summaryrefslogtreecommitdiffstats
path: root/arch/x86/platform/intel
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--arch/x86/platform/intel-mid/Makefile2
-rw-r--r--arch/x86/platform/intel-mid/intel-mid.c124
-rw-r--r--arch/x86/platform/intel-mid/pwr.c485
-rw-r--r--arch/x86/platform/intel-quark/Makefile3
-rw-r--r--arch/x86/platform/intel-quark/imr.c597
-rw-r--r--arch/x86/platform/intel-quark/imr_selftest.c129
-rw-r--r--arch/x86/platform/intel/Makefile2
-rw-r--r--arch/x86/platform/intel/iosf_mbi.c571
8 files changed, 1913 insertions, 0 deletions
diff --git a/arch/x86/platform/intel-mid/Makefile b/arch/x86/platform/intel-mid/Makefile
new file mode 100644
index 000000000..ddfc08783
--- /dev/null
+++ b/arch/x86/platform/intel-mid/Makefile
@@ -0,0 +1,2 @@
+# SPDX-License-Identifier: GPL-2.0-only
+obj-$(CONFIG_X86_INTEL_MID) += intel-mid.o pwr.o
diff --git a/arch/x86/platform/intel-mid/intel-mid.c b/arch/x86/platform/intel-mid/intel-mid.c
new file mode 100644
index 000000000..f4592dc7a
--- /dev/null
+++ b/arch/x86/platform/intel-mid/intel-mid.c
@@ -0,0 +1,124 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Intel MID platform setup code
+ *
+ * (C) Copyright 2008, 2012, 2021 Intel Corporation
+ * Author: Jacob Pan (jacob.jun.pan@intel.com)
+ * Author: Sathyanarayanan Kuppuswamy <sathyanarayanan.kuppuswamy@intel.com>
+ */
+
+#define pr_fmt(fmt) "intel_mid: " fmt
+
+#include <linux/init.h>
+#include <linux/kernel.h>
+#include <linux/interrupt.h>
+#include <linux/regulator/machine.h>
+#include <linux/scatterlist.h>
+#include <linux/irq.h>
+#include <linux/export.h>
+#include <linux/notifier.h>
+
+#include <asm/setup.h>
+#include <asm/mpspec_def.h>
+#include <asm/hw_irq.h>
+#include <asm/apic.h>
+#include <asm/io_apic.h>
+#include <asm/intel-mid.h>
+#include <asm/io.h>
+#include <asm/i8259.h>
+#include <asm/intel_scu_ipc.h>
+#include <asm/reboot.h>
+
+#define IPCMSG_COLD_OFF 0x80 /* Only for Tangier */
+#define IPCMSG_COLD_RESET 0xF1
+
+static void intel_mid_power_off(void)
+{
+ /* Shut down South Complex via PWRMU */
+ intel_mid_pwr_power_off();
+
+ /* Only for Tangier, the rest will ignore this command */
+ intel_scu_ipc_dev_simple_command(NULL, IPCMSG_COLD_OFF, 1);
+};
+
+static void intel_mid_reboot(void)
+{
+ intel_scu_ipc_dev_simple_command(NULL, IPCMSG_COLD_RESET, 0);
+}
+
+static void __init intel_mid_time_init(void)
+{
+ /* Lapic only, no apbt */
+ x86_init.timers.setup_percpu_clockev = setup_boot_APIC_clock;
+ x86_cpuinit.setup_percpu_clockev = setup_secondary_APIC_clock;
+}
+
+static void intel_mid_arch_setup(void)
+{
+ switch (boot_cpu_data.x86_model) {
+ case 0x3C:
+ case 0x4A:
+ x86_platform.legacy.rtc = 1;
+ break;
+ default:
+ break;
+ }
+
+ /*
+ * Intel MID platforms are using explicitly defined regulators.
+ *
+ * Let the regulator core know that we do not have any additional
+ * regulators left. This lets it substitute unprovided regulators with
+ * dummy ones:
+ */
+ regulator_has_full_constraints();
+}
+
+/*
+ * Moorestown does not have external NMI source nor port 0x61 to report
+ * NMI status. The possible NMI sources are from pmu as a result of NMI
+ * watchdog or lock debug. Reading io port 0x61 results in 0xff which
+ * misled NMI handler.
+ */
+static unsigned char intel_mid_get_nmi_reason(void)
+{
+ return 0;
+}
+
+/*
+ * Moorestown specific x86_init function overrides and early setup
+ * calls.
+ */
+void __init x86_intel_mid_early_setup(void)
+{
+ x86_init.resources.probe_roms = x86_init_noop;
+ x86_init.resources.reserve_resources = x86_init_noop;
+
+ x86_init.timers.timer_init = intel_mid_time_init;
+ x86_init.timers.setup_percpu_clockev = x86_init_noop;
+
+ x86_init.irqs.pre_vector_init = x86_init_noop;
+
+ x86_init.oem.arch_setup = intel_mid_arch_setup;
+
+ x86_platform.get_nmi_reason = intel_mid_get_nmi_reason;
+
+ x86_init.pci.arch_init = intel_mid_pci_init;
+ x86_init.pci.fixup_irqs = x86_init_noop;
+
+ legacy_pic = &null_legacy_pic;
+
+ /*
+ * Do nothing for now as everything needed done in
+ * x86_intel_mid_early_setup() below.
+ */
+ x86_init.acpi.reduced_hw_early_init = x86_init_noop;
+
+ pm_power_off = intel_mid_power_off;
+ machine_ops.emergency_restart = intel_mid_reboot;
+
+ /* Avoid searching for BIOS MP tables */
+ x86_init.mpparse.find_smp_config = x86_init_noop;
+ x86_init.mpparse.get_smp_config = x86_init_uint_noop;
+ set_bit(MP_BUS_ISA, mp_bus_not_pci);
+}
diff --git a/arch/x86/platform/intel-mid/pwr.c b/arch/x86/platform/intel-mid/pwr.c
new file mode 100644
index 000000000..27288d8d3
--- /dev/null
+++ b/arch/x86/platform/intel-mid/pwr.c
@@ -0,0 +1,485 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Intel MID Power Management Unit (PWRMU) device driver
+ *
+ * Copyright (C) 2016, Intel Corporation
+ *
+ * Author: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
+ *
+ * Intel MID Power Management Unit device driver handles the South Complex PCI
+ * devices such as GPDMA, SPI, I2C, PWM, and so on. By default PCI core
+ * modifies bits in PMCSR register in the PCI configuration space. This is not
+ * enough on some SoCs like Intel Tangier. In such case PCI core sets a new
+ * power state of the device in question through a PM hook registered in struct
+ * pci_platform_pm_ops (see drivers/pci/pci-mid.c).
