summaryrefslogtreecommitdiffstats
path: root/drivers/spi/spi-stm32.c
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--drivers/spi/spi-stm32.c2047
1 files changed, 2047 insertions, 0 deletions
diff --git a/drivers/spi/spi-stm32.c b/drivers/spi/spi-stm32.c
new file mode 100644
index 000000000..122418155
--- /dev/null
+++ b/drivers/spi/spi-stm32.c
@@ -0,0 +1,2047 @@
+// SPDX-License-Identifier: GPL-2.0
+//
+// STMicroelectronics STM32 SPI Controller driver (master mode only)
+//
+// Copyright (C) 2017, STMicroelectronics - All Rights Reserved
+// Author(s): Amelie Delaunay <amelie.delaunay@st.com> for STMicroelectronics.
+
+#include <linux/bitfield.h>
+#include <linux/debugfs.h>
+#include <linux/clk.h>
+#include <linux/delay.h>
+#include <linux/dmaengine.h>
+#include <linux/interrupt.h>
+#include <linux/iopoll.h>
+#include <linux/module.h>
+#include <linux/of_platform.h>
+#include <linux/pinctrl/consumer.h>
+#include <linux/pm_runtime.h>
+#include <linux/reset.h>
+#include <linux/spi/spi.h>
+
+#define DRIVER_NAME "spi_stm32"
+
+/* STM32F4 SPI registers */
+#define STM32F4_SPI_CR1 0x00
+#define STM32F4_SPI_CR2 0x04
+#define STM32F4_SPI_SR 0x08
+#define STM32F4_SPI_DR 0x0C
+#define STM32F4_SPI_I2SCFGR 0x1C
+
+/* STM32F4_SPI_CR1 bit fields */
+#define STM32F4_SPI_CR1_CPHA BIT(0)
+#define STM32F4_SPI_CR1_CPOL BIT(1)
+#define STM32F4_SPI_CR1_MSTR BIT(2)
+#define STM32F4_SPI_CR1_BR_SHIFT 3
+#define STM32F4_SPI_CR1_BR GENMASK(5, 3)
+#define STM32F4_SPI_CR1_SPE BIT(6)
+#define STM32F4_SPI_CR1_LSBFRST BIT(7)
+#define STM32F4_SPI_CR1_SSI BIT(8)
+#define STM32F4_SPI_CR1_SSM BIT(9)
+#define STM32F4_SPI_CR1_RXONLY BIT(10)
+#define STM32F4_SPI_CR1_DFF BIT(11)
+#define STM32F4_SPI_CR1_CRCNEXT BIT(12)
+#define STM32F4_SPI_CR1_CRCEN BIT(13)
+#define STM32F4_SPI_CR1_BIDIOE BIT(14)
+#define STM32F4_SPI_CR1_BIDIMODE BIT(15)
+#define STM32F4_SPI_CR1_BR_MIN 0
+#define STM32F4_SPI_CR1_BR_MAX (GENMASK(5, 3) >> 3)
+
+/* STM32F4_SPI_CR2 bit fields */
+#define STM32F4_SPI_CR2_RXDMAEN BIT(0)
+#define STM32F4_SPI_CR2_TXDMAEN BIT(1)
+#define STM32F4_SPI_CR2_SSOE BIT(2)
+#define STM32F4_SPI_CR2_FRF BIT(4)
+#define STM32F4_SPI_CR2_ERRIE BIT(5)
+#define STM32F4_SPI_CR2_RXNEIE BIT(6)
+#define STM32F4_SPI_CR2_TXEIE BIT(7)
+
+/* STM32F4_SPI_SR bit fields */
+#define STM32F4_SPI_SR_RXNE BIT(0)
+#define STM32F4_SPI_SR_TXE BIT(1)
+#define STM32F4_SPI_SR_CHSIDE BIT(2)
+#define STM32F4_SPI_SR_UDR BIT(3)
+#define STM32F4_SPI_SR_CRCERR BIT(4)
+#define STM32F4_SPI_SR_MODF BIT(5)
+#define STM32F4_SPI_SR_OVR BIT(6)
+#define STM32F4_SPI_SR_BSY BIT(7)
+#define STM32F4_SPI_SR_FRE BIT(8)
+
+/* STM32F4_SPI_I2SCFGR bit fields */
+#define STM32F4_SPI_I2SCFGR_I2SMOD BIT(11)
+
+/* STM32F4 SPI Baud Rate min/max divisor */
+#define STM32F4_SPI_BR_DIV_MIN (2 << STM32F4_SPI_CR1_BR_MIN)
+#define STM32F4_SPI_BR_DIV_MAX (2 << STM32F4_SPI_CR1_BR_MAX)
+
+/* STM32H7 SPI registers */
+#define STM32H7_SPI_CR1 0x00
+#define STM32H7_SPI_CR2 0x04
+#define STM32H7_SPI_CFG1 0x08
+#define STM32H7_SPI_CFG2 0x0C
+#define STM32H7_SPI_IER 0x10
+#define STM32H7_SPI_SR 0x14
+#define STM32H7_SPI_IFCR 0x18
+#define STM32H7_SPI_TXDR 0x20
+#define STM32H7_SPI_RXDR 0x30
+#define STM32H7_SPI_I2SCFGR 0x50
+
+/* STM32H7_SPI_CR1 bit fields */
+#define STM32H7_SPI_CR1_SPE BIT(0)
+#define STM32H7_SPI_CR1_MASRX BIT(8)
+#define STM32H7_SPI_CR1_CSTART BIT(9)
+#define STM32H7_SPI_CR1_CSUSP BIT(10)
+#define STM32H7_SPI_CR1_HDDIR BIT(11)
+#define STM32H7_SPI_CR1_SSI BIT(12)
+
+/* STM32H7_SPI_CR2 bit fields */
+#define STM32H7_SPI_CR2_TSIZE GENMASK(15, 0)
+#define STM32H7_SPI_TSIZE_MAX GENMASK(15, 0)
+
+/* STM32H7_SPI_CFG1 bit fields */
+#define STM32H7_SPI_CFG1_DSIZE GENMASK(4, 0)
+#define STM32H7_SPI_CFG1_FTHLV GENMASK(8, 5)
+#define STM32H7_SPI_CFG1_RXDMAEN BIT(14)
+#define STM32H7_SPI_CFG1_TXDMAEN BIT(15)
+#define STM32H7_SPI_CFG1_MBR GENMASK(30, 28)
+#define STM32H7_SPI_CFG1_MBR_SHIFT 28
+#define STM32H7_SPI_CFG1_MBR_MIN 0
+#define STM32H7_SPI_CFG1_MBR_MAX (GENMASK(30, 28) >> 28)
+
+/* STM32H7_SPI_CFG2 bit fields */
+#define STM32H7_SPI_CFG2_MIDI GENMASK(7, 4)
+#define STM32H7_SPI_CFG2_COMM GENMASK(18, 17)
+#define STM32H7_SPI_CFG2_SP GENMASK(21, 19)
+#define STM32H7_SPI_CFG2_MASTER BIT(22)
+#define STM32H7_SPI_CFG2_LSBFRST BIT(23)
+#define STM32H7_SPI_CFG2_CPHA BIT(24)
+#define STM32H7_SPI_CFG2_CPOL BIT(25)
+#define STM32H7_SPI_CFG2_SSM BIT(26)
+#define STM32H7_SPI_CFG2_AFCNTR BIT(31)
+
+/* STM32H7_SPI_IER bit fields */
+#define STM32H7_SPI_IER_RXPIE BIT(0)
+#define STM32H7_SPI_IER_TXPIE BIT(1)
+#define STM32H7_SPI_IER_DXPIE BIT(2)
+#define STM32H7_SPI_IER_EOTIE BIT(3)
+#define STM32H7_SPI_IER_TXTFIE BIT(4)
+#define STM32H7_SPI_IER_OVRIE BIT(6)
+#define STM32H7_SPI_IER_MODFIE BIT(9)
+#define STM32H7_SPI_IER_ALL GENMASK(10, 0)
+
+/* STM32H7_SPI_SR bit fields */
+#define STM32H7_SPI_SR_RXP BIT(0)
+#define STM32H7_SPI_SR_TXP BIT(1)
+#define STM32H7_SPI_SR_EOT BIT(3)
+#define STM32H7_SPI_SR_OVR BIT(6)
+#define STM32H7_SPI_SR_MODF BIT(9)
+#define STM32H7_SPI_SR_SUSP BIT(11)
+#define STM32H7_SPI_SR_RXPLVL GENMASK(14, 13)
+#define STM32H7_SPI_SR_RXWNE BIT(15)
+
+/* STM32H7_SPI_IFCR bit fields */
+#define STM32H7_SPI_IFCR_ALL GENMASK(11, 3)
+
+/* STM32H7_SPI_I2SCFGR bit fields */
+#define STM32H7_SPI_I2SCFGR_I2SMOD BIT(0)
+
+/* STM32H7 SPI Master Baud Rate min/max divisor */
+#define STM32H7_SPI_MBR_DIV_MIN (2 << STM32H7_SPI_CFG1_MBR_MIN)
+#define STM32H7_SPI_MBR_DIV_MAX (2 << STM32H7_SPI_CFG1_MBR_MAX)
+
+/* STM32H7 SPI Communication mode */
+#define STM32H7_SPI_FULL_DUPLEX 0
+#define STM32H7_SPI_SIMPLEX_TX 1
+#define STM32H7_SPI_SIMPLEX_RX 2
+#define STM32H7_SPI_HALF_DUPLEX 3
+
+/* SPI Communication type */
+#define SPI_FULL_DUPLEX 0
+#define SPI_SIMPLEX_TX 1
+#define SPI_SIMPLEX_RX 2
+#define SPI_3WIRE_TX 3
+#define SPI_3WIRE_RX 4
+
+#define STM32_SPI_AUTOSUSPEND_DELAY 1 /* 1 ms */
+
+/*
+ * use PIO for small transfers, avoiding DMA setup/teardown overhead for drivers
+ * without fifo buffers.
