diff options
Diffstat (limited to '')
-rw-r--r-- | arch/arm/mm/mmu.c | 1812 |
1 files changed, 1812 insertions, 0 deletions
diff --git a/arch/arm/mm/mmu.c b/arch/arm/mm/mmu.c new file mode 100644 index 000000000..463fc2a84 --- /dev/null +++ b/arch/arm/mm/mmu.c @@ -0,0 +1,1812 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * linux/arch/arm/mm/mmu.c + * + * Copyright (C) 1995-2005 Russell King + */ +#include <linux/module.h> +#include <linux/kernel.h> +#include <linux/errno.h> +#include <linux/init.h> +#include <linux/mman.h> +#include <linux/nodemask.h> +#include <linux/memblock.h> +#include <linux/fs.h> +#include <linux/vmalloc.h> +#include <linux/sizes.h> + +#include <asm/cp15.h> +#include <asm/cputype.h> +#include <asm/cachetype.h> +#include <asm/sections.h> +#include <asm/setup.h> +#include <asm/smp_plat.h> +#include <asm/tlb.h> +#include <asm/highmem.h> +#include <asm/system_info.h> +#include <asm/traps.h> +#include <asm/procinfo.h> +#include <asm/memory.h> +#include <asm/pgalloc.h> +#include <asm/kasan_def.h> + +#include <asm/mach/arch.h> +#include <asm/mach/map.h> +#include <asm/mach/pci.h> +#include <asm/fixmap.h> + +#include "fault.h" +#include "mm.h" +#include "tcm.h" + +extern unsigned long __atags_pointer; + +/* + * empty_zero_page is a special page that is used for + * zero-initialized data and COW. + */ +struct page *empty_zero_page; +EXPORT_SYMBOL(empty_zero_page); + +/* + * The pmd table for the upper-most set of pages. + */ +pmd_t *top_pmd; + +pmdval_t user_pmd_table = _PAGE_USER_TABLE; + +#define CPOLICY_UNCACHED 0 +#define CPOLICY_BUFFERED 1 +#define CPOLICY_WRITETHROUGH 2 +#define CPOLICY_WRITEBACK 3 +#define CPOLICY_WRITEALLOC 4 + +static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK; +static unsigned int ecc_mask __initdata = 0; +pgprot_t pgprot_user; +pgprot_t pgprot_kernel; + +EXPORT_SYMBOL(pgprot_user); +EXPORT_SYMBOL(pgprot_kernel); + +struct cachepolicy { + const char policy[16]; + unsigned int cr_mask; + pmdval_t pmd; + pteval_t pte; +}; + +static struct cachepolicy cache_policies[] __initdata = { + { + .policy = "uncached", + .cr_mask = CR_W|CR_C, + .pmd = PMD_SECT_UNCACHED, + .pte = L_PTE_MT_UNCACHED, + }, { + .policy = "buffered", + .cr_mask = CR_C, + .pmd = PMD_SECT_BUFFERED, + .pte = L_PTE_MT_BUFFERABLE, + }, { + .policy = "writethrough", + .cr_mask = 0, + .pmd = PMD_SECT_WT, + .pte = L_PTE_MT_WRITETHROUGH, + }, { + .policy = "writeback", + .cr_mask = 0, + .pmd = PMD_SECT_WB, + .pte = L_PTE_MT_WRITEBACK, + }, { + .policy = "writealloc", + .cr_mask = 0, + .pmd = PMD_SECT_WBWA, + .pte = L_PTE_MT_WRITEALLOC, + } +}; + +#ifdef CONFIG_CPU_CP15 +static unsigned long initial_pmd_value __initdata = 0; + +/* + * Initialise the cache_policy variable with the initial state specified + * via the "pmd" value. This is used to ensure that on ARMv6 and later, + * the C code sets the page tables up with the same policy as the head + * assembly code, which avoids an illegal state where the TLBs can get + * confused. See comments in early_cachepolicy() for more information. + */ +void __init init_default_cache_policy(unsigned long pmd) +{ + int i; + + initial_pmd_value = pmd; + + pmd &= PMD_SECT_CACHE_MASK; + + for (i = 0; i < ARRAY_SIZE(cache_policies); i++) + if (cache_policies[i].pmd == pmd) { + cachepolicy = i; + break; + } + + if (i == ARRAY_SIZE(cache_policies)) + pr_err("ERROR: could not find cache policy\n"); +} + +/* + * These are useful for identifying cache coherency problems by allowing + * the cache or the cache and writebuffer to be turned off. (Note: the + * write buffer should not be on and the cache off). + */ +static int __init early_cachepolicy(char *p) +{ + int i, selected = -1; + + for (i = 0; i < ARRAY_SIZE(cache_policies); i++) { + int len = strlen(cache_policies[i].policy); + + if (memcmp(p, cache_policies[i].policy, len) == 0) { + selected = i; + break; + } + } + + if (selected == -1) + pr_err("ERROR: unknown or unsupported cache policy\n"); + + /* + * This restriction is partly to do with the way we boot; it is + * unpredictable to have memory mapped using two different sets of + * memory attributes (shared, type, and cache attribs). We can not + * change these attributes once the initial assembly has setup the + * page tables. + */ + if (cpu_architecture() >= CPU_ARCH_ARMv6 && selected != cachepolicy) { + pr_warn("Only cachepolicy=%s supported on ARMv6 and later\n", + cache_policies[cachepolicy].policy); + return 0; + } + + if (selected != cachepolicy) { + unsigned long cr = __clear_cr(cache_policies[selected].cr_mask); + cachepolicy = selected; + flush_cache_all(); + set_cr(cr); + } + return 0; +} +early_param("cachepolicy", early_cachepolicy); + +static int __init early_nocache(char *__unused) +{ + char *p = "buffered"; + pr_warn("nocache is deprecated; use cachepolicy=%s\n", p); + early_cachepolicy(p); + return 0; +} +early_param("nocache", early_nocache); + +static int __init early_nowrite(char *__unused) +{ + char *p = "uncached"; + pr_warn("nowb is deprecated; use cachepolicy=%s\n", p); + early_cachepolicy(p); + return 0; +} +early_param("nowb", early_nowrite); + +#ifndef CONFIG_ARM_LPAE +static int __init early_ecc(char *p) +{ + if (memcmp(p, "on", 2) == 0) + ecc_mask = PMD_PROTECTION; + else if (memcmp(p, "off", 3) == 0) + ecc_mask = 0; + return 0; +} +early_param("ecc", early_ecc); +#endif + +#else /* ifdef CONFIG_CPU_CP15 */ + +static int __init early_cachepolicy(char *p) +{ + pr_warn("cachepolicy kernel parameter not supported without cp15\n"); + return 0; +} +early_param("cachepolicy", early_cachepolicy); + +static int __init noalign_setup(char *__unused) +{ + pr_warn("noalign kernel parameter not supported without cp15\n"); + return 1; +} +__setup("noalign", noalign_setup); + +#endif /* ifdef CONFIG_CPU_CP15 / else */ + +#define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN +#define PROT_PTE_S2_DEVICE PROT_PTE_DEVICE +#define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE + +static struct mem_type mem_types[] __ro_after_init = { + [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */ + .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED | + L_PTE_SHARED, + .prot_l1 = PMD_TYPE_TABLE, + .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S, + .domain = DOMAIN_IO, + }, + [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */ + .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED, + .prot_l1 = PMD_TYPE_TABLE, + .prot_sect = PROT_SECT_DEVICE, + .domain = DOMAIN_IO, + }, + [MT_DEVICE_CACHED] = { /* ioremap_cache */ + .