+
+ return vcpu;
+}
+
+/*
+ * VM Virtual Address Unused Gap
+ *
+ * Input Args:
+ * vm - Virtual Machine
+ * sz - Size (bytes)
+ * vaddr_min - Minimum Virtual Address
+ *
+ * Output Args: None
+ *
+ * Return:
+ * Lowest virtual address at or below vaddr_min, with at least
+ * sz unused bytes. TEST_ASSERT failure if no area of at least
+ * size sz is available.
+ *
+ * Within the VM specified by vm, locates the lowest starting virtual
+ * address >= vaddr_min, that has at least sz unallocated bytes. A
+ * TEST_ASSERT failure occurs for invalid input or no area of at least
+ * sz unallocated bytes >= vaddr_min is available.
+ */
+static vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz,
+ vm_vaddr_t vaddr_min)
+{
+ uint64_t pages = (sz + vm->page_size - 1) >> vm->page_shift;
+
+ /* Determine lowest permitted virtual page index. */
+ uint64_t pgidx_start = (vaddr_min + vm->page_size - 1) >> vm->page_shift;
+ if ((pgidx_start * vm->page_size) < vaddr_min)
+ goto no_va_found;
+
+ /* Loop over section with enough valid virtual page indexes. */
+ if (!sparsebit_is_set_num(vm->vpages_valid,
+ pgidx_start, pages))
+ pgidx_start = sparsebit_next_set_num(vm->vpages_valid,
+ pgidx_start, pages);
+ do {
+ /*
+ * Are there enough unused virtual pages available at
+ * the currently proposed starting virtual page index.
+ * If not, adjust proposed starting index to next
+ * possible.
+ */
+ if (sparsebit_is_clear_num(vm->vpages_mapped,
+ pgidx_start, pages))
+ goto va_found;
+ pgidx_start = sparsebit_next_clear_num(vm->vpages_mapped,
+ pgidx_start, pages);
+ if (pgidx_start == 0)
+ goto no_va_found;
+
+ /*
+ * If needed, adjust proposed starting virtual address,
+ * to next range of valid virtual addresses.
+ */
+ if (!sparsebit_is_set_num(vm->vpages_valid,
+ pgidx_start, pages)) {
+ pgidx_start = sparsebit_next_set_num(
+ vm->vpages_valid, pgidx_start, pages);
+ if (pgidx_start == 0)
+ goto no_va_found;
+ }
+ } while (pgidx_start != 0);
+
+no_va_found:
+ TEST_FAIL("No vaddr of specified pages available, pages: 0x%lx", pages);
+
+ /* NOT REACHED */
+ return -1;
+
+va_found:
+ TEST_ASSERT(sparsebit_is_set_num(vm->vpages_valid,
+ pgidx_start, pages),
+ "Unexpected, invalid virtual page index range,\n"
+ " pgidx_start: 0x%lx\n"
+ " pages: 0x%lx",
+ pgidx_start, pages);
+ TEST_ASSERT(sparsebit_is_clear_num(vm->vpages_mapped,
+ pgidx_start, pages),
+ "Unexpected, pages already mapped,\n"
+ " pgidx_start: 0x%lx\n"
+ " pages: 0x%lx",
+ pgidx_start, pages);
+
+ return pgidx_start * vm->page_size;
+}
+
+/*
+ * VM Virtual Address Allocate
+ *
+ * Input Args:
+ * vm - Virtual Machine
+ * sz - Size in bytes
+ * vaddr_min - Minimum starting virtual address
+ *
+ * Output Args: None
+ *
+ * Return:
+ * Starting guest virtual address
+ *
+ * Allocates at least sz bytes within the virtual address space of the vm
+ * given by vm. The allocated bytes are mapped to a virtual address >=
+ * the address given by vaddr_min. Note that each allocation uses a
+ * a unique set of pages, with the minimum real allocation being at least
+ * a page.
+ */
+vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min)
+{
+ uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0);
+
+ virt_pgd_alloc(vm);
+ vm_paddr_t paddr = vm_phy_pages_alloc(vm, pages,
+ KVM_UTIL_MIN_PFN * vm->page_size, 0);
+
+ /*
+ * Find an unused range of virtual page addresses of at least
+ * pages in length.
+ */
+ vm_vaddr_t vaddr_start = vm_vaddr_unused_gap(vm, sz, vaddr_min);
+
+ /* Map the virtual pages. */
+ for (vm_vaddr_t vaddr = vaddr_start; pages > 0;
+ pages--, vaddr += vm->page_size, paddr += vm->page_size) {
+
+ virt_pg_map(vm, vaddr, paddr);
+
+ sparsebit_set(vm->vpages_mapped,
+ vaddr >> vm->page_shift);
+ }
+
+ return vaddr_start;
+}
+
+/*
+ * VM Virtual Address Allocate Pages
+ *
+ * Input Args:
+ * vm - Virtual Machine
+ *
+ * Output Args: None
+ *
+ * Return:
+ * Starting guest virtual address
+ *
+ * Allocates at least N system pages worth of bytes within the virtual address
+ * space of the vm.
+ */
+vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages)
+{
+ return vm_vaddr_alloc(vm, nr_pages * getpagesize(), KVM_UTIL_MIN_VADDR);
+}
+
+/*
+ * VM Virtual Address Allocate Page
+ *
+ * Input Args:
+ * vm - Virtual Machine
+ *
+ * Output Args: None
+ *
+ * Return:
+ * Starting guest virtual address
+ *
+ * Allocates at least one system page worth of bytes within the virtual address
+ * space of the vm.
+ */
+vm_vaddr_t vm_vaddr_alloc_page(struct kvm_vm *vm)
+{
+ return vm_vaddr_alloc_pages(vm, 1);
+}
+
+/*
+ * Map a range of VM virtual address to the VM's physical address
+ *
+ * Input Args:
+ * vm - Virtual Machine
+ * vaddr - Virtuall address to map
+ * paddr - VM Physical Address
+ * npages - The number of pages to map
+ *
+ * Output Args: None
+ *
+ * Return: None
+ *
+ * Within the VM given by @vm, creates a virtual translation for
+ * @npages starting at @vaddr to the page range starting at @paddr.
+ */
+void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
+ unsigned int npages)
+{
+ size_t page_size = vm->page_size;
+ size_t size = npages * page_size;
+
+ TEST_ASSERT(vaddr + size > vaddr, "Vaddr overflow");
+ TEST_ASSERT(paddr + size > paddr, "Paddr overflow");
+
+ while (npages--) {
+ virt_pg_map(vm, vaddr, paddr);
+ vaddr += page_size;
+ paddr += page_size;
+ }
+}
+
+/*
+ * Address VM Physical to Host Virtual
+ *
+ * Input Args:
+ * vm - Virtual Machine
+ * gpa - VM physical address
+ *
+ * Output Args: None
+ *
+ * Return:
+ * Equivalent host virtual address
+ *
+ * Locates the memory region containing the VM physical address given
+ * by gpa, within the VM given by vm. When found, the host virtual
+ * address providing the memory to the vm physical address is returned.
+ * A TEST_ASSERT failure occurs if no region containing gpa exists.
+ */
+void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa)
+{
+ struct userspace_mem_region *region;
+
+ region = userspace_mem_region_find(vm, gpa, gpa);
+ if (!region) {
+ TEST_FAIL("No vm physical memory at 0x%lx", gpa);
+ return NULL;
+ }
+
+ return (void *)((uintptr_t)region->host_mem
+ + (gpa - region->region.guest_phys_addr));
+}
+
+/*
+ * Address Host Virtual to VM Physical
+ *
+ * Input Args:
+ * vm - Virtual Machine
+ * hva - Host virtual address
+ *
+ * Output Args: None
+ *
+ * Return:
+ * Equivalent VM physical address
+ *
+ * Locates the memory region containing the host virtual address given
+ * by hva, within the VM given by vm. When found, the equivalent
+ * VM physical address is returned. A TEST_ASSERT failure occurs if no
+ * region containing hva exists.
+ */
+vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva)
+{
+ struct rb_node *node;
+
+ for (node = vm->regions.hva_tree.rb_node; node; ) {
+ struct userspace_mem_region *region =
+ container_of(node, struct userspace_mem_region, hva_node);
+
+ if (hva >= region->host_mem) {
+ if (hva <= (region->host_mem
+ + region->region.memory_size - 1))
+ return (vm_paddr_t)((uintptr_t)
+ region->region.guest_phys_addr
+ + (hva - (uintptr_t)region->host_mem));
+
+ node = node->rb_right;
+ } else
+ node = node->rb_left;
+ }
+
+ TEST_FAIL("No mapping to a guest physical address, hva: %p", hva);
+ return -1;
+}
+
+/*
+ * Address VM physical to Host Virtual *alias*.
+ *
+ * Input Args:
+ * vm - Virtual Machine
+ * gpa - VM physical address
+ *
+ * Output Args: None
+ *
+ * Return:
+ * Equivalent address within the host virtual *alias* area, or NULL
+ * (without failing the test) if the guest memory is not shared (so
+ * no alias exists).
+ *
+ * Create a writable, shared virtual=>physical alias for the specific GPA.
+ * The primary use case is to allow the host selftest to manipulate guest
+ * memory without mapping said memory in the guest's address space. And, for
+ * userfaultfd-based demand paging, to do so without triggering userfaults.
+ */
+void *addr_gpa2alias(struct kvm_vm *vm, vm_paddr_t gpa)
+{
+ struct userspace_mem_region *region;
+ uintptr_t offset;
+
+ region = userspace_mem_region_find(vm, gpa, gpa);
+ if (!region)
+ return NULL;
+
+ if (!region->host_alias)
+ return NULL;
+
+ offset = gpa - region->region.guest_phys_addr;
+ return (void *) ((uintptr_t) region->host_alias + offset);
+}
+
+/* Create an interrupt controller chip for the specified VM. */
+void vm_create_irqchip(struct kvm_vm *vm)
+{
+ vm_ioctl(vm, KVM_CREATE_IRQCHIP, NULL);
+
+ vm->has_irqchip = true;
+}
+
+int _vcpu_run(struct kvm_vcpu *vcpu)
+{
+ int rc;
+
+ do {
+ rc = __vcpu_run(vcpu);
+ } while (rc == -1 && errno == EINTR);
+
+ assert_on_unhandled_exception(vcpu);
+
+ return rc;
+}
+
+/*
+ * Invoke KVM_RUN on a vCPU until KVM returns something other than -EINTR.
+ * Assert if the KVM returns an error (other than -EINTR).
+ */
+void vcpu_run(struct kvm_vcpu *vcpu)
+{
+ int ret = _vcpu_run(vcpu);
+
+ TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_RUN, ret));
+}
+
+void vcpu_run_complete_io(struct kvm_vcpu *vcpu)
+{
+ int ret;
+
+ vcpu->run->immediate_exit = 1;
+ ret = __vcpu_run(vcpu);
+ vcpu->run->immediate_exit = 0;
+
+ TEST_ASSERT(ret == -1 && errno == EINTR,
+ "KVM_RUN IOCTL didn't exit immediately, rc: %i, errno: %i",
+ ret, errno);
+}
+
+/*
+ * Get the list of guest registers which are supported for
+ * KVM_GET_ONE_REG/KVM_SET_ONE_REG ioctls. Returns a kvm_reg_list pointer,
+ * it is the caller's responsibility to free the list.
+ */
+struct kvm_reg_list *vcpu_get_reg_list(struct kvm_vcpu *vcpu)
+{
+ struct kvm_reg_list reg_list_n = { .n = 0 }, *reg_list;
+ int ret;
+
+ ret = __vcpu_ioctl(vcpu, KVM_GET_REG_LIST, &reg_list_n);
+ TEST_ASSERT(ret == -1 && errno == E2BIG, "KVM_GET_REG_LIST n=0");
+
+ reg_list = calloc(1, sizeof(*reg_list) + reg_list_n.n * sizeof(__u64));
+ reg_list->n = reg_list_n.n;
+ vcpu_ioctl(vcpu, KVM_GET_REG_LIST, reg_list);
+ return reg_list;
+}
+
+void *vcpu_map_dirty_ring(struct kvm_vcpu *vcpu)
+{
+ uint32_t page_size = vcpu->vm->page_size;
+ uint32_t size = vcpu->vm->dirty_ring_size;
+
+ TEST_ASSERT(size > 0, "Should enable dirty ring first");
+
+ if (!vcpu->dirty_gfns) {
+ void *addr;
+
+ addr = mmap(NULL, size, PROT_READ, MAP_PRIVATE, vcpu->fd,
+ page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
+ TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped private");
+
+ addr = mmap(NULL, size, PROT_READ | PROT_EXEC, MAP_PRIVATE, vcpu->fd,
+ page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
+ TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped exec");
+
+ addr = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd,
+ page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
+ TEST_ASSERT(addr != MAP_FAILED, "Dirty ring map failed");
+
+ vcpu->dirty_gfns = addr;
+ vcpu->dirty_gfns_count = size / sizeof(struct kvm_dirty_gfn);
+ }
+
+ return vcpu->dirty_gfns;
+}
+
+/*
+ * Device Ioctl
+ */
+
+int __kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr)
+{
+ struct kvm_device_attr attribute = {
+ .group = group,
+ .attr = attr,
+ .flags = 0,
+ };
+
+ return ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute);
+}
+
+int __kvm_test_create_device(struct kvm_vm *vm, uint64_t type)
+{
+ struct kvm_create_device create_dev = {
+ .type = type,
+ .flags = KVM_CREATE_DEVICE_TEST,
+ };
+
+ return __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev);
+}
+
+int __kvm_create_device(struct kvm_vm *vm, uint64_t type)
+{
+ struct kvm_create_device create_dev = {
+ .type = type,
+ .fd = -1,
+ .flags = 0,
+ };
+ int err;
+
+ err = __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev);
+ TEST_ASSERT(err <= 0, "KVM_CREATE_DEVICE shouldn't return a positive value");
+ return err ? : create_dev.fd;
+}
+
+int __kvm_device_attr_get(int dev_fd, uint32_t group, uint64_t attr, void *val)
+{
+ struct kvm_device_attr kvmattr = {
+ .group = group,
+ .attr = attr,
+ .flags = 0,
+ .addr = (uintptr_t)val,
+ };
+
+ return __kvm_ioctl(dev_fd, KVM_GET_DEVICE_ATTR, &kvmattr);
+}
+
+int __kvm_device_attr_set(int dev_fd, uint32_t group, uint64_t attr, void *val)
+{
+ struct kvm_device_attr kvmattr = {
+ .group = group,
+ .attr = attr,
+ .flags = 0,
+ .addr = (uintptr_t)val,
+ };
+
+ return __kvm_ioctl(dev_fd, KVM_SET_DEVICE_ATTR, &kvmattr);
+}
+
+/*
+ * IRQ related functions.
+ */
+
+int _kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level)
+{
+ struct kvm_irq_level irq_level = {
+ .irq = irq,
+ .level = level,
+ };
+
+ return __vm_ioctl(vm, KVM_IRQ_LINE, &irq_level);
+}
+
+void kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level)
+{
+ int ret = _kvm_irq_line(vm, irq, level);
+
+ TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_IRQ_LINE, ret));
+}
+
+struct kvm_irq_routing *kvm_gsi_routing_create(void)
+{
+ struct kvm_irq_routing *routing;
+ size_t size;
+
+ size = sizeof(struct kvm_irq_routing);
+ /* Allocate space for the max number of entries: this wastes 196 KBs. */
+ size += KVM_MAX_IRQ_ROUTES * sizeof(struct kvm_irq_routing_entry);
+ routing = calloc(1, size);
+ assert(routing);
+
+ return routing;
+}
+
+void kvm_gsi_routing_irqchip_add(struct kvm_irq_routing *routing,
+ uint32_t gsi, uint32_t pin)
+{
+ int i;
+
+ assert(routing);
+ assert(routing->nr < KVM_MAX_IRQ_ROUTES);
+
+ i = routing->nr;
+ routing->entries[i].gsi = gsi;
+ routing->entries[i].type = KVM_IRQ_ROUTING_IRQCHIP;
+ routing->entries[i].flags = 0;
+ routing->entries[i].u.irqchip.irqchip = 0;
+ routing->entries[i].u.irqchip.pin = pin;
+ routing->nr++;
+}
+
+int _kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing)
+{
+ int ret;
+
+ assert(routing);
+ ret = __vm_ioctl(vm, KVM_SET_GSI_ROUTING, routing);
+ free(routing);
+
+ return ret;
+}
+
+void kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing)
+{
+ int ret;
+
+ ret = _kvm_gsi_routing_write(vm, routing);
+ TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_SET_GSI_ROUTING, ret));
+}
+
+/*
+ * VM Dump
+ *
+ * Input Args:
+ * vm - Virtual Machine
+ * indent - Left margin indent amount
+ *
+ * Output Args:
+ * stream - Output FILE stream
+ *
+ * Return: None
+ *
+ * Dumps the current state of the VM given by vm, to the FILE stream
+ * given by stream.
+ */
+void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
+{
+ int ctr;
+ struct userspace_mem_region *region;
+ struct kvm_vcpu *vcpu;
+
+ fprintf(stream, "%*smode: 0x%x\n", indent, "", vm->mode);
+ fprintf(stream, "%*sfd: %i\n", indent, "", vm->fd);
+ fprintf(stream, "%*spage_size: 0x%x\n", indent, "", vm->page_size);
+ fprintf(stream, "%*sMem Regions:\n", indent, "");
+ hash_for_each(vm->regions.slot_hash, ctr, region, slot_node) {
+ fprintf(stream, "%*sguest_phys: 0x%lx size: 0x%lx "
+ "host_virt: %p\n", indent + 2, "",
+ (uint64_t) region->region.guest_phys_addr,
+ (uint64_t) region->region.memory_size,
+ region->host_mem);
+ fprintf(stream, "%*sunused_phy_pages: ", indent + 2, "");
+ sparsebit_dump(stream, region->unused_phy_pages, 0);
+ }
+ fprintf(stream, "%*sMapped Virtual Pages:\n", indent, "");
+ sparsebit_dump(stream, vm->vpages_mapped, indent + 2);
+ fprintf(stream, "%*spgd_created: %u\n", indent, "",
+ vm->pgd_created);
+ if (vm->pgd_created) {
+ fprintf(stream, "%*sVirtual Translation Tables:\n",
+ indent + 2, "");
+ virt_dump(stream, vm, indent + 4);
+ }
+ fprintf(stream, "%*sVCPUs:\n", indent, "");
+
+ list_for_each_entry(vcpu, &vm->vcpus, list)
+ vcpu_dump(stream, vcpu, indent + 2);
+}
+
+/* Known KVM exit reasons */
+static struct exit_reason {
+ unsigned int reason;
+ const char *name;
+} exit_reasons_known[] = {
+ {KVM_EXIT_UNKNOWN, "UNKNOWN"},
+ {KVM_EXIT_EXCEPTION, "EXCEPTION"},
+ {KVM_EXIT_IO, "IO"},
+ {KVM_EXIT_HYPERCALL, "HYPERCALL"},
+ {KVM_EXIT_DEBUG, "DEBUG"},
+ {KVM_EXIT_HLT, "HLT"},
+ {KVM_EXIT_MMIO, "MMIO"},
+ {KVM_EXIT_IRQ_WINDOW_OPEN, "IRQ_WINDOW_OPEN"},
+ {KVM_EXIT_SHUTDOWN, "SHUTDOWN"},
+ {KVM_EXIT_FAIL_ENTRY, "FAIL_ENTRY"},
+ {KVM_EXIT_INTR, "INTR"},
+ {KVM_EXIT_SET_TPR, "SET_TPR"},
+ {KVM_EXIT_TPR_ACCESS, "TPR_ACCESS"},
+ {KVM_EXIT_S390_SIEIC, "S390_SIEIC"},
+ {KVM_EXIT_S390_RESET, "S390_RESET"},
+ {KVM_EXIT_DCR, "DCR"},
+ {KVM_EXIT_NMI, "NMI"},
+ {KVM_EXIT_INTERNAL_ERROR, "INTERNAL_ERROR"},
+ {KVM_EXIT_OSI, "OSI"},
+ {KVM_EXIT_PAPR_HCALL, "PAPR_HCALL"},
+ {KVM_EXIT_DIRTY_RING_FULL, "DIRTY_RING_FULL"},
+ {KVM_EXIT_X86_RDMSR, "RDMSR"},
+ {KVM_EXIT_X86_WRMSR, "WRMSR"},
+ {KVM_EXIT_XEN, "XEN"},
+#ifdef KVM_EXIT_MEMORY_NOT_PRESENT
+ {KVM_EXIT_MEMORY_NOT_PRESENT, "MEMORY_NOT_PRESENT"},
+#endif
+};
+
+/*
+ * Exit Reason String
+ *
+ * Input Args:
+ * exit_reason - Exit reason
+ *
+ * Output Args: None
+ *
+ * Return:
+ * Constant string pointer describing the exit reason.
+ *
+ * Locates and returns a constant string that describes the KVM exit
+ * reason given by exit_reason. If no such string is found, a constant
+ * string of "Unknown" is returned.
+ */
+const char *exit_reason_str(unsigned int exit_reason)
+{
+ unsigned int n1;
+
+ for (n1 = 0; n1 < ARRAY_SIZE(exit_reasons_known); n1++) {
+ if (exit_reason == exit_reasons_known[n1].reason)
+ return exit_reasons_known[n1].name;
+ }
+
+ return "Unknown";
+}
+
+/*
+ * Physical Contiguous Page Allocator
+ *
+ * Input Args:
+ * vm - Virtual Machine
+ * num - number of pages
+ * paddr_min - Physical address minimum
+ * memslot - Memory region to allocate page from
+ *
+ * Output Args: None
+ *
+ * Return:
+ * Starting physical address
+ *
+ * Within the VM specified by vm, locates a range of available physical
+ * pages at or above paddr_min. If found, the pages are marked as in use
+ * and their base address is returned. A TEST_ASSERT failure occurs if
+ * not enough pages are available at or above paddr_min.
+ */
+vm_paddr_t vm_phy_pages_alloc(struct kvm_vm *vm, size_t num,
+ vm_paddr_t paddr_min, uint32_t memslot)
+{
+ struct userspace_mem_region *region;
+ sparsebit_idx_t pg, base;
+
+ TEST_ASSERT(num > 0, "Must allocate at least one page");
+
+ TEST_ASSERT((paddr_min % vm->page_size) == 0, "Min physical address "
+ "not divisible by page size.\n"
+ " paddr_min: 0x%lx page_size: 0x%x",
+ paddr_min, vm->page_size);
+
+ region = memslot2region(vm, memslot);
+ base = pg = paddr_min >> vm->page_shift;
+
+ do {
+ for (; pg < base + num; ++pg) {
+ if (!sparsebit_is_set(region->unused_phy_pages, pg)) {
+ base = pg = sparsebit_next_set(region->unused_phy_pages, pg);
+ break;
+ }
+ }
+ } while (pg && pg != base + num);
+
+ if (pg == 0) {
+ fprintf(stderr, "No guest physical page available, "
+ "paddr_min: 0x%lx page_size: 0x%x memslot: %u\n",
+ paddr_min, vm->page_size, memslot);
+ fputs("---- vm dump ----\n", stderr);
+ vm_dump(stderr, vm, 2);
+ abort();
+ }
+
+ for (pg = base; pg < base + num; ++pg)
+ sparsebit_clear(region->unused_phy_pages, pg);
+
+ return base * vm->page_size;
+}
+
+vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min,
+ uint32_t memslot)
+{
+ return vm_phy_pages_alloc(vm, 1, paddr_min, memslot);
+}
+
+/* Arbitrary minimum physical address used for virtual translation tables. */
+#define KVM_GUEST_PAGE_TABLE_MIN_PADDR 0x180000
+
+vm_paddr_t vm_alloc_page_table(struct kvm_vm *vm)
+{
+ return vm_phy_page_alloc(vm, KVM_GUEST_PAGE_TABLE_MIN_PADDR, 0);
+}
+
+/*
+ * Address Guest Virtual to Host Virtual
+ *
+ * Input Args:
+ * vm - Virtual Machine
+ * gva - VM virtual address
+ *
+ * Output Args: None
+ *
+ * Return:
+ * Equivalent host virtual address
+ */
+void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva)
+{
+ return addr_gpa2hva(vm, addr_gva2gpa(vm, gva));
+}
+
+unsigned long __weak vm_compute_max_gfn(struct kvm_vm *vm)
+{
+ return ((1ULL << vm->pa_bits) >> vm->page_shift) - 1;
+}
+
+static unsigned int vm_calc_num_pages(unsigned int num_pages,
+ unsigned int page_shift,
+ unsigned int new_page_shift,
+ bool ceil)
+{
+ unsigned int n = 1 << (new_page_shift - page_shift);
+
+ if (page_shift >= new_page_shift)
+ return num_pages * (1 << (page_shift - new_page_shift));
+
+ return num_pages / n + !!(ceil && num_pages % n);
+}
+
+static inline int getpageshift(void)
+{
+ return __builtin_ffs(getpagesize()) - 1;
+}
+
+unsigned int
+vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages)
+{
+ return vm_calc_num_pages(num_guest_pages,
+ vm_guest_mode_params[mode].page_shift,
+ getpageshift(), true);
+}
+
+unsigned int
+vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages)
+{
+ return vm_calc_num_pages(num_host_pages, getpageshift(),
+ vm_guest_mode_params[mode].page_shift, false);
+}
+
+unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size)
+{
+ unsigned int n;
+ n = DIV_ROUND_UP(size, vm_guest_mode_params[mode].page_size);
+ return vm_adjust_num_guest_pages(mode, n);
+}
+
+/*
+ * Read binary stats descriptors
+ *
+ * Input Args:
+ * stats_fd - the file descriptor for the binary stats file from which to read
+ * header - the binary stats metadata header corresponding to the given FD
+ *
+ * Output Args: None
+ *
+ * Return:
+ * A pointer to a newly allocated series of stat descriptors.
+ * Caller is responsible for freeing the returned kvm_stats_desc.
+ *
+ * Read the stats descriptors from the binary stats interface.
+ */
+struct kvm_stats_desc *read_stats_descriptors(int stats_fd,
+ struct kvm_stats_header *header)
+{
+ struct kvm_stats_desc *stats_desc;
+ ssize_t desc_size, total_size, ret;
+
+ desc_size = get_stats_descriptor_size(header);
+ total_size = header->num_desc * desc_size;
+
+ stats_desc = calloc(header->num_desc, desc_size);
+ TEST_ASSERT(stats_desc, "Allocate memory for stats descriptors");
+
+ ret = pread(stats_fd, stats_desc, total_size, header->desc_offset);
+ TEST_ASSERT(ret == total_size, "Read KVM stats descriptors");
+
+ return stats_desc;
+}
+
+/*
+ * Read stat data for a particular stat
+ *
+ * Input Args:
+ * stats_fd - the file descriptor for the binary stats file from which to read
+ * header - the binary stats metadata header corresponding to the given FD
+ * desc - the binary stat metadata for the particular stat to be read
+ * max_elements - the maximum number of 8-byte values to read into data
+ *
+ * Output Args:
+ * data - the buffer into which stat data should be read
+ *
+ * Read the data values of a specified stat from the binary stats interface.
+ */
+void read_stat_data(int stats_fd, struct kvm_stats_header *header,
+ struct kvm_stats_desc *desc, uint64_t *data,
+ size_t max_elements)
+{
+ size_t nr_elements = min_t(ssize_t, desc->size, max_elements);
+ size_t size = nr_elements * sizeof(*data);
+ ssize_t ret;
+
+ TEST_ASSERT(desc->size, "No elements in stat '%s'", desc->name);
+ TEST_ASSERT(max_elements, "Zero elements requested for stat '%s'", desc->name);
+
+ ret = pread(stats_fd, data, size,
+ header->data_offset + desc->offset);
+
+ TEST_ASSERT(ret >= 0, "pread() failed on stat '%s', errno: %i (%s)",
+ desc->name, errno, strerror(errno));
+ TEST_ASSERT(ret == size,
+ "pread() on stat '%s' read %ld bytes, wanted %lu bytes",
+ desc->name, size, ret);
+}
+
+/*
+ * Read the data of the named stat
+ *
+ * Input Args:
+ * vm - the VM for which the stat should be read
+ * stat_name - the name of the stat to read
+ * max_elements - the maximum number of 8-byte values to read into data
+ *
+ * Output Args:
+ * data - the buffer into which stat data should be read
+ *
+ * Read the data values of a specified stat from the binary stats interface.
+ */
+void __vm_get_stat(struct kvm_vm *vm, const char *stat_name, uint64_t *data,
+ size_t max_elements)
+{
+ struct kvm_stats_desc *desc;
+ size_t size_desc;
+ int i;
+
+ if (!vm->stats_fd) {
+ vm->stats_fd = vm_get_stats_fd(vm);
+ read_stats_header(vm->stats_fd, &vm->stats_header);
+ vm->stats_desc = read_stats_descriptors(vm->stats_fd,
+ &vm->stats_header);
+ }
+
+ size_desc = get_stats_descriptor_size(&vm->stats_header);
+
+ for (i = 0; i < vm->stats_header.num_desc; ++i) {
+ desc = (void *)vm->stats_desc + (i * size_desc);
+
+ if (strcmp(desc->name, stat_name))
+ continue;
+
+ read_stat_data(vm->stats_fd, &vm->stats_header, desc,
+ data, max_elements);
+
+ break;
+ }
+}
diff --git a/tools/testing/selftests/kvm/lib/perf_test_util.c b/tools/testing/selftests/kvm/lib/perf_test_util.c
new file mode 100644
index 000000000..9618b37c6
--- /dev/null
+++ b/tools/testing/selftests/kvm/lib/perf_test_util.c
@@ -0,0 +1,294 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (C) 2020, Google LLC.
+ */
+#include <inttypes.h>
+
+#include "kvm_util.h"
+#include "perf_test_util.h"
+#include "processor.h"
+
+struct perf_test_args perf_test_args;
+
+/*
+ * Guest virtual memory offset of the testing memory slot.
+ * Must not conflict with identity mapped test code.
+ */
+static uint64_t guest_test_virt_mem = DEFAULT_GUEST_TEST_MEM;
+
+struct vcpu_thread {
+ /* The index of the vCPU. */
+ int vcpu_idx;
+
+ /* The pthread backing the vCPU. */
+ pthread_t thread;
+
+ /* Set to true once the vCPU thread is up and running. */
+ bool running;
+};
+
+/* The vCPU threads involved in this test. */
+static struct vcpu_thread vcpu_threads[KVM_MAX_VCPUS];
+
+/* The function run by each vCPU thread, as provided by the test. */
+static void (*vcpu_thread_fn)(struct perf_test_vcpu_args *);
+
+/* Set to true once all vCPU threads are up and running. */
+static bool all_vcpu_threads_running;
+
+static struct kvm_vcpu *vcpus[KVM_MAX_VCPUS];
+
+/*
+ * Continuously write to the first 8 bytes of each page in the
+ * specified region.
