diff options
Diffstat (limited to 'drivers/cpufreq/cppc_cpufreq.c')
-rw-r--r-- | drivers/cpufreq/cppc_cpufreq.c | 1014 |
1 files changed, 1014 insertions, 0 deletions
diff --git a/drivers/cpufreq/cppc_cpufreq.c b/drivers/cpufreq/cppc_cpufreq.c new file mode 100644 index 000000000..022e35554 --- /dev/null +++ b/drivers/cpufreq/cppc_cpufreq.c @@ -0,0 +1,1014 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * CPPC (Collaborative Processor Performance Control) driver for + * interfacing with the CPUfreq layer and governors. See + * cppc_acpi.c for CPPC specific methods. + * + * (C) Copyright 2014, 2015 Linaro Ltd. + * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org> + */ + +#define pr_fmt(fmt) "CPPC Cpufreq:" fmt + +#include <linux/arch_topology.h> +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/delay.h> +#include <linux/cpu.h> +#include <linux/cpufreq.h> +#include <linux/dmi.h> +#include <linux/irq_work.h> +#include <linux/kthread.h> +#include <linux/time.h> +#include <linux/vmalloc.h> +#include <uapi/linux/sched/types.h> + +#include <asm/unaligned.h> + +#include <acpi/cppc_acpi.h> + +/* Minimum struct length needed for the DMI processor entry we want */ +#define DMI_ENTRY_PROCESSOR_MIN_LENGTH 48 + +/* Offset in the DMI processor structure for the max frequency */ +#define DMI_PROCESSOR_MAX_SPEED 0x14 + +/* + * This list contains information parsed from per CPU ACPI _CPC and _PSD + * structures: e.g. the highest and lowest supported performance, capabilities, + * desired performance, level requested etc. Depending on the share_type, not + * all CPUs will have an entry in the list. + */ +static LIST_HEAD(cpu_data_list); + +static bool boost_supported; + +struct cppc_workaround_oem_info { + char oem_id[ACPI_OEM_ID_SIZE + 1]; + char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1]; + u32 oem_revision; +}; + +static struct cppc_workaround_oem_info wa_info[] = { + { + .oem_id = "HISI ", + .oem_table_id = "HIP07 ", + .oem_revision = 0, + }, { + .oem_id = "HISI ", + .oem_table_id = "HIP08 ", + .oem_revision = 0, + } +}; + +static struct cpufreq_driver cppc_cpufreq_driver; + +static enum { + FIE_UNSET = -1, + FIE_ENABLED, + FIE_DISABLED +} fie_disabled = FIE_UNSET; + +#ifdef CONFIG_ACPI_CPPC_CPUFREQ_FIE +module_param(fie_disabled, int, 0444); +MODULE_PARM_DESC(fie_disabled, "Disable Frequency Invariance Engine (FIE)"); + +/* Frequency invariance support */ +struct cppc_freq_invariance { + int cpu; + struct irq_work irq_work; + struct kthread_work work; + struct cppc_perf_fb_ctrs prev_perf_fb_ctrs; + struct cppc_cpudata *cpu_data; +}; + +static DEFINE_PER_CPU(struct cppc_freq_invariance, cppc_freq_inv); +static struct kthread_worker *kworker_fie; + +static unsigned int hisi_cppc_cpufreq_get_rate(unsigned int cpu); +static int cppc_perf_from_fbctrs(struct cppc_cpudata *cpu_data, + struct cppc_perf_fb_ctrs *fb_ctrs_t0, + struct cppc_perf_fb_ctrs *fb_ctrs_t1); + +/** + * cppc_scale_freq_workfn - CPPC arch_freq_scale updater for frequency invariance + * @work: The work item. + * + * The CPPC driver register itself with the topology core to provide its own + * implementation (cppc_scale_freq_tick()) of topology_scale_freq_tick() which + * gets called by the scheduler on every tick. + * + * Note that the arch specific counters have higher priority than CPPC counters, + * if available, though the CPPC driver doesn't need to have any special + * handling for that. + * + * On an invocation of cppc_scale_freq_tick(), we