diff options
Diffstat (limited to '')
-rw-r--r-- | arch/x86/kernel/uprobes.c | 1099 |
1 files changed, 1099 insertions, 0 deletions
diff --git a/arch/x86/kernel/uprobes.c b/arch/x86/kernel/uprobes.c new file mode 100644 index 000000000..6c07f6daa --- /dev/null +++ b/arch/x86/kernel/uprobes.c @@ -0,0 +1,1099 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * User-space Probes (UProbes) for x86 + * + * Copyright (C) IBM Corporation, 2008-2011 + * Authors: + * Srikar Dronamraju + * Jim Keniston + */ +#include <linux/kernel.h> +#include <linux/sched.h> +#include <linux/ptrace.h> +#include <linux/uprobes.h> +#include <linux/uaccess.h> + +#include <linux/kdebug.h> +#include <asm/processor.h> +#include <asm/insn.h> +#include <asm/mmu_context.h> + +/* Post-execution fixups. */ + +/* Adjust IP back to vicinity of actual insn */ +#define UPROBE_FIX_IP 0x01 + +/* Adjust the return address of a call insn */ +#define UPROBE_FIX_CALL 0x02 + +/* Instruction will modify TF, don't change it */ +#define UPROBE_FIX_SETF 0x04 + +#define UPROBE_FIX_RIP_SI 0x08 +#define UPROBE_FIX_RIP_DI 0x10 +#define UPROBE_FIX_RIP_BX 0x20 +#define UPROBE_FIX_RIP_MASK \ + (UPROBE_FIX_RIP_SI | UPROBE_FIX_RIP_DI | UPROBE_FIX_RIP_BX) + +#define UPROBE_TRAP_NR UINT_MAX + +/* Adaptations for mhiramat x86 decoder v14. */ +#define OPCODE1(insn) ((insn)->opcode.bytes[0]) +#define OPCODE2(insn) ((insn)->opcode.bytes[1]) +#define OPCODE3(insn) ((insn)->opcode.bytes[2]) +#define MODRM_REG(insn) X86_MODRM_REG((insn)->modrm.value) + +#define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\ + (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \ + (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \ + (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \ + (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \ + << (row % 32)) + +/* + * Good-instruction tables for 32-bit apps. This is non-const and volatile + * to keep gcc from statically optimizing it out, as variable_test_bit makes + * some versions of gcc to think only *(unsigned long*) is used. + * + * Opcodes we'll probably never support: + * 6c-6f - ins,outs. SEGVs if used in userspace + * e4-e7 - in,out imm. SEGVs if used in userspace + * ec-ef - in,out acc. SEGVs if used in userspace + * cc - int3. SIGTRAP if used in userspace + * ce - into. Not used in userspace - no kernel support to make it useful. SEGVs + * (why we support bound (62) then? it's similar, and similarly unused...) + * f1 - int1. SIGTRAP if used in userspace + * f4 - hlt. SEGVs if used in userspace + * fa - cli. SEGVs if used in userspace + * fb - sti. SEGVs if used in userspace + * + * Opcodes which need some work to be supported: + * 07,17,1f - pop es/ss/ds + * Normally not used in userspace, but would execute if used. + * Can cause GP or stack exception if tries to load wrong segment descriptor. + * We hesitate to run them under single step since kernel's handling + * of userspace single-stepping (TF flag) is fragile. + * We can easily refuse to support push es/cs/ss/ds (06/0e/16/1e) + * on the same grounds that they are never used. + * cd - int N. + * Used by userspace for "int 80" syscall entry. (Other "int N" + * cause GP -> SEGV since their IDT gates don't allow calls from CPL 3). + * Not supported since kernel's handling of userspace single-stepping + * (TF flag) is fragile. + * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad + */ +#if defined(CONFIG_X86_32) || defined(CONFIG_IA32_EMULATION) +static volatile u32 good_insns_32[256 / 32] = { + /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ + /* ---------------------------------------------- */ + W(0x00, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* 00 */ + W(0x10, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 10 */ + W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */ + W(0x30, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */ + W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */ + W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */ + W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */ + W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */ + W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */ + W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */ + W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */ + W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */ + W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */ + W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */ + W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */ + W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1) /* f0 */ + /* ---------------------------------------------- */ + /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ +}; +#else +#define good_insns_32 NULL +#endif + +/* Good-instruction tables for 64-bit apps. + * + * Genuinely invalid opcodes: + * 06,07 - formerly push/pop es + * 0e - formerly push cs + * 16,17 - formerly push/pop ss + * 1e,1f - formerly push/pop ds + * 27,2f,37,3f - formerly daa/das/aaa/aas + * 60,61 - formerly pusha/popa + * 62 - formerly bound. EVEX prefix for AVX512 (not yet supported) + * 82 - formerly redundant encoding of Group1 + * 9a - formerly call seg:ofs + * ce - formerly into + * d4,d5 - formerly aam/aad + * d6 - formerly undocumented salc + * ea - formerly jmp seg:ofs + * + * Opcodes we'll probably never support: + * 6c-6f - ins,outs. SEGVs if used in userspace + * e4-e7 - in,out imm. SEGVs if used in userspace + * ec-ef - in,out acc. SEGVs if used in userspace + * cc - int3. SIGTRAP if used in userspace + * f1 - int1. SIGTRAP if used in userspace + * f4 - hlt. SEGVs if used in userspace + * fa - cli. SEGVs if used in userspace + * fb - sti. SEGVs if used in userspace + * + * Opcodes which need some work to be supported: + * cd - int N. + * Used by userspace for "int 80" syscall entry. (Other "int N" + * cause GP -> SEGV since their IDT gates don't allow calls from CPL 3). + * Not supported since kernel's handling of userspace single-stepping + * (TF flag) is fragile. + * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad + */ +#if defined(CONFIG_X86_64) +static volatile u32 good_insns_64[256 / 32] = { + /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ + /* ---------------------------------------------- */ + W(0x00, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1) | /* 00 */ + W(0x10, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 10 */ + W(0x20, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) | /* 20 */ + W(0x30, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 30 */ + W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */ + W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */ + W(0x60, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */ + W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */ + W(0x80, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */ + W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1) , /* 90 */ + W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */ + W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */ + W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */ + W(0xd0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */ + W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0) | /* e0 */ + W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1) /* f0 */ + /* ---------------------------------------------- */ + /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ +}; +#else +#define good_insns_64 NULL +#endif + +/* Using this for both 64-bit and 32-bit apps. + * Opcodes we don't support: + * 0f 00 - SLDT/STR/LLDT/LTR/VERR/VERW/-/- group. System insns + * 0f 01 - SGDT/SIDT/LGDT/LIDT/SMSW/-/LMSW/INVLPG group. + * Also encodes tons of other system insns if mod=11. + * Some are in fact non-system: xend, xtest, rdtscp, maybe more + * 0f 05 - syscall + * 0f 06 - clts (CPL0 insn) + * 0f 07 - sysret + * 0f 08 - invd (CPL0 insn) + * 0f 09 - wbinvd (CPL0 insn) + * 0f 0b - ud2 + * 0f 30 - wrmsr (CPL0 insn) (then why rdmsr is allowed, it's also CPL0 insn?) + * 0f 34 - sysenter + * 0f 35 - sysexit + * 0f 37 - getsec + * 0f 78 - vmread (Intel VMX. CPL0 insn) + * 0f 79 - vmwrite (Intel VMX. CPL0 insn) + * Note: with prefixes, these two opcodes are + * extrq/insertq/AVX512 convert vector ops. + * 0f ae - group15: [f]xsave,[f]xrstor,[v]{ld,st}mxcsr,clflush[opt], + * {rd,wr}{fs,gs}base,{s,l,m}fence. + * Why? They are all user-executable. + */ +static volatile u32 good_2byte_insns[256 / 32] = { + /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ + /* ---------------------------------------------- */ + W(0x00, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1) | /* 00 */ + W(0x10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 