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED, + .prot_l1 = PMD_TYPE_TABLE, + .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB, + .domain = DOMAIN_IO, + }, + [MT_DEVICE_WC] = { /* ioremap_wc */ + .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC, + .prot_l1 = PMD_TYPE_TABLE, + .prot_sect = PROT_SECT_DEVICE, + .domain = DOMAIN_IO, + }, + [MT_UNCACHED] = { + .prot_pte = PROT_PTE_DEVICE, + .prot_l1 = PMD_TYPE_TABLE, + .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN, + .domain = DOMAIN_IO, + }, + [MT_CACHECLEAN] = { + .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN, + .domain = DOMAIN_KERNEL, + }, +#ifndef CONFIG_ARM_LPAE + [MT_MINICLEAN] = { + .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE, + .domain = DOMAIN_KERNEL, + }, +#endif + [MT_LOW_VECTORS] = { + .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | + L_PTE_RDONLY, + .prot_l1 = PMD_TYPE_TABLE, + .domain = DOMAIN_VECTORS, + }, + [MT_HIGH_VECTORS] = { + .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | + L_PTE_USER | L_PTE_RDONLY, + .prot_l1 = PMD_TYPE_TABLE, + .domain = DOMAIN_VECTORS, + }, + [MT_MEMORY_RWX] = { + .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY, + .prot_l1 = PMD_TYPE_TABLE, + .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE, + .domain = DOMAIN_KERNEL, + }, + [MT_MEMORY_RW] = { + .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | + L_PTE_XN, + .prot_l1 = PMD_TYPE_TABLE, + .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE, + .domain = DOMAIN_KERNEL, + }, + [MT_MEMORY_RO] = { + .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | + L_PTE_XN | L_PTE_RDONLY, + .prot_l1 = PMD_TYPE_TABLE, +#ifdef CONFIG_ARM_LPAE + .prot_sect = PMD_TYPE_SECT | L_PMD_SECT_RDONLY | PMD_SECT_AP2, +#else + .prot_sect = PMD_TYPE_SECT, +#endif + .domain = DOMAIN_KERNEL, + }, + [MT_ROM] = { + .prot_sect = PMD_TYPE_SECT, + .domain = DOMAIN_KERNEL, + }, + [MT_MEMORY_RWX_NONCACHED] = { + .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | + L_PTE_MT_BUFFERABLE, + .prot_l1 = PMD_TYPE_TABLE, + .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE, + .domain = DOMAIN_KERNEL, + }, + [MT_MEMORY_RW_DTCM] = { + .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | + L_PTE_XN, + .prot_l1 = PMD_TYPE_TABLE, + .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN, + .domain = DOMAIN_KERNEL, + }, + [MT_MEMORY_RWX_ITCM] = { + .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY, + .prot_l1 = PMD_TYPE_TABLE, + .domain = DOMAIN_KERNEL, + }, + [MT_MEMORY_RW_SO] = { + .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | + L_PTE_MT_UNCACHED | L_PTE_XN, + .prot_l1 = PMD_TYPE_TABLE, + .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S | + PMD_SECT_UNCACHED | PMD_SECT_XN, + .domain = DOMAIN_KERNEL, + }, + [MT_MEMORY_DMA_READY] = { + .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | + L_PTE_XN, + .prot_l1 = PMD_TYPE_TABLE, + .domain = DOMAIN_KERNEL, + }, +}; + +const struct mem_type *get_mem_type(unsigned int type) +{ + return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL; +} +EXPORT_SYMBOL(get_mem_type); + +static pte_t *(*pte_offset_fixmap)(pmd_t *dir, unsigned long addr); + +static pte_t bm_pte[PTRS_PER_PTE + PTE_HWTABLE_PTRS] + __aligned(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE) __initdata; + +static pte_t * __init pte_offset_early_fixmap(pmd_t *dir, unsigned long addr) +{ + return &bm_pte[pte_index(addr)]; +} + +static pte_t *pte_offset_late_fixmap(pmd_t *dir, unsigned long addr) +{ + return pte_offset_kernel(dir, addr); +} + +static inline pmd_t * __init fixmap_pmd(unsigned long addr) +{ + return pmd_off_k(addr); +} + +void __init early_fixmap_init(void) +{ + pmd_t *pmd; + + /* + * The early fixmap range spans multiple pmds, for which + * we are not prepared: + */ + BUILD_BUG_ON((__fix_to_virt(__end_of_early_ioremap_region) >> PMD_SHIFT) + != FIXADDR_TOP >> PMD_SHIFT); + + pmd = fixmap_pmd(FIXADDR_TOP); + pmd_populate_kernel(&init_mm, pmd, bm_pte); + + pte_offset_fixmap = pte_offset_early_fixmap; +} + +/* + * To avoid TLB flush broadcasts, this uses local_flush_tlb_kernel_range(). + * As a result, this can only be called with preemption disabled, as under + * stop_machine(). + */ +void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot) +{ + unsigned long vaddr = __fix_to_virt(idx); + pte_t *pte = pte_offset_fixmap(pmd_off_k(vaddr), vaddr); + + /* Make sure fixmap region does not exceed available allocation. */ + BUILD_BUG_ON(__fix_to_virt(__end_of_fixed_addresses) < FIXADDR_START); + BUG_ON(idx >= __end_of_fixed_addresses); + + /* We support only device mappings before pgprot_kernel is set. */ + if (WARN_ON(pgprot_val(prot) != pgprot_val(FIXMAP_PAGE_IO) && + pgprot_val(prot) && pgprot_val(pgprot_kernel) == 0)) + return; + + if (pgprot_val(prot)) + set_pte_at(NULL, vaddr, pte, + pfn_pte(phys >> PAGE_SHIFT, prot)); + else + pte_clear(NULL, vaddr, pte); + local_flush_tlb_kernel_range(vaddr, vaddr + PAGE_SIZE); +} + +static pgprot_t protection_map[16] __ro_after_init = { + [VM_NONE] = __PAGE_NONE, + [VM_READ] = __PAGE_READONLY, + [VM_WRITE] = __PAGE_COPY, + [VM_WRITE | VM_READ] = __PAGE_COPY, + [VM_EXEC] = __PAGE_READONLY_EXEC, + [VM_EXEC | VM_READ] = __PAGE_READONLY_EXEC, + [VM_EXEC | VM_WRITE] = __PAGE_COPY_EXEC, + [VM_EXEC | VM_WRITE | VM_READ] = __PAGE_COPY_EXEC, + [VM_SHARED] = __PAGE_NONE, + [VM_SHARED | VM_READ] = __PAGE_READONLY, + [VM_SHARED | VM_WRITE] = __PAGE_SHARED, + [VM_SHARED | VM_WRITE | VM_READ] = __PAGE_SHARED, + [VM_SHARED | VM_EXEC] = __PAGE_READONLY_EXEC, + [VM_SHARED | VM_EXEC | VM_READ] = __PAGE_READONLY_EXEC, + [VM_SHARED | VM_EXEC | VM_WRITE] = __PAGE_SHARED_EXEC, + [VM_SHARED | VM_EXEC | VM_WRITE | VM_READ] = __PAGE_SHARED_EXEC +}; +DECLARE_VM_GET_PAGE_PROT + +/* + * Adjust the PMD section entries according to the CPU in use. + */ +static void __init build_mem_type_table(void) +{ + struct cachepolicy *cp; + unsigned int cr = get_cr(); + pteval_t user_pgprot, kern_pgprot, vecs_pgprot; + int cpu_arch = cpu_architecture(); + int i; + + if (cpu_arch < CPU_ARCH_ARMv6) { +#if defined(CONFIG_CPU_DCACHE_DISABLE) + if (cachepolicy > CPOLICY_BUFFERED) + cachepolicy = CPOLICY_BUFFERED; +#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH) + if (cachepolicy > CPOLICY_WRITETHROUGH) + cachepolicy = CPOLICY_WRITETHROUGH; +#endif + } + if (cpu_arch < CPU_ARCH_ARMv5) { + if (cachepolicy >= CPOLICY_WRITEALLOC) + cachepolicy = CPOLICY_WRITEBACK; + ecc_mask = 0; + } + + if (is_smp()) { + if (cachepolicy != CPOLICY_WRITEALLOC) { + pr_warn("Forcing write-allocate cache policy for SMP\n"); + cachepolicy = CPOLICY_WRITEALLOC; + } + if (!