schedule an irq work (since we + * reach here from hard-irq context), which then schedules a normal work item + * and cppc_scale_freq_workfn() updates the per_cpu arch_freq_scale variable + * based on the counter updates since the last tick. + */ +static void cppc_scale_freq_workfn(struct kthread_work *work) +{ + struct cppc_freq_invariance *cppc_fi; + struct cppc_perf_fb_ctrs fb_ctrs = {0}; + struct cppc_cpudata *cpu_data; + unsigned long local_freq_scale; + u64 perf; + + cppc_fi = container_of(work, struct cppc_freq_invariance, work); + cpu_data = cppc_fi->cpu_data; + + if (cppc_get_perf_ctrs(cppc_fi->cpu, &fb_ctrs)) { + pr_warn("%s: failed to read perf counters\n", __func__); + return; + } + + perf = cppc_perf_from_fbctrs(cpu_data, &cppc_fi->prev_perf_fb_ctrs, + &fb_ctrs); + cppc_fi->prev_perf_fb_ctrs = fb_ctrs; + + perf <<= SCHED_CAPACITY_SHIFT; + local_freq_scale = div64_u64(perf, cpu_data->perf_caps.highest_perf); + + /* This can happen due to counter's overflow */ + if (unlikely(local_freq_scale > 1024)) + local_freq_scale = 1024; + + per_cpu(arch_freq_scale, cppc_fi->cpu) = local_freq_scale; +} + +static void cppc_irq_work(struct irq_work *irq_work) +{ + struct cppc_freq_invariance *cppc_fi; + + cppc_fi = container_of(irq_work, struct cppc_freq_invariance, irq_work); + kthread_queue_work(kworker_fie, &cppc_fi->work); +} + +static void cppc_scale_freq_tick(void) +{ + struct cppc_freq_invariance *cppc_fi = &per_cpu(cppc_freq_inv, smp_processor_id()); + + /* + * cppc_get_perf_ctrs() can potentially sleep, call that from the right + * context. + */ + irq_work_queue(&cppc_fi->irq_work); +} + +static struct scale_freq_data cppc_sftd = { + .source = SCALE_FREQ_SOURCE_CPPC, + .set_freq_scale = cppc_scale_freq_tick, +}; + +static void cppc_cpufreq_cpu_fie_init(struct cpufreq_policy *policy) +{ + struct cppc_freq_invariance *cppc_fi; + int cpu, ret; + + if (fie_disabled) + return; + + for_each_cpu(cpu, policy->cpus) { + cppc_fi = &per_cpu(cppc_freq_inv, cpu); + cppc_fi->cpu = cpu; + cppc_fi->cpu_data = policy->driver_data; + kthread_init_work(&cppc_fi->work, cppc_scale_freq_workfn); + init_irq_work(&cppc_fi->irq_work, cppc_irq_work); + + ret = cppc_get_perf_ctrs(cpu, &cppc_fi->prev_perf_fb_ctrs); + if (ret) { + pr_warn("%s: failed to read perf counters for cpu:%d: %d\n", + __func__, cpu, ret); + + /* + * Don't abort if the CPU was offline while the driver + * was getting registered. + */ + if (cpu_online(cpu)) + return; + } + } + + /* Register for freq-invariance */ + topology_set_scale_freq_source(&cppc_sftd, policy->cpus); +} + +/* + * We free all the resources on policy's removal and not on CPU removal as the + * irq-work are per-cpu and the hotplug core takes care of flushing the pending + * irq-works (hint: smpcfd_dying_cpu()) on CPU hotplug. Even if the kthread-work + * fires on another CPU after the concerned CPU is removed, it won't harm. + * + * We just need to make sure to remove them all on policy->exit(). + */ +static void cppc_cpufreq_cpu_fie_exit(struct cpufreq_policy *policy) +{ + struct cppc_freq_invariance *cppc_fi; + int cpu; + + if (fie_disabled) + return; + + /* policy->cpus will be empty here, use related_cpus instead */ + topology_clear_scale_freq_source(SCALE_FREQ_SOURCE_CPPC, policy->related_cpus); + + for_each_cpu(cpu, policy->related_cpus) { + cppc_fi = &per_cpu(cppc_freq_inv, cpu); + irq_work_sync(&cppc_fi->irq_work); + kthread_cancel_work_sync(&cppc_fi->work); + } +} + +static void __init