summaryrefslogtreecommitdiffstats
path: root/arch/mips/kernel/perf_event_mipsxx.c
diff options
context:
space:
mode:
Diffstat (limited to 'arch/mips/kernel/perf_event_mipsxx.c')
-rw-r--r--arch/mips/kernel/perf_event_mipsxx.c2056
1 files changed, 2056 insertions, 0 deletions
diff --git a/arch/mips/kernel/perf_event_mipsxx.c b/arch/mips/kernel/perf_event_mipsxx.c
new file mode 100644
index 000000000..c4d6b0913
--- /dev/null
+++ b/arch/mips/kernel/perf_event_mipsxx.c
@@ -0,0 +1,2056 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Linux performance counter support for MIPS.
+ *
+ * Copyright (C) 2010 MIPS Technologies, Inc.
+ * Copyright (C) 2011 Cavium Networks, Inc.
+ * Author: Deng-Cheng Zhu
+ *
+ * This code is based on the implementation for ARM, which is in turn
+ * based on the sparc64 perf event code and the x86 code. Performance
+ * counter access is based on the MIPS Oprofile code. And the callchain
+ * support references the code of MIPS stacktrace.c.
+ */
+
+#include <linux/cpumask.h>
+#include <linux/interrupt.h>
+#include <linux/smp.h>
+#include <linux/kernel.h>
+#include <linux/perf_event.h>
+#include <linux/uaccess.h>
+
+#include <asm/irq.h>
+#include <asm/irq_regs.h>
+#include <asm/stacktrace.h>
+#include <asm/time.h> /* For perf_irq */
+
+#define MIPS_MAX_HWEVENTS 4
+#define MIPS_TCS_PER_COUNTER 2
+#define MIPS_CPUID_TO_COUNTER_MASK (MIPS_TCS_PER_COUNTER - 1)
+
+struct cpu_hw_events {
+ /* Array of events on this cpu. */
+ struct perf_event *events[MIPS_MAX_HWEVENTS];
+
+ /*
+ * Set the bit (indexed by the counter number) when the counter
+ * is used for an event.
+ */
+ unsigned long used_mask[BITS_TO_LONGS(MIPS_MAX_HWEVENTS)];
+
+ /*
+ * Software copy of the control register for each performance counter.
+ * MIPS CPUs vary in performance counters. They use this differently,
+ * and even may not use it.
+ */
+ unsigned int saved_ctrl[MIPS_MAX_HWEVENTS];
+};
+DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
+ .saved_ctrl = {0},
+};
+
+/* The description of MIPS performance events. */
+struct mips_perf_event {
+ unsigned int event_id;
+ /*
+ * MIPS performance counters are indexed starting from 0.
+ * CNTR_EVEN indicates the indexes of the counters to be used are
+ * even numbers.
+ */
+ unsigned int cntr_mask;
+ #define CNTR_EVEN 0x55555555
+ #define CNTR_ODD 0xaaaaaaaa
+ #define CNTR_ALL 0xffffffff
+ enum {
+ T = 0,
+ V = 1,
+ P = 2,
+ } range;
+};
+
+static struct mips_perf_event raw_event;
+static DEFINE_MUTEX(raw_event_mutex);
+
+#define C(x) PERF_COUNT_HW_CACHE_##x
+
+struct mips_pmu {
+ u64 max_period;
+ u64 valid_count;
+ u64 overflow;
+ const char *name;
+ int irq;
+ u64 (*read_counter)(unsigned int idx);
+ void (*write_counter)(unsigned int idx, u64 val);
+ const struct mips_perf_event *(*map_raw_event)(u64 config);
+ const struct mips_perf_event (*general_event_map)[PERF_COUNT_HW_MAX];
+ const struct mips_perf_event (*cache_event_map)
+ [PERF_COUNT_HW_CACHE_MAX]
+ [PERF_COUNT_HW_CACHE_OP_MAX]
+ [PERF_COUNT_HW_CACHE_RESULT_MAX];
+ unsigned int num_counters;
+};
+
+static int counter_bits;
+static struct mips_pmu mipspmu;
+
+#define M_PERFCTL_EVENT(event) (((event) << MIPS_PERFCTRL_EVENT_S) & \
+ MIPS_PERFCTRL_EVENT)
+#define M_PERFCTL_VPEID(vpe) ((vpe) << MIPS_PERFCTRL_VPEID_S)
+
+#ifdef CONFIG_CPU_BMIPS5000
+#define M_PERFCTL_MT_EN(filter) 0
+#else /* !CONFIG_CPU_BMIPS5000 */
+#define M_PERFCTL_MT_EN(filter) (filter)
+#endif /* CONFIG_CPU_BMIPS5000 */
+
+#define M_TC_EN_ALL M_PERFCTL_MT_EN(MIPS_PERFCTRL_MT_EN_ALL)
+#define M_TC_EN_VPE M_PERFCTL_MT_EN(MIPS_PERFCTRL_MT_EN_VPE)
+#define M_TC_EN_TC M_PERFCTL_MT_EN(MIPS_PERFCTRL_MT_EN_TC)
+
+#define M_PERFCTL_COUNT_EVENT_WHENEVER (MIPS_PERFCTRL_EXL | \
+ MIPS_PERFCTRL_K | \
+ MIPS_PERFCTRL_U | \
+ MIPS_PERFCTRL_S | \
+ MIPS_PERFCTRL_IE)
+
+#ifdef CONFIG_MIPS_MT_SMP
+#define M_PERFCTL_CONFIG_MASK 0x3fff801f
+#else
+#define M_PERFCTL_CONFIG_MASK 0x1f
+#endif
+
+#define CNTR_BIT_MASK(n) (((n) == 64) ? ~0ULL : ((1ULL<<(n))-1))
+
+#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
+static DEFINE_RWLOCK(pmuint_rwlock);
+
+#if defined(CONFIG_CPU_BMIPS5000)
+#define vpe_id() (cpu_has_mipsmt_pertccounters ? \
+ 0 : (smp_processor_id() & MIPS_CPUID_TO_COUNTER_MASK))
+#else
+#define vpe_id() (cpu_has_mipsmt_pertccounters ? \
+ 0 : cpu_vpe_id(&current_cpu_data))
+#endif
+
+/* Copied from op_model_mipsxx.c */
+static unsigned int vpe_shift(void)
+{
+ if (num_possible_cpus() > 1)
+ return 1;
+
+ return 0;
+}
+
+static unsigned int counters_total_to_per_cpu(unsigned int counters)
+{
+ return counters >> vpe_shift();
+}
+
+#else /* !CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */
+#define vpe_id() 0
+
+#endif /* CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */
+
+static void resume_local_counters(void);
+static void pause_local_counters(void);
+static irqreturn_t mipsxx_pmu_handle_irq(int, void *);
+static int mipsxx_pmu_handle_shared_irq(void);
+
+/* 0: Not Loongson-3
+ * 1: Loongson-3A1000/3B1000/3B1500
+ * 2: Loongson-3A2000/3A3000
+ * 3: Loongson-3A4000+
+ */
+
+#define LOONGSON_PMU_TYPE0 0
+#define LOONGSON_PMU_TYPE1 1
+#define LOONGSON_PMU_TYPE2 2
+#define LOONGSON_PMU_TYPE3 3
+
+static inline int get_loongson3_pmu_type(void)
+{
+ if (boot_cpu_type() != CPU_LOONGSON64)
+ return LOONGSON_PMU_TYPE0;
+ if ((boot_cpu_data.processor_id & PRID_COMP_MASK) == PRID_COMP_LEGACY)
+ return LOONGSON_PMU_TYPE1;
+ if ((boot_cpu_data.processor_id & PRID_IMP_MASK) == PRID_IMP_LOONGSON_64C)
+ return LOONGSON_PMU_TYPE2;
+ if ((boot_cpu_data.processor_id & PRID_IMP_MASK) == PRID_IMP_LOONGSON_64G)
+ return LOONGSON_PMU_TYPE3;
+
+ return LOONGSON_PMU_TYPE0;
+}
+
+static unsigned int mipsxx_pmu_swizzle_perf_idx(unsigned int idx)
+{
+ if (vpe_id() == 1)
+ idx = (idx + 2) & 3;
+ return idx;
+}
+
+static u64 mipsxx_pmu_read_counter(unsigned int idx)
+{
+ idx = mipsxx_pmu_swizzle_perf_idx(idx);
+
+ switch (idx) {
+ case 0:
+ /*
+ * The counters are unsigned, we must cast to truncate
+ * off the high bits.
