diff options
Diffstat (limited to 'arch/x86/kvm/mmu/tdp_mmu.c')
-rw-r--r-- | arch/x86/kvm/mmu/tdp_mmu.c | 1885 |
1 files changed, 1885 insertions, 0 deletions
diff --git a/arch/x86/kvm/mmu/tdp_mmu.c b/arch/x86/kvm/mmu/tdp_mmu.c new file mode 100644 index 000000000..c3b0f9733 --- /dev/null +++ b/arch/x86/kvm/mmu/tdp_mmu.c @@ -0,0 +1,1885 @@ +// SPDX-License-Identifier: GPL-2.0 + +#include "mmu.h" +#include "mmu_internal.h" +#include "mmutrace.h" +#include "tdp_iter.h" +#include "tdp_mmu.h" +#include "spte.h" + +#include <asm/cmpxchg.h> +#include <trace/events/kvm.h> + +static bool __read_mostly tdp_mmu_enabled = true; +module_param_named(tdp_mmu, tdp_mmu_enabled, bool, 0644); + +/* Initializes the TDP MMU for the VM, if enabled. */ +void kvm_mmu_init_tdp_mmu(struct kvm *kvm) +{ + if (!tdp_enabled || !READ_ONCE(tdp_mmu_enabled)) + return; + + /* This should not be changed for the lifetime of the VM. */ + kvm->arch.tdp_mmu_enabled = true; + INIT_LIST_HEAD(&kvm->arch.tdp_mmu_roots); + spin_lock_init(&kvm->arch.tdp_mmu_pages_lock); + INIT_LIST_HEAD(&kvm->arch.tdp_mmu_pages); +} + +/* Arbitrarily returns true so that this may be used in if statements. */ +static __always_inline bool kvm_lockdep_assert_mmu_lock_held(struct kvm *kvm, + bool shared) +{ + if (shared) + lockdep_assert_held_read(&kvm->mmu_lock); + else + lockdep_assert_held_write(&kvm->mmu_lock); + + return true; +} + +void kvm_mmu_uninit_tdp_mmu(struct kvm *kvm) +{ + if (!kvm->arch.tdp_mmu_enabled) + return; + + /* + * Invalidate all roots, which besides the obvious, schedules all roots + * for zapping and thus puts the TDP MMU's reference to each root, i.e. + * ultimately frees all roots. + */ + kvm_tdp_mmu_invalidate_all_roots(kvm); + kvm_tdp_mmu_zap_invalidated_roots(kvm); + + WARN_ON(!list_empty(&kvm->arch.tdp_mmu_pages)); + WARN_ON(!list_empty(&kvm->arch.tdp_mmu_roots)); + + /* + * Ensure that all the outstanding RCU callbacks to free shadow pages + * can run before the VM is torn down. Putting the last reference to + * zapped roots will create new callbacks. + */ + rcu_barrier(); +} + +static void tdp_mmu_free_sp(struct kvm_mmu_page *sp) +{ + free_page((unsigned long)sp->spt); + kmem_cache_free(mmu_page_header_cache, sp); +} + +/* + * This is called through call_rcu in order to free TDP page table memory + * safely with respect to other kernel threads that may be operating on + * the memory. + * By only accessing TDP MMU page table memory in an RCU read critical + * section, and freeing it after a grace period, lockless access to that + * memory won't use it after it is freed. + */ +static void tdp_mmu_free_sp_rcu_callback(struct rcu_head *head) +{ + struct kvm_mmu_page *sp = container_of(head, struct kvm_mmu_page, + rcu_head); + + tdp_mmu_free_sp(sp); +} + +void kvm_tdp_mmu_put_root(struct kvm *kvm, struct kvm_mmu_page *root, + bool shared) +{ + kvm_lockdep_assert_mmu_lock_held(kvm, shared); + + if (!refcount_dec_and_test(&root->tdp_mmu_root_count)) + return; + + /* + * The TDP MMU itself holds a reference to each root until the root is + * explicitly invalidated, i.e. the final reference should be never be + * put for a valid root. + */ + KVM_BUG_ON(!is_tdp_mmu_page(root) || !root->role.invalid, kvm); + + spin_lock(&kvm->arch.tdp_mmu_pages_lock); + list_del_rcu(&root->link); + spin_unlock(&kvm->arch.tdp_mmu_pages_lock); + call_rcu(&root->rcu_head, tdp_mmu_free_sp_rcu_callback); +} + +/* + * Returns the next root after @prev_root (or the first root if @prev_root is + * NULL). A reference to the returned root is acquired, and the reference to + * @prev_root is released (the caller obviously must hold a reference to + * @prev_root if it's non-NULL). + * + * If @only_valid is true, invalid roots are skipped. + * + * Returns NULL if the end of tdp_mmu_roots was reached. + */ +static struct kvm_mmu_page *tdp_mmu_next_root(struct kvm *kvm, + struct kvm_mmu_page *prev_root, + bool shared, bool only_valid) +{ + struct kvm_mmu_page *next_root; + + rcu_read_lock(); + + if (prev_root) + next_root = list_next_or_null_rcu(&kvm->arch.tdp_mmu_roots, + &prev_root->link, + typeof(*prev_root), link); + else + next_root = list_first_or_null_rcu(&kvm->arch.tdp_mmu_roots, + typeof(*next_root), link); + + while (next_root) { + if ((!only_valid || !next_root->role.invalid) && + kvm_tdp_mmu_get_root(next_root)) + break; + + next_root = list_next_or_null_rcu(&kvm->arch.tdp_mmu_roots, + &next_root->link, typeof(*next_root), link); + } + + rcu_read_unlock(); + + if (prev_root) + kvm_tdp_mmu_put_root(kvm, prev_root, shared); + + return next_root; +} + +/* + * Note: this iterator gets and puts references to the roots it iterates over. + * This makes it safe to release the MMU lock and yield within the loop, but + * if exiting the loop early, the caller must drop the reference to the most + * recent root. (Unless keeping a live reference is desirable.) + * + * If shared is set, this function is operating under the MMU lock in read + * mode. In the unlikely event that this thread must free a root, the lock + * will be temporarily dropped and reacquired in write mode. + */ +#define __for_each_tdp_mmu_root_yield_safe(_kvm, _root, _as_id, _shared, _only_valid)\ + for (_root = tdp_mmu_next_root(_kvm, NULL, _shared, _only_valid); \ + _root; \ + _root = tdp_mmu_next_root(_kvm, _root, _shared, _only_valid)) \ + if (kvm_lockdep_assert_mmu_lock_held(_kvm, _shared) && \ + kvm_mmu_page_as_id(_root) != _as_id) { \ + } else + +#define for_each_valid_tdp_mmu_root_yield_safe(_kvm, _root, _as_id, _shared) \ + __for_each_tdp_mmu_root_yield_safe(_kvm, _root, _as_id, _shared, true) + +#define for_each_tdp_mmu_root_yield_safe(_kvm, _root, _shared) \ + for (_root = tdp_mmu_next_root(_kvm, NULL, _shared, false); \ + _root; \ + _root = tdp_mmu_next_root(_kvm, _root, _shared, false)) \ + if (!kvm_lockdep_assert_mmu_lock_held(_kvm, _shared)) { \ + } else + +/* + * Iterate over all TDP MMU roots. Requires that mmu_lock be held for write, + * the implication being that any flow that holds mmu_lock for read is + * inherently yield-friendly and should use the yield-safe variant above. + * Holding mmu_lock for write obviates the need for RCU protection as the list + * is guaranteed to be stable. + */ +#define for_each_tdp_mmu_root(_kvm, _root, _as_id) \ + list_for_each_entry(_root, &_kvm->arch.tdp_mmu_roots, link) \ + if (kvm_lockdep_assert_mmu_lock_held(_kvm, false) && \ + kvm_mmu_page_as_id(_root) != _as_id) { \ + } else + +static struct kvm_mmu_page *tdp_mmu_alloc_sp(struct kvm_vcpu *vcpu) +{ + struct kvm_mmu_page *sp; + + sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache); + sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache); + + return sp; +} + +static void tdp_mmu_init_sp(struct kvm_mmu_page *sp, tdp_ptep_t sptep, + gfn_t gfn, union kvm_mmu_page_role role) +{ + set_page_private(virt_to_page(sp->spt), (unsigned long)sp); + + sp->role = role; + sp->gfn = gfn; + sp->ptep = sptep; + sp->tdp_mmu_page = true; + + trace_kvm_mmu_get_page(sp, true); +} + +static void tdp_mmu_init_child_sp(struct kvm_mmu_page *child_sp, + struct tdp_iter *iter) +{ + struct kvm_mmu_page *parent_sp; + union kvm_mmu_page_role role; + + parent_sp = sptep_to_sp(rcu_dereference(iter->sptep)); + + role = parent_sp->role; + role.level--; + + tdp_mmu_init_sp(child_sp, iter->sptep, iter->gfn, role); +} + +hpa_t kvm_tdp_mmu_get_vcpu_root_hpa(struct kvm_vcpu *vcpu) +{ + union kvm_mmu_page_role role = vcpu->arch.mmu->root_role; + struct kvm *kvm = vcpu->kvm; + struct kvm_mmu_page *root; + + lockdep_assert_held_write(&kvm->mmu_lock); + + /* + * Check for an existing root before allocating a new one. Note, the + * role check prevents consuming an invalid root. + */ + for_each_tdp_mmu_root(kvm, root, kvm_mmu_role_as_id(role)) { + if (root->role.word == role.word && + kvm_tdp_mmu_get_root(root)) + goto out; + } + + root = tdp_mmu_alloc_sp(vcpu); + tdp_mmu_init_sp(root, NULL, 0, role); + + /* + * TDP MMU roots are kept until they are explicitly invalidated, either + * by a memslot update or by the destruction of the VM. Initialize the + * refcount to two; one reference for the vCPU, and one reference for + * the TDP MMU itself, which is held until the root is invalidated and + * is ultimately put by kvm_tdp_mmu_zap_invalidated_roots(). + */ + refcount_set(&root->tdp_mmu_root_count, 2); + + spin_lock(&kvm->arch.tdp_mmu_pages_lock); + list_add_rcu(&root->link, &kvm->arch.tdp_mmu_roots); + spin_unlock(&kvm->arch.tdp_mmu_pages_lock); + +out: + return __pa(root->spt); +} + +static void handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn, + u64 old_spte, u64 new_spte, int level, + bool shared); + +static void handle_changed_spte_acc_track(u64 old_spte, u64 new_spte, int level) +{ + if (!is_shadow_present_pte(old_spte) || !is_last_spte(old_spte, level)) + return; + + if (is_accessed_spte(old_spte) && + (!is_shadow_present_pte(new_spte) || !is_accessed_spte(new_spte) || + spte_to_pfn(old_spte) != spte_to_pfn(new_spte))) + kvm_set_pfn_accessed(spte_to_pfn(old_spte)); +} + +static void handle_changed_spte_dirty_log(struct kvm *kvm, int as_id, gfn_t gfn, + u64 old_spte, u64 new_spte, int level) +{ + bool pfn_changed; + struct kvm_memory_slot *slot; + + if (level > PG_LEVEL_4K) + return; + + pfn_changed = spte_to_pfn(old_spte) != spte_to_pfn(new_spte); + + if ((!is_writable_pte(old_spte) || pfn_changed) && + is_writable_pte(new_spte)) { + slot = __gfn_to_memslot(__kvm_memslots(kvm, as_id), gfn); + mark_page_dirty_in_slot(kvm, slot, gfn); + } +} + +static void tdp_account_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp) +{ + kvm_account_pgtable_pages((void *)sp->spt, +1); +} + +static void tdp_unaccount_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp) +{ + kvm_account_pgtable_pages((void *)sp->spt, -1); +} + +/** + * tdp_mmu_unlink_sp() - Remove a shadow page from the list of used pages + * + * @kvm: kvm instance + * @sp: the page to be removed + * @shared: This operation may not be running under the exclusive use of + * the MMU lock and the operation must synchronize with other + * threads that might be adding or removing pages. + */ +static void tdp_mmu_unlink_sp(struct kvm *kvm, struct kvm_mmu_page *sp, + bool shared) +{ + tdp_unaccount_mmu_page(kvm, sp); + if (shared) + spin_lock(&kvm->arch.tdp_mmu_pages_lock); + else + lockdep_assert_held_write(&kvm->mmu_lock); + + list_del(&sp->link); + if (sp->lpage_disallowed) + unaccount_huge_nx_page(kvm, sp); + + if (shared) + spin_unlock(&kvm->arch.tdp_mmu_pages_lock); +} + +/** + * handle_removed_pt() - handle a page table removed from the TDP structure + * + * @kvm: kvm instance + * @pt: the page removed from the paging structure + * @shared: This operation may not be running under the exclusive use + * of the MMU lock and the operation must synchronize with other + * threads that might be modifying SPTEs. + * + * Given a page table that has been removed from the TDP paging structure, + * iterates through the page table to clear SPTEs and free child page tables. + * + * Note that pt is passed in as a tdp_ptep_t, but it does not need RCU + * protection. Since this thread removed it from the paging structure, + * this thread will be responsible for ensuring the page is freed. Hence the + * early rcu_dereferences in the function. + */ +static void handle_removed_pt(struct kvm *kvm, tdp_ptep_t pt, bool shared) +{ + struct kvm_mmu_page *sp = sptep_to_sp(rcu_dereference(pt)); + int level = sp->role.level; + gfn_t base_gfn = sp->gfn; + int i; + + trace_kvm_mmu_prepare_zap_page(sp); + + tdp_mmu_unlink_sp(kvm, sp, shared); + + for (i = 0; i < SPTE_ENT_PER_PAGE; i++) { + tdp_ptep_t sptep = pt + i; + gfn_t gfn = base_gfn + i * KVM_PAGES_PER_HPAGE(level); + u64 old_spte; + + if (shared) { + /* + * Set the SPTE to a nonpresent value that other + * threads will not overwrite. If the SPTE was + * already marked as removed then another thread + * handling a page fault could overwrite it, so + * set the SPTE until it is set from some other + * value to the removed SPTE value. + */ + for (;;) { + old_spte = kvm_tdp_mmu_write_spte_atomic(sptep, REMOVED_SPTE); + if (!is_removed_spte(old_spte)) + break; + cpu_relax(); + } + } else { + /* + * If the SPTE is not MMU-present, there is no backing + * page associated with the SPTE and so no side effects + * that need to be recorded, and exclusive ownership of + * mmu_lock ensures the SPTE can't be made present. + * Note, zapping MMIO SPTEs is also unnecessary as they + * are guarded by the memslots generation, not by being + * unreachable. + */ + old_spte = kvm_tdp_mmu_read_spte(sptep); + if (!is_shadow_present_pte(old_spte)) + continue; + + /* + * Use the common helper instead of a raw WRITE_ONCE as + * the SPTE needs to be updated atomically if it can be + * modified by a different vCPU outside of mmu_lock. + * Even though the parent SPTE is !PRESENT, the TLB + * hasn't yet been flushed, and both Intel and AMD + * document that A/D assists can use upper-level PxE + * entries that are cached in the TLB, i.e. the CPU can + * still access the page and mark it dirty. + * + * No retry is needed in the atomic update path as the + * sole concern is dropping a Dirty bit, i.e. no other + * task can zap/remove the SPTE as mmu_lock is held for + * write. Marking the SPTE as a removed SPTE is not + * strictly necessary for the same reason, but using + * the remove SPTE value keeps the shared/exclusive + * paths consistent and allows the handle_changed_spte() + * call below to hardcode the new value to REMOVED_SPTE. + * + * Note, even though dropping a Dirty bit is the only + * scenario where a non-atomic update could result in a + * functional bug, simply checking the Dirty bit isn't + * sufficient as a fast page fault could read the upper + * level SPTE before it is zapped, and then make this + * target SPTE writable, resume the guest, and set the + * Dirty bit between reading the SPTE above and writing + * it here. + */ + old_spte = kvm_tdp_mmu_write_spte(sptep, old_spte, + REMOVED_SPTE, level); + } + handle_changed_spte(kvm, kvm_mmu_page_as_id(sp), gfn, + old_spte, REMOVED_SPTE, level, shared); + } + + call_rcu(&sp->rcu_head, tdp_mmu_free_sp_rcu_callback); +} + +/** + * __handle_changed_spte - handle bookkeeping associated with an SPTE change + * @kvm: kvm instance + * @as_id: the address space of the paging structure the SPTE was a part of + * @gfn: the base GFN that was mapped by the SPTE + * @old_spte: The value of the SPTE before the change + * @new_spte: The value of the SPTE after the change + * @level: the level of the PT the SPTE is part of in the paging structure + * @shared: This operation may not be running under the exclusive use of + * the MMU lock and the operation must synchronize with other + * threads that might be modifying SPTEs. + * + * Handle bookkeeping that might result from the modification of a SPTE. + * This function must be called for all TDP SPTE modifications. + */ +static void __handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn, + u64 old_spte, u64 new_spte, int level, + bool shared) +{ + bool was_present = is_shadow_present_pte(old_spte); + bool is_present = is_shadow_present_pte(new_spte); + bool was_leaf = was_present && is_last_spte(old_spte, level); + bool is_leaf = is_present && is_last_spte(new_spte, level); + bool pfn_changed = spte_to_pfn(old_spte) != spte_to_pfn(new_spte); + + WARN_ON(level > PT64_ROOT_MAX_LEVEL); + WARN_ON(level < PG_LEVEL_4K); + WARN_ON(gfn & (KVM_PAGES_PER_HPAGE(level) - 1)); + + /* + * If this warning were to trigger it would indicate that there was a + * missing MMU notifier or a race with some notifier handler. + * A present, leaf SPTE should never be directly replaced with another + * present leaf SPTE pointing to a different PFN. A notifier handler + * should be zapping the SPTE before the main MM's page table is + * changed, or the SPTE should be zeroed, and the TLBs flushed by the + * thread before replacement. + */ + if (was_leaf && is_leaf && pfn_changed) { + pr_err("Invalid SPTE change: cannot replace a present leaf\n" + "SPTE with another present leaf SPTE mapping a\n" + "different PFN!\n" + "as_id: %d gfn: %llx old_spte: %llx new_spte: %llx level: %d", + as_id, gfn, old_spte, new_spte, level); + + /* + * Crash the host to prevent error propagation and guest data + * corruption. + */ + BUG(); + } + + if (old_spte == new_spte) + return; + + trace_kvm_tdp_mmu_spte_changed(as_id, gfn, level, old_spte, new_spte); + + if (is_leaf) + check_spte_writable_invariants(new_spte); + + /* + * The only times a SPTE should be changed from a non-present to + * non-present state is when an MMIO entry is installed/modified/ + * removed. In that case, there is nothing to do here. + */ + if (!was_present && !is_present) { + /* + * If this change does not involve a MMIO SPTE or removed SPTE, + * it is unexpected. Log the change, though it should not + * impact the guest since both the former and current SPTEs + * are nonpresent. + */ + if (WARN_ON(!is_mmio_spte(old_spte) && + !is_mmio_spte(new_spte) && + !is_removed_spte(new_spte))) + pr_err("Unexpected SPTE change! Nonpresent SPTEs\n" + "should not be replaced with another,\n" + "different nonpresent SPTE, unless one or both\n" + "are MMIO SPTEs, or the new SPTE is\n" + "a temporary removed SPTE.\n" + "as_id: %d gfn: %llx old_spte: %llx new_spte: %llx level: %d", + as_id, gfn, old_spte, new_spte, level); + return; + } + + if (is_leaf != was_leaf) + kvm_update_page_stats(kvm, level, is_leaf ? 1 : -1); + + if (was_leaf && is_dirty_spte(old_spte) && + (!is_present || !is_dirty_spte(new_spte) || pfn_changed)) + kvm_set_pfn_dirty(spte_to_pfn(old_spte)); + + /* + * Recursively handle child PTs if the change removed a subtree from + * the paging structure. Note the WARN on the PFN changing without the + * SPTE being converted to a hugepage (leaf) or being zapped. Shadow + * pages are kernel allocations and should never be migrated. + */ + if (was_present && !was_leaf && + (is_leaf || !is_present || WARN_ON_ONCE(pfn_changed))) + handle_removed_pt(kvm, spte_to_child_pt(old_spte, level), shared); +} + +static void handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn, + u64 old_spte, u64 new_spte, int level, + bool shared) +{ + __handle_changed_spte(kvm, as_id, gfn, old_spte, new_spte, level, + shared); + handle_changed_spte_acc_track(old_spte, new_spte, level); + handle_changed_spte_dirty_log(kvm, as_id, gfn, old_spte, + new_spte, level); +} + +/* + * tdp_mmu_set_spte_atomic - Set a TDP MMU SPTE atomically + * and handle the associated bookkeeping. Do not mark the page dirty + * in KVM's dirty bitmaps. + * + * If setting the SPTE fails because it has changed, iter->old_spte will be + * refreshed to the current value of the spte. + * + * @kvm: kvm instance + * @iter: a tdp_iter instance currently on the SPTE that should be set + * @new_spte: The value the SPTE should be set to + * Return: + * * 0 - If the SPTE was set. + * * -EBUSY - If the SPTE cannot be set. In this case this function will have + * no side-effects other than setting iter->old_spte to the last + * known value of the spte. + */ +static inline int tdp_mmu_set_spte_atomic(struct kvm *kvm, + struct tdp_iter *iter, + u64 new_spte) +{ + u64 *sptep = rcu_dereference(iter->sptep); + + /* + * The caller is responsible for ensuring the old SPTE is not a REMOVED + * SPTE. KVM should never attempt to zap or manipulate a REMOVED SPTE, + * and pre-checking before inserting a new SPTE is advantageous as it + * avoids unnecessary work. + */ + WARN_ON_ONCE(iter->yielded || is_removed_spte(iter->old_spte)); + + lockdep_assert_held_read(&kvm->mmu_lock); + + /* + * Note, fast_pf_fix_direct_spte() can also modify TDP MMU SPTEs and + * does not hold the mmu_lock. + */ + if (!try_cmpxchg64(sptep, &iter->old_spte, new_spte)) + return -EBUSY; + + __handle_changed_spte(kvm, iter->as_id, iter->gfn, iter->old_spte, + new_spte, iter->level, true); + handle_changed_spte_acc_track(iter->old_spte, new_spte, iter->level); + + return 0; +} + +static inline int tdp_mmu_zap_spte_atomic(struct kvm *kvm, + struct tdp_iter *iter) +{ + int ret; + + /* + * Freeze the SPTE by setting it to a special, + * non-present value. This will stop other threads from + * immediately installing a present entry in its place + * before the TLBs are flushed. + */ + ret = tdp_mmu_set_spte_atomic(kvm, iter, REMOVED_SPTE); + if (ret) + return ret; + + kvm_flush_remote_tlbs_with_address(kvm, iter->gfn, + KVM_PAGES_PER_HPAGE(iter->level)); + + /* + * No other thread can overwrite the removed SPTE as they must either + * wait on the MMU lock or use tdp_mmu_set_spte_atomic() which will not + * overwrite the special removed SPTE value. No bookkeeping is needed + * here since the SPTE is going from non-present to non-present. Use + * the raw write helper to avoid an unnecessary check on volatile bits. + */ + __kvm_tdp_mmu_write_spte(iter->sptep, 0); + + return 0; +} + + +/* + * __tdp_mmu_set_spte - Set a TDP MMU SPTE and handle the associated bookkeeping + * @kvm: KVM instance + * @as_id: Address space ID, i.e. regular vs. SMM + * @sptep: Pointer to the SPTE + * @old_spte: The current value of the SPTE + * @new_spte: The new value that will be set for the SPTE + * @gfn: The base GFN that was (or will be) mapped by the SPTE + * @level: The level _containing_ the SPTE (its parent PT's level) + * @record_acc_track: Notify the MM subsystem of changes to the accessed state + * of the page. Should be set unless handling an MMU + * notifier for access tracking. Leaving record_acc_track + * unset in that case prevents page accesses from being + * double counted. + * @record_dirty_log: Record the page as dirty in the dirty bitmap if + * appropriate for the change being made. Should be set + * unless performing certain dirty logging operations. + * Leaving record_dirty_log unset in that case prevents page + * writes from being double counted. + * + * Returns the old SPTE value, which _may_ be different than @old_spte if the + * SPTE had voldatile bits. + */ +static u64 __tdp_mmu_set_spte(struct kvm *kvm, int as_id, tdp_ptep_t sptep, + u64 old_spte, u64 new_spte, gfn_t gfn, int level, + bool record_acc_track, bool record_dirty_log) +{ + lockdep_assert_held_write(&kvm->mmu_lock); + + /* + * No thread should be using this function to set SPTEs to or from the + * temporary removed SPTE value. + * If operating under the MMU lock in read mode, tdp_mmu_set_spte_atomic + * should be used. If operating under the MMU lock in write mode, the + * use of the removed SPTE should not be necessary. + */ + WARN_ON(is_removed_spte(old_spte) || is_removed_spte(new_spte)); + + old_spte = kvm_tdp_mmu_write_spte(sptep, old_spte, new_spte, level); + + __handle_changed_spte(kvm, as_id, gfn, old_spte, new_spte, level, false); + + if (record_acc_track) + handle_changed_spte_acc_track(old_spte, new_spte, level); + if (record_dirty_log) + handle_changed_spte_dirty_log(kvm, as_id, gfn, old_spte, + new_spte, level); + return old_spte; +} + +static inline void _tdp_mmu_set_spte(struct kvm *kvm, struct tdp_iter *iter, + u64 new_spte, bool record_acc_track, + bool record_dirty_log) +{ + WARN_ON_ONCE(iter->yielded); + + iter->old_spte = __tdp_mmu_set_spte(kvm, iter->as_id, iter->sptep, + iter->old_spte, new_spte, + iter->gfn, iter->level, + record_acc_track, record_dirty_log); +} + +static inline void tdp_mmu_set_spte(struct kvm *kvm, struct tdp_iter *iter, + u64 new_spte) +{ + _tdp_mmu_set_spte(kvm, iter, new_spte, true, true); +} + +static inline void tdp_mmu_set_spte_no_acc_track(struct kvm *kvm, + struct tdp_iter *iter, + u64 new_spte) +{ + _tdp_mmu_set_spte(kvm, iter, new_spte, false, true); +} + +static inline void tdp_mmu_set_spte_no_dirty_log(struct kvm *kvm, + struct tdp_iter *iter, + u64 new_spte) +{ + _tdp_mmu_set_spte(kvm, iter, new_spte, true, false); +} + +#define tdp_root_for_each_pte(_iter, _root, _start, _end) \ + for_each_tdp_pte(_iter, _root, _start, _end) + +#define tdp_root_for_each_leaf_pte(_iter, _root, _start, _end) \ + tdp_root_for_each_pte(_iter, _root, _start, _end) \ + if (!is_shadow_present_pte(_iter.old_spte) || \ + !is_last_spte(_iter.old_spte, _iter.level)) \ + continue; \ + else + +#define tdp_mmu_for_each_pte(_iter, _mmu, _start, _end) \ + for_each_tdp_pte(_iter, to_shadow_page(_mmu->root.hpa), _start, _end) + +/* + * Yield if the MMU lock is contended or this thread needs to return control + * to the scheduler. + * + * If this function should yield and flush is set, it will perform a remote + * TLB flush before yielding. + * + * If this function yields, iter->yielded is set and the caller must skip to + * the next iteration, where tdp_iter_next() will reset the tdp_iter's walk + * over the paging structures to allow the iterator to continue its traversal + * from the paging structure root. + * + * Returns true if this function yielded. + */ +static inline bool __must_check tdp_mmu_iter_cond_resched(struct kvm *kvm, + struct tdp_iter *iter, + bool flush, bool shared) +{ + WARN_ON(iter->yielded); + + /* Ensure forward progress has been made before yielding. */ + if (iter->next_last_level_gfn == iter->yielded_gfn) + return false; + + if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { + if (flush) + kvm_flush_remote_tlbs(kvm); + + rcu_read_unlock(); + + if (shared) + cond_resched_rwlock_read(&kvm->mmu_lock); + else + cond_resched_rwlock_write(&kvm->mmu_lock); + + rcu_read_lock(); + + WARN_ON(iter->gfn > iter->next_last_level_gfn); + + iter->yielded = true; + } + + return iter->yielded; +} + +static inline gfn_t tdp_mmu_max_gfn_exclusive(void) +{ + /* + * Bound TDP MMU walks at host.MAXPHYADDR. KVM disallows memslots with + * a gpa range that would exceed the max gfn, and KVM does not create + * MMIO SPTEs for "impossible" gfns, instead sending such accesses down + * the slow emulation path every time. + */ + return kvm_mmu_max_gfn() + 1; +} + +static void __tdp_mmu_zap_root(struct kvm *kvm, struct kvm_mmu_page *root, + bool shared, int zap_level) +{ + struct tdp_iter iter; + + gfn_t end = tdp_mmu_max_gfn_exclusive(); + gfn_t start = 0; + + for_each_tdp_pte_min_level(iter, root, zap_level, start, end) { +retry: + if (tdp_mmu_iter_cond_resched(kvm, &iter, false, shared)) + continue; + + if (!is_shadow_present_pte(iter.old_spte)) + continue; + + if (iter.level > zap_level) + continue; + + if (!shared) + tdp_mmu_set_spte(kvm, &iter, 0); + else if (tdp_mmu_set_spte_atomic(kvm, &iter, 0)) + goto retry; + } +} + +static void tdp_mmu_zap_root(struct kvm *kvm, struct kvm_mmu_page *root, + bool shared) +{ + + /* + * The root must have an elevated refcount so that it's reachable via + * mmu_notifier callbacks, which allows this path to yield and drop + * mmu_lock. When handling an unmap/release mmu_notifier command, KVM + * must drop all references to relevant pages prior to completing the + * callback. Dropping mmu_lock with an unreachable root would result + * in zapping SPTEs after a relevant mmu_notifier callback completes + * and lead to use-after-free as zapping a SPTE triggers "writeback" of + * dirty accessed bits to the SPTE's associated struct page. + */ + WARN_ON_ONCE(!refcount_read(&root->tdp_mmu_root_count)); + + kvm_lockdep_assert_mmu_lock_held(kvm, shared); + + rcu_read_lock(); + + /* + * To avoid RCU stalls due to recursively removing huge swaths of SPs, + * split the zap into two passes. On the first pass, zap at the 1gb + * level, and then zap top-level SPs on the second pass. "1gb" is not + * arbitrary, as KVM must be able to zap a 1gb shadow page without + * inducing a stall to allow in-place replacement with a 1gb hugepage. + * + * Because zapping a SP recurses on its children, stepping down to + * PG_LEVEL_4K in the iterator itself is unnecessary. + */ + __tdp_mmu_zap_root(kvm, root, shared, PG_LEVEL_1G); + __tdp_mmu_zap_root(kvm, root, shared, root->role.level); + + rcu_read_unlock(); +} + +bool kvm_tdp_mmu_zap_sp(struct kvm *kvm, struct kvm_mmu_page *sp) +{ + u64 old_spte; + + /* + * This helper intentionally doesn't allow zapping a root shadow page, + * which doesn't have a parent page table and thus no associated entry. + */ + if (WARN_ON_ONCE(!sp->ptep)) + return false; + + old_spte = kvm_tdp_mmu_read_spte(sp->ptep); + if (WARN_ON_ONCE(!is_shadow_present_pte(old_spte))) + return false; + + __tdp_mmu_set_spte(kvm, kvm_mmu_page_as_id(sp), sp->ptep, old_spte, 0, + sp->gfn, sp->role.level + 1, true, true); + + return true; +} + +/* + * If can_yield is true, will release the MMU lock and reschedule if the + * scheduler needs the CPU or there is contention on the MMU lock. If this + * function cannot yield, it will not release the MMU lock or reschedule and + * the caller must ensure it does not supply too large a GFN range, or the + * operation can cause a soft lockup. + */ +static bool tdp_mmu_zap_leafs(struct kvm *kvm, struct kvm_mmu_page *root, + gfn_t start, gfn_t end, bool can_yield, bool flush) +{ + struct tdp_iter iter; + + end = min(end, tdp_mmu_max_gfn_exclusive()); + + lockdep_assert_held_write(&kvm->mmu_lock); + + rcu_read_lock(); + + for_each_tdp_pte_min_level(iter, root, PG_LEVEL_4K, start, end) { + if (can_yield && + tdp_mmu_iter_cond_resched(kvm, &iter, flush, false)) { + flush = false; + continue; + } + + if (!is_shadow_present_pte(iter.old_spte) || + !is_last_spte(iter.old_spte, iter.level)) + continue; + + tdp_mmu_set_spte(kvm, &iter, 0); + flush = true; + } + + rcu_read_unlock(); + + /* + * Because this flow zaps _only_ leaf SPTEs, the caller doesn't need + * to provide RCU protection as no 'struct kvm_mmu_page' will be freed. + */ + return flush; +} + +/* + * Zap leaf SPTEs for the range of gfns, [start, end), for all roots. Returns + * true if a TLB flush is needed before releasing the MMU lock, i.e. if one or + * more SPTEs were zapped since the MMU lock was last acquired. + */ +bool kvm_tdp_mmu_zap_leafs(struct kvm *kvm, gfn_t start, gfn_t end, bool flush) +{ + struct kvm_mmu_page *root; + + for_each_tdp_mmu_root_yield_safe(kvm, root, false) + flush = tdp_mmu_zap_leafs(kvm, root, start, end, true, flush); + + return flush; +} + +void kvm_tdp_mmu_zap_all(struct kvm *kvm) +{ + struct kvm_mmu_page *root; + + /* + * Zap all roots, including invalid roots, as all SPTEs must be dropped + * before returning to the caller. Zap directly even if the root is + * also being zapped by a worker. Walking zapped top-level SPTEs isn't + * all that expensive and mmu_lock is already held, which means the + * worker has yielded, i.e. flushing the work instead of zapping here + * isn't guaranteed to be any faster. + * + * A TLB flush is unnecessary, KVM zaps everything if and only the VM + * is being destroyed or the userspace VMM has exited. In both cases, + * KVM_RUN is unreachable, i.e. no vCPUs will ever service the request. + */ + for_each_tdp_mmu_root_yield_safe(kvm, root, false) + tdp_mmu_zap_root(kvm, root, false); +} + +/* + * Zap all invalidated roots to ensure all SPTEs are dropped before the "fast + * zap" completes. + */ +void kvm_tdp_mmu_zap_invalidated_roots(struct kvm *kvm) +{ + struct kvm_mmu_page *root; + + read_lock(&kvm->mmu_lock); + + for_each_tdp_mmu_root_yield_safe(kvm, root, true) { + if (!root->tdp_mmu_scheduled_root_to_zap) + continue; + + root->tdp_mmu_scheduled_root_to_zap = false; + KVM_BUG_ON(!root->role.invalid, kvm); + + /* + * A TLB flush is not necessary as KVM performs a local TLB + * flush when allocating a new root (see kvm_mmu_load()), and + * when migrating a vCPU to a different pCPU. Note, the local + * TLB flush on reuse also invalidates paging-structure-cache + * entries, i.e. TLB entries for intermediate paging structures, + * that may be zapped, as such entries are associated with the + * ASID on both VMX and SVM. + */ + tdp_mmu_zap_root(kvm, root, true); + + /* + * The referenced needs to be put *after* zapping the root, as + * the root must be reachable by mmu_notifiers while it's being + * zapped + */ + kvm_tdp_mmu_put_root(kvm, root, true); + } + + read_unlock(&kvm->mmu_lock); +} + +/* + * Mark each TDP MMU root as invalid to prevent vCPUs from reusing a root that + * is about to be zapped, e.g. in response to a memslots update. The actual + * zapping is done separately so that it happens with mmu_lock with read, + * whereas invalidating roots must be done with mmu_lock held for write (unless + * the VM is being destroyed). + * + * Note, kvm_tdp_mmu_zap_invalidated_roots() is gifted the TDP MMU's reference. + * See kvm_tdp_mmu_get_vcpu_root_hpa(). + */ +void kvm_tdp_mmu_invalidate_all_roots(struct kvm *kvm) +{ + struct kvm_mmu_page *root; + + /* + * mmu_lock must be held for write to ensure that a root doesn't become + * invalid while there are active readers (invalidating a root while + * there are active readers may or may not be problematic in practice, + * but it's uncharted territory and not supported). + * + * Waive the assertion if there are no users of @kvm, i.e. the VM is + * being destroyed after all references have been put, or if no vCPUs + * have been created (which means there are no roots), i.e. the VM is + * being destroyed in an error path of KVM_CREATE_VM. + */ + if (IS_ENABLED(CONFIG_PROVE_LOCKING) && + refcount_read(&kvm->users_count) && kvm->created_vcpus) + lockdep_assert_held_write(&kvm->mmu_lock); + + /* + * As above, mmu_lock isn't held when destroying the VM! There can't + * be other references to @kvm, i.e. nothing else can invalidate roots + * or get/put references to roots. + */ + list_for_each_entry(root, &kvm->arch.tdp_mmu_roots, link) { + /* + * Note, invalid roots can outlive a memslot update! Invalid + * roots must be *zapped* before the memslot update completes, + * but a different task can acquire a reference and keep the + * root alive after its been zapped. + */ + if (!root->role.invalid) { + root->tdp_mmu_scheduled_root_to_zap = true; + root->role.invalid = true; + } + } +} + +/* + * Installs a last-level SPTE to handle a TDP page fault. + * (NPT/EPT violation/misconfiguration) + */ +static int tdp_mmu_map_handle_target_level(struct kvm_vcpu *vcpu, + struct kvm_page_fault *fault, + struct tdp_iter *iter) +{ + struct kvm_mmu_page *sp = sptep_to_sp(rcu_dereference(iter->sptep)); + u64 new_spte; + int ret = RET_PF_FIXED; + bool wrprot = false; + + WARN_ON(sp->role.level != fault->goal_level); + if (unlikely(!fault->slot)) + new_spte = make_mmio_spte(vcpu, iter->gfn, ACC_ALL); + else + wrprot = make_spte(vcpu, sp, fault->slot, ACC_ALL, iter->gfn, + fault->pfn, iter->old_spte, fault->prefetch, true, + fault->map_writable, &new_spte); + + if (new_spte == iter->old_spte) + ret = RET_PF_SPURIOUS; + else if (tdp_mmu_set_spte_atomic(vcpu->kvm, iter, new_spte)) + return RET_PF_RETRY; + else if (is_shadow_present_pte(iter->old_spte) && + !is_last_spte(iter->old_spte, iter->level)) + kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn, + KVM_PAGES_PER_HPAGE(iter->level + 1)); + + /* + * If the page fault was caused by a write but the page is write + * protected, emulation is needed. If the emulation was skipped, + * the vCPU would have the same fault again. + */ + if (wrprot) { + if (fault->write) + ret = RET_PF_EMULATE; + } + + /* If a MMIO SPTE is installed, the MMIO will need to be emulated. */ + if (unlikely(is_mmio_spte(new_spte))) { + vcpu->stat.pf_mmio_spte_created++; + trace_mark_mmio_spte(rcu_dereference(iter->sptep), iter->gfn, + new_spte); + ret = RET_PF_EMULATE; + } else { + trace_kvm_mmu_set_spte(iter->level, iter->gfn, + rcu_dereference(iter->sptep)); + } + + return ret; +} + +/* + * tdp_mmu_link_sp - Replace the given spte with an spte pointing to the + * provided page table. + * + * @kvm: kvm instance + * @iter: a tdp_iter instance currently on the SPTE that should be set + * @sp: The new TDP page table to install. + * @account_nx: True if this page table is being installed to split a + * non-executable huge page. + * @shared: This operation is running under the MMU lock in read mode. + * + * Returns: 0 if the new page table was installed. Non-0 if the page table + * could not be installed (e.g. the atomic compare-exchange