10 */ + W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */ + W(0x30, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */ + W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */ + W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */ + W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 60 */ + W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1) , /* 70 */ + W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */ + W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */ + W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1) | /* a0 */ + W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */ + W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */ + W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */ + W(0xe0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* e0 */ + W(0xf0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /* f0 */ + /* ---------------------------------------------- */ + /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ +}; +#undef W + +/* + * opcodes we may need to refine support for: + * + * 0f - 2-byte instructions: For many of these instructions, the validity + * depends on the prefix and/or the reg field. On such instructions, we + * just consider the opcode combination valid if it corresponds to any + * valid instruction. + * + * 8f - Group 1 - only reg = 0 is OK + * c6-c7 - Group 11 - only reg = 0 is OK + * d9-df - fpu insns with some illegal encodings + * f2, f3 - repnz, repz prefixes. These are also the first byte for + * certain floating-point instructions, such as addsd. + * + * fe - Group 4 - only reg = 0 or 1 is OK + * ff - Group 5 - only reg = 0-6 is OK + * + * others -- Do we need to support these? + * + * 0f - (floating-point?) prefetch instructions + * 07, 17, 1f - pop es, pop ss, pop ds + * 26, 2e, 36, 3e - es:, cs:, ss:, ds: segment prefixes -- + * but 64 and 65 (fs: and gs:) seem to be used, so we support them + * 67 - addr16 prefix + * ce - into + * f0 - lock prefix + */ + +/* + * TODO: + * - Where necessary, examine the modrm byte and allow only valid instructions + * in the different Groups and fpu instructions. + */ + +static bool is_prefix_bad(struct insn *insn) +{ + insn_byte_t p; + int i; + + for_each_insn_prefix(insn, i, p) { + insn_attr_t attr; + + attr = inat_get_opcode_attribute(p); + switch (attr) { + case INAT_MAKE_PREFIX(INAT_PFX_ES): + case INAT_MAKE_PREFIX(INAT_PFX_CS): + case INAT_MAKE_PREFIX(INAT_PFX_DS): + case INAT_MAKE_PREFIX(INAT_PFX_SS): + case INAT_MAKE_PREFIX(INAT_PFX_LOCK): + return true; + } + } + return false; +} + +static int uprobe_init_insn(struct arch_uprobe *auprobe, struct insn *insn, bool x86_64) +{ + enum insn_mode m = x86_64 ? INSN_MODE_64 : INSN_MODE_32; + u32 volatile *good_insns; + int ret; + + ret = insn_decode(insn, auprobe->insn, sizeof(auprobe->insn), m); + if (ret < 0) + return -ENOEXEC; + + if (is_prefix_bad(insn)) + return -ENOTSUPP; + + /* We should not singlestep on the exception masking instructions */ + if (insn_masking_exception(insn)) + return -ENOTSUPP; + + if (x86_64) + good_insns = good_insns_64; + else + good_insns = good_insns_32; + + if (test_bit(OPCODE1(insn), (unsigned long *)good_insns)) + return 0; + + if (insn->opcode.nbytes == 2) { + if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns)) + return 0; + } + + return -ENOTSUPP; +} + +#ifdef CONFIG_X86_64 +/* + * If arch_uprobe->insn doesn't use rip-relative addressing, return + * immediately. Otherwise, rewrite the instruction so that it accesses + * its memory operand indirectly through a scratch register. Set + * defparam->fixups accordingly. (The contents of the scratch register + * will be saved before we single-step the modified instruction, + * and restored afterward). + * + * We do this because a rip-relative instruction can access only a + * relatively small area (+/- 2 GB from the instruction), and the XOL + * area typically lies beyond that area. At least for instructions + * that store to memory, we can't execute the original instruction + * and "fix things up" later, because the misdirected store could be + * disastrous. + * + * Some useful facts about rip-relative instructions: + * + * - There's always a modrm byte with bit layout "00 reg 101". + * - There's never a SIB byte. + * - The displacement is always 4 bytes. + * - REX.B=1 bit in REX prefix, which