summaryrefslogtreecommitdiffstats
path: root/fs/btrfs/disk-io.c
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--fs/btrfs/disk-io.c5355
1 files changed, 5355 insertions, 0 deletions
diff --git a/fs/btrfs/disk-io.c b/fs/btrfs/disk-io.c
new file mode 100644
index 000000000..40152458e
--- /dev/null
+++ b/fs/btrfs/disk-io.c
@@ -0,0 +1,5355 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (C) 2007 Oracle. All rights reserved.
+ */
+
+#include <linux/fs.h>
+#include <linux/blkdev.h>
+#include <linux/radix-tree.h>
+#include <linux/writeback.h>
+#include <linux/workqueue.h>
+#include <linux/kthread.h>
+#include <linux/slab.h>
+#include <linux/migrate.h>
+#include <linux/ratelimit.h>
+#include <linux/uuid.h>
+#include <linux/semaphore.h>
+#include <linux/error-injection.h>
+#include <linux/crc32c.h>
+#include <linux/sched/mm.h>
+#include <asm/unaligned.h>
+#include <crypto/hash.h>
+#include "ctree.h"
+#include "disk-io.h"
+#include "transaction.h"
+#include "btrfs_inode.h"
+#include "volumes.h"
+#include "print-tree.h"
+#include "locking.h"
+#include "tree-log.h"
+#include "free-space-cache.h"
+#include "free-space-tree.h"
+#include "check-integrity.h"
+#include "rcu-string.h"
+#include "dev-replace.h"
+#include "raid56.h"
+#include "sysfs.h"
+#include "qgroup.h"
+#include "compression.h"
+#include "tree-checker.h"
+#include "ref-verify.h"
+#include "block-group.h"
+#include "discard.h"
+#include "space-info.h"
+#include "zoned.h"
+#include "subpage.h"
+
+#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
+ BTRFS_HEADER_FLAG_RELOC |\
+ BTRFS_SUPER_FLAG_ERROR |\
+ BTRFS_SUPER_FLAG_SEEDING |\
+ BTRFS_SUPER_FLAG_METADUMP |\
+ BTRFS_SUPER_FLAG_METADUMP_V2)
+
+static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
+static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
+ struct btrfs_fs_info *fs_info);
+static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
+static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
+ struct extent_io_tree *dirty_pages,
+ int mark);
+static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
+ struct extent_io_tree *pinned_extents);
+static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
+static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
+
+static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
+{
+ if (fs_info->csum_shash)
+ crypto_free_shash(fs_info->csum_shash);
+}
+
+/*
+ * async submit bios are used to offload expensive checksumming
+ * onto the worker threads. They checksum file and metadata bios
+ * just before they are sent down the IO stack.
+ */
+struct async_submit_bio {
+ struct inode *inode;
+ struct bio *bio;
+ extent_submit_bio_start_t *submit_bio_start;
+ int mirror_num;
+
+ /* Optional parameter for submit_bio_start used by direct io */
+ u64 dio_file_offset;
+ struct btrfs_work work;
+ blk_status_t status;
+};
+
+/*
+ * Compute the csum of a btree block and store the result to provided buffer.
+ */
+static void csum_tree_block(struct extent_buffer *buf, u8 *result)
+{
+ struct btrfs_fs_info *fs_info = buf->fs_info;
+ const int num_pages = num_extent_pages(buf);
+ const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
+ SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
+ char *kaddr;
+ int i;
+
+ shash->tfm = fs_info->csum_shash;
+ crypto_shash_init(shash);
+ kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start);
+ crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
+ first_page_part - BTRFS_CSUM_SIZE);
+
+ for (i = 1; i < num_pages && INLINE_EXTENT_BUFFER_PAGES > 1; i++) {
+ kaddr = page_address(buf->pages[i]);
+ crypto_shash_update(shash, kaddr, PAGE_SIZE);
+ }
+ memset(result, 0, BTRFS_CSUM_SIZE);
+ crypto_shash_final(shash, result);
+}
+
+/*
+ * we can't consider a given block up to date unless the transid of the
+ * block matches the transid in the parent node's pointer. This is how we
+ * detect blocks that either didn't get written at all or got written
+ * in the wrong place.
+ */
+static int verify_parent_transid(struct extent_io_tree *io_tree,
+ struct extent_buffer *eb, u64 parent_transid,
+ int atomic)
+{
+ struct extent_state *cached_state = NULL;
+ int ret;
+
+ if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
+ return 0;
+
+ if (atomic)
+ return -EAGAIN;
+
+ lock_extent(io_tree, eb->start, eb->start + eb->len - 1, &cached_state);
+ if (extent_buffer_uptodate(eb) &&
+ btrfs_header_generation(eb) == parent_transid) {
+ ret = 0;
+ goto out;
+ }
+ btrfs_err_rl(eb->fs_info,
+"parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
+ eb->start, eb->read_mirror,
+ parent_transid, btrfs_header_generation(eb));
+ ret = 1;
+ clear_extent_buffer_uptodate(eb);
+out:
+ unlock_extent(io_tree, eb->start, eb->start + eb->len - 1,
+ &cached_state);
+ return ret;
+}
+
+static bool btrfs_supported_super_csum(u16 csum_type)
+{
+ switch (csum_type) {
+ case BTRFS_CSUM_TYPE_CRC32:
+ case BTRFS_CSUM_TYPE_XXHASH:
+ case BTRFS_CSUM_TYPE_SHA256:
+ case BTRFS_CSUM_TYPE_BLAKE2:
+ return true;
+ default:
+ return false;
+ }
+}
+
+/*
+ * Return 0 if the superblock checksum type matches the checksum value of that
+ * algorithm. Pass the raw disk superblock data.
+ */
+int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
+ const struct btrfs_super_block *disk_sb)
+{
+ char result[BTRFS_CSUM_SIZE];
+ SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
+
+ shash->tfm = fs_info->csum_shash;
+
+ /*
+ * The super_block structure does not span the whole
+ * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
+ * filled with zeros and is included in the checksum.
+ */
+ crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE,
+ BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
+
+ if (memcmp(disk_sb->csum, result, fs_info->csum_size))
+ return 1;
+
+ return 0;
+}
+
+int btrfs_verify_level_key(struct extent_buffer *eb, int level,
+ struct btrfs_key *first_key, u64 parent_transid)
+{
+ struct btrfs_fs_info *fs_info = eb->fs_info;
+ int found_level;
+ struct btrfs_key found_key;
+ int ret;
+
+ found_level = btrfs_header_level(eb);
+ if (found_level != level) {
+ WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
+ KERN_ERR "BTRFS: tree level check failed\n");
+ btrfs_err(fs_info,
+"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
+ eb->start, level, found_level);
+ return -EIO;
+ }
+
+ if (!first_key)
+ return 0;
+
+ /*
+ * For live tree block (new tree blocks in current transaction),
+ * we need proper lock context to avoid race, which is impossible here.
+ * So we only checks tree blocks which is read from disk, whose
+ * generation <= fs_info->last_trans_committed.
+ */
+ if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
+ return 0;
+
+ /* We have @first_key, so this @eb must have at least one item */
+ if (btrfs_header_nritems(eb) == 0) {
+ btrfs_err(fs_info,
+ "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
+ eb->start);
+ WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
+ return -EUCLEAN;
+ }
+
+ if (found_level)
+ btrfs_node_key_to_cpu(eb, &found_key, 0);
+ else
+ btrfs_item_key_to_cpu(eb, &found_key, 0);
+ ret = btrfs_comp_cpu_keys(first_key, &found_key);
+
+ if (ret) {
+ WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
+ KERN_ERR "BTRFS: tree first key check failed\n");
+ btrfs_err(fs_info,
+"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
+ eb->start, parent_transid, first_key->objectid,
+ first_key->type, first_key->offset,
+ found_key.objectid, found_key.type,
+ found_key.offset);
+ }
+ return ret;
+}
+
+/*
+ * helper to read a given tree block, doing retries as required when
+ * the checksums don't match and we have alternate mirrors to try.
+ *
+ * @parent_transid: expected transid, skip check if 0
+ * @level: expected level, mandatory check
+ * @first_key: expected key of first slot, skip check if NULL
+ */
+int btrfs_read_extent_buffer(struct extent_buffer *eb,
+ u64 parent_transid, int level,
+ struct btrfs_key *first_key)
+{
+ struct btrfs_fs_info *fs_info = eb->fs_info;
+ struct extent_io_tree *io_tree;
+ int failed = 0;
+ int ret;
+ int num_copies = 0;
+ int mirror_num = 0;
+ int failed_mirror = 0;
+
+ io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
+ while (1) {
+ clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
+ ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
+ if (!ret) {
+ if (verify_parent_transid(io_tree, eb,
+ parent_transid, 0))
+ ret = -EIO;
+ else if (btrfs_verify_level_key(eb, level,
+ first_key, parent_transid))
+ ret = -EUCLEAN;
+ else
+ break;
+ }
+
+ num_copies = btrfs_num_copies(fs_info,
+ eb->start, eb->len);
+ if (num_copies == 1)
+ break;
+
+ if (!failed_mirror) {
+ failed = 1;
+ failed_mirror = eb->read_mirror;
+ }
+
+ mirror_num++;
+ if (mirror_num == failed_mirror)
+ mirror_num++;
+
+ if (mirror_num > num_copies)
+ break;
+ }
+
+ if (failed && !ret && failed_mirror)
+ btrfs_repair_eb_io_failure(eb, failed_mirror);
+
+ return ret;
+}
+
+static int csum_one_extent_buffer(struct extent_buffer *eb)
+{
+ struct btrfs_fs_info *fs_info = eb->fs_info;
+ u8 result[BTRFS_CSUM_SIZE];
+ int ret;
+
+ ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
+ offsetof(struct btrfs_header, fsid),
+ BTRFS_FSID_SIZE) == 0);
+ csum_tree_block(eb, result);
+
+ if (btrfs_header_level(eb))
+ ret = btrfs_check_node(eb);
+ else
+ ret = btrfs_check_leaf_full(eb);
+
+ if (ret < 0)
+ goto error;
+
+ /*
+ * Also check the generation, the eb reached here must be newer than
+ * last committed. Or something seriously wrong happened.
+ */
+ if (unlikely(btrfs_header_generation(eb) <= fs_info->last_trans_committed)) {
+ ret = -EUCLEAN;
+ btrfs_err(fs_info,
+ "block=%llu bad generation, have %llu expect > %llu",
+ eb->start, btrfs_header_generation(eb),
+ fs_info->last_trans_committed);
+ goto error;
+ }
+ write_extent_buffer(eb, result, 0, fs_info->csum_size);
+
+ return 0;
+
+error:
+ btrfs_print_tree(eb, 0);
+ btrfs_err(fs_info, "block=%llu write time tree block corruption detected",
+ eb->start);
+ /*
+ * Be noisy if this is an extent buffer from a log tree. We don't abort
+ * a transaction in case there's a bad log tree extent buffer, we just
+ * fallback to a transaction commit. Still we want to know when there is
+ * a bad log tree extent buffer, as that may signal a bug somewhere.
+ */
+ WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG) ||
+ btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID);
+ return ret;
+}
+
+/* Checksum all dirty extent buffers in one bio_vec */
+static int csum_dirty_subpage_buffers(struct btrfs_fs_info *fs_info,
+ struct bio_vec *bvec)
+{
+ struct page *page = bvec->bv_page;
+ u64 bvec_start = page_offset(page) + bvec->bv_offset;
+ u64 cur;
+ int ret = 0;
+
+ for (cur = bvec_start; cur < bvec_start + bvec->bv_len;
+ cur += fs_info->nodesize) {
+ struct extent_buffer *eb;
+ bool uptodate;
+
+ eb = find_extent_buffer(fs_info, cur);
+ uptodate = btrfs_subpage_test_uptodate(fs_info, page, cur,
+ fs_info->nodesize);
+
+ /* A dirty eb shouldn't disappear from buffer_radix */
+ if (WARN_ON(!eb))
+ return -EUCLEAN;
+
+ if (WARN_ON(cur != btrfs_header_bytenr(eb))) {
+ free_extent_buffer(eb);
+ return -EUCLEAN;
+ }
+ if (WARN_ON(!uptodate)) {
+ free_extent_buffer(eb);
+ return -EUCLEAN;
+ }
+
+ ret = csum_one_extent_buffer(eb);
+ free_extent_buffer(eb);
+ if (ret < 0)
+ return ret;
+ }
+ return ret;
+}
+
+/*
+ * Checksum a dirty tree block before IO. This has extra checks to make sure
+ * we only fill in the checksum field in the first page of a multi-page block.
+ * For subpage extent buffers we need bvec to also read the offset in the page.
+ */
+static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct bio_vec *bvec)
+{
+ struct page *page = bvec->bv_page;
+ u64 start = page_offset(page);
+ u64 found_start;
+ struct extent_buffer *eb;
+
+ if (fs_info->nodesize < PAGE_SIZE)
+ return csum_dirty_subpage_buffers(fs_info, bvec);
+
+ eb = (struct extent_buffer *)page->private;
+ if (page != eb->pages[0])
+ return 0;
+
+ found_start = btrfs_header_bytenr(eb);
+
+ if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) {
+ WARN_ON(found_start != 0);
+ return 0;
+ }
+
+ /*
+ * Please do not consolidate these warnings into a single if.
+ * It is useful to know what went wrong.
+ */
+ if (WARN_ON(found_start != start))
+ return -EUCLEAN;
+ if (WARN_ON(!PageUptodate(page)))
+ return -EUCLEAN;
+
+ return csum_one_extent_buffer(eb);
+}
+
+static int check_tree_block_fsid(struct extent_buffer *eb)
+{
+ struct btrfs_fs_info *fs_info = eb->fs_info;
+ struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
+ u8 fsid[BTRFS_FSID_SIZE];
+ u8 *metadata_uuid;
+
+ read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
+ BTRFS_FSID_SIZE);
+ /*
+ * Checking the incompat flag is only valid for the current fs. For
+ * seed devices it's forbidden to have their uuid changed so reading
+ * ->fsid in this case is fine
+ */
+ if (btrfs_fs_incompat(fs_info, METADATA_UUID))
+ metadata_uuid = fs_devices->metadata_uuid;
+ else
+ metadata_uuid = fs_devices->fsid;
+
+ if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE))
+ return 0;
+
+ list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
+ if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
+ return 0;
+
+ return 1;
+}
+
+/* Do basic extent buffer checks at read time */
+static int validate_extent_buffer(struct extent_buffer *eb)
+{
+ struct btrfs_fs_info *fs_info = eb->fs_info;
+ u64 found_start;
+ const u32 csum_size = fs_info->csum_size;
+ u8 found_level;
+ u8 result[BTRFS_CSUM_SIZE];
+ const u8 *header_csum;
+ int ret = 0;
+
+ found_start = btrfs_header_bytenr(eb);
+ if (found_start != eb->start) {
+ btrfs_err_rl(fs_info,
+ "bad tree block start, mirror %u want %llu have %llu",
+ eb->read_mirror, eb->start, found_start);
+ ret = -EIO;
+ goto out;
+ }
+ if (check_tree_block_fsid(eb)) {
+ btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u",
+ eb->start, eb->read_mirror);
+ ret = -EIO;
+ goto out;
+ }
+ found_level = btrfs_header_level(eb);
+ if (found_level >= BTRFS_MAX_LEVEL) {
+ btrfs_err(fs_info,
+ "bad tree block level, mirror %u level %d on logical %llu",
+ eb->read_mirror, btrfs_header_level(eb), eb->start);
+ ret = -EIO;
+ goto out;
+ }
+
+ csum_tree_block(eb, result);
+ header_csum = page_address(eb->pages[0]) +
+ get_eb_offset_in_page(eb, offsetof(struct btrfs_header, csum));
+
+ if (memcmp(result, header_csum, csum_size) != 0) {
+ btrfs_warn_rl(fs_info,
+"checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d",
+ eb->start, eb->read_mirror,
+ CSUM_FMT_VALUE(csum_size, header_csum),
+ CSUM_FMT_VALUE(csum_size, result),
+ btrfs_header_level(eb));
+ ret = -EUCLEAN;
+ goto out;
+ }
+
+ /*
+ * If this is a leaf block and it is corrupt, set the corrupt bit so
+ * that we don't try and read the other copies of this block, just
+ * return -EIO.