+ */
+void perf_test_guest_code(uint32_t vcpu_idx)
+{
+ struct perf_test_args *pta = &perf_test_args;
+ struct perf_test_vcpu_args *vcpu_args = &pta->vcpu_args[vcpu_idx];
+ uint64_t gva;
+ uint64_t pages;
+ int i;
+
+ gva = vcpu_args->gva;
+ pages = vcpu_args->pages;
+
+ /* Make sure vCPU args data structure is not corrupt. */
+ GUEST_ASSERT(vcpu_args->vcpu_idx == vcpu_idx);
+
+ while (true) {
+ for (i = 0; i < pages; i++) {
+ uint64_t addr = gva + (i * pta->guest_page_size);
+
+ if (i % pta->wr_fract == 0)
+ *(uint64_t *)addr = 0x0123456789ABCDEF;
+ else
+ READ_ONCE(*(uint64_t *)addr);
+ }
+
+ GUEST_SYNC(1);
+ }
+}
+
+void perf_test_setup_vcpus(struct kvm_vm *vm, int nr_vcpus,
+ struct kvm_vcpu *vcpus[],
+ uint64_t vcpu_memory_bytes,
+ bool partition_vcpu_memory_access)
+{
+ struct perf_test_args *pta = &perf_test_args;
+ struct perf_test_vcpu_args *vcpu_args;
+ int i;
+
+ for (i = 0; i < nr_vcpus; i++) {
+ vcpu_args = &pta->vcpu_args[i];
+
+ vcpu_args->vcpu = vcpus[i];
+ vcpu_args->vcpu_idx = i;
+
+ if (partition_vcpu_memory_access) {
+ vcpu_args->gva = guest_test_virt_mem +
+ (i * vcpu_memory_bytes);
+ vcpu_args->pages = vcpu_memory_bytes /
+ pta->guest_page_size;
+ vcpu_args->gpa = pta->gpa + (i * vcpu_memory_bytes);
+ } else {
+ vcpu_args->gva = guest_test_virt_mem;
+ vcpu_args->pages = (nr_vcpus * vcpu_memory_bytes) /
+ pta->guest_page_size;
+ vcpu_args->gpa = pta->gpa;
+ }
+
+ vcpu_args_set(vcpus[i], 1, i);
+
+ pr_debug("Added VCPU %d with test mem gpa [%lx, %lx)\n",
+ i, vcpu_args->gpa, vcpu_args->gpa +
+ (vcpu_args->pages * pta->guest_page_size));
+ }
+}
+
+struct kvm_vm *perf_test_create_vm(enum vm_guest_mode mode, int nr_vcpus,
+ uint64_t vcpu_memory_bytes, int slots,
+ enum vm_mem_backing_src_type backing_src,
+ bool partition_vcpu_memory_access)
+{
+ struct perf_test_args *pta = &perf_test_args;
+ struct kvm_vm *vm;
+ uint64_t guest_num_pages, slot0_pages = 0;
+ uint64_t backing_src_pagesz = get_backing_src_pagesz(backing_src);
+ uint64_t region_end_gfn;
+ int i;
+
+ pr_info("Testing guest mode: %s\n", vm_guest_mode_string(mode));
+
+ /* By default vCPUs will write to memory. */
+ pta->wr_fract = 1;
+
+ /*
+ * Snapshot the non-huge page size. This is used by the guest code to
+ * access/dirty pages at the logging granularity.
+ */
+ pta->guest_page_size = vm_guest_mode_params[mode].page_size;
+
+ guest_num_pages = vm_adjust_num_guest_pages(mode,
+ (nr_vcpus * vcpu_memory_bytes) / pta->guest_page_size);
+
+ TEST_ASSERT(vcpu_memory_bytes % getpagesize() == 0,
+ "Guest memory size is not host page size aligned.");
+ TEST_ASSERT(vcpu_memory_bytes % pta->guest_page_size == 0,
+ "Guest memory size is not guest page size aligned.");
+ TEST_ASSERT(guest_num_pages % slots == 0,
+ "Guest memory cannot be evenly divided into %d slots.",
+ slots);
+
+ /*
+ * If using nested, allocate extra pages for the nested page tables and
+ * in-memory data structures.
+ */
+ if (pta->nested)
+ slot0_pages += perf_test_nested_pages(nr_vcpus);
+
+ /*
+ * Pass guest_num_pages to populate the page tables for test memory.
+ * The memory is also added to memslot 0, but that's a benign side
+ * effect as KVM allows aliasing HVAs in meslots.
+ */
+ vm = __vm_create_with_vcpus(mode, nr_vcpus, slot0_pages + guest_num_pages,
+ perf_test_guest_code, vcpus);
+
+ pta->vm = vm;
+
+ /* Put the test region at the top guest physical memory. */
+ region_end_gfn = vm->max_gfn + 1;
+
+#ifdef __x86_64__
+ /*
+ * When running vCPUs in L2, restrict the test region to 48 bits to
+ * avoid needing 5-level page tables to identity map L2.
+ */
+ if (pta->nested)
+ region_end_gfn = min(region_end_gfn, (1UL << 48) / pta->guest_page_size);
+#endif
+ /*
+ * If there should be more memory in the guest test region than there
+ * can be pages in the guest, it will definitely cause problems.
+ */
+ TEST_ASSERT(guest_num_pages < region_end_gfn,
+ "Requested more guest memory than address space allows.\n"
+ " guest pages: %" PRIx64 " max gfn: %" PRIx64
+ " nr_vcpus: %d wss: %" PRIx64 "]\n",
+ guest_num_pages, region_end_gfn - 1, nr_vcpus, vcpu_memory_bytes);
+
+ pta->gpa = (region_end_gfn - guest_num_pages - 1) * pta->guest_page_size;
+ pta->gpa = align_down(pta->gpa, backing_src_pagesz);
+#ifdef __s390x__
+ /* Align to 1M (segment size) */
+ pta->gpa = align_down(pta->gpa, 1 << 20);
+#endif
+ pta->size = guest_num_pages * pta->guest_page_size;
+ pr_info("guest physical test memory: [0x%lx, 0x%lx)\n",
+ pta->gpa, pta->gpa + pta->size);
+
+ /* Add extra memory slots for testing */
+ for (i = 0; i < slots; i++) {
+ uint64_t region_pages = guest_num_pages / slots;
+ vm_paddr_t region_start = pta->gpa + region_pages * pta->guest_page_size * i;
+
+ vm_userspace_mem_region_add(vm, backing_src, region_start,
+ PERF_TEST_MEM_SLOT_INDEX + i,
+ region_pages, 0);
+ }
+
+ /* Do mapping for the demand paging memory slot */
+ virt_map(vm, guest_test_virt_mem, pta->gpa, guest_num_pages);
+
+ perf_test_setup_vcpus(vm, nr_vcpus, vcpus, vcpu_memory_bytes,
+ partition_vcpu_memory_access);
+
+ if (pta->nested) {
+ pr_info("Configuring vCPUs to run in L2 (nested).\n");
+ perf_test_setup_nested(vm, nr_vcpus, vcpus);
+ }
+
+ ucall_init(vm, NULL);
+
+ /* Export the shared variables to the guest. */
+ sync_global_to_guest(vm, perf_test_args);
+
+ return vm;
+}
+
+void perf_test_destroy_vm(struct kvm_vm *vm)
+{
+ ucall_uninit(vm);
+ kvm_vm_free(vm);
+}
+
+void perf_test_set_wr_fract(struct kvm_vm *vm, int wr_fract)
+{
+ perf_test_args.wr_fract = wr_fract;
+ sync_global_to_guest(vm, perf_test_args);
+}
+
+uint64_t __weak perf_test_nested_pages(int nr_vcpus)
+{
+ return 0;
+}
+
+void __weak perf_test_setup_nested(struct kvm_vm *vm, int nr_vcpus, struct kvm_vcpu **vcpus)
+{
+ pr_info("%s() not support on this architecture, skipping.\n", __func__);
+ exit(KSFT_SKIP);
+}
+
+static void *vcpu_thread_main(void *data)
+{
+ struct vcpu_thread *vcpu = data;
+
+ WRITE_ONCE(vcpu->running, true);
+
+ /*
+ * Wait for all vCPU threads to be up and running before calling the test-
+ * provided vCPU thread function. This prevents thread creation (which
+ * requires taking the mmap_sem in write mode) from interfering with the
+ * guest faulting in its memory.
+ */
+ while (!READ_ONCE(all_vcpu_threads_running))
+ ;
+
+ vcpu_thread_fn(&perf_test_args.vcpu_args[vcpu->vcpu_idx]);
+
+ return NULL;
+}
+
+void perf_test_start_vcpu_threads(int nr_vcpus,
+ void (*vcpu_fn)(struct perf_test_vcpu_args *))
+{
+ int i;
+
+ vcpu_thread_fn = vcpu_fn;
+ WRITE_ONCE(all_vcpu_threads_running, false);
+
+ for (i = 0; i < nr_vcpus; i++) {
+ struct vcpu_thread *vcpu = &vcpu_threads[i];
+
+ vcpu->vcpu_idx = i;
+ WRITE_ONCE(vcpu->running, false);
+
+ pthread_create(&vcpu->thread, NULL, vcpu_thread_main, vcpu);
+ }
+
+ for (i = 0; i < nr_vcpus; i++) {
+ while (!READ_ONCE(vcpu_threads[i].running))
+ ;
+ }
+
+ WRITE_ONCE(all_vcpu_threads_running, true);
+}
+
+void perf_test_join_vcpu_threads(int nr_vcpus)
+{
+ int i;
+
+ for (i = 0; i < nr_vcpus; i++)
+ pthread_join(vcpu_threads[i].thread, NULL);
+}
diff --git a/tools/testing/selftests/kvm/lib/rbtree.c b/tools/testing/selftests/kvm/lib/rbtree.c
new file mode 100644
index 000000000..a703f0194
--- /dev/null
+++ b/tools/testing/selftests/kvm/lib/rbtree.c
@@ -0,0 +1 @@
+#include "../../../../lib/rbtree.c"
diff --git a/tools/testing/selftests/kvm/lib/riscv/processor.c b/tools/testing/selftests/kvm/lib/riscv/processor.c
new file mode 100644
index 000000000..604478151
--- /dev/null
+++ b/tools/testing/selftests/kvm/lib/riscv/processor.c
@@ -0,0 +1,364 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * RISC-V code
+ *
+ * Copyright (C) 2021 Western Digital Corporation or its affiliates.
+ */
+
+#include <linux/compiler.h>
+#include <assert.h>
+
+#include "kvm_util.h"
+#include "processor.h"
+
+#define DEFAULT_RISCV_GUEST_STACK_VADDR_MIN 0xac0000
+
+static uint64_t page_align(struct kvm_vm *vm, uint64_t v)
+{
+ return (v + vm->page_size) & ~(vm->page_size - 1);
+}
+
+static uint64_t pte_addr(struct kvm_vm *vm, uint64_t entry)
+{
+ return ((entry & PGTBL_PTE_ADDR_MASK) >> PGTBL_PTE_ADDR_SHIFT) <<
+ PGTBL_PAGE_SIZE_SHIFT;
+}
+
+static uint64_t ptrs_per_pte(struct kvm_vm *vm)
+{
+ return PGTBL_PAGE_SIZE / sizeof(uint64_t);
+}
+
+static uint64_t pte_index_mask[] = {
+ PGTBL_L0_INDEX_MASK,
+ PGTBL_L1_INDEX_MASK,
+ PGTBL_L2_INDEX_MASK,
+ PGTBL_L3_INDEX_MASK,
+};
+
+static uint32_t pte_index_shift[] = {
+ PGTBL_L0_INDEX_SHIFT,
+ PGTBL_L1_INDEX_SHIFT,
+ PGTBL_L2_INDEX_SHIFT,
+ PGTBL_L3_INDEX_SHIFT,
+};
+
+static uint64_t pte_index(struct kvm_vm *vm, vm_vaddr_t gva, int level)
+{
+ TEST_ASSERT(level > -1,
+ "Negative page table level (%d) not possible", level);
+ TEST_ASSERT(level < vm->pgtable_levels,
+ "Invalid page table level (%d)", level);
+
+ return (gva & pte_index_mask[level]) >> pte_index_shift[level];
+}
+
+void virt_arch_pgd_alloc(struct kvm_vm *vm)
+{
+ if (!vm->pgd_created) {
+ vm_paddr_t paddr = vm_phy_pages_alloc(vm,
+ page_align(vm, ptrs_per_pte(vm) * 8) / vm->page_size,
+ KVM_GUEST_PAGE_TABLE_MIN_PADDR, 0);
+ vm->pgd = paddr;
+ vm->pgd_created = true;
+ }
+}
+
+void virt_arch_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr)
+{
+ uint64_t *ptep, next_ppn;
+ int level = vm->pgtable_levels - 1;
+
+ TEST_ASSERT((vaddr % vm->page_size) == 0,
+ "Virtual address not on page boundary,\n"
+ " vaddr: 0x%lx vm->page_size: 0x%x", vaddr, vm->page_size);
+ TEST_ASSERT(sparsebit_is_set(vm->vpages_valid,
+ (vaddr >> vm->page_shift)),
+ "Invalid virtual address, vaddr: 0x%lx", vaddr);
+ TEST_ASSERT((paddr % vm->page_size) == 0,
+ "Physical address not on page boundary,\n"
+ " paddr: 0x%lx vm->page_size: 0x%x", paddr, vm->page_size);
+ TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn,
+ "Physical address beyond maximum supported,\n"
+ " paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x",
+ paddr, vm->max_gfn, vm->page_size);
+
+ ptep = addr_gpa2hva(vm, vm->pgd) + pte_index(vm, vaddr, level) * 8;
+ if (!*ptep) {
+ next_ppn = vm_alloc_page_table(vm) >> PGTBL_PAGE_SIZE_SHIFT;
+ *ptep = (next_ppn << PGTBL_PTE_ADDR_SHIFT) |
+ PGTBL_PTE_VALID_MASK;
+ }
+ level--;
+
+ while (level > -1) {
+ ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) +
+ pte_index(vm, vaddr, level) * 8;
+ if (!*ptep && level > 0) {
+ next_ppn = vm_alloc_page_table(vm) >>
+ PGTBL_PAGE_SIZE_SHIFT;
+ *ptep = (next_ppn << PGTBL_PTE_ADDR_SHIFT) |
+ PGTBL_PTE_VALID_MASK;
+ }
+ level--;
+ }
+
+ paddr = paddr >> PGTBL_PAGE_SIZE_SHIFT;
+ *ptep = (paddr << PGTBL_PTE_ADDR_SHIFT) |
+ PGTBL_PTE_PERM_MASK | PGTBL_PTE_VALID_MASK;
+}
+
+vm_paddr_t addr_arch_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva)
+{
+ uint64_t *ptep;
+ int level = vm->pgtable_levels - 1;
+
+ if (!vm->pgd_created)
+ goto unmapped_gva;
+
+ ptep = addr_gpa2hva(vm, vm->pgd) + pte_index(vm, gva, level) * 8;
+ if (!ptep)
+ goto unmapped_gva;
+ level--;
+
+ while (level > -1) {
+ ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) +
+ pte_index(vm, gva, level) * 8;
+ if (!ptep)
+ goto unmapped_gva;
+ level--;
+ }
+
+ return pte_addr(vm, *ptep) + (gva & (vm->page_size - 1));
+
+unmapped_gva:
+ TEST_FAIL("No mapping for vm virtual address gva: 0x%lx level: %d",
+ gva, level);
+ exit(1);
+}
+
+static void pte_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent,
+ uint64_t page, int level)
+{
+#ifdef DEBUG
+ static const char *const type[] = { "pte", "pmd", "pud", "p4d"};
+ uint64_t pte, *ptep;
+
+ if (level < 0)
+ return;
+
+ for (pte = page; pte < page + ptrs_per_pte(vm) * 8; pte += 8) {
+ ptep = addr_gpa2hva(vm, pte);
+ if (!*ptep)
+ continue;
+ fprintf(stream, "%*s%s: %lx: %lx at %p\n", indent, "",
+ type[level], pte, *ptep, ptep);
+ pte_dump(stream, vm, indent + 1,
+ pte_addr(vm, *ptep), level - 1);
+ }
+#endif
+}
+
+void virt_arch_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
+{
+ int level = vm->pgtable_levels - 1;
+ uint64_t pgd, *ptep;
+
+ if (!vm->pgd_created)
+ return;
+
+ for (pgd = vm->pgd; pgd < vm->pgd + ptrs_per_pte(vm) * 8; pgd += 8) {
+ ptep = addr_gpa2hva(vm, pgd);
+ if (!*ptep)
+ continue;
+ fprintf(stream, "%*spgd: %lx: %lx at %p\n", indent, "",
+ pgd, *ptep, ptep);
+ pte_dump(stream, vm, indent + 1,
+ pte_addr(vm, *ptep), level - 1);
+ }
+}
+
+void riscv_vcpu_mmu_setup(struct kvm_vcpu *vcpu)
+{
+ struct kvm_vm *vm = vcpu->vm;
+ unsigned long satp;
+
+ /*
+ * The RISC-V Sv48 MMU mode supports 56-bit physical address
+ * for 48-bit virtual address with 4KB last level page size.
+ */
+ switch (vm->mode) {
+ case VM_MODE_P52V48_4K:
+ case VM_MODE_P48V48_4K:
+ case VM_MODE_P40V48_4K:
+ break;
+ default:
+ TEST_FAIL("Unknown guest mode, mode: 0x%x", vm->mode);
+ }
+
+ satp = (vm->pgd >> PGTBL_PAGE_SIZE_SHIFT) & SATP_PPN;
+ satp |= SATP_MODE_48;
+
+ vcpu_set_reg(vcpu, RISCV_CSR_REG(satp), satp);
+}
+
+void vcpu_arch_dump(FILE *stream, struct kvm_vcpu *vcpu, uint8_t indent)
+{
+ struct kvm_riscv_core core;
+
+ vcpu_get_reg(vcpu, RISCV_CORE_REG(mode), &core.mode);
+ vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.pc), &core.regs.pc);
+ vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.ra), &core.regs.ra);
+ vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.sp), &core.regs.sp);
+ vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.gp), &core.regs.gp);
+ vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.tp), &core.regs.tp);
+ vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.t0), &core.regs.t0);
+ vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.t1), &core.regs.t1);
+ vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.t2), &core.regs.t2);
+ vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s0), &core.regs.s0);
+ vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s1), &core.regs.s1);
+ vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a0), &core.regs.a0);
+ vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a1), &core.regs.a1);
+ vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a2), &core.regs.a2);
+ vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a3), &core.regs.a3);
+ vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a4), &core.regs.a4);
+ vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a5), &core.regs.a5);
+ vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a6), &core.regs.a6);
+ vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a7), &core.regs.a7);
+ vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s2), &core.regs.s2);
+ vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s3), &core.regs.s3);
+ vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s4), &core.regs.s4);
+ vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s5), &core.regs.s5);
+ vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s6), &core.regs.s6);
+ vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s7), &core.regs.s7);
+ vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s8), &core.regs.s8);
+ vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s9), &core.regs.s9);
+ vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s10), &core.regs.s10);
+ vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s11), &core.regs.s11);
+ vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.t3), &core.regs.t3);
+ vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.t4), &core.regs.t4);
+ vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.t5), &core.regs.t5);
+ vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.t6), &core.regs.t6);
+
+ fprintf(stream,
+ " MODE: 0x%lx\n", core.mode);
+ fprintf(stream,
+ " PC: 0x%016lx RA: 0x%016lx SP: 0x%016lx GP: 0x%016lx\n",
+ core.regs.pc, core.regs.ra, core.regs.sp, core.regs.gp);
+ fprintf(stream,
+ " TP: 0x%016lx T0: 0x%016lx T1: 0x%016lx T2: 0x%016lx\n",
+ core.regs.tp, core.regs.t0, core.regs.t1, core.regs.t2);
+ fprintf(stream,
+ " S0: 0x%016lx S1: 0x%016lx A0: 0x%016lx A1: 0x%016lx\n",
+ core.regs.s0, core.regs.s1, core.regs.a0, core.regs.a1);
+ fprintf(stream,
+ " A2: 0x%016lx A3: 0x%016lx A4: 0x%016lx A5: 0x%016lx\n",
+ core.regs.a2, core.regs.a3, core.regs.a4, core.regs.a5);
+ fprintf(stream,
+ " A6: 0x%016lx A7: 0x%016lx S2: 0x%016lx S3: 0x%016lx\n",
+ core.regs.a6, core.regs.a7, core.regs.s2, core.regs.s3);
+ fprintf(stream,
+ " S4: 0x%016lx S5: 0x%016lx S6: 0x%016lx S7: 0x%016lx\n",
+ core.regs.s4, core.regs.s5, core.regs.s6, core.regs.s7);
+ fprintf(stream,
+ " S8: 0x%016lx S9: 0x%016lx S10: 0x%016lx S11: 0x%016lx\n",
+ core.regs.s8, core.regs.s9, core.regs.s10, core.regs.s11);
+ fprintf(stream,
+ " T3: 0x%016lx T4: 0x%016lx T5: 0x%016lx T6: 0x%016lx\n",
+ core.regs.t3, core.regs.t4, core.regs.t5, core.regs.t6);
+}
+
+static void __aligned(16) guest_unexp_trap(void)
+{
+ sbi_ecall(KVM_RISCV_SELFTESTS_SBI_EXT,
+ KVM_RISCV_SELFTESTS_SBI_UNEXP,
+ 0, 0, 0, 0, 0, 0);
+}
+
+struct kvm_vcpu *vm_arch_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id,
+ void *guest_code)
+{
+ int r;
+ size_t stack_size = vm->page_size == 4096 ?
+ DEFAULT_STACK_PGS * vm->page_size :
+ vm->page_size;
+ unsigned long stack_vaddr = vm_vaddr_alloc(vm, stack_size,
+ DEFAULT_RISCV_GUEST_STACK_VADDR_MIN);
+ unsigned long current_gp = 0;
+ struct kvm_mp_state mps;
+ struct kvm_vcpu *vcpu;
+
+ vcpu = __vm_vcpu_add(vm, vcpu_id);
+ riscv_vcpu_mmu_setup(vcpu);
+
+ /*
+ * With SBI HSM support in KVM RISC-V, all secondary VCPUs are
+ * powered-off by default so we ensure that all secondary VCPUs
+ * are powered-on using KVM_SET_MP_STATE ioctl().
+ */
+ mps.mp_state = KVM_MP_STATE_RUNNABLE;
+ r = __vcpu_ioctl(vcpu, KVM_SET_MP_STATE, &mps);
+ TEST_ASSERT(!r, "IOCTL KVM_SET_MP_STATE failed (error %d)", r);
+
+ /* Setup global pointer of guest to be same as the host */
+ asm volatile (
+ "add %0, gp, zero" : "=r" (current_gp) : : "memory");
+ vcpu_set_reg(vcpu, RISCV_CORE_REG(regs.gp), current_gp);
+
+ /* Setup stack pointer and program counter of guest */
+ vcpu_set_reg(vcpu, RISCV_CORE_REG(regs.sp), stack_vaddr + stack_size);
+ vcpu_set_reg(vcpu, RISCV_CORE_REG(regs.pc), (unsigned long)guest_code);
+
+ /* Setup default exception vector of guest */
+ vcpu_set_reg(vcpu, RISCV_CSR_REG(stvec), (unsigned long)guest_unexp_trap);
+
+ return vcpu;
+}
+
+void vcpu_args_set(struct kvm_vcpu *vcpu, unsigned int num, ...)
+{
+ va_list ap;
+ uint64_t id = RISCV_CORE_REG(regs.a0);
+ int i;
+
+ TEST_ASSERT(num >= 1 && num <= 8, "Unsupported number of args,\n"
+ " num: %u\n", num);
+
+ va_start(ap, num);
+
+ for (i = 0; i < num; i++) {
+ switch (i) {
+ case 0:
+ id = RISCV_CORE_REG(regs.a0);
+ break;
+ case 1:
+ id = RISCV_CORE_REG(regs.a1);
+ break;
+ case 2:
+ id = RISCV_CORE_REG(regs.a2);
+ break;
+ case 3:
+ id = RISCV_CORE_REG(regs.a3);
+ break;
+ case 4:
+ id = RISCV_CORE_REG(regs.a4);
+ break;
+ case 5:
+ id = RISCV_CORE_REG(regs.a5);
+ break;
+ case 6:
+ id = RISCV_CORE_REG(regs.a6);
+ break;
+ case 7:
+ id = RISCV_CORE_REG(regs.a7);
+ break;
+ }
+ vcpu_set_reg(vcpu, id, va_arg(ap, uint64_t));
+ }
+
+ va_end(ap);
+}
+
+void assert_on_unhandled_exception(struct kvm_vcpu *vcpu)
+{
+}
diff --git a/tools/testing/selftests/kvm/lib/riscv/ucall.c b/tools/testing/selftests/kvm/lib/riscv/ucall.c
new file mode 100644
index 000000000..087b9740b
--- /dev/null
+++ b/tools/testing/selftests/kvm/lib/riscv/ucall.c
@@ -0,0 +1,98 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * ucall support. A ucall is a "hypercall to userspace".
+ *
+ * Copyright (C) 2021 Western Digital Corporation or its affiliates.
+ */
+
+#include <linux/kvm.h>
+
+#include "kvm_util.h"
+#include "processor.h"
+
+void ucall_init(struct kvm_vm *vm, void *arg)
+{
+}
+
+void ucall_uninit(struct kvm_vm *vm)
+{
+}
+
+struct sbiret sbi_ecall(int ext, int fid, unsigned long arg0,
+ unsigned long arg1, unsigned long arg2,
+ unsigned long arg3, unsigned long arg4,
+ unsigned long arg5)
+{
+ register uintptr_t a0 asm ("a0") = (uintptr_t)(arg0);
+ register uintptr_t a1 asm ("a1") = (uintptr_t)(arg1);
+ register uintptr_t a2 asm ("a2") = (uintptr_t)(arg2);
+ register uintptr_t a3 asm ("a3") = (uintptr_t)(arg3);
+ register uintptr_t a4 asm ("a4") = (uintptr_t)(arg4);
+ register uintptr_t a5 asm ("a5") = (uintptr_t)(arg5);
+ register uintptr_t a6 asm ("a6") = (uintptr_t)(fid);
+ register uintptr_t a7 asm ("a7") = (uintptr_t)(ext);
+ struct sbiret ret;
+
+ asm volatile (
+ "ecall"
+ : "+r" (a0), "+r" (a1)
+ : "r" (a2), "r" (a3), "r" (a4), "r" (a5), "r" (a6), "r" (a7)
+ : "memory");
+ ret.error = a0;
+ ret.value = a1;
+
+ return ret;
+}
+
+void ucall(uint64_t cmd, int nargs, ...)
+{
+ struct ucall uc = {
+ .cmd = cmd,
+ };
+ va_list va;
+ int i;
+
+ nargs = min(nargs, UCALL_MAX_ARGS);
+
+ va_start(va, nargs);
+ for (i = 0; i < nargs; ++i)
+ uc.args[i] = va_arg(va, uint64_t);
+ va_end(va);
+
+ sbi_ecall(KVM_RISCV_SELFTESTS_SBI_EXT,
+ KVM_RISCV_SELFTESTS_SBI_UCALL,
+ (vm_vaddr_t)&uc, 0, 0, 0, 0, 0);
+}
+
+uint64_t get_ucall(struct kvm_vcpu *vcpu, struct ucall *uc)
+{
+ struct kvm_run *run = vcpu->run;
+ struct ucall ucall = {};
+
+ if (uc)
+ memset(uc, 0, sizeof(*uc));
+
+ if (run->exit_reason == KVM_EXIT_RISCV_SBI &&
+ run->riscv_sbi.extension_id == KVM_RISCV_SELFTESTS_SBI_EXT) {
+ switch (run->riscv_sbi.function_id) {
+ case KVM_RISCV_SELFTESTS_SBI_UCALL:
+ memcpy(&ucall,
+ addr_gva2hva(vcpu->vm, run->riscv_sbi.args[0]),
+ sizeof(ucall));
+
+ vcpu_run_complete_io(vcpu);
+ if (uc)
+ memcpy(uc, &ucall, sizeof(ucall));
+
+ break;
+ case KVM_RISCV_SELFTESTS_SBI_UNEXP:
+ vcpu_dump(stderr, vcpu, 2);
+ TEST_ASSERT(0, "Unexpected trap taken by guest");
+ break;
+ default:
+ break;
+ }
+ }
+
+ return ucall.cmd;
+}
diff --git a/tools/testing/selftests/kvm/lib/s390x/diag318_test_handler.c b/tools/testing/selftests/kvm/lib/s390x/diag318_test_handler.c
new file mode 100644
index 000000000..cdb7daeed
--- /dev/null
+++ b/tools/testing/selftests/kvm/lib/s390x/diag318_test_handler.c
@@ -0,0 +1,81 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * Test handler for the s390x DIAGNOSE 0x0318 instruction.
+ *
+ * Copyright (C) 2020, IBM
+ */
+
+#include "test_util.h"
+#include "kvm_util.h"
+
+#define ICPT_INSTRUCTION 0x04
+#define IPA0_DIAG 0x8300
+
+static void guest_code(void)
+{
+ uint64_t diag318_info = 0x12345678;
+
+ asm volatile ("diag %0,0,0x318\n" : : "d" (diag318_info));
+}
+
+/*
+ * The DIAGNOSE 0x0318 instruction call must be handled via userspace. As such,
+ * we create an ad-hoc VM here to handle the instruction then extract the
+ * necessary data. It is up to the caller to decide what to do with that data.
+ */
+static uint64_t diag318_handler(void)
+{
+ struct kvm_vcpu *vcpu;
+ struct kvm_vm *vm;
+ struct kvm_run *run;
+ uint64_t reg;
+ uint64_t diag318_info;
+
+ vm = vm_create_with_one_vcpu(&vcpu, guest_code);
+ vcpu_run(vcpu);
+ run = vcpu->run;
+
+ TEST_ASSERT(run->exit_reason == KVM_EXIT_S390_SIEIC,
+ "DIAGNOSE 0x0318 instruction was not intercepted");
+ TEST_ASSERT(run->s390_sieic.icptcode == ICPT_INSTRUCTION,
+ "Unexpected intercept code: 0x%x", run->s390_sieic.icptcode);
+ TEST_ASSERT((run->s390_sieic.ipa & 0xff00) == IPA0_DIAG,
+ "Unexpected IPA0 code: 0x%x", (run->s390_sieic.ipa & 0xff00));
+
+ reg = (run->s390_sieic.ipa & 0x00f0) >> 4;
+ diag318_info = run->s.regs.gprs[reg];
+
+ TEST_ASSERT(diag318_info != 0, "DIAGNOSE 0x0318 info not set");
+
+ kvm_vm_free(vm);
+
+ return diag318_info;
+}
+
+uint64_t get_diag318_info(void)
+{
+ static uint64_t diag318_info;
+ static bool printed_skip;
+
+ /*
+ * If KVM does not support diag318, then return 0 to
+ * ensure tests do not break.
+ */
+ if (!kvm_has_cap(KVM_CAP_S390_DIAG318)) {
+ if (!printed_skip) {
+ fprintf(stdout, "KVM_CAP_S390_DIAG318 not supported. "
+ "Skipping diag318 test.\n");
+ printed_skip = true;
+ }
+ return 0;
+ }
+
+ /*
+ * If a test has previously requested the diag318 info,
+ * then don't bother spinning up a temporary VM again.
+ */
+ if (!diag318_info)
+ diag318_info = diag318_handler();
+
+ return diag318_info;
+}
diff --git a/tools/testing/selftests/kvm/lib/s390x/processor.c b/tools/testing/selftests/kvm/lib/s390x/processor.c
new file mode 100644
index 000000000..89d7340d9
--- /dev/null
+++ b/tools/testing/selftests/kvm/lib/s390x/processor.c
@@ -0,0 +1,220 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * KVM selftest s390x library code - CPU-related functions (page tables...)
+ *
+ * Copyright (C) 2019, Red Hat, Inc.
+ */
+
+#include "processor.h"
+#include "kvm_util.h"
+
+#define PAGES_PER_REGION 4
+
+void virt_arch_pgd_alloc(struct kvm_vm *vm)
+{
+ vm_paddr_t paddr;
+
+ TEST_ASSERT(vm->page_size == 4096, "Unsupported page size: 0x%x",
+ vm->page_size);
+
+ if (vm->pgd_created)
+ return;
+
+ paddr = vm_phy_pages_alloc(vm, PAGES_PER_REGION,
+ KVM_GUEST_PAGE_TABLE_MIN_PADDR, 0);
+ memset(addr_gpa2hva(vm, paddr), 0xff, PAGES_PER_REGION * vm->page_size);
+
+ vm->pgd = paddr;
+ vm->pgd_created = true;
+}
+
+/*
+ * Allocate 4 pages for a region/segment table (ri < 4), or one page for
+ * a page table (ri == 4). Returns a suitable region/segment table entry
+ * which points to the freshly allocated pages.