normally extends r/m field, + * has no effect on rip-relative mode. It doesn't make modrm byte + * with r/m=101 refer to register 1101 = R13. + */ +static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn) +{ + u8 *cursor; + u8 reg; + u8 reg2; + + if (!insn_rip_relative(insn)) + return; + + /* + * insn_rip_relative() would have decoded rex_prefix, vex_prefix, modrm. + * Clear REX.b bit (extension of MODRM.rm field): + * we want to encode low numbered reg, not r8+. + */ + if (insn->rex_prefix.nbytes) { + cursor = auprobe->insn + insn_offset_rex_prefix(insn); + /* REX byte has 0100wrxb layout, clearing REX.b bit */ + *cursor &= 0xfe; + } + /* + * Similar treatment for VEX3/EVEX prefix. + * TODO: add XOP treatment when insn decoder supports them + */ + if (insn->vex_prefix.nbytes >= 3) { + /* + * vex2: c5 rvvvvLpp (has no b bit) + * vex3/xop: c4/8f rxbmmmmm wvvvvLpp + * evex: 62 rxbR00mm wvvvv1pp zllBVaaa + * Setting VEX3.b (setting because it has inverted meaning). + * Setting EVEX.x since (in non-SIB encoding) EVEX.x + * is the 4th bit of MODRM.rm, and needs the same treatment. + * For VEX3-encoded insns, VEX3.x value has no effect in + * non-SIB encoding, the change is superfluous but harmless. + */ + cursor = auprobe->insn + insn_offset_vex_prefix(insn) + 1; + *cursor |= 0x60; + } + + /* + * Convert from rip-relative addressing to register-relative addressing + * via a scratch register. + * + * This is tricky since there are insns with modrm byte + * which also use registers not encoded in modrm byte: + * [i]div/[i]mul: implicitly use dx:ax + * shift ops: implicitly use cx + * cmpxchg: implicitly uses ax + * cmpxchg8/16b: implicitly uses dx:ax and bx:cx + * Encoding: 0f c7/1 modrm + * The code below thinks that reg=1 (cx), chooses si as scratch. + * mulx: implicitly uses dx: mulx r/m,r1,r2 does r1:r2 = dx * r/m. + * First appeared in Haswell (BMI2 insn). It is vex-encoded. + * Example where none of bx,cx,dx can be used as scratch reg: + * c4 e2 63 f6 0d disp32 mulx disp32(%rip),%ebx,%ecx + * [v]pcmpistri: implicitly uses cx, xmm0 + * [v]pcmpistrm: implicitly uses xmm0 + * [v]pcmpestri: implicitly uses ax, dx, cx, xmm0 + * [v]pcmpestrm: implicitly uses ax, dx, xmm0 + * Evil SSE4.2 string comparison ops from hell. + * maskmovq/[v]maskmovdqu: implicitly uses (ds:rdi) as destination. + * Encoding: 0f f7 modrm, 66 0f f7 modrm, vex-encoded: c5 f9 f7 modrm. + * Store op1, byte-masked by op2 msb's in each byte, to (ds:rdi). + * AMD says it has no 3-operand form (vex.vvvv must be 1111) + * and that it can have only register operands, not mem + * (its modrm byte must have mode=11). + * If these restrictions will ever be lifted, + * we'll need code to prevent selection of di as scratch reg! + * + * Summary: I don't know any insns with modrm byte which + * use SI register implicitly. DI register is used only + * by one insn (maskmovq) and BX register is used + * only by one too (cmpxchg8b). + * BP is stack-segment based (may be a problem?). + * AX, DX, CX are off-limits (many implicit users). + * SP is unusable (it's stack pointer - think about "pop mem"; + * also, rsp+disp32 needs sib encoding -> insn length change). + */ + + reg = MODRM_REG(insn); /* Fetch modrm.reg */ + reg2 = 0xff; /* Fetch vex.vvvv */ + if (insn->vex_prefix.nbytes) + reg2 = insn->vex_prefix.bytes[2]; + /* + * TODO: add XOP vvvv reading. + * + * vex.vvvv field is in bits 6-3, bits are inverted. + * But in 32-bit mode, high-order bit may be ignored. + * Therefore, let's consider only 3 low-order bits. + */ + reg2 = ((reg2 >> 3) & 0x7) ^ 0x7; + /* + * Register numbering is ax,cx,dx,bx, sp,bp,si,di, r8..r15. + * + * Choose scratch reg. Order is important: must not select bx + * if we can use si (cmpxchg8b case!) + */ + if (reg != 6 && reg2 != 6) { + reg2 = 6; + auprobe->defparam.fixups |= UPROBE_FIX_RIP_SI; + } else if (reg != 7 && reg2 != 7) { + reg2 = 7; + auprobe->defparam.fixups |= UPROBE_FIX_RIP_DI; + /* TODO (paranoia): force maskmovq to not use di */ + } else { + reg2 = 3; + auprobe->defparam.fixups |= UPROBE_FIX_RIP_BX; + } + /* + * Point cursor at the modrm byte. The next 4 bytes are the + * displacement. Beyond the displacement, for some instructions, + * is the immediate operand. + */ + cursor = auprobe->insn + insn_offset_modrm(insn); + /* + * Change modrm from "00 reg 101" to "10 reg