failed). + */ +static int tdp_mmu_link_sp(struct kvm *kvm, struct tdp_iter *iter, + struct kvm_mmu_page *sp, bool account_nx, + bool shared) +{ + u64 spte = make_nonleaf_spte(sp->spt, !kvm_ad_enabled()); + int ret = 0; + + if (shared) { + ret = tdp_mmu_set_spte_atomic(kvm, iter, spte); + if (ret) + return ret; + } else { + tdp_mmu_set_spte(kvm, iter, spte); + } + + spin_lock(&kvm->arch.tdp_mmu_pages_lock); + list_add(&sp->link, &kvm->arch.tdp_mmu_pages); + if (account_nx) + account_huge_nx_page(kvm, sp); + spin_unlock(&kvm->arch.tdp_mmu_pages_lock); + tdp_account_mmu_page(kvm, sp); + + return 0; +} + +/* + * Handle a TDP page fault (NPT/EPT violation/misconfiguration) by installing + * page tables and SPTEs to translate the faulting guest physical address. + */ +int kvm_tdp_mmu_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) +{ + struct kvm_mmu *mmu = vcpu->arch.mmu; + struct tdp_iter iter; + struct kvm_mmu_page *sp; + int ret; + + kvm_mmu_hugepage_adjust(vcpu, fault); + + trace_kvm_mmu_spte_requested(fault); + + rcu_read_lock(); + + tdp_mmu_for_each_pte(iter, mmu, fault->gfn, fault->gfn + 1) { + if (fault->nx_huge_page_workaround_enabled) + disallowed_hugepage_adjust(fault, iter.old_spte, iter.level); + + if (iter.level == fault->goal_level) + break; + + /* + * If there is an SPTE mapping a large page at a higher level + * than the target, that SPTE must be cleared and replaced + * with a non-leaf SPTE. + */ + if (is_shadow_present_pte(iter.old_spte) && + is_large_pte(iter.old_spte)) { + if (tdp_mmu_zap_spte_atomic(vcpu->kvm, &iter)) + break; + + /* + * The iter must explicitly re-read the spte here + * because the new value informs the !present + * path below. + */ + iter.old_spte = kvm_tdp_mmu_read_spte(iter.sptep); + } + + if (!is_shadow_present_pte(iter.old_spte)) { + bool account_nx = fault->huge_page_disallowed && + fault->req_level >= iter.level; + + /* + * If SPTE has been frozen by another thread, just + * give up and retry, avoiding unnecessary page table + * allocation and free. + */ + if (is_removed_spte(iter.old_spte)) + break; + + sp = tdp_mmu_alloc_sp(vcpu); + tdp_mmu_init_child_sp(sp, &iter); + + if (tdp_mmu_link_sp(vcpu->kvm, &iter, sp, account_nx, true)) { + tdp_mmu_free_sp(sp); + break; + } + } + } + + /* + * Force the guest to retry the access if the upper level SPTEs aren't + * in place, or if the target leaf SPTE is frozen by another CPU. + */ + if (iter.level != fault->goal_level || is_removed_spte(iter.old_spte)) { + rcu_read_unlock(); + return RET_PF_RETRY; + } + + ret = tdp_mmu_map_handle_target_level(vcpu, fault, &iter); + rcu_read_unlock(); + + return ret; +} + +bool kvm_tdp_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range, + bool flush) +{ + struct kvm_mmu_page *root; + + __for_each_tdp_mmu_root_yield_safe(kvm, root, range->slot->as_id, false, false) + flush = tdp_mmu_zap_leafs(kvm, root, range->start, range->end, + range->may_block, flush); + + return flush; +} + +typedef bool (*tdp_handler_t)(struct kvm *kvm, struct tdp_iter *iter, + struct kvm_gfn_range *range); + +static __always_inline bool kvm_tdp_mmu_handle_gfn(struct kvm *kvm, + struct kvm_gfn_range *range, + tdp_handler_t handler) +{ + struct kvm_mmu_page *root; + struct tdp_iter iter; + bool ret = false; + + /* + * Don't support rescheduling, none of the MMU notifiers that funnel + * into this helper allow blocking; it'd be dead, wasteful code. + */ + for_each_tdp_mmu_root(kvm, root, range->slot->as_id) { + rcu_read_lock(); + + tdp_root_for_each_leaf_pte(iter, root, range->start, range->end) + ret |= handler(kvm, &iter, range); + + rcu_read_unlock(); + } + + return ret; +} + +/* + * Mark the SPTEs range of GFNs [start, end) unaccessed and return non-zero + * if any of the GFNs in the range have been accessed. + */ +static bool age_gfn_range(struct kvm *kvm, struct tdp_iter *iter, + struct kvm_gfn_range *range) +{ + u64 new_spte = 0; + + /* If we have a non-accessed entry we don't need to change the pte. */ + if (!is_accessed_spte(iter->old_spte)) + return false; + + new_spte = iter->old_spte; + + if (spte_ad_enabled(new_spte)) { + new_spte &= ~shadow_accessed_mask; + } else { + /* + * Capture the dirty status of the page, so that it doesn't get + * lost when the SPTE is marked for access tracking. + */ + if (is_writable_pte(new_spte)) + kvm_set_pfn_dirty(spte_to_pfn(new_spte)); + + new_spte = mark_spte_for_access_track(new_spte); + } + + tdp_mmu_set_spte_no_acc_track(kvm, iter, new_spte); + + return true; +} + +bool kvm_tdp_mmu_age_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) +{ + return kvm_tdp_mmu_handle_gfn(kvm, range, age_gfn_range); +} + +static bool test_age_gfn(struct kvm *kvm, struct tdp_iter *iter, + struct kvm_gfn_range *range) +{ + return is_accessed_spte(iter->old_spte); +} + +bool kvm_tdp_mmu_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) +{ + return kvm_tdp_mmu_handle_gfn(kvm, range, test_age_gfn); +} + +static bool set_spte_gfn(struct kvm *kvm, struct tdp_iter *iter, + struct kvm_gfn_range *range) +{ + u64 new_spte; + + /* Huge pages aren't expected to be modified without first being zapped. */ + WARN_ON(pte_huge(range->pte) || range->start + 1 != range->end); + + if (iter->level != PG_LEVEL_4K || + !is_shadow_present_pte(iter->old_spte)) + return false; + + /* + * Note, when changing a read-only SPTE, it's not strictly necessary to + * zero the SPTE before setting the new PFN, but doing so preserves the + * invariant that the PFN of a present * leaf SPTE can never change. + * See __handle_changed_spte(). + */ + tdp_mmu_set_spte(kvm, iter, 0); + + if (!pte_write(range->pte)) { + new_spte = kvm_mmu_changed_pte_notifier_make_spte(iter->old_spte, + pte_pfn(range->pte)); + + tdp_mmu_set_spte(kvm, iter, new_spte); + } + + return true; +} + +/* + * Handle the changed_pte MMU notifier for the TDP MMU. + * data is a pointer to the new pte_t mapping the HVA specified by the MMU + * notifier. + * Returns non-zero if a flush is needed before releasing the MMU lock. + */ +bool kvm_tdp_mmu_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range) +{ + /* + * No need to handle the remote TLB flush under RCU protection, the + * target SPTE _must_ be a leaf SPTE, i.e. cannot result in freeing a + * shadow page. See the WARN on pfn_changed in __handle_changed_spte(). + */ + return kvm_tdp_mmu_handle_gfn(kvm, range, set_spte_gfn); +} + +/* + * Remove write access from all SPTEs at or above min_level that map GFNs + * [start, end). Returns true if an SPTE has been changed and the TLBs need to + * be flushed. + */ +static bool wrprot_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root, + gfn_t start, gfn_t end, int min_level) +{ + struct tdp_iter iter; + u64 new_spte; + bool spte_set = false; + + rcu_read_lock(); + + BUG_ON(min_level > KVM_MAX_HUGEPAGE_LEVEL); + + for_each_tdp_pte_min_level(iter, root, min_level, start, end) { +retry: + if (tdp_mmu_iter_cond_resched(kvm, &iter, false, true)) + continue; + + if (!is_shadow_present_pte(iter.old_spte) || + !is_last_spte(iter.old_spte, iter.level) || + !