+ */
+#define SPI_DMA_MIN_BYTES 16
+
+/**
+ * struct stm32_spi_reg - stm32 SPI register & bitfield desc
+ * @reg: register offset
+ * @mask: bitfield mask
+ * @shift: left shift
+ */
+struct stm32_spi_reg {
+ int reg;
+ int mask;
+ int shift;
+};
+
+/**
+ * struct stm32_spi_regspec - stm32 registers definition, compatible dependent data
+ * @en: enable register and SPI enable bit
+ * @dma_rx_en: SPI DMA RX enable register end SPI DMA RX enable bit
+ * @dma_tx_en: SPI DMA TX enable register end SPI DMA TX enable bit
+ * @cpol: clock polarity register and polarity bit
+ * @cpha: clock phase register and phase bit
+ * @lsb_first: LSB transmitted first register and bit
+ * @br: baud rate register and bitfields
+ * @rx: SPI RX data register
+ * @tx: SPI TX data register
+ */
+struct stm32_spi_regspec {
+ const struct stm32_spi_reg en;
+ const struct stm32_spi_reg dma_rx_en;
+ const struct stm32_spi_reg dma_tx_en;
+ const struct stm32_spi_reg cpol;
+ const struct stm32_spi_reg cpha;
+ const struct stm32_spi_reg lsb_first;
+ const struct stm32_spi_reg br;
+ const struct stm32_spi_reg rx;
+ const struct stm32_spi_reg tx;
+};
+
+struct stm32_spi;
+
+/**
+ * struct stm32_spi_cfg - stm32 compatible configuration data
+ * @regs: registers descriptions
+ * @get_fifo_size: routine to get fifo size
+ * @get_bpw_mask: routine to get bits per word mask
+ * @disable: routine to disable controller
+ * @config: routine to configure controller as SPI Master
+ * @set_bpw: routine to configure registers to for bits per word
+ * @set_mode: routine to configure registers to desired mode
+ * @set_data_idleness: optional routine to configure registers to desired idle
+ * time between frames (if driver has this functionality)
+ * @set_number_of_data: optional routine to configure registers to desired
+ * number of data (if driver has this functionality)
+ * @transfer_one_dma_start: routine to start transfer a single spi_transfer
+ * using DMA
+ * @dma_rx_cb: routine to call after DMA RX channel operation is complete
+ * @dma_tx_cb: routine to call after DMA TX channel operation is complete
+ * @transfer_one_irq: routine to configure interrupts for driver
+ * @irq_handler_event: Interrupt handler for SPI controller events
+ * @irq_handler_thread: thread of interrupt handler for SPI controller
+ * @baud_rate_div_min: minimum baud rate divisor
+ * @baud_rate_div_max: maximum baud rate divisor
+ * @has_fifo: boolean to know if fifo is used for driver
+ * @flags: compatible specific SPI controller flags used at registration time
+ */
+struct stm32_spi_cfg {
+ const struct stm32_spi_regspec *regs;
+ int (*get_fifo_size)(struct stm32_spi *spi);
+ int (*get_bpw_mask)(struct stm32_spi *spi);
+ void (*disable)(struct stm32_spi *spi);
+ int (*config)(struct stm32_spi *spi);
+ void (*set_bpw)(struct stm32_spi *spi);
+ int (*set_mode)(struct stm32_spi *spi, unsigned int comm_type);
+ void (*set_data_idleness)(struct stm32_spi *spi, u32 length);
+ int (*set_number_of_data)(struct stm32_spi *spi, u32 length);
+ void (*transfer_one_dma_start)(struct stm32_spi *spi);
+ void (*dma_rx_cb)(void *data);
+ void (*dma_tx_cb)(void *data);
+ int (*transfer_one_irq)(struct stm32_spi *spi);
+ irqreturn_t (*irq_handler_event)(int irq, void *dev_id);
+ irqreturn_t (*irq_handler_thread)(int irq, void *dev_id);
+ unsigned int baud_rate_div_min;
+ unsigned int baud_rate_div_max;
+ bool has_fifo;
+ u16 flags;
+};
+
+/**
+ * struct stm32_spi - private data of the SPI controller
+ * @dev: driver model representation of the controller
+ * @master: controller master interface
+ * @cfg: compatible configuration data
+ * @base: virtual memory area
+ * @clk: hw kernel clock feeding the SPI clock generator
+ * @clk_rate: rate of the hw kernel clock feeding the SPI clock generator
+ * @lock: prevent I/O concurrent access
+ * @irq: SPI controller interrupt line
+ * @fifo_size: size of the embedded fifo in bytes
+ * @cur_midi: master inter-data idleness in ns
+ * @cur_speed: speed configured in Hz
+ * @cur_half_period: time of a half bit in us
+ * @cur_bpw: number of bits in a single SPI data frame
+ * @cur_fthlv: fifo threshold level (data frames in a single data packet)
+ * @cur_comm: SPI communication mode
+ * @cur_xferlen: current transfer length in bytes
+ * @cur_usedma: boolean to know if dma is used in current transfer
+ * @tx_buf: data to be written, or NULL
+ * @rx_buf: data to be read, or NULL
+ * @tx_len: number of data to be written in bytes
+ * @rx_len: number of data to be read in bytes
+ * @dma_tx: dma channel for TX transfer
+ * @dma_rx: dma channel for RX transfer
+ * @phys_addr: SPI registers physical base address
+ */
+struct stm32_spi {
+ struct device *dev;
+ struct spi_master *master;
+ const struct stm32_spi_cfg *cfg;
+ void __iomem *base;
+ struct clk *clk;
+ u32 clk_rate;
+ spinlock_t lock; /* prevent I/O concurrent access */
+ int irq;
+ unsigned int fifo_size;
+
+ unsigned int cur_midi;
+ unsigned int cur_speed;
+ unsigned int cur_half_period;
+ unsigned int cur_bpw;
+ unsigned int cur_fthlv;
+ unsigned int cur_comm;
+ unsigned int cur_xferlen;
+ bool cur_usedma;
+
+ const void *tx_buf;
+ void *rx_buf;
+ int tx_len;
+ int rx_len;
+ struct dma_chan *dma_tx;
+ struct dma_chan *dma_rx;
+ dma_addr_t phys_addr;
+};
+
+static const struct stm32_spi_regspec stm32f4_spi_regspec = {
+ .en = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE },
+
+ .dma_rx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_RXDMAEN },
+ .dma_tx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN },
+
+ .cpol = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPOL },
+ .cpha = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPHA },
+ .lsb_first = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_LSBFRST },
+ .br = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_BR, STM32F4_SPI_CR1_BR_SHIFT },
+
+ .rx = { STM32F4_SPI_DR },
+ .tx = { STM32F4_SPI_DR },
+};
+
+static const struct stm32_spi_regspec stm32h7_spi_regspec = {
+ /* SPI data transfer is enabled but spi_ker_ck is idle.
+ * CFG1 and CFG2 registers are write protected when SPE is enabled.
+ */
+ .en = { STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE },
+
+ .dma_rx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_RXDMAEN },
+ .dma_tx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN },
+
+ .cpol = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPOL },
+ .cpha = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPHA },
+ .lsb_first = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_LSBFRST },
+ .br = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_MBR,
+ STM32H7_SPI_CFG1_MBR_SHIFT },
+
+ .rx = { STM32H7_SPI_RXDR },
+ .tx = { STM32H7_SPI_TXDR },
+};
+
+static inline void stm32_spi_set_bits(struct stm32_spi *spi,
+ u32 offset, u32 bits)
+{
+ writel_relaxed(readl_relaxed(spi->base + offset) | bits,
+ spi->base + offset);
+}
+
+static inline void stm32_spi_clr_bits(struct stm32_spi *spi,
+ u32 offset, u32 bits)
+{
+ writel_relaxed(readl_relaxed(spi->base + offset) & ~bits,
+ spi->base + offset);
+}
+
+/**
+ * stm32h7_spi_get_fifo_size - Return fifo size
+ * @spi: pointer to the spi controller data structure
+ */
+static int stm32h7_spi_get_fifo_size(struct stm32_spi *spi)
+{
+ unsigned long flags;
+ u32 count = 0;
+
+ spin_lock_irqsave(&spi->lock, flags);
+
+ stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
+
+ while (readl_relaxed(spi->base + STM32H7_SPI_SR) & STM32H7_SPI_SR_TXP)
+ writeb_relaxed(++count, spi->base + STM32H7_SPI_TXDR);
+
+ stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
+
+ spin_unlock_irqrestore(&spi->lock, flags);
+
+ dev_dbg(spi->dev, "%d x 8-bit fifo size\n", count);
+
+ return count;
+}
+
+/**
+ * stm32f4_spi_get_bpw_mask - Return bits per word mask
+ * @spi: pointer to the spi controller data structure
+ */
+static int stm32f4_spi_get_bpw_mask(struct stm32_spi *spi)
+{
+ dev_dbg(spi->dev, "8-bit or 16-bit data frame supported\n");
+ return SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
+}
+
+/**
+ * stm32h7_spi_get_bpw_mask - Return bits per word mask
+ * @spi: pointer to the spi controller data structure
+ */
+static int stm32h7_spi_get_bpw_mask(struct stm32_spi *spi)
+{
+ unsigned long flags;
+ u32 cfg1, max_bpw;
+
+ spin_lock_irqsave(&spi->lock, flags);
+
+ /*
+ * The most significant bit at DSIZE bit field is reserved when the
+ * maximum data size of periperal instances is limited to 16-bit
+ */
+ stm32_spi_set_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_DSIZE);
+
+ cfg1 = readl_relaxed(spi->base + STM32H7_SPI_CFG1);
+ max_bpw = FIELD_GET(STM32H7_SPI_CFG1_DSIZE, cfg1) + 1;
+
+ spin_unlock_irqrestore(&spi->lock, flags);
+
+ dev_dbg(spi->dev, "%d-bit maximum data frame\n", max_bpw);
+
+ return SPI_BPW_RANGE_MASK(4, max_bpw);
+}
+
+/**
+ * stm32_spi_prepare_mbr - Determine baud rate divisor value
+ * @spi: pointer to the spi controller data structure
+ * @speed_hz: requested speed
+ * @min_div: minimum baud rate divisor
+ * @max_div: maximum baud rate divisor
+ *
+ * Return baud rate divisor value in case of success or -EINVAL
+ */
+static int stm32_spi_prepare_mbr(struct stm32_spi *spi, u32 speed_hz,
+ u32 min_div, u32 max_div)
+{
+ u32 div, mbrdiv;
+
+ /* Ensure spi->clk_rate is even */
+ div = DIV_ROUND_CLOSEST(spi->clk_rate & ~0x1, speed_hz);
+
+ /*
+ * SPI framework set xfer->speed_hz to master->max_speed_hz if
+ * xfer->speed_hz is greater than master->max_speed_hz, and it returns
+ * an error when xfer->speed_hz is lower than master->min_speed_hz, so
+ * no need to check it there.
