diff options
Diffstat (limited to '')
-rw-r--r-- | arch/arm/mach-bcm/platsmp.c | 339 |
1 files changed, 339 insertions, 0 deletions
diff --git a/arch/arm/mach-bcm/platsmp.c b/arch/arm/mach-bcm/platsmp.c new file mode 100644 index 000000000..c9db2a900 --- /dev/null +++ b/arch/arm/mach-bcm/platsmp.c @@ -0,0 +1,339 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright (C) 2014-2015 Broadcom Corporation + * Copyright 2014 Linaro Limited + */ + +#include <linux/cpumask.h> +#include <linux/delay.h> +#include <linux/errno.h> +#include <linux/init.h> +#include <linux/io.h> +#include <linux/irqchip/irq-bcm2836.h> +#include <linux/jiffies.h> +#include <linux/of.h> +#include <linux/of_address.h> +#include <linux/sched.h> +#include <linux/sched/clock.h> +#include <linux/smp.h> + +#include <asm/cacheflush.h> +#include <asm/smp.h> +#include <asm/smp_plat.h> +#include <asm/smp_scu.h> + +#include "platsmp.h" + +/* Size of mapped Cortex A9 SCU address space */ +#define CORTEX_A9_SCU_SIZE 0x58 + +#define SECONDARY_TIMEOUT_NS NSEC_PER_MSEC /* 1 msec (in nanoseconds) */ +#define BOOT_ADDR_CPUID_MASK 0x3 + +/* Name of device node property defining secondary boot register location */ +#define OF_SECONDARY_BOOT "secondary-boot-reg" +#define MPIDR_CPUID_BITMASK 0x3 + +/* + * Enable the Cortex A9 Snoop Control Unit + * + * By the time this is called we already know there are multiple + * cores present. We assume we're running on a Cortex A9 processor, + * so any trouble getting the base address register or getting the + * SCU base is a problem. + * + * Return 0 if successful or an error code otherwise. + */ +static int __init scu_a9_enable(void) +{ + unsigned long config_base; + void __iomem *scu_base; + + if (!scu_a9_has_base()) { + pr_err("no configuration base address register!\n"); + return -ENXIO; + } + + /* Config base address register value is zero for uniprocessor */ + config_base = scu_a9_get_base(); + if (!config_base) { + pr_err("hardware reports only one core\n"); + return -ENOENT; + } + + scu_base = ioremap((phys_addr_t)config_base, CORTEX_A9_SCU_SIZE); + if (!scu_base) { + pr_err("failed to remap config base (%lu/%u) for SCU\n", + config_base, CORTEX_A9_SCU_SIZE); + return -ENOMEM; + } + + scu_enable(scu_base); + + iounmap(scu_base); /* That's the last we'll need of this */ + + return 0; +} + +static u32 secondary_boot_addr_for(unsigned int cpu) +{ + u32 secondary_boot_addr = 0; + struct device_node *cpu_node = of_get_cpu_node(cpu, NULL); + + if (!cpu_node) { + pr_err("Failed to find device tree node for CPU%u\n", cpu); + return 0; + } + + if (of_property_read_u32(cpu_node, + OF_SECONDARY_BOOT, + &secondary_boot_addr)) + pr_err("required secondary boot register not specified for CPU%u\n", + cpu); + + of_node_put(cpu_node); + + return secondary_boot_addr; +} + +static int nsp_write_lut(unsigned int cpu) +{ + void __iomem *sku_rom_lut; + phys_addr_t secondary_startup_phy; + const u32 secondary_boot_addr = secondary_boot_addr_for(cpu); + + if (!secondary_boot_addr) + return -EINVAL; + + sku_rom_lut = ioremap((phys_addr_t)secondary_boot_addr, + sizeof(phys_addr_t)); + if (!sku_rom_lut) { + pr_warn("unable to ioremap SKU-ROM LUT register for cpu %u\n", cpu); + return -ENOMEM; + } + + secondary_startup_phy = __pa_symbol(secondary_startup); + BUG_ON(secondary_startup_phy > (phys_addr_t)U32_MAX); + + writel_relaxed(secondary_startup_phy, sku_rom_lut); + + /* Ensure the write is visible to the secondary core */ + smp_wmb(); + + iounmap(sku_rom_lut); + + return 0; +} + +static void __init bcm_smp_prepare_cpus(unsigned int max_cpus) +{ + const cpumask_t only_cpu_0 = { CPU_BITS_CPU0 }; + + /* Enable the SCU on Cortex A9 based SoCs */ + if (scu_a9_enable()) { + /* Update the CPU present map to reflect uniprocessor mode */ + pr_warn("failed to enable A9 SCU - disabling SMP\n"); + init_cpu_present(&only_cpu_0); + } +} + +/* + * The ROM code has the secondary cores looping, waiting for an event. + * When an event occurs each core examines the bottom two bits of the + * secondary boot register. When a core finds those bits contain its + * own core id, it performs initialization, including computing its boot + * address by clearing the boot register value's bottom two bits. The + * core signals that it is beginning its execution by writing its boot + * address back to the secondary boot register, and finally jumps to + * that address. + * + * So to start a core executing we need to: + * - Encode the (hardware) CPU id with the bottom bits of the secondary + * start address. + * - Write that value into the secondary boot register. + * - Generate an event to wake up the secondary