reg2". Example: + * 89 05 disp32 mov %eax,disp32(%rip) becomes + * 89 86 disp32 mov %eax,disp32(%rsi) + */ + *cursor = 0x80 | (reg << 3) | reg2; +} + +static inline unsigned long * +scratch_reg(struct arch_uprobe *auprobe, struct pt_regs *regs) +{ + if (auprobe->defparam.fixups & UPROBE_FIX_RIP_SI) + return ®s->si; + if (auprobe->defparam.fixups & UPROBE_FIX_RIP_DI) + return ®s->di; + return ®s->bx; +} + +/* + * If we're emulating a rip-relative instruction, save the contents + * of the scratch register and store the target address in that register. + */ +static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs) +{ + if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) { + struct uprobe_task *utask = current->utask; + unsigned long *sr = scratch_reg(auprobe, regs); + + utask->autask.saved_scratch_register = *sr; + *sr = utask->vaddr + auprobe->defparam.ilen; + } +} + +static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs) +{ + if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) { + struct uprobe_task *utask = current->utask; + unsigned long *sr = scratch_reg(auprobe, regs); + + *sr = utask->autask.saved_scratch_register; + } +} +#else /* 32-bit: */ +/* + * No RIP-relative addressing on 32-bit + */ +static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn) +{ +} +static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs) +{ +} +static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs) +{ +} +#endif /* CONFIG_X86_64 */ + +struct uprobe_xol_ops { + bool (*emulate)(struct arch_uprobe *, struct pt_regs *); + int (*pre_xol)(struct arch_uprobe *, struct pt_regs *); + int (*post_xol)(struct arch_uprobe *, struct pt_regs *); + void (*abort)(struct arch_uprobe *, struct pt_regs *); +}; + +static inline int sizeof_long(struct pt_regs *regs) +{ + /* + * Check registers for mode as in_xxx_syscall() does not apply here. + */ + return user_64bit_mode(regs) ? 8 : 4; +} + +static int default_pre_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs) +{ + riprel_pre_xol(auprobe, regs); + return 0; +} + +static int emulate_push_stack(struct pt_regs *regs, unsigned long val) +{ + unsigned long new_sp = regs->sp - sizeof_long(regs); + + if (copy_to_user((void __user *)new_sp, &val, sizeof_long(regs))) + return -EFAULT; + + regs->sp = new_sp; + return 0; +} + +/* + * We have to fix things up as follows: + * + * Typically, the new ip is relative to the copied instruction. We need + * to make it relative to the original instruction (FIX_IP). Exceptions + * are return instructions and absolute or indirect jump or call instructions. + * + * If the single-stepped instruction was a call, the return address that + * is atop the stack is the address following the copied instruction. We + * need to make it the address following the original instruction (FIX_CALL). + * + * If the original instruction was a rip-relative instruction such as + * "movl %edx,0xnnnn(%rip)", we have instead executed an equivalent + * instruction using a scratch register -- e.g., "movl %edx,0xnnnn(%rsi)". + * We need to restore the contents of the scratch register + * (FIX_RIP_reg). + */ +static int default_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs) +{ + struct uprobe_task *utask = current->utask; + + riprel_post_xol(auprobe, regs); + if (auprobe->defparam.fixups & UPROBE_FIX_IP) { + long correction = utask->vaddr - utask->xol_vaddr; + regs->ip += correction; + } else if (auprobe->defparam.fixups & UPROBE_FIX_CALL) { + regs->sp += sizeof_long(regs); /* Pop incorrect return address */ + if (emulate_push_stack(regs, utask->vaddr + auprobe->defparam.ilen)) + return -ERESTART; + } + /* popf; tell the caller to not touch TF */ + if (auprobe->defparam.fixups & UPROBE_FIX_SETF) + utask->autask.saved_tf = true; + + return 0; +} + +static void default_abort_op(struct arch_uprobe *auprobe, struct pt_regs *regs) +{ + riprel_post_xol(auprobe, regs); +} + +static const struct uprobe_xol_ops default_xol_ops = { + .pre_xol = default_pre_xol_op, + .post_xol = default_post_xol_op, + .abort = default_abort_op, +}; + +static bool branch_is_call(struct arch_uprobe *auprobe) +{ + return auprobe->branch.opc1 == 0xe8; +} + +#define CASE_COND \ + COND(70, 71, XF(OF)) \ + COND(72, 73, XF(CF)) \ + COND(74, 75, XF(ZF)) \ + COND(78, 79, XF(SF)) \ + COND(7a, 7b, XF(PF)) \ + COND(76, 77, XF(CF) || XF(ZF)) \ + COND(7c, 7d, XF(SF) != XF(OF)) \ + COND(7e, 7f, XF(ZF) || XF(SF) != XF(OF)) + +#define COND(op_y, op_n, expr) \ + case 0x ## op_y: DO((expr) != 0) \ + case 0x ## op_n: DO((expr) == 0) + +#define XF(xf) (!!