+ * However, we need to ensure the following calculations.
+ */
+ if ((div < min_div) || (div > max_div))
+ return -EINVAL;
+
+ /* Determine the first power of 2 greater than or equal to div */
+ if (div & (div - 1))
+ mbrdiv = fls(div);
+ else
+ mbrdiv = fls(div) - 1;
+
+ spi->cur_speed = spi->clk_rate / (1 << mbrdiv);
+
+ spi->cur_half_period = DIV_ROUND_CLOSEST(USEC_PER_SEC, 2 * spi->cur_speed);
+
+ return mbrdiv - 1;
+}
+
+/**
+ * stm32h7_spi_prepare_fthlv - Determine FIFO threshold level
+ * @spi: pointer to the spi controller data structure
+ * @xfer_len: length of the message to be transferred
+ */
+static u32 stm32h7_spi_prepare_fthlv(struct stm32_spi *spi, u32 xfer_len)
+{
+ u32 packet, bpw;
+
+ /* data packet should not exceed 1/2 of fifo space */
+ packet = clamp(xfer_len, 1U, spi->fifo_size / 2);
+
+ /* align packet size with data registers access */
+ bpw = DIV_ROUND_UP(spi->cur_bpw, 8);
+ return DIV_ROUND_UP(packet, bpw);
+}
+
+/**
+ * stm32f4_spi_write_tx - Write bytes to Transmit Data Register
+ * @spi: pointer to the spi controller data structure
+ *
+ * Read from tx_buf depends on remaining bytes to avoid to read beyond
+ * tx_buf end.
+ */
+static void stm32f4_spi_write_tx(struct stm32_spi *spi)
+{
+ if ((spi->tx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) &
+ STM32F4_SPI_SR_TXE)) {
+ u32 offs = spi->cur_xferlen - spi->tx_len;
+
+ if (spi->cur_bpw == 16) {
+ const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
+
+ writew_relaxed(*tx_buf16, spi->base + STM32F4_SPI_DR);
+ spi->tx_len -= sizeof(u16);
+ } else {
+ const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
+
+ writeb_relaxed(*tx_buf8, spi->base + STM32F4_SPI_DR);
+ spi->tx_len -= sizeof(u8);
+ }
+ }
+
+ dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
+}
+
+/**
+ * stm32h7_spi_write_txfifo - Write bytes in Transmit Data Register
+ * @spi: pointer to the spi controller data structure
+ *
+ * Read from tx_buf depends on remaining bytes to avoid to read beyond
+ * tx_buf end.
+ */
+static void stm32h7_spi_write_txfifo(struct stm32_spi *spi)
+{
+ while ((spi->tx_len > 0) &&
+ (readl_relaxed(spi->base + STM32H7_SPI_SR) &
+ STM32H7_SPI_SR_TXP)) {
+ u32 offs = spi->cur_xferlen - spi->tx_len;
+
+ if (spi->tx_len >= sizeof(u32)) {
+ const u32 *tx_buf32 = (const u32 *)(spi->tx_buf + offs);
+
+ writel_relaxed(*tx_buf32, spi->base + STM32H7_SPI_TXDR);
+ spi->tx_len -= sizeof(u32);
+ } else if (spi->tx_len >= sizeof(u16)) {
+ const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
+
+ writew_relaxed(*tx_buf16, spi->base + STM32H7_SPI_TXDR);
+ spi->tx_len -= sizeof(u16);
+ } else {
+ const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
+
+ writeb_relaxed(*tx_buf8, spi->base + STM32H7_SPI_TXDR);
+ spi->tx_len -= sizeof(u8);
+ }
+ }
+
+ dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
+}
+
+/**
+ * stm32f4_spi_read_rx - Read bytes from Receive Data Register
+ * @spi: pointer to the spi controller data structure
+ *
+ * Write in rx_buf depends on remaining bytes to avoid to write beyond
+ * rx_buf end.
+ */
+static void stm32f4_spi_read_rx(struct stm32_spi *spi)
+{
+ if ((spi->rx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) &
+ STM32F4_SPI_SR_RXNE)) {
+ u32 offs = spi->cur_xferlen - spi->rx_len;
+
+ if (spi->cur_bpw == 16) {
+ u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
+
+ *rx_buf16 = readw_relaxed(spi->base + STM32F4_SPI_DR);
+ spi->rx_len -= sizeof(u16);
+ } else {
+ u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
+
+ *rx_buf8 = readb_relaxed(spi->base + STM32F4_SPI_DR);
+ spi->rx_len -= sizeof(u8);
+ }
+ }
+
+ dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->rx_len);
+}
+
+/**
+ * stm32h7_spi_read_rxfifo - Read bytes in Receive Data Register
+ * @spi: pointer to the spi controller data structure
+ *
+ * Write in rx_buf depends on remaining bytes to avoid to write beyond
+ * rx_buf end.
+ */
+static void stm32h7_spi_read_rxfifo(struct stm32_spi *spi)
+{
+ u32 sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
+ u32 rxplvl = FIELD_GET(STM32H7_SPI_SR_RXPLVL, sr);
+
+ while ((spi->rx_len > 0) &&
+ ((sr & STM32H7_SPI_SR_RXP) ||
+ ((sr & STM32H7_SPI_SR_EOT) &&
+ ((sr & STM32H7_SPI_SR_RXWNE) || (rxplvl > 0))))) {
+ u32 offs = spi->cur_xferlen - spi->rx_len;
+
+ if ((spi->rx_len >= sizeof(u32)) ||
+ (sr & STM32H7_SPI_SR_RXWNE)) {
+ u32 *rx_buf32 = (u32 *)(spi->rx_buf + offs);
+
+ *rx_buf32 = readl_relaxed(spi->base + STM32H7_SPI_RXDR);
+ spi->rx_len -= sizeof(u32);
+ } else if ((spi->rx_len >= sizeof(u16)) ||
+ (!(sr & STM32H7_SPI_SR_RXWNE) &&
+ (rxplvl >= 2 || spi->cur_bpw > 8))) {
+ u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
+
+ *rx_buf16 = readw_relaxed(spi->base + STM32H7_SPI_RXDR);
+ spi->rx_len -= sizeof(u16);
+ } else {
+ u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
+
+ *rx_buf8 = readb_relaxed(spi->base + STM32H7_SPI_RXDR);
+ spi->rx_len -= sizeof(u8);
+ }
+
+ sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
+ rxplvl = FIELD_GET(STM32H7_SPI_SR_RXPLVL, sr);
+ }
+
+ dev_dbg(spi->dev, "%s: %d bytes left (sr=%08x)\n",
+ __func__, spi->rx_len, sr);
+}
+
+/**
+ * stm32_spi_enable - Enable SPI controller
+ * @spi: pointer to the spi controller data structure
+ */
+static void stm32_spi_enable(struct stm32_spi *spi)
+{
+ dev_dbg(spi->dev, "enable controller\n");
+
+ stm32_spi_set_bits(spi, spi->cfg->regs->en.reg,
+ spi->cfg->regs->en.mask);
+}
+
+/**
+ * stm32f4_spi_disable - Disable SPI controller
+ * @spi: pointer to the spi controller data structure
+ */
+static void stm32f4_spi_disable(struct stm32_spi *spi)
+{
+ unsigned long flags;
+ u32 sr;
+
+ dev_dbg(spi->dev, "disable controller\n");
+
+ spin_lock_irqsave(&spi->lock, flags);
+
+ if (!(readl_relaxed(spi->base + STM32F4_SPI_CR1) &
+ STM32F4_SPI_CR1_SPE)) {
+ spin_unlock_irqrestore(&spi->lock, flags);
+ return;
+ }
+
+ /* Disable interrupts */
+ stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXEIE |
+ STM32F4_SPI_CR2_RXNEIE |
+ STM32F4_SPI_CR2_ERRIE);
+
+ /* Wait until BSY = 0 */
+ if (readl_relaxed_poll_timeout_atomic(spi->base + STM32F4_SPI_SR,
+ sr, !(sr & STM32F4_SPI_SR_BSY),
+ 10, 100000) < 0) {
+ dev_warn(spi->dev, "disabling condition timeout\n");
+ }
+
+ if (spi->cur_usedma && spi->dma_tx)
+ dmaengine_terminate_all(spi->dma_tx);
+ if (spi->cur_usedma && spi->dma_rx)
+ dmaengine_terminate_all(spi->dma_rx);
+
+ stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE);
+
+ stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN |
+ STM32F4_SPI_CR2_RXDMAEN);
+
+ /* Sequence to clear OVR flag */
+ readl_relaxed(spi->base + STM32F4_SPI_DR);
+ readl_relaxed(spi->base + STM32F4_SPI_SR);
+
+ spin_unlock_irqrestore(&spi->lock, flags);
+}
+
+/**
+ * stm32h7_spi_disable - Disable SPI controller
+ * @spi: pointer to the spi controller data structure
+ *
+ * RX-Fifo is flushed when SPI controller is disabled.
+ */
+static void stm32h7_spi_disable(struct stm32_spi *spi)
+{
+ unsigned long flags;
+ u32 cr1;
+
+ dev_dbg(spi->dev, "disable controller\n");
+
+ spin_lock_irqsave(&spi->lock, flags);
+
+ cr1 = readl_relaxed(spi->base + STM32H7_SPI_CR1);
+
+ if (!(cr1 & STM32H7_SPI_CR1_SPE)) {
+ spin_unlock_irqrestore(&spi->lock, flags);
+ return;
+ }
+
+ /* Add a delay to make sure that transmission is ended. */
+ if (spi->cur_half_period)
+ udelay(spi->cur_half_period);
+
+ if (spi->cur_usedma && spi->dma_tx)
+ dmaengine_terminate_all(spi->dma_tx);
+ if (spi->cur_usedma && spi->dma_rx)
+ dmaengine_terminate_all(spi->dma_rx);
+
+ stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
+
+ stm32_spi_clr_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN |
+ STM32H7_SPI_CFG1_RXDMAEN);
+
+ /* Disable interrupts and clear status flags */
+ writel_relaxed(0, spi->base + STM32H7_SPI_IER);
+ writel_relaxed(STM32H7_SPI_IFCR_ALL, spi->base + STM32H7_SPI_IFCR);
+
+ spin_unlock_irqrestore(&spi->lock, flags);
+}
+
+/**
+ * stm32_spi_can_dma - Determine if the transfer is eligible for DMA use
+ * @master: controller master interface
+ * @spi_dev: pointer to the spi device
+ * @transfer: pointer to spi transfer
+ *
+ * If driver has fifo and the current transfer size is greater than fifo size,
+ * use DMA. Otherwise use DMA for transfer longer than defined DMA min bytes.