+ */
+ return (u32)read_c0_perfcntr0();
+ case 1:
+ return (u32)read_c0_perfcntr1();
+ case 2:
+ return (u32)read_c0_perfcntr2();
+ case 3:
+ return (u32)read_c0_perfcntr3();
+ default:
+ WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
+ return 0;
+ }
+}
+
+static u64 mipsxx_pmu_read_counter_64(unsigned int idx)
+{
+ u64 mask = CNTR_BIT_MASK(counter_bits);
+ idx = mipsxx_pmu_swizzle_perf_idx(idx);
+
+ switch (idx) {
+ case 0:
+ return read_c0_perfcntr0_64() & mask;
+ case 1:
+ return read_c0_perfcntr1_64() & mask;
+ case 2:
+ return read_c0_perfcntr2_64() & mask;
+ case 3:
+ return read_c0_perfcntr3_64() & mask;
+ default:
+ WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
+ return 0;
+ }
+}
+
+static void mipsxx_pmu_write_counter(unsigned int idx, u64 val)
+{
+ idx = mipsxx_pmu_swizzle_perf_idx(idx);
+
+ switch (idx) {
+ case 0:
+ write_c0_perfcntr0(val);
+ return;
+ case 1:
+ write_c0_perfcntr1(val);
+ return;
+ case 2:
+ write_c0_perfcntr2(val);
+ return;
+ case 3:
+ write_c0_perfcntr3(val);
+ return;
+ }
+}
+
+static void mipsxx_pmu_write_counter_64(unsigned int idx, u64 val)
+{
+ val &= CNTR_BIT_MASK(counter_bits);
+ idx = mipsxx_pmu_swizzle_perf_idx(idx);
+
+ switch (idx) {
+ case 0:
+ write_c0_perfcntr0_64(val);
+ return;
+ case 1:
+ write_c0_perfcntr1_64(val);
+ return;
+ case 2:
+ write_c0_perfcntr2_64(val);
+ return;
+ case 3:
+ write_c0_perfcntr3_64(val);
+ return;
+ }
+}
+
+static unsigned int mipsxx_pmu_read_control(unsigned int idx)
+{
+ idx = mipsxx_pmu_swizzle_perf_idx(idx);
+
+ switch (idx) {
+ case 0:
+ return read_c0_perfctrl0();
+ case 1:
+ return read_c0_perfctrl1();
+ case 2:
+ return read_c0_perfctrl2();
+ case 3:
+ return read_c0_perfctrl3();
+ default:
+ WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
+ return 0;
+ }
+}
+
+static void mipsxx_pmu_write_control(unsigned int idx, unsigned int val)
+{
+ idx = mipsxx_pmu_swizzle_perf_idx(idx);
+
+ switch (idx) {
+ case 0:
+ write_c0_perfctrl0(val);
+ return;
+ case 1:
+ write_c0_perfctrl1(val);
+ return;
+ case 2:
+ write_c0_perfctrl2(val);
+ return;
+ case 3:
+ write_c0_perfctrl3(val);
+ return;
+ }
+}
+
+static int mipsxx_pmu_alloc_counter(struct cpu_hw_events *cpuc,
+ struct hw_perf_event *hwc)
+{
+ int i;
+ unsigned long cntr_mask;
+
+ /*
+ * We only need to care the counter mask. The range has been
+ * checked definitely.
+ */
+ if (get_loongson3_pmu_type() == LOONGSON_PMU_TYPE2)
+ cntr_mask = (hwc->event_base >> 10) & 0xffff;
+ else
+ cntr_mask = (hwc->event_base >> 8) & 0xffff;
+
+ for (i = mipspmu.num_counters - 1; i >= 0; i--) {
+ /*
+ * Note that some MIPS perf events can be counted by both
+ * even and odd counters, whereas many other are only by
+ * even _or_ odd counters. This introduces an issue that
+ * when the former kind of event takes the counter the
+ * latter kind of event wants to use, then the "counter
+ * allocation" for the latter event will fail. In fact if
+ * they can be dynamically swapped, they both feel happy.
+ * But here we leave this issue alone for now.
+ */
+ if (test_bit(i, &cntr_mask) &&
+ !test_and_set_bit(i, cpuc->used_mask))
+ return i;
+ }
+
+ return -EAGAIN;
+}
+
+static void mipsxx_pmu_enable_event(struct hw_perf_event *evt, int idx)
+{
+ struct perf_event *event = container_of(evt, struct perf_event, hw);
+ struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
+ unsigned int range = evt->event_base >> 24;
+
+ WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
+
+ if (get_loongson3_pmu_type() == LOONGSON_PMU_TYPE2)
+ cpuc->saved_ctrl[idx] = M_PERFCTL_EVENT(evt->event_base & 0x3ff) |
+ (evt->config_base & M_PERFCTL_CONFIG_MASK) |
+ /* Make sure interrupt enabled. */
+ MIPS_PERFCTRL_IE;
+ else
+ cpuc->saved_ctrl[idx] = M_PERFCTL_EVENT(evt->event_base & 0xff) |
+ (evt->config_base & M_PERFCTL_CONFIG_MASK) |
+ /* Make sure interrupt enabled. */
+ MIPS_PERFCTRL_IE;
+
+ if (IS_ENABLED(CONFIG_CPU_BMIPS5000)) {
+ /* enable the counter for the calling thread */
+ cpuc->saved_ctrl[idx] |=
+ (1 << (12 + vpe_id())) | BRCM_PERFCTRL_TC;
+ } else if (IS_ENABLED(CONFIG_MIPS_MT_SMP) && range > V) {
+ /* The counter is processor wide. Set it up to count all TCs. */
+ pr_debug("Enabling perf counter for all TCs\n");
+ cpuc->saved_ctrl[idx] |= M_TC_EN_ALL;
+ } else {
+ unsigned int cpu, ctrl;
+
+ /*
+ * Set up the counter for a particular CPU when event->cpu is
+ * a valid CPU number. Otherwise set up the counter for the CPU
+ * scheduling this thread.
+ */
+ cpu = (event->cpu >= 0) ? event->cpu : smp_processor_id();
+
+ ctrl = M_PERFCTL_VPEID(cpu_vpe_id(&cpu_data[cpu]));
+ ctrl |= M_TC_EN_VPE;
+ cpuc->saved_ctrl[idx] |= ctrl;
+ pr_debug("Enabling perf counter for CPU%d\n", cpu);
+ }
+ /*
+ * We do not actually let the counter run. Leave it until start().
+ */
+}
+
+static void mipsxx_pmu_disable_event(int idx)
+{
+ struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
+ unsigned long flags;
+
+ WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
+
+ local_irq_save(flags);
+ cpuc->saved_ctrl[idx] = mipsxx_pmu_read_control(idx) &
+ ~M_PERFCTL_COUNT_EVENT_WHENEVER;
+ mipsxx_pmu_write_control(idx, cpuc->saved_ctrl[idx]);
+ local_irq_restore(flags);
+}
+
+static int mipspmu_event_set_period(struct perf_event *event,
+ struct hw_perf_event *hwc,
+ int idx)
+{
+ u64 left = local64_read(&hwc->period_left);
+ u64 period = hwc->sample_period;
+ int ret = 0;
+
+ if (unlikely((left + period) & (1ULL << 63))) {
+ /* left underflowed by more than period. */
+ left = period;
+ local64_set(&hwc->period_left, left);
+ hwc->last_period = period;
+ ret = 1;
+ } else if (unlikely((left + period) <= period)) {
+ /* left underflowed by less than period. */
+ left += period;
+ local64_set(&hwc->period_left, left);
+ hwc->last_period = period;
+ ret = 1;
+ }
+
+ if (left > mipspmu.max_period) {
+ left = mipspmu.max_period;
+ local64_set(&hwc->period_left, left);
+ }
+
+ local64_set(&hwc->prev_count, mipspmu.overflow - left);
+
+ if (get_loongson3_pmu_type() == LOONGSON_PMU_TYPE2)
+ mipsxx_pmu_write_control(idx,
+ M_PERFCTL_EVENT(hwc->event_base & 0x3ff));
+
+ mipspmu.write_counter(idx, mipspmu.overflow - left);
+
+ perf_event_update_userpage(event);
+
+ return ret;
+}
+
+static void mipspmu_event_update(struct perf_event *event,
+ struct hw_perf_event *hwc,
+ int idx)
+{
+ u64 prev_raw_count, new_raw_count;
+ u64 delta;
+
+again:
+ prev_raw_count = local64_read(&hwc->prev_count);
+ new_raw_count = mipspmu.read_counter(idx);
+
+ if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
+ new_raw_count) != prev_raw_count)
+ goto again;
+
+ delta = new_raw_count - prev_raw_count;
+
+ local64_add(delta, &event->count);
+ local64_sub(delta, &hwc->period_left);
+}
+
+static void mipspmu_start(struct perf_event *event, int flags)
+{
+ struct hw_perf_event *hwc = &event->hw;
+
+ if (flags & PERF_EF_RELOAD)
+ WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
+
+ hwc->state = 0;
+
+ /* Set the period for the event. */
+ mipspmu_event_set_period(event, hwc, hwc->idx);
+
+ /* Enable the event. */
+ mipsxx_pmu_enable_event(hwc, hwc->idx);
+}
+
+static void mipspmu_stop(struct perf_event *event, int flags)
+{
+ struct hw_perf_event *hwc = &event->hw;
+
+ if (!(hwc->state & PERF_HES_STOPPED)) {
+ /* We are working on a local event. */
+ mipsxx_pmu_disable_event(hwc->idx);
+ barrier();
+ mipspmu_event_update(event, hwc, hwc->idx);
+ hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
+ }
+}
+
+static int mipspmu_add(struct perf_event *event, int flags)
+{
+ struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
+ struct hw_perf_event *hwc = &event->hw;
+ int idx;
+ int err = 0;
+
+ perf_pmu_disable(event->pmu);
+
+ /* To look for a free counter for this event. */
+ idx = mipsxx_pmu_alloc_counter(cpuc, hwc);
+ if (idx < 0) {
+ err = idx;
+ goto out;
+ }
+
+ /*
+ * If there is an event in the counter we are going to use then
+ * make sure it is disabled.