+ */
+ if (found_level == 0 && btrfs_check_leaf_full(eb)) {
+ set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
+ ret = -EIO;
+ }
+
+ if (found_level > 0 && btrfs_check_node(eb))
+ ret = -EIO;
+
+ if (!ret)
+ set_extent_buffer_uptodate(eb);
+ else
+ btrfs_err(fs_info,
+ "read time tree block corruption detected on logical %llu mirror %u",
+ eb->start, eb->read_mirror);
+out:
+ return ret;
+}
+
+static int validate_subpage_buffer(struct page *page, u64 start, u64 end,
+ int mirror)
+{
+ struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
+ struct extent_buffer *eb;
+ bool reads_done;
+ int ret = 0;
+
+ /*
+ * We don't allow bio merge for subpage metadata read, so we should
+ * only get one eb for each endio hook.
+ */
+ ASSERT(end == start + fs_info->nodesize - 1);
+ ASSERT(PagePrivate(page));
+
+ eb = find_extent_buffer(fs_info, start);
+ /*
+ * When we are reading one tree block, eb must have been inserted into
+ * the radix tree. If not, something is wrong.
+ */
+ ASSERT(eb);
+
+ reads_done = atomic_dec_and_test(&eb->io_pages);
+ /* Subpage read must finish in page read */
+ ASSERT(reads_done);
+
+ eb->read_mirror = mirror;
+ if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
+ ret = -EIO;
+ goto err;
+ }
+ ret = validate_extent_buffer(eb);
+ if (ret < 0)
+ goto err;
+
+ set_extent_buffer_uptodate(eb);
+
+ free_extent_buffer(eb);
+ return ret;
+err:
+ /*
+ * end_bio_extent_readpage decrements io_pages in case of error,
+ * make sure it has something to decrement.
+ */
+ atomic_inc(&eb->io_pages);
+ clear_extent_buffer_uptodate(eb);
+ free_extent_buffer(eb);
+ return ret;
+}
+
+int btrfs_validate_metadata_buffer(struct btrfs_bio *bbio,
+ struct page *page, u64 start, u64 end,
+ int mirror)
+{
+ struct extent_buffer *eb;
+ int ret = 0;
+ int reads_done;
+
+ ASSERT(page->private);
+
+ if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
+ return validate_subpage_buffer(page, start, end, mirror);
+
+ eb = (struct extent_buffer *)page->private;
+
+ /*
+ * The pending IO might have been the only thing that kept this buffer
+ * in memory. Make sure we have a ref for all this other checks
+ */
+ atomic_inc(&eb->refs);
+
+ reads_done = atomic_dec_and_test(&eb->io_pages);
+ if (!reads_done)
+ goto err;
+
+ eb->read_mirror = mirror;
+ if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
+ ret = -EIO;
+ goto err;
+ }
+ ret = validate_extent_buffer(eb);
+err:
+ if (ret) {
+ /*
+ * our io error hook is going to dec the io pages
+ * again, we have to make sure it has something
+ * to decrement
+ */
+ atomic_inc(&eb->io_pages);
+ clear_extent_buffer_uptodate(eb);
+ }
+ free_extent_buffer(eb);
+
+ return ret;
+}
+
+static void run_one_async_start(struct btrfs_work *work)
+{
+ struct async_submit_bio *async;
+ blk_status_t ret;
+
+ async = container_of(work, struct async_submit_bio, work);
+ ret = async->submit_bio_start(async->inode, async->bio,
+ async->dio_file_offset);
+ if (ret)
+ async->status = ret;
+}
+
+/*
+ * In order to insert checksums into the metadata in large chunks, we wait
+ * until bio submission time. All the pages in the bio are checksummed and
+ * sums are attached onto the ordered extent record.
+ *
+ * At IO completion time the csums attached on the ordered extent record are
+ * inserted into the tree.
+ */
+static void run_one_async_done(struct btrfs_work *work)
+{
+ struct async_submit_bio *async =
+ container_of(work, struct async_submit_bio, work);
+ struct inode *inode = async->inode;
+ struct btrfs_bio *bbio = btrfs_bio(async->bio);
+
+ /* If an error occurred we just want to clean up the bio and move on */
+ if (async->status) {
+ btrfs_bio_end_io(bbio, async->status);
+ return;
+ }
+
+ /*
+ * All of the bios that pass through here are from async helpers.
+ * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
+ * This changes nothing when cgroups aren't in use.
+ */
+ async->bio->bi_opf |= REQ_CGROUP_PUNT;
+ btrfs_submit_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
+}
+
+static void run_one_async_free(struct btrfs_work *work)
+{
+ struct async_submit_bio *async;
+
+ async = container_of(work, struct async_submit_bio, work);
+ kfree(async);
+}
+
+/*
+ * Submit bio to an async queue.
+ *
+ * Retrun:
+ * - true if the work has been succesfuly submitted
+ * - false in case of error
+ */
+bool btrfs_wq_submit_bio(struct inode *inode, struct bio *bio, int mirror_num,
+ u64 dio_file_offset,
+ extent_submit_bio_start_t *submit_bio_start)
+{
+ struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
+ struct async_submit_bio *async;
+
+ async = kmalloc(sizeof(*async), GFP_NOFS);
+ if (!async)
+ return false;
+
+ async->inode = inode;
+ async->bio = bio;
+ async->mirror_num = mirror_num;
+ async->submit_bio_start = submit_bio_start;
+
+ btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
+ run_one_async_free);
+
+ async->dio_file_offset = dio_file_offset;
+
+ async->status = 0;
+
+ if (op_is_sync(bio->bi_opf))
+ btrfs_queue_work(fs_info->hipri_workers, &async->work);
+ else
+ btrfs_queue_work(fs_info->workers, &async->work);
+ return true;
+}
+
+static blk_status_t btree_csum_one_bio(struct bio *bio)
+{
+ struct bio_vec *bvec;
+ struct btrfs_root *root;
+ int ret = 0;
+ struct bvec_iter_all iter_all;
+
+ ASSERT(!bio_flagged(bio, BIO_CLONED));
+ bio_for_each_segment_all(bvec, bio, iter_all) {
+ root = BTRFS_I(bvec->bv_page->mapping->host)->root;
+ ret = csum_dirty_buffer(root->fs_info, bvec);
+ if (ret)
+ break;
+ }
+
+ return errno_to_blk_status(ret);
+}
+
+static blk_status_t btree_submit_bio_start(struct inode *inode, struct bio *bio,
+ u64 dio_file_offset)
+{
+ /*
+ * when we're called for a write, we're already in the async
+ * submission context. Just jump into btrfs_submit_bio.
+ */
+ return btree_csum_one_bio(bio);
+}
+
+static bool should_async_write(struct btrfs_fs_info *fs_info,
+ struct btrfs_inode *bi)
+{
+ if (btrfs_is_zoned(fs_info))
+ return false;
+ if (atomic_read(&bi->sync_writers))
+ return false;
+ if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
+ return false;
+ return true;
+}
+
+void btrfs_submit_metadata_bio(struct inode *inode, struct bio *bio, int mirror_num)
+{
+ struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
+ struct btrfs_bio *bbio = btrfs_bio(bio);
+ blk_status_t ret;
+
+ bio->bi_opf |= REQ_META;
+
+ if (btrfs_op(bio) != BTRFS_MAP_WRITE) {
+ btrfs_submit_bio(fs_info, bio, mirror_num);
+ return;
+ }
+
+ /*
+ * Kthread helpers are used to submit writes so that checksumming can
+ * happen in parallel across all CPUs.
+ */
+ if (should_async_write(fs_info, BTRFS_I(inode)) &&
+ btrfs_wq_submit_bio(inode, bio, mirror_num, 0, btree_submit_bio_start))
+ return;
+
+ ret = btree_csum_one_bio(bio);
+ if (ret) {
+ btrfs_bio_end_io(bbio, ret);
+ return;
+ }
+
+ btrfs_submit_bio(fs_info, bio, mirror_num);
+}
+
+#ifdef CONFIG_MIGRATION
+static int btree_migrate_folio(struct address_space *mapping,
+ struct folio *dst, struct folio *src, enum migrate_mode mode)
+{
+ /*
+ * we can't safely write a btree page from here,
+ * we haven't done the locking hook
+ */
+ if (folio_test_dirty(src))
+ return -EAGAIN;
+ /*
+ * Buffers may be managed in a filesystem specific way.
+ * We must have no buffers or drop them.
+ */
+ if (folio_get_private(src) &&
+ !filemap_release_folio(src, GFP_KERNEL))
+ return -EAGAIN;
+ return migrate_folio(mapping, dst, src, mode);
+}
+#else
+#define btree_migrate_folio NULL
+#endif
+
+static int btree_writepages(struct address_space *mapping,
+ struct writeback_control *wbc)
+{
+ struct btrfs_fs_info *fs_info;
+ int ret;
+
+ if (wbc->sync_mode == WB_SYNC_NONE) {
+
+ if (wbc->for_kupdate)
+ return 0;
+
+ fs_info = BTRFS_I(mapping->host)->root->fs_info;
+ /* this is a bit racy, but that's ok */
+ ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
+ BTRFS_DIRTY_METADATA_THRESH,
+ fs_info->dirty_metadata_batch);
+ if (ret < 0)
+ return 0;
+ }
+ return btree_write_cache_pages(mapping, wbc);
+}
+
+static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags)
+{
+ if (folio_test_writeback(folio) || folio_test_dirty(folio))
+ return false;
+
+ return try_release_extent_buffer(&folio->page);
+}
+
+static void btree_invalidate_folio(struct folio *folio, size_t offset,
+ size_t length)
+{
+ struct extent_io_tree *tree;
+ tree = &BTRFS_I(folio->mapping->host)->io_tree;
+ extent_invalidate_folio(tree, folio, offset);
+ btree_release_folio(folio, GFP_NOFS);
+ if (folio_get_private(folio)) {
+ btrfs_warn(BTRFS_I(folio->mapping->host)->root->fs_info,
+ "folio private not zero on folio %llu",
+ (unsigned long long)folio_pos(folio));
+ folio_detach_private(folio);
+ }
+}
+
+#ifdef DEBUG
+static bool btree_dirty_folio(struct address_space *mapping,
+ struct folio *folio)
+{
+ struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
+ struct btrfs_subpage_info *spi = fs_info->subpage_info;
+ struct btrfs_subpage *subpage;
+ struct extent_buffer *eb;
+ int cur_bit = 0;
+ u64 page_start = folio_pos(folio);
+
+ if (fs_info->sectorsize == PAGE_SIZE) {
+ eb = folio_get_private(folio);
+ BUG_ON(!eb);
+ BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
+ BUG_ON(!atomic_read(&eb->refs));
+ btrfs_assert_tree_write_locked(eb);
+ return filemap_dirty_folio(mapping, folio);
+ }
+
+ ASSERT(spi);
+ subpage = folio_get_private(folio);
+
+ for (cur_bit = spi->dirty_offset;
+ cur_bit < spi->dirty_offset + spi->bitmap_nr_bits;
+ cur_bit++) {
+ unsigned long flags;
+ u64 cur;
+
+ spin_lock_irqsave(&subpage->lock, flags);
+ if (!test_bit(cur_bit, subpage->bitmaps)) {
+ spin_unlock_irqrestore(&subpage->lock, flags);
+ continue;
+ }
+ spin_unlock_irqrestore(&subpage->lock, flags);
+ cur = page_start + cur_bit * fs_info->sectorsize;
+
+ eb = find_extent_buffer(fs_info, cur);
+ ASSERT(eb);
+ ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
+ ASSERT(atomic_read(&eb->refs));
+ btrfs_assert_tree_write_locked(eb);
+ free_extent_buffer(eb);
+
+ cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits) - 1;
+ }
+ return filemap_dirty_folio(mapping, folio);
+}
+#else
+#define btree_dirty_folio filemap_dirty_folio
+#endif
+
+static const struct address_space_operations btree_aops = {
+ .writepages = btree_writepages,
+ .release_folio = btree_release_folio,
+ .invalidate_folio = btree_invalidate_folio,
+ .migrate_folio = btree_migrate_folio,
+ .dirty_folio = btree_dirty_folio,
+};
+
+struct extent_buffer *btrfs_find_create_tree_block(
+ struct btrfs_fs_info *fs_info,
+ u64 bytenr, u64 owner_root,
+ int level)
+{
+ if (btrfs_is_testing(fs_info))
+ return alloc_test_extent_buffer(fs_info, bytenr);
+ return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
+}
+
+/*
+ * Read tree block at logical address @bytenr and do variant basic but critical
+ * verification.
+ *
+ * @owner_root: the objectid of the root owner for this block.