+ */
+static bool stm32_spi_can_dma(struct spi_master *master,
+ struct spi_device *spi_dev,
+ struct spi_transfer *transfer)
+{
+ unsigned int dma_size;
+ struct stm32_spi *spi = spi_master_get_devdata(master);
+
+ if (spi->cfg->has_fifo)
+ dma_size = spi->fifo_size;
+ else
+ dma_size = SPI_DMA_MIN_BYTES;
+
+ dev_dbg(spi->dev, "%s: %s\n", __func__,
+ (transfer->len > dma_size) ? "true" : "false");
+
+ return (transfer->len > dma_size);
+}
+
+/**
+ * stm32f4_spi_irq_event - Interrupt handler for SPI controller events
+ * @irq: interrupt line
+ * @dev_id: SPI controller master interface
+ */
+static irqreturn_t stm32f4_spi_irq_event(int irq, void *dev_id)
+{
+ struct spi_master *master = dev_id;
+ struct stm32_spi *spi = spi_master_get_devdata(master);
+ u32 sr, mask = 0;
+ bool end = false;
+
+ spin_lock(&spi->lock);
+
+ sr = readl_relaxed(spi->base + STM32F4_SPI_SR);
+ /*
+ * BSY flag is not handled in interrupt but it is normal behavior when
+ * this flag is set.
+ */
+ sr &= ~STM32F4_SPI_SR_BSY;
+
+ if (!spi->cur_usedma && (spi->cur_comm == SPI_SIMPLEX_TX ||
+ spi->cur_comm == SPI_3WIRE_TX)) {
+ /* OVR flag shouldn't be handled for TX only mode */
+ sr &= ~(STM32F4_SPI_SR_OVR | STM32F4_SPI_SR_RXNE);
+ mask |= STM32F4_SPI_SR_TXE;
+ }
+
+ if (!spi->cur_usedma && (spi->cur_comm == SPI_FULL_DUPLEX ||
+ spi->cur_comm == SPI_SIMPLEX_RX ||
+ spi->cur_comm == SPI_3WIRE_RX)) {
+ /* TXE flag is set and is handled when RXNE flag occurs */
+ sr &= ~STM32F4_SPI_SR_TXE;
+ mask |= STM32F4_SPI_SR_RXNE | STM32F4_SPI_SR_OVR;
+ }
+
+ if (!(sr & mask)) {
+ dev_dbg(spi->dev, "spurious IT (sr=0x%08x)\n", sr);
+ spin_unlock(&spi->lock);
+ return IRQ_NONE;
+ }
+
+ if (sr & STM32F4_SPI_SR_OVR) {
+ dev_warn(spi->dev, "Overrun: received value discarded\n");
+
+ /* Sequence to clear OVR flag */
+ readl_relaxed(spi->base + STM32F4_SPI_DR);
+ readl_relaxed(spi->base + STM32F4_SPI_SR);
+
+ /*
+ * If overrun is detected, it means that something went wrong,
+ * so stop the current transfer. Transfer can wait for next
+ * RXNE but DR is already read and end never happens.
+ */
+ end = true;
+ goto end_irq;
+ }
+
+ if (sr & STM32F4_SPI_SR_TXE) {
+ if (spi->tx_buf)
+ stm32f4_spi_write_tx(spi);
+ if (spi->tx_len == 0)
+ end = true;
+ }
+
+ if (sr & STM32F4_SPI_SR_RXNE) {
+ stm32f4_spi_read_rx(spi);
+ if (spi->rx_len == 0)
+ end = true;
+ else if (spi->tx_buf)/* Load data for discontinuous mode */
+ stm32f4_spi_write_tx(spi);
+ }
+
+end_irq:
+ if (end) {
+ /* Immediately disable interrupts to do not generate new one */
+ stm32_spi_clr_bits(spi, STM32F4_SPI_CR2,
+ STM32F4_SPI_CR2_TXEIE |
+ STM32F4_SPI_CR2_RXNEIE |
+ STM32F4_SPI_CR2_ERRIE);
+ spin_unlock(&spi->lock);
+ return IRQ_WAKE_THREAD;
+ }
+
+ spin_unlock(&spi->lock);
+ return IRQ_HANDLED;
+}
+
+/**
+ * stm32f4_spi_irq_thread - Thread of interrupt handler for SPI controller
+ * @irq: interrupt line
+ * @dev_id: SPI controller master interface
+ */
+static irqreturn_t stm32f4_spi_irq_thread(int irq, void *dev_id)
+{
+ struct spi_master *master = dev_id;
+ struct stm32_spi *spi = spi_master_get_devdata(master);
+
+ spi_finalize_current_transfer(master);
+ stm32f4_spi_disable(spi);
+
+ return IRQ_HANDLED;
+}
+
+/**
+ * stm32h7_spi_irq_thread - Thread of interrupt handler for SPI controller
+ * @irq: interrupt line
+ * @dev_id: SPI controller master interface
+ */
+static irqreturn_t stm32h7_spi_irq_thread(int irq, void *dev_id)
+{
+ struct spi_master *master = dev_id;
+ struct stm32_spi *spi = spi_master_get_devdata(master);
+ u32 sr, ier, mask;
+ unsigned long flags;
+ bool end = false;
+
+ spin_lock_irqsave(&spi->lock, flags);
+
+ sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
+ ier = readl_relaxed(spi->base + STM32H7_SPI_IER);
+
+ mask = ier;
+ /*
+ * EOTIE enables irq from EOT, SUSP and TXC events. We need to set
+ * SUSP to acknowledge it later. TXC is automatically cleared
+ */
+
+ mask |= STM32H7_SPI_SR_SUSP;
+ /*
+ * DXPIE is set in Full-Duplex, one IT will be raised if TXP and RXP
+ * are set. So in case of Full-Duplex, need to poll TXP and RXP event.
+ */
+ if ((spi->cur_comm == SPI_FULL_DUPLEX) && !spi->cur_usedma)
+ mask |= STM32H7_SPI_SR_TXP | STM32H7_SPI_SR_RXP;
+
+ if (!(sr & mask)) {
+ dev_warn(spi->dev, "spurious IT (sr=0x%08x, ier=0x%08x)\n",
+ sr, ier);
+ spin_unlock_irqrestore(&spi->lock, flags);
+ return IRQ_NONE;
+ }
+
+ if (sr & STM32H7_SPI_SR_SUSP) {
+ static DEFINE_RATELIMIT_STATE(rs,
+ DEFAULT_RATELIMIT_INTERVAL * 10,
+ 1);
+ ratelimit_set_flags(&rs, RATELIMIT_MSG_ON_RELEASE);
+ if (__ratelimit(&rs))
+ dev_dbg_ratelimited(spi->dev, "Communication suspended\n");
+ if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
+ stm32h7_spi_read_rxfifo(spi);
+ /*
+ * If communication is suspended while using DMA, it means
+ * that something went wrong, so stop the current transfer
+ */
+ if (spi->cur_usedma)
+ end = true;
+ }
+
+ if (sr & STM32H7_SPI_SR_MODF) {
+ dev_warn(spi->dev, "Mode fault: transfer aborted\n");
+ end = true;
+ }
+
+ if (sr & STM32H7_SPI_SR_OVR) {
+ dev_err(spi->dev, "Overrun: RX data lost\n");
+ end = true;
+ }
+
+ if (sr & STM32H7_SPI_SR_EOT) {
+ if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
+ stm32h7_spi_read_rxfifo(spi);
+ if (!spi->cur_usedma ||
+ (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX))
+ end = true;
+ }
+
+ if (sr & STM32H7_SPI_SR_TXP)
+ if (!spi->cur_usedma && (spi->tx_buf && (spi->tx_len > 0)))
+ stm32h7_spi_write_txfifo(spi);
+
+ if (sr & STM32H7_SPI_SR_RXP)
+ if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
+ stm32h7_spi_read_rxfifo(spi);
+
+ writel_relaxed(sr & mask, spi->base + STM32H7_SPI_IFCR);
+
+ spin_unlock_irqrestore(&spi->lock, flags);
+
+ if (end) {
+ stm32h7_spi_disable(spi);
+ spi_finalize_current_transfer(master);
+ }
+
+ return IRQ_HANDLED;
+}
+
+/**
+ * stm32_spi_prepare_msg - set up the controller to transfer a single message
+ * @master: controller master interface
+ * @msg: pointer to spi message
+ */
+static int stm32_spi_prepare_msg(struct spi_master *master,
+ struct spi_message *msg)
+{
+ struct stm32_spi *spi = spi_master_get_devdata(master);
+ struct spi_device *spi_dev = msg->spi;
+ struct device_node *np = spi_dev->dev.of_node;
+ unsigned long flags;
+ u32 clrb = 0, setb = 0;
+
+ /* SPI slave device may need time between data frames */
+ spi->cur_midi = 0;
+ if (np && !of_property_read_u32(np, "st,spi-midi-ns", &spi->cur_midi))
+ dev_dbg(spi->dev, "%dns inter-data idleness\n", spi->cur_midi);
+
+ if (spi_dev->mode & SPI_CPOL)
+ setb |= spi->cfg->regs->cpol.mask;
+ else
+ clrb |= spi->cfg->regs->cpol.mask;
+
+ if (spi_dev->mode & SPI_CPHA)
+ setb |= spi->cfg->regs->cpha.mask;
+ else
+ clrb |= spi->cfg->regs->cpha.mask;
+
+ if (spi_dev->mode & SPI_LSB_FIRST)
+ setb |= spi->cfg->regs->lsb_first.mask;
+ else
+ clrb |= spi->cfg->regs->lsb_first.mask;
+
+ dev_dbg(spi->dev, "cpol=%d cpha=%d lsb_first=%d cs_high=%d\n",
+ !!(spi_dev->mode & SPI_CPOL),
+ !!(spi_dev->mode & SPI_CPHA),
+ !!(spi_dev->mode & SPI_LSB_FIRST),
+ !!(spi_dev->mode & SPI_CS_HIGH));
+
+ /* On STM32H7, messages should not exceed a maximum size setted
+ * afterward via the set_number_of_data function. In order to
+ * ensure that, split large messages into several messages
+ */
+ if (spi->cfg->set_number_of_data) {
+ int ret;
+
+ ret = spi_split_transfers_maxsize(master, msg,
+ STM32H7_SPI_TSIZE_MAX,
+ GFP_KERNEL | GFP_DMA);
+ if (ret)
+ return ret;
+ }
+
+ spin_lock_irqsave(&spi->lock, flags);
+
+ /* CPOL, CPHA and LSB FIRST bits have common register */
+ if (clrb || setb)
+ writel_relaxed(
+ (readl_relaxed(spi->base + spi->cfg->regs->cpol.reg) &
+ ~clrb) | setb,
+ spi->base + spi->cfg->regs->cpol.reg);
+
+ spin_unlock_irqrestore(&spi->lock, flags);
+
+ return 0;
+}
+
+/**
+ * stm32f4_spi_dma_tx_cb - dma callback
+ * @data: pointer to the spi controller data structure
+ *
+ * DMA callback is called when the transfer is complete for DMA TX channel.