(flags & X86_EFLAGS_ ## xf)) + +static bool is_cond_jmp_opcode(u8 opcode) +{ + switch (opcode) { + #define DO(expr) \ + return true; + CASE_COND + #undef DO + + default: + return false; + } +} + +static bool check_jmp_cond(struct arch_uprobe *auprobe, struct pt_regs *regs) +{ + unsigned long flags = regs->flags; + + switch (auprobe->branch.opc1) { + #define DO(expr) \ + return expr; + CASE_COND + #undef DO + + default: /* not a conditional jmp */ + return true; + } +} + +#undef XF +#undef COND +#undef CASE_COND + +static bool branch_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs) +{ + unsigned long new_ip = regs->ip += auprobe->branch.ilen; + unsigned long offs = (long)auprobe->branch.offs; + + if (branch_is_call(auprobe)) { + /* + * If it fails we execute this (mangled, see the comment in + * branch_clear_offset) insn out-of-line. In the likely case + * this should trigger the trap, and the probed application + * should die or restart the same insn after it handles the + * signal, arch_uprobe_post_xol() won't be even called. + * + * But there is corner case, see the comment in ->post_xol(). + */ + if (emulate_push_stack(regs, new_ip)) + return false; + } else if (!check_jmp_cond(auprobe, regs)) { + offs = 0; + } + + regs->ip = new_ip + offs; + return true; +} + +static bool push_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs) +{ + unsigned long *src_ptr = (void *)regs + auprobe->push.reg_offset; + + if (emulate_push_stack(regs, *src_ptr)) + return false; + regs->ip += auprobe->push.ilen; + return true; +} + +static int branch_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs) +{ + BUG_ON(!branch_is_call(auprobe)); + /* + * We can only get here if branch_emulate_op() failed to push the ret + * address _and_ another thread expanded our stack before the (mangled) + * "call" insn was executed out-of-line. Just restore ->sp and restart. + * We could also restore ->ip and try to call branch_emulate_op() again. + */ + regs->sp += sizeof_long(regs); + return -ERESTART; +} + +static void branch_clear_offset(struct arch_uprobe *auprobe, struct insn *insn) +{ + /* + * Turn this insn into "call 1f; 1:", this is what we will execute + * out-of-line if ->emulate() fails. We only need this to generate + * a trap, so that the probed task receives the correct signal with + * the properly filled siginfo. + * + * But see the comment in ->post_xol(), in the unlikely case it can + * succeed. So we need to ensure that the new ->ip can not fall into + * the non-canonical area and trigger #GP. + * + * We could turn it into (say) "pushf", but then we would need to + * divorce ->insn[] and ->ixol[]. We need to preserve the 1st byte + * of ->insn[] for set_orig_insn(). + */ + memset(auprobe->insn + insn_offset_immediate(insn), + 0, insn->immediate.nbytes); +} + +static const struct uprobe_xol_ops branch_xol_ops = { + .emulate = branch_emulate_op, + .post_xol = branch_post_xol_op, +}; + +static const struct uprobe_xol_ops push_xol_ops = { + .emulate = push_emulate_op, +}; + +/* Returns -ENOSYS if branch_xol_ops doesn't handle this insn */ +static int branch_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn) +{ + u8 opc1 = OPCODE1(insn); + insn_byte_t p; + int i; + + switch (opc1) { + case 0xeb: /* jmp 8 */ + case 0xe9: /* jmp 32 */ + break; + case 0x90: /* prefix* + nop; same as jmp with .offs = 0 */ + goto setup; + + case 0xe8: /* call relative */ + branch_clear_offset(auprobe, insn); + break; + + case 0x0f: + if (insn->opcode.nbytes != 2) + return -ENOSYS; + /* + * If it is a "near" conditional jmp, OPCODE2() - 0x10 matches + * OPCODE1() of the "short" jmp which checks the same condition. + */ + opc1 = OPCODE2(insn) - 0x10; + fallthrough; + default: + if (!is_cond_jmp_opcode(opc1)) + return -ENOSYS; + } + + /* + * 16-bit overrides such as CALLW (66 e8 nn nn) are not supported. + * Intel and AMD behavior differ in 64-bit mode: Intel ignores 66 prefix. + * No one uses these insns, reject any branch insns with such prefix. + */ + for_each_insn_prefix(insn, i, p) { + if (p == 0x66) + return -ENOTSUPP; + } + +setup: + auprobe->branch.opc1 = opc1; + auprobe->branch.ilen = insn->length; + auprobe->branch.offs = insn->immediate.value; + + auprobe->ops = &branch_xol_ops; + return 0; +} + +/* Returns -ENOSYS if push_xol_ops doesn't handle this insn */ +static int push_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn) +{ + u8 opc1 = OPCODE1(insn), reg_offset = 0; + + if (opc1 < 0x50 || opc1 > 0x57) + return -ENOSYS; + + if (insn->length > 2) + return -ENOSYS; + if (insn->length == 2) { + /* only support rex_prefix 0x41 (x64 only) */ +#ifdef CONFIG_X86_64 + if (insn->rex_prefix.nbytes != 1 || + insn->rex_prefix.bytes[0] != 0x41) + return -ENOSYS; + + switch (opc1) { + case 0x50: + reg_offset = offsetof(struct pt_regs, r8); + break; + case 0x51: + reg_offset = offsetof(struct pt_regs, r9); + break; + case 0x52: + reg_offset = offsetof(struct pt_regs, r10); + break; + case 0x53: + reg_offset = offsetof(struct pt_regs, r11); + break; + case 0x54: + reg_offset = offsetof(struct pt_regs, r12); + break; + case 0x55: + reg_offset = offsetof(struct pt_regs, r13); + break; + case 0x56: + reg_offset = offsetof(struct pt_regs, r14); + break; + case 0x57: + reg_offset = offsetof(struct pt_regs, r15); + break; + } +#else + return -ENOSYS; +#endif + } else { + switch (opc1) { + case 0x50: + reg_offset = offsetof(struct pt_regs, ax); + break; + case 0x51: + reg_offset = offsetof(struct pt_regs, cx); + break; + case 0x52: + reg_offset = offsetof(struct pt_regs, dx); + break; + case 0x53: + reg_offset = offsetof(struct pt_regs, bx); + break; + case 0x54: + reg_offset = offsetof(struct pt_regs, sp); + break; + case 0x55: + reg_offset = offsetof(struct pt_regs, bp); + break; + case 0x56: + reg_offset = offsetof(struct pt_regs, si); + break; + case 0x57: + reg_offset = offsetof(struct pt_regs, di); + break; + } + } + + auprobe->push.reg_offset = reg_offset; + auprobe->push.ilen = insn->length; + auprobe->ops = &push_xol_ops; + return 0; +} + +/** + * arch_uprobe_analyze_insn - instruction analysis including validity and fixups. + * @auprobe: the probepoint information. + * @mm: the probed address space. + * @addr: virtual address at which to install the probepoint + * Return 0 on success or a -ve number on error. + */ +int arch_uprobe_analyze_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long addr) +{ + struct insn insn; + u8 fix_ip_or_call = UPROBE_FIX_IP; + int ret; + + ret = uprobe_init_insn(auprobe, &insn, is_64bit_mm(mm)); + if (ret) + return ret; + + ret = branch_setup_xol_ops(auprobe, &insn); + if (ret != -ENOSYS) + return ret; + + ret = push_setup_xol_ops(auprobe, &insn); + if (ret != -ENOSYS) + return ret; + + /* + * Figure out which fixups default_post_xol_op() will need to perform, + * and annotate defparam->fixups accordingly. + */ + switch (OPCODE1(&insn)) { + case 0x9d: /* popf */ + auprobe->defparam.fixups |= UPROBE_FIX_SETF; + break; + case 0xc3: /* ret or lret -- ip is correct */ + case 0xcb: + case 0xc2: + case 0xca: + case 0xea: /* jmp absolute -- ip is correct */ + fix_ip_or_call = 0; + break; + case 0x9a: /* call absolute - Fix return addr, not ip */ + fix_ip_or_call = UPROBE_FIX_CALL; + break; + case 0xff: + switch (MODRM_REG(&insn)) { + case 2: case 3: /* call or lcall, indirect */ + fix_ip_or_call = UPROBE_FIX_CALL; + break; + case 4: case 5: /* jmp or ljmp, indirect */ + fix_ip_or_call = 0; + break; + } + fallthrough; + default: + riprel_analyze(auprobe, &insn); + } + + auprobe->defparam.ilen = insn.length; + auprobe->defparam.fixups |= fix_ip_or_call; + + auprobe->ops = &default_xol_ops; + return 0; +} + +/* + * arch_uprobe_pre_xol - prepare to execute out of line. + * @auprobe: the probepoint information. + * @regs: reflects the saved user state of current task. + */ +int arch_uprobe_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs) +{ + struct uprobe_task *utask = current->utask; + + if (auprobe->ops->pre_xol) { + int err = auprobe->ops->pre_xol(auprobe, regs); + if (err) + return err; + } + + regs->ip = utask->xol_vaddr; + utask->autask.saved_trap_nr = current->thread.trap_nr; + current->thread.trap_nr = UPROBE_TRAP_NR; + + utask->autask.saved_tf = !!