(initial_pmd_value & PMD_SECT_S)) { + pr_warn("Forcing shared mappings for SMP\n"); + initial_pmd_value |= PMD_SECT_S; + } + } + + /* + * Strip out features not present on earlier architectures. + * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those + * without extended page tables don't have the 'Shared' bit. + */ + if (cpu_arch < CPU_ARCH_ARMv5) + for (i = 0; i < ARRAY_SIZE(mem_types); i++) + mem_types[i].prot_sect &= ~PMD_SECT_TEX(7); + if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3()) + for (i = 0; i < ARRAY_SIZE(mem_types); i++) + mem_types[i].prot_sect &= ~PMD_SECT_S; + + /* + * ARMv5 and lower, bit 4 must be set for page tables (was: cache + * "update-able on write" bit on ARM610). However, Xscale and + * Xscale3 require this bit to be cleared. + */ + if (cpu_is_xscale_family()) { + for (i = 0; i < ARRAY_SIZE(mem_types); i++) { + mem_types[i].prot_sect &= ~PMD_BIT4; + mem_types[i].prot_l1 &= ~PMD_BIT4; + } + } else if (cpu_arch < CPU_ARCH_ARMv6) { + for (i = 0; i < ARRAY_SIZE(mem_types); i++) { + if (mem_types[i].prot_l1) + mem_types[i].prot_l1 |= PMD_BIT4; + if (mem_types[i].prot_sect) + mem_types[i].prot_sect |= PMD_BIT4; + } + } + + /* + * Mark the device areas according to the CPU/architecture. + */ + if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) { + if (!cpu_is_xsc3()) { + /* + * Mark device regions on ARMv6+ as execute-never + * to prevent speculative instruction fetches. + */ + mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN; + mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN; + mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN; + mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN; + + /* Also setup NX memory mapping */ + mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN; + mem_types[MT_MEMORY_RO].prot_sect |= PMD_SECT_XN; + } + if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) { + /* + * For ARMv7 with TEX remapping, + * - shared device is SXCB=1100 + * - nonshared device is SXCB=0100 + * - write combine device mem is SXCB=0001 + * (Uncached Normal memory) + */ + mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1); + mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1); + mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE; + } else if (cpu_is_xsc3()) { + /* + * For Xscale3, + * - shared device is TEXCB=00101 + * - nonshared device is TEXCB=01000 + * - write combine device mem is TEXCB=00100 + * (Inner/Outer Uncacheable in xsc3 parlance) + */ + mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED; + mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2); + mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1); + } else { + /* + * For ARMv6 and ARMv7 without TEX remapping, + * - shared device is TEXCB=00001 + * - nonshared device is TEXCB=01000 + * - write combine device mem is TEXCB=00100 + * (Uncached Normal in ARMv6 parlance). + */ + mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED; + mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2); + mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1); + } + } else { + /* + * On others, write combining is "Uncached/Buffered" + */ + mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE; + } + + /* + * Now deal with the memory-type mappings + */ + cp = &cache_policies[cachepolicy]; + vecs_pgprot = kern_pgprot = user_pgprot = cp->pte; + +#ifndef CONFIG_ARM_LPAE + /* + * We don't use domains on ARMv6 (since this causes problems with + * v6/v7 kernels), so we must use a separate memory type for user + * r/o, kernel r/w to map the vectors page. + */ + if (cpu_arch == CPU_ARCH_ARMv6) + vecs_pgprot |= L_PTE_MT_VECTORS; + + /* + * Check is it with support for the PXN bit + * in the Short-descriptor translation table format descriptors. + */ + if (cpu_arch == CPU_ARCH_ARMv7 && + (read_cpuid_ext(CPUID_EXT_MMFR0) & 0xF) >= 4) { + user_pmd_table |= PMD_PXNTABLE; + } +#endif + + /* + * ARMv6 and above have extended page tables. + */ + if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) { +#ifndef CONFIG_ARM_LPAE + /* + * Mark cache clean areas and XIP ROM read only + * from SVC mode and no access from userspace. + */ + mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE; + mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE; + mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE; + mem_types[MT_MEMORY_RO].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE; +#endif + + /* + * If the initial page tables were created with the S bit + * set, then we need to do the same here for the same + * reasons given in early_cachepolicy(). + */ + if (initial_pmd_value & PMD_SECT_S) { + user_pgprot |= L_PTE_SHARED; + kern_pgprot |= L_PTE_SHARED; + vecs_pgprot |= L_PTE_SHARED; + mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S; + mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED; + mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S; + mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED; + mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S; + mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED; + mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S; + mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED; + mem_types[MT_MEMORY_RO].prot_sect |= PMD_SECT_S; + mem_types[MT_MEMORY_RO].prot_pte |= L_PTE_SHARED; + mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED; + mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S; + mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED; + } + } + + /* + * Non-cacheable Normal - intended for memory areas that must + * not cause dirty cache line writebacks when used + */ + if (cpu_arch >= CPU_ARCH_ARMv6) { + if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) { + /* Non-cacheable Normal is XCB = 001 */ + mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= + PMD_SECT_BUFFERED; + } else { + /* For both ARMv6 and non-TEX-remapping ARMv7 */ + mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= + PMD_SECT_TEX(1); + } + } else { + mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE; + } + +#ifdef CONFIG_ARM_LPAE + /* + * Do not generate access flag faults for the kernel mappings. + */ + for (i = 0; i < ARRAY_SIZE(mem_types); i++) { + mem_types[i].prot_pte |= PTE_EXT_AF; + if (mem_types[i].prot_sect) + mem_types[i].prot_sect |= PMD_SECT_AF; + } + kern_pgprot |= PTE_EXT_AF; + vecs_pgprot |= PTE_EXT_AF; + + /* + * Set PXN for user mappings + */ + user_pgprot |= PTE_EXT_PXN; +#endif + + for (i = 0; i < 16; i++) { + pteval_t v = pgprot_val(protection_map[i]); + protection_map[i] = __pgprot(v | user_pgprot); + } + + mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot; + mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot; + + pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot); + pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | + L_PTE_DIRTY | kern_pgprot); + + mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask; + mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask; + mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd; + mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot; + mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd; + mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot; + mem_types[MT_MEMORY_RO].prot_sect |= ecc_mask | cp->pmd; + mem_types[MT_MEMORY_RO].prot_pte |= kern_pgprot; + mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot; + mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask; + mem_types[MT_ROM].prot_sect |= cp->pmd; + + switch (cp->pmd) { + case PMD_SECT_WT: + mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT; + break; + case PMD_SECT_WB: + case PMD_SECT_WBWA: + mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB; + break; + } + pr_info("Memory policy: %sData cache %s\n", + ecc_mask ? "ECC enabled, " : "", cp->policy); + + for (i = 0; i < ARRAY_SIZE(mem_types); i++) { + struct mem_type *t = &mem_types[i]; + if (t->prot_l1) + t->prot_l1 |= PMD_DOMAIN(t->domain); + if (t->prot_sect) + t->prot_sect |= PMD_DOMAIN(t->domain); + } +} + +#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE +pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, + unsigned long size, pgprot_t vma_prot) +{ + if (!pfn_valid(pfn)) + return pgprot_noncached(vma_prot); + else if (file->f_flags & O_SYNC) + return pgprot_writecombine(vma_prot); + return vma_prot; +} +EXPORT_SYMBOL(phys_mem_access_prot); +#endif + +#define vectors_base() (vectors_high() ? 0xffff0000 : 0) + +static void __init *early_alloc(unsigned long sz) +{ + void *ptr = memblock_alloc(sz, sz); + + if (!ptr) + panic("%s: Failed to allocate %lu bytes align=0x%lx\n", + __func__, sz, sz); + + return ptr; +} + +static void *__init late_alloc(unsigned long sz) +{ + void *ptr = (void *)__get_free_pages(GFP_PGTABLE_KERNEL, get_order(sz)); + + if (!ptr || !pgtable_pte_page_ctor(virt_to_page(ptr))) + BUG(); + return ptr; +} + +static pte_t * __init arm_pte_alloc(pmd_t *pmd, unsigned long addr, + unsigned long prot, + void *(*alloc)(unsigned long sz)) +{ + if (pmd_none(*pmd)) { + pte_t *pte = alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE); + __pmd_populate(pmd, __pa(pte), prot); + } + BUG_ON(pmd_bad(*pmd)); + return pte_offset_kernel(pmd, addr); +} + +static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, + unsigned long prot) +{ + return arm_pte_alloc(pmd, addr, prot, early_alloc); +} + +static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr, + unsigned long end, unsigned long pfn, + const struct mem_type *type, + void *(*alloc)(unsigned long sz), + bool ng) +{ + pte_t *pte = arm_pte_alloc(pmd, addr, type->prot_l1, alloc); + do { + set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), + ng ? PTE_EXT_NG : 0); + pfn++; + } while (pte++, addr += PAGE_SIZE, addr != end); +} + +static void __init __map_init_section(pmd_t *pmd, unsigned long addr, + unsigned long end, phys_addr_t phys, + const struct mem_type *type, bool ng) +{ + pmd_t *p = pmd; + +#ifndef CONFIG_ARM_LPAE + /* + * In classic MMU format, puds and pmds are folded in to + * the pgds. pmd_offset gives the PGD entry. PGDs refer to a + * group of L1 entries making up one logical pointer to + * an L2 table (2MB), where as PMDs refer to the individual + * L1 entries (1MB). Hence increment to get the correct + * offset for odd 1MB sections. + * (See arch/arm/include/asm/pgtable-2level.h) + */ + if (addr & SECTION_SIZE) + pmd++; +#endif + do { + *pmd = __pmd(phys | type->prot_sect | (ng ? PMD_SECT_nG : 0)); + phys += SECTION_SIZE; + } while (pmd++, addr += SECTION_SIZE, addr != end); + + flush_pmd_entry(p); +} + +static void __init alloc_init_pmd(pud_t *pud, unsigned long addr, + unsigned long end, phys_addr_t phys, + const struct mem_type *type, + void *(*alloc)(unsigned long sz), bool ng) +{ + pmd_t *pmd = pmd_offset(pud, addr); + unsigned long next; + + do { + /* + * With LPAE, we must loop over to map + * all the pmds for the given range. + */ + next = pmd_addr_end(addr, end); + + /* + * Try a section mapping - addr, next and phys must all be + * aligned to a section boundary. + */ + if (type->prot_sect && + ((addr | next | phys) & ~SECTION_MASK) == 0) { + __map_init_section(pmd, addr, next, phys, type, ng); + } else { + alloc_init_pte(pmd, addr, next, + __phys_to_pfn(phys), type, alloc, ng); + } + + phys += next - addr; + + } while (pmd++, addr = next, addr != end); +} + +static void __init alloc_init_pud(p4d_t *p4d, unsigned long addr, + unsigned long end, phys_addr_t phys, + const struct mem_type *type, + void *(*alloc)(unsigned long sz), bool ng) +{ + pud_t *pud = pud_offset(p4d, addr); + unsigned long next; + + do { + next = pud_addr_end(addr, end); + alloc_init_pmd(pud, addr, next, phys, type, alloc, ng); + phys += next - addr; + } while (pud++, addr = next, addr != end); +} + +static void __init alloc_init_p4d(pgd_t *pgd, unsigned long addr, + unsigned long end, phys_addr_t phys, + const struct mem_type *type, + void *(*alloc)(unsigned long sz), bool ng) +{ + p4d_t *p4d = p4d_offset(pgd, addr); + unsigned long next; + + do { + next = p4d_addr_end(addr, end); + alloc_init_pud(p4d, addr, next, phys, type, alloc, ng); + phys += next - addr; + } while (p4d++, addr = next, addr != end); +} + +#ifndef CONFIG_ARM_LPAE +static void __init create_36bit_mapping(struct mm_struct *mm, + struct map_desc *md, + const struct mem_type *type, + bool ng) +{ + unsigned long addr, length, end; + phys_addr_t phys; + pgd_t *pgd; + + addr = md->virtual; + phys = __pfn_to_phys(md->pfn); + length = PAGE_ALIGN(md->length); + + if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) { + pr_err("MM: CPU does not support supersection mapping for 0x%08llx at 0x%08lx\n", + (long long)__pfn_to_phys((u64)md->pfn), addr); + return; + } + + /* N.B. ARMv6 supersections are only defined to work with domain 0. + * Since domain assignments can in fact be arbitrary, the + * 'domain == 0' check below is required to insure that ARMv6 + * supersections are only allocated for domain 0 regardless + * of the actual domain assignments in use. + */ + if (type->domain) { + pr_err("MM: invalid domain in supersection mapping for 0x%08llx at 0x%08lx\n", + (long long)__pfn_to_phys((u64)md->pfn), addr); + return; + } + + if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) { + pr_err("MM: cannot create mapping for 0x%08llx at 0x%08lx invalid alignment\n", + (long long)__pfn_to_phys((u64)md->pfn), addr); + return; + } + + /* + * Shift bits [35:32] of address into bits [23:20] of PMD + * (See ARMv6 spec). + */ + phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20); + + pgd = pgd_offset(mm, addr); + end = addr + length; + do { + p4d_t *p4d = p4d_offset(pgd, addr); + pud_t *pud = pud_offset(p4d, addr); + pmd_t *pmd = pmd_offset(pud, addr); + int i; + + for (i = 0; i < 16; i++) + *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER | + (ng ? PMD_SECT_nG : 0)); + + addr += SUPERSECTION_SIZE; + phys += SUPERSECTION_SIZE; + pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT; + } while (addr != end); +} +#endif /* !CONFIG_ARM_LPAE */ + +static void __init __create_mapping(struct mm_struct *mm, struct map_desc *md, + void *(*alloc)(unsigned long sz), + bool ng) +{ + unsigned long addr, length, end; + phys_addr_t phys; + const struct mem_type *type; + pgd_t *pgd; + + type = &mem_types[md->type]; + +#ifndef CONFIG_ARM_LPAE + /* + * Catch 36-bit addresses + */ + if (md->pfn >= 0x100000) { + create_36bit_mapping(mm, md, type, ng); + return; + } +#endif + + addr = md->virtual & PAGE_MASK; + phys = __pfn_to_phys(md->pfn); + length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK)); + + if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) { + pr_warn("BUG: map for 0x%08llx at 0x%08lx can not be mapped using pages, ignoring.\n", + (long long)__pfn_to_phys(md->pfn), addr); + return; + } + + pgd = pgd_offset(mm, addr); + end = addr + length; + do { + unsigned long next = pgd_addr_end(addr, end); + + alloc_init_p4d(pgd, addr, next, phys, type, alloc, ng); + + phys += next - addr; + addr = next; + } while (pgd++, addr != end); +} + +/* + * Create the page directory entries and any necessary + * page tables for the mapping specified by `md'. We + * are able to cope here with varying sizes and address + * offsets, and we take full advantage of sections and + * supersections. + */ +static void __init create_mapping(struct map_desc *md) +{ + if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) { + pr_warn("BUG: not creating mapping for 0x%08llx at 0x%08lx in user region\n", + (long long)__pfn_to_phys((u64)md->pfn), md->virtual); + return; + } + + if (md->type == MT_DEVICE && + md->virtual >= PAGE_OFFSET && md->virtual < FIXADDR_START && + (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) { + pr_warn("BUG: mapping for 0x%08llx at 0x%08lx out of vmalloc space\n", + (long long)__pfn_to_phys((u64)md->pfn), md->virtual); + } + + __create_mapping(&init_mm, md, early_alloc, false); +} + +void __init create_mapping_late(struct mm_struct *mm, struct map_desc *md, + bool ng) +{ +#ifdef CONFIG_ARM_LPAE + p4d_t *p4d; + pud_t *pud; + + p4d = p4d_alloc(mm, pgd_offset(mm, md->virtual), md->virtual); + if (WARN_ON(!p4d)) + return; + pud = pud_alloc(mm, p4d, md->virtual); + if (WARN_ON(!pud)) + return; + pmd_alloc(mm, pud, 0); +#endif + __create_mapping(mm, md, late_alloc, ng); +} + +/* + * Create the architecture specific mappings + */ +void __init iotable_init(struct map_desc *io_desc, int nr) +{ + struct map_desc *md; + struct vm_struct *vm; + struct static_vm *svm; + + if (!nr) + return; + + svm = memblock_alloc(sizeof(*svm) * nr, __alignof__(*svm)); + if (!svm) + panic("%s: Failed to allocate %zu bytes align=0x%zx\n", + __func__, sizeof(*svm) * nr, __alignof__(*svm)); + + for (md = io_desc; nr; md++, nr--) { + create_mapping(md); + + vm = &svm->vm; + vm->addr = (void *)(md->virtual & PAGE_MASK); + vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK)); + vm->phys_addr = __pfn_to_phys(md->pfn); + vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING; + vm->flags |= VM_ARM_MTYPE(md->type); + vm->caller = iotable_init; + add_static_vm_early(svm++); + } +} + +void __init vm_reserve_area_early(unsigned long addr, unsigned long size, + void *caller) +{ + struct vm_struct *vm; + struct static_vm *svm; + + svm = memblock_alloc(sizeof(*svm), __alignof__(*svm)); + if (!svm) + panic("%s: Failed to allocate %zu bytes align=0x%zx\n", + __func__, sizeof(*svm), __alignof__(*svm)); + + vm = &svm->vm; + vm->addr = (void *)addr; + vm->size = size; + vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING; + vm->caller = caller; + add_static_vm_early(svm); +} + +#ifndef CONFIG_ARM_LPAE + +/* + * The Linux PMD is made of two consecutive section entries covering 2MB + * (see definition in include/asm/pgtable-2level.h). However a call to + * create_mapping() may optimize static mappings by using individual + * 1MB section mappings. This leaves the actual PMD potentially half + * initialized if the top or bottom section entry isn't used, leaving it + * open to problems if a subsequent ioremap() or vmalloc() tries to use + * the virtual space left free by that unused section entry. + * + * Let's avoid the issue by inserting dummy vm entries covering the unused + * PMD halves once the static mappings are in place. + */ + +static void __init pmd_empty_section_gap(unsigned long addr) +{ + vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap); +} + +static void __init fill_pmd_gaps(void) +{ + struct static_vm *svm; + struct vm_struct *vm; + unsigned long addr, next = 0; + pmd_t *pmd; + + list_for_each_entry(svm, &static_vmlist, list) { + vm = &svm->vm; + addr = (unsigned long)vm->addr; + if (addr < next) + continue; + + /* + * Check if this vm starts on an odd section boundary. + * If so and the first section entry for this PMD is free + * then we block the corresponding virtual address. + */ + if ((addr & ~PMD_MASK) == SECTION_SIZE) { + pmd = pmd_off_k(addr); + if (pmd_none(*pmd)) + pmd_empty_section_gap(addr & PMD_MASK); + } + + /* + * Then check if this vm ends on an odd section boundary. + * If so and the second section entry for this PMD is empty + * then we block the corresponding virtual address. + */ + addr += vm->size; + if ((addr & ~PMD_MASK) == SECTION_SIZE) { + pmd = pmd_off_k(addr) + 1; + if (pmd_none(*pmd)) + pmd_empty_section_gap(addr); + } + + /* no need to look at any vm entry until we hit the next PMD */ + next = (addr + PMD_SIZE - 1) & PMD_MASK; + } +} + +#else +#define fill_pmd_gaps() do { } while (0) +#endif + +#if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H) +static void __init pci_reserve_io(void) +{ + struct static_vm *svm; + + svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE); + if (svm) + return; + + vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io); +} +#else +#define pci_reserve_io() do { } while (0) +#endif + +#ifdef CONFIG_DEBUG_LL +void __init debug_ll_io_init(void) +{ + struct map_desc map; + + debug_ll_addr(&map.pfn, &map.virtual); + if (!map.pfn || !map.virtual) + return; + map.pfn = __phys_to_pfn(map.pfn); + map.virtual &= PAGE_MASK; + map.length = PAGE_SIZE; + map.type = MT_DEVICE; + iotable_init(&map, 1); +} +#endif + +static unsigned long __initdata vmalloc_size = 240 * SZ_1M; + +/* + * vmalloc=size forces the vmalloc area to be exactly 'size' + * bytes. This can be used to increase (or decrease) the vmalloc + * area - the default is 240MiB. + */ +static int __init early_vmalloc(char *arg) +{ + unsigned long vmalloc_reserve = memparse(arg, NULL); + unsigned long vmalloc_max; + + if (vmalloc_reserve < SZ_16M) { + vmalloc_reserve = SZ_16M; + pr_warn("vmalloc area is too small, limiting to %luMiB\n", + vmalloc_reserve >> 20); + } + + vmalloc_max = VMALLOC_END - (PAGE_OFFSET + SZ_32M + VMALLOC_OFFSET); + if (vmalloc_reserve > vmalloc_max) { + vmalloc_reserve = vmalloc_max; + pr_warn("vmalloc area is too big, limiting to %luMiB\n", + vmalloc_reserve >> 20); + } + + vmalloc_size = vmalloc_reserve; + return 0; +} +early_param("vmalloc", early_vmalloc); + +phys_addr_t arm_lowmem_limit __initdata = 0; + +void __init adjust_lowmem_bounds(void) +{ + phys_addr_t block_start, block_end, memblock_limit = 0; + u64 vmalloc_limit, i; + phys_addr_t lowmem_limit = 0; + + /* + * Let's use our own (unoptimized) equivalent of __pa() that is + * not affected by wrap-arounds when sizeof(phys_addr_t) == 4. + * The result is used as the upper bound on physical memory address + * and may itself be outside the valid range for which phys_addr_t + * and therefore __pa() is defined. + */ + vmalloc_limit = (u64)VMALLOC_END - vmalloc_size - VMALLOC_OFFSET - + PAGE_OFFSET + PHYS_OFFSET; + + /* + * The first usable region must be PMD aligned. Mark its start + * as MEMBLOCK_NOMAP if it isn't + */ + for_each_mem_range(i, &block_start, &block_end) { + if (!IS_ALIGNED(block_start, PMD_SIZE)) { + phys_addr_t len; + + len = round_up(block_start, PMD_SIZE) - block_start; + memblock_mark_nomap(block_start, len); + } + break; + } + + for_each_mem_range(i, &block_start, &block_end) { + if (block_start < vmalloc_limit) { + if (block_end > lowmem_limit) + /* + * Compare as u64 to ensure vmalloc_limit does + * not get truncated. block_end should always + * fit in phys_addr_t so there should be no + * issue with assignment. + */ + lowmem_limit = min_t(u64, + vmalloc_limit, + block_end); + + /* + * Find the first non-pmd-aligned page, and point + * memblock_limit at it. This relies on rounding the + * limit down to be pmd-aligned, which happens at the + * end of this function. + * + * With this algorithm, the start or end of almost any + * bank can be non-pmd-aligned. The only exception is + * that the start of the bank 0 must be section- + * aligned, since otherwise memory would need to be + * allocated when mapping the start of bank 0, which + * occurs before any free memory is mapped. + */ + if (!memblock_limit) { + if (!IS_ALIGNED(block_start, PMD_SIZE)) + memblock_limit = block_start; + else if (!IS_ALIGNED(block_end, PMD_SIZE)) + memblock_limit = lowmem_limit; + } + + } + } + + arm_lowmem_limit = lowmem_limit; + + high_memory = __va(arm_lowmem_limit - 1) + 1; + + if (!memblock_limit) + memblock_limit = arm_lowmem_limit; + + /* + * Round the memblock limit down to a pmd size. This + * helps to ensure that we will allocate memory from the + * last full pmd, which should be mapped. + */ + memblock_limit = round_down(memblock_limit, PMD_SIZE); + + if (!IS_ENABLED(CONFIG_HIGHMEM) || cache_is_vipt_aliasing()) { + if (memblock_end_of_DRAM() > arm_lowmem_limit) { + phys_addr_t end = memblock_end_of_DRAM(); + + pr_notice("Ignoring RAM at %pa-%pa\n", + &memblock_limit, &end); + pr_notice("Consider using a HIGHMEM enabled kernel.\n"); + + memblock_remove(memblock_limit, end - memblock_limit); + } + } + + memblock_set_current_limit(memblock_limit); +} + +static __init void prepare_page_table(void) +{ + unsigned long addr; + phys_addr_t end; + + /* + * Clear out all the mappings below the kernel image. + */ +#ifdef CONFIG_KASAN + /* + * KASan's shadow memory inserts itself between the TASK_SIZE + * and MODULES_VADDR. Do not clear the KASan shadow memory mappings. + */ + for (addr = 0; addr < KASAN_SHADOW_START; addr += PMD_SIZE) + pmd_clear(pmd_off_k(addr)); + /* + * Skip over the KASan shadow area. KASAN_SHADOW_END is sometimes + * equal to MODULES_VADDR and then we exit the pmd clearing. If we + * are using a thumb-compiled kernel, there there will be 8MB more + * to clear as KASan always offset to 16 MB below MODULES_VADDR. + */ + for (addr = KASAN_SHADOW_END; addr < MODULES_VADDR; addr += PMD_SIZE) + pmd_clear(pmd_off_k(addr)); +#else + for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE) + pmd_clear(pmd_off_k(addr)); +#endif + +#ifdef CONFIG_XIP_KERNEL + /* The XIP kernel is mapped in the module area -- skip over it */ + addr = ((unsigned long)_exiprom + PMD_SIZE - 1) & PMD_MASK; +#endif + for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE) + pmd_clear(pmd_off_k(addr)); + + /* + * Find the end of the first block of lowmem. + */ + end = memblock.memory.regions[0].base + memblock.memory.regions[0].size; + if (end >= arm_lowmem_limit) + end = arm_lowmem_limit; + + /* + * Clear out all the kernel space mappings, except for the first + * memory bank, up to the vmalloc region. + */ + for (addr = __phys_to_virt(end); + addr < VMALLOC_START; addr += PMD_SIZE) + pmd_clear(pmd_off_k(addr)); +} + +#ifdef CONFIG_ARM_LPAE +/* the first page is reserved for pgd */ +#define SWAPPER_PG_DIR_SIZE (PAGE_SIZE + \ + PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t)) +#else +#define SWAPPER_PG_DIR_SIZE (PTRS_PER_PGD * sizeof(pgd_t)) +#endif + +/* + * Reserve the special regions of memory + */ +void __init arm_mm_memblock_reserve(void) +{ + /* + * Reserve the page tables. These are already in use, + * and can only be in node 0. + */ + memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE); + +#ifdef CONFIG_SA1111 + /* + * Because of the SA1111 DMA bug, we want to preserve our + * precious DMA-able memory... + */ + memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET); +#endif +} + +/* + * Set up the device mappings. Since we clear out the page tables for all + * mappings above VMALLOC_START, except early fixmap, we might remove debug + * device mappings. This means earlycon can be used to debug this function + * Any other function or debugging method which may touch any device _will_ + * crash the kernel. + */ +static void __init devicemaps_init(const struct machine_desc *mdesc) +{ + struct map_desc map; + unsigned long addr; + void *vectors; + + /* + * Allocate the vector page early. + */ + vectors = early_alloc(PAGE_SIZE * 2); + + early_trap_init(vectors); + + /* + * Clear page table except top pmd used by early fixmaps + */ + for (addr = VMALLOC_START; addr < (FIXADDR_TOP & PMD_MASK); addr += PMD_SIZE) + pmd_clear(pmd_off_k(addr)); + + if (__atags_pointer) { + /* create a read-only mapping of the device tree */ + map.pfn = __phys_to_pfn(__atags_pointer & SECTION_MASK); + map.virtual = FDT_FIXED_BASE; + map.length = FDT_FIXED_SIZE; + map.type = MT_MEMORY_RO; + create_mapping(&map); + } + + /* + * Map the kernel if it is XIP. + * It is always first in the modulearea. + */ +#ifdef CONFIG_XIP_KERNEL + map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK); + map.virtual = MODULES_VADDR; + map.length = ((unsigned long)_exiprom - map.virtual + ~SECTION_MASK) & SECTION_MASK; + map.type = MT_ROM; + create_mapping(&map); +#endif + + /* + * Map the cache flushing regions. + */ +#ifdef FLUSH_BASE + map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS); + map.virtual = FLUSH_BASE; + map.length = SZ_1M; + map.type = MT_CACHECLEAN; + create_mapping(&map); +#endif +#ifdef FLUSH_BASE_MINICACHE + map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M); + map.virtual = FLUSH_BASE_MINICACHE; + map.length = SZ_1M; + map.type = MT_MINICLEAN; + create_mapping(&map); +#endif + + /* + * Create a mapping for the machine vectors at the high-vectors + * location (0xffff0000). If we aren't using high-vectors, also + * create a mapping at the low-vectors virtual address. + */ + map.pfn = __phys_to_pfn(virt_to_phys(vectors)); + map.virtual = 0xffff0000; + map.length = PAGE_SIZE; +#ifdef CONFIG_KUSER_HELPERS + map.type = MT_HIGH_VECTORS; +#else + map.type = MT_LOW_VECTORS; +#endif + create_mapping(&map); + + if (!vectors_high()) { + map.virtual = 0; + map.length = PAGE_SIZE * 2; + map.type = MT_LOW_VECTORS; + create_mapping(&map); + } + + /* Now create a kernel read-only mapping */ + map.pfn += 1; + map.virtual = 0xffff0000 + PAGE_SIZE; + map.length = PAGE_SIZE; + map.type = MT_LOW_VECTORS; + create_mapping(&map); + + /* + * Ask the machine support to map in the statically mapped devices. + */ + if (mdesc->map_io) + mdesc->map_io(); + else + debug_ll_io_init(); + fill_pmd_gaps(); + + /* Reserve fixed i/o space in VMALLOC region */ + pci_reserve_io(); + + /* + * Finally flush the caches and tlb to ensure that we're in a + * consistent state wrt the writebuffer. This also ensures that + * any write-allocated cache lines in the vector page are written + * back. After this point, we can start to touch devices again. + */ + local_flush_tlb_all(); + flush_cache_all(); + + /* Enable asynchronous aborts */ + early_abt_enable(); +} + +static void __init kmap_init(void) +{ +#ifdef CONFIG_HIGHMEM + pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE), + PKMAP_BASE, _PAGE_KERNEL_TABLE); +#endif + + early_pte_alloc(pmd_off_k(FIXADDR_START), FIXADDR_START, + _PAGE_KERNEL_TABLE); +} + +static void __init map_lowmem(void) +{ + phys_addr_t start, end; + u64 i; + + /* Map all the lowmem memory banks. */ + for_each_mem_range(i, &start, &end) { + struct map_desc map; + + pr_debug("map lowmem start: 0x%08llx, end: 0x%08llx\n", + (long long)start, (long long)end); + if (end > arm_lowmem_limit) + end = arm_lowmem_limit; + if (start >= end) + break; + + /* + * If our kernel image is in the VMALLOC area we need to remove + * the kernel physical memory from lowmem since the kernel will + * be mapped separately. + * + * The kernel will typically be at the very start of lowmem, + * but any placement relative to memory ranges is possible. + * + * If the memblock contains the kernel, we have to chisel out + * the kernel memory from it and map each part separately. We + * get 6 different theoretical cases: + * + * +--------+ +--------+ + * +-- start --+ +--------+ | Kernel | | Kernel | + * | | | Kernel | | case 2 | | case 5 | + * | | | case 1 | +--------+ | | +--------+ + * | Memory | +--------+ | | | Kernel | + * | range | +--------+ | | | case 6 | + * | | | Kernel | +--------+ | | +--------+ + * | | | case 3 | | Kernel | | | + * +-- end ----+ +--------+ | case 4 | | | + * +--------+ +--------+ + */ + + /* Case 5: kernel covers range, don't map anything, should be rare */ + if ((start > kernel_sec_start) && (end < kernel_sec_end)) + break; + + /* Cases where the kernel is starting inside the range */ + if ((kernel_sec_start >= start) && (kernel_sec_start <= end)) { + /* Case 6: kernel is embedded in the range, we need two mappings */ + if ((start < kernel_sec_start) && (end > kernel_sec_end)) { + /* Map memory below the kernel */ + map.pfn = __phys_to_pfn(start); + map.virtual = __phys_to_virt(start); + map.length = kernel_sec_start - start; + map.type = MT_MEMORY_RW; + create_mapping(&map); + /* Map memory above the kernel */ + map.pfn = __phys_to_pfn(kernel_sec_end); + map.virtual = __phys_to_virt(kernel_sec_end); + map.length = end - kernel_sec_end; + map.type = MT_MEMORY_RW; + create_mapping(&map); + break; + } + /* Case 1: kernel and range start at the same address, should be common */ + if (kernel_sec_start == start) + start = kernel_sec_end; + /* Case 3: kernel and range end at the same address, should be rare */ + if (kernel_sec_end == end) + end = kernel_sec_start; + } else if ((kernel_sec_start < start) && (kernel_sec_end > start) && (kernel_sec_end < end)) { + /* Case 2: kernel ends inside range, starts below it */ + start = kernel_sec_end; + } else if ((kernel_sec_start > start) && (kernel_sec_start < end) && (kernel_sec_end > end)) { + /* Case 4: kernel starts inside range, ends above it */ + end = kernel_sec_start; + } + map.pfn = __phys_to_pfn(start); + map.virtual = __phys_to_virt(start); + map.length = end - start; + map.type = MT_MEMORY_RW; + create_mapping(&map); + } +} + +static void __init map_kernel(void) +{ + /* + * We use the well known kernel section start and end and split the area in the + * middle like this: + * . . + * | RW memory | + * +----------------+ kernel_x_start + * | Executable | + * | kernel memory | + * +----------------+ kernel_x_end / kernel_nx_start + * | Non-executable | + * | kernel memory | + * +----------------+ kernel_nx_end + * | RW memory | + * . . + * + * Notice that we are dealing with section sized mappings here so all of this + * will be bumped to the closest section boundary. This means that some of the + * non-executable part of the kernel memory is actually mapped as executable. + * This will only persist until we turn on proper memory management later on + * and we remap the whole kernel with page granularity. + */ + phys_addr_t kernel_x_start = kernel_sec_start; + phys_addr_t kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE); + phys_addr_t kernel_nx_start = kernel_x_end; + phys_addr_t kernel_nx_end = kernel_sec_end; + struct map_desc map; + + map.pfn = __phys_to_pfn(kernel_x_start); + map.virtual = __phys_to_virt(kernel_x_start); + map.length = kernel_x_end - kernel_x_start; + map.type = MT_MEMORY_RWX; + create_mapping(&map); + + /* If the nx part is small it may end up covered by the tail of the RWX section */ + if (kernel_x_end == kernel_nx_end) + return; + + map.pfn = __phys_to_pfn(kernel_nx_start); + map.virtual = __phys_to_virt(kernel_nx_start); + map.length = kernel_nx_end - kernel_nx_start; + map.type = MT_MEMORY_RW; + create_mapping(&map); +} + +#ifdef CONFIG_ARM_PV_FIXUP +typedef void pgtables_remap(long long offset, unsigned long pgd); +pgtables_remap lpae_pgtables_remap_asm; + +/* + * early_paging_init() recreates boot time page table setup, allowing machines + * to switch over to a high (>4G) address space on LPAE systems + */ +static void __init early_paging_init(const struct machine_desc *mdesc) +{ + pgtables_remap *lpae_pgtables_remap; + unsigned long pa_pgd; + unsigned int cr, ttbcr; + long long offset; + + if (!mdesc->pv_fixup) + return; + + offset = mdesc->pv_fixup(); + if (offset == 0) + return; + + /* + * Offset the kernel section physical offsets so that the kernel + * mapping will work out later on. + */ + kernel_sec_start += offset; + kernel_sec_end += offset; + + /* + * Get the address of the remap function in the 1:1 identity + * mapping setup by the early page table assembly code. We + * must get this prior to the pv update. The following barrier + * ensures that this is complete before we fixup any P:V offsets. + */ + lpae_pgtables_remap = (pgtables_remap *)(unsigned long)__pa(lpae_pgtables_remap_asm); + pa_pgd = __pa(swapper_pg_dir); + barrier(); + + pr_info("Switching physical address space to 0x%08llx\n", + (u64)PHYS_OFFSET + offset); + + /* Re-set the phys pfn offset, and the pv offset */ + __pv_offset += offset; + __pv_phys_pfn_offset += PFN_DOWN(offset); + + /* Run the patch stub to update the constants */ + fixup_pv_table(&__pv_table_begin, + (&__pv_table_end - &__pv_table_begin) << 2); + + /* + * We changing not only the virtual to physical mapping, but also + * the physical addresses used to access memory. We need to flush + * all levels of cache in the system with caching disabled to + * ensure that all data is written back, and nothing is prefetched + * into the caches. We also need to prevent the TLB walkers + * allocating into the caches too. Note that this is ARMv7 LPAE + * specific. + */ + cr = get_cr(); + set_cr(cr & ~(CR_I | CR_C)); + asm("mrc p15, 0, %0, c2, c0, 2" : "=r" (ttbcr)); + asm volatile("mcr p15, 0, %0, c2, c0, 2" + : : "r" (ttbcr & ~(3 << 8 | 3 << 10))); + flush_cache_all(); + + /* + * Fixup the page tables - this must be in the idmap region as + * we need to disable the MMU to do this safely, and hence it + * needs to be assembly. It's fairly simple, as we're using the + * temporary tables setup by the initial assembly code. + */ + lpae_pgtables_remap(offset, pa_pgd); + + /* Re-enable the caches and cacheable TLB walks */ + asm volatile("mcr p15, 0, %0, c2, c0, 2" : : "r" (ttbcr)); + set_cr(cr); +} + +#else + +static void __init early_paging_init(const struct machine_desc *mdesc) +{ + long long offset; + + if (!mdesc->pv_fixup) + return; + + offset = mdesc->pv_fixup(); + if (offset == 0) + return; + + pr_crit("Physical address space modification is only to support Keystone2.\n"); + pr_crit("Please enable ARM_LPAE and ARM_PATCH_PHYS_VIRT support to use this\n"); + pr_crit("feature. Your kernel may crash now, have a good day.\n"); + add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK); +} + +#endif + +static void __init early_fixmap_shutdown(void) +{ + int i; + unsigned long va = fix_to_virt(__end_of_permanent_fixed_addresses - 1); + + pte_offset_fixmap = pte_offset_late_fixmap; + pmd_clear(fixmap_pmd(va)); + local_flush_tlb_kernel_page(va); + + for (i = 0; i < __end_of_permanent_fixed_addresses; i++) { + pte_t *pte; + struct map_desc map; + + map.virtual = fix_to_virt(i); + pte = pte_offset_early_fixmap(pmd_off_k(map.virtual), map.virtual); + + /* Only i/o device mappings are supported ATM */ + if (pte_none(*pte) || + (pte_val(*pte) & L_PTE_MT_MASK) != L_PTE_MT_DEV_SHARED) + continue; + + map.pfn = pte_pfn(*pte); + map.type = MT_DEVICE; + map.length = PAGE_SIZE; + + create_mapping(&map); + } +} + +/* + * paging_init() sets up the page tables, initialises the zone memory + * maps, and sets up the zero page, bad page and bad page tables. + */ +void __init paging_init(const struct machine_desc *mdesc) +{ + void *zero_page; + + pr_debug("physical kernel sections: 0x%08llx-0x%08llx\n", + kernel_sec_start, kernel_sec_end); + + prepare_page_table(); + map_lowmem(); + memblock_set_current_limit(arm_lowmem_limit); + pr_debug("lowmem limit is %08llx\n", (long long)arm_lowmem_limit); + /* + * After this point early_alloc(), i.e. the memblock allocator, can + * be used + */ + map_kernel(); + dma_contiguous_remap(); + early_fixmap_shutdown(); + devicemaps_init(mdesc); + kmap_init(); + tcm_init(); + + top_pmd = pmd_off_k(0xffff0000); + + /* allocate the zero page. */ + zero_page = early_alloc(PAGE_SIZE); + + bootmem_init(); + + empty_zero_page = virt_to_page(zero_page); + __flush_dcache_page(NULL, empty_zero_page); +} + +void __init early_mm_init(const struct machine_desc *mdesc) +{ + build_mem_type_table(); + early_paging_init(mdesc); +} + +void set_pte_at(struct mm_struct *mm, unsigned long addr, + pte_t *ptep, pte_t pteval) +{ + unsigned long ext = 0; + + if (addr < TASK_SIZE && pte_valid_user(pteval)) { + if (!pte_special(pteval)) + __sync_icache_dcache(pteval); + ext |= PTE_EXT_NG; + } + + set_pte_ext(ptep, pteval, ext); +} |