+ */
+static void stm32f4_spi_dma_tx_cb(void *data)
+{
+ struct stm32_spi *spi = data;
+
+ if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
+ spi_finalize_current_transfer(spi->master);
+ stm32f4_spi_disable(spi);
+ }
+}
+
+/**
+ * stm32_spi_dma_rx_cb - dma callback
+ * @data: pointer to the spi controller data structure
+ *
+ * DMA callback is called when the transfer is complete for DMA RX channel.
+ */
+static void stm32_spi_dma_rx_cb(void *data)
+{
+ struct stm32_spi *spi = data;
+
+ spi_finalize_current_transfer(spi->master);
+ spi->cfg->disable(spi);
+}
+
+/**
+ * stm32_spi_dma_config - configure dma slave channel depending on current
+ * transfer bits_per_word.
+ * @spi: pointer to the spi controller data structure
+ * @dma_conf: pointer to the dma_slave_config structure
+ * @dir: direction of the dma transfer
+ */
+static void stm32_spi_dma_config(struct stm32_spi *spi,
+ struct dma_slave_config *dma_conf,
+ enum dma_transfer_direction dir)
+{
+ enum dma_slave_buswidth buswidth;
+ u32 maxburst;
+
+ if (spi->cur_bpw <= 8)
+ buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
+ else if (spi->cur_bpw <= 16)
+ buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
+ else
+ buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES;
+
+ if (spi->cfg->has_fifo) {
+ /* Valid for DMA Half or Full Fifo threshold */
+ if (spi->cur_fthlv == 2)
+ maxburst = 1;
+ else
+ maxburst = spi->cur_fthlv;
+ } else {
+ maxburst = 1;
+ }
+
+ memset(dma_conf, 0, sizeof(struct dma_slave_config));
+ dma_conf->direction = dir;
+ if (dma_conf->direction == DMA_DEV_TO_MEM) { /* RX */
+ dma_conf->src_addr = spi->phys_addr + spi->cfg->regs->rx.reg;
+ dma_conf->src_addr_width = buswidth;
+ dma_conf->src_maxburst = maxburst;
+
+ dev_dbg(spi->dev, "Rx DMA config buswidth=%d, maxburst=%d\n",
+ buswidth, maxburst);
+ } else if (dma_conf->direction == DMA_MEM_TO_DEV) { /* TX */
+ dma_conf->dst_addr = spi->phys_addr + spi->cfg->regs->tx.reg;
+ dma_conf->dst_addr_width = buswidth;
+ dma_conf->dst_maxburst = maxburst;
+
+ dev_dbg(spi->dev, "Tx DMA config buswidth=%d, maxburst=%d\n",
+ buswidth, maxburst);
+ }
+}
+
+/**
+ * stm32f4_spi_transfer_one_irq - transfer a single spi_transfer using
+ * interrupts
+ * @spi: pointer to the spi controller data structure
+ *
+ * It must returns 0 if the transfer is finished or 1 if the transfer is still
+ * in progress.
+ */
+static int stm32f4_spi_transfer_one_irq(struct stm32_spi *spi)
+{
+ unsigned long flags;
+ u32 cr2 = 0;
+
+ /* Enable the interrupts relative to the current communication mode */
+ if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
+ cr2 |= STM32F4_SPI_CR2_TXEIE;
+ } else if (spi->cur_comm == SPI_FULL_DUPLEX ||
+ spi->cur_comm == SPI_SIMPLEX_RX ||
+ spi->cur_comm == SPI_3WIRE_RX) {
+ /* In transmit-only mode, the OVR flag is set in the SR register
+ * since the received data are never read. Therefore set OVR
+ * interrupt only when rx buffer is available.
+ */
+ cr2 |= STM32F4_SPI_CR2_RXNEIE | STM32F4_SPI_CR2_ERRIE;
+ } else {
+ return -EINVAL;
+ }
+
+ spin_lock_irqsave(&spi->lock, flags);
+
+ stm32_spi_set_bits(spi, STM32F4_SPI_CR2, cr2);
+
+ stm32_spi_enable(spi);
+
+ /* starting data transfer when buffer is loaded */
+ if (spi->tx_buf)
+ stm32f4_spi_write_tx(spi);
+
+ spin_unlock_irqrestore(&spi->lock, flags);
+
+ return 1;
+}
+
+/**
+ * stm32h7_spi_transfer_one_irq - transfer a single spi_transfer using
+ * interrupts
+ * @spi: pointer to the spi controller data structure
+ *
+ * It must returns 0 if the transfer is finished or 1 if the transfer is still
+ * in progress.
+ */
+static int stm32h7_spi_transfer_one_irq(struct stm32_spi *spi)
+{
+ unsigned long flags;
+ u32 ier = 0;
+
+ /* Enable the interrupts relative to the current communication mode */
+ if (spi->tx_buf && spi->rx_buf) /* Full Duplex */
+ ier |= STM32H7_SPI_IER_DXPIE;
+ else if (spi->tx_buf) /* Half-Duplex TX dir or Simplex TX */
+ ier |= STM32H7_SPI_IER_TXPIE;
+ else if (spi->rx_buf) /* Half-Duplex RX dir or Simplex RX */
+ ier |= STM32H7_SPI_IER_RXPIE;
+
+ /* Enable the interrupts relative to the end of transfer */
+ ier |= STM32H7_SPI_IER_EOTIE | STM32H7_SPI_IER_TXTFIE |
+ STM32H7_SPI_IER_OVRIE | STM32H7_SPI_IER_MODFIE;
+
+ spin_lock_irqsave(&spi->lock, flags);
+
+ stm32_spi_enable(spi);
+
+ /* Be sure to have data in fifo before starting data transfer */
+ if (spi->tx_buf)
+ stm32h7_spi_write_txfifo(spi);
+
+ stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
+
+ writel_relaxed(ier, spi->base + STM32H7_SPI_IER);
+
+ spin_unlock_irqrestore(&spi->lock, flags);
+
+ return 1;
+}
+
+/**
+ * stm32f4_spi_transfer_one_dma_start - Set SPI driver registers to start
+ * transfer using DMA
+ * @spi: pointer to the spi controller data structure
+ */
+static void stm32f4_spi_transfer_one_dma_start(struct stm32_spi *spi)
+{
+ /* In DMA mode end of transfer is handled by DMA TX or RX callback. */
+ if (spi->cur_comm == SPI_SIMPLEX_RX || spi->cur_comm == SPI_3WIRE_RX ||
+ spi->cur_comm == SPI_FULL_DUPLEX) {
+ /*
+ * In transmit-only mode, the OVR flag is set in the SR register
+ * since the received data are never read. Therefore set OVR
+ * interrupt only when rx buffer is available.
+ */
+ stm32_spi_set_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_ERRIE);
+ }
+
+ stm32_spi_enable(spi);
+}
+
+/**
+ * stm32h7_spi_transfer_one_dma_start - Set SPI driver registers to start
+ * transfer using DMA
+ * @spi: pointer to the spi controller data structure
+ */
+static void stm32h7_spi_transfer_one_dma_start(struct stm32_spi *spi)
+{
+ uint32_t ier = STM32H7_SPI_IER_OVRIE | STM32H7_SPI_IER_MODFIE;
+
+ /* Enable the interrupts */
+ if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX)
+ ier |= STM32H7_SPI_IER_EOTIE | STM32H7_SPI_IER_TXTFIE;
+
+ stm32_spi_set_bits(spi, STM32H7_SPI_IER, ier);
+
+ stm32_spi_enable(spi);
+
+ stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
+}
+
+/**
+ * stm32_spi_transfer_one_dma - transfer a single spi_transfer using DMA
+ * @spi: pointer to the spi controller data structure
+ * @xfer: pointer to the spi_transfer structure
+ *
+ * It must returns 0 if the transfer is finished or 1 if the transfer is still
+ * in progress.
