diff options
Diffstat (limited to 'drivers/pci/endpoint/functions/pci-epf-test.c')
-rw-r--r-- | drivers/pci/endpoint/functions/pci-epf-test.c | 1078 |
1 files changed, 1078 insertions, 0 deletions
diff --git a/drivers/pci/endpoint/functions/pci-epf-test.c b/drivers/pci/endpoint/functions/pci-epf-test.c new file mode 100644 index 000000000..2e8a4de2a --- /dev/null +++ b/drivers/pci/endpoint/functions/pci-epf-test.c @@ -0,0 +1,1078 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Test driver to test endpoint functionality + * + * Copyright (C) 2017 Texas Instruments + * Author: Kishon Vijay Abraham I <kishon@ti.com> + */ + +#include <linux/crc32.h> +#include <linux/delay.h> +#include <linux/dmaengine.h> +#include <linux/io.h> +#include <linux/module.h> +#include <linux/slab.h> +#include <linux/pci_ids.h> +#include <linux/random.h> + +#include <linux/pci-epc.h> +#include <linux/pci-epf.h> +#include <linux/pci_regs.h> + +#define IRQ_TYPE_LEGACY 0 +#define IRQ_TYPE_MSI 1 +#define IRQ_TYPE_MSIX 2 + +#define COMMAND_RAISE_LEGACY_IRQ BIT(0) +#define COMMAND_RAISE_MSI_IRQ BIT(1) +#define COMMAND_RAISE_MSIX_IRQ BIT(2) +#define COMMAND_READ BIT(3) +#define COMMAND_WRITE BIT(4) +#define COMMAND_COPY BIT(5) + +#define STATUS_READ_SUCCESS BIT(0) +#define STATUS_READ_FAIL BIT(1) +#define STATUS_WRITE_SUCCESS BIT(2) +#define STATUS_WRITE_FAIL BIT(3) +#define STATUS_COPY_SUCCESS BIT(4) +#define STATUS_COPY_FAIL BIT(5) +#define STATUS_IRQ_RAISED BIT(6) +#define STATUS_SRC_ADDR_INVALID BIT(7) +#define STATUS_DST_ADDR_INVALID BIT(8) + +#define FLAG_USE_DMA BIT(0) + +#define TIMER_RESOLUTION 1 + +static struct workqueue_struct *kpcitest_workqueue; + +struct pci_epf_test { + void *reg[PCI_STD_NUM_BARS]; + struct pci_epf *epf; + enum pci_barno test_reg_bar; + size_t msix_table_offset; + struct delayed_work cmd_handler; + struct dma_chan *dma_chan_tx; + struct dma_chan *dma_chan_rx; + struct dma_chan *transfer_chan; + dma_cookie_t transfer_cookie; + enum dma_status transfer_status; + struct completion transfer_complete; + bool dma_supported; + bool dma_private; + const struct pci_epc_features *epc_features; +}; + +struct pci_epf_test_reg { + u32 magic; + u32 command; + u32 status; + u64 src_addr; + u64 dst_addr; + u32 size; + u32 checksum; + u32 irq_type; + u32 irq_number; + u32 flags; +} __packed; + +static struct pci_epf_header test_header = { + .vendorid = PCI_ANY_ID, + .deviceid = PCI_ANY_ID, + .baseclass_code = PCI_CLASS_OTHERS, + .interrupt_pin = PCI_INTERRUPT_INTA, +}; + +static size_t bar_size[] = { 512, 512, 1024, 16384, 131072, 1048576 }; + +static void pci_epf_test_dma_callback(void *param) +{ + struct pci_epf_test *epf_test = param; + struct dma_tx_state state; + + epf_test->transfer_status = + dmaengine_tx_status(epf_test->transfer_chan, + epf_test->transfer_cookie, &state); + if (epf_test->transfer_status == DMA_COMPLETE || + epf_test->transfer_status == DMA_ERROR) + complete(&epf_test->transfer_complete); +} + +/** + * pci_epf_test_data_transfer() - Function that uses dmaengine API to transfer + * data between PCIe EP and remote PCIe RC + * @epf_test: the EPF test device that performs the data transfer operation + * @dma_dst: The destination address of the data transfer. It can be a physical + * address given by pci_epc_mem_alloc_addr or DMA mapping APIs. + * @dma_src: The source address of the data transfer. It can be a physical + * address given by pci_epc_mem_alloc_addr or DMA mapping APIs. + * @len: The size of the data transfer + * @dma_remote: remote RC physical address + * @dir: DMA transfer direction + * + * Function that uses dmaengine API to transfer data between PCIe EP and remote + * PCIe RC. The source and destination address can be a physical address given + * by pci_epc_mem_alloc_addr or the one obtained using DMA mapping APIs. + * + * The function returns '0' on success and negative value on failure. + */ +static int pci_epf_test_data_transfer(struct pci_epf_test *epf_test, + dma_addr_t dma_dst, dma_addr_t dma_src, + size_t len, dma_addr_t dma_remote, + enum dma_transfer_direction dir) +{ + struct dma_chan *chan = (dir == DMA_MEM_TO_DEV) ? + epf_test->dma_chan_tx : epf_test->dma_chan_rx; + dma_addr_t dma_local = (dir == DMA_MEM_TO_DEV) ? dma_src : dma_dst; + enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT; + struct pci_epf *epf = epf_test->epf; + struct dma_async_tx_descriptor *tx; + struct dma_slave_config sconf = {}; + struct device *dev = &epf->dev; + int ret; + + if (IS_ERR_OR_NULL(chan)) { + dev_err(dev, "Invalid DMA memcpy channel\n"); + return -EINVAL; + } + + if (epf_test->dma_private) { + sconf.direction = dir; + if (dir == DMA_MEM_TO_DEV) + sconf.dst_addr = dma_remote; + else + sconf.src_addr = dma_remote; + + if (dmaengine_slave_config(chan, &sconf)) { + dev_err(dev, "DMA slave config fail\n"); + return -EIO; + } + tx = dmaengine_prep_slave_single(chan, dma_local, len, dir, + flags); + } else { + tx = dmaengine_prep_dma_memcpy(chan, dma_dst, dma_src, len, + flags); + } + + if (!tx) { + dev_err(dev, "Failed to prepare DMA memcpy\n"); + return -EIO; + } + + reinit_completion(&epf_test->transfer_complete); + epf_test->transfer_chan = chan; + tx->callback = pci_epf_test_dma_callback; + tx->callback_param = epf_test; + epf_test->transfer_cookie = tx->tx_submit(tx); + + ret = dma_submit_error(epf_test->transfer_cookie); + if (ret) { + dev_err(dev, "Failed to do DMA tx_submit %d\n", ret); + goto terminate; + } + + dma_async_issue_pending(chan); + ret = wait_for_completion_interruptible(&epf_test->transfer_complete); + if (ret < 0) { + dev_err(dev, "DMA wait_for_completion interrupted\n"); + goto terminate; + } + + if (epf_test->transfer_status == DMA_ERROR) { + dev_err(dev, "DMA transfer failed\n"); + ret = -EIO; + } + +terminate: + dmaengine_terminate_sync(chan); + + return ret; +} + +struct epf_dma_filter { + struct device *dev; + u32 dma_mask; +}; + +static bool epf_dma_filter_fn(struct dma_chan *chan, void *node) +{ + struct epf_dma_filter *filter = node; + struct dma_slave_caps caps; + + memset(&caps, 0, sizeof(caps)); + dma_get_slave_caps(chan, &caps); + + return chan->device->dev == filter->dev + && (filter->dma_mask & caps.directions); +} + +/** + * pci_epf_test_init_dma_chan() - Function to initialize EPF test DMA channel + * @epf_test: the EPF test device that performs data transfer operation + * + * Function to initialize EPF test DMA channel. + */ +static int pci_epf_test_init_dma_chan(struct pci_epf_test *epf_test) +{ + struct pci_epf *epf = epf_test->epf; + struct device *dev = &epf->dev; + struct epf_dma_filter filter; + struct dma_chan *dma_chan; + dma_cap_mask_t mask; + int ret; + + filter.dev = epf->epc->dev.parent; + filter.dma_mask = BIT(DMA_DEV_TO_MEM); + + dma_cap_zero(mask); + dma_cap_set(DMA_SLAVE, mask); + dma_chan = dma_request_channel(mask, epf_dma_filter_fn, &filter); + if (!dma_chan) { + dev_info(dev, "Failed to get private DMA rx channel. Falling back to generic one\n"); + goto fail_back_tx; + } + + epf_test->dma_chan_rx = dma_chan; + + filter.dma_mask = BIT(DMA_MEM_TO_DEV); + dma_chan = dma_request_channel(mask, epf_dma_filter_fn, &filter); + + if (!dma_chan) { + dev_info(dev, "Failed to get private DMA tx channel. Falling back to generic one\n"); + goto fail_back_rx; + } + + epf_test->dma_chan_tx = dma_chan; + epf_test->dma_private = true; + + init_completion(&epf_test->transfer_complete); + + return 0; + +fail_back_rx: + dma_release_channel(epf_test->dma_chan_rx); + epf_test->dma_chan_tx = NULL; + +fail_back_tx: + dma_cap_zero(mask); + dma_cap_set(DMA_MEMCPY, mask); + + dma_chan = dma_request_chan_by_mask(&mask); + if (IS_ERR(dma_chan)) { + ret = PTR_ERR(dma_chan); + if (ret != -EPROBE_DEFER) + dev_err(dev, "Failed to get DMA channel\n"); + return ret; + } + init_completion(&epf_test->transfer_complete); + + epf_test->dma_chan_tx = epf_test->dma_chan_rx = dma_chan; + + return 0; +} + +/** + * pci_epf_test_clean_dma_chan() - Function to cleanup EPF test DMA channel + * @epf_test: the EPF test device that performs data transfer operation + * + * Helper to cleanup EPF test DMA channel. + */ +static void pci_epf_test_clean_dma_chan(struct pci_epf_test *epf_test) +{ + if (!epf_test->dma_supported) + return; + + dma_release_channel(epf_test->dma_chan_tx); + if (epf_test->dma_chan_tx == epf_test->dma_chan_rx) { + epf_test->dma_chan_tx = NULL; + epf_test->dma_chan_rx = NULL; + return; + } + + dma_release_channel(epf_test->dma_chan_rx); + epf_test->dma_chan_rx = NULL; + + return; +} + +static void pci_epf_test_print_rate(const char *ops, u64 size, + struct timespec64 *start, + struct timespec64 *end, bool dma) +{ + struct timespec64 ts; + u64 rate, ns; + + ts = timespec64_sub(*end, *start); + + /* convert both size (stored in 'rate') and time in terms of 'ns' */ + ns = timespec64_to_ns(&ts); + rate = size * NSEC_PER_SEC; + + /* Divide both size (stored in 'rate') and ns by a common factor */ + while (ns > UINT_MAX) { + rate >>= 1; + ns >>= 1; + } + + if (!ns) + return; + + /* calculate the rate */ + do_div(rate, (uint32_t)ns); + + pr_info("\n%s => Size: %llu bytes\t DMA: %s\t Time: %llu.%09u seconds\t" + "Rate: %llu KB/s\n", ops, size, dma ? "YES" : "NO", + (u64)ts.tv_sec, (u32)ts.tv_nsec, rate / 1024); +} + +static int pci_epf_test_copy(struct pci_epf_test *epf_test) +{ + int ret; + bool use_dma; + void __iomem *src_addr; + void __iomem *dst_addr; + phys_addr_t src_phys_addr; + phys_addr_t dst_phys_addr; + struct timespec64 start, end; + struct pci_epf *epf = epf_test->epf; + struct device *dev = &epf->dev; + struct pci_epc *epc = epf->epc; + enum pci_barno test_reg_bar = epf_test->test_reg_bar; + struct pci_epf_test_reg *reg = epf_test->reg[test_reg_bar]; + + src_addr = pci_epc_mem_alloc_addr(epc, &src_phys_addr, reg->size); + if (!src_addr) { + dev_err(dev, "Failed to allocate source address\n"); + reg->status = STATUS_SRC_ADDR_INVALID; + ret = -ENOMEM; + goto err; + } + + ret = pci_epc_map_addr(epc, epf->func_no, epf->vfunc_no, src_phys_addr, + reg->src_addr, reg->size); + if (ret) { + dev_err(dev, "Failed to map source address\n"); + reg->status = STATUS_SRC_ADDR_INVALID; + goto err_src_addr; + } + + dst_addr = pci_epc_mem_alloc_addr(epc, &dst_phys_addr, reg->size); + if (!dst_addr) { + dev_err(dev, "Failed to allocate destination address\n"); + reg->status = STATUS_DST_ADDR_INVALID; + ret = -ENOMEM; + goto err_src_map_addr; + } + + ret = pci_epc_map_addr(epc, epf->func_no, epf->vfunc_no, dst_phys_addr, + reg->dst_addr, reg->size); + if (ret) { + dev_err(dev, "Failed to map destination address\n"); + reg->status = STATUS_DST_ADDR_INVALID; + goto err_dst_addr; + } + + ktime_get_ts64(&start); + use_dma = !!