+ * @parent_transid: expected transid of this tree block, skip check if 0
+ * @level: expected level, mandatory check
+ * @first_key: expected key in slot 0, skip check if NULL
+ */
+struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
+ u64 owner_root, u64 parent_transid,
+ int level, struct btrfs_key *first_key)
+{
+ struct extent_buffer *buf = NULL;
+ int ret;
+
+ buf = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
+ if (IS_ERR(buf))
+ return buf;
+
+ ret = btrfs_read_extent_buffer(buf, parent_transid, level, first_key);
+ if (ret) {
+ free_extent_buffer_stale(buf);
+ return ERR_PTR(ret);
+ }
+ if (btrfs_check_eb_owner(buf, owner_root)) {
+ free_extent_buffer_stale(buf);
+ return ERR_PTR(-EUCLEAN);
+ }
+ return buf;
+
+}
+
+void btrfs_clean_tree_block(struct extent_buffer *buf)
+{
+ struct btrfs_fs_info *fs_info = buf->fs_info;
+ if (btrfs_header_generation(buf) ==
+ fs_info->running_transaction->transid) {
+ btrfs_assert_tree_write_locked(buf);
+
+ if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
+ percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
+ -buf->len,
+ fs_info->dirty_metadata_batch);
+ clear_extent_buffer_dirty(buf);
+ }
+ }
+}
+
+static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
+ u64 objectid)
+{
+ bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
+
+ memset(&root->root_key, 0, sizeof(root->root_key));
+ memset(&root->root_item, 0, sizeof(root->root_item));
+ memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
+ root->fs_info = fs_info;
+ root->root_key.objectid = objectid;
+ root->node = NULL;
+ root->commit_root = NULL;
+ root->state = 0;
+ RB_CLEAR_NODE(&root->rb_node);
+
+ root->last_trans = 0;
+ root->free_objectid = 0;
+ root->nr_delalloc_inodes = 0;
+ root->nr_ordered_extents = 0;
+ root->inode_tree = RB_ROOT;
+ INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
+
+ btrfs_init_root_block_rsv(root);
+
+ INIT_LIST_HEAD(&root->dirty_list);
+ INIT_LIST_HEAD(&root->root_list);
+ INIT_LIST_HEAD(&root->delalloc_inodes);
+ INIT_LIST_HEAD(&root->delalloc_root);
+ INIT_LIST_HEAD(&root->ordered_extents);
+ INIT_LIST_HEAD(&root->ordered_root);
+ INIT_LIST_HEAD(&root->reloc_dirty_list);
+ INIT_LIST_HEAD(&root->logged_list[0]);
+ INIT_LIST_HEAD(&root->logged_list[1]);
+ spin_lock_init(&root->inode_lock);
+ spin_lock_init(&root->delalloc_lock);
+ spin_lock_init(&root->ordered_extent_lock);
+ spin_lock_init(&root->accounting_lock);
+ spin_lock_init(&root->log_extents_lock[0]);
+ spin_lock_init(&root->log_extents_lock[1]);
+ spin_lock_init(&root->qgroup_meta_rsv_lock);
+ mutex_init(&root->objectid_mutex);
+ mutex_init(&root->log_mutex);
+ mutex_init(&root->ordered_extent_mutex);
+ mutex_init(&root->delalloc_mutex);
+ init_waitqueue_head(&root->qgroup_flush_wait);
+ init_waitqueue_head(&root->log_writer_wait);
+ init_waitqueue_head(&root->log_commit_wait[0]);
+ init_waitqueue_head(&root->log_commit_wait[1]);
+ INIT_LIST_HEAD(&root->log_ctxs[0]);
+ INIT_LIST_HEAD(&root->log_ctxs[1]);
+ atomic_set(&root->log_commit[0], 0);
+ atomic_set(&root->log_commit[1], 0);
+ atomic_set(&root->log_writers, 0);
+ atomic_set(&root->log_batch, 0);
+ refcount_set(&root->refs, 1);
+ atomic_set(&root->snapshot_force_cow, 0);
+ atomic_set(&root->nr_swapfiles, 0);
+ root->log_transid = 0;
+ root->log_transid_committed = -1;
+ root->last_log_commit = 0;
+ root->anon_dev = 0;
+ if (!dummy) {
+ extent_io_tree_init(fs_info, &root->dirty_log_pages,
+ IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
+ extent_io_tree_init(fs_info, &root->log_csum_range,
+ IO_TREE_LOG_CSUM_RANGE, NULL);
+ }
+
+ spin_lock_init(&root->root_item_lock);
+ btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
+#ifdef CONFIG_BTRFS_DEBUG
+ INIT_LIST_HEAD(&root->leak_list);
+ spin_lock(&fs_info->fs_roots_radix_lock);
+ list_add_tail(&root->leak_list, &fs_info->allocated_roots);
+ spin_unlock(&fs_info->fs_roots_radix_lock);
+#endif
+}
+
+static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
+ u64 objectid, gfp_t flags)
+{
+ struct btrfs_root *root = kzalloc(sizeof(*root), flags);
+ if (root)
+ __setup_root(root, fs_info, objectid);
+ return root;
+}
+
+#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
+/* Should only be used by the testing infrastructure */
+struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
+{
+ struct btrfs_root *root;
+
+ if (!fs_info)
+ return ERR_PTR(-EINVAL);
+
+ root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
+ if (!root)
+ return ERR_PTR(-ENOMEM);
+
+ /* We don't use the stripesize in selftest, set it as sectorsize */
+ root->alloc_bytenr = 0;
+
+ return root;
+}
+#endif
+
+static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node)
+{
+ const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node);
+ const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node);
+
+ return btrfs_comp_cpu_keys(&a->root_key, &b->root_key);
+}
+
+static int global_root_key_cmp(const void *k, const struct rb_node *node)
+{
+ const struct btrfs_key *key = k;
+ const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node);
+
+ return btrfs_comp_cpu_keys(key, &root->root_key);
+}
+
+int btrfs_global_root_insert(struct btrfs_root *root)
+{
+ struct btrfs_fs_info *fs_info = root->fs_info;
+ struct rb_node *tmp;
+ int ret = 0;
+
+ write_lock(&fs_info->global_root_lock);
+ tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp);
+ write_unlock(&fs_info->global_root_lock);
+
+ if (tmp) {
+ ret = -EEXIST;
+ btrfs_warn(fs_info, "global root %llu %llu already exists",
+ root->root_key.objectid, root->root_key.offset);
+ }
+ return ret;
+}
+
+void btrfs_global_root_delete(struct btrfs_root *root)
+{
+ struct btrfs_fs_info *fs_info = root->fs_info;
+
+ write_lock(&fs_info->global_root_lock);
+ rb_erase(&root->rb_node, &fs_info->global_root_tree);
+ write_unlock(&fs_info->global_root_lock);
+}
+
+struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info,
+ struct btrfs_key *key)
+{
+ struct rb_node *node;
+ struct btrfs_root *root = NULL;
+
+ read_lock(&fs_info->global_root_lock);
+ node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp);
+ if (node)
+ root = container_of(node, struct btrfs_root, rb_node);
+ read_unlock(&fs_info->global_root_lock);
+
+ return root;
+}
+
+static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr)
+{
+ struct btrfs_block_group *block_group;
+ u64 ret;
+
+ if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
+ return 0;
+
+ if (bytenr)
+ block_group = btrfs_lookup_block_group(fs_info, bytenr);
+ else
+ block_group = btrfs_lookup_first_block_group(fs_info, bytenr);
+ ASSERT(block_group);
+ if (!block_group)
+ return 0;
+ ret = block_group->global_root_id;
+ btrfs_put_block_group(block_group);
+
+ return ret;
+}
+
+struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr)
+{
+ struct btrfs_key key = {
+ .objectid = BTRFS_CSUM_TREE_OBJECTID,
+ .type = BTRFS_ROOT_ITEM_KEY,
+ .offset = btrfs_global_root_id(fs_info, bytenr),
+ };
+
+ return btrfs_global_root(fs_info, &key);
+}
+
+struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr)
+{
+ struct btrfs_key key = {
+ .objectid = BTRFS_EXTENT_TREE_OBJECTID,
+ .type = BTRFS_ROOT_ITEM_KEY,
+ .offset = btrfs_global_root_id(fs_info, bytenr),
+ };
+
+ return btrfs_global_root(fs_info, &key);
+}
+
+struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
+ u64 objectid)
+{
+ struct btrfs_fs_info *fs_info = trans->fs_info;
+ struct extent_buffer *leaf;
+ struct btrfs_root *tree_root = fs_info->tree_root;
+ struct btrfs_root *root;
+ struct btrfs_key key;
+ unsigned int nofs_flag;
+ int ret = 0;
+
+ /*
+ * We're holding a transaction handle, so use a NOFS memory allocation
+ * context to avoid deadlock if reclaim happens.
+ */
+ nofs_flag = memalloc_nofs_save();
+ root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
+ memalloc_nofs_restore(nofs_flag);
+ if (!root)
+ return ERR_PTR(-ENOMEM);
+
+ root->root_key.objectid = objectid;
+ root->root_key.type = BTRFS_ROOT_ITEM_KEY;
+ root->root_key.offset = 0;
+
+ leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
+ BTRFS_NESTING_NORMAL);
+ if (IS_ERR(leaf)) {
+ ret = PTR_ERR(leaf);
+ leaf = NULL;
+ goto fail_unlock;
+ }
+
+ root->node = leaf;
+ btrfs_mark_buffer_dirty(leaf);
+
+ root->commit_root = btrfs_root_node(root);
+ set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
+
+ btrfs_set_root_flags(&root->root_item, 0);
+ btrfs_set_root_limit(&root->root_item, 0);
+ btrfs_set_root_bytenr(&root->root_item, leaf->start);
+ btrfs_set_root_generation(&root->root_item, trans->transid);
+ btrfs_set_root_level(&root->root_item, 0);
+ btrfs_set_root_refs(&root->root_item, 1);
+ btrfs_set_root_used(&root->root_item, leaf->len);
+ btrfs_set_root_last_snapshot(&root->root_item, 0);
+ btrfs_set_root_dirid(&root->root_item, 0);
+ if (is_fstree(objectid))
+ generate_random_guid(root->root_item.uuid);
+ else
+ export_guid(root->root_item.uuid, &guid_null);
+ btrfs_set_root_drop_level(&root->root_item, 0);
+
+ btrfs_tree_unlock(leaf);
+
+ key.objectid = objectid;
+ key.type = BTRFS_ROOT_ITEM_KEY;
+ key.offset = 0;
+ ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
+ if (ret)
+ goto fail;
+
+ return root;
+
+fail_unlock:
+ if (leaf)
+ btrfs_tree_unlock(leaf);
+fail:
+ btrfs_put_root(root);
+
+ return ERR_PTR(ret);
+}
+
+static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
+ struct btrfs_fs_info *fs_info)
+{
+ struct btrfs_root *root;
+
+ root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
+ if (!root)
+ return ERR_PTR(-ENOMEM);
+
+ root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
+ root->root_key.type = BTRFS_ROOT_ITEM_KEY;
+ root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
+
+ return root;
+}
+
+int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root)
+{
+ struct extent_buffer *leaf;
+
+ /*
+ * DON'T set SHAREABLE bit for log trees.
+ *
+ * Log trees are not exposed to user space thus can't be snapshotted,
+ * and they go away before a real commit is actually done.
+ *
+ * They do store pointers to file data extents, and those reference
+ * counts still get updated (along with back refs to the log tree).
+ */
+
+ leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
+ NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
+ if (IS_ERR(leaf))
+ return PTR_ERR(leaf);
+
+ root->node = leaf;
+
+ btrfs_mark_buffer_dirty(root->node);
+ btrfs_tree_unlock(root->node);
+
+ return 0;
+}
+
+int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
+ struct btrfs_fs_info *fs_info)
+{
+ struct btrfs_root *log_root;
+
+ log_root = alloc_log_tree(trans, fs_info);
+ if (IS_ERR(log_root))
+ return PTR_ERR(log_root);
+
+ if (!btrfs_is_zoned(fs_info)) {
+ int ret = btrfs_alloc_log_tree_node(trans, log_root);
+
+ if (ret) {
+ btrfs_put_root(log_root);
+ return ret;
+ }
+ }
+
+ WARN_ON(fs_info->log_root_tree);
+ fs_info->log_root_tree = log_root;
+ return 0;
+}
+
+int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
+ struct btrfs_root *root)
+{
+ struct btrfs_fs_info *fs_info = root->fs_info;
+ struct btrfs_root *log_root;
+ struct btrfs_inode_item *inode_item;
+ int ret;
+
+ log_root = alloc_log_tree(trans, fs_info);
+ if (IS_ERR(log_root))
+ return PTR_ERR(log_root);
+
+ ret = btrfs_alloc_log_tree_node(trans, log_root);
+ if (ret) {
+ btrfs_put_root(log_root);
+ return ret;
+ }
+
+ log_root->last_trans = trans->transid;
+ log_root->root_key.offset = root->root_key.objectid;
+
+ inode_item = &log_root->root_item.inode;
+ btrfs_set_stack_inode_generation(inode_item, 1);
+ btrfs_set_stack_inode_size(inode_item, 3);
+ btrfs_set_stack_inode_nlink(inode_item, 1);
+ btrfs_set_stack_inode_nbytes(inode_item,
+ fs_info->nodesize);
+ btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
+
+ btrfs_set_root_node(&log_root->root_item, log_root->node);
+
+ WARN_ON(root->log_root);
+ root->log_root = log_root;
+ root->log_transid = 0;
+ root->log_transid_committed = -1;
+ root->last_log_commit = 0;
+ return 0;
+}
+
+static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
+ struct btrfs_path *path,
+ struct btrfs_key *key)
+{
+ struct btrfs_root *root;
+ struct btrfs_fs_info *fs_info = tree_root->fs_info;
+ u64 generation;
+ int ret;
+ int level;
+
+ root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
+ if (!root)
+ return ERR_PTR(-ENOMEM);
+
+ ret = btrfs_find_root(tree_root, key, path,
+ &root->root_item, &root->root_key);
+ if (ret) {
+ if (ret > 0)
+ ret = -ENOENT;
+ goto fail;
+ }
+
+ generation = btrfs_root_generation(&root->root_item);
+ level = btrfs_root_level(&root->root_item);
+ root->node = read_tree_block(fs_info,
+ btrfs_root_bytenr(&root->root_item),
+ key->objectid, generation, level, NULL);
+ if (IS_ERR(root->node)) {
+ ret = PTR_ERR(root->node);
+ root->node = NULL;
+ goto fail;
+ }
+ if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
+ ret = -EIO;
+ goto fail;
+ }
+
+ /*
+ * For real fs, and not log/reloc trees, root owner must
+ * match its root node owner
+ */
+ if (!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state) &&
+ root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
+ root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
+ root->root_key.objectid != btrfs_header_owner(root->node)) {
+ btrfs_crit(fs_info,
+"root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu",
+ root->root_key.objectid, root->node->start,
+ btrfs_header_owner(root->node),
+ root->root_key.objectid);
+ ret = -EUCLEAN;
+ goto fail;
+ }
+ root->commit_root = btrfs_root_node(root);
+ return root;
+fail:
+ btrfs_put_root(root);
+ return ERR_PTR(ret);
+}
+
+struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
+ struct btrfs_key *key)
+{
+ struct btrfs_root *root;
+ struct btrfs_path *path;
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return ERR_PTR(-ENOMEM);
+ root = read_tree_root_path(tree_root, path, key);
+ btrfs_free_path(path);
+
+ return root;
+}
+
+/*
+ * Initialize subvolume root in-memory structure
+ *
+ * @anon_dev: anonymous device to attach to the root, if zero, allocate new
+ */
+static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
+{
+ int ret;
+ unsigned int nofs_flag;
+
+ /*
+ * We might be called under a transaction (e.g. indirect backref
+ * resolution) which could deadlock if it triggers memory reclaim
+ */
+ nofs_flag = memalloc_nofs_save();
+ ret = btrfs_drew_lock_init(&root->snapshot_lock);
+ memalloc_nofs_restore(nofs_flag);
+ if (ret)
+ goto fail;
+
+ if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
+ !btrfs_is_data_reloc_root(root) &&
+ is_fstree(root->root_key.objectid)) {
+ set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
+ btrfs_check_and_init_root_item(&root->root_item);
+ }
+
+ /*
+ * Don't assign anonymous block device to roots that are not exposed to
+ * userspace, the id pool is limited to 1M
+ */
+ if (is_fstree(root->root_key.objectid) &&
+ btrfs_root_refs(&root->root_item) > 0) {
+ if (!anon_dev) {
+ ret = get_anon_bdev(&root->anon_dev);
+ if (ret)
+ goto fail;
+ } else {
+ root->anon_dev = anon_dev;
+ }
+ }
+
+ mutex_lock(&root->objectid_mutex);
+ ret = btrfs_init_root_free_objectid(root);
+ if (ret) {
+ mutex_unlock(&root->objectid_mutex);
+ goto fail;
+ }
+
+ ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
+
+ mutex_unlock(&root->objectid_mutex);
+
+ return 0;
+fail:
+ /* The caller is responsible to call btrfs_free_fs_root */
+ return ret;
+}
+
+static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
+ u64 root_id)
+{
+ struct btrfs_root *root;
+
+ spin_lock(&fs_info->fs_roots_radix_lock);
+ root = radix_tree_lookup(&fs_info->fs_roots_radix,
+ (unsigned long)root_id);
+ if (root)
+ root = btrfs_grab_root(root);
+ spin_unlock(&fs_info->fs_roots_radix_lock);
+ return root;
+}
+
+static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
+ u64 objectid)
+{
+ struct btrfs_key key = {
+ .objectid = objectid,
+ .type = BTRFS_ROOT_ITEM_KEY,
+ .offset = 0,
+ };
+
+ if (objectid == BTRFS_ROOT_TREE_OBJECTID)
+ return btrfs_grab_root(fs_info->tree_root);
+ if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
+ return btrfs_grab_root(btrfs_global_root(fs_info, &key));
+ if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
+ return btrfs_grab_root(fs_info->chunk_root);
+ if (objectid == BTRFS_DEV_TREE_OBJECTID)
+ return btrfs_grab_root(fs_info->dev_root);
+ if (objectid == BTRFS_CSUM_TREE_OBJECTID)
+ return btrfs_grab_root(btrfs_global_root(fs_info, &key));
+ if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
+ return btrfs_grab_root(fs_info->quota_root) ?
+ fs_info->quota_root : ERR_PTR(-ENOENT);
+ if (objectid == BTRFS_UUID_TREE_OBJECTID)
+ return btrfs_grab_root(fs_info->uuid_root) ?
+ fs_info->uuid_root : ERR_PTR(-ENOENT);
+ if (objectid == BTRFS_BLOCK_GROUP_TREE_OBJECTID)
+ return btrfs_grab_root(fs_info->block_group_root) ?