+ */
+ event->hw.idx = idx;
+ mipsxx_pmu_disable_event(idx);
+ cpuc->events[idx] = event;
+
+ hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
+ if (flags & PERF_EF_START)
+ mipspmu_start(event, PERF_EF_RELOAD);
+
+ /* Propagate our changes to the userspace mapping. */
+ perf_event_update_userpage(event);
+
+out:
+ perf_pmu_enable(event->pmu);
+ return err;
+}
+
+static void mipspmu_del(struct perf_event *event, int flags)
+{
+ struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
+ struct hw_perf_event *hwc = &event->hw;
+ int idx = hwc->idx;
+
+ WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
+
+ mipspmu_stop(event, PERF_EF_UPDATE);
+ cpuc->events[idx] = NULL;
+ clear_bit(idx, cpuc->used_mask);
+
+ perf_event_update_userpage(event);
+}
+
+static void mipspmu_read(struct perf_event *event)
+{
+ struct hw_perf_event *hwc = &event->hw;
+
+ /* Don't read disabled counters! */
+ if (hwc->idx < 0)
+ return;
+
+ mipspmu_event_update(event, hwc, hwc->idx);
+}
+
+static void mipspmu_enable(struct pmu *pmu)
+{
+#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
+ write_unlock(&pmuint_rwlock);
+#endif
+ resume_local_counters();
+}
+
+/*
+ * MIPS performance counters can be per-TC. The control registers can
+ * not be directly accessed across CPUs. Hence if we want to do global
+ * control, we need cross CPU calls. on_each_cpu() can help us, but we
+ * can not make sure this function is called with interrupts enabled. So
+ * here we pause local counters and then grab a rwlock and leave the
+ * counters on other CPUs alone. If any counter interrupt raises while
+ * we own the write lock, simply pause local counters on that CPU and
+ * spin in the handler. Also we know we won't be switched to another
+ * CPU after pausing local counters and before grabbing the lock.
+ */
+static void mipspmu_disable(struct pmu *pmu)
+{
+ pause_local_counters();
+#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
+ write_lock(&pmuint_rwlock);
+#endif
+}
+
+static atomic_t active_events = ATOMIC_INIT(0);
+static DEFINE_MUTEX(pmu_reserve_mutex);
+static int (*save_perf_irq)(void);
+
+static int mipspmu_get_irq(void)
+{
+ int err;
+
+ if (mipspmu.irq >= 0) {
+ /* Request my own irq handler. */
+ err = request_irq(mipspmu.irq, mipsxx_pmu_handle_irq,
+ IRQF_PERCPU | IRQF_NOBALANCING |
+ IRQF_NO_THREAD | IRQF_NO_SUSPEND |
+ IRQF_SHARED,
+ "mips_perf_pmu", &mipspmu);
+ if (err) {
+ pr_warn("Unable to request IRQ%d for MIPS performance counters!\n",
+ mipspmu.irq);
+ }
+ } else if (cp0_perfcount_irq < 0) {
+ /*
+ * We are sharing the irq number with the timer interrupt.
+ */
+ save_perf_irq = perf_irq;
+ perf_irq = mipsxx_pmu_handle_shared_irq;
+ err = 0;
+ } else {
+ pr_warn("The platform hasn't properly defined its interrupt controller\n");
+ err = -ENOENT;
+ }
+
+ return err;
+}
+
+static void mipspmu_free_irq(void)
+{
+ if (mipspmu.irq >= 0)
+ free_irq(mipspmu.irq, &mipspmu);
+ else if (cp0_perfcount_irq < 0)
+ perf_irq = save_perf_irq;
+}
+
+/*
+ * mipsxx/rm9000/loongson2 have different performance counters, they have
+ * specific low-level init routines.
+ */
+static void reset_counters(void *arg);
+static int __hw_perf_event_init(struct perf_event *event);
+
+static void hw_perf_event_destroy(struct perf_event *event)
+{
+ if (atomic_dec_and_mutex_lock(&active_events,
+ &pmu_reserve_mutex)) {
+ /*
+ * We must not call the destroy function with interrupts
+ * disabled.
+ */
+ on_each_cpu(reset_counters,
+ (void *)(long)mipspmu.num_counters, 1);
+ mipspmu_free_irq();
+ mutex_unlock(&pmu_reserve_mutex);
+ }
+}
+
+static int mipspmu_event_init(struct perf_event *event)
+{
+ int err = 0;
+
+ /* does not support taken branch sampling */
+ if (has_branch_stack(event))
+ return -EOPNOTSUPP;
+
+ switch (event->attr.type) {
+ case PERF_TYPE_RAW:
+ case PERF_TYPE_HARDWARE:
+ case PERF_TYPE_HW_CACHE:
+ break;
+
+ default:
+ return -ENOENT;
+ }
+
+ if (event->cpu >= 0 && !cpu_online(event->cpu))
+ return -ENODEV;
+
+ if (!atomic_inc_not_zero(&active_events)) {
+ mutex_lock(&pmu_reserve_mutex);
+ if (atomic_read(&active_events) == 0)
+ err = mipspmu_get_irq();
+
+ if (!err)
+ atomic_inc(&active_events);
+ mutex_unlock(&pmu_reserve_mutex);
+ }
+
+ if (err)
+ return err;
+
+ return __hw_perf_event_init(event);
+}
+
+static struct pmu pmu = {
+ .pmu_enable = mipspmu_enable,
+ .pmu_disable = mipspmu_disable,
+ .event_init = mipspmu_event_init,
+ .add = mipspmu_add,
+ .del = mipspmu_del,
+ .start = mipspmu_start,
+ .stop = mipspmu_stop,
+ .read = mipspmu_read,
+};
+
+static unsigned int mipspmu_perf_event_encode(const struct mips_perf_event *pev)
+{
+/*
+ * Top 8 bits for range, next 16 bits for cntr_mask, lowest 8 bits for
+ * event_id.
+ */
+#ifdef CONFIG_MIPS_MT_SMP
+ if (num_possible_cpus() > 1)
+ return ((unsigned int)pev->range << 24) |
+ (pev->cntr_mask & 0xffff00) |
+ (pev->event_id & 0xff);
+ else
+#endif /* CONFIG_MIPS_MT_SMP */
+ {
+ if (get_loongson3_pmu_type() == LOONGSON_PMU_TYPE2)
+ return (pev->cntr_mask & 0xfffc00) |
+ (pev->event_id & 0x3ff);
+ else
+ return (pev->cntr_mask & 0xffff00) |
+ (pev->event_id & 0xff);
+ }
+}
+
+static const struct mips_perf_event *mipspmu_map_general_event(int idx)
+{
+
+ if ((*mipspmu.general_event_map)[idx].cntr_mask == 0)
+ return ERR_PTR(-EOPNOTSUPP);
+ return &(*mipspmu.general_event_map)[idx];
+}
+
+static const struct mips_perf_event *mipspmu_map_cache_event(u64 config)
+{
+ unsigned int cache_type, cache_op, cache_result;
+ const struct mips_perf_event *pev;
+
+ cache_type = (config >> 0) & 0xff;
+ if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
+ return ERR_PTR(-EINVAL);
+
+ cache_op = (config >> 8) & 0xff;
+ if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
+ return ERR_PTR(-EINVAL);
+
+ cache_result = (config >> 16) & 0xff;
+ if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
+ return ERR_PTR(-EINVAL);
+
+ pev = &((*mipspmu.cache_event_map)
+ [cache_type]
+ [cache_op]
+ [cache_result]);
+
+ if (pev->cntr_mask == 0)
+ return ERR_PTR(-EOPNOTSUPP);
+
+ return pev;
+
+}
+
+static int validate_group(struct perf_event *event)
+{
+ struct perf_event *sibling, *leader = event->group_leader;
+ struct cpu_hw_events fake_cpuc;
+
+ memset(&fake_cpuc, 0, sizeof(fake_cpuc));
+
+ if (mipsxx_pmu_alloc_counter(&fake_cpuc, &leader->hw) < 0)
+ return -EINVAL;
+
+ for_each_sibling_event(sibling, leader) {
+ if (mipsxx_pmu_alloc_counter(&fake_cpuc, &sibling->hw) < 0)
+ return -EINVAL;
+ }
+
+ if (mipsxx_pmu_alloc_counter(&fake_cpuc, &event->hw) < 0)
+ return -EINVAL;
+
+ return 0;
+}
+
+/* This is needed by specific irq handlers in perf_event_*.c */
+static void handle_associated_event(struct cpu_hw_events *cpuc,
+ int idx, struct perf_sample_data *data,
+ struct pt_regs *regs)
+{
+ struct perf_event *event = cpuc->events[idx];
+ struct hw_perf_event *hwc = &event->hw;
+
+ mipspmu_event_update(event, hwc, idx);
+ data->period = event->hw.last_period;
+ if (!mipspmu_event_set_period(event, hwc, idx))
+ return;
+
+ if (perf_event_overflow(event, data, regs))
+ mipsxx_pmu_disable_event(idx);
+}
+
+
+static int __n_counters(void)
+{
+ if (!cpu_has_perf)
+ return 0;
+ if (!(read_c0_perfctrl0() & MIPS_PERFCTRL_M))
+ return 1;
+ if (!(read_c0_perfctrl1() & MIPS_PERFCTRL_M))
+ return 2;
+ if (!(read_c0_perfctrl2() & MIPS_PERFCTRL_M))
+ return 3;
+
+ return 4;
+}
+
+static int n_counters(void)
+{
+ int counters;
+
+ switch (current_cpu_type()) {
