summaryrefslogtreecommitdiffstats
path: root/drivers/acpi/pptt.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/acpi/pptt.c')
-rw-r--r--drivers/acpi/pptt.c799
1 files changed, 799 insertions, 0 deletions
diff --git a/drivers/acpi/pptt.c b/drivers/acpi/pptt.c
new file mode 100644
index 000000000..ced3eb15b
--- /dev/null
+++ b/drivers/acpi/pptt.c
@@ -0,0 +1,799 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * pptt.c - parsing of Processor Properties Topology Table (PPTT)
+ *
+ * Copyright (C) 2018, ARM
+ *
+ * This file implements parsing of the Processor Properties Topology Table
+ * which is optionally used to describe the processor and cache topology.
+ * Due to the relative pointers used throughout the table, this doesn't
+ * leverage the existing subtable parsing in the kernel.
+ *
+ * The PPTT structure is an inverted tree, with each node potentially
+ * holding one or two inverted tree data structures describing
+ * the caches available at that level. Each cache structure optionally
+ * contains properties describing the cache at a given level which can be
+ * used to override hardware probed values.
+ */
+#define pr_fmt(fmt) "ACPI PPTT: " fmt
+
+#include <linux/acpi.h>
+#include <linux/cacheinfo.h>
+#include <acpi/processor.h>
+
+static struct acpi_subtable_header *fetch_pptt_subtable(struct acpi_table_header *table_hdr,
+ u32 pptt_ref)
+{
+ struct acpi_subtable_header *entry;
+
+ /* there isn't a subtable at reference 0 */
+ if (pptt_ref < sizeof(struct acpi_subtable_header))
+ return NULL;
+
+ if (pptt_ref + sizeof(struct acpi_subtable_header) > table_hdr->length)
+ return NULL;
+
+ entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr, pptt_ref);
+
+ if (entry->length == 0)
+ return NULL;
+
+ if (pptt_ref + entry->length > table_hdr->length)
+ return NULL;
+
+ return entry;
+}
+
+static struct acpi_pptt_processor *fetch_pptt_node(struct acpi_table_header *table_hdr,
+ u32 pptt_ref)
+{
+ return (struct acpi_pptt_processor *)fetch_pptt_subtable(table_hdr, pptt_ref);
+}
+
+static struct acpi_pptt_cache *fetch_pptt_cache(struct acpi_table_header *table_hdr,
+ u32 pptt_ref)
+{
+ return (struct acpi_pptt_cache *)fetch_pptt_subtable(table_hdr, pptt_ref);
+}
+
+static struct acpi_subtable_header *acpi_get_pptt_resource(struct acpi_table_header *table_hdr,
+ struct acpi_pptt_processor *node,
+ int resource)
+{
+ u32 *ref;
+
+ if (resource >= node->number_of_priv_resources)
+ return NULL;
+
+ ref = ACPI_ADD_PTR(u32, node, sizeof(struct acpi_pptt_processor));
+ ref += resource;
+
+ return fetch_pptt_subtable(table_hdr, *ref);
+}
+
+static inline bool acpi_pptt_match_type(int table_type, int type)
+{
+ return ((table_type & ACPI_PPTT_MASK_CACHE_TYPE) == type ||
+ table_type & ACPI_PPTT_CACHE_TYPE_UNIFIED & type);
+}
+
+/**
+ * acpi_pptt_walk_cache() - Attempt to find the requested acpi_pptt_cache
+ * @table_hdr: Pointer to the head of the PPTT table
+ * @local_level: passed res reflects this cache level
+ * @res: cache resource in the PPTT we want to walk
+ * @found: returns a pointer to the requested level if found
+ * @level: the requested cache level
+ * @type: the requested cache type
+ *
+ * Attempt to find a given cache level, while counting the max number
+ * of cache levels for the cache node.