(iter.old_spte & PT_WRITABLE_MASK)) + continue; + + new_spte = iter.old_spte & ~PT_WRITABLE_MASK; + + if (tdp_mmu_set_spte_atomic(kvm, &iter, new_spte)) + goto retry; + + spte_set = true; + } + + rcu_read_unlock(); + return spte_set; +} + +/* + * Remove write access from all the SPTEs mapping GFNs in the memslot. Will + * only affect leaf SPTEs down to min_level. + * Returns true if an SPTE has been changed and the TLBs need to be flushed. + */ +bool kvm_tdp_mmu_wrprot_slot(struct kvm *kvm, + const struct kvm_memory_slot *slot, int min_level) +{ + struct kvm_mmu_page *root; + bool spte_set = false; + + lockdep_assert_held_read(&kvm->mmu_lock); + + for_each_valid_tdp_mmu_root_yield_safe(kvm, root, slot->as_id, true) + spte_set |= wrprot_gfn_range(kvm, root, slot->base_gfn, + slot->base_gfn + slot->npages, min_level); + + return spte_set; +} + +static struct kvm_mmu_page *__tdp_mmu_alloc_sp_for_split(gfp_t gfp) +{ + struct kvm_mmu_page *sp; + + gfp |= __GFP_ZERO; + + sp = kmem_cache_alloc(mmu_page_header_cache, gfp); + if (!sp) + return NULL; + + sp->spt = (void *)__get_free_page(gfp); + if (!sp->spt) { + kmem_cache_free(mmu_page_header_cache, sp); + return NULL; + } + + return sp; +} + +static struct kvm_mmu_page *tdp_mmu_alloc_sp_for_split(struct kvm *kvm, + struct tdp_iter *iter, + bool shared) +{ + struct kvm_mmu_page *sp; + + /* + * Since we are allocating while under the MMU lock we have to be + * careful about GFP flags. Use GFP_NOWAIT to avoid blocking on direct + * reclaim and to avoid making any filesystem callbacks (which can end + * up invoking KVM MMU notifiers, resulting in a deadlock). + * + * If this allocation fails we drop the lock and retry with reclaim + * allowed. + */ + sp = __tdp_mmu_alloc_sp_for_split(GFP_NOWAIT | __GFP_ACCOUNT); + if (sp) + return sp; + + rcu_read_unlock(); + + if (shared) + read_unlock(&kvm->mmu_lock); + else + write_unlock(&kvm->mmu_lock); + + iter->yielded = true; + sp = __tdp_mmu_alloc_sp_for_split(GFP_KERNEL_ACCOUNT); + + if (shared) + read_lock(&kvm->mmu_lock); + else + write_lock(&kvm->mmu_lock); + + rcu_read_lock(); + + return sp; +} + +static int tdp_mmu_split_huge_page(struct kvm *kvm, struct tdp_iter *iter, + struct kvm_mmu_page *sp, bool shared) +{ + const u64 huge_spte = iter->old_spte; + const int level = iter->level; + int ret, i; + + tdp_mmu_init_child_sp(sp, iter); + + /* + * No need for atomics when writing to sp->spt since the page table has + * not been linked in yet and thus is not reachable from any other CPU. + */ + for (i = 0; i < SPTE_ENT_PER_PAGE; i++) + sp->spt[i] = make_huge_page_split_spte(kvm, huge_spte, sp->role, i); + + /* + * Replace the huge spte with a pointer to the populated lower level + * page table. Since we are making this change without a TLB flush vCPUs + * will see a mix of the split mappings and the original huge mapping, + * depending on what's currently in their TLB. This is fine from a + * correctness standpoint since the translation will be the same either + * way. + */ + ret = tdp_mmu_link_sp(kvm, iter, sp, false, shared); + if (ret) + goto out; + + /* + * tdp_mmu_link_sp_atomic() will handle subtracting the huge page we + * are overwriting from the page stats. But we have to manually update + * the page stats with the new present child pages. + */ + kvm_update_page_stats(kvm, level - 1, SPTE_ENT_PER_PAGE); + +out: + trace_kvm_mmu_split_huge_page(iter->gfn, huge_spte, level, ret); + return ret; +} + +static int tdp_mmu_split_huge_pages_root(struct kvm *kvm, + struct kvm_mmu_page *root, + gfn_t start, gfn_t end, + int target_level, bool shared) +{ + struct kvm_mmu_page *sp = NULL; + struct tdp_iter iter; + int ret = 0; + + rcu_read_lock(); + + /* + * Traverse the page table splitting all huge pages above the target + * level into one lower level. For example, if we encounter a 1GB page + * we split it into 512 2MB pages. + * + * Since the TDP iterator uses a pre-order traversal, we are guaranteed + * to visit an SPTE before ever visiting its children, which means we + * will correctly recursively split huge pages that are more than one + * level above the target level (e.g. splitting a 1GB to 512 2MB pages, + * and then splitting each of those to 512 4KB pages). + */ + for_each_tdp_pte_min_level(iter, root, target_level + 1, start, end) { +retry: + if (tdp_mmu_iter_cond_resched(kvm, &iter, false, shared)) + continue; + + if (!is_shadow_present_pte(iter.old_spte) || !is_large_pte(iter.old_spte)) + continue; + + if (!sp) { + sp = tdp_mmu_alloc_sp_for_split(kvm, &iter, shared); + if (!sp) { + ret = -ENOMEM; + trace_kvm_mmu_split_huge_page(iter.gfn, + iter.old_spte, + iter.level, ret); + break; + } + + if (iter.yielded) + continue; + } + + if (tdp_mmu_split_huge_page(kvm, &iter, sp, shared)) + goto retry; + + sp = NULL; + } + + rcu_read_unlock(); + + /* + * It's possible to exit the loop having never used the last sp if, for + * example, a vCPU doing HugePage NX splitting wins the race and + * installs its own sp in place of the last sp we tried to split. + */ + if (sp) + tdp_mmu_free_sp(sp); + + return ret; +} + + +/* + * Try to split all huge pages mapped by the TDP MMU down to the target level. + */ +void kvm_tdp_mmu_try_split_huge_pages(struct kvm *kvm, + const struct kvm_memory_slot *slot, + gfn_t start, gfn_t end, + int target_level, bool shared) +{ + struct kvm_mmu_page *root; + int r = 0; + + kvm_lockdep_assert_mmu_lock_held(kvm, shared); + + for_each_valid_tdp_mmu_root_yield_safe(kvm, root, slot->as_id, shared) { + r = tdp_mmu_split_huge_pages_root(kvm, root, start, end, target_level, shared); + if (r) { + kvm_tdp_mmu_put_root(kvm, root, shared); + break; + } + } +} + +/* + * Clear the dirty status of all the SPTEs mapping GFNs in the memslot. If + * AD bits are enabled, this will involve clearing the dirty bit on each SPTE. + * If AD bits are not enabled, this will require clearing the writable bit on + * each SPTE. Returns true if an SPTE has been changed and the TLBs need to + * be flushed. + */ +static bool clear_dirty_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root, + gfn_t start, gfn_t end) +{ + struct tdp_iter iter; + u64 new_spte; + bool spte_set = false; + + rcu_read_lock(); + + tdp_root_for_each_leaf_pte(iter, root, start, end) { +retry: + if (tdp_mmu_iter_cond_resched(kvm, &iter, false, true)) + continue; + + if (!is_shadow_present_pte(iter.old_spte)) + continue; + + if (spte_ad_need_write_protect(iter.old_spte)) { + if (is_writable_pte(iter.old_spte)) + new_spte = iter.old_spte & ~PT_WRITABLE_MASK; + else + continue; + } else { + if (iter.old_spte & shadow_dirty_mask) + new_spte = iter.old_spte & ~shadow_dirty_mask; + else + continue; + } + + if (tdp_mmu_set_spte_atomic(kvm, &iter, new_spte)) + goto retry; + + spte_set = true; + } + + rcu_read_unlock(); + return spte_set; +} + +/* + * Clear the dirty status of all the SPTEs mapping GFNs in the memslot. If + * AD bits are enabled, this will involve clearing the dirty bit on each SPTE. + * If AD bits are not enabled, this will require clearing the writable bit on + * each SPTE. Returns true if an SPTE has been changed and the TLBs need to + * be flushed. + */ +bool kvm_tdp_mmu_clear_dirty_slot(struct kvm *kvm, + const struct kvm_memory_slot *slot) +{ + struct kvm_mmu_page *root; + bool spte_set = false; + + lockdep_assert_held_read(&kvm->mmu_lock); + + for_each_valid_tdp_mmu_root_yield_safe(kvm, root, slot->as_id, true) + spte_set |= clear_dirty_gfn_range(kvm, root, slot->base_gfn, + slot->base_gfn + slot->npages); + + return spte_set; +} + +/* + * Clears the dirty status of all the 4k SPTEs mapping GFNs for which a bit is + * set in mask, starting at gfn. The given memslot is expected to contain all + * the GFNs represented by set bits in the mask. If AD bits are enabled, + * clearing the dirty status will involve clearing the dirty bit on each SPTE + * or, if AD bits are not enabled, clearing the writable bit on each SPTE. + */ +static void clear_dirty_pt_masked(struct kvm *kvm, struct kvm_mmu_page *root, + gfn_t gfn, unsigned long mask, bool wrprot) +{ + struct tdp_iter iter; + u64 new_spte; + + rcu_read_lock(); + + tdp_root_for_each_leaf_pte(iter, root, gfn + __ffs(mask), + gfn + BITS_PER_LONG) { + if (!mask) + break; + + if (iter.level > PG_LEVEL_4K || + !