+ case CPU_R10000:
+ counters = 2;
+ break;
+
+ case CPU_R12000:
+ case CPU_R14000:
+ case CPU_R16000:
+ counters = 4;
+ break;
+
+ default:
+ counters = __n_counters();
+ }
+
+ return counters;
+}
+
+static void loongson3_reset_counters(void *arg)
+{
+ int counters = (int)(long)arg;
+
+ switch (counters) {
+ case 4:
+ mipsxx_pmu_write_control(3, 0);
+ mipspmu.write_counter(3, 0);
+ mipsxx_pmu_write_control(3, 127<<5);
+ mipspmu.write_counter(3, 0);
+ mipsxx_pmu_write_control(3, 191<<5);
+ mipspmu.write_counter(3, 0);
+ mipsxx_pmu_write_control(3, 255<<5);
+ mipspmu.write_counter(3, 0);
+ mipsxx_pmu_write_control(3, 319<<5);
+ mipspmu.write_counter(3, 0);
+ mipsxx_pmu_write_control(3, 383<<5);
+ mipspmu.write_counter(3, 0);
+ mipsxx_pmu_write_control(3, 575<<5);
+ mipspmu.write_counter(3, 0);
+ fallthrough;
+ case 3:
+ mipsxx_pmu_write_control(2, 0);
+ mipspmu.write_counter(2, 0);
+ mipsxx_pmu_write_control(2, 127<<5);
+ mipspmu.write_counter(2, 0);
+ mipsxx_pmu_write_control(2, 191<<5);
+ mipspmu.write_counter(2, 0);
+ mipsxx_pmu_write_control(2, 255<<5);
+ mipspmu.write_counter(2, 0);
+ mipsxx_pmu_write_control(2, 319<<5);
+ mipspmu.write_counter(2, 0);
+ mipsxx_pmu_write_control(2, 383<<5);
+ mipspmu.write_counter(2, 0);
+ mipsxx_pmu_write_control(2, 575<<5);
+ mipspmu.write_counter(2, 0);
+ fallthrough;
+ case 2:
+ mipsxx_pmu_write_control(1, 0);
+ mipspmu.write_counter(1, 0);
+ mipsxx_pmu_write_control(1, 127<<5);
+ mipspmu.write_counter(1, 0);
+ mipsxx_pmu_write_control(1, 191<<5);
+ mipspmu.write_counter(1, 0);
+ mipsxx_pmu_write_control(1, 255<<5);
+ mipspmu.write_counter(1, 0);
+ mipsxx_pmu_write_control(1, 319<<5);
+ mipspmu.write_counter(1, 0);
+ mipsxx_pmu_write_control(1, 383<<5);
+ mipspmu.write_counter(1, 0);
+ mipsxx_pmu_write_control(1, 575<<5);
+ mipspmu.write_counter(1, 0);
+ fallthrough;
+ case 1:
+ mipsxx_pmu_write_control(0, 0);
+ mipspmu.write_counter(0, 0);
+ mipsxx_pmu_write_control(0, 127<<5);
+ mipspmu.write_counter(0, 0);
+ mipsxx_pmu_write_control(0, 191<<5);
+ mipspmu.write_counter(0, 0);
+ mipsxx_pmu_write_control(0, 255<<5);
+ mipspmu.write_counter(0, 0);
+ mipsxx_pmu_write_control(0, 319<<5);
+ mipspmu.write_counter(0, 0);
+ mipsxx_pmu_write_control(0, 383<<5);
+ mipspmu.write_counter(0, 0);
+ mipsxx_pmu_write_control(0, 575<<5);
+ mipspmu.write_counter(0, 0);
+ break;
+ }
+}
+
+static void reset_counters(void *arg)
+{
+ int counters = (int)(long)arg;
+
+ if (get_loongson3_pmu_type() == LOONGSON_PMU_TYPE2) {
+ loongson3_reset_counters(arg);
+ return;
+ }
+
+ switch (counters) {
+ case 4:
+ mipsxx_pmu_write_control(3, 0);
+ mipspmu.write_counter(3, 0);
+ fallthrough;
+ case 3:
+ mipsxx_pmu_write_control(2, 0);
+ mipspmu.write_counter(2, 0);
+ fallthrough;
+ case 2:
+ mipsxx_pmu_write_control(1, 0);
+ mipspmu.write_counter(1, 0);
+ fallthrough;
+ case 1:
+ mipsxx_pmu_write_control(0, 0);
+ mipspmu.write_counter(0, 0);
+ break;
+ }
+}
+
+/* 24K/34K/1004K/interAptiv/loongson1 cores share the same event map. */
+static const struct mips_perf_event mipsxxcore_event_map
+ [PERF_COUNT_HW_MAX] = {
+ [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
+ [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
+ [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x02, CNTR_EVEN, T },
+ [PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
+};
+
+/* 74K/proAptiv core has different branch event code. */
+static const struct mips_perf_event mipsxxcore_event_map2
+ [PERF_COUNT_HW_MAX] = {
+ [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
+ [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
+ [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x27, CNTR_EVEN, T },
+ [PERF_COUNT_HW_BRANCH_MISSES] = { 0x27, CNTR_ODD, T },
+};
+
+static const struct mips_perf_event i6x00_event_map[PERF_COUNT_HW_MAX] = {
+ [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD },
+ [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD },
+ /* These only count dcache, not icache */
+ [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x45, CNTR_EVEN | CNTR_ODD },
+ [PERF_COUNT_HW_CACHE_MISSES] = { 0x48, CNTR_EVEN | CNTR_ODD },
+ [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x15, CNTR_EVEN | CNTR_ODD },
+ [PERF_COUNT_HW_BRANCH_MISSES] = { 0x16, CNTR_EVEN | CNTR_ODD },
+};
+
+static const struct mips_perf_event loongson3_event_map1[PERF_COUNT_HW_MAX] = {
+ [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN },
+ [PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, CNTR_ODD },
+ [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x01, CNTR_EVEN },
+ [PERF_COUNT_HW_BRANCH_MISSES] = { 0x01, CNTR_ODD },
+};
+
+static const struct mips_perf_event loongson3_event_map2[PERF_COUNT_HW_MAX] = {
+ [PERF_COUNT_HW_CPU_CYCLES] = { 0x80, CNTR_ALL },
+ [PERF_COUNT_HW_INSTRUCTIONS] = { 0x81, CNTR_ALL },
+ [PERF_COUNT_HW_CACHE_MISSES] = { 0x18, CNTR_ALL },
+ [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x94, CNTR_ALL },
+ [PERF_COUNT_HW_BRANCH_MISSES] = { 0x9c, CNTR_ALL },
+};
+
+static const struct mips_perf_event loongson3_event_map3[PERF_COUNT_HW_MAX] = {
+ [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_ALL },
+ [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_ALL },
+ [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x1c, CNTR_ALL },
+ [PERF_COUNT_HW_CACHE_MISSES] = { 0x1d, CNTR_ALL },
+ [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x02, CNTR_ALL },
+ [PERF_COUNT_HW_BRANCH_MISSES] = { 0x08, CNTR_ALL },
+};
+
+static const struct mips_perf_event octeon_event_map[PERF_COUNT_HW_MAX] = {
+ [PERF_COUNT_HW_CPU_CYCLES] = { 0x01, CNTR_ALL },
+ [PERF_COUNT_HW_INSTRUCTIONS] = { 0x03, CNTR_ALL },
+ [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x2b, CNTR_ALL },
+ [PERF_COUNT_HW_CACHE_MISSES] = { 0x2e, CNTR_ALL },
+ [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x08, CNTR_ALL },
+ [PERF_COUNT_HW_BRANCH_MISSES] = { 0x09, CNTR_ALL },
+ [PERF_COUNT_HW_BUS_CYCLES] = { 0x25, CNTR_ALL },
+};
+
+static const struct mips_perf_event bmips5000_event_map
+ [PERF_COUNT_HW_MAX] = {
+ [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, T },
+ [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
+ [PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
+};
+
+/* 24K/34K/1004K/interAptiv/loongson1 cores share the same cache event map. */
+static const struct mips_perf_event mipsxxcore_cache_map
+ [PERF_COUNT_HW_CACHE_MAX]
+ [PERF_COUNT_HW_CACHE_OP_MAX]
+ [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
+[C(L1D)] = {
+ /*
+ * Like some other architectures (e.g. ARM), the performance
+ * counters don't differentiate between read and write
+ * accesses/misses, so this isn't strictly correct, but it's the
+ * best we can do. Writes and reads get combined.
+ */
+ [C(OP_READ)] = {
+ [C(RESULT_ACCESS)] = { 0x0a, CNTR_EVEN, T },
+ [C(RESULT_MISS)] = { 0x0b, CNTR_EVEN | CNTR_ODD, T },
+ },
+ [C(OP_WRITE)] = {
+ [C(RESULT_ACCESS)] = { 0x0a, CNTR_EVEN, T },
+ [C(RESULT_MISS)] = { 0x0b, CNTR_EVEN | CNTR_ODD, T },
+ },
+},
+[C(L1I)] = {
+ [C(OP_READ)] = {
+ [C(RESULT_ACCESS)] = { 0x09, CNTR_EVEN, T },
+ [C(RESULT_MISS)] = { 0x09, CNTR_ODD, T },
+ },
+ [C(OP_WRITE)] = {
+ [C(RESULT_ACCESS)] = { 0x09, CNTR_EVEN, T },
+ [C(RESULT_MISS)] = { 0x09, CNTR_ODD, T },
+ },
+ [C(OP_PREFETCH)] = {
+ [C(RESULT_ACCESS)] = { 0x14, CNTR_EVEN, T },
+ /*
+ * Note that MIPS has only "hit" events countable for
+ * the prefetch operation.
