diff options
Diffstat (limited to 'Documentation/networking/caif/linux_caif.rst')
-rw-r--r-- | Documentation/networking/caif/linux_caif.rst | 195 |
1 files changed, 195 insertions, 0 deletions
diff --git a/Documentation/networking/caif/linux_caif.rst b/Documentation/networking/caif/linux_caif.rst new file mode 100644 index 000000000..a0480862a --- /dev/null +++ b/Documentation/networking/caif/linux_caif.rst @@ -0,0 +1,195 @@ +.. SPDX-License-Identifier: GPL-2.0 +.. include:: <isonum.txt> + +========== +Linux CAIF +========== + +Copyright |copy| ST-Ericsson AB 2010 + +:Author: Sjur Brendeland/ sjur.brandeland@stericsson.com +:License terms: GNU General Public License (GPL) version 2 + + +Introduction +============ + +CAIF is a MUX protocol used by ST-Ericsson cellular modems for +communication between Modem and host. The host processes can open virtual AT +channels, initiate GPRS Data connections, Video channels and Utility Channels. +The Utility Channels are general purpose pipes between modem and host. + +ST-Ericsson modems support a number of transports between modem +and host. Currently, UART and Loopback are available for Linux. + + +Architecture +============ + +The implementation of CAIF is divided into: + +* CAIF Socket Layer and GPRS IP Interface. +* CAIF Core Protocol Implementation +* CAIF Link Layer, implemented as NET devices. + +:: + + RTNL + ! + ! +------+ +------+ + ! +------+! +------+! + ! ! IP !! !Socket!! + +-------> !interf!+ ! API !+ <- CAIF Client APIs + ! +------+ +------! + ! ! ! + ! +-----------+ + ! ! + ! +------+ <- CAIF Core Protocol + ! ! CAIF ! + ! ! Core ! + ! +------+ + ! +----------!---------+ + ! ! ! ! + ! +------+ +-----+ +------+ + +--> ! HSI ! ! TTY ! ! USB ! <- Link Layer (Net Devices) + +------+ +-----+ +------+ + + + +Implementation +============== + + +CAIF Core Protocol Layer +------------------------ + +CAIF Core layer implements the CAIF protocol as defined by ST-Ericsson. +It implements the CAIF protocol stack in a layered approach, where +each layer described in the specification is implemented as a separate layer. +The architecture is inspired by the design patterns "Protocol Layer" and +"Protocol Packet". + +CAIF structure +^^^^^^^^^^^^^^ + +The Core CAIF implementation contains: + + - Simple implementation of CAIF. + - Layered architecture (a la Streams), each layer in the CAIF + specification is implemented in a separate c-file. + - Clients must call configuration function to add PHY layer. + - Clients must implement CAIF layer to consume/produce + CAIF payload with receive and transmit functions. + - Clients must call configuration function to add and connect the + Client layer. + - When receiving / transmitting CAIF Packets (cfpkt), ownership is passed + to the called function (except for framing layers' receive function) + +Layered Architecture +==================== + +The CAIF protocol can be divided into two parts: Support functions and Protocol +Implementation. The support functions include: + + - CFPKT CAIF Packet. Implementation of CAIF Protocol Packet. The + CAIF Packet has functions for creating, destroying and adding content + and for adding/extracting header and trailers to protocol packets. + +The CAIF Protocol implementation contains: + + - CFCNFG CAIF Configuration layer. Configures the CAIF Protocol + Stack and provides a Client interface for adding Link-Layer and + Driver interfaces on top of the CAIF Stack. + + - CFCTRL CAIF Control layer. Encodes and Decodes control messages + such as enumeration and channel setup. Also matches request and + response messages. + + - CFSERVL General CAIF Service Layer functionality; handles flow + control and remote shutdown requests. + + - CFVEI CAIF VEI layer. Handles CAIF AT Channels on VEI (Virtual + External Interface). This layer encodes/decodes VEI frames. + + - CFDGML CAIF Datagram layer. Handles CAIF Datagram layer (IP + traffic), encodes/decodes Datagram frames. + + - CFMUX CAIF Mux layer. Handles multiplexing between multiple + physical bearers and multiple channels such as VEI, Datagram, etc. + The MUX keeps track of the existing CAIF Channels and + Physical Instances and selects the appropriate instance based + on Channel-Id and Physical-ID. + + - CFFRML CAIF Framing layer. Handles Framing i.e. Frame length + and frame checksum. + + - CFSERL CAIF Serial layer. Handles concatenation/split of frames + into CAIF Frames with correct length. + +:: + + +---------+ + | Config | + | CFCNFG | + +---------+ + ! + +---------+ +---------+ +---------+ + | AT | | Control | | Datagram| + | CFVEIL | | CFCTRL | | CFDGML | + +---------+ +---------+ +---------+ + \_____________!______________/ + ! + +---------+ + | MUX | + | | + +---------+ + _____!_____ + / \ + +---------+ +---------+ + | CFFRML | | CFFRML | + | Framing | | Framing | + +---------+ +---------+ + ! ! + +---------+ +---------+ + | | | Serial | + | | | CFSERL | + +---------+ +---------+ + + +In this layered approach the following "rules" apply. + + - All layers embed the same structure "struct cflayer" + - A layer does not depend on any other layer's private data. + - Layers are stacked by setting the pointers:: + + layer->up , layer->dn + + - In order to send data upwards, each layer should do:: + + layer->up->receive(layer->up, packet); + + - In order to send data downwards, each layer should do:: + + layer->dn->transmit(layer->dn, packet); + + +CAIF Socket and IP interface +============================ + +The IP interface and CAIF socket API are implemented on top of the +CAIF Core protocol. The IP Interface and CAIF socket have an instance of +'struct cflayer', just like the CAIF Core protocol stack. +Net device and Socket implement the 'receive()' function defined by +'struct cflayer', just like the rest of the CAIF stack. In this way, transmit and +receive of packets is handled as by the rest of the layers: the 'dn->transmit()' +function is called in order to transmit data. + +Configuration of Link Layer +--------------------------- +The Link Layer is implemented as Linux network devices (struct net_device). +Payload handling and registration is done using standard Linux mechanisms. + +The CAIF Protocol relies on a loss-less link layer without implementing +retransmission. This implies that packet drops must not happen. +Therefore a flow-control mechanism is implemented where the physical +interface can initiate flow stop for all CAIF Channels. |