+ */
+static int stm32_spi_transfer_one_dma(struct stm32_spi *spi,
+ struct spi_transfer *xfer)
+{
+ struct dma_slave_config tx_dma_conf, rx_dma_conf;
+ struct dma_async_tx_descriptor *tx_dma_desc, *rx_dma_desc;
+ unsigned long flags;
+
+ spin_lock_irqsave(&spi->lock, flags);
+
+ rx_dma_desc = NULL;
+ if (spi->rx_buf && spi->dma_rx) {
+ stm32_spi_dma_config(spi, &rx_dma_conf, DMA_DEV_TO_MEM);
+ dmaengine_slave_config(spi->dma_rx, &rx_dma_conf);
+
+ /* Enable Rx DMA request */
+ stm32_spi_set_bits(spi, spi->cfg->regs->dma_rx_en.reg,
+ spi->cfg->regs->dma_rx_en.mask);
+
+ rx_dma_desc = dmaengine_prep_slave_sg(
+ spi->dma_rx, xfer->rx_sg.sgl,
+ xfer->rx_sg.nents,
+ rx_dma_conf.direction,
+ DMA_PREP_INTERRUPT);
+ }
+
+ tx_dma_desc = NULL;
+ if (spi->tx_buf && spi->dma_tx) {
+ stm32_spi_dma_config(spi, &tx_dma_conf, DMA_MEM_TO_DEV);
+ dmaengine_slave_config(spi->dma_tx, &tx_dma_conf);
+
+ tx_dma_desc = dmaengine_prep_slave_sg(
+ spi->dma_tx, xfer->tx_sg.sgl,
+ xfer->tx_sg.nents,
+ tx_dma_conf.direction,
+ DMA_PREP_INTERRUPT);
+ }
+
+ if ((spi->tx_buf && spi->dma_tx && !tx_dma_desc) ||
+ (spi->rx_buf && spi->dma_rx && !rx_dma_desc))
+ goto dma_desc_error;
+
+ if (spi->cur_comm == SPI_FULL_DUPLEX && (!tx_dma_desc || !rx_dma_desc))
+ goto dma_desc_error;
+
+ if (rx_dma_desc) {
+ rx_dma_desc->callback = spi->cfg->dma_rx_cb;
+ rx_dma_desc->callback_param = spi;
+
+ if (dma_submit_error(dmaengine_submit(rx_dma_desc))) {
+ dev_err(spi->dev, "Rx DMA submit failed\n");
+ goto dma_desc_error;
+ }
+ /* Enable Rx DMA channel */
+ dma_async_issue_pending(spi->dma_rx);
+ }
+
+ if (tx_dma_desc) {
+ if (spi->cur_comm == SPI_SIMPLEX_TX ||
+ spi->cur_comm == SPI_3WIRE_TX) {
+ tx_dma_desc->callback = spi->cfg->dma_tx_cb;
+ tx_dma_desc->callback_param = spi;
+ }
+
+ if (dma_submit_error(dmaengine_submit(tx_dma_desc))) {
+ dev_err(spi->dev, "Tx DMA submit failed\n");
+ goto dma_submit_error;
+ }
+ /* Enable Tx DMA channel */
+ dma_async_issue_pending(spi->dma_tx);
+
+ /* Enable Tx DMA request */
+ stm32_spi_set_bits(spi, spi->cfg->regs->dma_tx_en.reg,
+ spi->cfg->regs->dma_tx_en.mask);
+ }
+
+ spi->cfg->transfer_one_dma_start(spi);
+
+ spin_unlock_irqrestore(&spi->lock, flags);
+
+ return 1;
+
+dma_submit_error:
+ if (spi->dma_rx)
+ dmaengine_terminate_all(spi->dma_rx);
+
+dma_desc_error:
+ stm32_spi_clr_bits(spi, spi->cfg->regs->dma_rx_en.reg,
+ spi->cfg->regs->dma_rx_en.mask);
+
+ spin_unlock_irqrestore(&spi->lock, flags);
+
+ dev_info(spi->dev, "DMA issue: fall back to irq transfer\n");
+
+ spi->cur_usedma = false;
+ return spi->cfg->transfer_one_irq(spi);
+}
+
+/**
+ * stm32f4_spi_set_bpw - Configure bits per word
+ * @spi: pointer to the spi controller data structure
+ */
+static void stm32f4_spi_set_bpw(struct stm32_spi *spi)
+{
+ if (spi->cur_bpw == 16)
+ stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF);
+ else
+ stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF);
+}
+
+/**
+ * stm32h7_spi_set_bpw - configure bits per word
+ * @spi: pointer to the spi controller data structure
+ */
+static void stm32h7_spi_set_bpw(struct stm32_spi *spi)
+{
+ u32 bpw, fthlv;
+ u32 cfg1_clrb = 0, cfg1_setb = 0;
+
+ bpw = spi->cur_bpw - 1;
+
+ cfg1_clrb |= STM32H7_SPI_CFG1_DSIZE;
+ cfg1_setb |= FIELD_PREP(STM32H7_SPI_CFG1_DSIZE, bpw);
+
+ spi->cur_fthlv = stm32h7_spi_prepare_fthlv(spi, spi->cur_xferlen);
+ fthlv = spi->cur_fthlv - 1;
+
+ cfg1_clrb |= STM32H7_SPI_CFG1_FTHLV;
+ cfg1_setb |= FIELD_PREP(STM32H7_SPI_CFG1_FTHLV, fthlv);
+
+ writel_relaxed(
+ (readl_relaxed(spi->base + STM32H7_SPI_CFG1) &
+ ~cfg1_clrb) | cfg1_setb,
+ spi->base + STM32H7_SPI_CFG1);
+}
+
+/**
+ * stm32_spi_set_mbr - Configure baud rate divisor in master mode
+ * @spi: pointer to the spi controller data structure
+ * @mbrdiv: baud rate divisor value
+ */
+static void stm32_spi_set_mbr(struct stm32_spi *spi, u32 mbrdiv)
+{
+ u32 clrb = 0, setb = 0;
+
+ clrb |= spi->cfg->regs->br.mask;
+ setb |= (mbrdiv << spi->cfg->regs->br.shift) & spi->cfg->regs->br.mask;
+
+ writel_relaxed((readl_relaxed(spi->base + spi->cfg->regs->br.reg) &
+ ~clrb) | setb,
+ spi->base + spi->cfg->regs->br.reg);
+}
+
+/**
+ * stm32_spi_communication_type - return transfer communication type
+ * @spi_dev: pointer to the spi device
+ * @transfer: pointer to spi transfer
+ */
+static unsigned int stm32_spi_communication_type(struct spi_device *spi_dev,
+ struct spi_transfer *transfer)
+{
+ unsigned int type = SPI_FULL_DUPLEX;
+
+ if (spi_dev->mode & SPI_3WIRE) { /* MISO/MOSI signals shared */
+ /*
+ * SPI_3WIRE and xfer->tx_buf != NULL and xfer->rx_buf != NULL
+ * is forbidden and unvalidated by SPI subsystem so depending
+ * on the valid buffer, we can determine the direction of the
+ * transfer.
+ */
+ if (!transfer->tx_buf)
+ type = SPI_3WIRE_RX;
+ else
+ type = SPI_3WIRE_TX;
+ } else {
+ if (!transfer->tx_buf)
+ type = SPI_SIMPLEX_RX;
+ else if (!transfer->rx_buf)
+ type = SPI_SIMPLEX_TX;
+ }
+
+ return type;
+}
+
+/**
+ * stm32f4_spi_set_mode - configure communication mode
+ * @spi: pointer to the spi controller data structure
+ * @comm_type: type of communication to configure
+ */
+static int stm32f4_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
+{
+ if (comm_type == SPI_3WIRE_TX || comm_type == SPI_SIMPLEX_TX) {
+ stm32_spi_set_bits(spi, STM32F4_SPI_CR1,
+ STM32F4_SPI_CR1_BIDIMODE |
+ STM32F4_SPI_CR1_BIDIOE);
+ } else if (comm_type == SPI_FULL_DUPLEX ||
+ comm_type == SPI_SIMPLEX_RX) {
+ stm32_spi_clr_bits(spi, STM32F4_SPI_CR1,
+ STM32F4_SPI_CR1_BIDIMODE |
+ STM32F4_SPI_CR1_BIDIOE);
+ } else if (comm_type == SPI_3WIRE_RX) {
+ stm32_spi_set_bits(spi, STM32F4_SPI_CR1,
+ STM32F4_SPI_CR1_BIDIMODE);
+ stm32_spi_clr_bits(spi, STM32F4_SPI_CR1,
+ STM32F4_SPI_CR1_BIDIOE);
+ } else {
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+/**
+ * stm32h7_spi_set_mode - configure communication mode
+ * @spi: pointer to the spi controller data structure
+ * @comm_type: type of communication to configure
+ */
+static int stm32h7_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
+{
+ u32 mode;
+ u32 cfg2_clrb = 0, cfg2_setb = 0;
+
+ if (comm_type == SPI_3WIRE_RX) {
+ mode = STM32H7_SPI_HALF_DUPLEX;
+ stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
+ } else if (comm_type == SPI_3WIRE_TX) {
+ mode = STM32H7_SPI_HALF_DUPLEX;
+ stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
+ } else if (comm_type == SPI_SIMPLEX_RX) {
+ mode = STM32H7_SPI_SIMPLEX_RX;
+ } else if (comm_type == SPI_SIMPLEX_TX) {
+ mode = STM32H7_SPI_SIMPLEX_TX;
+ } else {
+ mode = STM32H7_SPI_FULL_DUPLEX;
+ }
+
+ cfg2_clrb |= STM32H7_SPI_CFG2_COMM;
+ cfg2_setb |= FIELD_PREP(STM32H7_SPI_CFG2_COMM, mode);
+
+ writel_relaxed(
+ (readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
+ ~cfg2_clrb) | cfg2_setb,
+ spi->base + STM32H7_SPI_CFG2);
+
+ return 0;
+}
+
+/**
+ * stm32h7_spi_data_idleness - configure minimum time delay inserted between two
+ * consecutive data frames in master mode
+ * @spi: pointer to the spi controller data structure
+ * @len: transfer len
+ */
+static void stm32h7_spi_data_idleness(struct stm32_spi *spi, u32 len)
+{
+ u32 cfg2_clrb = 0, cfg2_setb = 0;
+
+ cfg2_clrb |= STM32H7_SPI_CFG2_MIDI;
+ if ((len > 1) && (spi->cur_midi > 0)) {
+ u32 sck_period_ns = DIV_ROUND_UP(NSEC_PER_SEC, spi->cur_speed);
+ u32 midi = min_t(u32,
+ DIV_ROUND_UP(spi->cur_midi, sck_period_ns),
+ FIELD_GET(STM32H7_SPI_CFG2_MIDI,
+ STM32H7_SPI_CFG2_MIDI));
+
+
+ dev_dbg(spi->dev, "period=%dns, midi=%d(=%dns)\n",
+ sck_period_ns, midi, midi * sck_period_ns);
+ cfg2_setb |= FIELD_PREP(STM32H7_SPI_CFG2_MIDI, midi);
+ }
+
+ writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
+ ~cfg2_clrb) | cfg2_setb,
+ spi->base + STM32H7_SPI_CFG2);
+}
+
+/**
+ * stm32h7_spi_number_of_data - configure number of data at current transfer
+ * @spi: pointer to the spi controller data structure
+ * @nb_words: transfer length (in words)
+ */
+static int stm32h7_spi_number_of_data(struct stm32_spi *spi, u32 nb_words)
+{
+ if (nb_words <= STM32H7_SPI_TSIZE_MAX) {
+ writel_relaxed(FIELD_PREP(STM32H7_SPI_CR2_TSIZE, nb_words),
+ spi->base + STM32H7_SPI_CR2);
+ } else {
+ return -EMSGSIZE;
+ }
+
+ return 0;
+}
+
+/**
+ * stm32_spi_transfer_one_setup - common setup to transfer a single
+ * spi_transfer either using DMA or
+ * interrupts.