(regs->flags & X86_EFLAGS_TF); + regs->flags |= X86_EFLAGS_TF; + if (test_tsk_thread_flag(current, TIF_BLOCKSTEP)) + set_task_blockstep(current, false); + + return 0; +} + +/* + * If xol insn itself traps and generates a signal(Say, + * SIGILL/SIGSEGV/etc), then detect the case where a singlestepped + * instruction jumps back to its own address. It is assumed that anything + * like do_page_fault/do_trap/etc sets thread.trap_nr != -1. + * + * arch_uprobe_pre_xol/arch_uprobe_post_xol save/restore thread.trap_nr, + * arch_uprobe_xol_was_trapped() simply checks that ->trap_nr is not equal to + * UPROBE_TRAP_NR == -1 set by arch_uprobe_pre_xol(). + */ +bool arch_uprobe_xol_was_trapped(struct task_struct *t) +{ + if (t->thread.trap_nr != UPROBE_TRAP_NR) + return true; + + return false; +} + +/* + * Called after single-stepping. To avoid the SMP problems that can + * occur when we temporarily put back the original opcode to + * single-step, we single-stepped a copy of the instruction. + * + * This function prepares to resume execution after the single-step. + */ +int arch_uprobe_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs) +{ + struct uprobe_task *utask = current->utask; + bool send_sigtrap = utask->autask.saved_tf; + int err = 0; + + WARN_ON_ONCE(current->thread.trap_nr != UPROBE_TRAP_NR); + current->thread.trap_nr = utask->autask.saved_trap_nr; + + if (auprobe->ops->post_xol) { + err = auprobe->ops->post_xol(auprobe, regs); + if (err) { + /* + * Restore ->ip for restart or post mortem analysis. + * ->post_xol() must not return -ERESTART unless this + * is really possible. + */ + regs->ip = utask->vaddr; + if (err == -ERESTART) + err = 0; + send_sigtrap = false; + } + } + /* + * arch_uprobe_pre_xol() doesn't save the state of TIF_BLOCKSTEP + * so we can get an extra SIGTRAP if we do not clear TF. We need + * to examine the opcode to make it right. + */ + if (send_sigtrap) + send_sig(SIGTRAP, current, 0); + + if (!utask->autask.saved_tf) + regs->flags &= ~X86_EFLAGS_TF; + + return err; +} + +/* callback routine for handling exceptions. */ +int arch_uprobe_exception_notify(struct notifier_block *self, unsigned long val, void *data) +{ + struct die_args *args = data; + struct pt_regs *regs = args->regs; + int ret = NOTIFY_DONE; + + /* We are only interested in userspace traps */ + if (regs && !user_mode(regs)) + return NOTIFY_DONE; + + switch (val) { + case DIE_INT3: + if (uprobe_pre_sstep_notifier(regs)) + ret = NOTIFY_STOP; + + break; + + case DIE_DEBUG: + if (uprobe_post_sstep_notifier(regs)) + ret = NOTIFY_STOP; + + break; + + default: + break; + } + + return ret; +} + +/* + * This function gets called when XOL instruction either gets trapped or + * the thread has a fatal signal. Reset the instruction pointer to its + * probed address for the potential restart or for post mortem analysis. + */ +void arch_uprobe_abort_xol(struct arch_uprobe *auprobe, struct pt_regs *regs) +{ + struct uprobe_task *utask = current->utask; + + if (auprobe->ops->abort) + auprobe->ops->abort(auprobe, regs); + + current->thread.trap_nr = utask->autask.saved_trap_nr; + regs->ip = utask->vaddr; + /* clear TF if it was set by us in arch_uprobe_pre_xol() */ + if (!utask->autask.saved_tf) + regs->flags &= ~X86_EFLAGS_TF; +} + +static bool __skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs) +{ + if (auprobe->ops->emulate) + return auprobe->ops->emulate(auprobe, regs); + return false; +} + +bool arch_uprobe_skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs) +{ + bool ret = __skip_sstep(auprobe, regs); + if (ret && (regs->flags & X86_EFLAGS_TF)) + send_sig(SIGTRAP, current, 0); + return ret; +} + +unsigned long +arch_uretprobe_hijack_return_addr(unsigned long trampoline_vaddr, struct pt_regs *regs) +{ + int rasize = sizeof_long(regs), nleft; + unsigned long orig_ret_vaddr = 0; /* clear high bits for 32-bit apps */ + + if (copy_from_user(&orig_ret_vaddr, (void __user *)regs->sp, rasize)) + return -1; + + /* check whether address has been already hijacked */ + if (orig_ret_vaddr == trampoline_vaddr) + return orig_ret_vaddr; + + nleft = copy_to_user((void __user *)regs->sp, &trampoline_vaddr, rasize); + if (likely(!nleft)) + return orig_ret_vaddr; + + if (nleft != rasize) { + pr_err("return address clobbered: pid=%d, %%sp=%#lx, %%ip=%#lx\n", + current->pid, regs->sp, regs->ip); + + force_sig(SIGSEGV); + } + + return -1; +} + +bool arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx, + struct pt_regs *regs) +{ + if (ctx == RP_CHECK_CALL) /* sp was just decremented by "call" insn */ + return regs->sp < ret->stack; + else + return regs->sp <= ret->stack; +} |