CPU(s). + * - Wait for the secondary boot register to be re-written, which + * indicates the secondary core has started. + */ +static int kona_boot_secondary(unsigned int cpu, struct task_struct *idle) +{ + void __iomem *boot_reg; + phys_addr_t boot_func; + u64 start_clock; + u32 cpu_id; + u32 boot_val; + bool timeout = false; + const u32 secondary_boot_addr = secondary_boot_addr_for(cpu); + + cpu_id = cpu_logical_map(cpu); + if (cpu_id & ~BOOT_ADDR_CPUID_MASK) { + pr_err("bad cpu id (%u > %u)\n", cpu_id, BOOT_ADDR_CPUID_MASK); + return -EINVAL; + } + + if (!secondary_boot_addr) + return -EINVAL; + + boot_reg = ioremap((phys_addr_t)secondary_boot_addr, + sizeof(phys_addr_t)); + if (!boot_reg) { + pr_err("unable to map boot register for cpu %u\n", cpu_id); + return -ENOMEM; + } + + /* + * Secondary cores will start in secondary_startup(), + * defined in "arch/arm/kernel/head.S" + */ + boot_func = __pa_symbol(secondary_startup); + BUG_ON(boot_func & BOOT_ADDR_CPUID_MASK); + BUG_ON(boot_func > (phys_addr_t)U32_MAX); + + /* The core to start is encoded in the low bits */ + boot_val = (u32)boot_func | cpu_id; + writel_relaxed(boot_val, boot_reg); + + sev(); + + /* The low bits will be cleared once the core has started */ + start_clock = local_clock(); + while (!timeout && readl_relaxed(boot_reg) == boot_val) + timeout = local_clock() - start_clock > SECONDARY_TIMEOUT_NS; + + iounmap(boot_reg); + + if (!timeout) + return 0; + + pr_err("timeout waiting for cpu %u to start\n", cpu_id); + + return -ENXIO; +} + +/* Cluster Dormant Control command to bring CPU into a running state */ +#define CDC_CMD 6 +#define CDC_CMD_OFFSET 0 +#define CDC_CMD_REG(cpu) (CDC_CMD_OFFSET + 4*(cpu)) + +/* + * BCM23550 has a Cluster Dormant Control block that keeps the core in + * idle state. A command needs to be sent to the block to bring the CPU + * into running state. + */ +static int bcm23550_boot_secondary(unsigned int cpu, struct task_struct *idle) +{ + void __iomem *cdc_base; + struct device_node *dn; + char *name; + int ret; + + /* Make sure a CDC node exists before booting the + * secondary core. + */ + name = "brcm,bcm23550-cdc"; + dn = of_find_compatible_node(NULL, NULL, name); + if (!dn) { + pr_err("unable to find cdc node\n"); + return -ENODEV; + } + + cdc_base = of_iomap(dn, 0); + of_node_put(dn); + + if (!cdc_base) { + pr_err("unable to remap cdc base register\n"); + return -ENOMEM; + } + + /* Boot the secondary core */ + ret = kona_boot_secondary(cpu, idle); + if (ret) + goto out; + + /* Bring this CPU to RUN state so that nIRQ nFIQ + * signals are unblocked. + */ + writel_relaxed(CDC_CMD, cdc_base + CDC_CMD_REG(cpu)); + +out: + iounmap(cdc_base); + + return ret; +} + +static int nsp_boot_secondary(unsigned int cpu, struct task_struct *idle) +{ + int ret; + + /* + * After wake up, secondary core branches to the startup + * address programmed at SKU ROM LUT location. + */ + ret = nsp_write_lut(cpu); + if (ret) { + pr_err("unable to write startup addr to SKU ROM LUT\n"); + goto out; + } + + /* Send a CPU wakeup interrupt to the secondary core */ + arch_send_wakeup_ipi_mask(cpumask_of(cpu)); + +out: + return ret; +} + +static int bcm2836_boot_secondary(unsigned int cpu, struct task_struct *idle) +{ + void __iomem *intc_base; + struct device_node *dn; + char *name; + + name = "brcm,bcm2836-l1-intc"; + dn = of_find_compatible_node(NULL, NULL, name); + if (!dn) { + pr_err("unable to find intc node\n"); + return -ENODEV; + } + + intc_base = of_iomap(dn, 0); + of_node_put(dn); + + if (!intc_base) { + pr_err("unable to remap intc base register\n"); + return -ENOMEM; + } + + writel(virt_to_phys(secondary_startup), + intc_base + LOCAL_MAILBOX3_SET0 + 16 * cpu); + + dsb(sy); + sev(); + + iounmap(intc_base); + + return 0; +} + +static const struct smp_operations kona_smp_ops __initconst = { + .smp_prepare_cpus = bcm_smp_prepare_cpus, + .smp_boot_secondary = kona_boot_secondary, +}; +CPU_METHOD_OF_DECLARE(bcm_smp_bcm281xx, "brcm,bcm11351-cpu-method", + &kona_smp_ops); + +static const struct smp_operations bcm23550_smp_ops __initconst = { + .smp_boot_secondary = bcm23550_boot_secondary, +}; +CPU_METHOD_OF_DECLARE(bcm_smp_bcm23550, "brcm,bcm23550", + &bcm23550_smp_ops); + +static const struct smp_operations nsp_smp_ops __initconst = { + .smp_prepare_cpus = bcm_smp_prepare_cpus, + .smp_boot_secondary = nsp_boot_secondary, +}; +CPU_METHOD_OF_DECLARE(bcm_smp_nsp, "brcm,bcm-nsp-smp", &nsp_smp_ops); + +const struct smp_operations bcm2836_smp_ops __initconst = { + .smp_boot_secondary = bcm2836_boot_secondary, +}; +CPU_METHOD_OF_DECLARE(bcm_smp_bcm2836, "brcm,bcm2836-smp", &bcm2836_smp_ops); |