+ *
+ * Given a pptt resource, verify that it is a cache node, then walk
+ * down each level of caches, counting how many levels are found
+ * as well as checking the cache type (icache, dcache, unified). If a
+ * level & type match, then we set found, and continue the search.
+ * Once the entire cache branch has been walked return its max
+ * depth.
+ *
+ * Return: The cache structure and the level we terminated with.
+ */
+static unsigned int acpi_pptt_walk_cache(struct acpi_table_header *table_hdr,
+ unsigned int local_level,
+ struct acpi_subtable_header *res,
+ struct acpi_pptt_cache **found,
+ unsigned int level, int type)
+{
+ struct acpi_pptt_cache *cache;
+
+ if (res->type != ACPI_PPTT_TYPE_CACHE)
+ return 0;
+
+ cache = (struct acpi_pptt_cache *) res;
+ while (cache) {
+ local_level++;
+
+ if (local_level == level &&
+ cache->flags & ACPI_PPTT_CACHE_TYPE_VALID &&
+ acpi_pptt_match_type(cache->attributes, type)) {
+ if (*found != NULL && cache != *found)
+ pr_warn("Found duplicate cache level/type unable to determine uniqueness\n");
+
+ pr_debug("Found cache @ level %u\n", level);
+ *found = cache;
+ /*
+ * continue looking at this node's resource list
+ * to verify that we don't find a duplicate
+ * cache node.
+ */
+ }
+ cache = fetch_pptt_cache(table_hdr, cache->next_level_of_cache);
+ }
+ return local_level;
+}
+
+static struct acpi_pptt_cache *
+acpi_find_cache_level(struct acpi_table_header *table_hdr,
+ struct acpi_pptt_processor *cpu_node,
+ unsigned int *starting_level, unsigned int level,
+ int type)
+{
+ struct acpi_subtable_header *res;
+ unsigned int number_of_levels = *starting_level;
+ int resource = 0;
+ struct acpi_pptt_cache *ret = NULL;
+ unsigned int local_level;
+
+ /* walk down from processor node */
+ while ((res = acpi_get_pptt_resource(table_hdr, cpu_node, resource))) {
+ resource++;
+
+ local_level = acpi_pptt_walk_cache(table_hdr, *starting_level,
+ res, &ret, level, type);
+ /*
+ * we are looking for the max depth. Since its potentially
+ * possible for a given node to have resources with differing
+ * depths verify that the depth we have found is the largest.
+ */
+ if (number_of_levels < local_level)
+ number_of_levels = local_level;
+ }
+ if (number_of_levels > *starting_level)
+ *starting_level = number_of_levels;
+
+ return ret;
+}
+
+/**
+ * acpi_count_levels() - Given a PPTT table, and a CPU node, count the caches
+ * @table_hdr: Pointer to the head of the PPTT table
+ * @cpu_node: processor node we wish to count caches for
+ *
+ * Given a processor node containing a processing unit, walk into it and count
+ * how many levels exist solely for it, and then walk up each level until we hit
+ * the root node (ignore the package level because it may be possible to have
+ * caches that exist across packages). Count the number of cache levels that
+ * exist at each level on the way up.
+ *
+ * Return: Total number of levels found.
+ */
+static int acpi_count_levels(struct acpi_table_header *table_hdr,
+ struct acpi_pptt_processor *cpu_node)
+{
+ int total_levels = 0;
+
+ do {
+ acpi_find_cache_level(table_hdr, cpu_node, &total_levels, 0, 0);
+ cpu_node = fetch_pptt_node(table_hdr, cpu_node->parent);
+ } while (cpu_node);
+
+ return total_levels;
+}
+
+/**
+ * acpi_pptt_leaf_node() - Given a processor node, determine if its a leaf
+ * @table_hdr: Pointer to the head of the PPTT table
+ * @node: passed node is checked to see if its a leaf
+ *
+ * Determine if the *node parameter is a leaf node by iterating the
+ * PPTT table, looking for nodes which reference it.