(reg->flags & FLAG_USE_DMA); + if (use_dma) { + if (!epf_test->dma_supported) { + dev_err(dev, "Cannot transfer data using DMA\n"); + ret = -EINVAL; + goto err_map_addr; + } + + if (epf_test->dma_private) { + dev_err(dev, "Cannot transfer data using DMA\n"); + ret = -EINVAL; + goto err_map_addr; + } + + ret = pci_epf_test_data_transfer(epf_test, dst_phys_addr, + src_phys_addr, reg->size, 0, + DMA_MEM_TO_MEM); + if (ret) + dev_err(dev, "Data transfer failed\n"); + } else { + void *buf; + + buf = kzalloc(reg->size, GFP_KERNEL); + if (!buf) { + ret = -ENOMEM; + goto err_map_addr; + } + + memcpy_fromio(buf, src_addr, reg->size); + memcpy_toio(dst_addr, buf, reg->size); + kfree(buf); + } + ktime_get_ts64(&end); + pci_epf_test_print_rate("COPY", reg->size, &start, &end, use_dma); + +err_map_addr: + pci_epc_unmap_addr(epc, epf->func_no, epf->vfunc_no, dst_phys_addr); + +err_dst_addr: + pci_epc_mem_free_addr(epc, dst_phys_addr, dst_addr, reg->size); + +err_src_map_addr: + pci_epc_unmap_addr(epc, epf->func_no, epf->vfunc_no, src_phys_addr); + +err_src_addr: + pci_epc_mem_free_addr(epc, src_phys_addr, src_addr, reg->size); + +err: + return ret; +} + +static int pci_epf_test_read(struct pci_epf_test *epf_test) +{ + int ret; + void __iomem *src_addr; + void *buf; + u32 crc32; + bool use_dma; + phys_addr_t phys_addr; + phys_addr_t dst_phys_addr; + struct timespec64 start, end; + struct pci_epf *epf = epf_test->epf; + struct device *dev = &epf->dev; + struct pci_epc *epc = epf->epc; + struct device *dma_dev = epf->epc->dev.parent; + enum pci_barno test_reg_bar = epf_test->test_reg_bar; + struct pci_epf_test_reg *reg = epf_test->reg[test_reg_bar]; + + src_addr = pci_epc_mem_alloc_addr(epc, &phys_addr, reg->size); + if (!src_addr) { + dev_err(dev, "Failed to allocate address\n"); + reg->status = STATUS_SRC_ADDR_INVALID; + ret = -ENOMEM; + goto err; + } + + ret = pci_epc_map_addr(epc, epf->func_no, epf->vfunc_no, phys_addr, + reg->src_addr, reg->size); + if (ret) { + dev_err(dev, "Failed to map address\n"); + reg->status = STATUS_SRC_ADDR_INVALID; + goto err_addr; + } + + buf = kzalloc(reg->size, GFP_KERNEL); + if (!buf) { + ret = -ENOMEM; + goto err_map_addr; + } + + use_dma = !!(reg->flags & FLAG_USE_DMA); + if (use_dma) { + if (!epf_test->dma_supported) { + dev_err(dev, "Cannot transfer data using DMA\n"); + ret = -EINVAL; + goto err_dma_map; + } + + dst_phys_addr = dma_map_single(dma_dev, buf, reg->size, + DMA_FROM_DEVICE); + if (dma_mapping_error(dma_dev, dst_phys_addr)) { + dev_err(dev, "Failed to map destination buffer addr\n"); + ret = -ENOMEM; + goto err_dma_map; + } + + ktime_get_ts64(&start); + ret = pci_epf_test_data_transfer(epf_test, dst_phys_addr, + phys_addr, reg->size, + reg->src_addr, DMA_DEV_TO_MEM); + if (ret) + dev_err(dev, "Data transfer failed\n"); + ktime_get_ts64(&end); + + dma_unmap_single(dma_dev, dst_phys_addr, reg->size, + DMA_FROM_DEVICE); + } else { + ktime_get_ts64(&start); + memcpy_fromio(buf, src_addr, reg->size); + ktime_get_ts64(&end); + } + + pci_epf_test_print_rate("READ", reg->size, &start, &end, use_dma); + + crc32 = crc32_le(~0, buf, reg->size); + if (crc32 != reg->checksum) + ret = -EIO; + +err_dma_map: + kfree(buf); + +err_map_addr: + pci_epc_unmap_addr(epc, epf->func_no, epf->vfunc_no, phys_addr); + +err_addr: + pci_epc_mem_free_addr(epc, phys_addr, src_addr, reg->size); + +err: + return ret; +} + +static int pci_epf_test_write(struct pci_epf_test *epf_test) +{ + int ret; + void __iomem *dst_addr; + void *buf; + bool use_dma; + phys_addr_t phys_addr; + phys_addr_t src_phys_addr; + struct timespec64 start, end; + struct pci_epf *epf = epf_test->epf; + struct device *dev = &epf->dev; + struct pci_epc *epc = epf->epc; + struct device *dma_dev = epf->epc->dev.parent; + enum pci_barno test_reg_bar = epf_test->test_reg_bar; + struct pci_epf_test_reg *reg = epf_test->reg[test_reg_bar]; + + dst_addr = pci_epc_mem_alloc_addr(epc, &phys_addr, reg->size); + if (!dst_addr) { + dev_err(dev, "Failed to allocate address\n"); + reg->status = STATUS_DST_ADDR_INVALID; + ret = -ENOMEM; + goto err; + } + + ret = pci_epc_map_addr(epc, epf->func_no, epf->vfunc_no, phys_addr, + reg->dst_addr, reg->size); + if (ret) { + dev_err(dev, "Failed to map address\n"); + reg->status = STATUS_DST_ADDR_INVALID; + goto err_addr; + } + + buf = kzalloc(reg->size, GFP_KERNEL); + if (!buf) { + ret = -ENOMEM; + goto err_map_addr; + } + + get_random_bytes(buf, reg->size); + reg->checksum = crc32_le(~0, buf, reg->size); + + use_dma = !!(reg->flags & FLAG_USE_DMA); + if (use_dma) { + if (!epf_test->dma_supported) { + dev_err(dev, "Cannot transfer data using DMA\n"); + ret = -EINVAL; + goto err_dma_map; + } + + src_phys_addr = dma_map_single(dma_dev, buf, reg->size, + DMA_TO_DEVICE); + if (dma_mapping_error(dma_dev, src_phys_addr)) { + dev_err(dev, "Failed to map source buffer addr\n"); + ret = -ENOMEM; + goto err_dma_map; + } + + ktime_get_ts64(&start); + + ret = pci_epf_test_data_transfer(epf_test, phys_addr, + src_phys_addr, reg->size, + reg->dst_addr, + DMA_MEM_TO_DEV); + if (ret) + dev_err(dev, "Data transfer failed\n"); + ktime_get_ts64(&end); + + dma_unmap_single(dma_dev, src_phys_addr, reg->size, + DMA_TO_DEVICE); + } else { + ktime_get_ts64(&start); + memcpy_toio(dst_addr, buf, reg->size); + ktime_get_ts64(&end); + } + + pci_epf_test_print_rate("WRITE", reg->size, &start, &end, use_dma); + + /* + * wait 1ms inorder for the write to complete. Without this delay L3 + * error in observed in the host system. + */ + usleep_range(1000, 2000); + +err_dma_map: + kfree(buf); + +err_map_addr: + pci_epc_unmap_addr(epc, epf->func_no, epf->vfunc_no, phys_addr); + +err_addr: + pci_epc_mem_free_addr(epc, phys_addr, dst_addr, reg->size); + +err: + return ret; +} + +static void pci_epf_test_raise_irq(struct pci_epf_test *epf_test, u8 irq_type, + u16 irq) +{ + struct pci_epf *epf = epf_test->epf; + struct device *dev = &epf->dev; + struct pci_epc *epc = epf->epc; + enum pci_barno test_reg_bar = epf_test->test_reg_bar; + struct pci_epf_test_reg *reg = epf_test->reg[test_reg_bar]; + + reg->status |= STATUS_IRQ_RAISED; + + switch (irq_type) { + case IRQ_TYPE_LEGACY: + pci_epc_raise_irq(epc, epf->func_no, epf->vfunc_no, + PCI_EPC_IRQ_LEGACY, 0); + break; + case IRQ_TYPE_MSI: + pci_epc_raise_irq(epc, epf->func_no, epf->vfunc_no, + PCI_EPC_IRQ_MSI, irq); + break; + case IRQ_TYPE_MSIX: + pci_epc_raise_irq(epc, epf->func_no, epf->vfunc_no, + PCI_EPC_IRQ_MSIX, irq); + break; + default: + dev_err(dev, "Failed to raise IRQ, unknown type\n"); + break; + } +} + +static void pci_epf_test_cmd_handler(struct work_struct *work) +{ + int ret; + int count; + u32 command; + struct pci_epf_test *epf_test = container_of(work, struct pci_epf_test, + cmd_handler.work); + struct pci_epf *epf = epf_test->epf; + struct device *dev = &epf->dev; + struct pci_epc *epc = epf->epc; + enum pci_barno test_reg_bar = epf_test->test_reg_bar; + struct pci_epf_test_reg *reg = epf_test->reg[test_reg_bar]; + + command = reg->command; + if (!command) + goto