cppc_freq_invariance_init(void) +{ + struct sched_attr attr = { + .size = sizeof(struct sched_attr), + .sched_policy = SCHED_DEADLINE, + .sched_nice = 0, + .sched_priority = 0, + /* + * Fake (unused) bandwidth; workaround to "fix" + * priority inheritance. + */ + .sched_runtime = 1000000, + .sched_deadline = 10000000, + .sched_period = 10000000, + }; + int ret; + + if (fie_disabled != FIE_ENABLED && fie_disabled != FIE_DISABLED) { + fie_disabled = FIE_ENABLED; + if (cppc_perf_ctrs_in_pcc()) { + pr_info("FIE not enabled on systems with registers in PCC\n"); + fie_disabled = FIE_DISABLED; + } + } + + if (fie_disabled) + return; + + kworker_fie = kthread_create_worker(0, "cppc_fie"); + if (IS_ERR(kworker_fie)) + return; + + ret = sched_setattr_nocheck(kworker_fie->task, &attr); + if (ret) { + pr_warn("%s: failed to set SCHED_DEADLINE: %d\n", __func__, + ret); + kthread_destroy_worker(kworker_fie); + return; + } +} + +static void cppc_freq_invariance_exit(void) +{ + if (fie_disabled) + return; + + kthread_destroy_worker(kworker_fie); + kworker_fie = NULL; +} + +#else +static inline void cppc_cpufreq_cpu_fie_init(struct cpufreq_policy *policy) +{ +} + +static inline void cppc_cpufreq_cpu_fie_exit(struct cpufreq_policy *policy) +{ +} + +static inline void cppc_freq_invariance_init(void) +{ +} + +static inline void cppc_freq_invariance_exit(void) +{ +} +#endif /* CONFIG_ACPI_CPPC_CPUFREQ_FIE */ + +/* Callback function used to retrieve the max frequency from DMI */ +static void cppc_find_dmi_mhz(const struct dmi_header *dm, void *private) +{ + const u8 *dmi_data = (const u8 *)dm; + u16 *mhz = (u16 *)private; + + if (dm->type == DMI_ENTRY_PROCESSOR && + dm->length >= DMI_ENTRY_PROCESSOR_MIN_LENGTH) { + u16 val = (u16)get_unaligned((const u16 *) + (dmi_data + DMI_PROCESSOR_MAX_SPEED)); + *mhz = val > *mhz ? val : *mhz; + } +} + +/* Look up the max frequency in DMI */ +static u64 cppc_get_dmi_max_khz(void) +{ + u16 mhz = 0; + + dmi_walk(cppc_find_dmi_mhz, &mhz); + + /* + * Real stupid fallback value, just in case there is no + * actual value set. + */ + mhz = mhz ? mhz : 1; + + return (1000 * mhz); +} + +/* + * If CPPC lowest_freq and nominal_freq registers are exposed then we can + * use them to convert perf to freq and vice versa. The conversion is + * extrapolated as an affine function passing by the 2 points: + * - (Low perf, Low freq) + * - (Nominal perf, Nominal perf) + */ +static unsigned int cppc_cpufreq_perf_to_khz(struct cppc_cpudata *cpu_data, + unsigned int perf) +{ + struct cppc_perf_caps *caps = &cpu_data->perf_caps; + s64 retval, offset = 0; + static u64 max_khz; + u64 mul, div; + + if (caps->lowest_freq && caps->nominal_freq) { + mul = caps->nominal_freq - caps->lowest_freq; + div = caps->nominal_perf - caps->lowest_perf; + offset = caps->nominal_freq - div64_u64(caps->nominal_perf * mul, div); + } else { + if (!max_khz) + max_khz = cppc_get_dmi_max_khz(); + mul = max_khz; + div = caps->highest_perf; + } + + retval = offset + div64_u64(perf * mul, div); + if (retval >= 0) + return retval; + return 0; +} + +static unsigned int cppc_cpufreq_khz_to_perf(struct cppc_cpudata *cpu_data, + unsigned int freq) +{ + struct cppc_perf_caps *caps = &cpu_data->perf_caps; + s64 retval, offset = 0; + static u64 max_khz; + u64 mul, div; + + if (caps->lowest_freq && caps->nominal_freq) { + mul = caps->nominal_perf - caps->lowest_perf; + div = caps->nominal_freq - caps->lowest_freq; + offset = caps->nominal_perf - div64_u64(caps->nominal_freq * mul, div); + } else { + if (!max_khz) + max_khz = cppc_get_dmi_max_khz(); + mul = caps->highest_perf; + div = max_khz; + } + + retval = offset + div64_u64(freq * mul, div); + if (retval >= 0) + return retval; + return 0; +} + +static int cppc_cpufreq_set_target(struct cpufreq_policy *policy, + unsigned int target_freq, + unsigned int relation) + +{ + struct cppc_cpudata *cpu_data = policy->driver_data; + unsigned int cpu = policy->cpu; + struct cpufreq_freqs freqs; + u32 desired_perf; + int ret = 0; + + desired_perf = cppc_cpufreq_khz_to_perf(cpu_data, target_freq); + /* Return if it is exactly the same perf */ + if (desired_perf == cpu_data->perf_ctrls.desired_perf) + return ret; + + cpu_data->perf_ctrls.desired_perf = desired_perf; + freqs.old = policy->cur; + freqs.new = target_freq; + + cpufreq_freq_transition_begin(policy, &freqs); + ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls); + cpufreq_freq_transition_end(policy, &freqs, ret != 0); + + if (ret) + pr_debug("Failed to set target on CPU:%d. ret:%d\n", + cpu, ret); + + return ret; +} + +static unsigned int cppc_cpufreq_fast_switch(struct cpufreq_policy *policy, + unsigned int target_freq) +{ + struct cppc_cpudata *cpu_data = policy->driver_data; + unsigned int cpu = policy->cpu; + u32 desired_perf; + int ret; + + desired_perf = cppc_cpufreq_khz_to_perf(cpu_data, target_freq); + cpu_data->perf_ctrls.desired_perf = desired_perf; + ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls); + + if (ret) { + pr_debug("Failed to set target on CPU:%d. ret:%d\n", + cpu, ret); + return 0; + } + + return target_freq; +} + +static int cppc_verify_policy(struct cpufreq_policy_data *policy) +{ + cpufreq_verify_within_cpu_limits(policy); + return 0; +} + +/* + * The PCC subspace describes the rate at which platform can accept commands + * on the shared PCC channel (including READs which do not count towards freq + * transition requests), so ideally we need to use the PCC values as a fallback + * if we don't have a platform specific transition_delay_us + */ +#ifdef CONFIG_ARM64 +#include <asm/cputype.h> + +static unsigned int cppc_cpufreq_get_transition_delay_us(unsigned int cpu) +{ + unsigned long implementor = read_cpuid_implementor(); + unsigned long part_num = read_cpuid_part_number(); + + switch (implementor) { + case ARM_CPU_IMP_QCOM: + switch (part_num) { + case QCOM_CPU_PART_FALKOR_V1: + case QCOM_CPU_PART_FALKOR: + return 10000; + } + } + return cppc_get_transition_latency(cpu) / NSEC_PER_USEC; +} +#else +static unsigned int cppc_cpufreq_get_transition_delay_us(unsigned int cpu) +{ + return cppc_get_transition_latency(cpu) / NSEC_PER_USEC; +} +#endif + +#if defined(CONFIG_ARM64) && defined(CONFIG_ENERGY_MODEL) + +static DEFINE_PER_CPU(unsigned int, efficiency_class); +static void cppc_cpufreq_register_em(struct cpufreq_policy *policy); + +/* Create an artificial performance state every CPPC_EM_CAP_STEP capacity unit. */ +#define CPPC_EM_CAP_STEP (20) +/* Increase the cost value by CPPC_EM_COST_STEP every performance state. */ +#define CPPC_EM_COST_STEP (1) +/* Add a cost gap correspnding to the energy of 4 CPUs. */ +#define CPPC_EM_COST_GAP (4 * SCHED_CAPACITY_SCALE * CPPC_EM_COST_STEP \ + / CPPC_EM_CAP_STEP) + +static unsigned int get_perf_level_count(struct cpufreq_policy *policy) +{ + struct cppc_perf_caps *perf_caps; + unsigned int min_cap, max_cap; + struct cppc_cpudata *cpu_data; + int cpu = policy->cpu; + + cpu_data = policy->driver_data; + perf_caps = &cpu_data->perf_caps; + max_cap = arch_scale_cpu_capacity(cpu); + min_cap = div_u64((u64)max_cap * perf_caps->lowest_perf, + perf_caps->highest_perf); + if ((min_cap == 0) || (max_cap < min_cap)) + return 0; + return 1 + max_cap / CPPC_EM_CAP_STEP - min_cap / CPPC_EM_CAP_STEP; +} + +/* + * The cost is defined as: + * cost = power * max_frequency / frequency + */ +static inline unsigned long compute_cost(int cpu, int step) +{ + return CPPC_EM_COST_GAP * per_cpu(efficiency_class, cpu) + + step * CPPC_EM_COST_STEP; +} + +static int cppc_get_cpu_power(struct device *cpu_dev, + unsigned long *power, unsigned long *KHz) +{ + unsigned long perf_step, perf_prev, perf, perf_check; + unsigned int min_step, max_step, step, step_check; + unsigned long prev_freq = *KHz; + unsigned int min_cap, max_cap; + struct cpufreq_policy *policy; + + struct cppc_perf_caps *perf_caps; + struct cppc_cpudata *cpu_data; + + policy = cpufreq_cpu_get_raw(cpu_dev->id); + cpu_data = policy->driver_data; + perf_caps = &cpu_data->perf_caps; + max_cap = arch_scale_cpu_capacity(cpu_dev->id); + min_cap = div_u64((u64)max_cap * perf_caps->lowest_perf, + perf_caps->highest_perf); + perf_step = div_u64((u64)CPPC_EM_CAP_STEP * perf_caps->highest_perf, + max_cap); + min_step = min_cap / CPPC_EM_CAP_STEP; + max_step = max_cap / CPPC_EM_CAP_STEP; + + perf_prev = cppc_cpufreq_khz_to_perf(cpu_data, *KHz); + step = perf_prev / perf_step; + + if (step > max_step) + return -EINVAL; + + if (min_step == max_step) { + step = max_step; + perf = perf_caps->highest_perf; + } else if (step < min_step) { + step = min_step; + perf = perf_caps->lowest_perf; + } else { + step++; + if (step == max_step) + perf = perf_caps->highest_perf; + else + perf = step * perf_step; + } + + *KHz = cppc_cpufreq_perf_to_khz(cpu_data, perf); + perf_check = cppc_cpufreq_khz_to_perf(cpu_data, *KHz); + step_check = perf_check / perf_step; + + /* + * To avoid bad integer approximation, check that new frequency value + * increased and that the new frequency will be converted to the + * desired step value. + */ + while ((*KHz == prev_freq) || (step_check != step)) { + perf++; + *KHz = cppc_cpufreq_perf_to_khz(cpu_data, perf); + perf_check = cppc_cpufreq_khz_to_perf(cpu_data, *KHz); + step_check = perf_check / perf_step; + } + + /* + * With an artificial EM, only the cost value is used. Still the power + * is populated such as 0 < power < EM_MAX_POWER. This allows to add + * more sense to the artificial performance states. + */ + *power = compute_cost(cpu_dev->id, step); + + return 0; +} + +static int cppc_get_cpu_cost(struct device *cpu_dev, unsigned long KHz, + unsigned long *cost) +{ + unsigned long perf_step, perf_prev; + struct cppc_perf_caps *perf_caps; + struct cpufreq_policy *policy; + struct cppc_cpudata *cpu_data; + unsigned int max_cap; + int step; + + policy = cpufreq_cpu_get_raw(cpu_dev->id); + cpu_data = policy->driver_data; + perf_caps = &cpu_data->perf_caps; + max_cap = arch_scale_cpu_capacity(cpu_dev->id); + + perf_prev = cppc_cpufreq_khz_to_perf(cpu_data, KHz); + perf_step = CPPC_EM_CAP_STEP * perf_caps->highest_perf / max_cap; + step = perf_prev / perf_step; + + *cost = compute_cost(cpu_dev->id, step); + + return 0; +} + +static int populate_efficiency_class(void) +{ + struct acpi_madt_generic_interrupt *gicc; + DECLARE_BITMAP(used_classes, 256) = {}; + int class, cpu, index; + + for_each_possible_cpu(cpu) { + gicc = acpi_cpu_get_madt_gicc(cpu); + class = gicc->efficiency_class; + bitmap_set(used_classes, class, 1); + } + + if (bitmap_weight(used_classes, 256) <= 1) { + pr_debug("Efficiency classes are all equal (=%d). " + "No EM registered", class); + return -EINVAL; + } + + /* + * Squeeze efficiency class values on [0:#efficiency_class-1]. + * Values are per spec in [0:255]. + */ + index = 0; + for_each_set_bit(class, used_classes, 256) { + for_each_possible_cpu(cpu) { + gicc = acpi_cpu_get_madt_gicc(cpu); + if (gicc->efficiency_class == class) + per_cpu(efficiency_class, cpu) = index; + } + index++; + } + cppc_cpufreq_driver.register_em = cppc_cpufreq_register_em; + + return 0; +} + +static void cppc_cpufreq_register_em(struct cpufreq_policy *policy) +{ + struct cppc_cpudata *cpu_data; + struct em_data_callback em_cb = + EM_ADV_DATA_CB(cppc_get_cpu_power, cppc_get_cpu_cost); + + cpu_data = policy->driver_data; + em_dev_register_perf_domain(get_cpu_device(policy->cpu), + get_perf_level_count(policy), &em_cb, + cpu_data->shared_cpu_map, 0); +} + +#else +static int populate_efficiency_class(void) +{ + return 0; +} +#endif + +static struct cppc_cpudata *cppc_cpufreq_get_cpu_data(unsigned int cpu) +{ + struct cppc_cpudata *cpu_data; + int ret; + + cpu_data = kzalloc(sizeof(struct cppc_cpudata), GFP_KERNEL); + if (!cpu_data) + goto out; + + if (!zalloc_cpumask_var(&cpu_data->shared_cpu_map, GFP_KERNEL)) + goto free_cpu; + + ret = acpi_get_psd_map(cpu, cpu_data); + if (ret) { + pr_debug("Err parsing CPU%d PSD data: ret:%d\n", cpu, ret); + goto free_mask; + } + + ret = cppc_get_perf_caps(cpu, &cpu_data->perf_caps); + if (ret) { + pr_debug("Err reading CPU%d perf caps: ret:%d\n", cpu, ret); + goto free_mask; + } + + /* Convert the lowest and nominal freq from MHz to KHz */ + cpu_data->perf_caps.lowest_freq *= 1000; + cpu_data->perf_caps.nominal_freq *= 1000; + + list_add(&cpu_data->node, &cpu_data_list); + + return cpu_data; + +free_mask: + free_cpumask_var(cpu_data->shared_cpu_map); +free_cpu: + kfree(cpu_data); +out: + return NULL; +} + +static void cppc_cpufreq_put_cpu_data(struct cpufreq_policy *policy) +{ + struct cppc_cpudata *cpu_data = policy->driver_data; + + list_del(&cpu_data->node); + free_cpumask_var(cpu_data->shared_cpu_map); + kfree(cpu_data); + policy->driver_data = NULL; +} + +static int cppc_cpufreq_cpu_init(struct cpufreq_policy *policy) +{ + unsigned int cpu = policy->cpu; + struct cppc_cpudata *cpu_data; + struct cppc_perf_caps *caps; + int ret; + + cpu_data = cppc_cpufreq_get_cpu_data(cpu); + if (!cpu_data) { + pr_err("Error in acquiring _CPC/_PSD data for CPU%d.\n", cpu); + return -ENODEV; + } + caps = &cpu_data->perf_caps; + policy->driver_data = cpu_data; + + /* + * Set min to lowest nonlinear perf to avoid any efficiency penalty (see + * Section 8.4.7.1.1.5 of ACPI 6.1 spec) + */ + policy->min = cppc_cpufreq_perf_to_khz(cpu_data, + caps->lowest_nonlinear_perf); + policy->max = cppc_cpufreq_perf_to_khz(cpu_data, + caps->nominal_perf); + + /* + * Set cpuinfo.min_freq to Lowest to make the full range of performance + * available if userspace wants to use any perf between lowest & lowest + * nonlinear perf + */ + policy->cpuinfo.min_freq = cppc_cpufreq_perf_to_khz(cpu_data, + caps->lowest_perf); + policy->cpuinfo.max_freq = cppc_cpufreq_perf_to_khz(cpu_data, + caps->nominal_perf); + + policy->transition_delay_us = cppc_cpufreq_get_transition_delay_us(cpu); + policy->shared_type = cpu_data->shared_type; + + switch (policy->shared_type) { + case CPUFREQ_SHARED_TYPE_HW: + case