+ */
+
+#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
+
+#include <linux/delay.h>
+#include <linux/errno.h>
+#include <linux/interrupt.h>
+#include <linux/kernel.h>
+#include <linux/export.h>
+#include <linux/mutex.h>
+#include <linux/pci.h>
+
+#include <asm/intel-mid.h>
+
+/* Registers */
+#define PM_STS 0x00
+#define PM_CMD 0x04
+#define PM_ICS 0x08
+#define PM_WKC(x) (0x10 + (x) * 4)
+#define PM_WKS(x) (0x18 + (x) * 4)
+#define PM_SSC(x) (0x20 + (x) * 4)
+#define PM_SSS(x) (0x30 + (x) * 4)
+
+/* Bits in PM_STS */
+#define PM_STS_BUSY (1 << 8)
+
+/* Bits in PM_CMD */
+#define PM_CMD_CMD(x) ((x) << 0)
+#define PM_CMD_IOC (1 << 8)
+#define PM_CMD_CM_NOP (0 << 9)
+#define PM_CMD_CM_IMMEDIATE (1 << 9)
+#define PM_CMD_CM_DELAY (2 << 9)
+#define PM_CMD_CM_TRIGGER (3 << 9)
+
+/* System states */
+#define PM_CMD_SYS_STATE_S5 (5 << 16)
+
+/* Trigger variants */
+#define PM_CMD_CFG_TRIGGER_NC (3 << 19)
+
+/* Message to wait for TRIGGER_NC case */
+#define TRIGGER_NC_MSG_2 (2 << 22)
+
+/* List of commands */
+#define CMD_SET_CFG 0x01
+
+/* Bits in PM_ICS */
+#define PM_ICS_INT_STATUS(x) ((x) & 0xff)
+#define PM_ICS_IE (1 << 8)
+#define PM_ICS_IP (1 << 9)
+#define PM_ICS_SW_INT_STS (1 << 10)
+
+/* List of interrupts */
+#define INT_INVALID 0
+#define INT_CMD_COMPLETE 1
+#define INT_CMD_ERR 2
+#define INT_WAKE_EVENT 3
+#define INT_LSS_POWER_ERR 4
+#define INT_S0iX_MSG_ERR 5
+#define INT_NO_C6 6
+#define INT_TRIGGER_ERR 7
+#define INT_INACTIVITY 8
+
+/* South Complex devices */
+#define LSS_MAX_SHARED_DEVS 4
+#define LSS_MAX_DEVS 64
+
+#define LSS_WS_BITS 1 /* wake state width */
+#define LSS_PWS_BITS 2 /* power state width */
+
+/* Supported device IDs */
+#define PCI_DEVICE_ID_PENWELL 0x0828
+#define PCI_DEVICE_ID_TANGIER 0x11a1
+
+struct mid_pwr_dev {
+ struct pci_dev *pdev;
+ pci_power_t state;
+};
+
+struct mid_pwr {
+ struct device *dev;
+ void __iomem *regs;
+ int irq;
+ bool available;
+
+ struct mutex lock;
+ struct mid_pwr_dev lss[LSS_MAX_DEVS][LSS_MAX_SHARED_DEVS];
+};
+
+static struct mid_pwr *midpwr;
+
+static u32 mid_pwr_get_state(struct mid_pwr *pwr, int reg)
+{
+ return readl(pwr->regs + PM_SSS(reg));
+}
+
+static void mid_pwr_set_state(struct mid_pwr *pwr, int reg, u32 value)
+{
+ writel(value, pwr->regs + PM_SSC(reg));
+}
+
+static void mid_pwr_set_wake(struct mid_pwr *pwr, int reg, u32 value)
+{
+ writel(value, pwr->regs + PM_WKC(reg));
+}
+
+static void mid_pwr_interrupt_disable(struct mid_pwr *pwr)
+{
+ writel(~PM_ICS_IE, pwr->regs + PM_ICS);
+}
+
+static bool mid_pwr_is_busy(struct mid_pwr *pwr)
+{
+ return !!(readl(pwr->regs + PM_STS) & PM_STS_BUSY);
+}
+
+/* Wait 500ms that the latest PWRMU command finished */
+static int mid_pwr_wait(struct mid_pwr *pwr)
+{
+ unsigned int count = 500000;
+ bool busy;
+
+ do {
+ busy = mid_pwr_is_busy(pwr);
+ if (!busy)
+ return 0;
+ udelay(1);
+ } while (--count);
+
+ return -EBUSY;
+}
+
+static int mid_pwr_wait_for_cmd(struct mid_pwr *pwr, u8 cmd)
+{
+ writel(PM_CMD_CMD(cmd) | PM_CMD_CM_IMMEDIATE, pwr->regs + PM_CMD);
+ return mid_pwr_wait(pwr);
+}
+
+static int __update_power_state(struct mid_pwr *pwr, int reg, int bit, int new)
+{
+ int curstate;
+ u32 power;
+ int ret;
+
+ /* Check if the device is already in desired state */
+ power = mid_pwr_get_state(pwr, reg);
+ curstate = (power >> bit) & 3;
+ if (curstate == new)
+ return 0;
+
+ /* Update the power state */
+ mid_pwr_set_state(pwr, reg, (power & ~(3 << bit)) | (new << bit));
+
+ /* Send command to SCU */
+ ret = mid_pwr_wait_for_cmd(pwr, CMD_SET_CFG);
+ if (ret)
+ return ret;
+
+ /* Check if the device is already in desired state */
+ power = mid_pwr_get_state(pwr, reg);
+ curstate = (power >> bit) & 3;
+ if (curstate != new)
+ return -EAGAIN;
+
+ return 0;
+}
+
+static pci_power_t __find_weakest_power_state(struct mid_pwr_dev *lss,
+ struct pci_dev *pdev,
+ pci_power_t state)
+{
+ pci_power_t weakest = PCI_D3hot;
+ unsigned int j;
+
+ /* Find device in cache or first free cell */
+ for (j = 0; j < LSS_MAX_SHARED_DEVS; j++) {
+ if (lss[j].pdev == pdev || !lss[j].pdev)
+ break;
+ }
+
+ /* Store the desired state in cache */
+ if (j < LSS_MAX_SHARED_DEVS) {
+ lss[j].pdev = pdev;
+ lss[j].state = state;
+ } else {
+ dev_WARN(&pdev->dev, "No room for device in PWRMU LSS cache\n");
+ weakest = state;
+ }
+
+ /* Find the power state we may use */
+ for (j = 0; j < LSS_MAX_SHARED_DEVS; j++) {
+ if (lss[j].state < weakest)
+ weakest = lss[j].state;
+ }
+
+ return weakest;
+}
+
+static int __set_power_state(struct mid_pwr *pwr, struct pci_dev *pdev,
+ pci_power_t state, int id, int reg, int bit)
+{
+ const char *name;
+ int ret;
+
+ state = __find_weakest_power_state(pwr->lss[id], pdev, state);
+ name = pci_power_name(state);
+
+ ret = __update_power_state(pwr, reg, bit, (__force int)state);
+ if (ret) {
+ dev_warn(&pdev->dev, "Can't set power state %s: %d\n", name, ret);
+ return ret;
+ }
+
+ dev_vdbg(&pdev->dev, "Set power state %s\n", name);
+ return 0;
+}
+
+static int mid_pwr_set_power_state(struct mid_pwr *pwr, struct pci_dev *pdev,
+ pci_power_t state)
+{
+ int id, reg, bit;
+ int ret;
+
+ id = intel_mid_pwr_get_lss_id(pdev);
+ if (id < 0)
+ return id;
+
+ reg = (id * LSS_PWS_BITS) / 32;
+ bit = (id * LSS_PWS_BITS) % 32;
+
+ /* We support states between PCI_D0 and PCI_D3hot */
+ if (state < PCI_D0)
+ state = PCI_D0;
+ if (state > PCI_D3hot)
+ state = PCI_D3hot;
+
+ mutex_lock(&pwr->lock);
+ ret = __set_power_state(pwr, pdev, state, id, reg, bit);
+ mutex_unlock(&pwr->lock);
+ return ret;
+}
+
+int intel_mid_pci_set_power_state(struct pci_dev *pdev, pci_power_t state)
+{
+ struct mid_pwr *pwr = midpwr;
+ int ret = 0;
+
+ might_sleep();
+
+ if (pwr && pwr->available)
+ ret = mid_pwr_set_power_state(pwr, pdev, state);
+ dev_vdbg(&pdev->dev, "set_power_state() returns %d\n", ret);
+
+ return 0;
+}
+
+pci_power_t intel_mid_pci_get_power_state(struct pci_dev *pdev)
+{
+ struct mid_pwr *pwr = midpwr;
+ int id, reg, bit;
+ u32 power;
+
+ if (!pwr || !pwr->available)
+ return PCI_UNKNOWN;
+
+ id = intel_mid_pwr_get_lss_id(pdev);
+ if (id < 0)
+ return PCI_UNKNOWN;
+
+ reg = (id * LSS_PWS_BITS) / 32;
+ bit = (id * LSS_PWS_BITS) % 32;
+ power = mid_pwr_get_state(pwr, reg);
+ return (__force pci_power_t)((power >> bit) & 3);
+}
+
+void intel_mid_pwr_power_off(void)
+{
+ struct mid_pwr *pwr = midpwr;
+ u32 cmd = PM_CMD_SYS_STATE_S5 |
+ PM_CMD_CMD(CMD_SET_CFG) |
+ PM_CMD_CM_TRIGGER |
+ PM_CMD_CFG_TRIGGER_NC |
+ TRIGGER_NC_MSG_2;
+
+ /* Send command to SCU */
+ writel(cmd, pwr->regs + PM_CMD);
+ mid_pwr_wait(pwr);
+}
+
+int intel_mid_pwr_get_lss_id(struct pci_dev *pdev)
+{
+ int vndr;
+ u8 id;
+
+ /*
+ * Mapping to PWRMU index is kept in the Logical SubSystem ID byte of
+ * Vendor capability.