+ fs_info->block_group_root : ERR_PTR(-ENOENT);
+ if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) {
+ struct btrfs_root *root = btrfs_global_root(fs_info, &key);
+
+ return btrfs_grab_root(root) ? root : ERR_PTR(-ENOENT);
+ }
+ return NULL;
+}
+
+int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
+ struct btrfs_root *root)
+{
+ int ret;
+
+ ret = radix_tree_preload(GFP_NOFS);
+ if (ret)
+ return ret;
+
+ spin_lock(&fs_info->fs_roots_radix_lock);
+ ret = radix_tree_insert(&fs_info->fs_roots_radix,
+ (unsigned long)root->root_key.objectid,
+ root);
+ if (ret == 0) {
+ btrfs_grab_root(root);
+ set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
+ }
+ spin_unlock(&fs_info->fs_roots_radix_lock);
+ radix_tree_preload_end();
+
+ return ret;
+}
+
+void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
+{
+#ifdef CONFIG_BTRFS_DEBUG
+ struct btrfs_root *root;
+
+ while (!list_empty(&fs_info->allocated_roots)) {
+ char buf[BTRFS_ROOT_NAME_BUF_LEN];
+
+ root = list_first_entry(&fs_info->allocated_roots,
+ struct btrfs_root, leak_list);
+ btrfs_err(fs_info, "leaked root %s refcount %d",
+ btrfs_root_name(&root->root_key, buf),
+ refcount_read(&root->refs));
+ while (refcount_read(&root->refs) > 1)
+ btrfs_put_root(root);
+ btrfs_put_root(root);
+ }
+#endif
+}
+
+static void free_global_roots(struct btrfs_fs_info *fs_info)
+{
+ struct btrfs_root *root;
+ struct rb_node *node;
+
+ while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) {
+ root = rb_entry(node, struct btrfs_root, rb_node);
+ rb_erase(&root->rb_node, &fs_info->global_root_tree);
+ btrfs_put_root(root);
+ }
+}
+
+void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
+{
+ percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
+ percpu_counter_destroy(&fs_info->delalloc_bytes);
+ percpu_counter_destroy(&fs_info->ordered_bytes);
+ percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
+ btrfs_free_csum_hash(fs_info);
+ btrfs_free_stripe_hash_table(fs_info);
+ btrfs_free_ref_cache(fs_info);
+ kfree(fs_info->balance_ctl);
+ kfree(fs_info->delayed_root);
+ free_global_roots(fs_info);
+ btrfs_put_root(fs_info->tree_root);
+ btrfs_put_root(fs_info->chunk_root);
+ btrfs_put_root(fs_info->dev_root);
+ btrfs_put_root(fs_info->quota_root);
+ btrfs_put_root(fs_info->uuid_root);
+ btrfs_put_root(fs_info->fs_root);
+ btrfs_put_root(fs_info->data_reloc_root);
+ btrfs_put_root(fs_info->block_group_root);
+ btrfs_check_leaked_roots(fs_info);
+ btrfs_extent_buffer_leak_debug_check(fs_info);
+ kfree(fs_info->super_copy);
+ kfree(fs_info->super_for_commit);
+ kfree(fs_info->subpage_info);
+ kvfree(fs_info);
+}
+
+
+/*
+ * Get an in-memory reference of a root structure.
+ *
+ * For essential trees like root/extent tree, we grab it from fs_info directly.
+ * For subvolume trees, we check the cached filesystem roots first. If not
+ * found, then read it from disk and add it to cached fs roots.
+ *
+ * Caller should release the root by calling btrfs_put_root() after the usage.
+ *
+ * NOTE: Reloc and log trees can't be read by this function as they share the
+ * same root objectid.
+ *
+ * @objectid: root id
+ * @anon_dev: preallocated anonymous block device number for new roots,
+ * pass 0 for new allocation.
+ * @check_ref: whether to check root item references, If true, return -ENOENT
+ * for orphan roots
+ */
+static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
+ u64 objectid, dev_t anon_dev,
+ bool check_ref)
+{
+ struct btrfs_root *root;
+ struct btrfs_path *path;
+ struct btrfs_key key;
+ int ret;
+
+ root = btrfs_get_global_root(fs_info, objectid);
+ if (root)
+ return root;
+again:
+ root = btrfs_lookup_fs_root(fs_info, objectid);
+ if (root) {
+ /* Shouldn't get preallocated anon_dev for cached roots */
+ ASSERT(!anon_dev);
+ if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
+ btrfs_put_root(root);
+ return ERR_PTR(-ENOENT);
+ }
+ return root;
+ }
+
+ key.objectid = objectid;
+ key.type = BTRFS_ROOT_ITEM_KEY;
+ key.offset = (u64)-1;
+ root = btrfs_read_tree_root(fs_info->tree_root, &key);
+ if (IS_ERR(root))
+ return root;
+
+ if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
+ ret = -ENOENT;
+ goto fail;
+ }
+
+ ret = btrfs_init_fs_root(root, anon_dev);
+ if (ret)
+ goto fail;
+
+ path = btrfs_alloc_path();
+ if (!path) {
+ ret = -ENOMEM;
+ goto fail;
+ }
+ key.objectid = BTRFS_ORPHAN_OBJECTID;
+ key.type = BTRFS_ORPHAN_ITEM_KEY;
+ key.offset = objectid;
+
+ ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
+ btrfs_free_path(path);
+ if (ret < 0)
+ goto fail;
+ if (ret == 0)
+ set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
+
+ ret = btrfs_insert_fs_root(fs_info, root);
+ if (ret) {
+ if (ret == -EEXIST) {
+ btrfs_put_root(root);
+ goto again;
+ }
+ goto fail;
+ }
+ return root;
+fail:
+ /*
+ * If our caller provided us an anonymous device, then it's his
+ * responsibility to free it in case we fail. So we have to set our
+ * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
+ * and once again by our caller.
+ */
+ if (anon_dev)
+ root->anon_dev = 0;
+ btrfs_put_root(root);
+ return ERR_PTR(ret);
+}
+
+/*
+ * Get in-memory reference of a root structure
+ *
+ * @objectid: tree objectid
+ * @check_ref: if set, verify that the tree exists and the item has at least
+ * one reference
+ */
+struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
+ u64 objectid, bool check_ref)
+{
+ return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
+}
+
+/*
+ * Get in-memory reference of a root structure, created as new, optionally pass
+ * the anonymous block device id
+ *
+ * @objectid: tree objectid
+ * @anon_dev: if zero, allocate a new anonymous block device or use the
+ * parameter value
+ */
+struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
+ u64 objectid, dev_t anon_dev)
+{
+ return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
+}
+
+/*
+ * btrfs_get_fs_root_commit_root - return a root for the given objectid
+ * @fs_info: the fs_info
+ * @objectid: the objectid we need to lookup
+ *
+ * This is exclusively used for backref walking, and exists specifically because
+ * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref
+ * creation time, which means we may have to read the tree_root in order to look
+ * up a fs root that is not in memory. If the root is not in memory we will
+ * read the tree root commit root and look up the fs root from there. This is a
+ * temporary root, it will not be inserted into the radix tree as it doesn't
+ * have the most uptodate information, it'll simply be discarded once the
+ * backref code is finished using the root.
+ */
+struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
+ struct btrfs_path *path,
+ u64 objectid)
+{
+ struct btrfs_root *root;
+ struct btrfs_key key;
+
+ ASSERT(path->search_commit_root && path->skip_locking);
+
+ /*
+ * This can return -ENOENT if we ask for a root that doesn't exist, but
+ * since this is called via the backref walking code we won't be looking
+ * up a root that doesn't exist, unless there's corruption. So if root
+ * != NULL just return it.
+ */
+ root = btrfs_get_global_root(fs_info, objectid);
+ if (root)
+ return root;
+
+ root = btrfs_lookup_fs_root(fs_info, objectid);
+ if (root)
+ return root;
+
+ key.objectid = objectid;
+ key.type = BTRFS_ROOT_ITEM_KEY;
+ key.offset = (u64)-1;
+ root = read_tree_root_path(fs_info->tree_root, path, &key);
+ btrfs_release_path(path);
+
+ return root;
+}
+
+static int cleaner_kthread(void *arg)
+{
+ struct btrfs_fs_info *fs_info = arg;
+ int again;
+
+ while (1) {
+ again = 0;
+
+ set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
+
+ /* Make the cleaner go to sleep early. */
+ if (btrfs_need_cleaner_sleep(fs_info))
+ goto sleep;
+
+ /*
+ * Do not do anything if we might cause open_ctree() to block
+ * before we have finished mounting the filesystem.
+ */
+ if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
+ goto sleep;
+
+ if (!mutex_trylock(&fs_info->cleaner_mutex))
+ goto sleep;
+
+ /*
+ * Avoid the problem that we change the status of the fs
+ * during the above check and trylock.
+ */
+ if (btrfs_need_cleaner_sleep(fs_info)) {
+ mutex_unlock(&fs_info->cleaner_mutex);
+ goto sleep;
+ }
+
+ btrfs_run_delayed_iputs(fs_info);
+
+ again = btrfs_clean_one_deleted_snapshot(fs_info);
+ mutex_unlock(&fs_info->cleaner_mutex);
+
+ /*
+ * The defragger has dealt with the R/O remount and umount,
+ * needn't do anything special here.
+ */
+ btrfs_run_defrag_inodes(fs_info);
+
+ /*
+ * Acquires fs_info->reclaim_bgs_lock to avoid racing
+ * with relocation (btrfs_relocate_chunk) and relocation
+ * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
+ * after acquiring fs_info->reclaim_bgs_lock. So we
+ * can't hold, nor need to, fs_info->cleaner_mutex when deleting
+ * unused block groups.
+ */
+ btrfs_delete_unused_bgs(fs_info);
+
+ /*
+ * Reclaim block groups in the reclaim_bgs list after we deleted
+ * all unused block_groups. This possibly gives us some more free
+ * space.
+ */
+ btrfs_reclaim_bgs(fs_info);
+sleep:
+ clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
+ if (kthread_should_park())
+ kthread_parkme();
+ if (kthread_should_stop())
+ return 0;
+ if (!again) {
+ set_current_state(TASK_INTERRUPTIBLE);
+ schedule();
+ __set_current_state(TASK_RUNNING);
+ }
+ }
+}
+
+static int transaction_kthread(void *arg)
+{
+ struct btrfs_root *root = arg;
+ struct btrfs_fs_info *fs_info = root->fs_info;
+ struct btrfs_trans_handle *trans;
+ struct btrfs_transaction *cur;
+ u64 transid;
+ time64_t delta;
+ unsigned long delay;
+ bool cannot_commit;
+
+ do {
+ cannot_commit = false;
+ delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
+ mutex_lock(&fs_info->transaction_kthread_mutex);
+
+ spin_lock(&fs_info->trans_lock);
+ cur = fs_info->running_transaction;
+ if (!cur) {
+ spin_unlock(&fs_info->trans_lock);
+ goto sleep;
+ }
+
+ delta = ktime_get_seconds() - cur->start_time;
+ if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) &&
+ cur->state < TRANS_STATE_COMMIT_START &&
+ delta < fs_info->commit_interval) {
+ spin_unlock(&fs_info->trans_lock);
+ delay -= msecs_to_jiffies((delta - 1) * 1000);
+ delay = min(delay,
+ msecs_to_jiffies(fs_info->commit_interval * 1000));
+ goto sleep;
+ }
+ transid = cur->transid;
+ spin_unlock(&fs_info->trans_lock);
+
+ /* If the file system is aborted, this will always fail. */
+ trans = btrfs_attach_transaction(root);
+ if (IS_ERR(trans)) {
+ if (PTR_ERR(trans) != -ENOENT)
+ cannot_commit = true;
+ goto sleep;
+ }
+ if (transid == trans->transid) {
+ btrfs_commit_transaction(trans);
+ } else {
+ btrfs_end_transaction(trans);
+ }
+sleep:
+ wake_up_process(fs_info->cleaner_kthread);
+ mutex_unlock(&fs_info->transaction_kthread_mutex);
+
+ if (BTRFS_FS_ERROR(fs_info))
+ btrfs_cleanup_transaction(fs_info);
+ if (!kthread_should_stop() &&
+ (!btrfs_transaction_blocked(fs_info) ||
+ cannot_commit))
+ schedule_timeout_interruptible(delay);
+ } while (!kthread_should_stop());
+ return 0;
+}
+
+/*
+ * This will find the highest generation in the array of root backups. The
+ * index of the highest array is returned, or -EINVAL if we can't find
+ * anything.
+ *
+ * We check to make sure the array is valid by comparing the
+ * generation of the latest root in the array with the generation
+ * in the super block. If they don't match we pitch it.
+ */
+static int find_newest_super_backup(struct btrfs_fs_info *info)
+{
+ const u64 newest_gen = btrfs_super_generation(info->super_copy);
+ u64 cur;
+ struct btrfs_root_backup *root_backup;
+ int i;
+
+ for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
+ root_backup = info->super_copy->super_roots + i;
+ cur = btrfs_backup_tree_root_gen(root_backup);
+ if (cur == newest_gen)
+ return i;
+ }
+
+ return -EINVAL;
+}
+
+/*
+ * copy all the root pointers into the super backup array.
+ * this will bump the backup pointer by one when it is
+ * done
+ */
+static void backup_super_roots(struct btrfs_fs_info *info)
+{
+ const int next_backup = info->backup_root_index;
+ struct btrfs_root_backup *root_backup;
+
+ root_backup = info->super_for_commit->super_roots + next_backup;
+
+ /*
+ * make sure all of our padding and empty slots get zero filled
+ * regardless of which ones we use today
+ */
+ memset(root_backup, 0, sizeof(*root_backup));
+
+ info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
+
+ btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
+ btrfs_set_backup_tree_root_gen(root_backup,
+ btrfs_header_generation(info->tree_root->node));
+
+ btrfs_set_backup_tree_root_level(root_backup,
+ btrfs_header_level(info->tree_root->node));
+
+ btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
+ btrfs_set_backup_chunk_root_gen(root_backup,
+ btrfs_header_generation(info->chunk_root->node));
+ btrfs_set_backup_chunk_root_level(root_backup,
+ btrfs_header_level(info->chunk_root->node));
+
+ if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) {
+ struct btrfs_root *extent_root = btrfs_extent_root(info, 0);
+ struct btrfs_root *csum_root = btrfs_csum_root(info, 0);
+
+ btrfs_set_backup_extent_root(root_backup,
+ extent_root->node->start);
+ btrfs_set_backup_extent_root_gen(root_backup,
+ btrfs_header_generation(extent_root->node));
+ btrfs_set_backup_extent_root_level(root_backup,
+ btrfs_header_level(extent_root->node));
+
+ btrfs_set_backup_csum_root(root_backup, csum_root->node->start);
+ btrfs_set_backup_csum_root_gen(root_backup,
+ btrfs_header_generation(csum_root->node));
+ btrfs_set_backup_csum_root_level(root_backup,
+ btrfs_header_level(csum_root->node));
+ }
+
+ /*
+ * we might commit during log recovery, which happens before we set
+ * the fs_root. Make sure it is valid before we fill it in.
+ */
+ if (info->fs_root && info->fs_root->node) {
+ btrfs_set_backup_fs_root(root_backup,
+ info->fs_root->node->start);
+ btrfs_set_backup_fs_root_gen(root_backup,
+ btrfs_header_generation(info->fs_root->node));
+ btrfs_set_backup_fs_root_level(root_backup,
+ btrfs_header_level(info->fs_root->node));
+ }
+
+ btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
+ btrfs_set_backup_dev_root_gen(root_backup,
+ btrfs_header_generation(info->dev_root->node));
+ btrfs_set_backup_dev_root_level(root_backup,
+ btrfs_header_level(info->dev_root->node));
+
+ btrfs_set_backup_total_bytes(root_backup,
+ btrfs_super_total_bytes(info->super_copy));
+ btrfs_set_backup_bytes_used(root_backup,
+ btrfs_super_bytes_used(info->super_copy));
+ btrfs_set_backup_num_devices(root_backup,
+ btrfs_super_num_devices(info->super_copy));
+
+ /*
+ * if we don't copy this out to the super_copy, it won't get remembered
+ * for the next commit
+ */
+ memcpy(&info->super_copy->super_roots,
+ &info->super_for_commit->super_roots,
+ sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
+}
+
+/*
+ * read_backup_root - Reads a backup root based on the passed priority. Prio 0
+ * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
+ *
+ * fs_info - filesystem whose backup roots need to be read
+ * priority - priority of backup root required
+ *
+ * Returns backup root index on success and -EINVAL otherwise.