+ *
+ * Return: 0 if we find a node referencing the passed node (or table error),
+ * or 1 if we don't.
+ */
+static int acpi_pptt_leaf_node(struct acpi_table_header *table_hdr,
+ struct acpi_pptt_processor *node)
+{
+ struct acpi_subtable_header *entry;
+ unsigned long table_end;
+ u32 node_entry;
+ struct acpi_pptt_processor *cpu_node;
+ u32 proc_sz;
+
+ if (table_hdr->revision > 1)
+ return (node->flags & ACPI_PPTT_ACPI_LEAF_NODE);
+
+ table_end = (unsigned long)table_hdr + table_hdr->length;
+ node_entry = ACPI_PTR_DIFF(node, table_hdr);
+ entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr,
+ sizeof(struct acpi_table_pptt));
+ proc_sz = sizeof(struct acpi_pptt_processor *);
+
+ while ((unsigned long)entry + proc_sz < table_end) {
+ cpu_node = (struct acpi_pptt_processor *)entry;
+ if (entry->type == ACPI_PPTT_TYPE_PROCESSOR &&
+ cpu_node->parent == node_entry)
+ return 0;
+ if (entry->length == 0)
+ return 0;
+ entry = ACPI_ADD_PTR(struct acpi_subtable_header, entry,
+ entry->length);
+
+ }
+ return 1;
+}
+
+/**
+ * acpi_find_processor_node() - Given a PPTT table find the requested processor
+ * @table_hdr: Pointer to the head of the PPTT table
+ * @acpi_cpu_id: CPU we are searching for
+ *
+ * Find the subtable entry describing the provided processor.
+ * This is done by iterating the PPTT table looking for processor nodes
+ * which have an acpi_processor_id that matches the acpi_cpu_id parameter
+ * passed into the function. If we find a node that matches this criteria
+ * we verify that its a leaf node in the topology rather than depending
+ * on the valid flag, which doesn't need to be set for leaf nodes.
+ *
+ * Return: NULL, or the processors acpi_pptt_processor*
+ */
+static struct acpi_pptt_processor *acpi_find_processor_node(struct acpi_table_header *table_hdr,
+ u32 acpi_cpu_id)
+{
+ struct acpi_subtable_header *entry;
+ unsigned long table_end;
+ struct acpi_pptt_processor *cpu_node;
+ u32 proc_sz;
+
+ table_end = (unsigned long)table_hdr + table_hdr->length;
+ entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr,
+ sizeof(struct acpi_table_pptt));
+ proc_sz = sizeof(struct acpi_pptt_processor *);
+
+ /* find the processor structure associated with this cpuid */
+ while ((unsigned long)entry + proc_sz < table_end) {
+ cpu_node = (struct acpi_pptt_processor *)entry;
+
+ if (entry->length == 0) {
+ pr_warn("Invalid zero length subtable\n");
+ break;
+ }
+ if (entry->type == ACPI_PPTT_TYPE_PROCESSOR &&
+ acpi_cpu_id == cpu_node->acpi_processor_id &&
+ acpi_pptt_leaf_node(table_hdr, cpu_node)) {
+ return (struct acpi_pptt_processor *)entry;
+ }
+
+ entry = ACPI_ADD_PTR(struct acpi_subtable_header, entry,
+ entry->length);
+ }
+
+ return NULL;
+}
+
+static int acpi_find_cache_levels(struct acpi_table_header *table_hdr,
+ u32 acpi_cpu_id)
+{
+ int number_of_levels = 0;
+ struct acpi_pptt_processor *cpu;
+
+ cpu = acpi_find_processor_node(table_hdr, acpi_cpu_id);
+ if (cpu)
+ number_of_levels = acpi_count_levels(table_hdr, cpu);
+
+ return number_of_levels;
+}
+
+static u8 acpi_cache_type(enum cache_type type)
+{
+ switch (type) {
+ case CACHE_TYPE_DATA:
+ pr_debug("Looking for data cache\n");
+ return ACPI_PPTT_CACHE_TYPE_DATA;
+ case CACHE_TYPE_INST:
+ pr_debug("Looking for instruction cache\n");
+ return ACPI_PPTT_CACHE_TYPE_INSTR;
+ default:
+ case CACHE_TYPE_UNIFIED:
+ pr_debug("Looking for unified cache\n");
+ /*
+ * It is important that ACPI_PPTT_CACHE_TYPE_UNIFIED
+ * contains the bit pattern that will match both
+ * ACPI unified bit patterns because we use it later
+ * to match both cases.