+ */
+ vndr = pci_find_capability(pdev, PCI_CAP_ID_VNDR);
+ if (!vndr)
+ return -EINVAL;
+
+ /* Read the Logical SubSystem ID byte */
+ pci_read_config_byte(pdev, vndr + INTEL_MID_PWR_LSS_OFFSET, &id);
+ if (!(id & INTEL_MID_PWR_LSS_TYPE))
+ return -ENODEV;
+
+ id &= ~INTEL_MID_PWR_LSS_TYPE;
+ if (id >= LSS_MAX_DEVS)
+ return -ERANGE;
+
+ return id;
+}
+
+static irqreturn_t mid_pwr_irq_handler(int irq, void *dev_id)
+{
+ struct mid_pwr *pwr = dev_id;
+ u32 ics;
+
+ ics = readl(pwr->regs + PM_ICS);
+ if (!(ics & PM_ICS_IP))
+ return IRQ_NONE;
+
+ writel(ics | PM_ICS_IP, pwr->regs + PM_ICS);
+
+ dev_warn(pwr->dev, "Unexpected IRQ: %#x\n", PM_ICS_INT_STATUS(ics));
+ return IRQ_HANDLED;
+}
+
+struct mid_pwr_device_info {
+ int (*set_initial_state)(struct mid_pwr *pwr);
+};
+
+static int mid_pwr_probe(struct pci_dev *pdev, const struct pci_device_id *id)
+{
+ struct mid_pwr_device_info *info = (void *)id->driver_data;
+ struct device *dev = &pdev->dev;
+ struct mid_pwr *pwr;
+ int ret;
+
+ ret = pcim_enable_device(pdev);
+ if (ret < 0) {
+ dev_err(&pdev->dev, "error: could not enable device\n");
+ return ret;
+ }
+
+ ret = pcim_iomap_regions(pdev, 1 << 0, pci_name(pdev));
+ if (ret) {
+ dev_err(&pdev->dev, "I/O memory remapping failed\n");
+ return ret;
+ }
+
+ pwr = devm_kzalloc(dev, sizeof(*pwr), GFP_KERNEL);
+ if (!pwr)
+ return -ENOMEM;
+
+ pwr->dev = dev;
+ pwr->regs = pcim_iomap_table(pdev)[0];
+ pwr->irq = pdev->irq;
+
+ mutex_init(&pwr->lock);
+
+ /* Disable interrupts */
+ mid_pwr_interrupt_disable(pwr);
+
+ if (info && info->set_initial_state) {
+ ret = info->set_initial_state(pwr);
+ if (ret)
+ dev_warn(dev, "Can't set initial state: %d\n", ret);
+ }
+
+ ret = devm_request_irq(dev, pdev->irq, mid_pwr_irq_handler,
+ IRQF_NO_SUSPEND, pci_name(pdev), pwr);
+ if (ret)
+ return ret;
+
+ pwr->available = true;
+ midpwr = pwr;
+
+ pci_set_drvdata(pdev, pwr);
+ return 0;
+}
+
+static int mid_set_initial_state(struct mid_pwr *pwr, const u32 *states)
+{
+ unsigned int i, j;
+ int ret;
+
+ /*
+ * Enable wake events.
+ *
+ * PWRMU supports up to 32 sources for wake up the system. Ungate them
+ * all here.
+ */
+ mid_pwr_set_wake(pwr, 0, 0xffffffff);
+ mid_pwr_set_wake(pwr, 1, 0xffffffff);
+
+ /*
+ * Power off South Complex devices.
+ *
+ * There is a map (see a note below) of 64 devices with 2 bits per each
+ * on 32-bit HW registers. The following calls set all devices to one
+ * known initial state, i.e. PCI_D3hot. This is done in conjunction
+ * with PMCSR setting in arch/x86/pci/intel_mid_pci.c.
+ *
+ * NOTE: The actual device mapping is provided by a platform at run
+ * time using vendor capability of PCI configuration space.
+ */
+ mid_pwr_set_state(pwr, 0, states[0]);
+ mid_pwr_set_state(pwr, 1, states[1]);
+ mid_pwr_set_state(pwr, 2, states[2]);
+ mid_pwr_set_state(pwr, 3, states[3]);
+
+ /* Send command to SCU */
+ ret = mid_pwr_wait_for_cmd(pwr, CMD_SET_CFG);
+ if (ret)
+ return ret;
+
+ for (i = 0; i < LSS_MAX_DEVS; i++) {
+ for (j = 0; j < LSS_MAX_SHARED_DEVS; j++)
+ pwr->lss[i][j].state = PCI_D3hot;
+ }
+
+ return 0;
+}
+
+static int pnw_set_initial_state(struct mid_pwr *pwr)
+{
+ /* On Penwell SRAM must stay powered on */
+ static const u32 states[] = {
+ 0xf00fffff, /* PM_SSC(0) */
+ 0xffffffff, /* PM_SSC(1) */
+ 0xffffffff, /* PM_SSC(2) */
+ 0xffffffff, /* PM_SSC(3) */
+ };
+ return mid_set_initial_state(pwr, states);
+}
+
+static int tng_set_initial_state(struct mid_pwr *pwr)
+{
+ static const u32 states[] = {
+ 0xffffffff, /* PM_SSC(0) */
+ 0xffffffff, /* PM_SSC(1) */
+ 0xffffffff, /* PM_SSC(2) */
+ 0xffffffff, /* PM_SSC(3) */
+ };
+ return mid_set_initial_state(pwr, states);
+}
+
+static const struct mid_pwr_device_info pnw_info = {
+ .set_initial_state = pnw_set_initial_state,
+};
+
+static const struct mid_pwr_device_info tng_info = {
+ .set_initial_state = tng_set_initial_state,
+};
+
+/* This table should be in sync with the one in drivers/pci/pci-mid.c */
+static const struct pci_device_id mid_pwr_pci_ids[] = {
+ { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_PENWELL), (kernel_ulong_t)&pnw_info },
+ { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_TANGIER), (kernel_ulong_t)&tng_info },
+ {}
+};
+
+static struct pci_driver mid_pwr_pci_driver = {
+ .name = "intel_mid_pwr",
+ .probe = mid_pwr_probe,
+ .id_table = mid_pwr_pci_ids,
+};
+
+builtin_pci_driver(mid_pwr_pci_driver);
diff --git a/arch/x86/platform/intel-quark/Makefile b/arch/x86/platform/intel-quark/Makefile
new file mode 100644
index 000000000..ed77cb952
--- /dev/null
+++ b/arch/x86/platform/intel-quark/Makefile
@@ -0,0 +1,3 @@
+# SPDX-License-Identifier: GPL-2.0-only
+obj-$(CONFIG_INTEL_IMR) += imr.o
+obj-$(CONFIG_DEBUG_IMR_SELFTEST) += imr_selftest.o
diff --git a/arch/x86/platform/intel-quark/imr.c b/arch/x86/platform/intel-quark/imr.c
new file mode 100644
index 000000000..d3d456925
--- /dev/null
+++ b/arch/x86/platform/intel-quark/imr.c
@@ -0,0 +1,597 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * imr.c -- Intel Isolated Memory Region driver
+ *
+ * Copyright(c) 2013 Intel Corporation.
+ * Copyright(c) 2015 Bryan O'Donoghue <pure.logic@nexus-software.ie>
+ *
+ * IMR registers define an isolated region of memory that can
+ * be masked to prohibit certain system agents from accessing memory.
+ * When a device behind a masked port performs an access - snooped or
+ * not, an IMR may optionally prevent that transaction from changing
+ * the state of memory or from getting correct data in response to the
+ * operation.
+ *
+ * Write data will be dropped and reads will return 0xFFFFFFFF, the
+ * system will reset and system BIOS will print out an error message to
+ * inform the user that an IMR has been violated.
+ *
+ * This code is based on the Linux MTRR code and reference code from
+ * Intel's Quark BSP EFI, Linux and grub code.
+ *
+ * See quark-x1000-datasheet.pdf for register definitions.
+ * http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/quark-x1000-datasheet.pdf
+ */
+
+#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
+
+#include <asm-generic/sections.h>
+#include <asm/cpu_device_id.h>
+#include <asm/imr.h>
+#include <asm/iosf_mbi.h>
+#include <asm/io.h>
+
+#include <linux/debugfs.h>
+#include <linux/init.h>
+#include <linux/mm.h>
+#include <linux/types.h>
+
+struct imr_device {
+ bool init;
+ struct mutex lock;
+ int max_imr;
+ int reg_base;
+};
+
+static struct imr_device imr_dev;
+
+/*
+ * IMR read/write mask control registers.
+ * See quark-x1000-datasheet.pdf sections 12.7.4.5 and 12.7.4.6 for
+ * bit definitions.
+ *
+ * addr_hi
+ * 31 Lock bit
+ * 30:24 Reserved
+ * 23:2 1 KiB aligned lo address
+ * 1:0 Reserved
+ *
+ * addr_hi
+ * 31:24 Reserved
+ * 23:2 1 KiB aligned hi address
+ * 1:0 Reserved
+ */
+#define IMR_LOCK BIT(31)
+
+struct imr_regs {
+ u32 addr_lo;
+ u32 addr_hi;
+ u32 rmask;
+ u32 wmask;
+};
+
+#define IMR_NUM_REGS (sizeof(struct imr_regs)/sizeof(u32))
+#define IMR_SHIFT 8
+#define imr_to_phys(x) ((x) << IMR_SHIFT)
+#define phys_to_imr(x) ((x) >> IMR_SHIFT)
+
+/**
+ * imr_is_enabled - true if an IMR is enabled false otherwise.
+ *
+ * Determines if an IMR is enabled based on address range and read/write
+ * mask. An IMR set with an address range set to zero and a read/write
+ * access mask set to all is considered to be disabled. An IMR in any
+ * other state - for example set to zero but without read/write access
+ * all is considered to be enabled. This definition of disabled is how
+ * firmware switches off an IMR and is maintained in kernel for
+ * consistency.
+ *
+ * @imr: pointer to IMR descriptor.
+ * @return: true if IMR enabled false if disabled.
+ */
+static inline int imr_is_enabled(struct imr_regs *imr)
+{
+ return !(imr->rmask == IMR_READ_ACCESS_ALL &&
+ imr->wmask == IMR_WRITE_ACCESS_ALL &&
+ imr_to_phys(imr->addr_lo) == 0 &&
+ imr_to_phys(imr->addr_hi) == 0);
+}
+
+/**
+ * imr_read - read an IMR at a given index.
+ *
+ * Requires caller to hold imr mutex.
+ *
+ * @idev: pointer to imr_device structure.
+ * @imr_id: IMR entry to read.