+ */
+static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
+{
+ int backup_index = find_newest_super_backup(fs_info);
+ struct btrfs_super_block *super = fs_info->super_copy;
+ struct btrfs_root_backup *root_backup;
+
+ if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
+ if (priority == 0)
+ return backup_index;
+
+ backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
+ backup_index %= BTRFS_NUM_BACKUP_ROOTS;
+ } else {
+ return -EINVAL;
+ }
+
+ root_backup = super->super_roots + backup_index;
+
+ btrfs_set_super_generation(super,
+ btrfs_backup_tree_root_gen(root_backup));
+ btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
+ btrfs_set_super_root_level(super,
+ btrfs_backup_tree_root_level(root_backup));
+ btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
+
+ /*
+ * Fixme: the total bytes and num_devices need to match or we should
+ * need a fsck
+ */
+ btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
+ btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
+
+ return backup_index;
+}
+
+/* helper to cleanup workers */
+static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
+{
+ btrfs_destroy_workqueue(fs_info->fixup_workers);
+ btrfs_destroy_workqueue(fs_info->delalloc_workers);
+ btrfs_destroy_workqueue(fs_info->hipri_workers);
+ btrfs_destroy_workqueue(fs_info->workers);
+ if (fs_info->endio_workers)
+ destroy_workqueue(fs_info->endio_workers);
+ if (fs_info->endio_raid56_workers)
+ destroy_workqueue(fs_info->endio_raid56_workers);
+ if (fs_info->rmw_workers)
+ destroy_workqueue(fs_info->rmw_workers);
+ if (fs_info->compressed_write_workers)
+ destroy_workqueue(fs_info->compressed_write_workers);
+ btrfs_destroy_workqueue(fs_info->endio_write_workers);
+ btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
+ btrfs_destroy_workqueue(fs_info->delayed_workers);
+ btrfs_destroy_workqueue(fs_info->caching_workers);
+ btrfs_destroy_workqueue(fs_info->flush_workers);
+ btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
+ if (fs_info->discard_ctl.discard_workers)
+ destroy_workqueue(fs_info->discard_ctl.discard_workers);
+ /*
+ * Now that all other work queues are destroyed, we can safely destroy
+ * the queues used for metadata I/O, since tasks from those other work
+ * queues can do metadata I/O operations.
+ */
+ if (fs_info->endio_meta_workers)
+ destroy_workqueue(fs_info->endio_meta_workers);
+}
+
+static void free_root_extent_buffers(struct btrfs_root *root)
+{
+ if (root) {
+ free_extent_buffer(root->node);
+ free_extent_buffer(root->commit_root);
+ root->node = NULL;
+ root->commit_root = NULL;
+ }
+}
+
+static void free_global_root_pointers(struct btrfs_fs_info *fs_info)
+{
+ struct btrfs_root *root, *tmp;
+
+ rbtree_postorder_for_each_entry_safe(root, tmp,
+ &fs_info->global_root_tree,
+ rb_node)
+ free_root_extent_buffers(root);
+}
+
+/* helper to cleanup tree roots */
+static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
+{
+ free_root_extent_buffers(info->tree_root);
+
+ free_global_root_pointers(info);
+ free_root_extent_buffers(info->dev_root);
+ free_root_extent_buffers(info->quota_root);
+ free_root_extent_buffers(info->uuid_root);
+ free_root_extent_buffers(info->fs_root);
+ free_root_extent_buffers(info->data_reloc_root);
+ free_root_extent_buffers(info->block_group_root);
+ if (free_chunk_root)
+ free_root_extent_buffers(info->chunk_root);
+}
+
+void btrfs_put_root(struct btrfs_root *root)
+{
+ if (!root)
+ return;
+
+ if (refcount_dec_and_test(&root->refs)) {
+ WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
+ WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
+ if (root->anon_dev)
+ free_anon_bdev(root->anon_dev);
+ btrfs_drew_lock_destroy(&root->snapshot_lock);
+ free_root_extent_buffers(root);
+#ifdef CONFIG_BTRFS_DEBUG
+ spin_lock(&root->fs_info->fs_roots_radix_lock);
+ list_del_init(&root->leak_list);
+ spin_unlock(&root->fs_info->fs_roots_radix_lock);
+#endif
+ kfree(root);
+ }
+}
+
+void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
+{
+ int ret;
+ struct btrfs_root *gang[8];
+ int i;
+
+ while (!list_empty(&fs_info->dead_roots)) {
+ gang[0] = list_entry(fs_info->dead_roots.next,
+ struct btrfs_root, root_list);
+ list_del(&gang[0]->root_list);
+
+ if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
+ btrfs_drop_and_free_fs_root(fs_info, gang[0]);
+ btrfs_put_root(gang[0]);
+ }
+
+ while (1) {
+ ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
+ (void **)gang, 0,
+ ARRAY_SIZE(gang));
+ if (!ret)
+ break;
+ for (i = 0; i < ret; i++)
+ btrfs_drop_and_free_fs_root(fs_info, gang[i]);
+ }
+}
+
+static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
+{
+ mutex_init(&fs_info->scrub_lock);
+ atomic_set(&fs_info->scrubs_running, 0);
+ atomic_set(&fs_info->scrub_pause_req, 0);
+ atomic_set(&fs_info->scrubs_paused, 0);
+ atomic_set(&fs_info->scrub_cancel_req, 0);
+ init_waitqueue_head(&fs_info->scrub_pause_wait);
+ refcount_set(&fs_info->scrub_workers_refcnt, 0);
+}
+
+static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
+{
+ spin_lock_init(&fs_info->balance_lock);
+ mutex_init(&fs_info->balance_mutex);
+ atomic_set(&fs_info->balance_pause_req, 0);
+ atomic_set(&fs_info->balance_cancel_req, 0);
+ fs_info->balance_ctl = NULL;
+ init_waitqueue_head(&fs_info->balance_wait_q);
+ atomic_set(&fs_info->reloc_cancel_req, 0);
+}
+
+static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
+{
+ struct inode *inode = fs_info->btree_inode;
+ unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID,
+ fs_info->tree_root);
+
+ inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
+ set_nlink(inode, 1);
+ /*
+ * we set the i_size on the btree inode to the max possible int.
+ * the real end of the address space is determined by all of
+ * the devices in the system
+ */
+ inode->i_size = OFFSET_MAX;
+ inode->i_mapping->a_ops = &btree_aops;
+
+ RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
+ extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
+ IO_TREE_BTREE_INODE_IO, NULL);
+ extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
+
+ BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
+ BTRFS_I(inode)->location.objectid = BTRFS_BTREE_INODE_OBJECTID;
+ BTRFS_I(inode)->location.type = 0;
+ BTRFS_I(inode)->location.offset = 0;
+ set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
+ __insert_inode_hash(inode, hash);
+}
+
+static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
+{
+ mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
+ init_rwsem(&fs_info->dev_replace.rwsem);
+ init_waitqueue_head(&fs_info->dev_replace.replace_wait);
+}
+
+static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
+{
+ spin_lock_init(&fs_info->qgroup_lock);
+ mutex_init(&fs_info->qgroup_ioctl_lock);
+ fs_info->qgroup_tree = RB_ROOT;
+ INIT_LIST_HEAD(&fs_info->dirty_qgroups);
+ fs_info->qgroup_seq = 1;
+ fs_info->qgroup_ulist = NULL;
+ fs_info->qgroup_rescan_running = false;
+ fs_info->qgroup_drop_subtree_thres = BTRFS_MAX_LEVEL;
+ mutex_init(&fs_info->qgroup_rescan_lock);
+}
+
+static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info)
+{
+ u32 max_active = fs_info->thread_pool_size;
+ unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
+
+ fs_info->workers =
+ btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16);
+ fs_info->hipri_workers =
+ btrfs_alloc_workqueue(fs_info, "worker-high",
+ flags | WQ_HIGHPRI, max_active, 16);
+
+ fs_info->delalloc_workers =
+ btrfs_alloc_workqueue(fs_info, "delalloc",
+ flags, max_active, 2);
+
+ fs_info->flush_workers =
+ btrfs_alloc_workqueue(fs_info, "flush_delalloc",
+ flags, max_active, 0);
+
+ fs_info->caching_workers =
+ btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
+
+ fs_info->fixup_workers =
+ btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
+
+ fs_info->endio_workers =
+ alloc_workqueue("btrfs-endio", flags, max_active);
+ fs_info->endio_meta_workers =
+ alloc_workqueue("btrfs-endio-meta", flags, max_active);
+ fs_info->endio_raid56_workers =
+ alloc_workqueue("btrfs-endio-raid56", flags, max_active);
+ fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active);
+ fs_info->endio_write_workers =
+ btrfs_alloc_workqueue(fs_info, "endio-write", flags,
+ max_active, 2);
+ fs_info->compressed_write_workers =
+ alloc_workqueue("btrfs-compressed-write", flags, max_active);
+ fs_info->endio_freespace_worker =
+ btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
+ max_active, 0);
+ fs_info->delayed_workers =
+ btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
+ max_active, 0);
+ fs_info->qgroup_rescan_workers =
+ btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
+ fs_info->discard_ctl.discard_workers =
+ alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
+
+ if (!(fs_info->workers && fs_info->hipri_workers &&
+ fs_info->delalloc_workers && fs_info->flush_workers &&
+ fs_info->endio_workers && fs_info->endio_meta_workers &&
+ fs_info->compressed_write_workers &&
+ fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
+ fs_info->endio_freespace_worker && fs_info->rmw_workers &&
+ fs_info->caching_workers && fs_info->fixup_workers &&
+ fs_info->delayed_workers && fs_info->qgroup_rescan_workers &&
+ fs_info->discard_ctl.discard_workers)) {
+ return -ENOMEM;
+ }
+
+ return 0;
+}
+
+static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
+{
+ struct crypto_shash *csum_shash;
+ const char *csum_driver = btrfs_super_csum_driver(csum_type);
+
+ csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
+
+ if (IS_ERR(csum_shash)) {
+ btrfs_err(fs_info, "error allocating %s hash for checksum",
+ csum_driver);
+ return PTR_ERR(csum_shash);
+ }
+
+ fs_info->csum_shash = csum_shash;
+
+ /*
+ * Check if the checksum implementation is a fast accelerated one.
+ * As-is this is a bit of a hack and should be replaced once the csum
+ * implementations provide that information themselves.
+ */
+ switch (csum_type) {
+ case BTRFS_CSUM_TYPE_CRC32:
+ if (!strstr(crypto_shash_driver_name(csum_shash), "generic"))
+ set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
+ break;
+ default:
+ break;
+ }
+
+ btrfs_info(fs_info, "using %s (%s) checksum algorithm",
+ btrfs_super_csum_name(csum_type),
+ crypto_shash_driver_name(csum_shash));
+ return 0;
+}
+
+static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
+ struct btrfs_fs_devices *fs_devices)
+{
+ int ret;
+ struct btrfs_root *log_tree_root;
+ struct btrfs_super_block *disk_super = fs_info->super_copy;
+ u64 bytenr = btrfs_super_log_root(disk_super);
+ int level = btrfs_super_log_root_level(disk_super);
+
+ if (fs_devices->rw_devices == 0) {
+ btrfs_warn(fs_info, "log replay required on RO media");
+ return -EIO;
+ }
+
+ log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
+ GFP_KERNEL);
+ if (!log_tree_root)
+ return -ENOMEM;
+
+ log_tree_root->node = read_tree_block(fs_info, bytenr,
+ BTRFS_TREE_LOG_OBJECTID,
+ fs_info->generation + 1, level,
+ NULL);
+ if (IS_ERR(log_tree_root->node)) {
+ btrfs_warn(fs_info, "failed to read log tree");
+ ret = PTR_ERR(log_tree_root->node);
+ log_tree_root->node = NULL;
+ btrfs_put_root(log_tree_root);
+ return ret;
+ }
+ if (!extent_buffer_uptodate(log_tree_root->node)) {
+ btrfs_err(fs_info, "failed to read log tree");
+ btrfs_put_root(log_tree_root);
+ return -EIO;
+ }
+
+ /* returns with log_tree_root freed on success */
+ ret = btrfs_recover_log_trees(log_tree_root);
+ if (ret) {
+ btrfs_handle_fs_error(fs_info, ret,
+ "Failed to recover log tree");
+ btrfs_put_root(log_tree_root);
+ return ret;
+ }
+
+ if (sb_rdonly(fs_info->sb)) {
+ ret = btrfs_commit_super(fs_info);
+ if (ret)
+ return ret;
+ }
+
+ return 0;
+}
+
+static int load_global_roots_objectid(struct btrfs_root *tree_root,
+ struct btrfs_path *path, u64 objectid,
+ const char *name)
+{
+ struct btrfs_fs_info *fs_info = tree_root->fs_info;
+ struct btrfs_root *root;
+ u64 max_global_id = 0;
+ int ret;
+ struct btrfs_key key = {
+ .objectid = objectid,
+ .type = BTRFS_ROOT_ITEM_KEY,
+ .offset = 0,
+ };
+ bool found = false;
+
+ /* If we have IGNOREDATACSUMS skip loading these roots. */
+ if (objectid == BTRFS_CSUM_TREE_OBJECTID &&
+ btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
+ set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
+ return 0;
+ }
+
+ while (1) {
+ ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
+ if (ret < 0)
+ break;
+
+ if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
+ ret = btrfs_next_leaf(tree_root, path);
+ if (ret) {
+ if (ret > 0)
+ ret = 0;
+ break;
+ }
+ }
+ ret = 0;
+
+ btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
+ if (key.objectid != objectid)
+ break;
+ btrfs_release_path(path);
+
+ /*
+ * Just worry about this for extent tree, it'll be the same for
+ * everybody.
+ */
+ if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
+ max_global_id = max(max_global_id, key.offset);
+
+ found = true;
+ root = read_tree_root_path(tree_root, path, &key);
+ if (IS_ERR(root)) {
+ if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
+ ret = PTR_ERR(root);
+ break;
+ }
+ set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
+ ret = btrfs_global_root_insert(root);
+ if (ret) {
+ btrfs_put_root(root);
+ break;
+ }
+ key.offset++;
+ }
+ btrfs_release_path(path);
+
+ if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
+ fs_info->nr_global_roots = max_global_id + 1;
+
+ if (!found || ret) {
+ if (objectid == BTRFS_CSUM_TREE_OBJECTID)
+ set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
+
+ if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
+ ret = ret ? ret : -ENOENT;
+ else
+ ret = 0;
+ btrfs_err(fs_info, "failed to load root %s", name);
+ }
+ return ret;
+}
+
+static int load_global_roots(struct btrfs_root *tree_root)
+{
+ struct btrfs_path *path;
+ int ret = 0;
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+
+ ret = load_global_roots_objectid(tree_root, path,
+ BTRFS_EXTENT_TREE_OBJECTID, "extent");
+ if (ret)
+ goto out;
+ ret = load_global_roots_objectid(tree_root, path,
+ BTRFS_CSUM_TREE_OBJECTID, "csum");
+ if (ret)
+ goto out;
+ if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE))
+ goto out;
+ ret = load_global_roots_objectid(tree_root, path,
+ BTRFS_FREE_SPACE_TREE_OBJECTID,
+ "free space");
+out:
+ btrfs_free_path(path);
+ return ret;
+}
+
+static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
+{
+ struct btrfs_root *tree_root = fs_info->tree_root;
+ struct btrfs_root *root;
+ struct btrfs_key location;
+ int ret;
+
+ BUG_ON(!fs_info->tree_root);
+
+ ret = load_global_roots(tree_root);
+ if (ret)
+ return ret;
+
+ location.type = BTRFS_ROOT_ITEM_KEY;
+ location.offset = 0;
+
+ if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) {
+ location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID;
+ root = btrfs_read_tree_root(tree_root, &location);
+ if (IS_ERR(root)) {
+ if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
+ ret = PTR_ERR(root);
+ goto out;
+ }
+ } else {
+ set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
+ fs_info->block_group_root = root;
+ }
+ }
+
+ location.objectid = BTRFS_DEV_TREE_OBJECTID;
+ root = btrfs_read_tree_root(tree_root, &location);
+ if (IS_ERR(root)) {
+ if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
+ ret = PTR_ERR(root);
+ goto out;
+ }
+ } else {
+ set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
+ fs_info->dev_root = root;
+ }
+ /* Initialize fs_info for all devices in any case */
+ ret = btrfs_init_devices_late(fs_info);
+ if (ret)
+ goto out;
+
+ /*
+ * This tree can share blocks with some other fs tree during relocation
+ * and we need a proper setup by btrfs_get_fs_root
+ */
+ root = btrfs_get_fs_root(tree_root->fs_info,
+ BTRFS_DATA_RELOC_TREE_OBJECTID, true);
+ if (IS_ERR(root)) {
+ if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
+ ret = PTR_ERR(root);
+ goto out;
+ }
+ } else {
+ set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
+ fs_info->data_reloc_root = root;
+ }
+
+ location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
+ root = btrfs_read_tree_root(tree_root, &location);
+ if (!IS_ERR(root)) {
+ set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
+ set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
+ fs_info->quota_root = root;
+ }
+
+ location.objectid = BTRFS_UUID_TREE_OBJECTID;
+ root = btrfs_read_tree_root(tree_root, &location);
+ if (IS_ERR(root)) {
+ if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
+ ret = PTR_ERR(root);
+ if (ret != -ENOENT)
+ goto out;
+ }
+ } else {
+ set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
+ fs_info->uuid_root = root;
+ }
+
+ return 0;
+out:
+ btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
+ location.objectid, ret);
+ return ret;
+}
+
+/*
+ * Real super block validation
+ * NOTE: super csum type and incompat features will not be checked here.