+ */
+static uint64_t virt_alloc_region(struct kvm_vm *vm, int ri)
+{
+ uint64_t taddr;
+
+ taddr = vm_phy_pages_alloc(vm, ri < 4 ? PAGES_PER_REGION : 1,
+ KVM_GUEST_PAGE_TABLE_MIN_PADDR, 0);
+ memset(addr_gpa2hva(vm, taddr), 0xff, PAGES_PER_REGION * vm->page_size);
+
+ return (taddr & REGION_ENTRY_ORIGIN)
+ | (((4 - ri) << 2) & REGION_ENTRY_TYPE)
+ | ((ri < 4 ? (PAGES_PER_REGION - 1) : 0) & REGION_ENTRY_LENGTH);
+}
+
+void virt_arch_pg_map(struct kvm_vm *vm, uint64_t gva, uint64_t gpa)
+{
+ int ri, idx;
+ uint64_t *entry;
+
+ TEST_ASSERT((gva % vm->page_size) == 0,
+ "Virtual address not on page boundary,\n"
+ " vaddr: 0x%lx vm->page_size: 0x%x",
+ gva, vm->page_size);
+ TEST_ASSERT(sparsebit_is_set(vm->vpages_valid,
+ (gva >> vm->page_shift)),
+ "Invalid virtual address, vaddr: 0x%lx",
+ gva);
+ TEST_ASSERT((gpa % vm->page_size) == 0,
+ "Physical address not on page boundary,\n"
+ " paddr: 0x%lx vm->page_size: 0x%x",
+ gva, vm->page_size);
+ TEST_ASSERT((gpa >> vm->page_shift) <= vm->max_gfn,
+ "Physical address beyond beyond maximum supported,\n"
+ " paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x",
+ gva, vm->max_gfn, vm->page_size);
+
+ /* Walk through region and segment tables */
+ entry = addr_gpa2hva(vm, vm->pgd);
+ for (ri = 1; ri <= 4; ri++) {
+ idx = (gva >> (64 - 11 * ri)) & 0x7ffu;
+ if (entry[idx] & REGION_ENTRY_INVALID)
+ entry[idx] = virt_alloc_region(vm, ri);
+ entry = addr_gpa2hva(vm, entry[idx] & REGION_ENTRY_ORIGIN);
+ }
+
+ /* Fill in page table entry */
+ idx = (gva >> 12) & 0x0ffu; /* page index */
+ if (!(entry[idx] & PAGE_INVALID))
+ fprintf(stderr,
+ "WARNING: PTE for gpa=0x%"PRIx64" already set!\n", gpa);
+ entry[idx] = gpa;
+}
+
+vm_paddr_t addr_arch_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva)
+{
+ int ri, idx;
+ uint64_t *entry;
+
+ TEST_ASSERT(vm->page_size == 4096, "Unsupported page size: 0x%x",
+ vm->page_size);
+
+ entry = addr_gpa2hva(vm, vm->pgd);
+ for (ri = 1; ri <= 4; ri++) {
+ idx = (gva >> (64 - 11 * ri)) & 0x7ffu;
+ TEST_ASSERT(!(entry[idx] & REGION_ENTRY_INVALID),
+ "No region mapping for vm virtual address 0x%lx",
+ gva);
+ entry = addr_gpa2hva(vm, entry[idx] & REGION_ENTRY_ORIGIN);
+ }
+
+ idx = (gva >> 12) & 0x0ffu; /* page index */
+
+ TEST_ASSERT(!(entry[idx] & PAGE_INVALID),
+ "No page mapping for vm virtual address 0x%lx", gva);
+
+ return (entry[idx] & ~0xffful) + (gva & 0xffful);
+}
+
+static void virt_dump_ptes(FILE *stream, struct kvm_vm *vm, uint8_t indent,
+ uint64_t ptea_start)
+{
+ uint64_t *pte, ptea;
+
+ for (ptea = ptea_start; ptea < ptea_start + 0x100 * 8; ptea += 8) {
+ pte = addr_gpa2hva(vm, ptea);
+ if (*pte & PAGE_INVALID)
+ continue;
+ fprintf(stream, "%*spte @ 0x%lx: 0x%016lx\n",
+ indent, "", ptea, *pte);
+ }
+}
+
+static void virt_dump_region(FILE *stream, struct kvm_vm *vm, uint8_t indent,
+ uint64_t reg_tab_addr)
+{
+ uint64_t addr, *entry;
+
+ for (addr = reg_tab_addr; addr < reg_tab_addr + 0x400 * 8; addr += 8) {
+ entry = addr_gpa2hva(vm, addr);
+ if (*entry & REGION_ENTRY_INVALID)
+ continue;
+ fprintf(stream, "%*srt%lde @ 0x%lx: 0x%016lx\n",
+ indent, "", 4 - ((*entry & REGION_ENTRY_TYPE) >> 2),
+ addr, *entry);
+ if (*entry & REGION_ENTRY_TYPE) {
+ virt_dump_region(stream, vm, indent + 2,
+ *entry & REGION_ENTRY_ORIGIN);
+ } else {
+ virt_dump_ptes(stream, vm, indent + 2,
+ *entry & REGION_ENTRY_ORIGIN);
+ }
+ }
+}
+
+void virt_arch_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
+{
+ if (!vm->pgd_created)
+ return;
+
+ virt_dump_region(stream, vm, indent, vm->pgd);
+}
+
+struct kvm_vcpu *vm_arch_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id,
+ void *guest_code)
+{
+ size_t stack_size = DEFAULT_STACK_PGS * getpagesize();
+ uint64_t stack_vaddr;
+ struct kvm_regs regs;
+ struct kvm_sregs sregs;
+ struct kvm_vcpu *vcpu;
+ struct kvm_run *run;
+
+ TEST_ASSERT(vm->page_size == 4096, "Unsupported page size: 0x%x",
+ vm->page_size);
+
+ stack_vaddr = vm_vaddr_alloc(vm, stack_size,
+ DEFAULT_GUEST_STACK_VADDR_MIN);
+
+ vcpu = __vm_vcpu_add(vm, vcpu_id);
+
+ /* Setup guest registers */
+ vcpu_regs_get(vcpu, &regs);
+ regs.gprs[15] = stack_vaddr + (DEFAULT_STACK_PGS * getpagesize()) - 160;
+ vcpu_regs_set(vcpu, &regs);
+
+ vcpu_sregs_get(vcpu, &sregs);
+ sregs.crs[0] |= 0x00040000; /* Enable floating point regs */
+ sregs.crs[1] = vm->pgd | 0xf; /* Primary region table */
+ vcpu_sregs_set(vcpu, &sregs);
+
+ run = vcpu->run;
+ run->psw_mask = 0x0400000180000000ULL; /* DAT enabled + 64 bit mode */
+ run->psw_addr = (uintptr_t)guest_code;
+
+ return vcpu;
+}
+
+void vcpu_args_set(struct kvm_vcpu *vcpu, unsigned int num, ...)
+{
+ va_list ap;
+ struct kvm_regs regs;
+ int i;
+
+ TEST_ASSERT(num >= 1 && num <= 5, "Unsupported number of args,\n"
+ " num: %u\n",
+ num);
+
+ va_start(ap, num);
+ vcpu_regs_get(vcpu, &regs);
+
+ for (i = 0; i < num; i++)
+ regs.gprs[i + 2] = va_arg(ap, uint64_t);
+
+ vcpu_regs_set(vcpu, &regs);
+ va_end(ap);
+}
+
+void vcpu_arch_dump(FILE *stream, struct kvm_vcpu *vcpu, uint8_t indent)
+{
+ fprintf(stream, "%*spstate: psw: 0x%.16llx:0x%.16llx\n",
+ indent, "", vcpu->run->psw_mask, vcpu->run->psw_addr);
+}
+
+void assert_on_unhandled_exception(struct kvm_vcpu *vcpu)
+{
+}
diff --git a/tools/testing/selftests/kvm/lib/s390x/ucall.c b/tools/testing/selftests/kvm/lib/s390x/ucall.c
new file mode 100644
index 000000000..73dc4e211
--- /dev/null
+++ b/tools/testing/selftests/kvm/lib/s390x/ucall.c
@@ -0,0 +1,59 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * ucall support. A ucall is a "hypercall to userspace".
+ *
+ * Copyright (C) 2019 Red Hat, Inc.
+ */
+#include "kvm_util.h"
+
+void ucall_init(struct kvm_vm *vm, void *arg)
+{
+}
+
+void ucall_uninit(struct kvm_vm *vm)
+{
+}
+
+void ucall(uint64_t cmd, int nargs, ...)
+{
+ struct ucall uc = {
+ .cmd = cmd,
+ };
+ va_list va;
+ int i;
+
+ nargs = min(nargs, UCALL_MAX_ARGS);
+
+ va_start(va, nargs);
+ for (i = 0; i < nargs; ++i)
+ uc.args[i] = va_arg(va, uint64_t);
+ va_end(va);
+
+ /* Exit via DIAGNOSE 0x501 (normally used for breakpoints) */
+ asm volatile ("diag 0,%0,0x501" : : "a"(&uc) : "memory");
+}
+
+uint64_t get_ucall(struct kvm_vcpu *vcpu, struct ucall *uc)
+{
+ struct kvm_run *run = vcpu->run;
+ struct ucall ucall = {};
+
+ if (uc)
+ memset(uc, 0, sizeof(*uc));
+
+ if (run->exit_reason == KVM_EXIT_S390_SIEIC &&
+ run->s390_sieic.icptcode == 4 &&
+ (run->s390_sieic.ipa >> 8) == 0x83 && /* 0x83 means DIAGNOSE */
+ (run->s390_sieic.ipb >> 16) == 0x501) {
+ int reg = run->s390_sieic.ipa & 0xf;
+
+ memcpy(&ucall, addr_gva2hva(vcpu->vm, run->s.regs.gprs[reg]),
+ sizeof(ucall));
+
+ vcpu_run_complete_io(vcpu);
+ if (uc)
+ memcpy(uc, &ucall, sizeof(ucall));
+ }
+
+ return ucall.cmd;
+}
diff --git a/tools/testing/selftests/kvm/lib/sparsebit.c b/tools/testing/selftests/kvm/lib/sparsebit.c
new file mode 100644
index 000000000..50e0cf41a
--- /dev/null
+++ b/tools/testing/selftests/kvm/lib/sparsebit.c
@@ -0,0 +1,2085 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Sparse bit array
+ *
+ * Copyright (C) 2018, Google LLC.
+ * Copyright (C) 2018, Red Hat, Inc. (code style cleanup and fuzzing driver)
+ *
+ * This library provides functions to support a memory efficient bit array,
+ * with an index size of 2^64. A sparsebit array is allocated through
+ * the use sparsebit_alloc() and free'd via sparsebit_free(),
+ * such as in the following:
+ *
+ * struct sparsebit *s;
+ * s = sparsebit_alloc();
+ * sparsebit_free(&s);
+ *
+ * The struct sparsebit type resolves down to a struct sparsebit.
+ * Note that, sparsebit_free() takes a pointer to the sparsebit
+ * structure. This is so that sparsebit_free() is able to poison
+ * the pointer (e.g. set it to NULL) to the struct sparsebit before
+ * returning to the caller.
+ *
+ * Between the return of sparsebit_alloc() and the call of
+ * sparsebit_free(), there are multiple query and modifying operations
+ * that can be performed on the allocated sparsebit array. All of
+ * these operations take as a parameter the value returned from
+ * sparsebit_alloc() and most also take a bit index. Frequently
+ * used routines include:
+ *
+ * ---- Query Operations
+ * sparsebit_is_set(s, idx)
+ * sparsebit_is_clear(s, idx)
+ * sparsebit_any_set(s)
+ * sparsebit_first_set(s)
+ * sparsebit_next_set(s, prev_idx)
+ *
+ * ---- Modifying Operations
+ * sparsebit_set(s, idx)
+ * sparsebit_clear(s, idx)
+ * sparsebit_set_num(s, idx, num);
+ * sparsebit_clear_num(s, idx, num);
+ *
+ * A common operation, is to itterate over all the bits set in a test
+ * sparsebit array. This can be done via code with the following structure:
+ *
+ * sparsebit_idx_t idx;
+ * if (sparsebit_any_set(s)) {
+ * idx = sparsebit_first_set(s);
+ * do {
+ * ...
+ * idx = sparsebit_next_set(s, idx);
+ * } while (idx != 0);
+ * }
+ *
+ * The index of the first bit set needs to be obtained via
+ * sparsebit_first_set(), because sparsebit_next_set(), needs
+ * the index of the previously set. The sparsebit_idx_t type is
+ * unsigned, so there is no previous index before 0 that is available.
+ * Also, the call to sparsebit_first_set() is not made unless there
+ * is at least 1 bit in the array set. This is because sparsebit_first_set()
+ * aborts if sparsebit_first_set() is called with no bits set.
+ * It is the callers responsibility to assure that the
+ * sparsebit array has at least a single bit set before calling
+ * sparsebit_first_set().
+ *
+ * ==== Implementation Overview ====
+ * For the most part the internal implementation of sparsebit is
+ * opaque to the caller. One important implementation detail that the
+ * caller may need to be aware of is the spatial complexity of the
+ * implementation. This implementation of a sparsebit array is not
+ * only sparse, in that it uses memory proportional to the number of bits
+ * set. It is also efficient in memory usage when most of the bits are
+ * set.
+ *
+ * At a high-level the state of the bit settings are maintained through
+ * the use of a binary-search tree, where each node contains at least
+ * the following members:
+ *
+ * typedef uint64_t sparsebit_idx_t;
+ * typedef uint64_t sparsebit_num_t;
+ *
+ * sparsebit_idx_t idx;
+ * uint32_t mask;
+ * sparsebit_num_t num_after;
+ *
+ * The idx member contains the bit index of the first bit described by this
+ * node, while the mask member stores the setting of the first 32-bits.
+ * The setting of the bit at idx + n, where 0 <= n < 32, is located in the
+ * mask member at 1 << n.
+ *
+ * Nodes are sorted by idx and the bits described by two nodes will never
+ * overlap. The idx member is always aligned to the mask size, i.e. a
+ * multiple of 32.
+ *
+ * Beyond a typical implementation, the nodes in this implementation also
+ * contains a member named num_after. The num_after member holds the
+ * number of bits immediately after the mask bits that are contiguously set.
+ * The use of the num_after member allows this implementation to efficiently
+ * represent cases where most bits are set. For example, the case of all
+ * but the last two bits set, is represented by the following two nodes:
+ *
+ * node 0 - idx: 0x0 mask: 0xffffffff num_after: 0xffffffffffffffc0
+ * node 1 - idx: 0xffffffffffffffe0 mask: 0x3fffffff num_after: 0
+ *
+ * ==== Invariants ====
+ * This implementation usses the following invariants:
+ *
+ * + Node are only used to represent bits that are set.
+ * Nodes with a mask of 0 and num_after of 0 are not allowed.
+ *
+ * + Sum of bits set in all the nodes is equal to the value of
+ * the struct sparsebit_pvt num_set member.
+ *
+ * + The setting of at least one bit is always described in a nodes
+ * mask (mask >= 1).
+ *
+ * + A node with all mask bits set only occurs when the last bit
+ * described by the previous node is not equal to this nodes
+ * starting index - 1. All such occurences of this condition are
+ * avoided by moving the setting of the nodes mask bits into
+ * the previous nodes num_after setting.
+ *
+ * + Node starting index is evenly divisible by the number of bits
+ * within a nodes mask member.
+ *
+ * + Nodes never represent a range of bits that wrap around the
+ * highest supported index.
+ *
+ * (idx + MASK_BITS + num_after - 1) <= ((sparsebit_idx_t) 0) - 1)
+ *
+ * As a consequence of the above, the num_after member of a node
+ * will always be <=:
+ *
+ * maximum_index - nodes_starting_index - number_of_mask_bits
+ *
+ * + Nodes within the binary search tree are sorted based on each
+ * nodes starting index.
+ *
+ * + The range of bits described by any two nodes do not overlap. The
+ * range of bits described by a single node is:
+ *
+ * start: node->idx
+ * end (inclusive): node->idx + MASK_BITS + node->num_after - 1;
+ *
+ * Note, at times these invariants are temporarily violated for a
+ * specific portion of the code. For example, when setting a mask
+ * bit, there is a small delay between when the mask bit is set and the
+ * value in the struct sparsebit_pvt num_set member is updated. Other
+ * temporary violations occur when node_split() is called with a specified
+ * index and assures that a node where its mask represents the bit
+ * at the specified index exists. At times to do this node_split()
+ * must split an existing node into two nodes or create a node that
+ * has no bits set. Such temporary violations must be corrected before
+ * returning to the caller. These corrections are typically performed
+ * by the local function node_reduce().
+ */
+
+#include "test_util.h"
+#include "sparsebit.h"
+#include <limits.h>
+#include <assert.h>
+
+#define DUMP_LINE_MAX 100 /* Does not include indent amount */
+
+typedef uint32_t mask_t;
+#define MASK_BITS (sizeof(mask_t) * CHAR_BIT)
+
+struct node {
+ struct node *parent;
+ struct node *left;
+ struct node *right;
+ sparsebit_idx_t idx; /* index of least-significant bit in mask */
+ sparsebit_num_t num_after; /* num contiguously set after mask */
+ mask_t mask;
+};
+
+struct sparsebit {
+ /*
+ * Points to root node of the binary search
+ * tree. Equal to NULL when no bits are set in
+ * the entire sparsebit array.
+ */
+ struct node *root;
+
+ /*
+ * A redundant count of the total number of bits set. Used for
+ * diagnostic purposes and to change the time complexity of
+ * sparsebit_num_set() from O(n) to O(1).
+ * Note: Due to overflow, a value of 0 means none or all set.
+ */
+ sparsebit_num_t num_set;
+};
+
+/* Returns the number of set bits described by the settings
+ * of the node pointed to by nodep.
+ */
+static sparsebit_num_t node_num_set(struct node *nodep)
+{
+ return nodep->num_after + __builtin_popcount(nodep->mask);
+}
+
+/* Returns a pointer to the node that describes the
+ * lowest bit index.
+ */
+static struct node *node_first(struct sparsebit *s)
+{
+ struct node *nodep;
+
+ for (nodep = s->root; nodep && nodep->left; nodep = nodep->left)
+ ;
+
+ return nodep;
+}
+
+/* Returns a pointer to the node that describes the
+ * lowest bit index > the index of the node pointed to by np.
+ * Returns NULL if no node with a higher index exists.
+ */
+static struct node *node_next(struct sparsebit *s, struct node *np)
+{
+ struct node *nodep = np;
+
+ /*
+ * If current node has a right child, next node is the left-most
+ * of the right child.
+ */
+ if (nodep->right) {
+ for (nodep = nodep->right; nodep->left; nodep = nodep->left)
+ ;
+ return nodep;
+ }
+
+ /*
+ * No right child. Go up until node is left child of a parent.
+ * That parent is then the next node.
+ */
+ while (nodep->parent && nodep == nodep->parent->right)
+ nodep = nodep->parent;
+
+ return nodep->parent;
+}
+
+/* Searches for and returns a pointer to the node that describes the
+ * highest index < the index of the node pointed to by np.
+ * Returns NULL if no node with a lower index exists.
+ */
+static struct node *node_prev(struct sparsebit *s, struct node *np)
+{
+ struct node *nodep = np;
+
+ /*
+ * If current node has a left child, next node is the right-most
+ * of the left child.
+ */
+ if (nodep->left) {
+ for (nodep = nodep->left; nodep->right; nodep = nodep->right)
+ ;
+ return (struct node *) nodep;
+ }
+
+ /*
+ * No left child. Go up until node is right child of a parent.
+ * That parent is then the next node.
+ */
+ while (nodep->parent && nodep == nodep->parent->left)
+ nodep = nodep->parent;
+
+ return (struct node *) nodep->parent;
+}
+
+
+/* Allocates space to hold a copy of the node sub-tree pointed to by
+ * subtree and duplicates the bit settings to the newly allocated nodes.
+ * Returns the newly allocated copy of subtree.
+ */
+static struct node *node_copy_subtree(struct node *subtree)
+{
+ struct node *root;
+
+ /* Duplicate the node at the root of the subtree */
+ root = calloc(1, sizeof(*root));
+ if (!root) {
+ perror("calloc");
+ abort();
+ }
+
+ root->idx = subtree->idx;
+ root->mask = subtree->mask;
+ root->num_after = subtree->num_after;
+
+ /* As needed, recursively duplicate the left and right subtrees */
+ if (subtree->left) {
+ root->left = node_copy_subtree(subtree->left);
+ root->left->parent = root;
+ }
+
+ if (subtree->right) {
+ root->right = node_copy_subtree(subtree->right);
+ root->right->parent = root;
+ }
+
+ return root;
+}
+
+/* Searches for and returns a pointer to the node that describes the setting
+ * of the bit given by idx. A node describes the setting of a bit if its
+ * index is within the bits described by the mask bits or the number of
+ * contiguous bits set after the mask. Returns NULL if there is no such node.
+ */
+static struct node *node_find(struct sparsebit *s, sparsebit_idx_t idx)
+{
+ struct node *nodep;
+
+ /* Find the node that describes the setting of the bit at idx */
+ for (nodep = s->root; nodep;
+ nodep = nodep->idx > idx ? nodep->left : nodep->right) {
+ if (idx >= nodep->idx &&
+ idx <= nodep->idx + MASK_BITS + nodep->num_after - 1)
+ break;
+ }
+
+ return nodep;
+}
+
+/* Entry Requirements:
+ * + A node that describes the setting of idx is not already present.
+ *
+ * Adds a new node to describe the setting of the bit at the index given
+ * by idx. Returns a pointer to the newly added node.
+ *
+ * TODO(lhuemill): Degenerate cases causes the tree to get unbalanced.
+ */
+static struct node *node_add(struct sparsebit *s, sparsebit_idx_t idx)
+{
+ struct node *nodep, *parentp, *prev;
+
+ /* Allocate and initialize the new node. */
+ nodep = calloc(1, sizeof(*nodep));
+ if (!nodep) {
+ perror("calloc");
+ abort();
+ }
+
+ nodep->idx = idx & -MASK_BITS;
+
+ /* If no nodes, set it up as the root node. */
+ if (!s->root) {
+ s->root = nodep;
+ return nodep;
+ }
+
+ /*
+ * Find the parent where the new node should be attached
+ * and add the node there.
+ */
+ parentp = s->root;
+ while (true) {
+ if (idx < parentp->idx) {
+ if (!parentp->left) {
+ parentp->left = nodep;
+ nodep->parent = parentp;
+ break;
+ }
+ parentp = parentp->left;
+ } else {
+ assert(idx > parentp->idx + MASK_BITS + parentp->num_after - 1);
+ if (!parentp->right) {
+ parentp->right = nodep;
+ nodep->parent = parentp;
+ break;
+ }
+ parentp = parentp->right;
+ }
+ }
+
+ /*
+ * Does num_after bits of previous node overlap with the mask
+ * of the new node? If so set the bits in the new nodes mask
+ * and reduce the previous nodes num_after.
+ */
+ prev = node_prev(s, nodep);
+ while (prev && prev->idx + MASK_BITS + prev->num_after - 1 >= nodep->idx) {
+ unsigned int n1 = (prev->idx + MASK_BITS + prev->num_after - 1)
+ - nodep->idx;
+ assert(prev->num_after > 0);
+ assert(n1 < MASK_BITS);
+ assert(!(nodep->mask & (1 << n1)));
+ nodep->mask |= (1 << n1);
+ prev->num_after--;
+ }
+
+ return nodep;
+}
+
+/* Returns whether all the bits in the sparsebit array are set. */
+bool sparsebit_all_set(struct sparsebit *s)
+{
+ /*
+ * If any nodes there must be at least one bit set. Only case
+ * where a bit is set and total num set is 0, is when all bits
+ * are set.
+ */
+ return s->root && s->num_set == 0;
+}
+
+/* Clears all bits described by the node pointed to by nodep, then
+ * removes the node.
+ */
+static void node_rm(struct sparsebit *s, struct node *nodep)
+{
+ struct node *tmp;
+ sparsebit_num_t num_set;
+
+ num_set = node_num_set(nodep);
+ assert(s->num_set >= num_set || sparsebit_all_set(s));
+ s->num_set -= node_num_set(nodep);
+
+ /* Have both left and right child */
+ if (nodep->left && nodep->right) {
+ /*
+ * Move left children to the leftmost leaf node
+ * of the right child.
+ */
+ for (tmp = nodep->right; tmp->left; tmp = tmp->left)
+ ;
+ tmp->left = nodep->left;
+ nodep->left = NULL;
+ tmp->left->parent = tmp;
+ }
+
+ /* Left only child */
+ if (nodep->left) {
+ if (!nodep->parent) {
+ s->root = nodep->left;
+ nodep->left->parent = NULL;
+ } else {
+ nodep->left->parent = nodep->parent;
+ if (nodep == nodep->parent->left)
+ nodep->parent->left = nodep->left;
+ else {
+ assert(nodep == nodep->parent->right);
+ nodep->parent->right = nodep->left;
+ }
+ }
+
+ nodep->parent = nodep->left = nodep->right = NULL;
+ free(nodep);
+
+ return;
+ }
+
+
+ /* Right only child */
+ if (nodep->right) {
+ if (!nodep->parent) {
+ s->root = nodep->right;
+ nodep->right->parent = NULL;
+ } else {
+ nodep->right->parent = nodep->parent;
+ if (nodep == nodep->parent->left)
+ nodep->parent->left = nodep->right;
+ else {
+ assert(nodep == nodep->parent->right);
+ nodep->parent->right = nodep->right;
+ }
+ }
+
+ nodep->parent = nodep->left = nodep->right = NULL;
+ free(nodep);
+
+ return;
+ }
+
+ /* Leaf Node */
+ if (!nodep->parent) {
+ s->root = NULL;
+ } else {
+ if (nodep->parent->left == nodep)
+ nodep->parent->left = NULL;
+ else {
+ assert(nodep == nodep->parent->right);
+ nodep->parent->right = NULL;
+ }
+ }
+
+ nodep->parent = nodep->left = nodep->right = NULL;
+ free(nodep);
+
+ return;
+}
+
+/* Splits the node containing the bit at idx so that there is a node
+ * that starts at the specified index. If no such node exists, a new
+ * node at the specified index is created. Returns the new node.
+ *
+ * idx must start of a mask boundary.
+ */
+static struct node *node_split(struct sparsebit *s, sparsebit_idx_t idx)
+{
+ struct node *nodep1, *nodep2;
+ sparsebit_idx_t offset;
+ sparsebit_num_t orig_num_after;
+
+ assert(!(idx % MASK_BITS));
+
+ /*
+ * Is there a node that describes the setting of idx?
+ * If not, add it.
+ */
+ nodep1 = node_find(s, idx);
+ if (!nodep1)
+ return node_add(s, idx);
+
+ /*
+ * All done if the starting index of the node is where the
+ * split should occur.
+ */
+ if (nodep1->idx == idx)
+ return nodep1;
+
+ /*
+ * Split point not at start of mask, so it must be part of
+ * bits described by num_after.
+ */
+
+ /*
+ * Calculate offset within num_after for where the split is
+ * to occur.
+ */
+ offset = idx - (nodep1->idx + MASK_BITS);
+ orig_num_after = nodep1->num_after;
+
+ /*
+ * Add a new node to describe the bits starting at
+ * the split point.
+ */
+ nodep1->num_after = offset;
+ nodep2 = node_add(s, idx);
+
+ /* Move bits after the split point into the new node */
+ nodep2->num_after = orig_num_after - offset;
+ if (nodep2->num_after >= MASK_BITS) {
+ nodep2->mask = ~(mask_t) 0;
+ nodep2->num_after -= MASK_BITS;
+ } else {
+ nodep2->mask = (1 << nodep2->num_after) - 1;
+ nodep2->num_after = 0;
+ }
+
+ return nodep2;
+}
+
+/* Iteratively reduces the node pointed to by nodep and its adjacent
+ * nodes into a more compact form. For example, a node with a mask with
+ * all bits set adjacent to a previous node, will get combined into a
+ * single node with an increased num_after setting.
+ *
+ * After each reduction, a further check is made to see if additional
+ * reductions are possible with the new previous and next nodes. Note,
+ * a search for a reduction is only done across the nodes nearest nodep
+ * and those that became part of a reduction. Reductions beyond nodep
+ * and the adjacent nodes that are reduced are not discovered. It is the
+ * responsibility of the caller to pass a nodep that is within one node
+ * of each possible reduction.
+ *
+ * This function does not fix the temporary violation of all invariants.
+ * For example it does not fix the case where the bit settings described
+ * by two or more nodes overlap. Such a violation introduces the potential
+ * complication of a bit setting for a specific index having different settings
+ * in different nodes. This would then introduce the further complication
+ * of which node has the correct setting of the bit and thus such conditions
+ * are not allowed.
+ *
+ * This function is designed to fix invariant violations that are introduced
+ * by node_split() and by changes to the nodes mask or num_after members.
+ * For example, when setting a bit within a nodes mask, the function that
+ * sets the bit doesn't have to worry about whether the setting of that
+ * bit caused the mask to have leading only or trailing only bits set.
+ * Instead, the function can call node_reduce(), with nodep equal to the
+ * node address that it set a mask bit in, and node_reduce() will notice
+ * the cases of leading or trailing only bits and that there is an
+ * adjacent node that the bit settings could be merged into.
+ *
+ * This implementation specifically detects and corrects violation of the
+ * following invariants:
+ *
+ * + Node are only used to represent bits that are set.
+ * Nodes with a mask of 0 and num_after of 0 are not allowed.
+ *
+ * + The setting of at least one bit is always described in a nodes
+ * mask (mask >= 1).
+ *
+ * + A node with all mask bits set only occurs when the last bit
+ * described by the previous node is not equal to this nodes
+ * starting index - 1. All such occurences of this condition are
+ * avoided by moving the setting of the nodes mask bits into
+ * the previous nodes num_after setting.
+ */
+static void node_reduce(struct sparsebit *s, struct node *nodep)
+{
+ bool reduction_performed;
+
+ do {
+ reduction_performed = false;
+ struct node *prev, *next, *tmp;
+
+ /* 1) Potential reductions within the current node. */
+
+ /* Nodes with all bits cleared may be removed. */
+ if (nodep->mask == 0 && nodep->num_after == 0) {
+ /*
+ * About to remove the node pointed to by
+ * nodep, which normally would cause a problem
+ * for the next pass through the reduction loop,
+ * because the node at the starting point no longer
+ * exists. This potential problem is handled
+ * by first remembering the location of the next
+ * or previous nodes. Doesn't matter which, because
+ * once the node at nodep is removed, there will be
+ * no other nodes between prev and next.
+ *
+ * Note, the checks performed on nodep against both
+ * both prev and next both check for an adjacent
+ * node that can be reduced into a single node. As
+ * such, after removing the node at nodep, doesn't
+ * matter whether the nodep for the next pass
+ * through the loop is equal to the previous pass
+ * prev or next node. Either way, on the next pass
+ * the one not selected will become either the
+ * prev or next node.
+ */
+ tmp = node_next(s, nodep);
+ if (!tmp)
+ tmp = node_prev(s, nodep);
+
+ node_rm(s, nodep);
+ nodep = NULL;
+
+ nodep = tmp;
+ reduction_performed = true;
+ continue;
+ }
+
+ /*
+ * When the mask is 0, can reduce the amount of num_after
+ * bits by moving the initial num_after bits into the mask.
+ */
+ if (nodep->mask == 0) {
+ assert(nodep->num_after != 0);
+ assert(nodep->idx + MASK_BITS > nodep->idx);
+
+ nodep->idx += MASK_BITS;
+
+ if (nodep->num_after >= MASK_BITS) {
+ nodep->mask = ~0;
+ nodep->num_after -= MASK_BITS;
+ } else {
+ nodep->mask = (1u << nodep->num_after) - 1;
+ nodep->num_after = 0;
+ }
+
+ reduction_performed = true;
+ continue;
+ }
+
+ /*
+ * 2) Potential reductions between the current and
+ * previous nodes.