+ * @imr: IMR structure representing address and access masks.
+ * @return: 0 on success or error code passed from mbi_iosf on failure.
+ */
+static int imr_read(struct imr_device *idev, u32 imr_id, struct imr_regs *imr)
+{
+ u32 reg = imr_id * IMR_NUM_REGS + idev->reg_base;
+ int ret;
+
+ ret = iosf_mbi_read(QRK_MBI_UNIT_MM, MBI_REG_READ, reg++, &imr->addr_lo);
+ if (ret)
+ return ret;
+
+ ret = iosf_mbi_read(QRK_MBI_UNIT_MM, MBI_REG_READ, reg++, &imr->addr_hi);
+ if (ret)
+ return ret;
+
+ ret = iosf_mbi_read(QRK_MBI_UNIT_MM, MBI_REG_READ, reg++, &imr->rmask);
+ if (ret)
+ return ret;
+
+ return iosf_mbi_read(QRK_MBI_UNIT_MM, MBI_REG_READ, reg++, &imr->wmask);
+}
+
+/**
+ * imr_write - write an IMR at a given index.
+ *
+ * Requires caller to hold imr mutex.
+ * Note lock bits need to be written independently of address bits.
+ *
+ * @idev: pointer to imr_device structure.
+ * @imr_id: IMR entry to write.
+ * @imr: IMR structure representing address and access masks.
+ * @return: 0 on success or error code passed from mbi_iosf on failure.
+ */
+static int imr_write(struct imr_device *idev, u32 imr_id, struct imr_regs *imr)
+{
+ unsigned long flags;
+ u32 reg = imr_id * IMR_NUM_REGS + idev->reg_base;
+ int ret;
+
+ local_irq_save(flags);
+
+ ret = iosf_mbi_write(QRK_MBI_UNIT_MM, MBI_REG_WRITE, reg++, imr->addr_lo);
+ if (ret)
+ goto failed;
+
+ ret = iosf_mbi_write(QRK_MBI_UNIT_MM, MBI_REG_WRITE, reg++, imr->addr_hi);
+ if (ret)
+ goto failed;
+
+ ret = iosf_mbi_write(QRK_MBI_UNIT_MM, MBI_REG_WRITE, reg++, imr->rmask);
+ if (ret)
+ goto failed;
+
+ ret = iosf_mbi_write(QRK_MBI_UNIT_MM, MBI_REG_WRITE, reg++, imr->wmask);
+ if (ret)
+ goto failed;
+
+ local_irq_restore(flags);
+ return 0;
+failed:
+ /*
+ * If writing to the IOSF failed then we're in an unknown state,
+ * likely a very bad state. An IMR in an invalid state will almost
+ * certainly lead to a memory access violation.
+ */
+ local_irq_restore(flags);
+ WARN(ret, "IOSF-MBI write fail range 0x%08x-0x%08x unreliable\n",
+ imr_to_phys(imr->addr_lo), imr_to_phys(imr->addr_hi) + IMR_MASK);
+
+ return ret;
+}
+
+/**
+ * imr_dbgfs_state_show - print state of IMR registers.
+ *
+ * @s: pointer to seq_file for output.
+ * @unused: unused parameter.
+ * @return: 0 on success or error code passed from mbi_iosf on failure.
+ */
+static int imr_dbgfs_state_show(struct seq_file *s, void *unused)
+{
+ phys_addr_t base;
+ phys_addr_t end;
+ int i;
+ struct imr_device *idev = s->private;
+ struct imr_regs imr;
+ size_t size;
+ int ret = -ENODEV;
+
+ mutex_lock(&idev->lock);
+
+ for (i = 0; i < idev->max_imr; i++) {
+
+ ret = imr_read(idev, i, &imr);
+ if (ret)
+ break;
+
+ /*
+ * Remember to add IMR_ALIGN bytes to size to indicate the
+ * inherent IMR_ALIGN size bytes contained in the masked away
+ * lower ten bits.
+ */
+ if (imr_is_enabled(&imr)) {
+ base = imr_to_phys(imr.addr_lo);
+ end = imr_to_phys(imr.addr_hi) + IMR_MASK;
+ size = end - base + 1;
+ } else {
+ base = 0;
+ end = 0;
+ size = 0;
+ }
+ seq_printf(s, "imr%02i: base=%pa, end=%pa, size=0x%08zx "
+ "rmask=0x%08x, wmask=0x%08x, %s, %s\n", i,
+ &base, &end, size, imr.rmask, imr.wmask,
+ imr_is_enabled(&imr) ? "enabled " : "disabled",
+ imr.addr_lo & IMR_LOCK ? "locked" : "unlocked");
+ }
+
+ mutex_unlock(&idev->lock);
+ return ret;
+}
+DEFINE_SHOW_ATTRIBUTE(imr_dbgfs_state);
+
+/**
+ * imr_debugfs_register - register debugfs hooks.
+ *
+ * @idev: pointer to imr_device structure.
+ */
+static void imr_debugfs_register(struct imr_device *idev)
+{
+ debugfs_create_file("imr_state", 0444, NULL, idev,
+ &imr_dbgfs_state_fops);
+}
+
+/**
+ * imr_check_params - check passed address range IMR alignment and non-zero size
+ *
+ * @base: base address of intended IMR.
+ * @size: size of intended IMR.
+ * @return: zero on valid range -EINVAL on unaligned base/size.
+ */
+static int imr_check_params(phys_addr_t base, size_t size)
+{
+ if ((base & IMR_MASK) || (size & IMR_MASK)) {
+ pr_err("base %pa size 0x%08zx must align to 1KiB\n",
+ &base, size);
+ return -EINVAL;
+ }
+ if (size == 0)
+ return -EINVAL;
+
+ return 0;
+}
+
+/**
+ * imr_raw_size - account for the IMR_ALIGN bytes that addr_hi appends.
+ *
+ * IMR addr_hi has a built in offset of plus IMR_ALIGN (0x400) bytes from the
+ * value in the register. We need to subtract IMR_ALIGN bytes from input sizes
+ * as a result.
+ *
+ * @size: input size bytes.
+ * @return: reduced size.
+ */
+static inline size_t imr_raw_size(size_t size)
+{
+ return size - IMR_ALIGN;
+}
+
+/**
+ * imr_address_overlap - detects an address overlap.
+ *
+ * @addr: address to check against an existing IMR.
+ * @imr: imr being checked.
+ * @return: true for overlap false for no overlap.
+ */
+static inline int imr_address_overlap(phys_addr_t addr, struct imr_regs *imr)
+{
+ return addr >= imr_to_phys(imr->addr_lo) && addr <= imr_to_phys(imr->addr_hi);
+}
+
+/**
+ * imr_add_range - add an Isolated Memory Region.
+ *
+ * @base: physical base address of region aligned to 1KiB.
+ * @size: physical size of region in bytes must be aligned to 1KiB.
+ * @read_mask: read access mask.
+ * @write_mask: write access mask.
+ * @return: zero on success or negative value indicating error.
+ */
+int imr_add_range(phys_addr_t base, size_t size,
+ unsigned int rmask, unsigned int wmask)
+{
+ phys_addr_t end;
+ unsigned int i;
+ struct imr_device *idev = &imr_dev;
+ struct imr_regs imr;
+ size_t raw_size;
+ int reg;
+ int ret;
+
+ if (WARN_ONCE(idev->init == false, "driver not initialized"))
+ return -ENODEV;
+
+ ret = imr_check_params(base, size);
+ if (ret)
+ return ret;
+
+ /* Tweak the size value. */
+ raw_size = imr_raw_size(size);
+ end = base + raw_size;
+
+ /*
+ * Check for reserved IMR value common to firmware, kernel and grub
+ * indicating a disabled IMR.
+ */
+ imr.addr_lo = phys_to_imr(base);
+ imr.addr_hi = phys_to_imr(end);
+ imr.rmask = rmask;
+ imr.wmask = wmask;
+ if (!imr_is_enabled(&imr))
+ return -ENOTSUPP;
+
+ mutex_lock(&idev->lock);
+
+ /*
+ * Find a free IMR while checking for an existing overlapping range.
+ * Note there's no restriction in silicon to prevent IMR overlaps.
+ * For the sake of simplicity and ease in defining/debugging an IMR
+ * memory map we exclude IMR overlaps.
+ */
+ reg = -1;
+ for (i = 0; i < idev->max_imr; i++) {
+ ret = imr_read(idev, i, &imr);
+ if (ret)
+ goto failed;
+
+ /* Find overlap @ base or end of requested range. */
+ ret = -EINVAL;
+ if (imr_is_enabled(&imr)) {
+ if (imr_address_overlap(base, &imr))
+ goto failed;
+ if (imr_address_overlap(end, &imr))
+ goto failed;
+ } else {
+ reg = i;
+ }
+ }
+
+ /* Error out if we have no free IMR entries. */
+ if (reg == -1) {
+ ret = -ENOMEM;
+ goto failed;
+ }
+
+ pr_debug("add %d phys %pa-%pa size %zx mask 0x%08x wmask 0x%08x\n",
+ reg, &base, &end, raw_size, rmask, wmask);
+
+ /* Enable IMR at specified range and access mask. */
+ imr.addr_lo = phys_to_imr(base);
+ imr.addr_hi = phys_to_imr(end);
+ imr.rmask = rmask;
+ imr.wmask = wmask;
+
+ ret = imr_write(idev, reg, &imr);
+ if (ret < 0) {
+ /*
+ * In the highly unlikely event iosf_mbi_write failed
+ * attempt to rollback the IMR setup skipping the trapping
+ * of further IOSF write failures.