+ *
+ * @sb: super block to check
+ * @mirror_num: the super block number to check its bytenr:
+ * 0 the primary (1st) sb
+ * 1, 2 2nd and 3rd backup copy
+ * -1 skip bytenr check
+ */
+int btrfs_validate_super(struct btrfs_fs_info *fs_info,
+ struct btrfs_super_block *sb, int mirror_num)
+{
+ u64 nodesize = btrfs_super_nodesize(sb);
+ u64 sectorsize = btrfs_super_sectorsize(sb);
+ int ret = 0;
+
+ if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
+ btrfs_err(fs_info, "no valid FS found");
+ ret = -EINVAL;
+ }
+ if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
+ btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
+ btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
+ ret = -EINVAL;
+ }
+ if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
+ btrfs_err(fs_info, "tree_root level too big: %d >= %d",
+ btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
+ ret = -EINVAL;
+ }
+ if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
+ btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
+ btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
+ ret = -EINVAL;
+ }
+ if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
+ btrfs_err(fs_info, "log_root level too big: %d >= %d",
+ btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
+ ret = -EINVAL;
+ }
+
+ /*
+ * Check sectorsize and nodesize first, other check will need it.
+ * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
+ */
+ if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
+ sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
+ btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
+ ret = -EINVAL;
+ }
+
+ /*
+ * We only support at most two sectorsizes: 4K and PAGE_SIZE.
+ *
+ * We can support 16K sectorsize with 64K page size without problem,
+ * but such sectorsize/pagesize combination doesn't make much sense.
+ * 4K will be our future standard, PAGE_SIZE is supported from the very
+ * beginning.
+ */
+ if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) {
+ btrfs_err(fs_info,
+ "sectorsize %llu not yet supported for page size %lu",
+ sectorsize, PAGE_SIZE);
+ ret = -EINVAL;
+ }
+
+ if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
+ nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
+ btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
+ ret = -EINVAL;
+ }
+ if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
+ btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
+ le32_to_cpu(sb->__unused_leafsize), nodesize);
+ ret = -EINVAL;
+ }
+
+ /* Root alignment check */
+ if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
+ btrfs_warn(fs_info, "tree_root block unaligned: %llu",
+ btrfs_super_root(sb));
+ ret = -EINVAL;
+ }
+ if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
+ btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
+ btrfs_super_chunk_root(sb));
+ ret = -EINVAL;
+ }
+ if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
+ btrfs_warn(fs_info, "log_root block unaligned: %llu",
+ btrfs_super_log_root(sb));
+ ret = -EINVAL;
+ }
+
+ if (memcmp(fs_info->fs_devices->fsid, sb->fsid, BTRFS_FSID_SIZE) != 0) {
+ btrfs_err(fs_info,
+ "superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
+ sb->fsid, fs_info->fs_devices->fsid);
+ ret = -EINVAL;
+ }
+
+ if (memcmp(fs_info->fs_devices->metadata_uuid, btrfs_sb_fsid_ptr(sb),
+ BTRFS_FSID_SIZE) != 0) {
+ btrfs_err(fs_info,
+"superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
+ btrfs_sb_fsid_ptr(sb), fs_info->fs_devices->metadata_uuid);
+ ret = -EINVAL;
+ }
+
+ /*
+ * Artificial requirement for block-group-tree to force newer features
+ * (free-space-tree, no-holes) so the test matrix is smaller.
+ */
+ if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
+ (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) ||
+ !btrfs_fs_incompat(fs_info, NO_HOLES))) {
+ btrfs_err(fs_info,
+ "block-group-tree feature requires fres-space-tree and no-holes");
+ ret = -EINVAL;
+ }
+
+ if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
+ BTRFS_FSID_SIZE) != 0) {
+ btrfs_err(fs_info,
+ "dev_item UUID does not match metadata fsid: %pU != %pU",
+ fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
+ ret = -EINVAL;
+ }
+
+ /*
+ * Hint to catch really bogus numbers, bitflips or so, more exact checks are
+ * done later
+ */
+ if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
+ btrfs_err(fs_info, "bytes_used is too small %llu",
+ btrfs_super_bytes_used(sb));
+ ret = -EINVAL;
+ }
+ if (!is_power_of_2(btrfs_super_stripesize(sb))) {
+ btrfs_err(fs_info, "invalid stripesize %u",
+ btrfs_super_stripesize(sb));
+ ret = -EINVAL;
+ }
+ if (btrfs_super_num_devices(sb) > (1UL << 31))
+ btrfs_warn(fs_info, "suspicious number of devices: %llu",
+ btrfs_super_num_devices(sb));
+ if (btrfs_super_num_devices(sb) == 0) {
+ btrfs_err(fs_info, "number of devices is 0");
+ ret = -EINVAL;
+ }
+
+ if (mirror_num >= 0 &&
+ btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
+ btrfs_err(fs_info, "super offset mismatch %llu != %u",
+ btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
+ ret = -EINVAL;
+ }
+
+ /*
+ * Obvious sys_chunk_array corruptions, it must hold at least one key
+ * and one chunk
+ */
+ if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
+ btrfs_err(fs_info, "system chunk array too big %u > %u",
+ btrfs_super_sys_array_size(sb),
+ BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
+ ret = -EINVAL;
+ }
+ if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
+ + sizeof(struct btrfs_chunk)) {
+ btrfs_err(fs_info, "system chunk array too small %u < %zu",
+ btrfs_super_sys_array_size(sb),
+ sizeof(struct btrfs_disk_key)
+ + sizeof(struct btrfs_chunk));
+ ret = -EINVAL;
+ }
+
+ /*
+ * The generation is a global counter, we'll trust it more than the others
+ * but it's still possible that it's the one that's wrong.
+ */
+ if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
+ btrfs_warn(fs_info,
+ "suspicious: generation < chunk_root_generation: %llu < %llu",
+ btrfs_super_generation(sb),
+ btrfs_super_chunk_root_generation(sb));
+ if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
+ && btrfs_super_cache_generation(sb) != (u64)-1)
+ btrfs_warn(fs_info,
+ "suspicious: generation < cache_generation: %llu < %llu",
+ btrfs_super_generation(sb),
+ btrfs_super_cache_generation(sb));
+
+ return ret;
+}
+
+/*
+ * Validation of super block at mount time.
+ * Some checks already done early at mount time, like csum type and incompat
+ * flags will be skipped.
+ */
+static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
+{
+ return btrfs_validate_super(fs_info, fs_info->super_copy, 0);
+}
+
+/*
+ * Validation of super block at write time.
+ * Some checks like bytenr check will be skipped as their values will be
+ * overwritten soon.
+ * Extra checks like csum type and incompat flags will be done here.
+ */
+static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
+ struct btrfs_super_block *sb)
+{
+ int ret;
+
+ ret = btrfs_validate_super(fs_info, sb, -1);
+ if (ret < 0)
+ goto out;
+ if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
+ ret = -EUCLEAN;
+ btrfs_err(fs_info, "invalid csum type, has %u want %u",
+ btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
+ goto out;
+ }
+ if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
+ ret = -EUCLEAN;
+ btrfs_err(fs_info,
+ "invalid incompat flags, has 0x%llx valid mask 0x%llx",
+ btrfs_super_incompat_flags(sb),
+ (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
+ goto out;
+ }
+out:
+ if (ret < 0)
+ btrfs_err(fs_info,
+ "super block corruption detected before writing it to disk");
+ return ret;
+}
+
+static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level)
+{
+ int ret = 0;
+
+ root->node = read_tree_block(root->fs_info, bytenr,
+ root->root_key.objectid, gen, level, NULL);
+ if (IS_ERR(root->node)) {
+ ret = PTR_ERR(root->node);
+ root->node = NULL;
+ return ret;
+ }
+ if (!extent_buffer_uptodate(root->node)) {
+ free_extent_buffer(root->node);
+ root->node = NULL;
+ return -EIO;
+ }
+
+ btrfs_set_root_node(&root->root_item, root->node);
+ root->commit_root = btrfs_root_node(root);
+ btrfs_set_root_refs(&root->root_item, 1);
+ return ret;
+}
+
+static int load_important_roots(struct btrfs_fs_info *fs_info)
+{
+ struct btrfs_super_block *sb = fs_info->super_copy;
+ u64 gen, bytenr;
+ int level, ret;
+
+ bytenr = btrfs_super_root(sb);
+ gen = btrfs_super_generation(sb);
+ level = btrfs_super_root_level(sb);
+ ret = load_super_root(fs_info->tree_root, bytenr, gen, level);
+ if (ret) {
+ btrfs_warn(fs_info, "couldn't read tree root");
+ return ret;
+ }
+ return 0;
+}
+
+static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
+{
+ int backup_index = find_newest_super_backup(fs_info);
+ struct btrfs_super_block *sb = fs_info->super_copy;
+ struct btrfs_root *tree_root = fs_info->tree_root;
+ bool handle_error = false;
+ int ret = 0;
+ int i;
+
+ for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
+ if (handle_error) {
+ if (!IS_ERR(tree_root->node))
+ free_extent_buffer(tree_root->node);
+ tree_root->node = NULL;
+
+ if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
+ break;
+
+ free_root_pointers(fs_info, 0);
+
+ /*
+ * Don't use the log in recovery mode, it won't be
+ * valid
+ */
+ btrfs_set_super_log_root(sb, 0);
+
+ /* We can't trust the free space cache either */
+ btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
+
+ btrfs_warn(fs_info, "try to load backup roots slot %d", i);
+ ret = read_backup_root(fs_info, i);
+ backup_index = ret;
+ if (ret < 0)
+ return ret;
+ }
+
+ ret = load_important_roots(fs_info);
+ if (ret) {
+ handle_error = true;
+ continue;
+ }
+
+ /*
+ * No need to hold btrfs_root::objectid_mutex since the fs
+ * hasn't been fully initialised and we are the only user
+ */
+ ret = btrfs_init_root_free_objectid(tree_root);
+ if (ret < 0) {
+ handle_error = true;
+ continue;
+ }
+
+ ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
+
+ ret = btrfs_read_roots(fs_info);
+ if (ret < 0) {
+ handle_error = true;
+ continue;
+ }
+
+ /* All successful */
+ fs_info->generation = btrfs_header_generation(tree_root->node);
+ fs_info->last_trans_committed = fs_info->generation;
+ fs_info->last_reloc_trans = 0;
+
+ /* Always begin writing backup roots after the one being used */
+ if (backup_index < 0) {
+ fs_info->backup_root_index = 0;
+ } else {
+ fs_info->backup_root_index = backup_index + 1;
+ fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
+ }
+ break;
+ }
+
+ return ret;
+}
+
+void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
+{
+ INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
+ INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
+ INIT_LIST_HEAD(&fs_info->trans_list);
+ INIT_LIST_HEAD(&fs_info->dead_roots);
+ INIT_LIST_HEAD(&fs_info->delayed_iputs);
+ INIT_LIST_HEAD(&fs_info->delalloc_roots);
+ INIT_LIST_HEAD(&fs_info->caching_block_groups);
+ spin_lock_init(&fs_info->delalloc_root_lock);
+ spin_lock_init(&fs_info->trans_lock);
+ spin_lock_init(&fs_info->fs_roots_radix_lock);
+ spin_lock_init(&fs_info->delayed_iput_lock);
+ spin_lock_init(&fs_info->defrag_inodes_lock);
+ spin_lock_init(&fs_info->super_lock);
+ spin_lock_init(&fs_info->buffer_lock);
+ spin_lock_init(&fs_info->unused_bgs_lock);
+ spin_lock_init(&fs_info->treelog_bg_lock);
+ spin_lock_init(&fs_info->zone_active_bgs_lock);
+ spin_lock_init(&fs_info->relocation_bg_lock);
+ rwlock_init(&fs_info->tree_mod_log_lock);
+ rwlock_init(&fs_info->global_root_lock);
+ mutex_init(&fs_info->unused_bg_unpin_mutex);
+ mutex_init(&fs_info->reclaim_bgs_lock);
+ mutex_init(&fs_info->reloc_mutex);
+ mutex_init(&fs_info->delalloc_root_mutex);
+ mutex_init(&fs_info->zoned_meta_io_lock);
+ mutex_init(&fs_info->zoned_data_reloc_io_lock);
+ seqlock_init(&fs_info->profiles_lock);
+
+ btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers);
+ btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters);
+ btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered);
+ btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent);
+ btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_start,
+ BTRFS_LOCKDEP_TRANS_COMMIT_START);
+ btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked,
+ BTRFS_LOCKDEP_TRANS_UNBLOCKED);
+ btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed,
+ BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
+ btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed,
+ BTRFS_LOCKDEP_TRANS_COMPLETED);
+
+ INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
+ INIT_LIST_HEAD(&fs_info->space_info);
+ INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
+ INIT_LIST_HEAD(&fs_info->unused_bgs);
+ INIT_LIST_HEAD(&fs_info->reclaim_bgs);
+ INIT_LIST_HEAD(&fs_info->zone_active_bgs);
+#ifdef CONFIG_BTRFS_DEBUG
+ INIT_LIST_HEAD(&fs_info->allocated_roots);
+ INIT_LIST_HEAD(&fs_info->allocated_ebs);
+ spin_lock_init(&fs_info->eb_leak_lock);
+#endif
+ extent_map_tree_init(&fs_info->mapping_tree);
+ btrfs_init_block_rsv(&fs_info->global_block_rsv,
+ BTRFS_BLOCK_RSV_GLOBAL);
+ btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
+ btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
+ btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
+ btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
+ BTRFS_BLOCK_RSV_DELOPS);
+ btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
+ BTRFS_BLOCK_RSV_DELREFS);
+
+ atomic_set(&fs_info->async_delalloc_pages, 0);
+ atomic_set(&fs_info->defrag_running, 0);
+ atomic_set(&fs_info->nr_delayed_iputs, 0);
+ atomic64_set(&fs_info->tree_mod_seq, 0);
+ fs_info->global_root_tree = RB_ROOT;
+ fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
+ fs_info->metadata_ratio = 0;
+ fs_info->defrag_inodes = RB_ROOT;
+ atomic64_set(&fs_info->free_chunk_space, 0);
+ fs_info->tree_mod_log = RB_ROOT;
+ fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
+ fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
+ btrfs_init_ref_verify(fs_info);
+
+ fs_info->thread_pool_size = min_t(unsigned long,
+ num_online_cpus() + 2, 8);
+
+ INIT_LIST_HEAD(&fs_info->ordered_roots);
+ spin_lock_init(&fs_info->ordered_root_lock);
+
+ btrfs_init_scrub(fs_info);
+#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
+ fs_info->check_integrity_print_mask = 0;
+#endif
+ btrfs_init_balance(fs_info);
+ btrfs_init_async_reclaim_work(fs_info);
+
+ rwlock_init(&fs_info->block_group_cache_lock);
+ fs_info->block_group_cache_tree = RB_ROOT_CACHED;
+
+ extent_io_tree_init(fs_info, &fs_info->excluded_extents,
+ IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
+
+ mutex_init(&fs_info->ordered_operations_mutex);
+ mutex_init(&fs_info->tree_log_mutex);
+ mutex_init(&fs_info->chunk_mutex);
+ mutex_init(&fs_info->transaction_kthread_mutex);
+ mutex_init(&fs_info->cleaner_mutex);
+ mutex_init(&fs_info->ro_block_group_mutex);
+ init_rwsem(&fs_info->commit_root_sem);
+ init_rwsem(&fs_info->cleanup_work_sem);
+ init_rwsem(&fs_info->subvol_sem);
+ sema_init(&fs_info->uuid_tree_rescan_sem, 1);
+
+ btrfs_init_dev_replace_locks(fs_info);
+ btrfs_init_qgroup(fs_info);
+ btrfs_discard_init(fs_info);
+
+ btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
+ btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
+
+ init_waitqueue_head(&fs_info->transaction_throttle);
+ init_waitqueue_head(&fs_info->transaction_wait);
+ init_waitqueue_head(&fs_info->transaction_blocked_wait);
+ init_waitqueue_head(&fs_info->async_submit_wait);
+ init_waitqueue_head(&fs_info->delayed_iputs_wait);
+
+ /* Usable values until the real ones are cached from the superblock */
+ fs_info->nodesize = 4096;
+ fs_info->sectorsize = 4096;
+ fs_info->sectorsize_bits = ilog2(4096);
+ fs_info->stripesize = 4096;
+
+ fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE;
+
+ spin_lock_init(&fs_info->swapfile_pins_lock);
+ fs_info->swapfile_pins = RB_ROOT;
+
+ fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
+ INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
+}
+
+static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
+{
+ int ret;
+
+ fs_info->sb = sb;
+ sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
+ sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
+
+ ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
+ if (ret)
+ return ret;
+
+ ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
+ if (ret)
+ return ret;
+
+ fs_info->dirty_metadata_batch = PAGE_SIZE *
+ (1 + ilog2(nr_cpu_ids));
+
+ ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
+ if (ret)
+ return ret;
+
+ ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
+ GFP_KERNEL);
+ if (ret)
+ return ret;
+
+ fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
+ GFP_KERNEL);
+ if (!fs_info->delayed_root)
+ return -ENOMEM;
+ btrfs_init_delayed_root(fs_info->delayed_root);
+
+ if (sb_rdonly(sb))
+ set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
+
+ return btrfs_alloc_stripe_hash_table(fs_info);
+}
+
+static int btrfs_uuid_rescan_kthread(void *data)
+{
+ struct btrfs_fs_info *fs_info = data;
+ int ret;
+
+ /*
+ * 1st step is to iterate through the existing UUID tree and
+ * to delete all entries that contain outdated data.