+ */
+ },
+},
+[C(LL)] = {
+ [C(OP_READ)] = {
+ [C(RESULT_ACCESS)] = { 0x15, CNTR_ODD, P },
+ [C(RESULT_MISS)] = { 0x16, CNTR_EVEN, P },
+ },
+ [C(OP_WRITE)] = {
+ [C(RESULT_ACCESS)] = { 0x15, CNTR_ODD, P },
+ [C(RESULT_MISS)] = { 0x16, CNTR_EVEN, P },
+ },
+},
+[C(DTLB)] = {
+ [C(OP_READ)] = {
+ [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
+ [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
+ },
+ [C(OP_WRITE)] = {
+ [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
+ [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
+ },
+},
+[C(ITLB)] = {
+ [C(OP_READ)] = {
+ [C(RESULT_ACCESS)] = { 0x05, CNTR_EVEN, T },
+ [C(RESULT_MISS)] = { 0x05, CNTR_ODD, T },
+ },
+ [C(OP_WRITE)] = {
+ [C(RESULT_ACCESS)] = { 0x05, CNTR_EVEN, T },
+ [C(RESULT_MISS)] = { 0x05, CNTR_ODD, T },
+ },
+},
+[C(BPU)] = {
+ /* Using the same code for *HW_BRANCH* */
+ [C(OP_READ)] = {
+ [C(RESULT_ACCESS)] = { 0x02, CNTR_EVEN, T },
+ [C(RESULT_MISS)] = { 0x02, CNTR_ODD, T },
+ },
+ [C(OP_WRITE)] = {
+ [C(RESULT_ACCESS)] = { 0x02, CNTR_EVEN, T },
+ [C(RESULT_MISS)] = { 0x02, CNTR_ODD, T },
+ },
+},
+};
+
+/* 74K/proAptiv core has completely different cache event map. */
+static const struct mips_perf_event mipsxxcore_cache_map2
+ [PERF_COUNT_HW_CACHE_MAX]
+ [PERF_COUNT_HW_CACHE_OP_MAX]
+ [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
+[C(L1D)] = {
+ /*
+ * Like some other architectures (e.g. ARM), the performance
+ * counters don't differentiate between read and write
+ * accesses/misses, so this isn't strictly correct, but it's the
+ * best we can do. Writes and reads get combined.
+ */
+ [C(OP_READ)] = {
+ [C(RESULT_ACCESS)] = { 0x17, CNTR_ODD, T },
+ [C(RESULT_MISS)] = { 0x18, CNTR_ODD, T },
+ },
+ [C(OP_WRITE)] = {
+ [C(RESULT_ACCESS)] = { 0x17, CNTR_ODD, T },
+ [C(RESULT_MISS)] = { 0x18, CNTR_ODD, T },
+ },
+},
+[C(L1I)] = {
+ [C(OP_READ)] = {
+ [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
+ [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
+ },
+ [C(OP_WRITE)] = {
+ [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
+ [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
+ },
+ [C(OP_PREFETCH)] = {
+ [C(RESULT_ACCESS)] = { 0x34, CNTR_EVEN, T },
+ /*
+ * Note that MIPS has only "hit" events countable for
+ * the prefetch operation.
+ */
+ },
+},
+[C(LL)] = {
+ [C(OP_READ)] = {
+ [C(RESULT_ACCESS)] = { 0x1c, CNTR_ODD, P },
+ [C(RESULT_MISS)] = { 0x1d, CNTR_EVEN, P },
+ },
+ [C(OP_WRITE)] = {
+ [C(RESULT_ACCESS)] = { 0x1c, CNTR_ODD, P },
+ [C(RESULT_MISS)] = { 0x1d, CNTR_EVEN, P },
+ },
+},
+/*
+ * 74K core does not have specific DTLB events. proAptiv core has
+ * "speculative" DTLB events which are numbered 0x63 (even/odd) and
+ * not included here. One can use raw events if really needed.
+ */
+[C(ITLB)] = {
+ [C(OP_READ)] = {
+ [C(RESULT_ACCESS)] = { 0x04, CNTR_EVEN, T },
+ [C(RESULT_MISS)] = { 0x04, CNTR_ODD, T },
+ },
+ [C(OP_WRITE)] = {
+ [C(RESULT_ACCESS)] = { 0x04, CNTR_EVEN, T },
+ [C(RESULT_MISS)] = { 0x04, CNTR_ODD, T },
+ },
+},
+[C(BPU)] = {
+ /* Using the same code for *HW_BRANCH* */
+ [C(OP_READ)] = {
+ [C(RESULT_ACCESS)] = { 0x27, CNTR_EVEN, T },
+ [C(RESULT_MISS)] = { 0x27, CNTR_ODD, T },
+ },
+ [C(OP_WRITE)] = {
+ [C(RESULT_ACCESS)] = { 0x27, CNTR_EVEN, T },
+ [C(RESULT_MISS)] = { 0x27, CNTR_ODD, T },
+ },
+},
+};
+
+static const struct mips_perf_event i6x00_cache_map
+ [PERF_COUNT_HW_CACHE_MAX]
+ [PERF_COUNT_HW_CACHE_OP_MAX]
+ [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
+[C(L1D)] = {
+ [C(OP_READ)] = {
+ [C(RESULT_ACCESS)] = { 0x46, CNTR_EVEN | CNTR_ODD },
+ [C(RESULT_MISS)] = { 0x49, CNTR_EVEN | CNTR_ODD },
+ },
+ [C(OP_WRITE)] = {
+ [C(RESULT_ACCESS)] = { 0x47, CNTR_EVEN | CNTR_ODD },
+ [C(RESULT_MISS)] = { 0x4a, CNTR_EVEN | CNTR_ODD },
+ },
+},
+[C(L1I)] = {
+ [C(OP_READ)] = {
+ [C(RESULT_ACCESS)] = { 0x84, CNTR_EVEN | CNTR_ODD },
+ [C(RESULT_MISS)] = { 0x85, CNTR_EVEN | CNTR_ODD },
+ },
+},
+[C(DTLB)] = {
+ /* Can't distinguish read & write */
+ [C(OP_READ)] = {
+ [C(RESULT_ACCESS)] = { 0x40, CNTR_EVEN | CNTR_ODD },
+ [C(RESULT_MISS)] = { 0x41, CNTR_EVEN | CNTR_ODD },
+ },
+ [C(OP_WRITE)] = {
+ [C(RESULT_ACCESS)] = { 0x40, CNTR_EVEN | CNTR_ODD },
+ [C(RESULT_MISS)] = { 0x41, CNTR_EVEN | CNTR_ODD },
+ },
+},
+[C(BPU)] = {
+ /* Conditional branches / mispredicted */
+ [C(OP_READ)] = {
+ [C(RESULT_ACCESS)] = { 0x15, CNTR_EVEN | CNTR_ODD },
+ [C(RESULT_MISS)] = { 0x16, CNTR_EVEN | CNTR_ODD },
+ },
+},
+};
+
+static const struct mips_perf_event loongson3_cache_map1
+ [PERF_COUNT_HW_CACHE_MAX]
+ [PERF_COUNT_HW_CACHE_OP_MAX]
+ [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
+[C(L1D)] = {
+ /*
+ * Like some other architectures (e.g. ARM), the performance
+ * counters don't differentiate between read and write
+ * accesses/misses, so this isn't strictly correct, but it's the
+ * best we can do. Writes and reads get combined.
+ */
+ [C(OP_READ)] = {
+ [C(RESULT_MISS)] = { 0x04, CNTR_ODD },
+ },
+ [C(OP_WRITE)] = {
+ [C(RESULT_MISS)] = { 0x04, CNTR_ODD },
+ },
+},
+[C(L1I)] = {
+ [C(OP_READ)] = {
+ [C(RESULT_MISS)] = { 0x04, CNTR_EVEN },
+ },
+ [C(OP_WRITE)] = {
+ [C(RESULT_MISS)] = { 0x04, CNTR_EVEN },
+ },
+},
+[C(DTLB)] = {
+ [C(OP_READ)] = {
+ [C(RESULT_MISS)] = { 0x09, CNTR_ODD },
+ },
+ [C(OP_WRITE)] = {
+ [C(RESULT_MISS)] = { 0x09, CNTR_ODD },
+ },
+},
+[C(ITLB)] = {
+ [C(OP_READ)] = {
+ [C(RESULT_MISS)] = { 0x0c, CNTR_ODD },
+ },
+ [C(OP_WRITE)] = {
+ [C(RESULT_MISS)] = { 0x0c, CNTR_ODD },
+ },
+},
+[C(BPU)] = {
+ /* Using the same code for *HW_BRANCH* */
+ [C(OP_READ)] = {
+ [C(RESULT_ACCESS)] = { 0x01, CNTR_EVEN },
+ [C(RESULT_MISS)] = { 0x01, CNTR_ODD },
+ },
+ [C(OP_WRITE)] = {
+ [C(RESULT_ACCESS)] = { 0x01, CNTR_EVEN },
+ [C(RESULT_MISS)] = { 0x01, CNTR_ODD },
+ },
+},
+};
+
+static const struct mips_perf_event loongson3_cache_map2
+ [PERF_COUNT_HW_CACHE_MAX]
+ [PERF_COUNT_HW_CACHE_OP_MAX]
+ [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
+[C(L1D)] = {
+ /*
+ * Like some other architectures (e.g. ARM), the performance
+ * counters don't differentiate between read and write
+ * accesses/misses, so this isn't strictly correct, but it's the
+ * best we can do. Writes and reads get combined.