+ */
+ prev = node_prev(s, nodep);
+ if (prev) {
+ sparsebit_idx_t prev_highest_bit;
+
+ /* Nodes with no bits set can be removed. */
+ if (prev->mask == 0 && prev->num_after == 0) {
+ node_rm(s, prev);
+
+ reduction_performed = true;
+ continue;
+ }
+
+ /*
+ * All mask bits set and previous node has
+ * adjacent index.
+ */
+ if (nodep->mask + 1 == 0 &&
+ prev->idx + MASK_BITS == nodep->idx) {
+ prev->num_after += MASK_BITS + nodep->num_after;
+ nodep->mask = 0;
+ nodep->num_after = 0;
+
+ reduction_performed = true;
+ continue;
+ }
+
+ /*
+ * Is node adjacent to previous node and the node
+ * contains a single contiguous range of bits
+ * starting from the beginning of the mask?
+ */
+ prev_highest_bit = prev->idx + MASK_BITS - 1 + prev->num_after;
+ if (prev_highest_bit + 1 == nodep->idx &&
+ (nodep->mask | (nodep->mask >> 1)) == nodep->mask) {
+ /*
+ * How many contiguous bits are there?
+ * Is equal to the total number of set
+ * bits, due to an earlier check that
+ * there is a single contiguous range of
+ * set bits.
+ */
+ unsigned int num_contiguous
+ = __builtin_popcount(nodep->mask);
+ assert((num_contiguous > 0) &&
+ ((1ULL << num_contiguous) - 1) == nodep->mask);
+
+ prev->num_after += num_contiguous;
+ nodep->mask = 0;
+
+ /*
+ * For predictable performance, handle special
+ * case where all mask bits are set and there
+ * is a non-zero num_after setting. This code
+ * is functionally correct without the following
+ * conditionalized statements, but without them
+ * the value of num_after is only reduced by
+ * the number of mask bits per pass. There are
+ * cases where num_after can be close to 2^64.
+ * Without this code it could take nearly
+ * (2^64) / 32 passes to perform the full
+ * reduction.
+ */
+ if (num_contiguous == MASK_BITS) {
+ prev->num_after += nodep->num_after;
+ nodep->num_after = 0;
+ }
+
+ reduction_performed = true;
+ continue;
+ }
+ }
+
+ /*
+ * 3) Potential reductions between the current and
+ * next nodes.
+ */
+ next = node_next(s, nodep);
+ if (next) {
+ /* Nodes with no bits set can be removed. */
+ if (next->mask == 0 && next->num_after == 0) {
+ node_rm(s, next);
+ reduction_performed = true;
+ continue;
+ }
+
+ /*
+ * Is next node index adjacent to current node
+ * and has a mask with all bits set?
+ */
+ if (next->idx == nodep->idx + MASK_BITS + nodep->num_after &&
+ next->mask == ~(mask_t) 0) {
+ nodep->num_after += MASK_BITS;
+ next->mask = 0;
+ nodep->num_after += next->num_after;
+ next->num_after = 0;
+
+ node_rm(s, next);
+ next = NULL;
+
+ reduction_performed = true;
+ continue;
+ }
+ }
+ } while (nodep && reduction_performed);
+}
+
+/* Returns whether the bit at the index given by idx, within the
+ * sparsebit array is set or not.
+ */
+bool sparsebit_is_set(struct sparsebit *s, sparsebit_idx_t idx)
+{
+ struct node *nodep;
+
+ /* Find the node that describes the setting of the bit at idx */
+ for (nodep = s->root; nodep;
+ nodep = nodep->idx > idx ? nodep->left : nodep->right)
+ if (idx >= nodep->idx &&
+ idx <= nodep->idx + MASK_BITS + nodep->num_after - 1)
+ goto have_node;
+
+ return false;
+
+have_node:
+ /* Bit is set if it is any of the bits described by num_after */
+ if (nodep->num_after && idx >= nodep->idx + MASK_BITS)
+ return true;
+
+ /* Is the corresponding mask bit set */
+ assert(idx >= nodep->idx && idx - nodep->idx < MASK_BITS);
+ return !!(nodep->mask & (1 << (idx - nodep->idx)));
+}
+
+/* Within the sparsebit array pointed to by s, sets the bit
+ * at the index given by idx.
+ */
+static void bit_set(struct sparsebit *s, sparsebit_idx_t idx)
+{
+ struct node *nodep;
+
+ /* Skip bits that are already set */
+ if (sparsebit_is_set(s, idx))
+ return;
+
+ /*
+ * Get a node where the bit at idx is described by the mask.
+ * The node_split will also create a node, if there isn't
+ * already a node that describes the setting of bit.
+ */
+ nodep = node_split(s, idx & -MASK_BITS);
+
+ /* Set the bit within the nodes mask */
+ assert(idx >= nodep->idx && idx <= nodep->idx + MASK_BITS - 1);
+ assert(!(nodep->mask & (1 << (idx - nodep->idx))));
+ nodep->mask |= 1 << (idx - nodep->idx);
+ s->num_set++;
+
+ node_reduce(s, nodep);
+}
+
+/* Within the sparsebit array pointed to by s, clears the bit
+ * at the index given by idx.
+ */
+static void bit_clear(struct sparsebit *s, sparsebit_idx_t idx)
+{
+ struct node *nodep;
+
+ /* Skip bits that are already cleared */
+ if (!sparsebit_is_set(s, idx))
+ return;
+
+ /* Is there a node that describes the setting of this bit? */
+ nodep = node_find(s, idx);
+ if (!nodep)
+ return;
+
+ /*
+ * If a num_after bit, split the node, so that the bit is
+ * part of a node mask.
+ */
+ if (idx >= nodep->idx + MASK_BITS)
+ nodep = node_split(s, idx & -MASK_BITS);
+
+ /*
+ * After node_split above, bit at idx should be within the mask.
+ * Clear that bit.
+ */
+ assert(idx >= nodep->idx && idx <= nodep->idx + MASK_BITS - 1);
+ assert(nodep->mask & (1 << (idx - nodep->idx)));
+ nodep->mask &= ~(1 << (idx - nodep->idx));
+ assert(s->num_set > 0 || sparsebit_all_set(s));
+ s->num_set--;
+
+ node_reduce(s, nodep);
+}
+
+/* Recursively dumps to the FILE stream given by stream the contents
+ * of the sub-tree of nodes pointed to by nodep. Each line of output
+ * is prefixed by the number of spaces given by indent. On each
+ * recursion, the indent amount is increased by 2. This causes nodes
+ * at each level deeper into the binary search tree to be displayed
+ * with a greater indent.
+ */
+static void dump_nodes(FILE *stream, struct node *nodep,
+ unsigned int indent)
+{
+ char *node_type;
+
+ /* Dump contents of node */
+ if (!nodep->parent)
+ node_type = "root";
+ else if (nodep == nodep->parent->left)
+ node_type = "left";
+ else {
+ assert(nodep == nodep->parent->right);
+ node_type = "right";
+ }
+ fprintf(stream, "%*s---- %s nodep: %p\n", indent, "", node_type, nodep);
+ fprintf(stream, "%*s parent: %p left: %p right: %p\n", indent, "",
+ nodep->parent, nodep->left, nodep->right);
+ fprintf(stream, "%*s idx: 0x%lx mask: 0x%x num_after: 0x%lx\n",
+ indent, "", nodep->idx, nodep->mask, nodep->num_after);
+
+ /* If present, dump contents of left child nodes */
+ if (nodep->left)
+ dump_nodes(stream, nodep->left, indent + 2);
+
+ /* If present, dump contents of right child nodes */
+ if (nodep->right)
+ dump_nodes(stream, nodep->right, indent + 2);
+}
+
+static inline sparsebit_idx_t node_first_set(struct node *nodep, int start)
+{
+ mask_t leading = (mask_t)1 << start;
+ int n1 = __builtin_ctz(nodep->mask & -leading);
+
+ return nodep->idx + n1;
+}
+
+static inline sparsebit_idx_t node_first_clear(struct node *nodep, int start)
+{
+ mask_t leading = (mask_t)1 << start;
+ int n1 = __builtin_ctz(~nodep->mask & -leading);
+
+ return nodep->idx + n1;
+}
+
+/* Dumps to the FILE stream specified by stream, the implementation dependent
+ * internal state of s. Each line of output is prefixed with the number
+ * of spaces given by indent. The output is completely implementation
+ * dependent and subject to change. Output from this function should only
+ * be used for diagnostic purposes. For example, this function can be
+ * used by test cases after they detect an unexpected condition, as a means
+ * to capture diagnostic information.
+ */
+static void sparsebit_dump_internal(FILE *stream, struct sparsebit *s,
+ unsigned int indent)
+{
+ /* Dump the contents of s */
+ fprintf(stream, "%*sroot: %p\n", indent, "", s->root);
+ fprintf(stream, "%*snum_set: 0x%lx\n", indent, "", s->num_set);
+
+ if (s->root)
+ dump_nodes(stream, s->root, indent);
+}
+
+/* Allocates and returns a new sparsebit array. The initial state
+ * of the newly allocated sparsebit array has all bits cleared.
+ */
+struct sparsebit *sparsebit_alloc(void)
+{
+ struct sparsebit *s;
+
+ /* Allocate top level structure. */
+ s = calloc(1, sizeof(*s));
+ if (!s) {
+ perror("calloc");
+ abort();
+ }
+
+ return s;
+}
+
+/* Frees the implementation dependent data for the sparsebit array
+ * pointed to by s and poisons the pointer to that data.
+ */
+void sparsebit_free(struct sparsebit **sbitp)
+{
+ struct sparsebit *s = *sbitp;
+
+ if (!s)
+ return;
+
+ sparsebit_clear_all(s);
+ free(s);
+ *sbitp = NULL;
+}
+
+/* Makes a copy of the sparsebit array given by s, to the sparsebit
+ * array given by d. Note, d must have already been allocated via
+ * sparsebit_alloc(). It can though already have bits set, which
+ * if different from src will be cleared.
+ */
+void sparsebit_copy(struct sparsebit *d, struct sparsebit *s)
+{
+ /* First clear any bits already set in the destination */
+ sparsebit_clear_all(d);
+
+ if (s->root) {
+ d->root = node_copy_subtree(s->root);
+ d->num_set = s->num_set;
+ }
+}
+
+/* Returns whether num consecutive bits starting at idx are all set. */
+bool sparsebit_is_set_num(struct sparsebit *s,
+ sparsebit_idx_t idx, sparsebit_num_t num)
+{
+ sparsebit_idx_t next_cleared;
+
+ assert(num > 0);
+ assert(idx + num - 1 >= idx);
+
+ /* With num > 0, the first bit must be set. */
+ if (!sparsebit_is_set(s, idx))
+ return false;
+
+ /* Find the next cleared bit */
+ next_cleared = sparsebit_next_clear(s, idx);
+
+ /*
+ * If no cleared bits beyond idx, then there are at least num
+ * set bits. idx + num doesn't wrap. Otherwise check if
+ * there are enough set bits between idx and the next cleared bit.
+ */
+ return next_cleared == 0 || next_cleared - idx >= num;
+}
+
+/* Returns whether the bit at the index given by idx. */
+bool sparsebit_is_clear(struct sparsebit *s,
+ sparsebit_idx_t idx)
+{
+ return !sparsebit_is_set(s, idx);
+}
+
+/* Returns whether num consecutive bits starting at idx are all cleared. */
+bool sparsebit_is_clear_num(struct sparsebit *s,
+ sparsebit_idx_t idx, sparsebit_num_t num)
+{
+ sparsebit_idx_t next_set;
+
+ assert(num > 0);
+ assert(idx + num - 1 >= idx);
+
+ /* With num > 0, the first bit must be cleared. */
+ if (!sparsebit_is_clear(s, idx))
+ return false;
+
+ /* Find the next set bit */
+ next_set = sparsebit_next_set(s, idx);
+
+ /*
+ * If no set bits beyond idx, then there are at least num
+ * cleared bits. idx + num doesn't wrap. Otherwise check if
+ * there are enough cleared bits between idx and the next set bit.
+ */
+ return next_set == 0 || next_set - idx >= num;
+}
+
+/* Returns the total number of bits set. Note: 0 is also returned for
+ * the case of all bits set. This is because with all bits set, there
+ * is 1 additional bit set beyond what can be represented in the return
+ * value. Use sparsebit_any_set(), instead of sparsebit_num_set() > 0,
+ * to determine if the sparsebit array has any bits set.
+ */
+sparsebit_num_t sparsebit_num_set(struct sparsebit *s)
+{
+ return s->num_set;
+}
+
+/* Returns whether any bit is set in the sparsebit array. */
+bool sparsebit_any_set(struct sparsebit *s)
+{
+ /*
+ * Nodes only describe set bits. If any nodes then there
+ * is at least 1 bit set.
+ */
+ if (!s->root)
+ return false;
+
+ /*
+ * Every node should have a non-zero mask. For now will
+ * just assure that the root node has a non-zero mask,
+ * which is a quick check that at least 1 bit is set.
+ */
+ assert(s->root->mask != 0);
+ assert(s->num_set > 0 ||
+ (s->root->num_after == ((sparsebit_num_t) 0) - MASK_BITS &&
+ s->root->mask == ~(mask_t) 0));
+
+ return true;
+}
+
+/* Returns whether all the bits in the sparsebit array are cleared. */
+bool sparsebit_all_clear(struct sparsebit *s)
+{
+ return !sparsebit_any_set(s);
+}
+
+/* Returns whether all the bits in the sparsebit array are set. */
+bool sparsebit_any_clear(struct sparsebit *s)
+{
+ return !sparsebit_all_set(s);
+}
+
+/* Returns the index of the first set bit. Abort if no bits are set.
+ */
+sparsebit_idx_t sparsebit_first_set(struct sparsebit *s)
+{
+ struct node *nodep;
+
+ /* Validate at least 1 bit is set */
+ assert(sparsebit_any_set(s));
+
+ nodep = node_first(s);
+ return node_first_set(nodep, 0);
+}
+
+/* Returns the index of the first cleared bit. Abort if
+ * no bits are cleared.
+ */
+sparsebit_idx_t sparsebit_first_clear(struct sparsebit *s)
+{
+ struct node *nodep1, *nodep2;
+
+ /* Validate at least 1 bit is cleared. */
+ assert(sparsebit_any_clear(s));
+
+ /* If no nodes or first node index > 0 then lowest cleared is 0 */
+ nodep1 = node_first(s);
+ if (!nodep1 || nodep1->idx > 0)
+ return 0;
+
+ /* Does the mask in the first node contain any cleared bits. */
+ if (nodep1->mask != ~(mask_t) 0)
+ return node_first_clear(nodep1, 0);
+
+ /*
+ * All mask bits set in first node. If there isn't a second node
+ * then the first cleared bit is the first bit after the bits
+ * described by the first node.
+ */
+ nodep2 = node_next(s, nodep1);
+ if (!nodep2) {
+ /*
+ * No second node. First cleared bit is first bit beyond
+ * bits described by first node.
+ */
+ assert(nodep1->mask == ~(mask_t) 0);
+ assert(nodep1->idx + MASK_BITS + nodep1->num_after != (sparsebit_idx_t) 0);
+ return nodep1->idx + MASK_BITS + nodep1->num_after;
+ }
+
+ /*
+ * There is a second node.
+ * If it is not adjacent to the first node, then there is a gap
+ * of cleared bits between the nodes, and the first cleared bit
+ * is the first bit within the gap.
+ */
+ if (nodep1->idx + MASK_BITS + nodep1->num_after != nodep2->idx)
+ return nodep1->idx + MASK_BITS + nodep1->num_after;
+
+ /*
+ * Second node is adjacent to the first node.
+ * Because it is adjacent, its mask should be non-zero. If all
+ * its mask bits are set, then with it being adjacent, it should
+ * have had the mask bits moved into the num_after setting of the
+ * previous node.
+ */
+ return node_first_clear(nodep2, 0);
+}
+
+/* Returns index of next bit set within s after the index given by prev.
+ * Returns 0 if there are no bits after prev that are set.
+ */
+sparsebit_idx_t sparsebit_next_set(struct sparsebit *s,
+ sparsebit_idx_t prev)
+{
+ sparsebit_idx_t lowest_possible = prev + 1;
+ sparsebit_idx_t start;
+ struct node *nodep;
+
+ /* A bit after the highest index can't be set. */
+ if (lowest_possible == 0)
+ return 0;
+
+ /*
+ * Find the leftmost 'candidate' overlapping or to the right
+ * of lowest_possible.
+ */
+ struct node *candidate = NULL;
+
+ /* True iff lowest_possible is within candidate */
+ bool contains = false;
+
+ /*
+ * Find node that describes setting of bit at lowest_possible.
+ * If such a node doesn't exist, find the node with the lowest
+ * starting index that is > lowest_possible.
+ */
+ for (nodep = s->root; nodep;) {
+ if ((nodep->idx + MASK_BITS + nodep->num_after - 1)
+ >= lowest_possible) {
+ candidate = nodep;
+ if (candidate->idx <= lowest_possible) {
+ contains = true;
+ break;
+ }
+ nodep = nodep->left;
+ } else {
+ nodep = nodep->right;
+ }
+ }
+ if (!candidate)
+ return 0;
+
+ assert(candidate->mask != 0);
+
+ /* Does the candidate node describe the setting of lowest_possible? */
+ if (!contains) {
+ /*
+ * Candidate doesn't describe setting of bit at lowest_possible.
+ * Candidate points to the first node with a starting index
+ * > lowest_possible.
+ */
+ assert(candidate->idx > lowest_possible);
+
+ return node_first_set(candidate, 0);
+ }
+
+ /*
+ * Candidate describes setting of bit at lowest_possible.
+ * Note: although the node describes the setting of the bit
+ * at lowest_possible, its possible that its setting and the
+ * setting of all latter bits described by this node are 0.
+ * For now, just handle the cases where this node describes
+ * a bit at or after an index of lowest_possible that is set.
+ */
+ start = lowest_possible - candidate->idx;
+
+ if (start < MASK_BITS && candidate->mask >= (1 << start))
+ return node_first_set(candidate, start);
+
+ if (candidate->num_after) {
+ sparsebit_idx_t first_num_after_idx = candidate->idx + MASK_BITS;
+
+ return lowest_possible < first_num_after_idx
+ ? first_num_after_idx : lowest_possible;
+ }
+
+ /*
+ * Although candidate node describes setting of bit at
+ * the index of lowest_possible, all bits at that index and
+ * latter that are described by candidate are cleared. With
+ * this, the next bit is the first bit in the next node, if
+ * such a node exists. If a next node doesn't exist, then
+ * there is no next set bit.
+ */
+ candidate = node_next(s, candidate);
+ if (!candidate)
+ return 0;
+
+ return node_first_set(candidate, 0);
+}
+
+/* Returns index of next bit cleared within s after the index given by prev.
+ * Returns 0 if there are no bits after prev that are cleared.
+ */
+sparsebit_idx_t sparsebit_next_clear(struct sparsebit *s,
+ sparsebit_idx_t prev)
+{
+ sparsebit_idx_t lowest_possible = prev + 1;
+ sparsebit_idx_t idx;
+ struct node *nodep1, *nodep2;
+
+ /* A bit after the highest index can't be set. */
+ if (lowest_possible == 0)
+ return 0;
+
+ /*
+ * Does a node describing the setting of lowest_possible exist?
+ * If not, the bit at lowest_possible is cleared.
+ */
+ nodep1 = node_find(s, lowest_possible);
+ if (!nodep1)
+ return lowest_possible;
+
+ /* Does a mask bit in node 1 describe the next cleared bit. */
+ for (idx = lowest_possible - nodep1->idx; idx < MASK_BITS; idx++)
+ if (!(nodep1->mask & (1 << idx)))
+ return nodep1->idx + idx;
+
+ /*
+ * Next cleared bit is not described by node 1. If there
+ * isn't a next node, then next cleared bit is described
+ * by bit after the bits described by the first node.
+ */
+ nodep2 = node_next(s, nodep1);
+ if (!nodep2)
+ return nodep1->idx + MASK_BITS + nodep1->num_after;
+
+ /*
+ * There is a second node.
+ * If it is not adjacent to the first node, then there is a gap
+ * of cleared bits between the nodes, and the next cleared bit
+ * is the first bit within the gap.
+ */
+ if (nodep1->idx + MASK_BITS + nodep1->num_after != nodep2->idx)
+ return nodep1->idx + MASK_BITS + nodep1->num_after;
+
+ /*
+ * Second node is adjacent to the first node.
+ * Because it is adjacent, its mask should be non-zero. If all
+ * its mask bits are set, then with it being adjacent, it should
+ * have had the mask bits moved into the num_after setting of the
+ * previous node.
+ */
+ return node_first_clear(nodep2, 0);
+}
+
+/* Starting with the index 1 greater than the index given by start, finds
+ * and returns the index of the first sequence of num consecutively set
+ * bits. Returns a value of 0 of no such sequence exists.
+ */
+sparsebit_idx_t sparsebit_next_set_num(struct sparsebit *s,
+ sparsebit_idx_t start, sparsebit_num_t num)
+{
+ sparsebit_idx_t idx;
+
+ assert(num >= 1);
+
+ for (idx = sparsebit_next_set(s, start);
+ idx != 0 && idx + num - 1 >= idx;
+ idx = sparsebit_next_set(s, idx)) {
+ assert(sparsebit_is_set(s, idx));
+
+ /*
+ * Does the sequence of bits starting at idx consist of
+ * num set bits?
+ */
+ if (sparsebit_is_set_num(s, idx, num))
+ return idx;
+
+ /*
+ * Sequence of set bits at idx isn't large enough.
+ * Skip this entire sequence of set bits.
+ */
+ idx = sparsebit_next_clear(s, idx);
+ if (idx == 0)
+ return 0;
+ }
+
+ return 0;
+}
+
+/* Starting with the index 1 greater than the index given by start, finds
+ * and returns the index of the first sequence of num consecutively cleared
+ * bits. Returns a value of 0 of no such sequence exists.
+ */
+sparsebit_idx_t sparsebit_next_clear_num(struct sparsebit *s,
+ sparsebit_idx_t start, sparsebit_num_t num)
+{
+ sparsebit_idx_t idx;
+
+ assert(num >= 1);
+
+ for (idx = sparsebit_next_clear(s, start);
+ idx != 0 && idx + num - 1 >= idx;
+ idx = sparsebit_next_clear(s, idx)) {
+ assert(sparsebit_is_clear(s, idx));
+
+ /*
+ * Does the sequence of bits starting at idx consist of
+ * num cleared bits?
+ */
+ if (sparsebit_is_clear_num(s, idx, num))
+ return idx;
+
+ /*
+ * Sequence of cleared bits at idx isn't large enough.
+ * Skip this entire sequence of cleared bits.
+ */
+ idx = sparsebit_next_set(s, idx);
+ if (idx == 0)
+ return 0;
+ }
+
+ return 0;
+}
+
+/* Sets the bits * in the inclusive range idx through idx + num - 1. */
+void sparsebit_set_num(struct sparsebit *s,
+ sparsebit_idx_t start, sparsebit_num_t num)
+{
+ struct node *nodep, *next;
+ unsigned int n1;
+ sparsebit_idx_t idx;
+ sparsebit_num_t n;
+ sparsebit_idx_t middle_start, middle_end;
+
+ assert(num > 0);
+ assert(start + num - 1 >= start);
+
+ /*
+ * Leading - bits before first mask boundary.
+ *
+ * TODO(lhuemill): With some effort it may be possible to
+ * replace the following loop with a sequential sequence
+ * of statements. High level sequence would be:
+ *
+ * 1. Use node_split() to force node that describes setting
+ * of idx to be within the mask portion of a node.
+ * 2. Form mask of bits to be set.
+ * 3. Determine number of mask bits already set in the node
+ * and store in a local variable named num_already_set.
+ * 4. Set the appropriate mask bits within the node.
+ * 5. Increment struct sparsebit_pvt num_set member
+ * by the number of bits that were actually set.
+ * Exclude from the counts bits that were already set.
+ * 6. Before returning to the caller, use node_reduce() to
+ * handle the multiple corner cases that this method
+ * introduces.
+ */
+ for (idx = start, n = num; n > 0 && idx % MASK_BITS != 0; idx++, n--)
+ bit_set(s, idx);
+
+ /* Middle - bits spanning one or more entire mask */
+ middle_start = idx;
+ middle_end = middle_start + (n & -MASK_BITS) - 1;
+ if (n >= MASK_BITS) {
+ nodep = node_split(s, middle_start);
+
+ /*
+ * As needed, split just after end of middle bits.
+ * No split needed if end of middle bits is at highest
+ * supported bit index.
+ */
+ if (middle_end + 1 > middle_end)
+ (void) node_split(s, middle_end + 1);
+
+ /* Delete nodes that only describe bits within the middle. */
+ for (next = node_next(s, nodep);
+ next && (next->idx < middle_end);
+ next = node_next(s, nodep)) {
+ assert(next->idx + MASK_BITS + next->num_after - 1 <= middle_end);
+ node_rm(s, next);
+ next = NULL;
+ }
+
+ /* As needed set each of the mask bits */
+ for (n1 = 0; n1 < MASK_BITS; n1++) {
+ if (!(nodep->mask & (1 << n1))) {
+ nodep->mask |= 1 << n1;
+ s->num_set++;
+ }
+ }
+
+ s->num_set -= nodep->num_after;
+ nodep->num_after = middle_end - middle_start + 1 - MASK_BITS;
+ s->num_set += nodep->num_after;
+
+ node_reduce(s, nodep);
+ }
+ idx = middle_end + 1;
+ n -= middle_end - middle_start + 1;
+
+ /* Trailing - bits at and beyond last mask boundary */
+ assert(n < MASK_BITS);
+ for (; n > 0; idx++, n--)
+ bit_set(s, idx);
+}
+
+/* Clears the bits * in the inclusive range idx through idx + num - 1. */
+void sparsebit_clear_num(struct sparsebit *s,
+ sparsebit_idx_t start, sparsebit_num_t num)
+{
+ struct node *nodep, *next;
+ unsigned int n1;
+ sparsebit_idx_t idx;
+ sparsebit_num_t n;
+ sparsebit_idx_t middle_start, middle_end;
+
+ assert(num > 0);
+ assert(start + num - 1 >= start);
+
+ /* Leading - bits before first mask boundary */
+ for (idx = start, n = num; n > 0 && idx % MASK_BITS != 0; idx++, n--)
+ bit_clear(s, idx);
+
+ /* Middle - bits spanning one or more entire mask */
+ middle_start = idx;
+ middle_end = middle_start + (n & -MASK_BITS) - 1;
+ if (n >= MASK_BITS) {
+ nodep = node_split(s, middle_start);
+
+ /*
+ * As needed, split just after end of middle bits.
+ * No split needed if end of middle bits is at highest
+ * supported bit index.
+ */
+ if (middle_end + 1 > middle_end)
+ (void) node_split(s, middle_end + 1);
+
+ /* Delete nodes that only describe bits within the middle. */
+ for (next = node_next(s, nodep);
+ next && (next->idx < middle_end);
+ next = node_next(s, nodep)) {
+ assert(next->idx + MASK_BITS + next->num_after - 1 <= middle_end);
+ node_rm(s, next);
+ next = NULL;
+ }
+
+ /* As needed clear each of the mask bits */
+ for (n1 = 0; n1 < MASK_BITS; n1++) {
+ if (nodep->mask & (1 << n1)) {
+ nodep->mask &= ~(1 << n1);
+ s->num_set--;
+ }
+ }
+
+ /* Clear any bits described by num_after */
+ s->num_set -= nodep->num_after;
+ nodep->num_after = 0;
+
+ /*
+ * Delete the node that describes the beginning of
+ * the middle bits and perform any allowed reductions
+ * with the nodes prev or next of nodep.
+ */
+ node_reduce(s, nodep);
+ nodep = NULL;
+ }
+ idx = middle_end + 1;
+ n -= middle_end - middle_start + 1;
+
+ /* Trailing - bits at and beyond last mask boundary */
+ assert(n < MASK_BITS);
+ for (; n > 0; idx++, n--)
+ bit_clear(s, idx);
+}
+
+/* Sets the bit at the index given by idx. */
+void sparsebit_set(struct sparsebit *s, sparsebit_idx_t idx)
+{
+ sparsebit_set_num(s, idx, 1);
+}
+
+/* Clears the bit at the index given by idx. */
+void sparsebit_clear(struct sparsebit *s, sparsebit_idx_t idx)
+{
+ sparsebit_clear_num(s, idx, 1);
+}
+
+/* Sets the bits in the entire addressable range of the sparsebit array. */
+void sparsebit_set_all(struct sparsebit *s)
+{
+ sparsebit_set(s, 0);
+ sparsebit_set_num(s, 1, ~(sparsebit_idx_t) 0);
+ assert(sparsebit_all_set(s));
+}
+
+/* Clears the bits in the entire addressable range of the sparsebit array. */
+void sparsebit_clear_all(struct sparsebit *s)
+{
+ sparsebit_clear(s, 0);
+ sparsebit_clear_num(s, 1, ~(sparsebit_idx_t) 0);
+ assert(!sparsebit_any_set(s));
+}
+
+static size_t display_range(FILE *stream, sparsebit_idx_t low,
+ sparsebit_idx_t high, bool prepend_comma_space)
+{
+ char *fmt_str;
+ size_t sz;
+
+ /* Determine the printf format string */
+ if (low == high)
+ fmt_str = prepend_comma_space ? ", 0x%lx" : "0x%lx";
+ else
+ fmt_str = prepend_comma_space ? ", 0x%lx:0x%lx" : "0x%lx:0x%lx";
+
+ /*
+ * When stream is NULL, just determine the size of what would
+ * have been printed, else print the range.
+ */
+ if (!stream)
+ sz = snprintf(NULL, 0, fmt_str, low, high);
+ else
+ sz = fprintf(stream, fmt_str, low, high);
+
+ return sz;
+}
+
+
+/* Dumps to the FILE stream given by stream, the bit settings
+ * of s. Each line of output is prefixed with the number of
+ * spaces given by indent. The length of each line is implementation
+ * dependent and does not depend on the indent amount. The following
+ * is an example output of a sparsebit array that has bits:
+ *
+ * 0x5, 0x8, 0xa:0xe, 0x12
+ *
+ * This corresponds to a sparsebit whose bits 5, 8, 10, 11, 12, 13, 14, 18
+ * are set. Note that a ':', instead of a '-' is used to specify a range of
+ * contiguous bits. This is done because '-' is used to specify command-line
+ * options, and sometimes ranges are specified as command-line arguments.
+ */
+void sparsebit_dump(FILE *stream, struct sparsebit *s,
+ unsigned int indent)
+{
+ size_t current_line_len = 0;
+ size_t sz;
+ struct node *nodep;
+
+ if (!sparsebit_any_set(s))
+ return;
+
+ /* Display initial indent */
+ fprintf(stream, "%*s", indent, "");
+
+ /* For each node */
+ for (nodep = node_first(s); nodep; nodep = node_next(s, nodep)) {
+ unsigned int n1;
+ sparsebit_idx_t low, high;
+
+ /* For each group of bits in the mask */
+ for (n1 = 0; n1 < MASK_BITS; n1++) {
+ if (nodep->mask & (1 << n1)) {
+ low = high = nodep->idx + n1;
+
+ for (; n1 < MASK_BITS; n1++) {
+ if (nodep->mask & (1 << n1))
+ high = nodep->idx + n1;
+ else
+ break;
+ }
+
+ if ((n1 == MASK_BITS) && nodep->num_after)
+ high += nodep->num_after;
+
+ /*
+ * How much room will it take to display
+ * this range.