+ * 2nd step is to add all missing entries to the UUID tree.
+ */
+ ret = btrfs_uuid_tree_iterate(fs_info);
+ if (ret < 0) {
+ if (ret != -EINTR)
+ btrfs_warn(fs_info, "iterating uuid_tree failed %d",
+ ret);
+ up(&fs_info->uuid_tree_rescan_sem);
+ return ret;
+ }
+ return btrfs_uuid_scan_kthread(data);
+}
+
+static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
+{
+ struct task_struct *task;
+
+ down(&fs_info->uuid_tree_rescan_sem);
+ task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
+ if (IS_ERR(task)) {
+ /* fs_info->update_uuid_tree_gen remains 0 in all error case */
+ btrfs_warn(fs_info, "failed to start uuid_rescan task");
+ up(&fs_info->uuid_tree_rescan_sem);
+ return PTR_ERR(task);
+ }
+
+ return 0;
+}
+
+/*
+ * Some options only have meaning at mount time and shouldn't persist across
+ * remounts, or be displayed. Clear these at the end of mount and remount
+ * code paths.
+ */
+void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
+{
+ btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
+ btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
+}
+
+/*
+ * Mounting logic specific to read-write file systems. Shared by open_ctree
+ * and btrfs_remount when remounting from read-only to read-write.
+ */
+int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
+{
+ int ret;
+ const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
+ bool rebuild_free_space_tree = false;
+
+ if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
+ btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
+ rebuild_free_space_tree = true;
+ } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
+ !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
+ btrfs_warn(fs_info, "free space tree is invalid");
+ rebuild_free_space_tree = true;
+ }
+
+ if (rebuild_free_space_tree) {
+ btrfs_info(fs_info, "rebuilding free space tree");
+ ret = btrfs_rebuild_free_space_tree(fs_info);
+ if (ret) {
+ btrfs_warn(fs_info,
+ "failed to rebuild free space tree: %d", ret);
+ goto out;
+ }
+ }
+
+ if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
+ !btrfs_test_opt(fs_info, FREE_SPACE_TREE)) {
+ btrfs_info(fs_info, "disabling free space tree");
+ ret = btrfs_delete_free_space_tree(fs_info);
+ if (ret) {
+ btrfs_warn(fs_info,
+ "failed to disable free space tree: %d", ret);
+ goto out;
+ }
+ }
+
+ /*
+ * btrfs_find_orphan_roots() is responsible for finding all the dead
+ * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
+ * them into the fs_info->fs_roots_radix tree. This must be done before
+ * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
+ * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
+ * item before the root's tree is deleted - this means that if we unmount
+ * or crash before the deletion completes, on the next mount we will not
+ * delete what remains of the tree because the orphan item does not
+ * exists anymore, which is what tells us we have a pending deletion.
+ */
+ ret = btrfs_find_orphan_roots(fs_info);
+ if (ret)
+ goto out;
+
+ ret = btrfs_cleanup_fs_roots(fs_info);
+ if (ret)
+ goto out;
+
+ down_read(&fs_info->cleanup_work_sem);
+ if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
+ (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
+ up_read(&fs_info->cleanup_work_sem);
+ goto out;
+ }
+ up_read(&fs_info->cleanup_work_sem);
+
+ mutex_lock(&fs_info->cleaner_mutex);
+ ret = btrfs_recover_relocation(fs_info);
+ mutex_unlock(&fs_info->cleaner_mutex);
+ if (ret < 0) {
+ btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
+ goto out;
+ }
+
+ if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
+ !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
+ btrfs_info(fs_info, "creating free space tree");
+ ret = btrfs_create_free_space_tree(fs_info);
+ if (ret) {
+ btrfs_warn(fs_info,
+ "failed to create free space tree: %d", ret);
+ goto out;
+ }
+ }
+
+ if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
+ ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
+ if (ret)
+ goto out;
+ }
+
+ ret = btrfs_resume_balance_async(fs_info);
+ if (ret)
+ goto out;
+
+ ret = btrfs_resume_dev_replace_async(fs_info);
+ if (ret) {
+ btrfs_warn(fs_info, "failed to resume dev_replace");
+ goto out;
+ }
+
+ btrfs_qgroup_rescan_resume(fs_info);
+
+ if (!fs_info->uuid_root) {
+ btrfs_info(fs_info, "creating UUID tree");
+ ret = btrfs_create_uuid_tree(fs_info);
+ if (ret) {
+ btrfs_warn(fs_info,
+ "failed to create the UUID tree %d", ret);
+ goto out;
+ }
+ }
+
+out:
+ return ret;
+}
+
+/*
+ * Do various sanity and dependency checks of different features.
+ *
+ * @is_rw_mount: If the mount is read-write.
+ *
+ * This is the place for less strict checks (like for subpage or artificial
+ * feature dependencies).
+ *
+ * For strict checks or possible corruption detection, see
+ * btrfs_validate_super().
+ *
+ * This should be called after btrfs_parse_options(), as some mount options
+ * (space cache related) can modify on-disk format like free space tree and
+ * screw up certain feature dependencies.
+ */
+int btrfs_check_features(struct btrfs_fs_info *fs_info, bool is_rw_mount)
+{
+ struct btrfs_super_block *disk_super = fs_info->super_copy;
+ u64 incompat = btrfs_super_incompat_flags(disk_super);
+ const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super);
+ const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP);
+
+ if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
+ btrfs_err(fs_info,
+ "cannot mount because of unknown incompat features (0x%llx)",
+ incompat);
+ return -EINVAL;
+ }
+
+ /* Runtime limitation for mixed block groups. */
+ if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
+ (fs_info->sectorsize != fs_info->nodesize)) {
+ btrfs_err(fs_info,
+"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
+ fs_info->nodesize, fs_info->sectorsize);
+ return -EINVAL;
+ }
+
+ /* Mixed backref is an always-enabled feature. */
+ incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
+
+ /* Set compression related flags just in case. */
+ if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
+ incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
+ else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
+ incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
+
+ /*
+ * An ancient flag, which should really be marked deprecated.
+ * Such runtime limitation doesn't really need a incompat flag.
+ */
+ if (btrfs_super_nodesize(disk_super) > PAGE_SIZE)
+ incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
+
+ if (compat_ro_unsupp && is_rw_mount) {
+ btrfs_err(fs_info,
+ "cannot mount read-write because of unknown compat_ro features (0x%llx)",
+ compat_ro);
+ return -EINVAL;
+ }
+
+ /*
+ * We have unsupported RO compat features, although RO mounted, we
+ * should not cause any metadata writes, including log replay.
+ * Or we could screw up whatever the new feature requires.
+ */
+ if (compat_ro_unsupp && btrfs_super_log_root(disk_super) &&
+ !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
+ btrfs_err(fs_info,
+"cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay",
+ compat_ro);
+ return -EINVAL;
+ }
+
+ /*
+ * Artificial limitations for block group tree, to force
+ * block-group-tree to rely on no-holes and free-space-tree.
+ */
+ if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
+ (!btrfs_fs_incompat(fs_info, NO_HOLES) ||
+ !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) {
+ btrfs_err(fs_info,
+"block-group-tree feature requires no-holes and free-space-tree features");
+ return -EINVAL;
+ }
+
+ /*
+ * Subpage runtime limitation on v1 cache.
+ *
+ * V1 space cache still has some hard codeed PAGE_SIZE usage, while
+ * we're already defaulting to v2 cache, no need to bother v1 as it's
+ * going to be deprecated anyway.
+ */
+ if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) {
+ btrfs_warn(fs_info,
+ "v1 space cache is not supported for page size %lu with sectorsize %u",
+ PAGE_SIZE, fs_info->sectorsize);
+ return -EINVAL;
+ }
+
+ /* This can be called by remount, we need to protect the super block. */
+ spin_lock(&fs_info->super_lock);
+ btrfs_set_super_incompat_flags(disk_super, incompat);
+ spin_unlock(&fs_info->super_lock);
+
+ return 0;
+}
+
+int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
+ char *options)
+{
+ u32 sectorsize;
+ u32 nodesize;
+ u32 stripesize;
+ u64 generation;
+ u64 features;
+ u16 csum_type;
+ struct btrfs_super_block *disk_super;
+ struct btrfs_fs_info *fs_info = btrfs_sb(sb);
+ struct btrfs_root *tree_root;
+ struct btrfs_root *chunk_root;
+ int ret;
+ int err = -EINVAL;
+ int level;
+
+ ret = init_mount_fs_info(fs_info, sb);
+ if (ret) {
+ err = ret;
+ goto fail;
+ }
+
+ /* These need to be init'ed before we start creating inodes and such. */
+ tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
+ GFP_KERNEL);
+ fs_info->tree_root = tree_root;
+ chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
+ GFP_KERNEL);
+ fs_info->chunk_root = chunk_root;
+ if (!tree_root || !chunk_root) {
+ err = -ENOMEM;
+ goto fail;
+ }
+
+ fs_info->btree_inode = new_inode(sb);
+ if (!fs_info->btree_inode) {
+ err = -ENOMEM;
+ goto fail;
+ }
+ mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
+ btrfs_init_btree_inode(fs_info);
+
+ invalidate_bdev(fs_devices->latest_dev->bdev);
+
+ /*
+ * Read super block and check the signature bytes only
+ */
+ disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev);
+ if (IS_ERR(disk_super)) {
+ err = PTR_ERR(disk_super);
+ goto fail_alloc;
+ }
+
+ btrfs_info(fs_info, "first mount of filesystem %pU", disk_super->fsid);
+ /*
+ * Verify the type first, if that or the checksum value are
+ * corrupted, we'll find out
+ */
+ csum_type = btrfs_super_csum_type(disk_super);
+ if (!btrfs_supported_super_csum(csum_type)) {
+ btrfs_err(fs_info, "unsupported checksum algorithm: %u",
+ csum_type);
+ err = -EINVAL;
+ btrfs_release_disk_super(disk_super);
+ goto fail_alloc;
+ }
+
+ fs_info->csum_size = btrfs_super_csum_size(disk_super);
+
+ ret = btrfs_init_csum_hash(fs_info, csum_type);
+ if (ret) {
+ err = ret;
+ btrfs_release_disk_super(disk_super);
+ goto fail_alloc;
+ }
+
+ /*
+ * We want to check superblock checksum, the type is stored inside.
+ * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
+ */
+ if (btrfs_check_super_csum(fs_info, disk_super)) {
+ btrfs_err(fs_info, "superblock checksum mismatch");
+ err = -EINVAL;
+ btrfs_release_disk_super(disk_super);
+ goto fail_alloc;
+ }
+
+ /*
+ * super_copy is zeroed at allocation time and we never touch the
+ * following bytes up to INFO_SIZE, the checksum is calculated from
+ * the whole block of INFO_SIZE
+ */
+ memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
+ btrfs_release_disk_super(disk_super);
+
+ disk_super = fs_info->super_copy;
+
+
+ features = btrfs_super_flags(disk_super);
+ if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
+ features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
+ btrfs_set_super_flags(disk_super, features);
+ btrfs_info(fs_info,
+ "found metadata UUID change in progress flag, clearing");
+ }
+
+ memcpy(fs_info->super_for_commit, fs_info->super_copy,
+ sizeof(*fs_info->super_for_commit));
+
+ ret = btrfs_validate_mount_super(fs_info);
+ if (ret) {
+ btrfs_err(fs_info, "superblock contains fatal errors");
+ err = -EINVAL;
+ goto fail_alloc;
+ }
+
+ if (!btrfs_super_root(disk_super))
+ goto fail_alloc;
+
+ /* check FS state, whether FS is broken. */
+ if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
+ set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
+
+ /*
+ * In the long term, we'll store the compression type in the super
+ * block, and it'll be used for per file compression control.
+ */
+ fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
+
+
+ /* Set up fs_info before parsing mount options */
+ nodesize = btrfs_super_nodesize(disk_super);
+ sectorsize = btrfs_super_sectorsize(disk_super);
+ stripesize = sectorsize;
+ fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
+ fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
+
+ fs_info->nodesize = nodesize;
+ fs_info->sectorsize = sectorsize;
+ fs_info->sectorsize_bits = ilog2(sectorsize);
+ fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
+ fs_info->stripesize = stripesize;
+
+ ret = btrfs_parse_options(fs_info, options, sb->s_flags);
+ if (ret) {
+ err = ret;
+ goto fail_alloc;
+ }
+
+ ret = btrfs_check_features(fs_info, !sb_rdonly(sb));
+ if (ret < 0) {
+ err = ret;
+ goto fail_alloc;
+ }
+
+ if (sectorsize < PAGE_SIZE) {
+ struct btrfs_subpage_info *subpage_info;
+
+ /*
+ * V1 space cache has some hardcoded PAGE_SIZE usage, and is
+ * going to be deprecated.
+ *
+ * Force to use v2 cache for subpage case.