+ */
+ [C(OP_READ)] = {
+ [C(RESULT_ACCESS)] = { 0x156, CNTR_ALL },
+ },
+ [C(OP_WRITE)] = {
+ [C(RESULT_ACCESS)] = { 0x155, CNTR_ALL },
+ [C(RESULT_MISS)] = { 0x153, CNTR_ALL },
+ },
+},
+[C(L1I)] = {
+ [C(OP_READ)] = {
+ [C(RESULT_MISS)] = { 0x18, CNTR_ALL },
+ },
+ [C(OP_WRITE)] = {
+ [C(RESULT_MISS)] = { 0x18, CNTR_ALL },
+ },
+},
+[C(LL)] = {
+ [C(OP_READ)] = {
+ [C(RESULT_ACCESS)] = { 0x1b6, CNTR_ALL },
+ },
+ [C(OP_WRITE)] = {
+ [C(RESULT_ACCESS)] = { 0x1b7, CNTR_ALL },
+ },
+ [C(OP_PREFETCH)] = {
+ [C(RESULT_ACCESS)] = { 0x1bf, CNTR_ALL },
+ },
+},
+[C(DTLB)] = {
+ [C(OP_READ)] = {
+ [C(RESULT_MISS)] = { 0x92, CNTR_ALL },
+ },
+ [C(OP_WRITE)] = {
+ [C(RESULT_MISS)] = { 0x92, CNTR_ALL },
+ },
+},
+[C(ITLB)] = {
+ [C(OP_READ)] = {
+ [C(RESULT_MISS)] = { 0x1a, CNTR_ALL },
+ },
+ [C(OP_WRITE)] = {
+ [C(RESULT_MISS)] = { 0x1a, CNTR_ALL },
+ },
+},
+[C(BPU)] = {
+ /* Using the same code for *HW_BRANCH* */
+ [C(OP_READ)] = {
+ [C(RESULT_ACCESS)] = { 0x94, CNTR_ALL },
+ [C(RESULT_MISS)] = { 0x9c, CNTR_ALL },
+ },
+},
+};
+
+static const struct mips_perf_event loongson3_cache_map3
+ [PERF_COUNT_HW_CACHE_MAX]
+ [PERF_COUNT_HW_CACHE_OP_MAX]
+ [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
+[C(L1D)] = {
+ /*
+ * Like some other architectures (e.g. ARM), the performance
+ * counters don't differentiate between read and write
+ * accesses/misses, so this isn't strictly correct, but it's the
+ * best we can do. Writes and reads get combined.
+ */
+ [C(OP_READ)] = {
+ [C(RESULT_ACCESS)] = { 0x1e, CNTR_ALL },
+ [C(RESULT_MISS)] = { 0x1f, CNTR_ALL },
+ },
+ [C(OP_PREFETCH)] = {
+ [C(RESULT_ACCESS)] = { 0xaa, CNTR_ALL },
+ [C(RESULT_MISS)] = { 0xa9, CNTR_ALL },
+ },
+},
+[C(L1I)] = {
+ [C(OP_READ)] = {
+ [C(RESULT_ACCESS)] = { 0x1c, CNTR_ALL },
+ [C(RESULT_MISS)] = { 0x1d, CNTR_ALL },
+ },
+},
+[C(LL)] = {
+ [C(OP_READ)] = {
+ [C(RESULT_ACCESS)] = { 0x2e, CNTR_ALL },
+ [C(RESULT_MISS)] = { 0x2f, CNTR_ALL },
+ },
+},
+[C(DTLB)] = {
+ [C(OP_READ)] = {
+ [C(RESULT_ACCESS)] = { 0x14, CNTR_ALL },
+ [C(RESULT_MISS)] = { 0x1b, CNTR_ALL },
+ },
+},
+[C(ITLB)] = {
+ [C(OP_READ)] = {
+ [C(RESULT_MISS)] = { 0x1a, CNTR_ALL },
+ },
+},
+[C(BPU)] = {
+ /* Using the same code for *HW_BRANCH* */
+ [C(OP_READ)] = {
+ [C(RESULT_ACCESS)] = { 0x02, CNTR_ALL },
+ [C(RESULT_MISS)] = { 0x08, CNTR_ALL },
+ },
+},
+};
+
+/* BMIPS5000 */
+static const struct mips_perf_event bmips5000_cache_map
+ [PERF_COUNT_HW_CACHE_MAX]
+ [PERF_COUNT_HW_CACHE_OP_MAX]
+ [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
+[C(L1D)] = {
+ /*
+ * Like some other architectures (e.g. ARM), the performance
+ * counters don't differentiate between read and write
+ * accesses/misses, so this isn't strictly correct, but it's the
+ * best we can do. Writes and reads get combined.
+ */
+ [C(OP_READ)] = {
+ [C(RESULT_ACCESS)] = { 12, CNTR_EVEN, T },
+ [C(RESULT_MISS)] = { 12, CNTR_ODD, T },
+ },
+ [C(OP_WRITE)] = {
+ [C(RESULT_ACCESS)] = { 12, CNTR_EVEN, T },
+ [C(RESULT_MISS)] = { 12, CNTR_ODD, T },
+ },
+},
+[C(L1I)] = {
+ [C(OP_READ)] = {
+ [C(RESULT_ACCESS)] = { 10, CNTR_EVEN, T },
+ [C(RESULT_MISS)] = { 10, CNTR_ODD, T },
+ },
+ [C(OP_WRITE)] = {
+ [C(RESULT_ACCESS)] = { 10, CNTR_EVEN, T },
+ [C(RESULT_MISS)] = { 10, CNTR_ODD, T },
+ },
+ [C(OP_PREFETCH)] = {
+ [C(RESULT_ACCESS)] = { 23, CNTR_EVEN, T },
+ /*
+ * Note that MIPS has only "hit" events countable for
+ * the prefetch operation.
+ */
+ },
+},
+[C(LL)] = {
+ [C(OP_READ)] = {
+ [C(RESULT_ACCESS)] = { 28, CNTR_EVEN, P },
+ [C(RESULT_MISS)] = { 28, CNTR_ODD, P },
+ },
+ [C(OP_WRITE)] = {
+ [C(RESULT_ACCESS)] = { 28, CNTR_EVEN, P },
+ [C(RESULT_MISS)] = { 28, CNTR_ODD, P },
+ },
+},
+[C(BPU)] = {
+ /* Using the same code for *HW_BRANCH* */
+ [C(OP_READ)] = {
+ [C(RESULT_MISS)] = { 0x02, CNTR_ODD, T },
+ },
+ [C(OP_WRITE)] = {
+ [C(RESULT_MISS)] = { 0x02, CNTR_ODD, T },
+ },
+},
+};
+
+static const struct mips_perf_event octeon_cache_map
+ [PERF_COUNT_HW_CACHE_MAX]
+ [PERF_COUNT_HW_CACHE_OP_MAX]
+ [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
+[C(L1D)] = {
+ [C(OP_READ)] = {
+ [C(RESULT_ACCESS)] = { 0x2b, CNTR_ALL },
+ [C(RESULT_MISS)] = { 0x2e, CNTR_ALL },
+ },
+ [C(OP_WRITE)] = {
+ [C(RESULT_ACCESS)] = { 0x30, CNTR_ALL },
+ },
+},
+[C(L1I)] = {
+ [C(OP_READ)] = {
+ [C(RESULT_ACCESS)] = { 0x18, CNTR_ALL },
+ },
+ [C(OP_PREFETCH)] = {
+ [C(RESULT_ACCESS)] = { 0x19, CNTR_ALL },
+ },
+},
+[C(DTLB)] = {
+ /*
+ * Only general DTLB misses are counted use the same event for
+ * read and write.
+ */
+ [C(OP_READ)] = {
+ [C(RESULT_MISS)] = { 0x35, CNTR_ALL },
+ },
+ [C(OP_WRITE)] = {
+ [C(RESULT_MISS)] = { 0x35, CNTR_ALL },
+ },
+},
+[C(ITLB)] = {
+ [C(OP_READ)] = {
+ [C(RESULT_MISS)] = { 0x37, CNTR_ALL },
+ },
+},
+};
+
+static int __hw_perf_event_init(struct perf_event *event)
+{
+ struct perf_event_attr *attr = &event->attr;
+ struct hw_perf_event *hwc = &event->hw;
+ const struct mips_perf_event *pev;
+ int err;
+
+ /* Returning MIPS event descriptor for generic perf event. */
+ if (PERF_TYPE_HARDWARE == event->attr.type) {
+ if (event->attr.config >= PERF_COUNT_HW_MAX)
+ return -EINVAL;
+ pev = mipspmu_map_general_event(event->attr.config);
+ } else if (PERF_TYPE_HW_CACHE == event->attr.type) {
+ pev = mipspmu_map_cache_event(event->attr.config);
+ } else if (PERF_TYPE_RAW == event->attr.type) {
+ /* We are working on the global raw event. */
+ mutex_lock(&raw_event_mutex);
+ pev = mipspmu.map_raw_event(event->attr.config);
+ } else {
+ /* The event type is not (yet) supported. */
+ return -EOPNOTSUPP;
+ }
+
+ if (IS_ERR(pev)) {
+ if (PERF_TYPE_RAW == event->attr.type)
+ mutex_unlock(&raw_event_mutex);
+ return PTR_ERR(pev);
+ }
+
+ /*
+ * We allow max flexibility on how each individual counter shared
+ * by the single CPU operates (the mode exclusion and the range).
+ */
+ hwc->config_base = MIPS_PERFCTRL_IE;
+
+ hwc->event_base = mipspmu_perf_event_encode(pev);
+ if (PERF_TYPE_RAW == event->attr.type)
+ mutex_unlock(&raw_event_mutex);
+
+ if (!attr->exclude_user)
+ hwc->config_base |= MIPS_PERFCTRL_U;
+ if (!attr->exclude_kernel) {
+ hwc->config_base |= MIPS_PERFCTRL_K;
+ /* MIPS kernel mode: KSU == 00b || EXL == 1 || ERL == 1 */
+ hwc->config_base |= MIPS_PERFCTRL_EXL;
+ }
+ if (!attr->exclude_hv)
+ hwc->config_base |= MIPS_PERFCTRL_S;
+
+ hwc->config_base &= M_PERFCTL_CONFIG_MASK;
+ /*
+ * The event can belong to another cpu. We do not assign a local
+ * counter for it for now.