+ */
+ sz = display_range(NULL, low, high,
+ current_line_len != 0);
+
+ /*
+ * If there is not enough room, display
+ * a newline plus the indent of the next
+ * line.
+ */
+ if (current_line_len + sz > DUMP_LINE_MAX) {
+ fputs("\n", stream);
+ fprintf(stream, "%*s", indent, "");
+ current_line_len = 0;
+ }
+
+ /* Display the range */
+ sz = display_range(stream, low, high,
+ current_line_len != 0);
+ current_line_len += sz;
+ }
+ }
+
+ /*
+ * If num_after and most significant-bit of mask is not
+ * set, then still need to display a range for the bits
+ * described by num_after.
+ */
+ if (!(nodep->mask & (1 << (MASK_BITS - 1))) && nodep->num_after) {
+ low = nodep->idx + MASK_BITS;
+ high = nodep->idx + MASK_BITS + nodep->num_after - 1;
+
+ /*
+ * How much room will it take to display
+ * this range.
+ */
+ sz = display_range(NULL, low, high,
+ current_line_len != 0);
+
+ /*
+ * If there is not enough room, display
+ * a newline plus the indent of the next
+ * line.
+ */
+ if (current_line_len + sz > DUMP_LINE_MAX) {
+ fputs("\n", stream);
+ fprintf(stream, "%*s", indent, "");
+ current_line_len = 0;
+ }
+
+ /* Display the range */
+ sz = display_range(stream, low, high,
+ current_line_len != 0);
+ current_line_len += sz;
+ }
+ }
+ fputs("\n", stream);
+}
+
+/* Validates the internal state of the sparsebit array given by
+ * s. On error, diagnostic information is printed to stderr and
+ * abort is called.
+ */
+void sparsebit_validate_internal(struct sparsebit *s)
+{
+ bool error_detected = false;
+ struct node *nodep, *prev = NULL;
+ sparsebit_num_t total_bits_set = 0;
+ unsigned int n1;
+
+ /* For each node */
+ for (nodep = node_first(s); nodep;
+ prev = nodep, nodep = node_next(s, nodep)) {
+
+ /*
+ * Increase total bits set by the number of bits set
+ * in this node.
+ */
+ for (n1 = 0; n1 < MASK_BITS; n1++)
+ if (nodep->mask & (1 << n1))
+ total_bits_set++;
+
+ total_bits_set += nodep->num_after;
+
+ /*
+ * Arbitrary choice as to whether a mask of 0 is allowed
+ * or not. For diagnostic purposes it is beneficial to
+ * have only one valid means to represent a set of bits.
+ * To support this an arbitrary choice has been made
+ * to not allow a mask of zero.
+ */
+ if (nodep->mask == 0) {
+ fprintf(stderr, "Node mask of zero, "
+ "nodep: %p nodep->mask: 0x%x",
+ nodep, nodep->mask);
+ error_detected = true;
+ break;
+ }
+
+ /*
+ * Validate num_after is not greater than the max index
+ * - the number of mask bits. The num_after member
+ * uses 0-based indexing and thus has no value that
+ * represents all bits set. This limitation is handled
+ * by requiring a non-zero mask. With a non-zero mask,
+ * MASK_BITS worth of bits are described by the mask,
+ * which makes the largest needed num_after equal to:
+ *
+ * (~(sparsebit_num_t) 0) - MASK_BITS + 1
+ */
+ if (nodep->num_after
+ > (~(sparsebit_num_t) 0) - MASK_BITS + 1) {
+ fprintf(stderr, "num_after too large, "
+ "nodep: %p nodep->num_after: 0x%lx",
+ nodep, nodep->num_after);
+ error_detected = true;
+ break;
+ }
+
+ /* Validate node index is divisible by the mask size */
+ if (nodep->idx % MASK_BITS) {
+ fprintf(stderr, "Node index not divisible by "
+ "mask size,\n"
+ " nodep: %p nodep->idx: 0x%lx "
+ "MASK_BITS: %lu\n",
+ nodep, nodep->idx, MASK_BITS);
+ error_detected = true;
+ break;
+ }
+
+ /*
+ * Validate bits described by node don't wrap beyond the
+ * highest supported index.
+ */
+ if ((nodep->idx + MASK_BITS + nodep->num_after - 1) < nodep->idx) {
+ fprintf(stderr, "Bits described by node wrap "
+ "beyond highest supported index,\n"
+ " nodep: %p nodep->idx: 0x%lx\n"
+ " MASK_BITS: %lu nodep->num_after: 0x%lx",
+ nodep, nodep->idx, MASK_BITS, nodep->num_after);
+ error_detected = true;
+ break;
+ }
+
+ /* Check parent pointers. */
+ if (nodep->left) {
+ if (nodep->left->parent != nodep) {
+ fprintf(stderr, "Left child parent pointer "
+ "doesn't point to this node,\n"
+ " nodep: %p nodep->left: %p "
+ "nodep->left->parent: %p",
+ nodep, nodep->left,
+ nodep->left->parent);
+ error_detected = true;
+ break;
+ }
+ }
+
+ if (nodep->right) {
+ if (nodep->right->parent != nodep) {
+ fprintf(stderr, "Right child parent pointer "
+ "doesn't point to this node,\n"
+ " nodep: %p nodep->right: %p "
+ "nodep->right->parent: %p",
+ nodep, nodep->right,
+ nodep->right->parent);
+ error_detected = true;
+ break;
+ }
+ }
+
+ if (!nodep->parent) {
+ if (s->root != nodep) {
+ fprintf(stderr, "Unexpected root node, "
+ "s->root: %p nodep: %p",
+ s->root, nodep);
+ error_detected = true;
+ break;
+ }
+ }
+
+ if (prev) {
+ /*
+ * Is index of previous node before index of
+ * current node?
+ */
+ if (prev->idx >= nodep->idx) {
+ fprintf(stderr, "Previous node index "
+ ">= current node index,\n"
+ " prev: %p prev->idx: 0x%lx\n"
+ " nodep: %p nodep->idx: 0x%lx",
+ prev, prev->idx, nodep, nodep->idx);
+ error_detected = true;
+ break;
+ }
+
+ /*
+ * Nodes occur in asscending order, based on each
+ * nodes starting index.
+ */
+ if ((prev->idx + MASK_BITS + prev->num_after - 1)
+ >= nodep->idx) {
+ fprintf(stderr, "Previous node bit range "
+ "overlap with current node bit range,\n"
+ " prev: %p prev->idx: 0x%lx "
+ "prev->num_after: 0x%lx\n"
+ " nodep: %p nodep->idx: 0x%lx "
+ "nodep->num_after: 0x%lx\n"
+ " MASK_BITS: %lu",
+ prev, prev->idx, prev->num_after,
+ nodep, nodep->idx, nodep->num_after,
+ MASK_BITS);
+ error_detected = true;
+ break;
+ }
+
+ /*
+ * When the node has all mask bits set, it shouldn't
+ * be adjacent to the last bit described by the
+ * previous node.
+ */
+ if (nodep->mask == ~(mask_t) 0 &&
+ prev->idx + MASK_BITS + prev->num_after == nodep->idx) {
+ fprintf(stderr, "Current node has mask with "
+ "all bits set and is adjacent to the "
+ "previous node,\n"
+ " prev: %p prev->idx: 0x%lx "
+ "prev->num_after: 0x%lx\n"
+ " nodep: %p nodep->idx: 0x%lx "
+ "nodep->num_after: 0x%lx\n"
+ " MASK_BITS: %lu",
+ prev, prev->idx, prev->num_after,
+ nodep, nodep->idx, nodep->num_after,
+ MASK_BITS);
+
+ error_detected = true;
+ break;
+ }
+ }
+ }
+
+ if (!error_detected) {
+ /*
+ * Is sum of bits set in each node equal to the count
+ * of total bits set.
+ */
+ if (s->num_set != total_bits_set) {
+ fprintf(stderr, "Number of bits set mismatch,\n"
+ " s->num_set: 0x%lx total_bits_set: 0x%lx",
+ s->num_set, total_bits_set);
+
+ error_detected = true;
+ }
+ }
+
+ if (error_detected) {
+ fputs(" dump_internal:\n", stderr);
+ sparsebit_dump_internal(stderr, s, 4);
+ abort();
+ }
+}
+
+
+#ifdef FUZZ
+/* A simple but effective fuzzing driver. Look for bugs with the help
+ * of some invariants and of a trivial representation of sparsebit.
+ * Just use 512 bytes of /dev/zero and /dev/urandom as inputs, and let
+ * afl-fuzz do the magic. :)
+ */
+
+#include <stdlib.h>
+
+struct range {
+ sparsebit_idx_t first, last;
+ bool set;
+};
+
+struct sparsebit *s;
+struct range ranges[1000];
+int num_ranges;
+
+static bool get_value(sparsebit_idx_t idx)
+{
+ int i;
+
+ for (i = num_ranges; --i >= 0; )
+ if (ranges[i].first <= idx && idx <= ranges[i].last)
+ return ranges[i].set;
+
+ return false;
+}
+
+static void operate(int code, sparsebit_idx_t first, sparsebit_idx_t last)
+{
+ sparsebit_num_t num;
+ sparsebit_idx_t next;
+
+ if (first < last) {
+ num = last - first + 1;
+ } else {
+ num = first - last + 1;
+ first = last;
+ last = first + num - 1;
+ }
+
+ switch (code) {
+ case 0:
+ sparsebit_set(s, first);
+ assert(sparsebit_is_set(s, first));
+ assert(!sparsebit_is_clear(s, first));
+ assert(sparsebit_any_set(s));
+ assert(!sparsebit_all_clear(s));
+ if (get_value(first))
+ return;
+ if (num_ranges == 1000)
+ exit(0);
+ ranges[num_ranges++] = (struct range)
+ { .first = first, .last = first, .set = true };
+ break;
+ case 1:
+ sparsebit_clear(s, first);
+ assert(!sparsebit_is_set(s, first));
+ assert(sparsebit_is_clear(s, first));
+ assert(sparsebit_any_clear(s));
+ assert(!sparsebit_all_set(s));
+ if (!get_value(first))
+ return;
+ if (num_ranges == 1000)
+ exit(0);
+ ranges[num_ranges++] = (struct range)
+ { .first = first, .last = first, .set = false };
+ break;
+ case 2:
+ assert(sparsebit_is_set(s, first) == get_value(first));
+ assert(sparsebit_is_clear(s, first) == !get_value(first));
+ break;
+ case 3:
+ if (sparsebit_any_set(s))
+ assert(get_value(sparsebit_first_set(s)));
+ if (sparsebit_any_clear(s))
+ assert(!get_value(sparsebit_first_clear(s)));
+ sparsebit_set_all(s);
+ assert(!sparsebit_any_clear(s));
+ assert(sparsebit_all_set(s));
+ num_ranges = 0;
+ ranges[num_ranges++] = (struct range)
+ { .first = 0, .last = ~(sparsebit_idx_t)0, .set = true };
+ break;
+ case 4:
+ if (sparsebit_any_set(s))
+ assert(get_value(sparsebit_first_set(s)));
+ if (sparsebit_any_clear(s))
+ assert(!get_value(sparsebit_first_clear(s)));
+ sparsebit_clear_all(s);
+ assert(!sparsebit_any_set(s));
+ assert(sparsebit_all_clear(s));
+ num_ranges = 0;
+ break;
+ case 5:
+ next = sparsebit_next_set(s, first);
+ assert(next == 0 || next > first);
+ assert(next == 0 || get_value(next));
+ break;
+ case 6:
+ next = sparsebit_next_clear(s, first);
+ assert(next == 0 || next > first);
+ assert(next == 0 || !get_value(next));
+ break;
+ case 7:
+ next = sparsebit_next_clear(s, first);
+ if (sparsebit_is_set_num(s, first, num)) {
+ assert(next == 0 || next > last);
+ if (first)
+ next = sparsebit_next_set(s, first - 1);
+ else if (sparsebit_any_set(s))
+ next = sparsebit_first_set(s);
+ else
+ return;
+ assert(next == first);
+ } else {
+ assert(sparsebit_is_clear(s, first) || next <= last);
+ }
+ break;
+ case 8:
+ next = sparsebit_next_set(s, first);
+ if (sparsebit_is_clear_num(s, first, num)) {
+ assert(next == 0 || next > last);
+ if (first)
+ next = sparsebit_next_clear(s, first - 1);
+ else if (sparsebit_any_clear(s))
+ next = sparsebit_first_clear(s);
+ else
+ return;
+ assert(next == first);
+ } else {
+ assert(sparsebit_is_set(s, first) || next <= last);
+ }
+ break;
+ case 9:
+ sparsebit_set_num(s, first, num);
+ assert(sparsebit_is_set_num(s, first, num));
+ assert(!sparsebit_is_clear_num(s, first, num));
+ assert(sparsebit_any_set(s));
+ assert(!sparsebit_all_clear(s));
+ if (num_ranges == 1000)
+ exit(0);
+ ranges[num_ranges++] = (struct range)
+ { .first = first, .last = last, .set = true };
+ break;
+ case 10:
+ sparsebit_clear_num(s, first, num);
+ assert(!sparsebit_is_set_num(s, first, num));
+ assert(sparsebit_is_clear_num(s, first, num));
+ assert(sparsebit_any_clear(s));
+ assert(!sparsebit_all_set(s));
+ if (num_ranges == 1000)
+ exit(0);
+ ranges[num_ranges++] = (struct range)
+ { .first = first, .last = last, .set = false };
+ break;
+ case 11:
+ sparsebit_validate_internal(s);
+ break;
+ default:
+ break;
+ }
+}
+
+unsigned char get8(void)
+{
+ int ch;
+
+ ch = getchar();
+ if (ch == EOF)
+ exit(0);
+ return ch;
+}
+
+uint64_t get64(void)
+{
+ uint64_t x;
+
+ x = get8();
+ x = (x << 8) | get8();
+ x = (x << 8) | get8();
+ x = (x << 8) | get8();
+ x = (x << 8) | get8();
+ x = (x << 8) | get8();
+ x = (x << 8) | get8();
+ return (x << 8) | get8();
+}
+
+int main(void)
+{
+ s = sparsebit_alloc();
+ for (;;) {
+ uint8_t op = get8() & 0xf;
+ uint64_t first = get64();
+ uint64_t last = get64();
+
+ operate(op, first, last);
+ }
+}
+#endif
diff --git a/tools/testing/selftests/kvm/lib/string_override.c b/tools/testing/selftests/kvm/lib/string_override.c
new file mode 100644
index 000000000..632398adc
--- /dev/null
+++ b/tools/testing/selftests/kvm/lib/string_override.c
@@ -0,0 +1,39 @@
+// SPDX-License-Identifier: GPL-2.0-only
+#include <stddef.h>
+
+/*
+ * Override the "basic" built-in string helpers so that they can be used in
+ * guest code. KVM selftests don't support dynamic loading in guest code and
+ * will jump into the weeds if the compiler decides to insert an out-of-line
+ * call via the PLT.
+ */
+int memcmp(const void *cs, const void *ct, size_t count)
+{
+ const unsigned char *su1, *su2;
+ int res = 0;
+
+ for (su1 = cs, su2 = ct; 0 < count; ++su1, ++su2, count--) {
+ if ((res = *su1 - *su2) != 0)
+ break;
+ }
+ return res;
+}
+
+void *memcpy(void *dest, const void *src, size_t count)
+{
+ char *tmp = dest;
+ const char *s = src;
+
+ while (count--)
+ *tmp++ = *s++;
+ return dest;
+}
+
+void *memset(void *s, int c, size_t count)
+{
+ char *xs = s;
+
+ while (count--)
+ *xs++ = c;
+ return s;
+}
diff --git a/tools/testing/selftests/kvm/lib/test_util.c b/tools/testing/selftests/kvm/lib/test_util.c
new file mode 100644
index 000000000..6d23878bb
--- /dev/null
+++ b/tools/testing/selftests/kvm/lib/test_util.c
@@ -0,0 +1,336 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * tools/testing/selftests/kvm/lib/test_util.c
+ *
+ * Copyright (C) 2020, Google LLC.
+ */
+
+#include <assert.h>
+#include <ctype.h>
+#include <limits.h>
+#include <stdlib.h>
+#include <time.h>
+#include <sys/stat.h>
+#include <sys/syscall.h>
+#include <linux/mman.h>
+#include "linux/kernel.h"
+
+#include "test_util.h"
+
+/*
+ * Parses "[0-9]+[kmgt]?".
+ */
+size_t parse_size(const char *size)
+{
+ size_t base;
+ char *scale;
+ int shift = 0;
+
+ TEST_ASSERT(size && isdigit(size[0]), "Need at least one digit in '%s'", size);
+
+ base = strtoull(size, &scale, 0);
+
+ TEST_ASSERT(base != ULLONG_MAX, "Overflow parsing size!");
+
+ switch (tolower(*scale)) {
+ case 't':
+ shift = 40;
+ break;
+ case 'g':
+ shift = 30;
+ break;
+ case 'm':
+ shift = 20;
+ break;
+ case 'k':
+ shift = 10;
+ break;
+ case 'b':
+ case '\0':
+ shift = 0;
+ break;
+ default:
+ TEST_ASSERT(false, "Unknown size letter %c", *scale);
+ }
+
+ TEST_ASSERT((base << shift) >> shift == base, "Overflow scaling size!");
+
+ return base << shift;
+}
+
+int64_t timespec_to_ns(struct timespec ts)
+{
+ return (int64_t)ts.tv_nsec + 1000000000LL * (int64_t)ts.tv_sec;
+}
+
+struct timespec timespec_add_ns(struct timespec ts, int64_t ns)
+{
+ struct timespec res;
+
+ res.tv_nsec = ts.tv_nsec + ns;
+ res.tv_sec = ts.tv_sec + res.tv_nsec / 1000000000LL;
+ res.tv_nsec %= 1000000000LL;
+
+ return res;
+}
+
+struct timespec timespec_add(struct timespec ts1, struct timespec ts2)
+{
+ int64_t ns1 = timespec_to_ns(ts1);
+ int64_t ns2 = timespec_to_ns(ts2);
+ return timespec_add_ns((struct timespec){0}, ns1 + ns2);
+}
+
+struct timespec timespec_sub(struct timespec ts1, struct timespec ts2)
+{
+ int64_t ns1 = timespec_to_ns(ts1);
+ int64_t ns2 = timespec_to_ns(ts2);
+ return timespec_add_ns((struct timespec){0}, ns1 - ns2);
+}
+
+struct timespec timespec_elapsed(struct timespec start)
+{
+ struct timespec end;
+
+ clock_gettime(CLOCK_MONOTONIC, &end);
+ return timespec_sub(end, start);
+}
+
+struct timespec timespec_div(struct timespec ts, int divisor)
+{
+ int64_t ns = timespec_to_ns(ts) / divisor;
+
+ return timespec_add_ns((struct timespec){0}, ns);
+}
+
+void print_skip(const char *fmt, ...)
+{
+ va_list ap;
+
+ assert(fmt);
+ va_start(ap, fmt);
+ vprintf(fmt, ap);
+ va_end(ap);
+ puts(", skipping test");
+}
+
+bool thp_configured(void)
+{
+ int ret;
+ struct stat statbuf;
+
+ ret = stat("/sys/kernel/mm/transparent_hugepage", &statbuf);
+ TEST_ASSERT(ret == 0 || (ret == -1 && errno == ENOENT),
+ "Error in stating /sys/kernel/mm/transparent_hugepage");
+
+ return ret == 0;
+}
+
+size_t get_trans_hugepagesz(void)
+{
+ size_t size;
+ FILE *f;
+ int ret;
+
+ TEST_ASSERT(thp_configured(), "THP is not configured in host kernel");
+
+ f = fopen("/sys/kernel/mm/transparent_hugepage/hpage_pmd_size", "r");
+ TEST_ASSERT(f != NULL, "Error in opening transparent_hugepage/hpage_pmd_size");
+
+ ret = fscanf(f, "%ld", &size);
+ ret = fscanf(f, "%ld", &size);
+ TEST_ASSERT(ret < 1, "Error reading transparent_hugepage/hpage_pmd_size");
+ fclose(f);
+
+ return size;
+}
+
+size_t get_def_hugetlb_pagesz(void)
+{
+ char buf[64];
+ const char *tag = "Hugepagesize:";
+ FILE *f;
+
+ f = fopen("/proc/meminfo", "r");
+ TEST_ASSERT(f != NULL, "Error in opening /proc/meminfo");
+
+ while (fgets(buf, sizeof(buf), f) != NULL) {
+ if (strstr(buf, tag) == buf) {
+ fclose(f);
+ return strtoull(buf + strlen(tag), NULL, 10) << 10;
+ }
+ }
+
+ if (feof(f))
+ TEST_FAIL("HUGETLB is not configured in host kernel");
+ else
+ TEST_FAIL("Error in reading /proc/meminfo");
+
+ fclose(f);
+ return 0;
+}
+
+#define ANON_FLAGS (MAP_PRIVATE | MAP_ANONYMOUS)
+#define ANON_HUGE_FLAGS (ANON_FLAGS | MAP_HUGETLB)
+
+const struct vm_mem_backing_src_alias *vm_mem_backing_src_alias(uint32_t i)
+{
+ static const struct vm_mem_backing_src_alias aliases[] = {
+ [VM_MEM_SRC_ANONYMOUS] = {
+ .name = "anonymous",
+ .flag = ANON_FLAGS,
+ },
+ [VM_MEM_SRC_ANONYMOUS_THP] = {
+ .name = "anonymous_thp",
+ .flag = ANON_FLAGS,
+ },
+ [VM_MEM_SRC_ANONYMOUS_HUGETLB] = {
+ .name = "anonymous_hugetlb",
+ .flag = ANON_HUGE_FLAGS,
+ },
+ [VM_MEM_SRC_ANONYMOUS_HUGETLB_16KB] = {
+ .name = "anonymous_hugetlb_16kb",
+ .flag = ANON_HUGE_FLAGS | MAP_HUGE_16KB,
+ },
+ [VM_MEM_SRC_ANONYMOUS_HUGETLB_64KB] = {
+ .name = "anonymous_hugetlb_64kb",
+ .flag = ANON_HUGE_FLAGS | MAP_HUGE_64KB,
+ },
+ [VM_MEM_SRC_ANONYMOUS_HUGETLB_512KB] = {
+ .name = "anonymous_hugetlb_512kb",
+ .flag = ANON_HUGE_FLAGS | MAP_HUGE_512KB,
+ },
+ [VM_MEM_SRC_ANONYMOUS_HUGETLB_1MB] = {
+ .name = "anonymous_hugetlb_1mb",
+ .flag = ANON_HUGE_FLAGS | MAP_HUGE_1MB,
+ },
+ [VM_MEM_SRC_ANONYMOUS_HUGETLB_2MB] = {
+ .name = "anonymous_hugetlb_2mb",
+ .flag = ANON_HUGE_FLAGS | MAP_HUGE_2MB,
+ },
+ [VM_MEM_SRC_ANONYMOUS_HUGETLB_8MB] = {
+ .name = "anonymous_hugetlb_8mb",
+ .flag = ANON_HUGE_FLAGS | MAP_HUGE_8MB,
+ },
+ [VM_MEM_SRC_ANONYMOUS_HUGETLB_16MB] = {
+ .name = "anonymous_hugetlb_16mb",
+ .flag = ANON_HUGE_FLAGS | MAP_HUGE_16MB,
+ },
+ [VM_MEM_SRC_ANONYMOUS_HUGETLB_32MB] = {
+ .name = "anonymous_hugetlb_32mb",
+ .flag = ANON_HUGE_FLAGS | MAP_HUGE_32MB,
+ },
+ [VM_MEM_SRC_ANONYMOUS_HUGETLB_256MB] = {
+ .name = "anonymous_hugetlb_256mb",
+ .flag = ANON_HUGE_FLAGS | MAP_HUGE_256MB,
+ },
+ [VM_MEM_SRC_ANONYMOUS_HUGETLB_512MB] = {
+ .name = "anonymous_hugetlb_512mb",
+ .flag = ANON_HUGE_FLAGS | MAP_HUGE_512MB,
+ },
+ [VM_MEM_SRC_ANONYMOUS_HUGETLB_1GB] = {
+ .name = "anonymous_hugetlb_1gb",
+ .flag = ANON_HUGE_FLAGS | MAP_HUGE_1GB,
+ },
+ [VM_MEM_SRC_ANONYMOUS_HUGETLB_2GB] = {
+ .name = "anonymous_hugetlb_2gb",
+ .flag = ANON_HUGE_FLAGS | MAP_HUGE_2GB,
+ },
+ [VM_MEM_SRC_ANONYMOUS_HUGETLB_16GB] = {
+ .name = "anonymous_hugetlb_16gb",
+ .flag = ANON_HUGE_FLAGS | MAP_HUGE_16GB,
+ },
+ [VM_MEM_SRC_SHMEM] = {
+ .name = "shmem",
+ .flag = MAP_SHARED,
+ },
+ [VM_MEM_SRC_SHARED_HUGETLB] = {
+ .name = "shared_hugetlb",
+ /*
+ * No MAP_HUGETLB, we use MFD_HUGETLB instead. Since
+ * we're using "file backed" memory, we need to specify
+ * this when the FD is created, not when the area is
+ * mapped.
+ */
+ .flag = MAP_SHARED,
+ },
+ };
+ _Static_assert(ARRAY_SIZE(aliases) == NUM_SRC_TYPES,
+ "Missing new backing src types?");
+
+ TEST_ASSERT(i < NUM_SRC_TYPES, "Backing src type ID %d too big", i);
+
+ return &aliases[i];
+}
+
+#define MAP_HUGE_PAGE_SIZE(x) (1ULL << ((x >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK))
+
+size_t get_backing_src_pagesz(uint32_t i)
+{
+ uint32_t flag = vm_mem_backing_src_alias(i)->flag;
+
+ switch (i) {
+ case VM_MEM_SRC_ANONYMOUS:
+ case VM_MEM_SRC_SHMEM:
+ return getpagesize();
+ case VM_MEM_SRC_ANONYMOUS_THP:
+ return get_trans_hugepagesz();
+ case VM_MEM_SRC_ANONYMOUS_HUGETLB:
+ case VM_MEM_SRC_SHARED_HUGETLB:
+ return get_def_hugetlb_pagesz();
+ default:
+ return MAP_HUGE_PAGE_SIZE(flag);
+ }
+}
+
+bool is_backing_src_hugetlb(uint32_t i)
+{
+ return !!(vm_mem_backing_src_alias(i)->flag & MAP_HUGETLB);
+}
+
+static void print_available_backing_src_types(const char *prefix)
+{
+ int i;
+
+ printf("%sAvailable backing src types:\n", prefix);
+
+ for (i = 0; i < NUM_SRC_TYPES; i++)
+ printf("%s %s\n", prefix, vm_mem_backing_src_alias(i)->name);
+}
+
+void backing_src_help(const char *flag)
+{
+ printf(" %s: specify the type of memory that should be used to\n"
+ " back the guest data region. (default: %s)\n",
+ flag, vm_mem_backing_src_alias(DEFAULT_VM_MEM_SRC)->name);
+ print_available_backing_src_types(" ");
+}
+
+enum vm_mem_backing_src_type parse_backing_src_type(const char *type_name)
+{
+ int i;
+
+ for (i = 0; i < NUM_SRC_TYPES; i++)
+ if (!strcmp(type_name, vm_mem_backing_src_alias(i)->name))
+ return i;
+
+ print_available_backing_src_types("");
+ TEST_FAIL("Unknown backing src type: %s", type_name);
+ return -1;
+}
+
+long get_run_delay(void)
+{
+ char path[64];
+ long val[2];
+ FILE *fp;
+
+ sprintf(path, "/proc/%ld/schedstat", syscall(SYS_gettid));
+ fp = fopen(path, "r");
+ /* Return MIN_RUN_DELAY_NS upon failure just to be safe */
+ if (fscanf(fp, "%ld %ld ", &val[0], &val[1]) < 2)
+ val[1] = MIN_RUN_DELAY_NS;
+ fclose(fp);
+
+ return val[1];
+}
diff --git a/tools/testing/selftests/kvm/lib/x86_64/apic.c b/tools/testing/selftests/kvm/lib/x86_64/apic.c
new file mode 100644
index 000000000..7168e25c1
--- /dev/null
+++ b/tools/testing/selftests/kvm/lib/x86_64/apic.c
@@ -0,0 +1,45 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * tools/testing/selftests/kvm/lib/x86_64/processor.c
+ *
+ * Copyright (C) 2021, Google LLC.
+ */
+
+#include "apic.h"
+
+void apic_disable(void)
+{
+ wrmsr(MSR_IA32_APICBASE,
+ rdmsr(MSR_IA32_APICBASE) &
+ ~(MSR_IA32_APICBASE_ENABLE | MSR_IA32_APICBASE_EXTD));
+}
+
+void xapic_enable(void)
+{
+ uint64_t val = rdmsr(MSR_IA32_APICBASE);
+
+ /* Per SDM: to enable xAPIC when in x2APIC must first disable APIC */
+ if (val & MSR_IA32_APICBASE_EXTD) {
+ apic_disable();
+ wrmsr(MSR_IA32_APICBASE,
+ rdmsr(MSR_IA32_APICBASE) | MSR_IA32_APICBASE_ENABLE);
+ } else if (!(val & MSR_IA32_APICBASE_ENABLE)) {
+ wrmsr(MSR_IA32_APICBASE, val | MSR_IA32_APICBASE_ENABLE);
+ }
+
+ /*
+ * Per SDM: reset value of spurious interrupt vector register has the
+ * APIC software enabled bit=0. It must be enabled in addition to the
+ * enable bit in the MSR.
+ */
+ val = xapic_read_reg(APIC_SPIV) | APIC_SPIV_APIC_ENABLED;
+ xapic_write_reg(APIC_SPIV, val);
+}
+
+void x2apic_enable(void)
+{
+ wrmsr(MSR_IA32_APICBASE, rdmsr(MSR_IA32_APICBASE) |
+ MSR_IA32_APICBASE_ENABLE | MSR_IA32_APICBASE_EXTD);
+ x2apic_write_reg(APIC_SPIV,
+ x2apic_read_reg(APIC_SPIV) | APIC_SPIV_APIC_ENABLED);
+}
diff --git a/tools/testing/selftests/kvm/lib/x86_64/handlers.S b/tools/testing/selftests/kvm/lib/x86_64/handlers.S
new file mode 100644
index 000000000..762981973
--- /dev/null
+++ b/tools/testing/selftests/kvm/lib/x86_64/handlers.S
@@ -0,0 +1,81 @@
+handle_exception:
+ push %r15
+ push %r14
+ push %r13
+ push %r12
+ push %r11
+ push %r10
+ push %r9
+ push %r8
+
+ push %rdi
+ push %rsi
+ push %rbp
+ push %rbx
+ push %rdx
+ push %rcx
+ push %rax
+ mov %rsp, %rdi
+
+ call route_exception
+
+ pop %rax
+ pop %rcx
+ pop %rdx
+ pop %rbx
+ pop %rbp
+ pop %rsi
+ pop %rdi
+ pop %r8
+ pop %r9
+ pop %r10
+ pop %r11
+ pop %r12
+ pop %r13
+ pop %r14
+ pop %r15
+
+ /* Discard vector and error code. */
+ add $16, %rsp
+ iretq
+
+/*
+ * Build the handle_exception wrappers which push the vector/error code on the
+ * stack and an array of pointers to those wrappers.