reset_handler; + + reg->command = 0; + reg->status = 0; + + if (reg->irq_type > IRQ_TYPE_MSIX) { + dev_err(dev, "Failed to detect IRQ type\n"); + goto reset_handler; + } + + if (command & COMMAND_RAISE_LEGACY_IRQ) { + reg->status = STATUS_IRQ_RAISED; + pci_epc_raise_irq(epc, epf->func_no, epf->vfunc_no, + PCI_EPC_IRQ_LEGACY, 0); + goto reset_handler; + } + + if (command & COMMAND_WRITE) { + ret = pci_epf_test_write(epf_test); + if (ret) + reg->status |= STATUS_WRITE_FAIL; + else + reg->status |= STATUS_WRITE_SUCCESS; + pci_epf_test_raise_irq(epf_test, reg->irq_type, + reg->irq_number); + goto reset_handler; + } + + if (command & COMMAND_READ) { + ret = pci_epf_test_read(epf_test); + if (!ret) + reg->status |= STATUS_READ_SUCCESS; + else + reg->status |= STATUS_READ_FAIL; + pci_epf_test_raise_irq(epf_test, reg->irq_type, + reg->irq_number); + goto reset_handler; + } + + if (command & COMMAND_COPY) { + ret = pci_epf_test_copy(epf_test); + if (!ret) + reg->status |= STATUS_COPY_SUCCESS; + else + reg->status |= STATUS_COPY_FAIL; + pci_epf_test_raise_irq(epf_test, reg->irq_type, + reg->irq_number); + goto reset_handler; + } + + if (command & COMMAND_RAISE_MSI_IRQ) { + count = pci_epc_get_msi(epc, epf->func_no, epf->vfunc_no); + if (reg->irq_number > count || count <= 0) + goto reset_handler; + reg->status = STATUS_IRQ_RAISED; + pci_epc_raise_irq(epc, epf->func_no, epf->vfunc_no, + PCI_EPC_IRQ_MSI, reg->irq_number); + goto reset_handler; + } + + if (command & COMMAND_RAISE_MSIX_IRQ) { + count = pci_epc_get_msix(epc, epf->func_no, epf->vfunc_no); + if (reg->irq_number > count || count <= 0) + goto reset_handler; + reg->status = STATUS_IRQ_RAISED; + pci_epc_raise_irq(epc, epf->func_no, epf->vfunc_no, + PCI_EPC_IRQ_MSIX, reg->irq_number); + goto reset_handler; + } + +reset_handler: + queue_delayed_work(kpcitest_workqueue, &epf_test->cmd_handler, + msecs_to_jiffies(1)); +} + +static void pci_epf_test_unbind(struct pci_epf *epf) +{ + struct pci_epf_test *epf_test = epf_get_drvdata(epf); + struct pci_epc *epc = epf->epc; + struct pci_epf_bar *epf_bar; + int bar; + + cancel_delayed_work(&epf_test->cmd_handler); + pci_epf_test_clean_dma_chan(epf_test); + for (bar = 0; bar < PCI_STD_NUM_BARS; bar++) { + epf_bar = &epf->bar[bar]; + + if (epf_test->reg[bar]) { + pci_epc_clear_bar(epc, epf->func_no, epf->vfunc_no, + epf_bar); + pci_epf_free_space(epf, epf_test->reg[bar], bar, + PRIMARY_INTERFACE); + } + } +} + +static int pci_epf_test_set_bar(struct pci_epf *epf) +{ + int bar, add; + int ret; + struct pci_epf_bar *epf_bar; + struct pci_epc *epc = epf->epc; + struct device *dev = &epf->dev; + struct pci_epf_test *epf_test = epf_get_drvdata(epf); + enum pci_barno test_reg_bar = epf_test->test_reg_bar; + const struct pci_epc_features *epc_features; + + epc_features = epf_test->epc_features; + + for (bar = 0; bar < PCI_STD_NUM_BARS; bar += add) { + epf_bar = &epf->bar[bar]; + /* + * pci_epc_set_bar() sets PCI_BASE_ADDRESS_MEM_TYPE_64 + * if the specific implementation required a 64-bit BAR, + * even if we only requested a 32-bit BAR. + */ + add = (epf_bar->flags & PCI_BASE_ADDRESS_MEM_TYPE_64) ? 2 : 1; + + if (!!