+ */
+ return ACPI_PPTT_CACHE_TYPE_UNIFIED;
+ }
+}
+
+static struct acpi_pptt_cache *acpi_find_cache_node(struct acpi_table_header *table_hdr,
+ u32 acpi_cpu_id,
+ enum cache_type type,
+ unsigned int level,
+ struct acpi_pptt_processor **node)
+{
+ unsigned int total_levels = 0;
+ struct acpi_pptt_cache *found = NULL;
+ struct acpi_pptt_processor *cpu_node;
+ u8 acpi_type = acpi_cache_type(type);
+
+ pr_debug("Looking for CPU %d's level %u cache type %d\n",
+ acpi_cpu_id, level, acpi_type);
+
+ cpu_node = acpi_find_processor_node(table_hdr, acpi_cpu_id);
+
+ while (cpu_node && !found) {
+ found = acpi_find_cache_level(table_hdr, cpu_node,
+ &total_levels, level, acpi_type);
+ *node = cpu_node;
+ cpu_node = fetch_pptt_node(table_hdr, cpu_node->parent);
+ }
+
+ return found;
+}
+
+/**
+ * update_cache_properties() - Update cacheinfo for the given processor
+ * @this_leaf: Kernel cache info structure being updated
+ * @found_cache: The PPTT node describing this cache instance
+ * @cpu_node: A unique reference to describe this cache instance
+ * @revision: The revision of the PPTT table
+ *
+ * The ACPI spec implies that the fields in the cache structures are used to
+ * extend and correct the information probed from the hardware. Lets only
+ * set fields that we determine are VALID.
+ *
+ * Return: nothing. Side effect of updating the global cacheinfo
+ */
+static void update_cache_properties(struct cacheinfo *this_leaf,
+ struct acpi_pptt_cache *found_cache,
+ struct acpi_pptt_processor *cpu_node,
+ u8 revision)
+{
+ struct acpi_pptt_cache_v1* found_cache_v1;
+
+ this_leaf->fw_token = cpu_node;
+ if (found_cache->flags & ACPI_PPTT_SIZE_PROPERTY_VALID)
+ this_leaf->size = found_cache->size;
+ if (found_cache->flags & ACPI_PPTT_LINE_SIZE_VALID)
+ this_leaf->coherency_line_size = found_cache->line_size;
+ if (found_cache->flags & ACPI_PPTT_NUMBER_OF_SETS_VALID)
+ this_leaf->number_of_sets = found_cache->number_of_sets;
+ if (found_cache->flags & ACPI_PPTT_ASSOCIATIVITY_VALID)
+ this_leaf->ways_of_associativity = found_cache->associativity;
+ if (found_cache->flags & ACPI_PPTT_WRITE_POLICY_VALID) {
+ switch (found_cache->attributes & ACPI_PPTT_MASK_WRITE_POLICY) {
+ case ACPI_PPTT_CACHE_POLICY_WT:
+ this_leaf->attributes = CACHE_WRITE_THROUGH;
+ break;
+ case ACPI_PPTT_CACHE_POLICY_WB:
+ this_leaf->attributes = CACHE_WRITE_BACK;
+ break;
+ }
+ }
+ if (found_cache->flags & ACPI_PPTT_ALLOCATION_TYPE_VALID) {
+ switch (found_cache->attributes & ACPI_PPTT_MASK_ALLOCATION_TYPE) {
+ case ACPI_PPTT_CACHE_READ_ALLOCATE:
+ this_leaf->attributes |= CACHE_READ_ALLOCATE;
+ break;
+ case ACPI_PPTT_CACHE_WRITE_ALLOCATE:
+ this_leaf->attributes |= CACHE_WRITE_ALLOCATE;
+ break;
+ case ACPI_PPTT_CACHE_RW_ALLOCATE:
+ case ACPI_PPTT_CACHE_RW_ALLOCATE_ALT:
+ this_leaf->attributes |=
+ CACHE_READ_ALLOCATE | CACHE_WRITE_ALLOCATE;
+ break;
+ }
+ }
+ /*
+ * If cache type is NOCACHE, then the cache hasn't been specified
+ * via other mechanisms. Update the type if a cache type has been
+ * provided.