+ * @spi: pointer to the spi controller data structure
+ * @spi_dev: pointer to the spi device
+ * @transfer: pointer to spi transfer
+ */
+static int stm32_spi_transfer_one_setup(struct stm32_spi *spi,
+ struct spi_device *spi_dev,
+ struct spi_transfer *transfer)
+{
+ unsigned long flags;
+ unsigned int comm_type;
+ int nb_words, ret = 0;
+ int mbr;
+
+ spin_lock_irqsave(&spi->lock, flags);
+
+ spi->cur_xferlen = transfer->len;
+
+ spi->cur_bpw = transfer->bits_per_word;
+ spi->cfg->set_bpw(spi);
+
+ /* Update spi->cur_speed with real clock speed */
+ mbr = stm32_spi_prepare_mbr(spi, transfer->speed_hz,
+ spi->cfg->baud_rate_div_min,
+ spi->cfg->baud_rate_div_max);
+ if (mbr < 0) {
+ ret = mbr;
+ goto out;
+ }
+
+ transfer->speed_hz = spi->cur_speed;
+ stm32_spi_set_mbr(spi, mbr);
+
+ comm_type = stm32_spi_communication_type(spi_dev, transfer);
+ ret = spi->cfg->set_mode(spi, comm_type);
+ if (ret < 0)
+ goto out;
+
+ spi->cur_comm = comm_type;
+
+ if (spi->cfg->set_data_idleness)
+ spi->cfg->set_data_idleness(spi, transfer->len);
+
+ if (spi->cur_bpw <= 8)
+ nb_words = transfer->len;
+ else if (spi->cur_bpw <= 16)
+ nb_words = DIV_ROUND_UP(transfer->len * 8, 16);
+ else
+ nb_words = DIV_ROUND_UP(transfer->len * 8, 32);
+
+ if (spi->cfg->set_number_of_data) {
+ ret = spi->cfg->set_number_of_data(spi, nb_words);
+ if (ret < 0)
+ goto out;
+ }
+
+ dev_dbg(spi->dev, "transfer communication mode set to %d\n",
+ spi->cur_comm);
+ dev_dbg(spi->dev,
+ "data frame of %d-bit, data packet of %d data frames\n",
+ spi->cur_bpw, spi->cur_fthlv);
+ dev_dbg(spi->dev, "speed set to %dHz\n", spi->cur_speed);
+ dev_dbg(spi->dev, "transfer of %d bytes (%d data frames)\n",
+ spi->cur_xferlen, nb_words);
+ dev_dbg(spi->dev, "dma %s\n",
+ (spi->cur_usedma) ? "enabled" : "disabled");
+
+out:
+ spin_unlock_irqrestore(&spi->lock, flags);
+
+ return ret;
+}
+
+/**
+ * stm32_spi_transfer_one - transfer a single spi_transfer
+ * @master: controller master interface
+ * @spi_dev: pointer to the spi device
+ * @transfer: pointer to spi transfer
+ *
+ * It must return 0 if the transfer is finished or 1 if the transfer is still
+ * in progress.
+ */
+static int stm32_spi_transfer_one(struct spi_master *master,
+ struct spi_device *spi_dev,
+ struct spi_transfer *transfer)
+{
+ struct stm32_spi *spi = spi_master_get_devdata(master);
+ int ret;
+
+ spi->tx_buf = transfer->tx_buf;
+ spi->rx_buf = transfer->rx_buf;
+ spi->tx_len = spi->tx_buf ? transfer->len : 0;
+ spi->rx_len = spi->rx_buf ? transfer->len : 0;
+
+ spi->cur_usedma = (master->can_dma &&
+ master->can_dma(master, spi_dev, transfer));
+
+ ret = stm32_spi_transfer_one_setup(spi, spi_dev, transfer);
+ if (ret) {
+ dev_err(spi->dev, "SPI transfer setup failed\n");
+ return ret;
+ }
+
+ if (spi->cur_usedma)
+ return stm32_spi_transfer_one_dma(spi, transfer);
+ else
+ return spi->cfg->transfer_one_irq(spi);
+}
+
+/**
+ * stm32_spi_unprepare_msg - relax the hardware
+ * @master: controller master interface
+ * @msg: pointer to the spi message
+ */
+static int stm32_spi_unprepare_msg(struct spi_master *master,
+ struct spi_message *msg)
+{
+ struct stm32_spi *spi = spi_master_get_devdata(master);
+
+ spi->cfg->disable(spi);
+
+ return 0;
+}
+
+/**
+ * stm32f4_spi_config - Configure SPI controller as SPI master
+ * @spi: pointer to the spi controller data structure
+ */
+static int stm32f4_spi_config(struct stm32_spi *spi)
+{
+ unsigned long flags;
+
+ spin_lock_irqsave(&spi->lock, flags);
+
+ /* Ensure I2SMOD bit is kept cleared */
+ stm32_spi_clr_bits(spi, STM32F4_SPI_I2SCFGR,
+ STM32F4_SPI_I2SCFGR_I2SMOD);
+
+ /*
+ * - SS input value high
+ * - transmitter half duplex direction
+ * - Set the master mode (default Motorola mode)
+ * - Consider 1 master/n slaves configuration and
+ * SS input value is determined by the SSI bit
+ */
+ stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SSI |
+ STM32F4_SPI_CR1_BIDIOE |
+ STM32F4_SPI_CR1_MSTR |
+ STM32F4_SPI_CR1_SSM);
+
+ spin_unlock_irqrestore(&spi->lock, flags);
+
+ return 0;
+}
+
+/**
+ * stm32h7_spi_config - Configure SPI controller as SPI master
+ * @spi: pointer to the spi controller data structure
+ */
+static int stm32h7_spi_config(struct stm32_spi *spi)
+{
+ unsigned long flags;
+
+ spin_lock_irqsave(&spi->lock, flags);
+
+ /* Ensure I2SMOD bit is kept cleared */
+ stm32_spi_clr_bits(spi, STM32H7_SPI_I2SCFGR,
+ STM32H7_SPI_I2SCFGR_I2SMOD);
+
+ /*
+ * - SS input value high
+ * - transmitter half duplex direction
+ * - automatic communication suspend when RX-Fifo is full
+ */
+ stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SSI |
+ STM32H7_SPI_CR1_HDDIR |
+ STM32H7_SPI_CR1_MASRX);
+
+ /*
+ * - Set the master mode (default Motorola mode)
+ * - Consider 1 master/n slaves configuration and
+ * SS input value is determined by the SSI bit
+ * - keep control of all associated GPIOs
+ */
+ stm32_spi_set_bits(spi, STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_MASTER |
+ STM32H7_SPI_CFG2_SSM |
+ STM32H7_SPI_CFG2_AFCNTR);
+
+ spin_unlock_irqrestore(&spi->lock, flags);
+
+ return 0;
+}
+
+static const struct stm32_spi_cfg stm32f4_spi_cfg = {
+ .regs = &stm32f4_spi_regspec,
+ .get_bpw_mask = stm32f4_spi_get_bpw_mask,
+ .disable = stm32f4_spi_disable,
+ .config = stm32f4_spi_config,
+ .set_bpw = stm32f4_spi_set_bpw,
+ .set_mode = stm32f4_spi_set_mode,
+ .transfer_one_dma_start = stm32f4_spi_transfer_one_dma_start,
+ .dma_tx_cb = stm32f4_spi_dma_tx_cb,
+ .dma_rx_cb = stm32_spi_dma_rx_cb,
+ .transfer_one_irq = stm32f4_spi_transfer_one_irq,
+ .irq_handler_event = stm32f4_spi_irq_event,
+ .irq_handler_thread = stm32f4_spi_irq_thread,
+ .baud_rate_div_min = STM32F4_SPI_BR_DIV_MIN,
+ .baud_rate_div_max = STM32F4_SPI_BR_DIV_MAX,
+ .has_fifo = false,
+ .flags = SPI_MASTER_MUST_TX,
+};
+
+static const struct stm32_spi_cfg stm32h7_spi_cfg = {
+ .regs = &stm32h7_spi_regspec,
+ .get_fifo_size = stm32h7_spi_get_fifo_size,
+ .get_bpw_mask = stm32h7_spi_get_bpw_mask,
+ .disable = stm32h7_spi_disable,
+ .config = stm32h7_spi_config,
+ .set_bpw = stm32h7_spi_set_bpw,
+ .set_mode = stm32h7_spi_set_mode,
+ .set_data_idleness = stm32h7_spi_data_idleness,
+ .set_number_of_data = stm32h7_spi_number_of_data,
+ .transfer_one_dma_start = stm32h7_spi_transfer_one_dma_start,
+ .dma_rx_cb = stm32_spi_dma_rx_cb,
+ /*
+ * dma_tx_cb is not necessary since in case of TX, dma is followed by
+ * SPI access hence handling is performed within the SPI interrupt
+ */
+ .transfer_one_irq = stm32h7_spi_transfer_one_irq,
+ .irq_handler_thread = stm32h7_spi_irq_thread,
+ .baud_rate_div_min = STM32H7_SPI_MBR_DIV_MIN,
+ .baud_rate_div_max = STM32H7_SPI_MBR_DIV_MAX,
+ .has_fifo = true,
+};
+
+static const struct of_device_id stm32_spi_of_match[] = {
+ { .compatible = "st,stm32h7-spi", .data = (void *)&stm32h7_spi_cfg },
+ { .compatible = "st,stm32f4-spi", .data = (void *)&stm32f4_spi_cfg },
+ {},
+};
+MODULE_DEVICE_TABLE(of, stm32_spi_of_match);
+
+static int stm32_spi_probe(struct platform_device *pdev)
+{
+ struct spi_master *master;
+ struct stm32_spi *spi;