(epc_features->reserved_bar & (1 << bar))) + continue; + + ret = pci_epc_set_bar(epc, epf->func_no, epf->vfunc_no, + epf_bar); + if (ret) { + pci_epf_free_space(epf, epf_test->reg[bar], bar, + PRIMARY_INTERFACE); + dev_err(dev, "Failed to set BAR%d\n", bar); + if (bar == test_reg_bar) + return ret; + } + } + + return 0; +} + +static int pci_epf_test_core_init(struct pci_epf *epf) +{ + struct pci_epf_test *epf_test = epf_get_drvdata(epf); + struct pci_epf_header *header = epf->header; + const struct pci_epc_features *epc_features; + struct pci_epc *epc = epf->epc; + struct device *dev = &epf->dev; + bool msix_capable = false; + bool msi_capable = true; + int ret; + + epc_features = pci_epc_get_features(epc, epf->func_no, epf->vfunc_no); + if (epc_features) { + msix_capable = epc_features->msix_capable; + msi_capable = epc_features->msi_capable; + } + + if (epf->vfunc_no <= 1) { + ret = pci_epc_write_header(epc, epf->func_no, epf->vfunc_no, header); + if (ret) { + dev_err(dev, "Configuration header write failed\n"); + return ret; + } + } + + ret = pci_epf_test_set_bar(epf); + if (ret) + return ret; + + if (msi_capable) { + ret = pci_epc_set_msi(epc, epf->func_no, epf->vfunc_no, + epf->msi_interrupts); + if (ret) { + dev_err(dev, "MSI configuration failed\n"); + return ret; + } + } + + if (msix_capable) { + ret = pci_epc_set_msix(epc, epf->func_no, epf->vfunc_no, + epf->msix_interrupts, + epf_test->test_reg_bar, + epf_test->msix_table_offset); + if (ret) { + dev_err(dev, "MSI-X configuration failed\n"); + return ret; + } + } + + return 0; +} + +static int pci_epf_test_notifier(struct notifier_block *nb, unsigned long val, + void *data) +{ + struct pci_epf *epf = container_of(nb, struct pci_epf, nb); + struct pci_epf_test *epf_test = epf_get_drvdata(epf); + int ret; + + switch (val) { + case CORE_INIT: + ret = pci_epf_test_core_init(epf); + if (ret) + return NOTIFY_BAD; + break; + + case LINK_UP: + queue_delayed_work(kpcitest_workqueue, &epf_test->cmd_handler, + msecs_to_jiffies(1)); + break; + + default: + dev_err(&epf->dev, "Invalid EPF test notifier event\n"); + return NOTIFY_BAD; + } + + return NOTIFY_OK; +} + +static int pci_epf_test_alloc_space(struct pci_epf *epf) +{ + struct pci_epf_test *epf_test = epf_get_drvdata(epf); + struct device *dev = &epf->dev; + struct pci_epf_bar *epf_bar; + size_t msix_table_size = 0; + size_t test_reg_bar_size; + size_t pba_size = 0; + bool msix_capable; + void *base; + int bar, add; + enum pci_barno test_reg_bar = epf_test->test_reg_bar; + const struct pci_epc_features *epc_features; + size_t test_reg_size; + + epc_features = epf_test->epc_features; + + test_reg_bar_size = ALIGN(sizeof(struct pci_epf_test_reg), 128); + + msix_capable = epc_features->msix_capable; + if (msix_capable) { + msix_table_size = PCI_MSIX_ENTRY_SIZE * epf->msix_interrupts; + epf_test->msix_table_offset = test_reg_bar_size; + /* Align to QWORD or 8 Bytes */ + pba_size = ALIGN(DIV_ROUND_UP(epf->msix_interrupts, 8), 8); + } + test_reg_size = test_reg_bar_size + msix_table_size + pba_size; + + if (epc_features->bar_fixed_size[test_reg_bar]) { + if (test_reg_size > bar_size[test_reg_bar]) + return -ENOMEM; + test_reg_size = bar_size[test_reg_bar]; + } + + base = pci_epf_alloc_space(epf, test_reg_size, test_reg_bar, + epc_features->align, PRIMARY_INTERFACE); + if (!base) { + dev_err(dev, "Failed to allocated register space\n"); + return -ENOMEM; + } + epf_test->reg[test_reg_bar] = base; + + for (bar = 0; bar < PCI_STD_NUM_BARS; bar += add) { + epf_bar = &epf->bar[bar]; + add = (epf_bar->flags & PCI_BASE_ADDRESS_MEM_TYPE_64) ? 2 : 1; + + if (bar == test_reg_bar) + continue; + + if (!!