+ *
+ * Note, we assume such caches are unified based on conventional system
+ * design and known examples. Significant work is required elsewhere to
+ * fully support data/instruction only type caches which are only
+ * specified in PPTT.
+ */
+ if (this_leaf->type == CACHE_TYPE_NOCACHE &&
+ found_cache->flags & ACPI_PPTT_CACHE_TYPE_VALID)
+ this_leaf->type = CACHE_TYPE_UNIFIED;
+
+ if (revision >= 3 && (found_cache->flags & ACPI_PPTT_CACHE_ID_VALID)) {
+ found_cache_v1 = ACPI_ADD_PTR(struct acpi_pptt_cache_v1,
+ found_cache, sizeof(struct acpi_pptt_cache));
+ this_leaf->id = found_cache_v1->cache_id;
+ this_leaf->attributes |= CACHE_ID;
+ }
+}
+
+static void cache_setup_acpi_cpu(struct acpi_table_header *table,
+ unsigned int cpu)
+{
+ struct acpi_pptt_cache *found_cache;
+ struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
+ u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
+ struct cacheinfo *this_leaf;
+ unsigned int index = 0;
+ struct acpi_pptt_processor *cpu_node = NULL;
+
+ while (index < get_cpu_cacheinfo(cpu)->num_leaves) {
+ this_leaf = this_cpu_ci->info_list + index;
+ found_cache = acpi_find_cache_node(table, acpi_cpu_id,
+ this_leaf->type,
+ this_leaf->level,
+ &cpu_node);
+ pr_debug("found = %p %p\n", found_cache, cpu_node);
+ if (found_cache)
+ update_cache_properties(this_leaf, found_cache,
+ ACPI_TO_POINTER(ACPI_PTR_DIFF(cpu_node, table)),
+ table->revision);
+
+ index++;
+ }
+}
+
+static bool flag_identical(struct acpi_table_header *table_hdr,
+ struct acpi_pptt_processor *cpu)
+{
+ struct acpi_pptt_processor *next;
+
+ /* heterogeneous machines must use PPTT revision > 1 */
+ if (table_hdr->revision < 2)
+ return false;
+
+ /* Locate the last node in the tree with IDENTICAL set */
+ if (cpu->flags & ACPI_PPTT_ACPI_IDENTICAL) {
+ next = fetch_pptt_node(table_hdr, cpu->parent);
+ if (!(next && next->flags & ACPI_PPTT_ACPI_IDENTICAL))
+ return true;
+ }
+
+ return false;
+}
+
+/* Passing level values greater than this will result in search termination */
+#define PPTT_ABORT_PACKAGE 0xFF
+
+static struct acpi_pptt_processor *acpi_find_processor_tag(struct acpi_table_header *table_hdr,
+ struct acpi_pptt_processor *cpu,
+ int level, int flag)
+{
+ struct acpi_pptt_processor *prev_node;
+
+ while (cpu && level) {
+ /* special case the identical flag to find last identical */
+ if (flag == ACPI_PPTT_ACPI_IDENTICAL) {
+ if (flag_identical(table_hdr, cpu))
+ break;
+ } else if (cpu->flags & flag)
+ break;
+ pr_debug("level %d\n", level);
+ prev_node = fetch_pptt_node(table_hdr, cpu->parent);
+ if (prev_node == NULL)
+ break;
+ cpu = prev_node;
+ level--;
+ }
+ return cpu;
+}
+
+static void acpi_pptt_warn_missing(void)
+{
+ pr_warn_once("No PPTT table found, CPU and cache topology may be inaccurate\n");
+}
+
+/**
+ * topology_get_acpi_cpu_tag() - Find a unique topology value for a feature
+ * @table: Pointer to the head of the PPTT table
+ * @cpu: Kernel logical CPU number
+ * @level: A level that terminates the search
+ * @flag: A flag which terminates the search
+ *
+ * Get a unique value given a CPU, and a topology level, that can be
+ * matched to determine which cpus share common topological features
+ * at that level.