+ */
+ hwc->idx = -1;
+ hwc->config = 0;
+
+ if (!hwc->sample_period) {
+ hwc->sample_period = mipspmu.max_period;
+ hwc->last_period = hwc->sample_period;
+ local64_set(&hwc->period_left, hwc->sample_period);
+ }
+
+ err = 0;
+ if (event->group_leader != event)
+ err = validate_group(event);
+
+ event->destroy = hw_perf_event_destroy;
+
+ if (err)
+ event->destroy(event);
+
+ return err;
+}
+
+static void pause_local_counters(void)
+{
+ struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
+ int ctr = mipspmu.num_counters;
+ unsigned long flags;
+
+ local_irq_save(flags);
+ do {
+ ctr--;
+ cpuc->saved_ctrl[ctr] = mipsxx_pmu_read_control(ctr);
+ mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr] &
+ ~M_PERFCTL_COUNT_EVENT_WHENEVER);
+ } while (ctr > 0);
+ local_irq_restore(flags);
+}
+
+static void resume_local_counters(void)
+{
+ struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
+ int ctr = mipspmu.num_counters;
+
+ do {
+ ctr--;
+ mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr]);
+ } while (ctr > 0);
+}
+
+static int mipsxx_pmu_handle_shared_irq(void)
+{
+ struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
+ struct perf_sample_data data;
+ unsigned int counters = mipspmu.num_counters;
+ u64 counter;
+ int n, handled = IRQ_NONE;
+ struct pt_regs *regs;
+
+ if (cpu_has_perf_cntr_intr_bit && !(read_c0_cause() & CAUSEF_PCI))
+ return handled;
+ /*
+ * First we pause the local counters, so that when we are locked
+ * here, the counters are all paused. When it gets locked due to
+ * perf_disable(), the timer interrupt handler will be delayed.
+ *
+ * See also mipsxx_pmu_start().
+ */
+ pause_local_counters();
+#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
+ read_lock(&pmuint_rwlock);
+#endif
+
+ regs = get_irq_regs();
+
+ perf_sample_data_init(&data, 0, 0);
+
+ for (n = counters - 1; n >= 0; n--) {
+ if (!test_bit(n, cpuc->used_mask))
+ continue;
+
+ counter = mipspmu.read_counter(n);
+ if (!(counter & mipspmu.overflow))
+ continue;
+
+ handle_associated_event(cpuc, n, &data, regs);
+ handled = IRQ_HANDLED;
+ }
+
+#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
+ read_unlock(&pmuint_rwlock);
+#endif
+ resume_local_counters();
+
+ /*
+ * Do all the work for the pending perf events. We can do this
+ * in here because the performance counter interrupt is a regular
+ * interrupt, not NMI.
+ */
+ if (handled == IRQ_HANDLED)
+ irq_work_run();
+
+ return handled;
+}
+
+static irqreturn_t mipsxx_pmu_handle_irq(int irq, void *dev)
+{
+ return mipsxx_pmu_handle_shared_irq();
+}
+
+/* 24K */
+#define IS_BOTH_COUNTERS_24K_EVENT(b) \
+ ((b) == 0 || (b) == 1 || (b) == 11)
+
+/* 34K */
+#define IS_BOTH_COUNTERS_34K_EVENT(b) \
+ ((b) == 0 || (b) == 1 || (b) == 11)
+#ifdef CONFIG_MIPS_MT_SMP
+#define IS_RANGE_P_34K_EVENT(r, b) \
+ ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \
+ (b) == 25 || (b) == 39 || (r) == 44 || (r) == 174 || \
+ (r) == 176 || ((b) >= 50 && (b) <= 55) || \
+ ((b) >= 64 && (b) <= 67))
+#define IS_RANGE_V_34K_EVENT(r) ((r) == 47)
+#endif
+
+/* 74K */
+#define IS_BOTH_COUNTERS_74K_EVENT(b) \
+ ((b) == 0 || (b) == 1)
+
+/* proAptiv */
+#define IS_BOTH_COUNTERS_PROAPTIV_EVENT(b) \
+ ((b) == 0 || (b) == 1)
+/* P5600 */
+#define IS_BOTH_COUNTERS_P5600_EVENT(b) \
+ ((b) == 0 || (b) == 1)
+
+/* 1004K */
+#define IS_BOTH_COUNTERS_1004K_EVENT(b) \
+ ((b) == 0 || (b) == 1 || (b) == 11)
+#ifdef CONFIG_MIPS_MT_SMP
+#define IS_RANGE_P_1004K_EVENT(r, b) \
+ ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \
+ (b) == 25 || (b) == 36 || (b) == 39 || (r) == 44 || \
+ (r) == 174 || (r) == 176 || ((b) >= 50 && (b) <= 59) || \
+ (r) == 188 || (b) == 61 || (b) == 62 || \
+ ((b) >= 64 && (b) <= 67))
+#define IS_RANGE_V_1004K_EVENT(r) ((r) == 47)
+#endif
+
+/* interAptiv */
+#define IS_BOTH_COUNTERS_INTERAPTIV_EVENT(b) \
+ ((b) == 0 || (b) == 1 || (b) == 11)
+#ifdef CONFIG_MIPS_MT_SMP
+/* The P/V/T info is not provided for "(b) == 38" in SUM, assume P. */
+#define IS_RANGE_P_INTERAPTIV_EVENT(r, b) \
+ ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \
+ (b) == 25 || (b) == 36 || (b) == 38 || (b) == 39 || \
+ (r) == 44 || (r) == 174 || (r) == 176 || ((b) >= 50 && \
+ (b) <= 59) || (r) == 188 || (b) == 61 || (b) == 62 || \
+ ((b) >= 64 && (b) <= 67))
+#define IS_RANGE_V_INTERAPTIV_EVENT(r) ((r) == 47 || (r) == 175)
+#endif
+
+/* BMIPS5000 */
+#define IS_BOTH_COUNTERS_BMIPS5000_EVENT(b) \
+ ((b) == 0 || (b) == 1)
+
+
+/*
+ * For most cores the user can use 0-255 raw events, where 0-127 for the events
+ * of even counters, and 128-255 for odd counters. Note that bit 7 is used to
+ * indicate the even/odd bank selector. So, for example, when user wants to take
+ * the Event Num of 15 for odd counters (by referring to the user manual), then
+ * 128 needs to be added to 15 as the input for the event config, i.e., 143 (0x8F)
+ * to be used.
+ *
+ * Some newer cores have even more events, in which case the user can use raw
+ * events 0-511, where 0-255 are for the events of even counters, and 256-511
+ * are for odd counters, so bit 8 is used to indicate the even/odd bank selector.
+ */
+static const struct mips_perf_event *mipsxx_pmu_map_raw_event(u64 config)
+{
+ /* currently most cores have 7-bit event numbers */
+ int pmu_type;
+ unsigned int raw_id = config & 0xff;
+ unsigned int base_id = raw_id & 0x7f;
+
+ switch (current_cpu_type()) {
+ case CPU_24K:
+ if (IS_BOTH_COUNTERS_24K_EVENT(base_id))
+ raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
+ else
+ raw_event.cntr_mask =
+ raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
+#ifdef CONFIG_MIPS_MT_SMP
+ /*
+ * This is actually doing nothing. Non-multithreading
+ * CPUs will not check and calculate the range.