+ */
+ imr.addr_lo = 0;
+ imr.addr_hi = 0;
+ imr.rmask = IMR_READ_ACCESS_ALL;
+ imr.wmask = IMR_WRITE_ACCESS_ALL;
+ imr_write(idev, reg, &imr);
+ }
+failed:
+ mutex_unlock(&idev->lock);
+ return ret;
+}
+EXPORT_SYMBOL_GPL(imr_add_range);
+
+/**
+ * __imr_remove_range - delete an Isolated Memory Region.
+ *
+ * This function allows you to delete an IMR by its index specified by reg or
+ * by address range specified by base and size respectively. If you specify an
+ * index on its own the base and size parameters are ignored.
+ * imr_remove_range(0, base, size); delete IMR at index 0 base/size ignored.
+ * imr_remove_range(-1, base, size); delete IMR from base to base+size.
+ *
+ * @reg: imr index to remove.
+ * @base: physical base address of region aligned to 1 KiB.
+ * @size: physical size of region in bytes aligned to 1 KiB.
+ * @return: -EINVAL on invalid range or out or range id
+ * -ENODEV if reg is valid but no IMR exists or is locked
+ * 0 on success.
+ */
+static int __imr_remove_range(int reg, phys_addr_t base, size_t size)
+{
+ phys_addr_t end;
+ bool found = false;
+ unsigned int i;
+ struct imr_device *idev = &imr_dev;
+ struct imr_regs imr;
+ size_t raw_size;
+ int ret = 0;
+
+ if (WARN_ONCE(idev->init == false, "driver not initialized"))
+ return -ENODEV;
+
+ /*
+ * Validate address range if deleting by address, else we are
+ * deleting by index where base and size will be ignored.
+ */
+ if (reg == -1) {
+ ret = imr_check_params(base, size);
+ if (ret)
+ return ret;
+ }
+
+ /* Tweak the size value. */
+ raw_size = imr_raw_size(size);
+ end = base + raw_size;
+
+ mutex_lock(&idev->lock);
+
+ if (reg >= 0) {
+ /* If a specific IMR is given try to use it. */
+ ret = imr_read(idev, reg, &imr);
+ if (ret)
+ goto failed;
+
+ if (!imr_is_enabled(&imr) || imr.addr_lo & IMR_LOCK) {
+ ret = -ENODEV;
+ goto failed;
+ }
+ found = true;
+ } else {
+ /* Search for match based on address range. */
+ for (i = 0; i < idev->max_imr; i++) {
+ ret = imr_read(idev, i, &imr);
+ if (ret)
+ goto failed;
+
+ if (!imr_is_enabled(&imr) || imr.addr_lo & IMR_LOCK)
+ continue;
+
+ if ((imr_to_phys(imr.addr_lo) == base) &&
+ (imr_to_phys(imr.addr_hi) == end)) {
+ found = true;
+ reg = i;
+ break;
+ }
+ }
+ }
+
+ if (!found) {
+ ret = -ENODEV;
+ goto failed;
+ }
+
+ pr_debug("remove %d phys %pa-%pa size %zx\n", reg, &base, &end, raw_size);
+
+ /* Tear down the IMR. */
+ imr.addr_lo = 0;
+ imr.addr_hi = 0;
+ imr.rmask = IMR_READ_ACCESS_ALL;
+ imr.wmask = IMR_WRITE_ACCESS_ALL;
+
+ ret = imr_write(idev, reg, &imr);
+
+failed:
+ mutex_unlock(&idev->lock);
+ return ret;
+}
+
+/**
+ * imr_remove_range - delete an Isolated Memory Region by address
+ *
+ * This function allows you to delete an IMR by an address range specified
+ * by base and size respectively.
+ * imr_remove_range(base, size); delete IMR from base to base+size.
+ *
+ * @base: physical base address of region aligned to 1 KiB.
+ * @size: physical size of region in bytes aligned to 1 KiB.
+ * @return: -EINVAL on invalid range or out or range id
+ * -ENODEV if reg is valid but no IMR exists or is locked
+ * 0 on success.
+ */
+int imr_remove_range(phys_addr_t base, size_t size)
+{
+ return __imr_remove_range(-1, base, size);
+}
+EXPORT_SYMBOL_GPL(imr_remove_range);
+
+/**
+ * imr_clear - delete an Isolated Memory Region by index
+ *
+ * This function allows you to delete an IMR by an address range specified
+ * by the index of the IMR. Useful for initial sanitization of the IMR
+ * address map.
+ * imr_ge(base, size); delete IMR from base to base+size.
+ *
+ * @reg: imr index to remove.
+ * @return: -EINVAL on invalid range or out or range id
+ * -ENODEV if reg is valid but no IMR exists or is locked
+ * 0 on success.
+ */
+static inline int imr_clear(int reg)
+{
+ return __imr_remove_range(reg, 0, 0);
+}
+
+/**
+ * imr_fixup_memmap - Tear down IMRs used during bootup.
+ *
+ * BIOS and Grub both setup IMRs around compressed kernel, initrd memory
+ * that need to be removed before the kernel hands out one of the IMR
+ * encased addresses to a downstream DMA agent such as the SD or Ethernet.
+ * IMRs on Galileo are setup to immediately reset the system on violation.
+ * As a result if you're running a root filesystem from SD - you'll need
+ * the boot-time IMRs torn down or you'll find seemingly random resets when
+ * using your filesystem.
+ *
+ * @idev: pointer to imr_device structure.
+ * @return:
+ */
+static void __init imr_fixup_memmap(struct imr_device *idev)
+{
+ phys_addr_t base = virt_to_phys(&_text);
+ size_t size = virt_to_phys(&__end_rodata) - base;
+ unsigned long start, end;
+ int i;
+ int ret;
+
+ /* Tear down all existing unlocked IMRs. */
+ for (i = 0; i < idev->max_imr; i++)
+ imr_clear(i);
+
+ start = (unsigned long)_text;
+ end = (unsigned long)__end_rodata - 1;
+
+ /*
+ * Setup an unlocked IMR around the physical extent of the kernel
+ * from the beginning of the .text section to the end of the
+ * .rodata section as one physically contiguous block.
+ *
+ * We don't round up @size since it is already PAGE_SIZE aligned.
+ * See vmlinux.lds.S for details.
+ */
+ ret = imr_add_range(base, size, IMR_CPU, IMR_CPU);
+ if (ret < 0) {
+ pr_err("unable to setup IMR for kernel: %zu KiB (%lx - %lx)\n",
+ size / 1024, start, end);
+ } else {
+ pr_info("protecting kernel .text - .rodata: %zu KiB (%lx - %lx)\n",
+ size / 1024, start, end);
+ }
+
+}
+
+static const struct x86_cpu_id imr_ids[] __initconst = {
+ X86_MATCH_VENDOR_FAM_MODEL(INTEL, 5, INTEL_FAM5_QUARK_X1000, NULL),
+ {}
+};
+
+/**
+ * imr_init - entry point for IMR driver.
+ *
+ * return: -ENODEV for no IMR support 0 if good to go.
+ */
+static int __init imr_init(void)
+{
+ struct imr_device *idev = &imr_dev;
+
+ if (!x86_match_cpu(imr_ids) || !iosf_mbi_available())
+ return -ENODEV;
+
+ idev->max_imr = QUARK_X1000_IMR_MAX;
+ idev->reg_base = QUARK_X1000_IMR_REGBASE;
+ idev->init = true;
+
+ mutex_init(&idev->lock);
+ imr_debugfs_register(idev);
+ imr_fixup_memmap(idev);
+ return 0;
+}
+device_initcall(imr_init);
diff --git a/arch/x86/platform/intel-quark/imr_selftest.c b/arch/x86/platform/intel-quark/imr_selftest.c
new file mode 100644
index 000000000..761f3689f
--- /dev/null
+++ b/arch/x86/platform/intel-quark/imr_selftest.c
@@ -0,0 +1,129 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * imr_selftest.c -- Intel Isolated Memory Region self-test driver
+ *
+ * Copyright(c) 2013 Intel Corporation.
+ * Copyright(c) 2015 Bryan O'Donoghue <pure.logic@nexus-software.ie>
+ *
+ * IMR self test. The purpose of this module is to run a set of tests on the
+ * IMR API to validate it's sanity. We check for overlapping, reserved
+ * addresses and setup/teardown sanity.
+ *
+ */
+
+#include <asm-generic/sections.h>
+#include <asm/cpu_device_id.h>
+#include <asm/imr.h>
+#include <asm/io.h>
+
+#include <linux/init.h>
+#include <linux/mm.h>
+#include <linux/types.h>
+
+#define SELFTEST KBUILD_MODNAME ": "
+/**
+ * imr_self_test_result - Print result string for self test.