(epc_features->reserved_bar & (1 << bar))) + continue; + + base = pci_epf_alloc_space(epf, bar_size[bar], bar, + epc_features->align, + PRIMARY_INTERFACE); + if (!base) + dev_err(dev, "Failed to allocate space for BAR%d\n", + bar); + epf_test->reg[bar] = base; + } + + return 0; +} + +static void pci_epf_configure_bar(struct pci_epf *epf, + const struct pci_epc_features *epc_features) +{ + struct pci_epf_bar *epf_bar; + bool bar_fixed_64bit; + int i; + + for (i = 0; i < PCI_STD_NUM_BARS; i++) { + epf_bar = &epf->bar[i]; + bar_fixed_64bit = !!(epc_features->bar_fixed_64bit & (1 << i)); + if (bar_fixed_64bit) + epf_bar->flags |= PCI_BASE_ADDRESS_MEM_TYPE_64; + if (epc_features->bar_fixed_size[i]) + bar_size[i] = epc_features->bar_fixed_size[i]; + } +} + +static int pci_epf_test_bind(struct pci_epf *epf) +{ + int ret; + struct pci_epf_test *epf_test = epf_get_drvdata(epf); + const struct pci_epc_features *epc_features; + enum pci_barno test_reg_bar = BAR_0; + struct pci_epc *epc = epf->epc; + bool linkup_notifier = false; + bool core_init_notifier = false; + + if (WARN_ON_ONCE(!epc)) + return -EINVAL; + + epc_features = pci_epc_get_features(epc, epf->func_no, epf->vfunc_no); + if (!epc_features) { + dev_err(&epf->dev, "epc_features not implemented\n"); + return -EOPNOTSUPP; + } + + linkup_notifier = epc_features->linkup_notifier; + core_init_notifier = epc_features->core_init_notifier; + test_reg_bar = pci_epc_get_first_free_bar(epc_features); + if (test_reg_bar < 0) + return -EINVAL; + pci_epf_configure_bar(epf, epc_features); + + epf_test->test_reg_bar = test_reg_bar; + epf_test->epc_features = epc_features; + + ret = pci_epf_test_alloc_space(epf); + if (ret) + return ret; + + if (!core_init_notifier) { + ret = pci_epf_test_core_init(epf); + if (ret) + return ret; + } + + epf_test->dma_supported = true; + + ret = pci_epf_test_init_dma_chan(epf_test); + if (ret) + epf_test->dma_supported = false; + + if (linkup_notifier || core_init_notifier) { + epf->nb.notifier_call = pci_epf_test_notifier; + pci_epc_register_notifier(epc, &epf->nb); + } else { + queue_work(kpcitest_workqueue, &epf_test->cmd_handler.work); + } + + return 0; +} + +static const struct pci_epf_device_id pci_epf_test_ids[] = { + { + .name = "pci_epf_test", + }, + {}, +}; + +static int pci_epf_test_probe(struct pci_epf *epf) +{ + struct pci_epf_test *epf_test; + struct device *dev = &epf->dev; + + epf_test = devm_kzalloc(dev, sizeof(*epf_test), GFP_KERNEL); + if (!epf_test) + return -ENOMEM; + + epf->header = &test_header; + epf_test->epf = epf; + + INIT_DELAYED_WORK(&epf_test->cmd_handler, pci_epf_test_cmd_handler); + + epf_set_drvdata(epf, epf_test); + return 0; +} + +static struct pci_epf_ops ops = { + .unbind = pci_epf_test_unbind, + .bind = pci_epf_test_bind, +}; + +static struct pci_epf_driver test_driver = { + .driver.name = "pci_epf_test", + .probe = pci_epf_test_probe, + .id_table = pci_epf_test_ids, + .ops = &ops, + .owner = THIS_MODULE, +}; + +static int __init pci_epf_test_init(void) +{ + int ret; + + kpcitest_workqueue = alloc_workqueue("kpcitest", + WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); + if (!kpcitest_workqueue) { + pr_err("Failed to allocate the kpcitest work queue\n"); + return -ENOMEM; + } + + ret = pci_epf_register_driver(&test_driver); + if (ret) { + destroy_workqueue(kpcitest_workqueue); + pr_err("Failed to register pci epf test driver --> %d\n", ret); + return ret; + } + + return 0; +} +module_init(pci_epf_test_init); + +static void __exit pci_epf_test_exit(void) +{ + if (kpcitest_workqueue) + destroy_workqueue(kpcitest_workqueue); + pci_epf_unregister_driver(&test_driver); +} +module_exit(pci_epf_test_exit); + +MODULE_DESCRIPTION("PCI EPF TEST DRIVER"); +MODULE_AUTHOR("Kishon Vijay Abraham I <kishon@ti.com>"); +MODULE_LICENSE("GPL v2"); |