+ */
+ raw_event.range = P;
+#endif
+ break;
+ case CPU_34K:
+ if (IS_BOTH_COUNTERS_34K_EVENT(base_id))
+ raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
+ else
+ raw_event.cntr_mask =
+ raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
+#ifdef CONFIG_MIPS_MT_SMP
+ if (IS_RANGE_P_34K_EVENT(raw_id, base_id))
+ raw_event.range = P;
+ else if (unlikely(IS_RANGE_V_34K_EVENT(raw_id)))
+ raw_event.range = V;
+ else
+ raw_event.range = T;
+#endif
+ break;
+ case CPU_74K:
+ case CPU_1074K:
+ if (IS_BOTH_COUNTERS_74K_EVENT(base_id))
+ raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
+ else
+ raw_event.cntr_mask =
+ raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
+#ifdef CONFIG_MIPS_MT_SMP
+ raw_event.range = P;
+#endif
+ break;
+ case CPU_PROAPTIV:
+ if (IS_BOTH_COUNTERS_PROAPTIV_EVENT(base_id))
+ raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
+ else
+ raw_event.cntr_mask =
+ raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
+#ifdef CONFIG_MIPS_MT_SMP
+ raw_event.range = P;
+#endif
+ break;
+ case CPU_P5600:
+ case CPU_P6600:
+ /* 8-bit event numbers */
+ raw_id = config & 0x1ff;
+ base_id = raw_id & 0xff;
+ if (IS_BOTH_COUNTERS_P5600_EVENT(base_id))
+ raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
+ else
+ raw_event.cntr_mask =
+ raw_id > 255 ? CNTR_ODD : CNTR_EVEN;
+#ifdef CONFIG_MIPS_MT_SMP
+ raw_event.range = P;
+#endif
+ break;
+ case CPU_I6400:
+ case CPU_I6500:
+ /* 8-bit event numbers */
+ base_id = config & 0xff;
+ raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
+ break;
+ case CPU_1004K:
+ if (IS_BOTH_COUNTERS_1004K_EVENT(base_id))
+ raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
+ else
+ raw_event.cntr_mask =
+ raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
+#ifdef CONFIG_MIPS_MT_SMP
+ if (IS_RANGE_P_1004K_EVENT(raw_id, base_id))
+ raw_event.range = P;
+ else if (unlikely(IS_RANGE_V_1004K_EVENT(raw_id)))
+ raw_event.range = V;
+ else
+ raw_event.range = T;
+#endif
+ break;
+ case CPU_INTERAPTIV:
+ if (IS_BOTH_COUNTERS_INTERAPTIV_EVENT(base_id))
+ raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
+ else
+ raw_event.cntr_mask =
+ raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
+#ifdef CONFIG_MIPS_MT_SMP
+ if (IS_RANGE_P_INTERAPTIV_EVENT(raw_id, base_id))
+ raw_event.range = P;
+ else if (unlikely(IS_RANGE_V_INTERAPTIV_EVENT(raw_id)))
+ raw_event.range = V;
+ else
+ raw_event.range = T;
+#endif
+ break;
+ case CPU_BMIPS5000:
+ if (IS_BOTH_COUNTERS_BMIPS5000_EVENT(base_id))
+ raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
+ else
+ raw_event.cntr_mask =
+ raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
+ break;
+ case CPU_LOONGSON64:
+ pmu_type = get_loongson3_pmu_type();
+
+ switch (pmu_type) {
+ case LOONGSON_PMU_TYPE1:
+ raw_event.cntr_mask =
+ raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
+ break;
+ case LOONGSON_PMU_TYPE2:
+ base_id = config & 0x3ff;
+ raw_event.cntr_mask = CNTR_ALL;
+
+ if ((base_id >= 1 && base_id < 28) ||
+ (base_id >= 64 && base_id < 90) ||
+ (base_id >= 128 && base_id < 164) ||
+ (base_id >= 192 && base_id < 200) ||
+ (base_id >= 256 && base_id < 275) ||
+ (base_id >= 320 && base_id < 361) ||
+ (base_id >= 384 && base_id < 574))
+ break;
+
+ return ERR_PTR(-EOPNOTSUPP);
+ case LOONGSON_PMU_TYPE3:
+ base_id = raw_id;
+ raw_event.cntr_mask = CNTR_ALL;
+ break;
+ }
+ break;
+ }
+
+ raw_event.event_id = base_id;
+
+ return &raw_event;
+}
+
+static const struct mips_perf_event *octeon_pmu_map_raw_event(u64 config)
+{
+ unsigned int base_id = config & 0x7f;
+ unsigned int event_max;
+
+
+ raw_event.cntr_mask = CNTR_ALL;
+ raw_event.event_id = base_id;
+
+ if (current_cpu_type() == CPU_CAVIUM_OCTEON3)
+ event_max = 0x5f;
+ else if (current_cpu_type() == CPU_CAVIUM_OCTEON2)
+ event_max = 0x42;
+ else
+ event_max = 0x3a;
+
+ if (base_id > event_max) {
+ return ERR_PTR(-EOPNOTSUPP);
+ }
+
+ switch (base_id) {
+ case 0x00:
+ case 0x0f:
+ case 0x1e:
+ case 0x1f:
+ case 0x2f:
+ case 0x34:
+ case 0x3e ... 0x3f:
+ return ERR_PTR(-EOPNOTSUPP);
+ default:
+ break;
+ }
+
+ return &raw_event;
+}
+
+static int __init
+init_hw_perf_events(void)
+{
+ int counters, irq, pmu_type;
+
+ pr_info("Performance counters: ");
+
+ counters = n_counters();
+ if (counters == 0) {
+ pr_cont("No available PMU.\n");
+ return -ENODEV;
+ }
+
+#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
+ if (!cpu_has_mipsmt_pertccounters)
+ counters = counters_total_to_per_cpu(counters);
+#endif
+
+ if (get_c0_perfcount_int)
+ irq = get_c0_perfcount_int();
+ else if (cp0_perfcount_irq >= 0)
+ irq = MIPS_CPU_IRQ_BASE + cp0_perfcount_irq;
+ else
+ irq = -1;
+
+ mipspmu.map_raw_event = mipsxx_pmu_map_raw_event;
+
+ switch (current_cpu_type()) {
+ case CPU_24K:
+ mipspmu.name = "mips/24K";
+ mipspmu.general_event_map = &mipsxxcore_event_map;
+ mipspmu.cache_event_map = &mipsxxcore_cache_map;
+ break;
+ case CPU_34K:
+ mipspmu.name = "mips/34K";
+ mipspmu.general_event_map = &mipsxxcore_event_map;
+ mipspmu.cache_event_map = &mipsxxcore_cache_map;
+ break;
+ case CPU_74K:
+ mipspmu.name = "mips/74K";
+ mipspmu.general_event_map = &mipsxxcore_event_map2;
+ mipspmu.cache_event_map = &mipsxxcore_cache_map2;
+ break;
+ case CPU_PROAPTIV:
+ mipspmu.name = "mips/proAptiv";
+ mipspmu.general_event_map = &mipsxxcore_event_map2;
+ mipspmu.cache_event_map = &mipsxxcore_cache_map2;
+ break;
+ case CPU_P5600:
+ mipspmu.name = "mips/P5600";
+ mipspmu.general_event_map = &mipsxxcore_event_map2;
+ mipspmu.cache_event_map = &mipsxxcore_cache_map2;
+ break;
+ case CPU_P6600:
+ mipspmu.name = "mips/P6600";
+ mipspmu.general_event_map = &mipsxxcore_event_map2;
+ mipspmu.cache_event_map = &mipsxxcore_cache_map2;
+ break;
+ case CPU_I6400:
+ mipspmu.name = "mips/I6400";
+ mipspmu.general_event_map = &i6x00_event_map;
+ mipspmu.cache_event_map = &i6x00_cache_map;
+ break;
+ case CPU_I6500:
+ mipspmu.name = "mips/I6500";
+ mipspmu.general_event_map = &i6x00_event_map;
+ mipspmu.cache_event_map = &i6x00_cache_map;
+ break;
+ case CPU_1004K:
+ mipspmu.name = "mips/1004K";
+ mipspmu.general_event_map = &mipsxxcore_event_map;
+ mipspmu.cache_event_map = &mipsxxcore_cache_map;
+ break;
+ case CPU_1074K:
+ mipspmu.name = "mips/1074K";
+ mipspmu.general_event_map = &mipsxxcore_event_map;
+ mipspmu.cache_event_map = &mipsxxcore_cache_map;
+ break;
+ case CPU_INTERAPTIV:
+ mipspmu.name = "mips/interAptiv";
+ mipspmu.general_event_map = &mipsxxcore_event_map;
+ mipspmu.cache_event_map = &mipsxxcore_cache_map;
+ break;
+ case CPU_LOONGSON32:
+ mipspmu.name = "mips/loongson1";
+ mipspmu.general_event_map = &mipsxxcore_event_map;
+ mipspmu.cache_event_map = &mipsxxcore_cache_map;
+ break;
+ case CPU_LOONGSON64:
+ mipspmu.name = "mips/loongson3";
+ pmu_type = get_loongson3_pmu_type();
+
+ switch (pmu_type) {
+ case LOONGSON_PMU_TYPE1:
+ counters = 2;
+ mipspmu.general_event_map = &loongson3_event_map1;
+ mipspmu.cache_event_map = &loongson3_cache_map1;
+ break;
+ case LOONGSON_PMU_TYPE2:
+ counters = 4;
+ mipspmu.general_event_map = &loongson3_event_map2;
+ mipspmu.cache_event_map = &loongson3_cache_map2;
+ break;
+ case LOONGSON_PMU_TYPE3:
+ counters = 4;
+ mipspmu.general_event_map = &loongson3_event_map3;
+ mipspmu.cache_event_map = &loongson3_cache_map3;
+ break;
+ }
+ break;
+ case CPU_CAVIUM_OCTEON:
+ case CPU_CAVIUM_OCTEON_PLUS:
+ case CPU_CAVIUM_OCTEON2:
+ case CPU_CAVIUM_OCTEON3:
+ mipspmu.name = "octeon";
+ mipspmu.general_event_map = &octeon_event_map;
+ mipspmu.cache_event_map = &octeon_cache_map;
+ mipspmu.map_raw_event = octeon_pmu_map_raw_event;
+ break;
+ case CPU_BMIPS5000:
+ mipspmu.name = "BMIPS5000";
+ mipspmu.general_event_map = &bmips5000_event_map;
+ mipspmu.cache_event_map = &bmips5000_cache_map;
+ break;
+ default:
+ pr_cont("Either hardware does not support performance "
+ "counters, or not yet implemented.\n");
+ return -ENODEV;
+ }
+
+ mipspmu.num_counters = counters;
+ mipspmu.irq = irq;
+
+ if (read_c0_perfctrl0() & MIPS_PERFCTRL_W) {
+ if (get_loongson3_pmu_type() == LOONGSON_PMU_TYPE2) {
+ counter_bits = 48;
+ mipspmu.max_period = (1ULL << 47) - 1;
+ mipspmu.valid_count = (1ULL << 47) - 1;
+ mipspmu.overflow = 1ULL << 47;
+ } else {
+ counter_bits = 64;
+ mipspmu.max_period = (1ULL << 63) - 1;
+ mipspmu.valid_count = (1ULL << 63) - 1;
+ mipspmu.overflow = 1ULL << 63;
+ }
+ mipspmu.read_counter = mipsxx_pmu_read_counter_64;
+ mipspmu.write_counter = mipsxx_pmu_write_counter_64;
+ } else {
+ counter_bits = 32;
+ mipspmu.max_period = (1ULL << 31) - 1;
+ mipspmu.valid_count = (1ULL << 31) - 1;
+ mipspmu.overflow = 1ULL << 31;
+ mipspmu.read_counter = mipsxx_pmu_read_counter;
+ mipspmu.write_counter = mipsxx_pmu_write_counter;
+ }
+
+ on_each_cpu(reset_counters, (void *)(long)counters, 1);
+
+ pr_cont("%s PMU enabled, %d %d-bit counters available to each "
+ "CPU, irq %d%s\n", mipspmu.name, counters, counter_bits, irq,
+ irq < 0 ? " (share with timer interrupt)" : "");
+
+ perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
+
+ return 0;
+}
+early_initcall(init_hw_perf_events);