+ *
+ * @res: result code - true if test passed false otherwise.
+ * @fmt: format string.
+ * ... variadic argument list.
+ */
+static __printf(2, 3)
+void __init imr_self_test_result(int res, const char *fmt, ...)
+{
+ va_list vlist;
+
+ /* Print pass/fail. */
+ if (res)
+ pr_info(SELFTEST "pass ");
+ else
+ pr_info(SELFTEST "fail ");
+
+ /* Print variable string. */
+ va_start(vlist, fmt);
+ vprintk(fmt, vlist);
+ va_end(vlist);
+
+ /* Optional warning. */
+ WARN(res == 0, "test failed");
+}
+#undef SELFTEST
+
+/**
+ * imr_self_test
+ *
+ * Verify IMR self_test with some simple tests to verify overlap,
+ * zero sized allocations and 1 KiB sized areas.
+ *
+ */
+static void __init imr_self_test(void)
+{
+ phys_addr_t base = virt_to_phys(&_text);
+ size_t size = virt_to_phys(&__end_rodata) - base;
+ const char *fmt_over = "overlapped IMR @ (0x%08lx - 0x%08lx)\n";
+ int ret;
+
+ /* Test zero zero. */
+ ret = imr_add_range(0, 0, 0, 0);
+ imr_self_test_result(ret < 0, "zero sized IMR\n");
+
+ /* Test exact overlap. */
+ ret = imr_add_range(base, size, IMR_CPU, IMR_CPU);
+ imr_self_test_result(ret < 0, fmt_over, __va(base), __va(base + size));
+
+ /* Test overlap with base inside of existing. */
+ base += size - IMR_ALIGN;
+ ret = imr_add_range(base, size, IMR_CPU, IMR_CPU);
+ imr_self_test_result(ret < 0, fmt_over, __va(base), __va(base + size));
+
+ /* Test overlap with end inside of existing. */
+ base -= size + IMR_ALIGN * 2;
+ ret = imr_add_range(base, size, IMR_CPU, IMR_CPU);
+ imr_self_test_result(ret < 0, fmt_over, __va(base), __va(base + size));
+
+ /* Test that a 1 KiB IMR @ zero with read/write all will bomb out. */
+ ret = imr_add_range(0, IMR_ALIGN, IMR_READ_ACCESS_ALL,
+ IMR_WRITE_ACCESS_ALL);
+ imr_self_test_result(ret < 0, "1KiB IMR @ 0x00000000 - access-all\n");
+
+ /* Test that a 1 KiB IMR @ zero with CPU only will work. */
+ ret = imr_add_range(0, IMR_ALIGN, IMR_CPU, IMR_CPU);
+ imr_self_test_result(ret >= 0, "1KiB IMR @ 0x00000000 - cpu-access\n");
+ if (ret >= 0) {
+ ret = imr_remove_range(0, IMR_ALIGN);
+ imr_self_test_result(ret == 0, "teardown - cpu-access\n");
+ }
+
+ /* Test 2 KiB works. */
+ size = IMR_ALIGN * 2;
+ ret = imr_add_range(0, size, IMR_READ_ACCESS_ALL, IMR_WRITE_ACCESS_ALL);
+ imr_self_test_result(ret >= 0, "2KiB IMR @ 0x00000000\n");
+ if (ret >= 0) {
+ ret = imr_remove_range(0, size);
+ imr_self_test_result(ret == 0, "teardown 2KiB\n");
+ }
+}
+
+static const struct x86_cpu_id imr_ids[] __initconst = {
+ X86_MATCH_VENDOR_FAM_MODEL(INTEL, 5, INTEL_FAM5_QUARK_X1000, NULL),
+ {}
+};
+
+/**
+ * imr_self_test_init - entry point for IMR driver.
+ *
+ * return: -ENODEV for no IMR support 0 if good to go.
+ */
+static int __init imr_self_test_init(void)
+{
+ if (x86_match_cpu(imr_ids))
+ imr_self_test();
+ return 0;
+}
+
+/**
+ * imr_self_test_exit - exit point for IMR code.
+ *
+ * return:
+ */
+device_initcall(imr_self_test_init);
diff --git a/arch/x86/platform/intel/Makefile b/arch/x86/platform/intel/Makefile
new file mode 100644
index 000000000..dbee3b00f
--- /dev/null
+++ b/arch/x86/platform/intel/Makefile
@@ -0,0 +1,2 @@
+# SPDX-License-Identifier: GPL-2.0-only
+obj-$(CONFIG_IOSF_MBI) += iosf_mbi.o
diff --git a/arch/x86/platform/intel/iosf_mbi.c b/arch/x86/platform/intel/iosf_mbi.c
new file mode 100644
index 000000000..fdd49d70b
--- /dev/null
+++ b/arch/x86/platform/intel/iosf_mbi.c
@@ -0,0 +1,571 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * IOSF-SB MailBox Interface Driver
+ * Copyright (c) 2013, Intel Corporation.
+ *
+ * The IOSF-SB is a fabric bus available on Atom based SOC's that uses a
+ * mailbox interface (MBI) to communicate with multiple devices. This
+ * driver implements access to this interface for those platforms that can
+ * enumerate the device using PCI.
+ */
+
+#include <linux/delay.h>
+#include <linux/module.h>
+#include <linux/init.h>
+#include <linux/spinlock.h>
+#include <linux/pci.h>
+#include <linux/debugfs.h>
+#include <linux/capability.h>
+#include <linux/pm_qos.h>
+#include <linux/wait.h>
+
+#include <asm/iosf_mbi.h>
+
+#define PCI_DEVICE_ID_INTEL_BAYTRAIL 0x0F00
+#define PCI_DEVICE_ID_INTEL_BRASWELL 0x2280
+#define PCI_DEVICE_ID_INTEL_QUARK_X1000 0x0958
+#define PCI_DEVICE_ID_INTEL_TANGIER 0x1170
+
+static struct pci_dev *mbi_pdev;
+static DEFINE_SPINLOCK(iosf_mbi_lock);
+
+/**************** Generic iosf_mbi access helpers ****************/
+
+static inline u32 iosf_mbi_form_mcr(u8 op, u8 port, u8 offset)
+{
+ return (op << 24) | (port << 16) | (offset << 8) | MBI_ENABLE;
+}
+
+static int iosf_mbi_pci_read_mdr(u32 mcrx, u32 mcr, u32 *mdr)
+{
+ int result;
+
+ if (!mbi_pdev)
+ return -ENODEV;
+
+ if (mcrx) {
+ result = pci_write_config_dword(mbi_pdev, MBI_MCRX_OFFSET,
+ mcrx);
+ if (result < 0)
+ goto fail_read;
+ }
+
+ result = pci_write_config_dword(mbi_pdev, MBI_MCR_OFFSET, mcr);
+ if (result < 0)
+ goto fail_read;
+
+ result = pci_read_config_dword(mbi_pdev, MBI_MDR_OFFSET, mdr);
+ if (result < 0)
+ goto fail_read;
+
+ return 0;
+
+fail_read:
+ dev_err(&mbi_pdev->dev, "PCI config access failed with %d\n", result);
+ return result;
+}
+
+static int iosf_mbi_pci_write_mdr(u32 mcrx, u32 mcr, u32 mdr)
+{
+ int result;
+
+ if (!mbi_pdev)
+ return -ENODEV;
+
+ result = pci_write_config_dword(mbi_pdev, MBI_MDR_OFFSET, mdr);
+ if (result < 0)
+ goto fail_write;
+
+ if (mcrx) {
+ result = pci_write_config_dword(mbi_pdev, MBI_MCRX_OFFSET,
+ mcrx);
+ if (result < 0)
+ goto fail_write;
+ }
+
+ result = pci_write_config_dword(mbi_pdev, MBI_MCR_OFFSET, mcr);
+ if (result < 0)
+ goto fail_write;
+
+ return 0;
+
+fail_write:
+ dev_err(&mbi_pdev->dev, "PCI config access failed with %d\n", result);
+ return result;
+}
+
+int iosf_mbi_read(u8 port, u8 opcode, u32 offset, u32 *mdr)
+{
+ u32 mcr, mcrx;
+ unsigned long flags;
+ int ret;
+
+ /* Access to the GFX unit is handled by GPU code */
+ if (port == BT_MBI_UNIT_GFX) {
+ WARN_ON(1);
+ return -EPERM;
+ }
+
+ mcr = iosf_mbi_form_mcr(opcode, port, offset & MBI_MASK_LO);
+ mcrx = offset & MBI_MASK_HI;
+
+ spin_lock_irqsave(&iosf_mbi_lock, flags);
+ ret = iosf_mbi_pci_read_mdr(mcrx, mcr, mdr);
+ spin_unlock_irqrestore(&iosf_mbi_lock, flags);
+
+ return ret;
+}
+EXPORT_SYMBOL(iosf_mbi_read);
+
+int iosf_mbi_write(u8 port, u8 opcode, u32 offset, u32 mdr)
+{
+ u32 mcr, mcrx;
+ unsigned long flags;
+ int ret;
+
+ /* Access to the GFX unit is handled by GPU code */
+ if (port == BT_MBI_UNIT_GFX) {
+ WARN_ON(1);
+ return -EPERM;
+ }
+
+ mcr = iosf_mbi_form_mcr(opcode, port, offset & MBI_MASK_LO);
+ mcrx = offset & MBI_MASK_HI;
+
+ spin_lock_irqsave(&iosf_mbi_lock, flags);
+ ret = iosf_mbi_pci_write_mdr(mcrx, mcr, mdr);
+ spin_unlock_irqrestore(&iosf_mbi_lock, flags);
+
+ return ret;
+}
+EXPORT_SYMBOL(iosf_mbi_write);
+
+int iosf_mbi_modify(u8 port, u8 opcode, u32 offset, u32 mdr, u32 mask)
+{
+ u32 mcr, mcrx;
+ u32 value;
+ unsigned long flags;
+ int ret;
+
+ /* Access to the GFX unit is handled by GPU code */
+ if (port == BT_MBI_UNIT_GFX) {
+ WARN_ON(1);
+ return -EPERM;
+ }
+
+ mcr = iosf_mbi_form_mcr(opcode, port, offset & MBI_MASK_LO);
+ mcrx = offset & MBI_MASK_HI;
+
+ spin_lock_irqsave(&iosf_mbi_lock, flags);
+
+ /* Read current mdr value */
+ ret = iosf_mbi_pci_read_mdr(mcrx, mcr & MBI_RD_MASK, &value);
+ if (ret < 0) {
+ spin_unlock_irqrestore(&iosf_mbi_lock, flags);
+ return ret;
+ }
+
+ /* Apply mask */
+ value &= ~mask;
+ mdr &= mask;
+ value |= mdr;
+
+ /* Write back */
+ ret = iosf_mbi_pci_write_mdr(mcrx, mcr | MBI_WR_MASK, value);
+
+ spin_unlock_irqrestore(&iosf_mbi_lock, flags);
+
+ return ret;
+}
+EXPORT_SYMBOL(iosf_mbi_modify);
+
+bool iosf_mbi_available(void)
+{
+ /* Mbi isn't hot-pluggable. No remove routine is provided */
+ return mbi_pdev;
+}
+EXPORT_SYMBOL(iosf_mbi_available);
+
+/*
+ **************** P-Unit/kernel shared I2C bus arbitration ****************
+ *
+ * Some Bay Trail and Cherry Trail devices have the P-Unit and us (the kernel)
+ * share a single I2C bus to the PMIC. Below are helpers to arbitrate the
+ * accesses between the kernel and the P-Unit.