+ */
+.pushsection .rodata
+.globl idt_handlers
+idt_handlers:
+.popsection
+
+.macro HANDLERS has_error from to
+ vector = \from
+ .rept \to - \from + 1
+ .align 8
+
+ /* Fetch current address and append it to idt_handlers. */
+666 :
+.pushsection .rodata
+ .quad 666b
+.popsection
+
+ .if ! \has_error
+ pushq $0
+ .endif
+ pushq $vector
+ jmp handle_exception
+ vector = vector + 1
+ .endr
+.endm
+
+.global idt_handler_code
+idt_handler_code:
+ HANDLERS has_error=0 from=0 to=7
+ HANDLERS has_error=1 from=8 to=8
+ HANDLERS has_error=0 from=9 to=9
+ HANDLERS has_error=1 from=10 to=14
+ HANDLERS has_error=0 from=15 to=16
+ HANDLERS has_error=1 from=17 to=17
+ HANDLERS has_error=0 from=18 to=255
+
+.section .note.GNU-stack, "", %progbits
diff --git a/tools/testing/selftests/kvm/lib/x86_64/perf_test_util.c b/tools/testing/selftests/kvm/lib/x86_64/perf_test_util.c
new file mode 100644
index 000000000..0f344a7c8
--- /dev/null
+++ b/tools/testing/selftests/kvm/lib/x86_64/perf_test_util.c
@@ -0,0 +1,111 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * x86_64-specific extensions to perf_test_util.c.
+ *
+ * Copyright (C) 2022, Google, Inc.
+ */
+#include <stdio.h>
+#include <stdlib.h>
+#include <linux/bitmap.h>
+#include <linux/bitops.h>
+
+#include "test_util.h"
+#include "kvm_util.h"
+#include "perf_test_util.h"
+#include "processor.h"
+#include "vmx.h"
+
+void perf_test_l2_guest_code(uint64_t vcpu_id)
+{
+ perf_test_guest_code(vcpu_id);
+ vmcall();
+}
+
+extern char perf_test_l2_guest_entry[];
+__asm__(
+"perf_test_l2_guest_entry:"
+" mov (%rsp), %rdi;"
+" call perf_test_l2_guest_code;"
+" ud2;"
+);
+
+static void perf_test_l1_guest_code(struct vmx_pages *vmx, uint64_t vcpu_id)
+{
+#define L2_GUEST_STACK_SIZE 64
+ unsigned long l2_guest_stack[L2_GUEST_STACK_SIZE];
+ unsigned long *rsp;
+
+ GUEST_ASSERT(vmx->vmcs_gpa);
+ GUEST_ASSERT(prepare_for_vmx_operation(vmx));
+ GUEST_ASSERT(load_vmcs(vmx));
+ GUEST_ASSERT(ept_1g_pages_supported());
+
+ rsp = &l2_guest_stack[L2_GUEST_STACK_SIZE - 1];
+ *rsp = vcpu_id;
+ prepare_vmcs(vmx, perf_test_l2_guest_entry, rsp);
+
+ GUEST_ASSERT(!vmlaunch());
+ GUEST_ASSERT(vmreadz(VM_EXIT_REASON) == EXIT_REASON_VMCALL);
+ GUEST_DONE();
+}
+
+uint64_t perf_test_nested_pages(int nr_vcpus)
+{
+ /*
+ * 513 page tables is enough to identity-map 256 TiB of L2 with 1G
+ * pages and 4-level paging, plus a few pages per-vCPU for data
+ * structures such as the VMCS.
+ */
+ return 513 + 10 * nr_vcpus;
+}
+
+void perf_test_setup_ept(struct vmx_pages *vmx, struct kvm_vm *vm)
+{
+ uint64_t start, end;
+
+ prepare_eptp(vmx, vm, 0);
+
+ /*
+ * Identity map the first 4G and the test region with 1G pages so that
+ * KVM can shadow the EPT12 with the maximum huge page size supported
+ * by the backing source.
+ */
+ nested_identity_map_1g(vmx, vm, 0, 0x100000000ULL);
+
+ start = align_down(perf_test_args.gpa, PG_SIZE_1G);
+ end = align_up(perf_test_args.gpa + perf_test_args.size, PG_SIZE_1G);
+ nested_identity_map_1g(vmx, vm, start, end - start);
+}
+
+void perf_test_setup_nested(struct kvm_vm *vm, int nr_vcpus, struct kvm_vcpu *vcpus[])
+{
+ struct vmx_pages *vmx, *vmx0 = NULL;
+ struct kvm_regs regs;
+ vm_vaddr_t vmx_gva;
+ int vcpu_id;
+
+ TEST_REQUIRE(kvm_cpu_has(X86_FEATURE_VMX));
+
+ for (vcpu_id = 0; vcpu_id < nr_vcpus; vcpu_id++) {
+ vmx = vcpu_alloc_vmx(vm, &vmx_gva);
+
+ if (vcpu_id == 0) {
+ perf_test_setup_ept(vmx, vm);
+ vmx0 = vmx;
+ } else {
+ /* Share the same EPT table across all vCPUs. */
+ vmx->eptp = vmx0->eptp;
+ vmx->eptp_hva = vmx0->eptp_hva;
+ vmx->eptp_gpa = vmx0->eptp_gpa;
+ }
+
+ /*
+ * Override the vCPU to run perf_test_l1_guest_code() which will
+ * bounce it into L2 before calling perf_test_guest_code().
+ */
+ vcpu_regs_get(vcpus[vcpu_id], &regs);
+ regs.rip = (unsigned long) perf_test_l1_guest_code;
+ vcpu_regs_set(vcpus[vcpu_id], &regs);
+ vcpu_args_set(vcpus[vcpu_id], 2, vmx_gva, vcpu_id);
+ }
+}
diff --git a/tools/testing/selftests/kvm/lib/x86_64/processor.c b/tools/testing/selftests/kvm/lib/x86_64/processor.c
new file mode 100644
index 000000000..41c1c73c4
--- /dev/null
+++ b/tools/testing/selftests/kvm/lib/x86_64/processor.c
@@ -0,0 +1,1316 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * tools/testing/selftests/kvm/lib/x86_64/processor.c
+ *
+ * Copyright (C) 2018, Google LLC.
+ */
+
+#include "test_util.h"
+#include "kvm_util.h"
+#include "processor.h"
+
+#ifndef NUM_INTERRUPTS
+#define NUM_INTERRUPTS 256
+#endif
+
+#define DEFAULT_CODE_SELECTOR 0x8
+#define DEFAULT_DATA_SELECTOR 0x10
+
+#define MAX_NR_CPUID_ENTRIES 100
+
+vm_vaddr_t exception_handlers;
+
+static void regs_dump(FILE *stream, struct kvm_regs *regs, uint8_t indent)
+{
+ fprintf(stream, "%*srax: 0x%.16llx rbx: 0x%.16llx "
+ "rcx: 0x%.16llx rdx: 0x%.16llx\n",
+ indent, "",
+ regs->rax, regs->rbx, regs->rcx, regs->rdx);
+ fprintf(stream, "%*srsi: 0x%.16llx rdi: 0x%.16llx "
+ "rsp: 0x%.16llx rbp: 0x%.16llx\n",
+ indent, "",
+ regs->rsi, regs->rdi, regs->rsp, regs->rbp);
+ fprintf(stream, "%*sr8: 0x%.16llx r9: 0x%.16llx "
+ "r10: 0x%.16llx r11: 0x%.16llx\n",
+ indent, "",
+ regs->r8, regs->r9, regs->r10, regs->r11);
+ fprintf(stream, "%*sr12: 0x%.16llx r13: 0x%.16llx "
+ "r14: 0x%.16llx r15: 0x%.16llx\n",
+ indent, "",
+ regs->r12, regs->r13, regs->r14, regs->r15);
+ fprintf(stream, "%*srip: 0x%.16llx rfl: 0x%.16llx\n",
+ indent, "",
+ regs->rip, regs->rflags);
+}
+
+static void segment_dump(FILE *stream, struct kvm_segment *segment,
+ uint8_t indent)
+{
+ fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.8x "
+ "selector: 0x%.4x type: 0x%.2x\n",
+ indent, "", segment->base, segment->limit,
+ segment->selector, segment->type);
+ fprintf(stream, "%*spresent: 0x%.2x dpl: 0x%.2x "
+ "db: 0x%.2x s: 0x%.2x l: 0x%.2x\n",
+ indent, "", segment->present, segment->dpl,
+ segment->db, segment->s, segment->l);
+ fprintf(stream, "%*sg: 0x%.2x avl: 0x%.2x "
+ "unusable: 0x%.2x padding: 0x%.2x\n",
+ indent, "", segment->g, segment->avl,
+ segment->unusable, segment->padding);
+}
+
+static void dtable_dump(FILE *stream, struct kvm_dtable *dtable,
+ uint8_t indent)
+{
+ fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.4x "
+ "padding: 0x%.4x 0x%.4x 0x%.4x\n",
+ indent, "", dtable->base, dtable->limit,
+ dtable->padding[0], dtable->padding[1], dtable->padding[2]);
+}
+
+static void sregs_dump(FILE *stream, struct kvm_sregs *sregs, uint8_t indent)
+{
+ unsigned int i;
+
+ fprintf(stream, "%*scs:\n", indent, "");
+ segment_dump(stream, &sregs->cs, indent + 2);
+ fprintf(stream, "%*sds:\n", indent, "");
+ segment_dump(stream, &sregs->ds, indent + 2);
+ fprintf(stream, "%*ses:\n", indent, "");
+ segment_dump(stream, &sregs->es, indent + 2);
+ fprintf(stream, "%*sfs:\n", indent, "");
+ segment_dump(stream, &sregs->fs, indent + 2);
+ fprintf(stream, "%*sgs:\n", indent, "");
+ segment_dump(stream, &sregs->gs, indent + 2);
+ fprintf(stream, "%*sss:\n", indent, "");
+ segment_dump(stream, &sregs->ss, indent + 2);
+ fprintf(stream, "%*str:\n", indent, "");
+ segment_dump(stream, &sregs->tr, indent + 2);
+ fprintf(stream, "%*sldt:\n", indent, "");
+ segment_dump(stream, &sregs->ldt, indent + 2);
+
+ fprintf(stream, "%*sgdt:\n", indent, "");
+ dtable_dump(stream, &sregs->gdt, indent + 2);
+ fprintf(stream, "%*sidt:\n", indent, "");
+ dtable_dump(stream, &sregs->idt, indent + 2);
+
+ fprintf(stream, "%*scr0: 0x%.16llx cr2: 0x%.16llx "
+ "cr3: 0x%.16llx cr4: 0x%.16llx\n",
+ indent, "",
+ sregs->cr0, sregs->cr2, sregs->cr3, sregs->cr4);
+ fprintf(stream, "%*scr8: 0x%.16llx efer: 0x%.16llx "
+ "apic_base: 0x%.16llx\n",
+ indent, "",
+ sregs->cr8, sregs->efer, sregs->apic_base);
+
+ fprintf(stream, "%*sinterrupt_bitmap:\n", indent, "");
+ for (i = 0; i < (KVM_NR_INTERRUPTS + 63) / 64; i++) {
+ fprintf(stream, "%*s%.16llx\n", indent + 2, "",
+ sregs->interrupt_bitmap[i]);
+ }
+}
+
+bool kvm_is_tdp_enabled(void)
+{
+ if (is_intel_cpu())
+ return get_kvm_intel_param_bool("ept");
+ else
+ return get_kvm_amd_param_bool("npt");
+}
+
+void virt_arch_pgd_alloc(struct kvm_vm *vm)
+{
+ TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use "
+ "unknown or unsupported guest mode, mode: 0x%x", vm->mode);
+
+ /* If needed, create page map l4 table. */
+ if (!vm->pgd_created) {
+ vm->pgd = vm_alloc_page_table(vm);
+ vm->pgd_created = true;
+ }
+}
+
+static void *virt_get_pte(struct kvm_vm *vm, uint64_t pt_pfn, uint64_t vaddr,
+ int level)
+{
+ uint64_t *page_table = addr_gpa2hva(vm, pt_pfn << vm->page_shift);
+ int index = (vaddr >> PG_LEVEL_SHIFT(level)) & 0x1ffu;
+
+ return &page_table[index];
+}
+
+static uint64_t *virt_create_upper_pte(struct kvm_vm *vm,
+ uint64_t pt_pfn,
+ uint64_t vaddr,
+ uint64_t paddr,
+ int current_level,
+ int target_level)
+{
+ uint64_t *pte = virt_get_pte(vm, pt_pfn, vaddr, current_level);
+
+ if (!(*pte & PTE_PRESENT_MASK)) {
+ *pte = PTE_PRESENT_MASK | PTE_WRITABLE_MASK;
+ if (current_level == target_level)
+ *pte |= PTE_LARGE_MASK | (paddr & PHYSICAL_PAGE_MASK);
+ else
+ *pte |= vm_alloc_page_table(vm) & PHYSICAL_PAGE_MASK;
+ } else {
+ /*
+ * Entry already present. Assert that the caller doesn't want
+ * a hugepage at this level, and that there isn't a hugepage at
+ * this level.
+ */
+ TEST_ASSERT(current_level != target_level,
+ "Cannot create hugepage at level: %u, vaddr: 0x%lx\n",
+ current_level, vaddr);
+ TEST_ASSERT(!(*pte & PTE_LARGE_MASK),
+ "Cannot create page table at level: %u, vaddr: 0x%lx\n",
+ current_level, vaddr);
+ }
+ return pte;
+}
+
+void __virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, int level)
+{
+ const uint64_t pg_size = PG_LEVEL_SIZE(level);
+ uint64_t *pml4e, *pdpe, *pde;
+ uint64_t *pte;
+
+ TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K,
+ "Unknown or unsupported guest mode, mode: 0x%x", vm->mode);
+
+ TEST_ASSERT((vaddr % pg_size) == 0,
+ "Virtual address not aligned,\n"
+ "vaddr: 0x%lx page size: 0x%lx", vaddr, pg_size);
+ TEST_ASSERT(sparsebit_is_set(vm->vpages_valid, (vaddr >> vm->page_shift)),
+ "Invalid virtual address, vaddr: 0x%lx", vaddr);
+ TEST_ASSERT((paddr % pg_size) == 0,
+ "Physical address not aligned,\n"
+ " paddr: 0x%lx page size: 0x%lx", paddr, pg_size);
+ TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn,
+ "Physical address beyond maximum supported,\n"
+ " paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x",
+ paddr, vm->max_gfn, vm->page_size);
+
+ /*
+ * Allocate upper level page tables, if not already present. Return
+ * early if a hugepage was created.
+ */
+ pml4e = virt_create_upper_pte(vm, vm->pgd >> vm->page_shift,
+ vaddr, paddr, PG_LEVEL_512G, level);
+ if (*pml4e & PTE_LARGE_MASK)
+ return;
+
+ pdpe = virt_create_upper_pte(vm, PTE_GET_PFN(*pml4e), vaddr, paddr, PG_LEVEL_1G, level);
+ if (*pdpe & PTE_LARGE_MASK)
+ return;
+
+ pde = virt_create_upper_pte(vm, PTE_GET_PFN(*pdpe), vaddr, paddr, PG_LEVEL_2M, level);
+ if (*pde & PTE_LARGE_MASK)
+ return;
+
+ /* Fill in page table entry. */
+ pte = virt_get_pte(vm, PTE_GET_PFN(*pde), vaddr, PG_LEVEL_4K);
+ TEST_ASSERT(!(*pte & PTE_PRESENT_MASK),
+ "PTE already present for 4k page at vaddr: 0x%lx\n", vaddr);
+ *pte = PTE_PRESENT_MASK | PTE_WRITABLE_MASK | (paddr & PHYSICAL_PAGE_MASK);
+}
+
+void virt_arch_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr)
+{
+ __virt_pg_map(vm, vaddr, paddr, PG_LEVEL_4K);
+}
+
+void virt_map_level(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
+ uint64_t nr_bytes, int level)
+{
+ uint64_t pg_size = PG_LEVEL_SIZE(level);
+ uint64_t nr_pages = nr_bytes / pg_size;
+ int i;
+
+ TEST_ASSERT(nr_bytes % pg_size == 0,
+ "Region size not aligned: nr_bytes: 0x%lx, page size: 0x%lx",
+ nr_bytes, pg_size);
+
+ for (i = 0; i < nr_pages; i++) {
+ __virt_pg_map(vm, vaddr, paddr, level);
+
+ vaddr += pg_size;
+ paddr += pg_size;
+ }
+}
+
+static uint64_t *_vm_get_page_table_entry(struct kvm_vm *vm,
+ struct kvm_vcpu *vcpu,
+ uint64_t vaddr)
+{
+ uint16_t index[4];
+ uint64_t *pml4e, *pdpe, *pde;
+ uint64_t *pte;
+ struct kvm_sregs sregs;
+ uint64_t rsvd_mask = 0;
+
+ /* Set the high bits in the reserved mask. */
+ if (vm->pa_bits < 52)
+ rsvd_mask = GENMASK_ULL(51, vm->pa_bits);
+
+ /*
+ * SDM vol 3, fig 4-11 "Formats of CR3 and Paging-Structure Entries
+ * with 4-Level Paging and 5-Level Paging".
+ * If IA32_EFER.NXE = 0 and the P flag of a paging-structure entry is 1,
+ * the XD flag (bit 63) is reserved.
+ */
+ vcpu_sregs_get(vcpu, &sregs);
+ if ((sregs.efer & EFER_NX) == 0) {
+ rsvd_mask |= PTE_NX_MASK;
+ }
+
+ TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use "
+ "unknown or unsupported guest mode, mode: 0x%x", vm->mode);
+ TEST_ASSERT(sparsebit_is_set(vm->vpages_valid,
+ (vaddr >> vm->page_shift)),
+ "Invalid virtual address, vaddr: 0x%lx",
+ vaddr);
+ /*
+ * Based on the mode check above there are 48 bits in the vaddr, so
+ * shift 16 to sign extend the last bit (bit-47),
+ */
+ TEST_ASSERT(vaddr == (((int64_t)vaddr << 16) >> 16),
+ "Canonical check failed. The virtual address is invalid.");
+
+ index[0] = (vaddr >> 12) & 0x1ffu;
+ index[1] = (vaddr >> 21) & 0x1ffu;
+ index[2] = (vaddr >> 30) & 0x1ffu;
+ index[3] = (vaddr >> 39) & 0x1ffu;
+
+ pml4e = addr_gpa2hva(vm, vm->pgd);
+ TEST_ASSERT(pml4e[index[3]] & PTE_PRESENT_MASK,
+ "Expected pml4e to be present for gva: 0x%08lx", vaddr);
+ TEST_ASSERT((pml4e[index[3]] & (rsvd_mask | PTE_LARGE_MASK)) == 0,
+ "Unexpected reserved bits set.");
+
+ pdpe = addr_gpa2hva(vm, PTE_GET_PFN(pml4e[index[3]]) * vm->page_size);
+ TEST_ASSERT(pdpe[index[2]] & PTE_PRESENT_MASK,
+ "Expected pdpe to be present for gva: 0x%08lx", vaddr);
+ TEST_ASSERT(!(pdpe[index[2]] & PTE_LARGE_MASK),
+ "Expected pdpe to map a pde not a 1-GByte page.");
+ TEST_ASSERT((pdpe[index[2]] & rsvd_mask) == 0,
+ "Unexpected reserved bits set.");
+
+ pde = addr_gpa2hva(vm, PTE_GET_PFN(pdpe[index[2]]) * vm->page_size);
+ TEST_ASSERT(pde[index[1]] & PTE_PRESENT_MASK,
+ "Expected pde to be present for gva: 0x%08lx", vaddr);
+ TEST_ASSERT(!(pde[index[1]] & PTE_LARGE_MASK),
+ "Expected pde to map a pte not a 2-MByte page.");
+ TEST_ASSERT((pde[index[1]] & rsvd_mask) == 0,
+ "Unexpected reserved bits set.");
+
+ pte = addr_gpa2hva(vm, PTE_GET_PFN(pde[index[1]]) * vm->page_size);
+ TEST_ASSERT(pte[index[0]] & PTE_PRESENT_MASK,
+ "Expected pte to be present for gva: 0x%08lx", vaddr);
+
+ return &pte[index[0]];
+}
+
+uint64_t vm_get_page_table_entry(struct kvm_vm *vm, struct kvm_vcpu *vcpu,
+ uint64_t vaddr)
+{
+ uint64_t *pte = _vm_get_page_table_entry(vm, vcpu, vaddr);
+
+ return *(uint64_t *)pte;
+}
+
+void vm_set_page_table_entry(struct kvm_vm *vm, struct kvm_vcpu *vcpu,
+ uint64_t vaddr, uint64_t pte)
+{
+ uint64_t *new_pte = _vm_get_page_table_entry(vm, vcpu, vaddr);
+
+ *(uint64_t *)new_pte = pte;
+}
+
+void virt_arch_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
+{
+ uint64_t *pml4e, *pml4e_start;
+ uint64_t *pdpe, *pdpe_start;
+ uint64_t *pde, *pde_start;
+ uint64_t *pte, *pte_start;
+
+ if (!vm->pgd_created)
+ return;
+
+ fprintf(stream, "%*s "
+ " no\n", indent, "");
+ fprintf(stream, "%*s index hvaddr gpaddr "
+ "addr w exec dirty\n",
+ indent, "");
+ pml4e_start = (uint64_t *) addr_gpa2hva(vm, vm->pgd);
+ for (uint16_t n1 = 0; n1 <= 0x1ffu; n1++) {
+ pml4e = &pml4e_start[n1];
+ if (!(*pml4e & PTE_PRESENT_MASK))
+ continue;
+ fprintf(stream, "%*spml4e 0x%-3zx %p 0x%-12lx 0x%-10llx %u "
+ " %u\n",
+ indent, "",
+ pml4e - pml4e_start, pml4e,
+ addr_hva2gpa(vm, pml4e), PTE_GET_PFN(*pml4e),
+ !!(*pml4e & PTE_WRITABLE_MASK), !!(*pml4e & PTE_NX_MASK));
+
+ pdpe_start = addr_gpa2hva(vm, *pml4e & PHYSICAL_PAGE_MASK);
+ for (uint16_t n2 = 0; n2 <= 0x1ffu; n2++) {
+ pdpe = &pdpe_start[n2];
+ if (!(*pdpe & PTE_PRESENT_MASK))
+ continue;
+ fprintf(stream, "%*spdpe 0x%-3zx %p 0x%-12lx 0x%-10llx "
+ "%u %u\n",
+ indent, "",
+ pdpe - pdpe_start, pdpe,
+ addr_hva2gpa(vm, pdpe),
+ PTE_GET_PFN(*pdpe), !!(*pdpe & PTE_WRITABLE_MASK),
+ !!(*pdpe & PTE_NX_MASK));
+
+ pde_start = addr_gpa2hva(vm, *pdpe & PHYSICAL_PAGE_MASK);
+ for (uint16_t n3 = 0; n3 <= 0x1ffu; n3++) {
+ pde = &pde_start[n3];
+ if (!(*pde & PTE_PRESENT_MASK))
+ continue;
+ fprintf(stream, "%*spde 0x%-3zx %p "
+ "0x%-12lx 0x%-10llx %u %u\n",
+ indent, "", pde - pde_start, pde,
+ addr_hva2gpa(vm, pde),
+ PTE_GET_PFN(*pde), !!(*pde & PTE_WRITABLE_MASK),
+ !!(*pde & PTE_NX_MASK));
+
+ pte_start = addr_gpa2hva(vm, *pde & PHYSICAL_PAGE_MASK);
+ for (uint16_t n4 = 0; n4 <= 0x1ffu; n4++) {
+ pte = &pte_start[n4];
+ if (!(*pte & PTE_PRESENT_MASK))
+ continue;
+ fprintf(stream, "%*spte 0x%-3zx %p "
+ "0x%-12lx 0x%-10llx %u %u "
+ " %u 0x%-10lx\n",
+ indent, "",
+ pte - pte_start, pte,
+ addr_hva2gpa(vm, pte),
+ PTE_GET_PFN(*pte),
+ !!(*pte & PTE_WRITABLE_MASK),
+ !!(*pte & PTE_NX_MASK),
+ !!(*pte & PTE_DIRTY_MASK),
+ ((uint64_t) n1 << 27)
+ | ((uint64_t) n2 << 18)
+ | ((uint64_t) n3 << 9)
+ | ((uint64_t) n4));
+ }
+ }
+ }
+ }
+}
+
+/*
+ * Set Unusable Segment
+ *
+ * Input Args: None
+ *
+ * Output Args:
+ * segp - Pointer to segment register
+ *
+ * Return: None
+ *
+ * Sets the segment register pointed to by @segp to an unusable state.
+ */
+static void kvm_seg_set_unusable(struct kvm_segment *segp)
+{
+ memset(segp, 0, sizeof(*segp));
+ segp->unusable = true;
+}
+
+static void kvm_seg_fill_gdt_64bit(struct kvm_vm *vm, struct kvm_segment *segp)
+{
+ void *gdt = addr_gva2hva(vm, vm->gdt);
+ struct desc64 *desc = gdt + (segp->selector >> 3) * 8;
+
+ desc->limit0 = segp->limit & 0xFFFF;
+ desc->base0 = segp->base & 0xFFFF;
+ desc->base1 = segp->base >> 16;
+ desc->type = segp->type;
+ desc->s = segp->s;
+ desc->dpl = segp->dpl;
+ desc->p = segp->present;
+ desc->limit1 = segp->limit >> 16;
+ desc->avl = segp->avl;
+ desc->l = segp->l;
+ desc->db = segp->db;
+ desc->g = segp->g;
+ desc->base2 = segp->base >> 24;
+ if (!segp->s)
+ desc->base3 = segp->base >> 32;
+}
+
+
+/*
+ * Set Long Mode Flat Kernel Code Segment
+ *
+ * Input Args:
+ * vm - VM whose GDT is being filled, or NULL to only write segp
+ * selector - selector value
+ *
+ * Output Args:
+ * segp - Pointer to KVM segment
+ *
+ * Return: None
+ *
+ * Sets up the KVM segment pointed to by @segp, to be a code segment
+ * with the selector value given by @selector.
+ */
+static void kvm_seg_set_kernel_code_64bit(struct kvm_vm *vm, uint16_t selector,
+ struct kvm_segment *segp)
+{
+ memset(segp, 0, sizeof(*segp));
+ segp->selector = selector;
+ segp->limit = 0xFFFFFFFFu;
+ segp->s = 0x1; /* kTypeCodeData */
+ segp->type = 0x08 | 0x01 | 0x02; /* kFlagCode | kFlagCodeAccessed
+ * | kFlagCodeReadable
+ */
+ segp->g = true;
+ segp->l = true;
+ segp->present = 1;
+ if (vm)
+ kvm_seg_fill_gdt_64bit(vm, segp);
+}
+
+/*
+ * Set Long Mode Flat Kernel Data Segment
+ *
+ * Input Args:
+ * vm - VM whose GDT is being filled, or NULL to only write segp
+ * selector - selector value
+ *
+ * Output Args:
+ * segp - Pointer to KVM segment
+ *
+ * Return: None
+ *
+ * Sets up the KVM segment pointed to by @segp, to be a data segment
+ * with the selector value given by @selector.
+ */
+static void kvm_seg_set_kernel_data_64bit(struct kvm_vm *vm, uint16_t selector,
+ struct kvm_segment *segp)
+{
+ memset(segp, 0, sizeof(*segp));
+ segp->selector = selector;
+ segp->limit = 0xFFFFFFFFu;
+ segp->s = 0x1; /* kTypeCodeData */
+ segp->type = 0x00 | 0x01 | 0x02; /* kFlagData | kFlagDataAccessed
+ * | kFlagDataWritable
+ */
+ segp->g = true;
+ segp->present = true;
+ if (vm)
+ kvm_seg_fill_gdt_64bit(vm, segp);
+}
+
+vm_paddr_t addr_arch_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva)
+{
+ uint16_t index[4];
+ uint64_t *pml4e, *pdpe, *pde;
+ uint64_t *pte;
+
+ TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use "
+ "unknown or unsupported guest mode, mode: 0x%x", vm->mode);
+
+ index[0] = (gva >> 12) & 0x1ffu;
+ index[1] = (gva >> 21) & 0x1ffu;
+ index[2] = (gva >> 30) & 0x1ffu;
+ index[3] = (gva >> 39) & 0x1ffu;
+
+ if (!vm->pgd_created)
+ goto unmapped_gva;
+ pml4e = addr_gpa2hva(vm, vm->pgd);
+ if (!(pml4e[index[3]] & PTE_PRESENT_MASK))
+ goto unmapped_gva;
+
+ pdpe = addr_gpa2hva(vm, PTE_GET_PFN(pml4e[index[3]]) * vm->page_size);
+ if (!(pdpe[index[2]] & PTE_PRESENT_MASK))
+ goto unmapped_gva;
+
+ pde = addr_gpa2hva(vm, PTE_GET_PFN(pdpe[index[2]]) * vm->page_size);
+ if (!(pde[index[1]] & PTE_PRESENT_MASK))
+ goto unmapped_gva;
+
+ pte = addr_gpa2hva(vm, PTE_GET_PFN(pde[index[1]]) * vm->page_size);
+ if (!(pte[index[0]] & PTE_PRESENT_MASK))
+ goto unmapped_gva;
+
+ return (PTE_GET_PFN(pte[index[0]]) * vm->page_size) + (gva & ~PAGE_MASK);
+
+unmapped_gva:
+ TEST_FAIL("No mapping for vm virtual address, gva: 0x%lx", gva);
+ exit(EXIT_FAILURE);
+}
+
+static void kvm_setup_gdt(struct kvm_vm *vm, struct kvm_dtable *dt)
+{
+ if (!vm->gdt)
+ vm->gdt = vm_vaddr_alloc_page(vm);
+
+ dt->base = vm->gdt;
+ dt->limit = getpagesize();
+}
+
+static void kvm_setup_tss_64bit(struct kvm_vm *vm, struct kvm_segment *segp,
+ int selector)
+{
+ if (!vm->tss)
+ vm->tss = vm_vaddr_alloc_page(vm);
+
+ memset(segp, 0, sizeof(*segp));
+ segp->base = vm->tss;
+ segp->limit = 0x67;
+ segp->selector = selector;
+ segp->type = 0xb;
+ segp->present = 1;
+ kvm_seg_fill_gdt_64bit(vm, segp);
+}
+
+static void vcpu_setup(struct kvm_vm *vm, struct kvm_vcpu *vcpu)
+{
+ struct kvm_sregs sregs;
+
+ /* Set mode specific system register values. */
+ vcpu_sregs_get(vcpu, &sregs);
+
+ sregs.idt.limit = 0;
+
+ kvm_setup_gdt(vm, &sregs.gdt);
+
+ switch (vm->mode) {
+ case VM_MODE_PXXV48_4K:
+ sregs.cr0 = X86_CR0_PE | X86_CR0_NE | X86_CR0_PG;
+ sregs.cr4 |= X86_CR4_PAE | X86_CR4_OSFXSR;
+ sregs.efer |= (EFER_LME | EFER_LMA | EFER_NX);
+
+ kvm_seg_set_unusable(&sregs.ldt);
+ kvm_seg_set_kernel_code_64bit(vm, DEFAULT_CODE_SELECTOR, &sregs.cs);
+ kvm_seg_set_kernel_data_64bit(vm, DEFAULT_DATA_SELECTOR, &sregs.ds);
+ kvm_seg_set_kernel_data_64bit(vm, DEFAULT_DATA_SELECTOR, &sregs.es);
+ kvm_setup_tss_64bit(vm, &sregs.tr, 0x18);
+ break;
+
+ default:
+ TEST_FAIL("Unknown guest mode, mode: 0x%x", vm->mode);
+ }
+
+ sregs.cr3 = vm->pgd;
+ vcpu_sregs_set(vcpu, &sregs);
+}
+
+void __vm_xsave_require_permission(int bit, const char *name)
+{
+ int kvm_fd;
+ u64 bitmask;
+ long rc;
+ struct kvm_device_attr attr = {
+ .group = 0,
+ .attr = KVM_X86_XCOMP_GUEST_SUPP,
+ .addr = (unsigned long) &bitmask
+ };
+
+ TEST_REQUIRE(kvm_cpu_has(X86_FEATURE_XFD));
+
+ kvm_fd = open_kvm_dev_path_or_exit();
+ rc = __kvm_ioctl(kvm_fd, KVM_GET_DEVICE_ATTR, &attr);
+ close(kvm_fd);
+
+ if (rc == -1 && (errno == ENXIO || errno == EINVAL))
+ __TEST_REQUIRE(0, "KVM_X86_XCOMP_GUEST_SUPP not supported");
+
+ TEST_ASSERT(rc == 0, "KVM_GET_DEVICE_ATTR(0, KVM_X86_XCOMP_GUEST_SUPP) error: %ld", rc);
+
+ __TEST_REQUIRE(bitmask & (1ULL << bit),
+ "Required XSAVE feature '%s' not supported", name);
+
+ TEST_REQUIRE(!syscall(SYS_arch_prctl, ARCH_REQ_XCOMP_GUEST_PERM, bit));
+
+ rc = syscall(SYS_arch_prctl, ARCH_GET_XCOMP_GUEST_PERM, &bitmask);
+ TEST_ASSERT(rc == 0, "prctl(ARCH_GET_XCOMP_GUEST_PERM) error: %ld", rc);
+ TEST_ASSERT(bitmask & (1ULL << bit),
+ "prctl(ARCH_REQ_XCOMP_GUEST_PERM) failure bitmask=0x%lx",
+ bitmask);
+}
+
+struct kvm_vcpu *vm_arch_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id,
+ void *guest_code)
+{
+ struct kvm_mp_state mp_state;
+ struct kvm_regs regs;
+ vm_vaddr_t stack_vaddr;
+ struct kvm_vcpu *vcpu;
+
+ stack_vaddr = vm_vaddr_alloc(vm, DEFAULT_STACK_PGS * getpagesize(),
+ DEFAULT_GUEST_STACK_VADDR_MIN);
+
+ vcpu = __vm_vcpu_add(vm, vcpu_id);
+ vcpu_init_cpuid(vcpu, kvm_get_supported_cpuid());
+ vcpu_setup(vm, vcpu);
+
+ /* Setup guest general purpose registers */
+ vcpu_regs_get(vcpu, &regs);
+ regs.rflags = regs.rflags | 0x2;
+ regs.rsp = stack_vaddr + (DEFAULT_STACK_PGS * getpagesize());
+ regs.rip = (unsigned long) guest_code;
+ vcpu_regs_set(vcpu, &regs);
+
+ /* Setup the MP state */
+ mp_state.mp_state = 0;
+ vcpu_mp_state_set(vcpu, &mp_state);
+
+ return vcpu;
+}
+
+struct kvm_vcpu *vm_arch_vcpu_recreate(struct kvm_vm *vm, uint32_t vcpu_id)
+{
+ struct kvm_vcpu *vcpu = __vm_vcpu_add(vm, vcpu_id);
+
+ vcpu_init_cpuid(vcpu, kvm_get_supported_cpuid());
+
+ return vcpu;
+}
+
+void vcpu_arch_free(struct kvm_vcpu *vcpu)
+{
+ if (vcpu->cpuid)
+ free(vcpu->cpuid);
+}
+
+const struct kvm_cpuid2 *kvm_get_supported_cpuid(void)
+{
+ static struct kvm_cpuid2 *cpuid;
+ int kvm_fd;
+
+ if (cpuid)
+ return cpuid;
+
+ cpuid = allocate_kvm_cpuid2(MAX_NR_CPUID_ENTRIES);
+ kvm_fd = open_kvm_dev_path_or_exit();
+
+ kvm_ioctl(kvm_fd, KVM_GET_SUPPORTED_CPUID, cpuid);
+
+ close(kvm_fd);
+ return cpuid;
+}
+
+bool kvm_cpuid_has(const struct kvm_cpuid2 *cpuid,
+ struct kvm_x86_cpu_feature feature)
+{
+ const struct kvm_cpuid_entry2 *entry;
+ int i;
+
+ for (i = 0; i < cpuid->nent; i++) {
+ entry = &cpuid->entries[i];
+
+ /*
+ * The output registers in kvm_cpuid_entry2 are in alphabetical
+ * order, but kvm_x86_cpu_feature matches that mess, so yay
+ * pointer shenanigans!