(mask & (1UL << (iter.gfn - gfn)))) + continue; + + mask &= ~(1UL << (iter.gfn - gfn)); + + if (wrprot || spte_ad_need_write_protect(iter.old_spte)) { + if (is_writable_pte(iter.old_spte)) + new_spte = iter.old_spte & ~PT_WRITABLE_MASK; + else + continue; + } else { + if (iter.old_spte & shadow_dirty_mask) + new_spte = iter.old_spte & ~shadow_dirty_mask; + else + continue; + } + + tdp_mmu_set_spte_no_dirty_log(kvm, &iter, new_spte); + } + + rcu_read_unlock(); +} + +/* + * Clears the dirty status of all the 4k SPTEs mapping GFNs for which a bit is + * set in mask, starting at gfn. The given memslot is expected to contain all + * the GFNs represented by set bits in the mask. If AD bits are enabled, + * clearing the dirty status will involve clearing the dirty bit on each SPTE + * or, if AD bits are not enabled, clearing the writable bit on each SPTE. + */ +void kvm_tdp_mmu_clear_dirty_pt_masked(struct kvm *kvm, + struct kvm_memory_slot *slot, + gfn_t gfn, unsigned long mask, + bool wrprot) +{ + struct kvm_mmu_page *root; + + lockdep_assert_held_write(&kvm->mmu_lock); + for_each_tdp_mmu_root(kvm, root, slot->as_id) + clear_dirty_pt_masked(kvm, root, gfn, mask, wrprot); +} + +static void zap_collapsible_spte_range(struct kvm *kvm, + struct kvm_mmu_page *root, + const struct kvm_memory_slot *slot) +{ + gfn_t start = slot->base_gfn; + gfn_t end = start + slot->npages; + struct tdp_iter iter; + int max_mapping_level; + + rcu_read_lock(); + + for_each_tdp_pte_min_level(iter, root, PG_LEVEL_2M, start, end) { +retry: + if (tdp_mmu_iter_cond_resched(kvm, &iter, false, true)) + continue; + + if (iter.level > KVM_MAX_HUGEPAGE_LEVEL || + !is_shadow_present_pte(iter.old_spte)) + continue; + + /* + * Don't zap leaf SPTEs, if a leaf SPTE could be replaced with + * a large page size, then its parent would have been zapped + * instead of stepping down. + */ + if (is_last_spte(iter.old_spte, iter.level)) + continue; + + /* + * If iter.gfn resides outside of the slot, i.e. the page for + * the current level overlaps but is not contained by the slot, + * then the SPTE can't be made huge. More importantly, trying + * to query that info from slot->arch.lpage_info will cause an + * out-of-bounds access. + */ + if (iter.gfn < start || iter.gfn >= end) + continue; + + max_mapping_level = kvm_mmu_max_mapping_level(kvm, slot, + iter.gfn, PG_LEVEL_NUM); + if (max_mapping_level < iter.level) + continue; + + /* Note, a successful atomic zap also does a remote TLB flush. */ + if (tdp_mmu_zap_spte_atomic(kvm, &iter)) + goto retry; + } + + rcu_read_unlock(); +} + +/* + * Zap non-leaf SPTEs (and free their associated page tables) which could + * be replaced by huge pages, for GFNs within the slot. + */ +void kvm_tdp_mmu_zap_collapsible_sptes(struct kvm *kvm, + const struct kvm_memory_slot *slot) +{ + struct kvm_mmu_page *root; + + lockdep_assert_held_read(&kvm->mmu_lock); + + for_each_valid_tdp_mmu_root_yield_safe(kvm, root, slot->as_id, true) + zap_collapsible_spte_range(kvm, root, slot); +} + +/* + * Removes write access on the last level SPTE mapping this GFN and unsets the + * MMU-writable bit to ensure future writes continue to be intercepted. + * Returns true if an SPTE was set and a TLB flush is needed. + */ +static bool write_protect_gfn(struct kvm *kvm, struct kvm_mmu_page *root, + gfn_t gfn, int min_level) +{ + struct tdp_iter iter; + u64 new_spte; + bool spte_set = false; + + BUG_ON(min_level > KVM_MAX_HUGEPAGE_LEVEL); + + rcu_read_lock(); + + for_each_tdp_pte_min_level(iter, root, min_level, gfn, gfn + 1) { + if (!is_shadow_present_pte(iter.old_spte) || + !is_last_spte(iter.old_spte, iter.level)) + continue; + + new_spte = iter.old_spte & + ~(PT_WRITABLE_MASK | shadow_mmu_writable_mask); + + if (new_spte == iter.old_spte) + break; + + tdp_mmu_set_spte(kvm, &iter, new_spte); + spte_set = true; + } + + rcu_read_unlock(); + + return spte_set; +} + +/* + * Removes write access on the last level SPTE mapping this GFN and unsets the + * MMU-writable bit to ensure future writes continue to be intercepted. + * Returns true if an SPTE was set and a TLB flush is needed. + */ +bool kvm_tdp_mmu_write_protect_gfn(struct kvm *kvm, + struct kvm_memory_slot *slot, gfn_t gfn, + int min_level) +{ + struct kvm_mmu_page *root; + bool spte_set = false; + + lockdep_assert_held_write(&kvm->mmu_lock); + for_each_tdp_mmu_root(kvm, root, slot->as_id) + spte_set |= write_protect_gfn(kvm, root, gfn, min_level); + + return spte_set; +} + +/* + * Return the level of the lowest level SPTE added to sptes. + * That SPTE may be non-present. + * + * Must be called between kvm_tdp_mmu_walk_lockless_{begin,end}. + */ +int kvm_tdp_mmu_get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, + int *root_level) +{ + struct tdp_iter iter; + struct kvm_mmu *mmu = vcpu->arch.mmu; + gfn_t gfn = addr >> PAGE_SHIFT; + int leaf = -1; + + *root_level = vcpu->arch.mmu->root_role.level; + + tdp_mmu_for_each_pte(iter, mmu, gfn, gfn + 1) { + leaf = iter.level; + sptes[leaf] = iter.old_spte; + } + + return leaf; +} + +/* + * Returns the last level spte pointer of the shadow page walk for the given + * gpa, and sets *spte to the spte value. This spte may be non-preset. If no + * walk could be performed, returns NULL and *spte does not contain valid data. + * + * Contract: + * - Must be called between kvm_tdp_mmu_walk_lockless_{begin,end}. + * - The returned sptep must not be used after kvm_tdp_mmu_walk_lockless_end. + * + * WARNING: This function is only intended to be called during fast_page_fault. + */ +u64 *kvm_tdp_mmu_fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, u64 addr, + u64 *spte) +{ + struct tdp_iter iter; + struct kvm_mmu *mmu = vcpu->arch.mmu; + gfn_t gfn = addr >> PAGE_SHIFT; + tdp_ptep_t sptep = NULL; + + tdp_mmu_for_each_pte(iter, mmu, gfn, gfn + 1) { + *spte = iter.old_spte; + sptep = iter.sptep; + } + + /* + * Perform the rcu_dereference to get the raw spte pointer value since + * we are passing it up to fast_page_fault, which is shared with the + * legacy MMU and thus does not retain the TDP MMU-specific __rcu + * annotation. + * + * This is safe since fast_page_fault obeys the contracts of this + * function as well as all TDP MMU contracts around modifying SPTEs + * outside of mmu_lock. + */ + return rcu_dereference(sptep); +} |