+ *
+ * See arch/x86/include/asm/iosf_mbi.h for kernel-doc text for each function.
+ */
+
+#define SEMAPHORE_TIMEOUT 500
+#define PUNIT_SEMAPHORE_BYT 0x7
+#define PUNIT_SEMAPHORE_CHT 0x10e
+#define PUNIT_SEMAPHORE_BIT BIT(0)
+#define PUNIT_SEMAPHORE_ACQUIRE BIT(1)
+
+static DEFINE_MUTEX(iosf_mbi_pmic_access_mutex);
+static BLOCKING_NOTIFIER_HEAD(iosf_mbi_pmic_bus_access_notifier);
+static DECLARE_WAIT_QUEUE_HEAD(iosf_mbi_pmic_access_waitq);
+static u32 iosf_mbi_pmic_punit_access_count;
+static u32 iosf_mbi_pmic_i2c_access_count;
+static u32 iosf_mbi_sem_address;
+static unsigned long iosf_mbi_sem_acquired;
+static struct pm_qos_request iosf_mbi_pm_qos;
+
+void iosf_mbi_punit_acquire(void)
+{
+ /* Wait for any I2C PMIC accesses from in kernel drivers to finish. */
+ mutex_lock(&iosf_mbi_pmic_access_mutex);
+ while (iosf_mbi_pmic_i2c_access_count != 0) {
+ mutex_unlock(&iosf_mbi_pmic_access_mutex);
+ wait_event(iosf_mbi_pmic_access_waitq,
+ iosf_mbi_pmic_i2c_access_count == 0);
+ mutex_lock(&iosf_mbi_pmic_access_mutex);
+ }
+ /*
+ * We do not need to do anything to allow the PUNIT to safely access
+ * the PMIC, other then block in kernel accesses to the PMIC.
+ */
+ iosf_mbi_pmic_punit_access_count++;
+ mutex_unlock(&iosf_mbi_pmic_access_mutex);
+}
+EXPORT_SYMBOL(iosf_mbi_punit_acquire);
+
+void iosf_mbi_punit_release(void)
+{
+ bool do_wakeup;
+
+ mutex_lock(&iosf_mbi_pmic_access_mutex);
+ iosf_mbi_pmic_punit_access_count--;
+ do_wakeup = iosf_mbi_pmic_punit_access_count == 0;
+ mutex_unlock(&iosf_mbi_pmic_access_mutex);
+
+ if (do_wakeup)
+ wake_up(&iosf_mbi_pmic_access_waitq);
+}
+EXPORT_SYMBOL(iosf_mbi_punit_release);
+
+static int iosf_mbi_get_sem(u32 *sem)
+{
+ int ret;
+
+ ret = iosf_mbi_read(BT_MBI_UNIT_PMC, MBI_REG_READ,
+ iosf_mbi_sem_address, sem);
+ if (ret) {
+ dev_err(&mbi_pdev->dev, "Error P-Unit semaphore read failed\n");
+ return ret;
+ }
+
+ *sem &= PUNIT_SEMAPHORE_BIT;
+ return 0;
+}
+
+static void iosf_mbi_reset_semaphore(void)
+{
+ if (iosf_mbi_modify(BT_MBI_UNIT_PMC, MBI_REG_READ,
+ iosf_mbi_sem_address, 0, PUNIT_SEMAPHORE_BIT))
+ dev_err(&mbi_pdev->dev, "Error P-Unit semaphore reset failed\n");
+
+ cpu_latency_qos_update_request(&iosf_mbi_pm_qos, PM_QOS_DEFAULT_VALUE);
+
+ blocking_notifier_call_chain(&iosf_mbi_pmic_bus_access_notifier,
+ MBI_PMIC_BUS_ACCESS_END, NULL);
+}
+
+/*
+ * This function blocks P-Unit accesses to the PMIC I2C bus, so that kernel
+ * I2C code, such as e.g. a fuel-gauge driver, can access it safely.
+ *
+ * This function may be called by I2C controller code while an I2C driver has
+ * already blocked P-Unit accesses because it wants them blocked over multiple
+ * i2c-transfers, for e.g. read-modify-write of an I2C client register.
+ *
+ * To allow safe PMIC i2c bus accesses this function takes the following steps:
+ *
+ * 1) Some code sends request to the P-Unit which make it access the PMIC
+ * I2C bus. Testing has shown that the P-Unit does not check its internal
+ * PMIC bus semaphore for these requests. Callers of these requests call
+ * iosf_mbi_punit_acquire()/_release() around their P-Unit accesses, these
+ * functions increase/decrease iosf_mbi_pmic_punit_access_count, so first
+ * we wait for iosf_mbi_pmic_punit_access_count to become 0.
+ *
+ * 2) Check iosf_mbi_pmic_i2c_access_count, if access has already
+ * been blocked by another caller, we only need to increment
+ * iosf_mbi_pmic_i2c_access_count and we can skip the other steps.
+ *
+ * 3) Some code makes such P-Unit requests from atomic contexts where it
+ * cannot call iosf_mbi_punit_acquire() as that may sleep.
+ * As the second step we call a notifier chain which allows any code
+ * needing P-Unit resources from atomic context to acquire them before
+ * we take control over the PMIC I2C bus.
+ *
+ * 4) When CPU cores enter C6 or C7 the P-Unit needs to talk to the PMIC
+ * if this happens while the kernel itself is accessing the PMIC I2C bus
+ * the SoC hangs.
+ * As the third step we call cpu_latency_qos_update_request() to disallow the
+ * CPU to enter C6 or C7.
+ *
+ * 5) The P-Unit has a PMIC bus semaphore which we can request to stop
+ * autonomous P-Unit tasks from accessing the PMIC I2C bus while we hold it.
+ * As the fourth and final step we request this semaphore and wait for our
+ * request to be acknowledged.
+ */
+int iosf_mbi_block_punit_i2c_access(void)
+{
+ unsigned long start, end;
+ int ret = 0;
+ u32 sem;
+
+ if (WARN_ON(!mbi_pdev || !iosf_mbi_sem_address))
+ return -ENXIO;
+
+ mutex_lock(&iosf_mbi_pmic_access_mutex);
+
+ while (iosf_mbi_pmic_punit_access_count != 0) {
+ mutex_unlock(&iosf_mbi_pmic_access_mutex);
+ wait_event(iosf_mbi_pmic_access_waitq,
+ iosf_mbi_pmic_punit_access_count == 0);
+ mutex_lock(&iosf_mbi_pmic_access_mutex);
+ }
+
+ if (iosf_mbi_pmic_i2c_access_count > 0)
+ goto success;
+
+ blocking_notifier_call_chain(&iosf_mbi_pmic_bus_access_notifier,
+ MBI_PMIC_BUS_ACCESS_BEGIN, NULL);
+
+ /*
+ * Disallow the CPU to enter C6 or C7 state, entering these states
+ * requires the P-Unit to talk to the PMIC and if this happens while
+ * we're holding the semaphore, the SoC hangs.