+ *
+ * Return: Unique value, or -ENOENT if unable to locate CPU
+ */
+static int topology_get_acpi_cpu_tag(struct acpi_table_header *table,
+ unsigned int cpu, int level, int flag)
+{
+ struct acpi_pptt_processor *cpu_node;
+ u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
+
+ cpu_node = acpi_find_processor_node(table, acpi_cpu_id);
+ if (cpu_node) {
+ cpu_node = acpi_find_processor_tag(table, cpu_node,
+ level, flag);
+ /*
+ * As per specification if the processor structure represents
+ * an actual processor, then ACPI processor ID must be valid.
+ * For processor containers ACPI_PPTT_ACPI_PROCESSOR_ID_VALID
+ * should be set if the UID is valid
+ */
+ if (level == 0 ||
+ cpu_node->flags & ACPI_PPTT_ACPI_PROCESSOR_ID_VALID)
+ return cpu_node->acpi_processor_id;
+ return ACPI_PTR_DIFF(cpu_node, table);
+ }
+ pr_warn_once("PPTT table found, but unable to locate core %d (%d)\n",
+ cpu, acpi_cpu_id);
+ return -ENOENT;
+}
+
+
+static struct acpi_table_header *acpi_get_pptt(void)
+{
+ static struct acpi_table_header *pptt;
+ static bool is_pptt_checked;
+ acpi_status status;
+
+ /*
+ * PPTT will be used at runtime on every CPU hotplug in path, so we
+ * don't need to call acpi_put_table() to release the table mapping.
+ */
+ if (!pptt && !is_pptt_checked) {
+ status = acpi_get_table(ACPI_SIG_PPTT, 0, &pptt);
+ if (ACPI_FAILURE(status))
+ acpi_pptt_warn_missing();
+
+ is_pptt_checked = true;
+ }
+
+ return pptt;
+}
+
+static int find_acpi_cpu_topology_tag(unsigned int cpu, int level, int flag)
+{
+ struct acpi_table_header *table;
+ int retval;
+
+ table = acpi_get_pptt();
+ if (!table)
+ return -ENOENT;
+
+ retval = topology_get_acpi_cpu_tag(table, cpu, level, flag);
+ pr_debug("Topology Setup ACPI CPU %d, level %d ret = %d\n",
+ cpu, level, retval);
+
+ return retval;
+}
+
+/**
+ * check_acpi_cpu_flag() - Determine if CPU node has a flag set
+ * @cpu: Kernel logical CPU number
+ * @rev: The minimum PPTT revision defining the flag
+ * @flag: The flag itself
+ *
+ * Check the node representing a CPU for a given flag.
+ *
+ * Return: -ENOENT if the PPTT doesn't exist, the CPU cannot be found or
+ * the table revision isn't new enough.