CPUFREQ_SHARED_TYPE_NONE: + /* Nothing to be done - we'll have a policy for each CPU */ + break; + case CPUFREQ_SHARED_TYPE_ANY: + /* + * All CPUs in the domain will share a policy and all cpufreq + * operations will use a single cppc_cpudata structure stored + * in policy->driver_data. + */ + cpumask_copy(policy->cpus, cpu_data->shared_cpu_map); + break; + default: + pr_debug("Unsupported CPU co-ord type: %d\n", + policy->shared_type); + ret = -EFAULT; + goto out; + } + + policy->fast_switch_possible = cppc_allow_fast_switch(); + policy->dvfs_possible_from_any_cpu = true; + + /* + * If 'highest_perf' is greater than 'nominal_perf', we assume CPU Boost + * is supported. + */ + if (caps->highest_perf > caps->nominal_perf) + boost_supported = true; + + /* Set policy->cur to max now. The governors will adjust later. */ + policy->cur = cppc_cpufreq_perf_to_khz(cpu_data, caps->highest_perf); + cpu_data->perf_ctrls.desired_perf = caps->highest_perf; + + ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls); + if (ret) { + pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n", + caps->highest_perf, cpu, ret); + goto out; + } + + cppc_cpufreq_cpu_fie_init(policy); + return 0; + +out: + cppc_cpufreq_put_cpu_data(policy); + return ret; +} + +static int cppc_cpufreq_cpu_exit(struct cpufreq_policy *policy) +{ + struct cppc_cpudata *cpu_data = policy->driver_data; + struct cppc_perf_caps *caps = &cpu_data->perf_caps; + unsigned int cpu = policy->cpu; + int ret; + + cppc_cpufreq_cpu_fie_exit(policy); + + cpu_data->perf_ctrls.desired_perf = caps->lowest_perf; + + ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls); + if (ret) + pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n", + caps->lowest_perf, cpu, ret); + + cppc_cpufreq_put_cpu_data(policy); + return 0; +} + +static inline u64 get_delta(u64 t1, u64 t0) +{ + if (t1 > t0 || t0 > ~(u32)0) + return t1 - t0; + + return (u32)t1 - (u32)t0; +} + +static int cppc_perf_from_fbctrs(struct cppc_cpudata *cpu_data, + struct cppc_perf_fb_ctrs *fb_ctrs_t0, + struct cppc_perf_fb_ctrs *fb_ctrs_t1) +{ + u64 delta_reference, delta_delivered; + u64 reference_perf; + + reference_perf = fb_ctrs_t0->reference_perf; + + delta_reference = get_delta(fb_ctrs_t1->reference, + fb_ctrs_t0->reference); + delta_delivered = get_delta(fb_ctrs_t1->delivered, + fb_ctrs_t0->delivered); + + /* Check to avoid divide-by zero and invalid delivered_perf */ + if (!delta_reference || !delta_delivered) + return cpu_data->perf_ctrls.desired_perf; + + return (reference_perf * delta_delivered) / delta_reference; +} + +static unsigned int cppc_cpufreq_get_rate(unsigned int cpu) +{ + struct cppc_perf_fb_ctrs fb_ctrs_t0 = {0}, fb_ctrs_t1 = {0}; + struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); + struct cppc_cpudata *cpu_data = policy->driver_data; + u64 delivered_perf; + int ret; + + cpufreq_cpu_put(policy); + + ret = cppc_get_perf_ctrs(cpu, &fb_ctrs_t0); + if (ret) + return ret; + + udelay(2); /* 2usec delay between sampling */ + + ret = cppc_get_perf_ctrs(cpu, &fb_ctrs_t1); + if (ret) + return ret; + + delivered_perf = cppc_perf_from_fbctrs(cpu_data, &fb_ctrs_t0, + &fb_ctrs_t1); + + return cppc_cpufreq_perf_to_khz(cpu_data, delivered_perf); +} + +static int cppc_cpufreq_set_boost(struct cpufreq_policy *policy, int state) +{ + struct cppc_cpudata *cpu_data = policy->driver_data; + struct cppc_perf_caps *caps = &cpu_data->perf_caps; + int ret; + + if (!boost_supported) { + pr_err("BOOST not supported by