+ */
+ if (entry->function == feature.function &&
+ entry->index == feature.index)
+ return (&entry->eax)[feature.reg] & BIT(feature.bit);
+ }
+
+ return false;
+}
+
+uint64_t kvm_get_feature_msr(uint64_t msr_index)
+{
+ struct {
+ struct kvm_msrs header;
+ struct kvm_msr_entry entry;
+ } buffer = {};
+ int r, kvm_fd;
+
+ buffer.header.nmsrs = 1;
+ buffer.entry.index = msr_index;
+ kvm_fd = open_kvm_dev_path_or_exit();
+
+ r = __kvm_ioctl(kvm_fd, KVM_GET_MSRS, &buffer.header);
+ TEST_ASSERT(r == 1, KVM_IOCTL_ERROR(KVM_GET_MSRS, r));
+
+ close(kvm_fd);
+ return buffer.entry.data;
+}
+
+void vcpu_init_cpuid(struct kvm_vcpu *vcpu, const struct kvm_cpuid2 *cpuid)
+{
+ TEST_ASSERT(cpuid != vcpu->cpuid, "@cpuid can't be the vCPU's CPUID");
+
+ /* Allow overriding the default CPUID. */
+ if (vcpu->cpuid && vcpu->cpuid->nent < cpuid->nent) {
+ free(vcpu->cpuid);
+ vcpu->cpuid = NULL;
+ }
+
+ if (!vcpu->cpuid)
+ vcpu->cpuid = allocate_kvm_cpuid2(cpuid->nent);
+
+ memcpy(vcpu->cpuid, cpuid, kvm_cpuid2_size(cpuid->nent));
+ vcpu_set_cpuid(vcpu);
+}
+
+void vcpu_set_cpuid_maxphyaddr(struct kvm_vcpu *vcpu, uint8_t maxphyaddr)
+{
+ struct kvm_cpuid_entry2 *entry = vcpu_get_cpuid_entry(vcpu, 0x80000008);
+
+ entry->eax = (entry->eax & ~0xff) | maxphyaddr;
+ vcpu_set_cpuid(vcpu);
+}
+
+void vcpu_clear_cpuid_entry(struct kvm_vcpu *vcpu, uint32_t function)
+{
+ struct kvm_cpuid_entry2 *entry = vcpu_get_cpuid_entry(vcpu, function);
+
+ entry->eax = 0;
+ entry->ebx = 0;
+ entry->ecx = 0;
+ entry->edx = 0;
+ vcpu_set_cpuid(vcpu);
+}
+
+void vcpu_set_or_clear_cpuid_feature(struct kvm_vcpu *vcpu,
+ struct kvm_x86_cpu_feature feature,
+ bool set)
+{
+ struct kvm_cpuid_entry2 *entry;
+ u32 *reg;
+
+ entry = __vcpu_get_cpuid_entry(vcpu, feature.function, feature.index);
+ reg = (&entry->eax) + feature.reg;
+
+ if (set)
+ *reg |= BIT(feature.bit);
+ else
+ *reg &= ~BIT(feature.bit);
+
+ vcpu_set_cpuid(vcpu);
+}
+
+uint64_t vcpu_get_msr(struct kvm_vcpu *vcpu, uint64_t msr_index)
+{
+ struct {
+ struct kvm_msrs header;
+ struct kvm_msr_entry entry;
+ } buffer = {};
+
+ buffer.header.nmsrs = 1;
+ buffer.entry.index = msr_index;
+
+ vcpu_msrs_get(vcpu, &buffer.header);
+
+ return buffer.entry.data;
+}
+
+int _vcpu_set_msr(struct kvm_vcpu *vcpu, uint64_t msr_index, uint64_t msr_value)
+{
+ struct {
+ struct kvm_msrs header;
+ struct kvm_msr_entry entry;
+ } buffer = {};
+
+ memset(&buffer, 0, sizeof(buffer));
+ buffer.header.nmsrs = 1;
+ buffer.entry.index = msr_index;
+ buffer.entry.data = msr_value;
+
+ return __vcpu_ioctl(vcpu, KVM_SET_MSRS, &buffer.header);
+}
+
+void vcpu_args_set(struct kvm_vcpu *vcpu, unsigned int num, ...)
+{
+ va_list ap;
+ struct kvm_regs regs;
+
+ TEST_ASSERT(num >= 1 && num <= 6, "Unsupported number of args,\n"
+ " num: %u\n",
+ num);
+
+ va_start(ap, num);
+ vcpu_regs_get(vcpu, &regs);
+
+ if (num >= 1)
+ regs.rdi = va_arg(ap, uint64_t);
+
+ if (num >= 2)
+ regs.rsi = va_arg(ap, uint64_t);
+
+ if (num >= 3)
+ regs.rdx = va_arg(ap, uint64_t);
+
+ if (num >= 4)
+ regs.rcx = va_arg(ap, uint64_t);
+
+ if (num >= 5)
+ regs.r8 = va_arg(ap, uint64_t);
+
+ if (num >= 6)
+ regs.r9 = va_arg(ap, uint64_t);
+
+ vcpu_regs_set(vcpu, &regs);
+ va_end(ap);
+}
+
+void vcpu_arch_dump(FILE *stream, struct kvm_vcpu *vcpu, uint8_t indent)
+{
+ struct kvm_regs regs;
+ struct kvm_sregs sregs;
+
+ fprintf(stream, "%*svCPU ID: %u\n", indent, "", vcpu->id);
+
+ fprintf(stream, "%*sregs:\n", indent + 2, "");
+ vcpu_regs_get(vcpu, &regs);
+ regs_dump(stream, &regs, indent + 4);
+
+ fprintf(stream, "%*ssregs:\n", indent + 2, "");
+ vcpu_sregs_get(vcpu, &sregs);
+ sregs_dump(stream, &sregs, indent + 4);
+}
+
+static struct kvm_msr_list *__kvm_get_msr_index_list(bool feature_msrs)
+{
+ struct kvm_msr_list *list;
+ struct kvm_msr_list nmsrs;
+ int kvm_fd, r;
+
+ kvm_fd = open_kvm_dev_path_or_exit();
+
+ nmsrs.nmsrs = 0;
+ if (!feature_msrs)
+ r = __kvm_ioctl(kvm_fd, KVM_GET_MSR_INDEX_LIST, &nmsrs);
+ else
+ r = __kvm_ioctl(kvm_fd, KVM_GET_MSR_FEATURE_INDEX_LIST, &nmsrs);
+
+ TEST_ASSERT(r == -1 && errno == E2BIG,
+ "Expected -E2BIG, got rc: %i errno: %i (%s)",
+ r, errno, strerror(errno));
+
+ list = malloc(sizeof(*list) + nmsrs.nmsrs * sizeof(list->indices[0]));
+ TEST_ASSERT(list, "-ENOMEM when allocating MSR index list");
+ list->nmsrs = nmsrs.nmsrs;
+
+ if (!feature_msrs)
+ kvm_ioctl(kvm_fd, KVM_GET_MSR_INDEX_LIST, list);
+ else
+ kvm_ioctl(kvm_fd, KVM_GET_MSR_FEATURE_INDEX_LIST, list);
+ close(kvm_fd);
+
+ TEST_ASSERT(list->nmsrs == nmsrs.nmsrs,
+ "Number of MSRs in list changed, was %d, now %d",
+ nmsrs.nmsrs, list->nmsrs);
+ return list;
+}
+
+const struct kvm_msr_list *kvm_get_msr_index_list(void)
+{
+ static const struct kvm_msr_list *list;
+
+ if (!list)
+ list = __kvm_get_msr_index_list(false);
+ return list;
+}
+
+
+const struct kvm_msr_list *kvm_get_feature_msr_index_list(void)
+{
+ static const struct kvm_msr_list *list;
+
+ if (!list)
+ list = __kvm_get_msr_index_list(true);
+ return list;
+}
+
+bool kvm_msr_is_in_save_restore_list(uint32_t msr_index)
+{
+ const struct kvm_msr_list *list = kvm_get_msr_index_list();
+ int i;
+
+ for (i = 0; i < list->nmsrs; ++i) {
+ if (list->indices[i] == msr_index)
+ return true;
+ }
+
+ return false;
+}
+
+static void vcpu_save_xsave_state(struct kvm_vcpu *vcpu,
+ struct kvm_x86_state *state)
+{
+ int size = vm_check_cap(vcpu->vm, KVM_CAP_XSAVE2);
+
+ if (size) {
+ state->xsave = malloc(size);
+ vcpu_xsave2_get(vcpu, state->xsave);
+ } else {
+ state->xsave = malloc(sizeof(struct kvm_xsave));
+ vcpu_xsave_get(vcpu, state->xsave);
+ }
+}
+
+struct kvm_x86_state *vcpu_save_state(struct kvm_vcpu *vcpu)
+{
+ const struct kvm_msr_list *msr_list = kvm_get_msr_index_list();
+ struct kvm_x86_state *state;
+ int i;
+
+ static int nested_size = -1;
+
+ if (nested_size == -1) {
+ nested_size = kvm_check_cap(KVM_CAP_NESTED_STATE);
+ TEST_ASSERT(nested_size <= sizeof(state->nested_),
+ "Nested state size too big, %i > %zi",
+ nested_size, sizeof(state->nested_));
+ }
+
+ /*
+ * When KVM exits to userspace with KVM_EXIT_IO, KVM guarantees
+ * guest state is consistent only after userspace re-enters the
+ * kernel with KVM_RUN. Complete IO prior to migrating state
+ * to a new VM.
+ */
+ vcpu_run_complete_io(vcpu);
+
+ state = malloc(sizeof(*state) + msr_list->nmsrs * sizeof(state->msrs.entries[0]));
+
+ vcpu_events_get(vcpu, &state->events);
+ vcpu_mp_state_get(vcpu, &state->mp_state);
+ vcpu_regs_get(vcpu, &state->regs);
+ vcpu_save_xsave_state(vcpu, state);
+
+ if (kvm_has_cap(KVM_CAP_XCRS))
+ vcpu_xcrs_get(vcpu, &state->xcrs);
+
+ vcpu_sregs_get(vcpu, &state->sregs);
+
+ if (nested_size) {
+ state->nested.size = sizeof(state->nested_);
+
+ vcpu_nested_state_get(vcpu, &state->nested);
+ TEST_ASSERT(state->nested.size <= nested_size,
+ "Nested state size too big, %i (KVM_CHECK_CAP gave %i)",
+ state->nested.size, nested_size);
+ } else {
+ state->nested.size = 0;
+ }
+
+ state->msrs.nmsrs = msr_list->nmsrs;
+ for (i = 0; i < msr_list->nmsrs; i++)
+ state->msrs.entries[i].index = msr_list->indices[i];
+ vcpu_msrs_get(vcpu, &state->msrs);
+
+ vcpu_debugregs_get(vcpu, &state->debugregs);
+
+ return state;
+}
+
+void vcpu_load_state(struct kvm_vcpu *vcpu, struct kvm_x86_state *state)
+{
+ vcpu_sregs_set(vcpu, &state->sregs);
+ vcpu_msrs_set(vcpu, &state->msrs);
+
+ if (kvm_has_cap(KVM_CAP_XCRS))
+ vcpu_xcrs_set(vcpu, &state->xcrs);
+
+ vcpu_xsave_set(vcpu, state->xsave);
+ vcpu_events_set(vcpu, &state->events);
+ vcpu_mp_state_set(vcpu, &state->mp_state);
+ vcpu_debugregs_set(vcpu, &state->debugregs);
+ vcpu_regs_set(vcpu, &state->regs);
+
+ if (state->nested.size)
+ vcpu_nested_state_set(vcpu, &state->nested);
+}
+
+void kvm_x86_state_cleanup(struct kvm_x86_state *state)
+{
+ free(state->xsave);
+ free(state);
+}
+
+static bool cpu_vendor_string_is(const char *vendor)
+{
+ const uint32_t *chunk = (const uint32_t *)vendor;
+ uint32_t eax, ebx, ecx, edx;
+
+ cpuid(0, &eax, &ebx, &ecx, &edx);
+ return (ebx == chunk[0] && edx == chunk[1] && ecx == chunk[2]);
+}
+
+bool is_intel_cpu(void)
+{
+ return cpu_vendor_string_is("GenuineIntel");
+}
+
+/*
+ * Exclude early K5 samples with a vendor string of "AMDisbetter!"
+ */
+bool is_amd_cpu(void)
+{
+ return cpu_vendor_string_is("AuthenticAMD");
+}
+
+void kvm_get_cpu_address_width(unsigned int *pa_bits, unsigned int *va_bits)
+{
+ const struct kvm_cpuid_entry2 *entry;
+ bool pae;
+
+ /* SDM 4.1.4 */
+ if (kvm_get_cpuid_max_extended() < 0x80000008) {
+ pae = kvm_get_supported_cpuid_entry(1)->edx & (1 << 6);
+ *pa_bits = pae ? 36 : 32;
+ *va_bits = 32;
+ } else {
+ entry = kvm_get_supported_cpuid_entry(0x80000008);
+ *pa_bits = entry->eax & 0xff;
+ *va_bits = (entry->eax >> 8) & 0xff;
+ }
+}
+
+static void set_idt_entry(struct kvm_vm *vm, int vector, unsigned long addr,
+ int dpl, unsigned short selector)
+{
+ struct idt_entry *base =
+ (struct idt_entry *)addr_gva2hva(vm, vm->idt);
+ struct idt_entry *e = &base[vector];
+
+ memset(e, 0, sizeof(*e));
+ e->offset0 = addr;
+ e->selector = selector;
+ e->ist = 0;
+ e->type = 14;
+ e->dpl = dpl;
+ e->p = 1;
+ e->offset1 = addr >> 16;
+ e->offset2 = addr >> 32;
+}
+
+
+static bool kvm_fixup_exception(struct ex_regs *regs)
+{
+ if (regs->r9 != KVM_EXCEPTION_MAGIC || regs->rip != regs->r10)
+ return false;
+
+ if (regs->vector == DE_VECTOR)
+ return false;
+
+ regs->rip = regs->r11;
+ regs->r9 = regs->vector;
+ return true;
+}
+
+void kvm_exit_unexpected_vector(uint32_t value)
+{
+ ucall(UCALL_UNHANDLED, 1, value);
+}
+
+void route_exception(struct ex_regs *regs)
+{
+ typedef void(*handler)(struct ex_regs *);
+ handler *handlers = (handler *)exception_handlers;
+
+ if (handlers && handlers[regs->vector]) {
+ handlers[regs->vector](regs);
+ return;
+ }
+
+ if (kvm_fixup_exception(regs))
+ return;
+
+ kvm_exit_unexpected_vector(regs->vector);
+}
+
+void vm_init_descriptor_tables(struct kvm_vm *vm)
+{
+ extern void *idt_handlers;
+ int i;
+
+ vm->idt = vm_vaddr_alloc_page(vm);
+ vm->handlers = vm_vaddr_alloc_page(vm);
+ /* Handlers have the same address in both address spaces.*/
+ for (i = 0; i < NUM_INTERRUPTS; i++)
+ set_idt_entry(vm, i, (unsigned long)(&idt_handlers)[i], 0,
+ DEFAULT_CODE_SELECTOR);
+}
+
+void vcpu_init_descriptor_tables(struct kvm_vcpu *vcpu)
+{
+ struct kvm_vm *vm = vcpu->vm;
+ struct kvm_sregs sregs;
+
+ vcpu_sregs_get(vcpu, &sregs);
+ sregs.idt.base = vm->idt;
+ sregs.idt.limit = NUM_INTERRUPTS * sizeof(struct idt_entry) - 1;
+ sregs.gdt.base = vm->gdt;
+ sregs.gdt.limit = getpagesize() - 1;
+ kvm_seg_set_kernel_data_64bit(NULL, DEFAULT_DATA_SELECTOR, &sregs.gs);
+ vcpu_sregs_set(vcpu, &sregs);
+ *(vm_vaddr_t *)addr_gva2hva(vm, (vm_vaddr_t)(&exception_handlers)) = vm->handlers;
+}
+
+void vm_install_exception_handler(struct kvm_vm *vm, int vector,
+ void (*handler)(struct ex_regs *))
+{
+ vm_vaddr_t *handlers = (vm_vaddr_t *)addr_gva2hva(vm, vm->handlers);
+
+ handlers[vector] = (vm_vaddr_t)handler;
+}
+
+void assert_on_unhandled_exception(struct kvm_vcpu *vcpu)
+{
+ struct ucall uc;
+
+ if (get_ucall(vcpu, &uc) == UCALL_UNHANDLED) {
+ uint64_t vector = uc.args[0];
+
+ TEST_FAIL("Unexpected vectored event in guest (vector:0x%lx)",
+ vector);
+ }
+}
+
+const struct kvm_cpuid_entry2 *get_cpuid_entry(const struct kvm_cpuid2 *cpuid,
+ uint32_t function, uint32_t index)
+{
+ int i;
+
+ for (i = 0; i < cpuid->nent; i++) {
+ if (cpuid->entries[i].function == function &&
+ cpuid->entries[i].index == index)
+ return &cpuid->entries[i];
+ }
+
+ TEST_FAIL("CPUID function 0x%x index 0x%x not found ", function, index);
+
+ return NULL;
+}
+
+uint64_t kvm_hypercall(uint64_t nr, uint64_t a0, uint64_t a1, uint64_t a2,
+ uint64_t a3)
+{
+ uint64_t r;
+
+ asm volatile("vmcall"
+ : "=a"(r)
+ : "a"(nr), "b"(a0), "c"(a1), "d"(a2), "S"(a3));
+ return r;
+}
+
+const struct kvm_cpuid2 *kvm_get_supported_hv_cpuid(void)
+{
+ static struct kvm_cpuid2 *cpuid;
+ int kvm_fd;
+
+ if (cpuid)
+ return cpuid;
+
+ cpuid = allocate_kvm_cpuid2(MAX_NR_CPUID_ENTRIES);
+ kvm_fd = open_kvm_dev_path_or_exit();
+
+ kvm_ioctl(kvm_fd, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
+
+ close(kvm_fd);
+ return cpuid;
+}
+
+void vcpu_set_hv_cpuid(struct kvm_vcpu *vcpu)
+{
+ static struct kvm_cpuid2 *cpuid_full;
+ const struct kvm_cpuid2 *cpuid_sys, *cpuid_hv;
+ int i, nent = 0;
+
+ if (!cpuid_full) {
+ cpuid_sys = kvm_get_supported_cpuid();
+ cpuid_hv = kvm_get_supported_hv_cpuid();
+
+ cpuid_full = allocate_kvm_cpuid2(cpuid_sys->nent + cpuid_hv->nent);
+ if (!cpuid_full) {
+ perror("malloc");
+ abort();
+ }
+
+ /* Need to skip KVM CPUID leaves 0x400000xx */
+ for (i = 0; i < cpuid_sys->nent; i++) {
+ if (cpuid_sys->entries[i].function >= 0x40000000 &&
+ cpuid_sys->entries[i].function < 0x40000100)
+ continue;
+ cpuid_full->entries[nent] = cpuid_sys->entries[i];
+ nent++;
+ }
+
+ memcpy(&cpuid_full->entries[nent], cpuid_hv->entries,
+ cpuid_hv->nent * sizeof(struct kvm_cpuid_entry2));
+ cpuid_full->nent = nent + cpuid_hv->nent;
+ }
+
+ vcpu_init_cpuid(vcpu, cpuid_full);
+}
+
+const struct kvm_cpuid2 *vcpu_get_supported_hv_cpuid(struct kvm_vcpu *vcpu)
+{
+ struct kvm_cpuid2 *cpuid = allocate_kvm_cpuid2(MAX_NR_CPUID_ENTRIES);
+
+ vcpu_ioctl(vcpu, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
+
+ return cpuid;
+}
+
+unsigned long vm_compute_max_gfn(struct kvm_vm *vm)
+{
+ const unsigned long num_ht_pages = 12 << (30 - vm->page_shift); /* 12 GiB */
+ unsigned long ht_gfn, max_gfn, max_pfn;
+ uint32_t eax, ebx, ecx, edx, max_ext_leaf;
+
+ max_gfn = (1ULL << (vm->pa_bits - vm->page_shift)) - 1;
+
+ /* Avoid reserved HyperTransport region on AMD processors. */
+ if (!is_amd_cpu())
+ return max_gfn;
+
+ /* On parts with <40 physical address bits, the area is fully hidden */
+ if (vm->pa_bits < 40)
+ return max_gfn;
+
+ /* Before family 17h, the HyperTransport area is just below 1T. */
+ ht_gfn = (1 << 28) - num_ht_pages;
+ cpuid(1, &eax, &ebx, &ecx, &edx);
+ if (x86_family(eax) < 0x17)
+ goto done;
+
+ /*
+ * Otherwise it's at the top of the physical address space, possibly
+ * reduced due to SME by bits 11:6 of CPUID[0x8000001f].EBX. Use
+ * the old conservative value if MAXPHYADDR is not enumerated.
+ */
+ cpuid(0x80000000, &eax, &ebx, &ecx, &edx);
+ max_ext_leaf = eax;
+ if (max_ext_leaf < 0x80000008)
+ goto done;
+
+ cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
+ max_pfn = (1ULL << ((eax & 0xff) - vm->page_shift)) - 1;
+ if (max_ext_leaf >= 0x8000001f) {
+ cpuid(0x8000001f, &eax, &ebx, &ecx, &edx);
+ max_pfn >>= (ebx >> 6) & 0x3f;
+ }
+
+ ht_gfn = max_pfn - num_ht_pages;
+done:
+ return min(max_gfn, ht_gfn - 1);
+}
+
+/* Returns true if kvm_intel was loaded with unrestricted_guest=1. */
+bool vm_is_unrestricted_guest(struct kvm_vm *vm)
+{
+ /* Ensure that a KVM vendor-specific module is loaded. */
+ if (vm == NULL)
+ close(open_kvm_dev_path_or_exit());
+
+ return get_kvm_intel_param_bool("unrestricted_guest");
+}
diff --git a/tools/testing/selftests/kvm/lib/x86_64/svm.c b/tools/testing/selftests/kvm/lib/x86_64/svm.c
new file mode 100644
index 000000000..5495a92df
--- /dev/null
+++ b/tools/testing/selftests/kvm/lib/x86_64/svm.c
@@ -0,0 +1,164 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * tools/testing/selftests/kvm/lib/x86_64/svm.c
+ * Helpers used for nested SVM testing
+ * Largely inspired from KVM unit test svm.c
+ *
+ * Copyright (C) 2020, Red Hat, Inc.
+ */
+
+#include "test_util.h"
+#include "kvm_util.h"
+#include "processor.h"
+#include "svm_util.h"
+
+#define SEV_DEV_PATH "/dev/sev"
+
+struct gpr64_regs guest_regs;
+u64 rflags;
+
+/* Allocate memory regions for nested SVM tests.
+ *
+ * Input Args:
+ * vm - The VM to allocate guest-virtual addresses in.
+ *
+ * Output Args:
+ * p_svm_gva - The guest virtual address for the struct svm_test_data.
+ *
+ * Return:
+ * Pointer to structure with the addresses of the SVM areas.
+ */
+struct svm_test_data *
+vcpu_alloc_svm(struct kvm_vm *vm, vm_vaddr_t *p_svm_gva)
+{
+ vm_vaddr_t svm_gva = vm_vaddr_alloc_page(vm);
+ struct svm_test_data *svm = addr_gva2hva(vm, svm_gva);
+
+ svm->vmcb = (void *)vm_vaddr_alloc_page(vm);
+ svm->vmcb_hva = addr_gva2hva(vm, (uintptr_t)svm->vmcb);
+ svm->vmcb_gpa = addr_gva2gpa(vm, (uintptr_t)svm->vmcb);
+
+ svm->save_area = (void *)vm_vaddr_alloc_page(vm);
+ svm->save_area_hva = addr_gva2hva(vm, (uintptr_t)svm->save_area);
+ svm->save_area_gpa = addr_gva2gpa(vm, (uintptr_t)svm->save_area);
+
+ svm->msr = (void *)vm_vaddr_alloc_page(vm);
+ svm->msr_hva = addr_gva2hva(vm, (uintptr_t)svm->msr);
+ svm->msr_gpa = addr_gva2gpa(vm, (uintptr_t)svm->msr);
+ memset(svm->msr_hva, 0, getpagesize());
+
+ *p_svm_gva = svm_gva;
+ return svm;
+}
+
+static void vmcb_set_seg(struct vmcb_seg *seg, u16 selector,
+ u64 base, u32 limit, u32 attr)
+{
+ seg->selector = selector;
+ seg->attrib = attr;
+ seg->limit = limit;
+ seg->base = base;
+}
+
+void generic_svm_setup(struct svm_test_data *svm, void *guest_rip, void *guest_rsp)
+{
+ struct vmcb *vmcb = svm->vmcb;
+ uint64_t vmcb_gpa = svm->vmcb_gpa;
+ struct vmcb_save_area *save = &vmcb->save;
+ struct vmcb_control_area *ctrl = &vmcb->control;
+ u32 data_seg_attr = 3 | SVM_SELECTOR_S_MASK | SVM_SELECTOR_P_MASK
+ | SVM_SELECTOR_DB_MASK | SVM_SELECTOR_G_MASK;
+ u32 code_seg_attr = 9 | SVM_SELECTOR_S_MASK | SVM_SELECTOR_P_MASK
+ | SVM_SELECTOR_L_MASK | SVM_SELECTOR_G_MASK;
+ uint64_t efer;
+
+ efer = rdmsr(MSR_EFER);
+ wrmsr(MSR_EFER, efer | EFER_SVME);
+ wrmsr(MSR_VM_HSAVE_PA, svm->save_area_gpa);
+
+ memset(vmcb, 0, sizeof(*vmcb));
+ asm volatile ("vmsave %0\n\t" : : "a" (vmcb_gpa) : "memory");
+ vmcb_set_seg(&save->es, get_es(), 0, -1U, data_seg_attr);
+ vmcb_set_seg(&save->cs, get_cs(), 0, -1U, code_seg_attr);
+ vmcb_set_seg(&save->ss, get_ss(), 0, -1U, data_seg_attr);
+ vmcb_set_seg(&save->ds, get_ds(), 0, -1U, data_seg_attr);
+ vmcb_set_seg(&save->gdtr, 0, get_gdt().address, get_gdt().size, 0);
+ vmcb_set_seg(&save->idtr, 0, get_idt().address, get_idt().size, 0);
+
+ ctrl->asid = 1;
+ save->cpl = 0;
+ save->efer = rdmsr(MSR_EFER);
+ asm volatile ("mov %%cr4, %0" : "=r"(save->cr4) : : "memory");
+ asm volatile ("mov %%cr3, %0" : "=r"(save->cr3) : : "memory");
+ asm volatile ("mov %%cr0, %0" : "=r"(save->cr0) : : "memory");
+ asm volatile ("mov %%dr7, %0" : "=r"(save->dr7) : : "memory");
+ asm volatile ("mov %%dr6, %0" : "=r"(save->dr6) : : "memory");
+ asm volatile ("mov %%cr2, %0" : "=r"(save->cr2) : : "memory");
+ save->g_pat = rdmsr(MSR_IA32_CR_PAT);
+ save->dbgctl = rdmsr(MSR_IA32_DEBUGCTLMSR);
+ ctrl->intercept = (1ULL << INTERCEPT_VMRUN) |
+ (1ULL << INTERCEPT_VMMCALL);
+ ctrl->msrpm_base_pa = svm->msr_gpa;
+
+ vmcb->save.rip = (u64)guest_rip;
+ vmcb->save.rsp = (u64)guest_rsp;
+ guest_regs.rdi = (u64)svm;
+}
+
+/*
+ * save/restore 64-bit general registers except rax, rip, rsp
+ * which are directly handed through the VMCB guest processor state
+ */
+#define SAVE_GPR_C \
+ "xchg %%rbx, guest_regs+0x20\n\t" \
+ "xchg %%rcx, guest_regs+0x10\n\t" \
+ "xchg %%rdx, guest_regs+0x18\n\t" \
+ "xchg %%rbp, guest_regs+0x30\n\t" \
+ "xchg %%rsi, guest_regs+0x38\n\t" \
+ "xchg %%rdi, guest_regs+0x40\n\t" \
+ "xchg %%r8, guest_regs+0x48\n\t" \
+ "xchg %%r9, guest_regs+0x50\n\t" \
+ "xchg %%r10, guest_regs+0x58\n\t" \
+ "xchg %%r11, guest_regs+0x60\n\t" \
+ "xchg %%r12, guest_regs+0x68\n\t" \
+ "xchg %%r13, guest_regs+0x70\n\t" \
+ "xchg %%r14, guest_regs+0x78\n\t" \
+ "xchg %%r15, guest_regs+0x80\n\t"
+
+#define LOAD_GPR_C SAVE_GPR_C
+
+/*
+ * selftests do not use interrupts so we dropped clgi/sti/cli/stgi
+ * for now. registers involved in LOAD/SAVE_GPR_C are eventually
+ * unmodified so they do not need to be in the clobber list.