+ * 1, any passed flag set
+ * 0, flag unset
+ */
+static int check_acpi_cpu_flag(unsigned int cpu, int rev, u32 flag)
+{
+ struct acpi_table_header *table;
+ u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
+ struct acpi_pptt_processor *cpu_node = NULL;
+ int ret = -ENOENT;
+
+ table = acpi_get_pptt();
+ if (!table)
+ return -ENOENT;
+
+ if (table->revision >= rev)
+ cpu_node = acpi_find_processor_node(table, acpi_cpu_id);
+
+ if (cpu_node)
+ ret = (cpu_node->flags & flag) != 0;
+
+ return ret;
+}
+
+/**
+ * acpi_find_last_cache_level() - Determines the number of cache levels for a PE
+ * @cpu: Kernel logical CPU number
+ *
+ * Given a logical CPU number, returns the number of levels of cache represented
+ * in the PPTT. Errors caused by lack of a PPTT table, or otherwise, return 0
+ * indicating we didn't find any cache levels.
+ *
+ * Return: Cache levels visible to this core.
+ */
+int acpi_find_last_cache_level(unsigned int cpu)
+{
+ u32 acpi_cpu_id;
+ struct acpi_table_header *table;
+ int number_of_levels = 0;
+
+ table = acpi_get_pptt();
+ if (!table)
+ return -ENOENT;
+
+ pr_debug("Cache Setup find last level CPU=%d\n", cpu);
+
+ acpi_cpu_id = get_acpi_id_for_cpu(cpu);
+ number_of_levels = acpi_find_cache_levels(table, acpi_cpu_id);
+ pr_debug("Cache Setup find last level level=%d\n", number_of_levels);
+
+ return number_of_levels;
+}
+
+/**
+ * cache_setup_acpi() - Override CPU cache topology with data from the PPTT
+ * @cpu: Kernel logical CPU number
+ *
+ * Updates the global cache info provided by cpu_get_cacheinfo()
+ * when there are valid properties in the acpi_pptt_cache nodes. A
+ * successful parse may not result in any updates if none of the
+ * cache levels have any valid flags set. Further, a unique value is
+ * associated with each known CPU cache entry. This unique value
+ * can be used to determine whether caches are shared between CPUs.
+ *
+ * Return: -ENOENT on failure to find table, or 0 on success
+ */
+int cache_setup_acpi(unsigned int cpu)
+{
+ struct acpi_table_header *table;
+
+ table = acpi_get_pptt();
+ if (!table)
+ return -ENOENT;
+
+ pr_debug("Cache Setup ACPI CPU %d\n", cpu);
+
+ cache_setup_acpi_cpu(table, cpu);
+
+ return 0;
+}
+
+/**
+ * acpi_pptt_cpu_is_thread() - Determine if CPU is a thread
+ * @cpu: Kernel logical CPU number
+ *
+ * Return: 1, a thread
+ * 0, not a thread
+ * -ENOENT ,if the PPTT doesn't exist, the CPU cannot be found or
+ * the table revision isn't new enough.
+ */
+int acpi_pptt_cpu_is_thread(unsigned int cpu)
+{
+ return check_acpi_cpu_flag(cpu, 2, ACPI_PPTT_ACPI_PROCESSOR_IS_THREAD);
+}
+
+/**
+ * find_acpi_cpu_topology() - Determine a unique topology value for a given CPU
+ * @cpu: Kernel logical CPU number
+ * @level: The topological level for which we would like a unique ID
+ *
+ * Determine a topology unique ID for each thread/core/cluster/mc_grouping
+ * /socket/etc. This ID can then be used to group peers, which will have
+ * matching ids.
+ *
+ * The search terminates when either the requested level is found or
+ * we reach a root node. Levels beyond the termination point will return the
+ * same unique ID. The unique id for level 0 is the acpi processor id. All
+ * other levels beyond this use a generated value to uniquely identify
+ * a topological feature.
+ *
+ * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
+ * Otherwise returns a value which represents a unique topological feature.