+ struct resource *res;
+ struct reset_control *rst;
+ int ret;
+
+ master = devm_spi_alloc_master(&pdev->dev, sizeof(struct stm32_spi));
+ if (!master) {
+ dev_err(&pdev->dev, "spi master allocation failed\n");
+ return -ENOMEM;
+ }
+ platform_set_drvdata(pdev, master);
+
+ spi = spi_master_get_devdata(master);
+ spi->dev = &pdev->dev;
+ spi->master = master;
+ spin_lock_init(&spi->lock);
+
+ spi->cfg = (const struct stm32_spi_cfg *)
+ of_match_device(pdev->dev.driver->of_match_table,
+ &pdev->dev)->data;
+
+ res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+ spi->base = devm_ioremap_resource(&pdev->dev, res);
+ if (IS_ERR(spi->base))
+ return PTR_ERR(spi->base);
+
+ spi->phys_addr = (dma_addr_t)res->start;
+
+ spi->irq = platform_get_irq(pdev, 0);
+ if (spi->irq <= 0)
+ return dev_err_probe(&pdev->dev, spi->irq,
+ "failed to get irq\n");
+
+ ret = devm_request_threaded_irq(&pdev->dev, spi->irq,
+ spi->cfg->irq_handler_event,
+ spi->cfg->irq_handler_thread,
+ IRQF_ONESHOT, pdev->name, master);
+ if (ret) {
+ dev_err(&pdev->dev, "irq%d request failed: %d\n", spi->irq,
+ ret);
+ return ret;
+ }
+
+ spi->clk = devm_clk_get(&pdev->dev, NULL);
+ if (IS_ERR(spi->clk)) {
+ ret = PTR_ERR(spi->clk);
+ dev_err(&pdev->dev, "clk get failed: %d\n", ret);
+ return ret;
+ }
+
+ ret = clk_prepare_enable(spi->clk);
+ if (ret) {
+ dev_err(&pdev->dev, "clk enable failed: %d\n", ret);
+ return ret;
+ }
+ spi->clk_rate = clk_get_rate(spi->clk);
+ if (!spi->clk_rate) {
+ dev_err(&pdev->dev, "clk rate = 0\n");
+ ret = -EINVAL;
+ goto err_clk_disable;
+ }
+
+ rst = devm_reset_control_get_optional_exclusive(&pdev->dev, NULL);
+ if (rst) {
+ if (IS_ERR(rst)) {
+ ret = dev_err_probe(&pdev->dev, PTR_ERR(rst),
+ "failed to get reset\n");
+ goto err_clk_disable;
+ }
+
+ reset_control_assert(rst);
+ udelay(2);
+ reset_control_deassert(rst);
+ }
+
+ if (spi->cfg->has_fifo)
+ spi->fifo_size = spi->cfg->get_fifo_size(spi);
+
+ ret = spi->cfg->config(spi);
+ if (ret) {
+ dev_err(&pdev->dev, "controller configuration failed: %d\n",
+ ret);
+ goto err_clk_disable;
+ }
+
+ master->dev.of_node = pdev->dev.of_node;
+ master->auto_runtime_pm = true;
+ master->bus_num = pdev->id;
+ master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST |
+ SPI_3WIRE;
+ master->bits_per_word_mask = spi->cfg->get_bpw_mask(spi);
+ master->max_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_min;
+ master->min_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_max;
+ master->use_gpio_descriptors = true;
+ master->prepare_message = stm32_spi_prepare_msg;
+ master->transfer_one = stm32_spi_transfer_one;
+ master->unprepare_message = stm32_spi_unprepare_msg;
+ master->flags = spi->cfg->flags;
+
+ spi->dma_tx = dma_request_chan(spi->dev, "tx");
+ if (IS_ERR(spi->dma_tx)) {
+ ret = PTR_ERR(spi->dma_tx);
+ spi->dma_tx = NULL;
+ if (ret == -EPROBE_DEFER)
+ goto err_clk_disable;
+
+ dev_warn(&pdev->dev, "failed to request tx dma channel\n");
+ } else {
+ master->dma_tx = spi->dma_tx;
+ }
+
+ spi->dma_rx = dma_request_chan(spi->dev, "rx");
+ if (IS_ERR(spi->dma_rx)) {
+ ret = PTR_ERR(spi->dma_rx);
+ spi->dma_rx = NULL;
+ if (ret == -EPROBE_DEFER)
+ goto err_dma_release;
+
+ dev_warn(&pdev->dev, "failed to request rx dma channel\n");
+ } else {
+ master->dma_rx = spi->dma_rx;
+ }
+
+ if (spi->dma_tx || spi->dma_rx)
+ master->can_dma = stm32_spi_can_dma;
+
+ pm_runtime_set_autosuspend_delay(&pdev->dev,
+ STM32_SPI_AUTOSUSPEND_DELAY);
+ pm_runtime_use_autosuspend(&pdev->dev);
+ pm_runtime_set_active(&pdev->dev);
+ pm_runtime_get_noresume(&pdev->dev);
+ pm_runtime_enable(&pdev->dev);
+
+ ret = spi_register_master(master);
+ if (ret) {
+ dev_err(&pdev->dev, "spi master registration failed: %d\n",
+ ret);
+ goto err_pm_disable;
+ }
+
+ pm_runtime_mark_last_busy(&pdev->dev);
+ pm_runtime_put_autosuspend(&pdev->dev);
+
+ dev_info(&pdev->dev, "driver initialized\n");
+
+ return 0;
+
+err_pm_disable:
+ pm_runtime_disable(&pdev->dev);
+ pm_runtime_put_noidle(&pdev->dev);
+ pm_runtime_set_suspended(&pdev->dev);
+ pm_runtime_dont_use_autosuspend(&pdev->dev);
+err_dma_release:
+ if (spi->dma_tx)
+ dma_release_channel(spi->dma_tx);
+ if (spi->dma_rx)
+ dma_release_channel(spi->dma_rx);
+err_clk_disable:
+ clk_disable_unprepare(spi->clk);
+
+ return ret;
+}
+
+static int stm32_spi_remove(struct platform_device *pdev)
+{
+ struct spi_master *master = platform_get_drvdata(pdev);
+ struct stm32_spi *spi = spi_master_get_devdata(master);
+
+ pm_runtime_get_sync(&pdev->dev);
+
+ spi_unregister_master(master);
+ spi->cfg->disable(spi);
+
+ pm_runtime_disable(&pdev->dev);
+ pm_runtime_put_noidle(&pdev->dev);
+ pm_runtime_set_suspended(&pdev->dev);
+ pm_runtime_dont_use_autosuspend(&pdev->dev);
+
+ if (master->dma_tx)
+ dma_release_channel(master->dma_tx);
+ if (master->dma_rx)
+ dma_release_channel(master->dma_rx);
+
+ clk_disable_unprepare(spi->clk);
+
+
+ pinctrl_pm_select_sleep_state(&pdev->dev);
+
+ return 0;
+}
+
+static int __maybe_unused stm32_spi_runtime_suspend(struct device *dev)
+{
+ struct spi_master *master = dev_get_drvdata(dev);
+ struct stm32_spi *spi = spi_master_get_devdata(master);
+
+ clk_disable_unprepare(spi->clk);
+
+ return pinctrl_pm_select_sleep_state(dev);
+}
+
+static int __maybe_unused stm32_spi_runtime_resume(struct device *dev)
+{
+ struct spi_master *master = dev_get_drvdata(dev);
+ struct stm32_spi *spi = spi_master_get_devdata(master);
+ int ret;
+
+ ret = pinctrl_pm_select_default_state(dev);
+ if (ret)
+ return ret;
+
+ return clk_prepare_enable(spi->clk);
+}
+
+static int __maybe_unused stm32_spi_suspend(struct device *dev)
+{
+ struct spi_master *master = dev_get_drvdata(dev);
+ int ret;
+
+ ret = spi_master_suspend(master);
+ if (ret)
+ return ret;
+
+ return pm_runtime_force_suspend(dev);
+}
+
+static int __maybe_unused stm32_spi_resume(struct device *dev)
+{
+ struct spi_master *master = dev_get_drvdata(dev);
+ struct stm32_spi *spi = spi_master_get_devdata(master);
+ int ret;
+
+ ret = pm_runtime_force_resume(dev);
+ if (ret)
+ return ret;
+
+ ret = spi_master_resume(master);
+ if (ret) {
+ clk_disable_unprepare(spi->clk);
+ return ret;
+ }
+
+ ret = pm_runtime_resume_and_get(dev);
+ if (ret < 0) {
+ dev_err(dev, "Unable to power device:%d\n", ret);
+ return ret;
+ }
+
+ spi->cfg->config(spi);
+
+ pm_runtime_mark_last_busy(dev);
+ pm_runtime_put_autosuspend(dev);
+
+ return 0;
+}
+
+static const struct dev_pm_ops stm32_spi_pm_ops = {
+ SET_SYSTEM_SLEEP_PM_OPS(stm32_spi_suspend, stm32_spi_resume)
+ SET_RUNTIME_PM_OPS(stm32_spi_runtime_suspend,
+ stm32_spi_runtime_resume, NULL)
+};
+
+static struct platform_driver stm32_spi_driver = {
+ .probe = stm32_spi_probe,
+ .remove = stm32_spi_remove,
+ .driver = {
+ .name = DRIVER_NAME,
+ .pm = &stm32_spi_pm_ops,
+ .of_match_table = stm32_spi_of_match,
+ },
+};
+
+module_platform_driver(stm32_spi_driver);
+
+MODULE_ALIAS("platform:" DRIVER_NAME);
+MODULE_DESCRIPTION("STMicroelectronics STM32 SPI Controller driver");
+MODULE_AUTHOR("Amelie Delaunay <amelie.delaunay@st.com>");
+MODULE_LICENSE("GPL v2");