+ */
+void run_guest(struct vmcb *vmcb, uint64_t vmcb_gpa)
+{
+ asm volatile (
+ "vmload %[vmcb_gpa]\n\t"
+ "mov rflags, %%r15\n\t" // rflags
+ "mov %%r15, 0x170(%[vmcb])\n\t"
+ "mov guest_regs, %%r15\n\t" // rax
+ "mov %%r15, 0x1f8(%[vmcb])\n\t"
+ LOAD_GPR_C
+ "vmrun %[vmcb_gpa]\n\t"
+ SAVE_GPR_C
+ "mov 0x170(%[vmcb]), %%r15\n\t" // rflags
+ "mov %%r15, rflags\n\t"
+ "mov 0x1f8(%[vmcb]), %%r15\n\t" // rax
+ "mov %%r15, guest_regs\n\t"
+ "vmsave %[vmcb_gpa]\n\t"
+ : : [vmcb] "r" (vmcb), [vmcb_gpa] "a" (vmcb_gpa)
+ : "r15", "memory");
+}
+
+/*
+ * Open SEV_DEV_PATH if available, otherwise exit the entire program.
+ *
+ * Return:
+ * The opened file descriptor of /dev/sev.
+ */
+int open_sev_dev_path_or_exit(void)
+{
+ return open_path_or_exit(SEV_DEV_PATH, 0);
+}
diff --git a/tools/testing/selftests/kvm/lib/x86_64/ucall.c b/tools/testing/selftests/kvm/lib/x86_64/ucall.c
new file mode 100644
index 000000000..e5f0f9e0d
--- /dev/null
+++ b/tools/testing/selftests/kvm/lib/x86_64/ucall.c
@@ -0,0 +1,59 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * ucall support. A ucall is a "hypercall to userspace".
+ *
+ * Copyright (C) 2018, Red Hat, Inc.
+ */
+#include "kvm_util.h"
+
+#define UCALL_PIO_PORT ((uint16_t)0x1000)
+
+void ucall_init(struct kvm_vm *vm, void *arg)
+{
+}
+
+void ucall_uninit(struct kvm_vm *vm)
+{
+}
+
+void ucall(uint64_t cmd, int nargs, ...)
+{
+ struct ucall uc = {
+ .cmd = cmd,
+ };
+ va_list va;
+ int i;
+
+ nargs = min(nargs, UCALL_MAX_ARGS);
+
+ va_start(va, nargs);
+ for (i = 0; i < nargs; ++i)
+ uc.args[i] = va_arg(va, uint64_t);
+ va_end(va);
+
+ asm volatile("in %[port], %%al"
+ : : [port] "d" (UCALL_PIO_PORT), "D" (&uc) : "rax", "memory");
+}
+
+uint64_t get_ucall(struct kvm_vcpu *vcpu, struct ucall *uc)
+{
+ struct kvm_run *run = vcpu->run;
+ struct ucall ucall = {};
+
+ if (uc)
+ memset(uc, 0, sizeof(*uc));
+
+ if (run->exit_reason == KVM_EXIT_IO && run->io.port == UCALL_PIO_PORT) {
+ struct kvm_regs regs;
+
+ vcpu_regs_get(vcpu, &regs);
+ memcpy(&ucall, addr_gva2hva(vcpu->vm, (vm_vaddr_t)regs.rdi),
+ sizeof(ucall));
+
+ vcpu_run_complete_io(vcpu);
+ if (uc)
+ memcpy(uc, &ucall, sizeof(ucall));
+ }
+
+ return ucall.cmd;
+}
diff --git a/tools/testing/selftests/kvm/lib/x86_64/vmx.c b/tools/testing/selftests/kvm/lib/x86_64/vmx.c
new file mode 100644
index 000000000..d21049c38
--- /dev/null
+++ b/tools/testing/selftests/kvm/lib/x86_64/vmx.c
@@ -0,0 +1,578 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * tools/testing/selftests/kvm/lib/x86_64/vmx.c
+ *
+ * Copyright (C) 2018, Google LLC.
+ */
+
+#include <asm/msr-index.h>
+
+#include "test_util.h"
+#include "kvm_util.h"
+#include "processor.h"
+#include "vmx.h"
+
+#define PAGE_SHIFT_4K 12
+
+#define KVM_EPT_PAGE_TABLE_MIN_PADDR 0x1c0000
+
+bool enable_evmcs;
+
+struct hv_enlightened_vmcs *current_evmcs;
+struct hv_vp_assist_page *current_vp_assist;
+
+struct eptPageTableEntry {
+ uint64_t readable:1;
+ uint64_t writable:1;
+ uint64_t executable:1;
+ uint64_t memory_type:3;
+ uint64_t ignore_pat:1;
+ uint64_t page_size:1;
+ uint64_t accessed:1;
+ uint64_t dirty:1;
+ uint64_t ignored_11_10:2;
+ uint64_t address:40;
+ uint64_t ignored_62_52:11;
+ uint64_t suppress_ve:1;
+};
+
+struct eptPageTablePointer {
+ uint64_t memory_type:3;
+ uint64_t page_walk_length:3;
+ uint64_t ad_enabled:1;
+ uint64_t reserved_11_07:5;
+ uint64_t address:40;
+ uint64_t reserved_63_52:12;
+};
+int vcpu_enable_evmcs(struct kvm_vcpu *vcpu)
+{
+ uint16_t evmcs_ver;
+
+ vcpu_enable_cap(vcpu, KVM_CAP_HYPERV_ENLIGHTENED_VMCS,
+ (unsigned long)&evmcs_ver);
+
+ /* KVM should return supported EVMCS version range */
+ TEST_ASSERT(((evmcs_ver >> 8) >= (evmcs_ver & 0xff)) &&
+ (evmcs_ver & 0xff) > 0,
+ "Incorrect EVMCS version range: %x:%x\n",
+ evmcs_ver & 0xff, evmcs_ver >> 8);
+
+ return evmcs_ver;
+}
+
+/* Allocate memory regions for nested VMX tests.
+ *
+ * Input Args:
+ * vm - The VM to allocate guest-virtual addresses in.
+ *
+ * Output Args:
+ * p_vmx_gva - The guest virtual address for the struct vmx_pages.
+ *
+ * Return:
+ * Pointer to structure with the addresses of the VMX areas.
+ */
+struct vmx_pages *
+vcpu_alloc_vmx(struct kvm_vm *vm, vm_vaddr_t *p_vmx_gva)
+{
+ vm_vaddr_t vmx_gva = vm_vaddr_alloc_page(vm);
+ struct vmx_pages *vmx = addr_gva2hva(vm, vmx_gva);
+
+ /* Setup of a region of guest memory for the vmxon region. */
+ vmx->vmxon = (void *)vm_vaddr_alloc_page(vm);
+ vmx->vmxon_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmxon);
+ vmx->vmxon_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmxon);
+
+ /* Setup of a region of guest memory for a vmcs. */
+ vmx->vmcs = (void *)vm_vaddr_alloc_page(vm);
+ vmx->vmcs_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmcs);
+ vmx->vmcs_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmcs);
+
+ /* Setup of a region of guest memory for the MSR bitmap. */
+ vmx->msr = (void *)vm_vaddr_alloc_page(vm);
+ vmx->msr_hva = addr_gva2hva(vm, (uintptr_t)vmx->msr);
+ vmx->msr_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->msr);
+ memset(vmx->msr_hva, 0, getpagesize());
+
+ /* Setup of a region of guest memory for the shadow VMCS. */
+ vmx->shadow_vmcs = (void *)vm_vaddr_alloc_page(vm);
+ vmx->shadow_vmcs_hva = addr_gva2hva(vm, (uintptr_t)vmx->shadow_vmcs);
+ vmx->shadow_vmcs_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->shadow_vmcs);
+
+ /* Setup of a region of guest memory for the VMREAD and VMWRITE bitmaps. */
+ vmx->vmread = (void *)vm_vaddr_alloc_page(vm);
+ vmx->vmread_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmread);
+ vmx->vmread_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmread);
+ memset(vmx->vmread_hva, 0, getpagesize());
+
+ vmx->vmwrite = (void *)vm_vaddr_alloc_page(vm);
+ vmx->vmwrite_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmwrite);
+ vmx->vmwrite_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmwrite);
+ memset(vmx->vmwrite_hva, 0, getpagesize());
+
+ /* Setup of a region of guest memory for the VP Assist page. */
+ vmx->vp_assist = (void *)vm_vaddr_alloc_page(vm);
+ vmx->vp_assist_hva = addr_gva2hva(vm, (uintptr_t)vmx->vp_assist);
+ vmx->vp_assist_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vp_assist);
+
+ /* Setup of a region of guest memory for the enlightened VMCS. */
+ vmx->enlightened_vmcs = (void *)vm_vaddr_alloc_page(vm);
+ vmx->enlightened_vmcs_hva =
+ addr_gva2hva(vm, (uintptr_t)vmx->enlightened_vmcs);
+ vmx->enlightened_vmcs_gpa =
+ addr_gva2gpa(vm, (uintptr_t)vmx->enlightened_vmcs);
+
+ *p_vmx_gva = vmx_gva;
+ return vmx;
+}
+
+bool prepare_for_vmx_operation(struct vmx_pages *vmx)
+{
+ uint64_t feature_control;
+ uint64_t required;
+ unsigned long cr0;
+ unsigned long cr4;
+
+ /*
+ * Ensure bits in CR0 and CR4 are valid in VMX operation:
+ * - Bit X is 1 in _FIXED0: bit X is fixed to 1 in CRx.
+ * - Bit X is 0 in _FIXED1: bit X is fixed to 0 in CRx.
+ */
+ __asm__ __volatile__("mov %%cr0, %0" : "=r"(cr0) : : "memory");
+ cr0 &= rdmsr(MSR_IA32_VMX_CR0_FIXED1);
+ cr0 |= rdmsr(MSR_IA32_VMX_CR0_FIXED0);
+ __asm__ __volatile__("mov %0, %%cr0" : : "r"(cr0) : "memory");
+
+ __asm__ __volatile__("mov %%cr4, %0" : "=r"(cr4) : : "memory");
+ cr4 &= rdmsr(MSR_IA32_VMX_CR4_FIXED1);
+ cr4 |= rdmsr(MSR_IA32_VMX_CR4_FIXED0);
+ /* Enable VMX operation */
+ cr4 |= X86_CR4_VMXE;
+ __asm__ __volatile__("mov %0, %%cr4" : : "r"(cr4) : "memory");
+
+ /*
+ * Configure IA32_FEATURE_CONTROL MSR to allow VMXON:
+ * Bit 0: Lock bit. If clear, VMXON causes a #GP.
+ * Bit 2: Enables VMXON outside of SMX operation. If clear, VMXON
+ * outside of SMX causes a #GP.
+ */
+ required = FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
+ required |= FEAT_CTL_LOCKED;
+ feature_control = rdmsr(MSR_IA32_FEAT_CTL);
+ if ((feature_control & required) != required)
+ wrmsr(MSR_IA32_FEAT_CTL, feature_control | required);
+
+ /* Enter VMX root operation. */
+ *(uint32_t *)(vmx->vmxon) = vmcs_revision();
+ if (vmxon(vmx->vmxon_gpa))
+ return false;
+
+ return true;
+}
+
+bool load_vmcs(struct vmx_pages *vmx)
+{
+ if (!enable_evmcs) {
+ /* Load a VMCS. */
+ *(uint32_t *)(vmx->vmcs) = vmcs_revision();
+ if (vmclear(vmx->vmcs_gpa))
+ return false;
+
+ if (vmptrld(vmx->vmcs_gpa))
+ return false;
+
+ /* Setup shadow VMCS, do not load it yet. */
+ *(uint32_t *)(vmx->shadow_vmcs) =
+ vmcs_revision() | 0x80000000ul;
+ if (vmclear(vmx->shadow_vmcs_gpa))
+ return false;
+ } else {
+ if (evmcs_vmptrld(vmx->enlightened_vmcs_gpa,
+ vmx->enlightened_vmcs))
+ return false;
+ current_evmcs->revision_id = EVMCS_VERSION;
+ }
+
+ return true;
+}
+
+static bool ept_vpid_cap_supported(uint64_t mask)
+{
+ return rdmsr(MSR_IA32_VMX_EPT_VPID_CAP) & mask;
+}
+
+bool ept_1g_pages_supported(void)
+{
+ return ept_vpid_cap_supported(VMX_EPT_VPID_CAP_1G_PAGES);
+}
+
+/*
+ * Initialize the control fields to the most basic settings possible.
+ */
+static inline void init_vmcs_control_fields(struct vmx_pages *vmx)
+{
+ uint32_t sec_exec_ctl = 0;
+
+ vmwrite(VIRTUAL_PROCESSOR_ID, 0);
+ vmwrite(POSTED_INTR_NV, 0);
+
+ vmwrite(PIN_BASED_VM_EXEC_CONTROL, rdmsr(MSR_IA32_VMX_TRUE_PINBASED_CTLS));
+
+ if (vmx->eptp_gpa) {
+ uint64_t ept_paddr;
+ struct eptPageTablePointer eptp = {
+ .memory_type = VMX_BASIC_MEM_TYPE_WB,
+ .page_walk_length = 3, /* + 1 */
+ .ad_enabled = ept_vpid_cap_supported(VMX_EPT_VPID_CAP_AD_BITS),
+ .address = vmx->eptp_gpa >> PAGE_SHIFT_4K,
+ };
+
+ memcpy(&ept_paddr, &eptp, sizeof(ept_paddr));
+ vmwrite(EPT_POINTER, ept_paddr);
+ sec_exec_ctl |= SECONDARY_EXEC_ENABLE_EPT;
+ }
+
+ if (!vmwrite(SECONDARY_VM_EXEC_CONTROL, sec_exec_ctl))
+ vmwrite(CPU_BASED_VM_EXEC_CONTROL,
+ rdmsr(MSR_IA32_VMX_TRUE_PROCBASED_CTLS) | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS);
+ else {
+ vmwrite(CPU_BASED_VM_EXEC_CONTROL, rdmsr(MSR_IA32_VMX_TRUE_PROCBASED_CTLS));
+ GUEST_ASSERT(!sec_exec_ctl);
+ }
+
+ vmwrite(EXCEPTION_BITMAP, 0);
+ vmwrite(PAGE_FAULT_ERROR_CODE_MASK, 0);
+ vmwrite(PAGE_FAULT_ERROR_CODE_MATCH, -1); /* Never match */
+ vmwrite(CR3_TARGET_COUNT, 0);
+ vmwrite(VM_EXIT_CONTROLS, rdmsr(MSR_IA32_VMX_EXIT_CTLS) |
+ VM_EXIT_HOST_ADDR_SPACE_SIZE); /* 64-bit host */
+ vmwrite(VM_EXIT_MSR_STORE_COUNT, 0);
+ vmwrite(VM_EXIT_MSR_LOAD_COUNT, 0);
+ vmwrite(VM_ENTRY_CONTROLS, rdmsr(MSR_IA32_VMX_ENTRY_CTLS) |
+ VM_ENTRY_IA32E_MODE); /* 64-bit guest */
+ vmwrite(VM_ENTRY_MSR_LOAD_COUNT, 0);
+ vmwrite(VM_ENTRY_INTR_INFO_FIELD, 0);
+ vmwrite(TPR_THRESHOLD, 0);
+
+ vmwrite(CR0_GUEST_HOST_MASK, 0);
+ vmwrite(CR4_GUEST_HOST_MASK, 0);
+ vmwrite(CR0_READ_SHADOW, get_cr0());
+ vmwrite(CR4_READ_SHADOW, get_cr4());
+
+ vmwrite(MSR_BITMAP, vmx->msr_gpa);
+ vmwrite(VMREAD_BITMAP, vmx->vmread_gpa);
+ vmwrite(VMWRITE_BITMAP, vmx->vmwrite_gpa);
+}
+
+/*
+ * Initialize the host state fields based on the current host state, with
+ * the exception of HOST_RSP and HOST_RIP, which should be set by vmlaunch
+ * or vmresume.
+ */
+static inline void init_vmcs_host_state(void)
+{
+ uint32_t exit_controls = vmreadz(VM_EXIT_CONTROLS);
+
+ vmwrite(HOST_ES_SELECTOR, get_es());
+ vmwrite(HOST_CS_SELECTOR, get_cs());
+ vmwrite(HOST_SS_SELECTOR, get_ss());
+ vmwrite(HOST_DS_SELECTOR, get_ds());
+ vmwrite(HOST_FS_SELECTOR, get_fs());
+ vmwrite(HOST_GS_SELECTOR, get_gs());
+ vmwrite(HOST_TR_SELECTOR, get_tr());
+
+ if (exit_controls & VM_EXIT_LOAD_IA32_PAT)
+ vmwrite(HOST_IA32_PAT, rdmsr(MSR_IA32_CR_PAT));
+ if (exit_controls & VM_EXIT_LOAD_IA32_EFER)
+ vmwrite(HOST_IA32_EFER, rdmsr(MSR_EFER));
+ if (exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
+ vmwrite(HOST_IA32_PERF_GLOBAL_CTRL,
+ rdmsr(MSR_CORE_PERF_GLOBAL_CTRL));
+
+ vmwrite(HOST_IA32_SYSENTER_CS, rdmsr(MSR_IA32_SYSENTER_CS));
+
+ vmwrite(HOST_CR0, get_cr0());
+ vmwrite(HOST_CR3, get_cr3());
+ vmwrite(HOST_CR4, get_cr4());
+ vmwrite(HOST_FS_BASE, rdmsr(MSR_FS_BASE));
+ vmwrite(HOST_GS_BASE, rdmsr(MSR_GS_BASE));
+ vmwrite(HOST_TR_BASE,
+ get_desc64_base((struct desc64 *)(get_gdt().address + get_tr())));
+ vmwrite(HOST_GDTR_BASE, get_gdt().address);
+ vmwrite(HOST_IDTR_BASE, get_idt().address);
+ vmwrite(HOST_IA32_SYSENTER_ESP, rdmsr(MSR_IA32_SYSENTER_ESP));
+ vmwrite(HOST_IA32_SYSENTER_EIP, rdmsr(MSR_IA32_SYSENTER_EIP));
+}
+
+/*
+ * Initialize the guest state fields essentially as a clone of
+ * the host state fields. Some host state fields have fixed
+ * values, and we set the corresponding guest state fields accordingly.
+ */
+static inline void init_vmcs_guest_state(void *rip, void *rsp)
+{
+ vmwrite(GUEST_ES_SELECTOR, vmreadz(HOST_ES_SELECTOR));
+ vmwrite(GUEST_CS_SELECTOR, vmreadz(HOST_CS_SELECTOR));
+ vmwrite(GUEST_SS_SELECTOR, vmreadz(HOST_SS_SELECTOR));
+ vmwrite(GUEST_DS_SELECTOR, vmreadz(HOST_DS_SELECTOR));
+ vmwrite(GUEST_FS_SELECTOR, vmreadz(HOST_FS_SELECTOR));
+ vmwrite(GUEST_GS_SELECTOR, vmreadz(HOST_GS_SELECTOR));
+ vmwrite(GUEST_LDTR_SELECTOR, 0);
+ vmwrite(GUEST_TR_SELECTOR, vmreadz(HOST_TR_SELECTOR));
+ vmwrite(GUEST_INTR_STATUS, 0);
+ vmwrite(GUEST_PML_INDEX, 0);
+
+ vmwrite(VMCS_LINK_POINTER, -1ll);
+ vmwrite(GUEST_IA32_DEBUGCTL, 0);
+ vmwrite(GUEST_IA32_PAT, vmreadz(HOST_IA32_PAT));
+ vmwrite(GUEST_IA32_EFER, vmreadz(HOST_IA32_EFER));
+ vmwrite(GUEST_IA32_PERF_GLOBAL_CTRL,
+ vmreadz(HOST_IA32_PERF_GLOBAL_CTRL));
+
+ vmwrite(GUEST_ES_LIMIT, -1);
+ vmwrite(GUEST_CS_LIMIT, -1);
+ vmwrite(GUEST_SS_LIMIT, -1);
+ vmwrite(GUEST_DS_LIMIT, -1);
+ vmwrite(GUEST_FS_LIMIT, -1);
+ vmwrite(GUEST_GS_LIMIT, -1);
+ vmwrite(GUEST_LDTR_LIMIT, -1);
+ vmwrite(GUEST_TR_LIMIT, 0x67);
+ vmwrite(GUEST_GDTR_LIMIT, 0xffff);
+ vmwrite(GUEST_IDTR_LIMIT, 0xffff);
+ vmwrite(GUEST_ES_AR_BYTES,
+ vmreadz(GUEST_ES_SELECTOR) == 0 ? 0x10000 : 0xc093);
+ vmwrite(GUEST_CS_AR_BYTES, 0xa09b);
+ vmwrite(GUEST_SS_AR_BYTES, 0xc093);
+ vmwrite(GUEST_DS_AR_BYTES,
+ vmreadz(GUEST_DS_SELECTOR) == 0 ? 0x10000 : 0xc093);
+ vmwrite(GUEST_FS_AR_BYTES,
+ vmreadz(GUEST_FS_SELECTOR) == 0 ? 0x10000 : 0xc093);
+ vmwrite(GUEST_GS_AR_BYTES,
+ vmreadz(GUEST_GS_SELECTOR) == 0 ? 0x10000 : 0xc093);
+ vmwrite(GUEST_LDTR_AR_BYTES, 0x10000);
+ vmwrite(GUEST_TR_AR_BYTES, 0x8b);
+ vmwrite(GUEST_INTERRUPTIBILITY_INFO, 0);
+ vmwrite(GUEST_ACTIVITY_STATE, 0);
+ vmwrite(GUEST_SYSENTER_CS, vmreadz(HOST_IA32_SYSENTER_CS));
+ vmwrite(VMX_PREEMPTION_TIMER_VALUE, 0);
+
+ vmwrite(GUEST_CR0, vmreadz(HOST_CR0));
+ vmwrite(GUEST_CR3, vmreadz(HOST_CR3));
+ vmwrite(GUEST_CR4, vmreadz(HOST_CR4));
+ vmwrite(GUEST_ES_BASE, 0);
+ vmwrite(GUEST_CS_BASE, 0);
+ vmwrite(GUEST_SS_BASE, 0);
+ vmwrite(GUEST_DS_BASE, 0);
+ vmwrite(GUEST_FS_BASE, vmreadz(HOST_FS_BASE));
+ vmwrite(GUEST_GS_BASE, vmreadz(HOST_GS_BASE));
+ vmwrite(GUEST_LDTR_BASE, 0);
+ vmwrite(GUEST_TR_BASE, vmreadz(HOST_TR_BASE));
+ vmwrite(GUEST_GDTR_BASE, vmreadz(HOST_GDTR_BASE));
+ vmwrite(GUEST_IDTR_BASE, vmreadz(HOST_IDTR_BASE));
+ vmwrite(GUEST_DR7, 0x400);
+ vmwrite(GUEST_RSP, (uint64_t)rsp);
+ vmwrite(GUEST_RIP, (uint64_t)rip);
+ vmwrite(GUEST_RFLAGS, 2);
+ vmwrite(GUEST_PENDING_DBG_EXCEPTIONS, 0);
+ vmwrite(GUEST_SYSENTER_ESP, vmreadz(HOST_IA32_SYSENTER_ESP));
+ vmwrite(GUEST_SYSENTER_EIP, vmreadz(HOST_IA32_SYSENTER_EIP));
+}
+
+void prepare_vmcs(struct vmx_pages *vmx, void *guest_rip, void *guest_rsp)
+{
+ init_vmcs_control_fields(vmx);
+ init_vmcs_host_state();
+ init_vmcs_guest_state(guest_rip, guest_rsp);
+}
+
+static void nested_create_pte(struct kvm_vm *vm,
+ struct eptPageTableEntry *pte,
+ uint64_t nested_paddr,
+ uint64_t paddr,
+ int current_level,
+ int target_level)
+{
+ if (!pte->readable) {
+ pte->writable = true;
+ pte->readable = true;
+ pte->executable = true;
+ pte->page_size = (current_level == target_level);
+ if (pte->page_size)
+ pte->address = paddr >> vm->page_shift;
+ else
+ pte->address = vm_alloc_page_table(vm) >> vm->page_shift;
+ } else {
+ /*
+ * Entry already present. Assert that the caller doesn't want
+ * a hugepage at this level, and that there isn't a hugepage at
+ * this level.
+ */
+ TEST_ASSERT(current_level != target_level,
+ "Cannot create hugepage at level: %u, nested_paddr: 0x%lx\n",
+ current_level, nested_paddr);
+ TEST_ASSERT(!pte->page_size,
+ "Cannot create page table at level: %u, nested_paddr: 0x%lx\n",
+ current_level, nested_paddr);
+ }
+}
+
+
+void __nested_pg_map(struct vmx_pages *vmx, struct kvm_vm *vm,
+ uint64_t nested_paddr, uint64_t paddr, int target_level)
+{
+ const uint64_t page_size = PG_LEVEL_SIZE(target_level);
+ struct eptPageTableEntry *pt = vmx->eptp_hva, *pte;
+ uint16_t index;
+
+ TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use "
+ "unknown or unsupported guest mode, mode: 0x%x", vm->mode);
+
+ TEST_ASSERT((nested_paddr >> 48) == 0,
+ "Nested physical address 0x%lx requires 5-level paging",
+ nested_paddr);
+ TEST_ASSERT((nested_paddr % page_size) == 0,
+ "Nested physical address not on page boundary,\n"
+ " nested_paddr: 0x%lx page_size: 0x%lx",
+ nested_paddr, page_size);
+ TEST_ASSERT((nested_paddr >> vm->page_shift) <= vm->max_gfn,
+ "Physical address beyond beyond maximum supported,\n"
+ " nested_paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x",
+ paddr, vm->max_gfn, vm->page_size);
+ TEST_ASSERT((paddr % page_size) == 0,
+ "Physical address not on page boundary,\n"
+ " paddr: 0x%lx page_size: 0x%lx",
+ paddr, page_size);
+ TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn,
+ "Physical address beyond beyond maximum supported,\n"
+ " paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x",
+ paddr, vm->max_gfn, vm->page_size);
+
+ for (int level = PG_LEVEL_512G; level >= PG_LEVEL_4K; level--) {
+ index = (nested_paddr >> PG_LEVEL_SHIFT(level)) & 0x1ffu;
+ pte = &pt[index];
+
+ nested_create_pte(vm, pte, nested_paddr, paddr, level, target_level);
+
+ if (pte->page_size)
+ break;
+
+ pt = addr_gpa2hva(vm, pte->address * vm->page_size);
+ }
+
+ /*
+ * For now mark these as accessed and dirty because the only
+ * testcase we have needs that. Can be reconsidered later.
+ */
+ pte->accessed = true;
+ pte->dirty = true;
+
+}
+
+void nested_pg_map(struct vmx_pages *vmx, struct kvm_vm *vm,
+ uint64_t nested_paddr, uint64_t paddr)
+{
+ __nested_pg_map(vmx, vm, nested_paddr, paddr, PG_LEVEL_4K);
+}
+
+/*
+ * Map a range of EPT guest physical addresses to the VM's physical address
+ *
+ * Input Args:
+ * vm - Virtual Machine
+ * nested_paddr - Nested guest physical address to map
+ * paddr - VM Physical Address
+ * size - The size of the range to map
+ * level - The level at which to map the range
+ *
+ * Output Args: None
+ *
+ * Return: None
+ *
+ * Within the VM given by vm, creates a nested guest translation for the
+ * page range starting at nested_paddr to the page range starting at paddr.
+ */
+void __nested_map(struct vmx_pages *vmx, struct kvm_vm *vm,
+ uint64_t nested_paddr, uint64_t paddr, uint64_t size,
+ int level)
+{
+ size_t page_size = PG_LEVEL_SIZE(level);
+ size_t npages = size / page_size;
+
+ TEST_ASSERT(nested_paddr + size > nested_paddr, "Vaddr overflow");
+ TEST_ASSERT(paddr + size > paddr, "Paddr overflow");
+
+ while (npages--) {
+ __nested_pg_map(vmx, vm, nested_paddr, paddr, level);
+ nested_paddr += page_size;
+ paddr += page_size;
+ }
+}
+
+void nested_map(struct vmx_pages *vmx, struct kvm_vm *vm,
+ uint64_t nested_paddr, uint64_t paddr, uint64_t size)
+{
+ __nested_map(vmx, vm, nested_paddr, paddr, size, PG_LEVEL_4K);
+}
+
+/* Prepare an identity extended page table that maps all the
+ * physical pages in VM.
+ */
+void nested_map_memslot(struct vmx_pages *vmx, struct kvm_vm *vm,
+ uint32_t memslot)
+{
+ sparsebit_idx_t i, last;
+ struct userspace_mem_region *region =
+ memslot2region(vm, memslot);
+
+ i = (region->region.guest_phys_addr >> vm->page_shift) - 1;
+ last = i + (region->region.memory_size >> vm->page_shift);
+ for (;;) {
+ i = sparsebit_next_clear(region->unused_phy_pages, i);
+ if (i > last)
+ break;
+
+ nested_map(vmx, vm,
+ (uint64_t)i << vm->page_shift,
+ (uint64_t)i << vm->page_shift,
+ 1 << vm->page_shift);
+ }
+}
+
+/* Identity map a region with 1GiB Pages. */
+void nested_identity_map_1g(struct vmx_pages *vmx, struct kvm_vm *vm,
+ uint64_t addr, uint64_t size)
+{
+ __nested_map(vmx, vm, addr, addr, size, PG_LEVEL_1G);
+}
+
+bool kvm_vm_has_ept(struct kvm_vm *vm)
+{
+ struct kvm_vcpu *vcpu;
+ uint64_t ctrl;
+
+ vcpu = list_first_entry(&vm->vcpus, struct kvm_vcpu, list);
+ TEST_ASSERT(vcpu, "Cannot determine EPT support without vCPUs.\n");
+
+ ctrl = vcpu_get_msr(vcpu, MSR_IA32_VMX_TRUE_PROCBASED_CTLS) >> 32;
+ if (!(ctrl & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
+ return false;
+
+ ctrl = vcpu_get_msr(vcpu, MSR_IA32_VMX_PROCBASED_CTLS2) >> 32;
+ return ctrl & SECONDARY_EXEC_ENABLE_EPT;
+}
+
+void prepare_eptp(struct vmx_pages *vmx, struct kvm_vm *vm,
+ uint32_t eptp_memslot)
+{
+ TEST_REQUIRE(kvm_vm_has_ept(vm));
+
+ vmx->eptp = (void *)vm_vaddr_alloc_page(vm);
+ vmx->eptp_hva = addr_gva2hva(vm, (uintptr_t)vmx->eptp);
+ vmx->eptp_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->eptp);
+}
+
+void prepare_virtualize_apic_accesses(struct vmx_pages *vmx, struct kvm_vm *vm)
+{
+ vmx->apic_access = (void *)vm_vaddr_alloc_page(vm);
+ vmx->apic_access_hva = addr_gva2hva(vm, (uintptr_t)vmx->apic_access);
+ vmx->apic_access_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->apic_access);
+}