+ */
+int find_acpi_cpu_topology(unsigned int cpu, int level)
+{
+ return find_acpi_cpu_topology_tag(cpu, level, 0);
+}
+
+/**
+ * find_acpi_cpu_topology_package() - Determine a unique CPU package value
+ * @cpu: Kernel logical CPU number
+ *
+ * Determine a topology unique package ID for the given CPU.
+ * This ID can then be used to group peers, which will have matching ids.
+ *
+ * The search terminates when either a level is found with the PHYSICAL_PACKAGE
+ * flag set or we reach a root node.
+ *
+ * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
+ * Otherwise returns a value which represents the package for this CPU.
+ */
+int find_acpi_cpu_topology_package(unsigned int cpu)
+{
+ return find_acpi_cpu_topology_tag(cpu, PPTT_ABORT_PACKAGE,
+ ACPI_PPTT_PHYSICAL_PACKAGE);
+}
+
+/**
+ * find_acpi_cpu_topology_cluster() - Determine a unique CPU cluster value
+ * @cpu: Kernel logical CPU number
+ *
+ * Determine a topology unique cluster ID for the given CPU/thread.
+ * This ID can then be used to group peers, which will have matching ids.
+ *
+ * The cluster, if present is the level of topology above CPUs. In a
+ * multi-thread CPU, it will be the level above the CPU, not the thread.
+ * It may not exist in single CPU systems. In simple multi-CPU systems,
+ * it may be equal to the package topology level.
+ *
+ * Return: -ENOENT if the PPTT doesn't exist, the CPU cannot be found
+ * or there is no toplogy level above the CPU..
+ * Otherwise returns a value which represents the package for this CPU.
+ */
+
+int find_acpi_cpu_topology_cluster(unsigned int cpu)
+{
+ struct acpi_table_header *table;
+ struct acpi_pptt_processor *cpu_node, *cluster_node;
+ u32 acpi_cpu_id;
+ int retval;
+ int is_thread;
+
+ table = acpi_get_pptt();
+ if (!table)
+ return -ENOENT;
+
+ acpi_cpu_id = get_acpi_id_for_cpu(cpu);
+ cpu_node = acpi_find_processor_node(table, acpi_cpu_id);
+ if (!cpu_node || !cpu_node->parent)
+ return -ENOENT;
+
+ is_thread = cpu_node->flags & ACPI_PPTT_ACPI_PROCESSOR_IS_THREAD;
+ cluster_node = fetch_pptt_node(table, cpu_node->parent);
+ if (!cluster_node)
+ return -ENOENT;
+
+ if (is_thread) {
+ if (!cluster_node->parent)
+ return -ENOENT;
+
+ cluster_node = fetch_pptt_node(table, cluster_node->parent);
+ if (!cluster_node)
+ return -ENOENT;
+ }
+ if (cluster_node->flags & ACPI_PPTT_ACPI_PROCESSOR_ID_VALID)
+ retval = cluster_node->acpi_processor_id;
+ else
+ retval = ACPI_PTR_DIFF(cluster_node, table);
+
+ return retval;
+}
+
+/**
+ * find_acpi_cpu_topology_hetero_id() - Get a core architecture tag
+ * @cpu: Kernel logical CPU number
+ *
+ * Determine a unique heterogeneous tag for the given CPU. CPUs with the same
+ * implementation should have matching tags.
+ *
+ * The returned tag can be used to group peers with identical implementation.
+ *
+ * The search terminates when a level is found with the identical implementation
+ * flag set or we reach a root node.
+ *
+ * Due to limitations in the PPTT data structure, there may be rare situations
+ * where two cores in a heterogeneous machine may be identical, but won't have
+ * the same tag.
+ *
+ * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
+ * Otherwise returns a value which represents a group of identical cores
+ * similar to this CPU.
+ */
+int find_acpi_cpu_topology_hetero_id(unsigned int cpu)
+{
+ return find_acpi_cpu_topology_tag(cpu, PPTT_ABORT_PACKAGE,
+ ACPI_PPTT_ACPI_IDENTICAL);
+}