+ */
+ cpu_latency_qos_update_request(&iosf_mbi_pm_qos, 0);
+
+ /* host driver writes to side band semaphore register */
+ ret = iosf_mbi_write(BT_MBI_UNIT_PMC, MBI_REG_WRITE,
+ iosf_mbi_sem_address, PUNIT_SEMAPHORE_ACQUIRE);
+ if (ret) {
+ dev_err(&mbi_pdev->dev, "Error P-Unit semaphore request failed\n");
+ goto error;
+ }
+
+ /* host driver waits for bit 0 to be set in semaphore register */
+ start = jiffies;
+ end = start + msecs_to_jiffies(SEMAPHORE_TIMEOUT);
+ do {
+ ret = iosf_mbi_get_sem(&sem);
+ if (!ret && sem) {
+ iosf_mbi_sem_acquired = jiffies;
+ dev_dbg(&mbi_pdev->dev, "P-Unit semaphore acquired after %ums\n",
+ jiffies_to_msecs(jiffies - start));
+ goto success;
+ }
+
+ usleep_range(1000, 2000);
+ } while (time_before(jiffies, end));
+
+ ret = -ETIMEDOUT;
+ dev_err(&mbi_pdev->dev, "Error P-Unit semaphore timed out, resetting\n");
+error:
+ iosf_mbi_reset_semaphore();
+ if (!iosf_mbi_get_sem(&sem))
+ dev_err(&mbi_pdev->dev, "P-Unit semaphore: %d\n", sem);
+success:
+ if (!WARN_ON(ret))
+ iosf_mbi_pmic_i2c_access_count++;
+
+ mutex_unlock(&iosf_mbi_pmic_access_mutex);
+
+ return ret;
+}
+EXPORT_SYMBOL(iosf_mbi_block_punit_i2c_access);
+
+void iosf_mbi_unblock_punit_i2c_access(void)
+{
+ bool do_wakeup = false;
+
+ mutex_lock(&iosf_mbi_pmic_access_mutex);
+ iosf_mbi_pmic_i2c_access_count--;
+ if (iosf_mbi_pmic_i2c_access_count == 0) {
+ iosf_mbi_reset_semaphore();
+ dev_dbg(&mbi_pdev->dev, "punit semaphore held for %ums\n",
+ jiffies_to_msecs(jiffies - iosf_mbi_sem_acquired));
+ do_wakeup = true;
+ }
+ mutex_unlock(&iosf_mbi_pmic_access_mutex);
+
+ if (do_wakeup)
+ wake_up(&iosf_mbi_pmic_access_waitq);
+}
+EXPORT_SYMBOL(iosf_mbi_unblock_punit_i2c_access);
+
+int iosf_mbi_register_pmic_bus_access_notifier(struct notifier_block *nb)
+{
+ int ret;
+
+ /* Wait for the bus to go inactive before registering */
+ iosf_mbi_punit_acquire();
+ ret = blocking_notifier_chain_register(
+ &iosf_mbi_pmic_bus_access_notifier, nb);
+ iosf_mbi_punit_release();
+
+ return ret;
+}
+EXPORT_SYMBOL(iosf_mbi_register_pmic_bus_access_notifier);
+
+int iosf_mbi_unregister_pmic_bus_access_notifier_unlocked(
+ struct notifier_block *nb)
+{
+ iosf_mbi_assert_punit_acquired();
+
+ return blocking_notifier_chain_unregister(
+ &iosf_mbi_pmic_bus_access_notifier, nb);
+}
+EXPORT_SYMBOL(iosf_mbi_unregister_pmic_bus_access_notifier_unlocked);
+
+int iosf_mbi_unregister_pmic_bus_access_notifier(struct notifier_block *nb)
+{
+ int ret;
+
+ /* Wait for the bus to go inactive before unregistering */
+ iosf_mbi_punit_acquire();
+ ret = iosf_mbi_unregister_pmic_bus_access_notifier_unlocked(nb);
+ iosf_mbi_punit_release();
+
+ return ret;
+}
+EXPORT_SYMBOL(iosf_mbi_unregister_pmic_bus_access_notifier);
+
+void iosf_mbi_assert_punit_acquired(void)
+{
+ WARN_ON(iosf_mbi_pmic_punit_access_count == 0);
+}
+EXPORT_SYMBOL(iosf_mbi_assert_punit_acquired);
+
+/**************** iosf_mbi debug code ****************/
+
+#ifdef CONFIG_IOSF_MBI_DEBUG
+static u32 dbg_mdr;
+static u32 dbg_mcr;
+static u32 dbg_mcrx;
+
+static int mcr_get(void *data, u64 *val)
+{
+ *val = *(u32 *)data;
+ return 0;
+}
+
+static int mcr_set(void *data, u64 val)
+{
+ u8 command = ((u32)val & 0xFF000000) >> 24,
+ port = ((u32)val & 0x00FF0000) >> 16,
+ offset = ((u32)val & 0x0000FF00) >> 8;
+ int err;
+
+ *(u32 *)data = val;
+
+ if (!capable(CAP_SYS_RAWIO))
+ return -EACCES;
+
+ if (command & 1u)
+ err = iosf_mbi_write(port,
+ command,
+ dbg_mcrx | offset,
+ dbg_mdr);
+ else
+ err = iosf_mbi_read(port,
+ command,
+ dbg_mcrx | offset,
+ &dbg_mdr);
+
+ return err;
+}
+DEFINE_SIMPLE_ATTRIBUTE(iosf_mcr_fops, mcr_get, mcr_set , "%llx\n");
+
+static struct dentry *iosf_dbg;
+
+static void iosf_sideband_debug_init(void)
+{
+ iosf_dbg = debugfs_create_dir("iosf_sb", NULL);
+
+ /* mdr */
+ debugfs_create_x32("mdr", 0660, iosf_dbg, &dbg_mdr);
+
+ /* mcrx */
+ debugfs_create_x32("mcrx", 0660, iosf_dbg, &dbg_mcrx);
+
+ /* mcr - initiates mailbox transaction */
+ debugfs_create_file("mcr", 0660, iosf_dbg, &dbg_mcr, &iosf_mcr_fops);
+}
+
+static void iosf_debugfs_init(void)
+{
+ iosf_sideband_debug_init();
+}
+
+static void iosf_debugfs_remove(void)
+{
+ debugfs_remove_recursive(iosf_dbg);
+}
+#else
+static inline void iosf_debugfs_init(void) { }
+static inline void iosf_debugfs_remove(void) { }
+#endif /* CONFIG_IOSF_MBI_DEBUG */
+
+static int iosf_mbi_probe(struct pci_dev *pdev,
+ const struct pci_device_id *dev_id)
+{
+ int ret;
+
+ ret = pci_enable_device(pdev);
+ if (ret < 0) {
+ dev_err(&pdev->dev, "error: could not enable device\n");
+ return ret;
+ }
+
+ mbi_pdev = pci_dev_get(pdev);
+ iosf_mbi_sem_address = dev_id->driver_data;
+
+ return 0;
+}
+
+static const struct pci_device_id iosf_mbi_pci_ids[] = {
+ { PCI_DEVICE_DATA(INTEL, BAYTRAIL, PUNIT_SEMAPHORE_BYT) },
+ { PCI_DEVICE_DATA(INTEL, BRASWELL, PUNIT_SEMAPHORE_CHT) },
+ { PCI_DEVICE_DATA(INTEL, QUARK_X1000, 0) },
+ { PCI_DEVICE_DATA(INTEL, TANGIER, 0) },
+ { 0, },
+};
+MODULE_DEVICE_TABLE(pci, iosf_mbi_pci_ids);
+
+static struct pci_driver iosf_mbi_pci_driver = {
+ .name = "iosf_mbi_pci",
+ .probe = iosf_mbi_probe,
+ .id_table = iosf_mbi_pci_ids,
+};
+
+static int __init iosf_mbi_init(void)
+{
+ iosf_debugfs_init();
+
+ cpu_latency_qos_add_request(&iosf_mbi_pm_qos, PM_QOS_DEFAULT_VALUE);
+
+ return pci_register_driver(&iosf_mbi_pci_driver);
+}
+
+static void __exit iosf_mbi_exit(void)
+{
+ iosf_debugfs_remove();
+
+ pci_unregister_driver(&iosf_mbi_pci_driver);
+ pci_dev_put(mbi_pdev);
+ mbi_pdev = NULL;
+
+ cpu_latency_qos_remove_request(&iosf_mbi_pm_qos);
+}
+
+module_init(iosf_mbi_init);
+module_exit(iosf_mbi_exit);
+
+MODULE_AUTHOR("David E. Box <david.e.box@linux.intel.com>");
+MODULE_DESCRIPTION("IOSF Mailbox Interface accessor");
+MODULE_LICENSE("GPL v2");