CPU or firmware\n"); + return -EINVAL; + } + + if (state) + policy->max = cppc_cpufreq_perf_to_khz(cpu_data, + caps->highest_perf); + else + policy->max = cppc_cpufreq_perf_to_khz(cpu_data, + caps->nominal_perf); + policy->cpuinfo.max_freq = policy->max; + + ret = freq_qos_update_request(policy->max_freq_req, policy->max); + if (ret < 0) + return ret; + + return 0; +} + +static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf) +{ + struct cppc_cpudata *cpu_data = policy->driver_data; + + return cpufreq_show_cpus(cpu_data->shared_cpu_map, buf); +} +cpufreq_freq_attr_ro(freqdomain_cpus); + +static struct freq_attr *cppc_cpufreq_attr[] = { + &freqdomain_cpus, + NULL, +}; + +static struct cpufreq_driver cppc_cpufreq_driver = { + .flags = CPUFREQ_CONST_LOOPS, + .verify = cppc_verify_policy, + .target = cppc_cpufreq_set_target, + .get = cppc_cpufreq_get_rate, + .fast_switch = cppc_cpufreq_fast_switch, + .init = cppc_cpufreq_cpu_init, + .exit = cppc_cpufreq_cpu_exit, + .set_boost = cppc_cpufreq_set_boost, + .attr = cppc_cpufreq_attr, + .name = "cppc_cpufreq", +}; + +/* + * HISI platform does not support delivered performance counter and + * reference performance counter. It can calculate the performance using the + * platform specific mechanism. We reuse the desired performance register to + * store the real performance calculated by the platform. + */ +static unsigned int hisi_cppc_cpufreq_get_rate(unsigned int cpu) +{ + struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); + struct cppc_cpudata *cpu_data = policy->driver_data; + u64 desired_perf; + int ret; + + cpufreq_cpu_put(policy); + + ret = cppc_get_desired_perf(cpu, &desired_perf); + if (ret < 0) + return -EIO; + + return cppc_cpufreq_perf_to_khz(cpu_data, desired_perf); +} + +static void cppc_check_hisi_workaround(void) +{ + struct acpi_table_header *tbl; + acpi_status status = AE_OK; + int i; + + status = acpi_get_table(ACPI_SIG_PCCT, 0, &tbl); + if (ACPI_FAILURE(status) || !tbl) + return; + + for (i = 0; i < ARRAY_SIZE(wa_info); i++) { + if (!memcmp(wa_info[i].oem_id, tbl->oem_id, ACPI_OEM_ID_SIZE) && + !memcmp(wa_info[i].oem_table_id, tbl->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) && + wa_info[i].oem_revision == tbl->oem_revision) { + /* Overwrite the get() callback */ + cppc_cpufreq_driver.get = hisi_cppc_cpufreq_get_rate; + fie_disabled = FIE_DISABLED; + break; + } + } + + acpi_put_table(tbl); +} + +static int __init cppc_cpufreq_init(void) +{ + int ret; + + if (!acpi_cpc_valid()) + return -ENODEV; + + cppc_check_hisi_workaround(); + cppc_freq_invariance_init(); + populate_efficiency_class(); + + ret = cpufreq_register_driver(&cppc_cpufreq_driver); + if (ret) + cppc_freq_invariance_exit(); + + return ret; +} + +static inline void free_cpu_data(void) +{ + struct cppc_cpudata *iter, *tmp; + + list_for_each_entry_safe(iter, tmp, &cpu_data_list, node) { + free_cpumask_var(iter->shared_cpu_map); + list_del(&iter->node); + kfree(iter); + } + +} + +static void __exit cppc_cpufreq_exit(void) +{ + cpufreq_unregister_driver(&cppc_cpufreq_driver); + cppc_freq_invariance_exit(); + + free_cpu_data(); +} + +module_exit(cppc_cpufreq_exit); +MODULE_AUTHOR("Ashwin Chaugule"); +MODULE_DESCRIPTION("CPUFreq driver based on the ACPI CPPC v5.0+ spec"); +MODULE_LICENSE("GPL"); + +late_initcall(cppc_cpufreq_init); + +static const struct acpi_device_id cppc_acpi_ids[] __used = { + {ACPI_PROCESSOR_DEVICE_HID, }, + {} +}; + +MODULE_DEVICE_TABLE(acpi, cppc_acpi_ids); |