+ */
+ btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
+ btrfs_set_and_info(fs_info, FREE_SPACE_TREE,
+ "forcing free space tree for sector size %u with page size %lu",
+ sectorsize, PAGE_SIZE);
+
+ btrfs_warn(fs_info,
+ "read-write for sector size %u with page size %lu is experimental",
+ sectorsize, PAGE_SIZE);
+ subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL);
+ if (!subpage_info)
+ goto fail_alloc;
+ btrfs_init_subpage_info(subpage_info, sectorsize);
+ fs_info->subpage_info = subpage_info;
+ }
+
+ ret = btrfs_init_workqueues(fs_info);
+ if (ret) {
+ err = ret;
+ goto fail_sb_buffer;
+ }
+
+ sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
+ sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
+
+ sb->s_blocksize = sectorsize;
+ sb->s_blocksize_bits = blksize_bits(sectorsize);
+ memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
+
+ mutex_lock(&fs_info->chunk_mutex);
+ ret = btrfs_read_sys_array(fs_info);
+ mutex_unlock(&fs_info->chunk_mutex);
+ if (ret) {
+ btrfs_err(fs_info, "failed to read the system array: %d", ret);
+ goto fail_sb_buffer;
+ }
+
+ generation = btrfs_super_chunk_root_generation(disk_super);
+ level = btrfs_super_chunk_root_level(disk_super);
+ ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super),
+ generation, level);
+ if (ret) {
+ btrfs_err(fs_info, "failed to read chunk root");
+ goto fail_tree_roots;
+ }
+
+ read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
+ offsetof(struct btrfs_header, chunk_tree_uuid),
+ BTRFS_UUID_SIZE);
+
+ ret = btrfs_read_chunk_tree(fs_info);
+ if (ret) {
+ btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
+ goto fail_tree_roots;
+ }
+
+ /*
+ * At this point we know all the devices that make this filesystem,
+ * including the seed devices but we don't know yet if the replace
+ * target is required. So free devices that are not part of this
+ * filesystem but skip the replace target device which is checked
+ * below in btrfs_init_dev_replace().
+ */
+ btrfs_free_extra_devids(fs_devices);
+ if (!fs_devices->latest_dev->bdev) {
+ btrfs_err(fs_info, "failed to read devices");
+ goto fail_tree_roots;
+ }
+
+ ret = init_tree_roots(fs_info);
+ if (ret)
+ goto fail_tree_roots;
+
+ /*
+ * Get zone type information of zoned block devices. This will also
+ * handle emulation of a zoned filesystem if a regular device has the
+ * zoned incompat feature flag set.
+ */
+ ret = btrfs_get_dev_zone_info_all_devices(fs_info);
+ if (ret) {
+ btrfs_err(fs_info,
+ "zoned: failed to read device zone info: %d",
+ ret);
+ goto fail_block_groups;
+ }
+
+ /*
+ * If we have a uuid root and we're not being told to rescan we need to
+ * check the generation here so we can set the
+ * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the
+ * transaction during a balance or the log replay without updating the
+ * uuid generation, and then if we crash we would rescan the uuid tree,
+ * even though it was perfectly fine.
+ */
+ if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
+ fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
+ set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
+
+ ret = btrfs_verify_dev_extents(fs_info);
+ if (ret) {
+ btrfs_err(fs_info,
+ "failed to verify dev extents against chunks: %d",
+ ret);
+ goto fail_block_groups;
+ }
+ ret = btrfs_recover_balance(fs_info);
+ if (ret) {
+ btrfs_err(fs_info, "failed to recover balance: %d", ret);
+ goto fail_block_groups;
+ }
+
+ ret = btrfs_init_dev_stats(fs_info);
+ if (ret) {
+ btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
+ goto fail_block_groups;
+ }
+
+ ret = btrfs_init_dev_replace(fs_info);
+ if (ret) {
+ btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
+ goto fail_block_groups;
+ }
+
+ ret = btrfs_check_zoned_mode(fs_info);
+ if (ret) {
+ btrfs_err(fs_info, "failed to initialize zoned mode: %d",
+ ret);
+ goto fail_block_groups;
+ }
+
+ ret = btrfs_sysfs_add_fsid(fs_devices);
+ if (ret) {
+ btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
+ ret);
+ goto fail_block_groups;
+ }
+
+ ret = btrfs_sysfs_add_mounted(fs_info);
+ if (ret) {
+ btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
+ goto fail_fsdev_sysfs;
+ }
+
+ ret = btrfs_init_space_info(fs_info);
+ if (ret) {
+ btrfs_err(fs_info, "failed to initialize space info: %d", ret);
+ goto fail_sysfs;
+ }
+
+ ret = btrfs_read_block_groups(fs_info);
+ if (ret) {
+ btrfs_err(fs_info, "failed to read block groups: %d", ret);
+ goto fail_sysfs;
+ }
+
+ btrfs_free_zone_cache(fs_info);
+
+ if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
+ !btrfs_check_rw_degradable(fs_info, NULL)) {
+ btrfs_warn(fs_info,
+ "writable mount is not allowed due to too many missing devices");
+ goto fail_sysfs;
+ }
+
+ fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info,
+ "btrfs-cleaner");
+ if (IS_ERR(fs_info->cleaner_kthread))
+ goto fail_sysfs;
+
+ fs_info->transaction_kthread = kthread_run(transaction_kthread,
+ tree_root,
+ "btrfs-transaction");
+ if (IS_ERR(fs_info->transaction_kthread))
+ goto fail_cleaner;
+
+ if (!btrfs_test_opt(fs_info, NOSSD) &&
+ !fs_info->fs_devices->rotating) {
+ btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
+ }
+
+ /*
+ * Mount does not set all options immediately, we can do it now and do
+ * not have to wait for transaction commit
+ */
+ btrfs_apply_pending_changes(fs_info);
+
+#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
+ if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
+ ret = btrfsic_mount(fs_info, fs_devices,
+ btrfs_test_opt(fs_info,
+ CHECK_INTEGRITY_DATA) ? 1 : 0,
+ fs_info->check_integrity_print_mask);
+ if (ret)
+ btrfs_warn(fs_info,
+ "failed to initialize integrity check module: %d",
+ ret);
+ }
+#endif
+ ret = btrfs_read_qgroup_config(fs_info);
+ if (ret)
+ goto fail_trans_kthread;
+
+ if (btrfs_build_ref_tree(fs_info))
+ btrfs_err(fs_info, "couldn't build ref tree");
+
+ /* do not make disk changes in broken FS or nologreplay is given */
+ if (btrfs_super_log_root(disk_super) != 0 &&
+ !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
+ btrfs_info(fs_info, "start tree-log replay");
+ ret = btrfs_replay_log(fs_info, fs_devices);
+ if (ret) {
+ err = ret;
+ goto fail_qgroup;
+ }
+ }
+
+ fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
+ if (IS_ERR(fs_info->fs_root)) {
+ err = PTR_ERR(fs_info->fs_root);
+ btrfs_warn(fs_info, "failed to read fs tree: %d", err);
+ fs_info->fs_root = NULL;
+ goto fail_qgroup;
+ }
+
+ if (sb_rdonly(sb))
+ goto clear_oneshot;
+
+ ret = btrfs_start_pre_rw_mount(fs_info);
+ if (ret) {
+ close_ctree(fs_info);
+ return ret;
+ }
+ btrfs_discard_resume(fs_info);
+
+ if (fs_info->uuid_root &&
+ (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
+ fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
+ btrfs_info(fs_info, "checking UUID tree");
+ ret = btrfs_check_uuid_tree(fs_info);
+ if (ret) {
+ btrfs_warn(fs_info,
+ "failed to check the UUID tree: %d", ret);
+ close_ctree(fs_info);
+ return ret;
+ }
+ }
+
+ set_bit(BTRFS_FS_OPEN, &fs_info->flags);
+
+ /* Kick the cleaner thread so it'll start deleting snapshots. */
+ if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags))
+ wake_up_process(fs_info->cleaner_kthread);
+
+clear_oneshot:
+ btrfs_clear_oneshot_options(fs_info);
+ return 0;
+
+fail_qgroup:
+ btrfs_free_qgroup_config(fs_info);
+fail_trans_kthread:
+ kthread_stop(fs_info->transaction_kthread);
+ btrfs_cleanup_transaction(fs_info);
+ btrfs_free_fs_roots(fs_info);
+fail_cleaner:
+ kthread_stop(fs_info->cleaner_kthread);
+
+ /*
+ * make sure we're done with the btree inode before we stop our
+ * kthreads
+ */
+ filemap_write_and_wait(fs_info->btree_inode->i_mapping);
+
+fail_sysfs:
+ btrfs_sysfs_remove_mounted(fs_info);
+
+fail_fsdev_sysfs:
+ btrfs_sysfs_remove_fsid(fs_info->fs_devices);
+
+fail_block_groups:
+ btrfs_put_block_group_cache(fs_info);
+
+fail_tree_roots:
+ if (fs_info->data_reloc_root)
+ btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
+ free_root_pointers(fs_info, true);
+ invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
+
+fail_sb_buffer:
+ btrfs_stop_all_workers(fs_info);
+ btrfs_free_block_groups(fs_info);
+fail_alloc:
+ btrfs_mapping_tree_free(&fs_info->mapping_tree);
+
+ iput(fs_info->btree_inode);
+fail:
+ btrfs_close_devices(fs_info->fs_devices);
+ return err;
+}
+ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
+
+static void btrfs_end_super_write(struct bio *bio)
+{
+ struct btrfs_device *device = bio->bi_private;
+ struct bio_vec *bvec;
+ struct bvec_iter_all iter_all;
+ struct page *page;
+
+ bio_for_each_segment_all(bvec, bio, iter_all) {
+ page = bvec->bv_page;
+
+ if (bio->bi_status) {
+ btrfs_warn_rl_in_rcu(device->fs_info,
+ "lost page write due to IO error on %s (%d)",
+ rcu_str_deref(device->name),
+ blk_status_to_errno(bio->bi_status));
+ ClearPageUptodate(page);
+ SetPageError(page);
+ btrfs_dev_stat_inc_and_print(device,
+ BTRFS_DEV_STAT_WRITE_ERRS);
+ } else {
+ SetPageUptodate(page);
+ }
+
+ put_page(page);
+ unlock_page(page);
+ }
+
+ bio_put(bio);
+}
+
+struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
+ int copy_num, bool drop_cache)
+{
+ struct btrfs_super_block *super;
+ struct page *page;
+ u64 bytenr, bytenr_orig;
+ struct address_space *mapping = bdev->bd_inode->i_mapping;
+ int ret;
+
+ bytenr_orig = btrfs_sb_offset(copy_num);
+ ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
+ if (ret == -ENOENT)
+ return ERR_PTR(-EINVAL);
+ else if (ret)
+ return ERR_PTR(ret);
+
+ if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev))
+ return ERR_PTR(-EINVAL);
+
+ if (drop_cache) {
+ /* This should only be called with the primary sb. */
+ ASSERT(copy_num == 0);
+
+ /*
+ * Drop the page of the primary superblock, so later read will
+ * always read from the device.
+ */
+ invalidate_inode_pages2_range(mapping,
+ bytenr >> PAGE_SHIFT,
+ (bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT);
+ }
+
+ page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
+ if (IS_ERR(page))
+ return ERR_CAST(page);
+
+ super = page_address(page);
+ if (btrfs_super_magic(super) != BTRFS_MAGIC) {
+ btrfs_release_disk_super(super);
+ return ERR_PTR(-ENODATA);
+ }
+
+ if (btrfs_super_bytenr(super) != bytenr_orig) {
+ btrfs_release_disk_super(super);
+ return ERR_PTR(-EINVAL);
+ }
+
+ return super;
+}
+
+
+struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
+{
+ struct btrfs_super_block *super, *latest = NULL;
+ int i;
+ u64 transid = 0;
+
+ /* we would like to check all the supers, but that would make
+ * a btrfs mount succeed after a mkfs from a different FS.
+ * So, we need to add a special mount option to scan for
+ * later supers, using BTRFS_SUPER_MIRROR_MAX instead
+ */
+ for (i = 0; i < 1; i++) {
+ super = btrfs_read_dev_one_super(bdev, i, false);
+ if (IS_ERR(super))
+ continue;
+
+ if (!latest || btrfs_super_generation(super) > transid) {
+ if (latest)
+ btrfs_release_disk_super(super);
+
+ latest = super;
+ transid = btrfs_super_generation(super);
+ }
+ }
+
+ return super;
+}
+
+/*
+ * Write superblock @sb to the @device. Do not wait for completion, all the
+ * pages we use for writing are locked.
+ *
+ * Write @max_mirrors copies of the superblock, where 0 means default that fit
+ * the expected device size at commit time. Note that max_mirrors must be
+ * same for write and wait phases.
+ *
+ * Return number of errors when page is not found or submission fails.
+ */
+static int write_dev_supers(struct btrfs_device *device,
+ struct btrfs_super_block *sb, int max_mirrors)
+{
+ struct btrfs_fs_info *fs_info = device->fs_info;
+ struct address_space *mapping = device->bdev->bd_inode->i_mapping;
+ SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
+ int i;
+ int errors = 0;
+ int ret;
+ u64 bytenr, bytenr_orig;
+
+ if (max_mirrors == 0)
+ max_mirrors = BTRFS_SUPER_MIRROR_MAX;
+
+ shash->tfm = fs_info->csum_shash;
+
+ for (i = 0; i < max_mirrors; i++) {
+ struct page *page;
+ struct bio *bio;
+ struct btrfs_super_block *disk_super;
+
+ bytenr_orig = btrfs_sb_offset(i);
+ ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
+ if (ret == -ENOENT) {
+ continue;
+ } else if (ret < 0) {
+ btrfs_err(device->fs_info,
+ "couldn't get super block location for mirror %d",
+ i);
+ errors++;
+ continue;
+ }
+ if (bytenr + BTRFS_SUPER_INFO_SIZE >=
+ device->commit_total_bytes)
+ break;
+
+ btrfs_set_super_bytenr(sb, bytenr_orig);
+
+ crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
+ BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
+ sb->csum);
+
+ page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
+ GFP_NOFS);
+ if (!page) {
+ btrfs_err(device->fs_info,
+ "couldn't get super block page for bytenr %llu",
+ bytenr);
+ errors++;
+ continue;
+ }
+
+ /* Bump the refcount for wait_dev_supers() */
+ get_page(page);
+
+ disk_super = page_address(page);
+ memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
+
+ /*
+ * Directly use bios here instead of relying on the page cache
+ * to do I/O, so we don't lose the ability to do integrity
+ * checking.
+ */
+ bio = bio_alloc(device->bdev, 1,
+ REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO,
+ GFP_NOFS);
+ bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
+ bio->bi_private = device;
+ bio->bi_end_io = btrfs_end_super_write;
+ __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
+ offset_in_page(bytenr));
+
+ /*
+ * We FUA only the first super block. The others we allow to
+ * go down lazy and there's a short window where the on-disk
+ * copies might still contain the older version.
+ */
+ if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
+ bio->bi_opf |= REQ_FUA;
+
+ btrfsic_check_bio(bio);
+ submit_bio(bio);
+
+ if (btrfs_advance_sb_log(device, i))
+ errors++;
+ }
+ return errors < i ? 0 : -1;
+}
+
+/*
+ * Wait for write completion of superblocks done by write_dev_supers,
+ * @max_mirrors same for write and wait phases.
+ *
+ * Return number of errors when page is not found or not marked up to
+ * date.
+ */
+static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
+{
+ int i;
+ int errors = 0;
+ bool primary_failed = false;
+ int ret;
+ u64 bytenr;
+
+ if (max_mirrors == 0)
+ max_mirrors = BTRFS_SUPER_MIRROR_MAX;
+
+ for (i = 0; i < max_mirrors; i++) {
+ struct page *page;
+
+ ret = btrfs_sb_log_location(device, i, READ, &bytenr);
+ if (ret == -ENOENT) {
+ break;
+ } else if (ret < 0) {
+ errors++;
+ if (i == 0)
+ primary_failed = true;
+ continue;
+ }
+ if (bytenr + BTRFS_SUPER_INFO_SIZE >=
+ device->commit_total_bytes)
+ break;
+
+ page = find_get_page(device->bdev->bd_inode->i_mapping,
+ bytenr >> PAGE_SHIFT);
+ if (!page) {
+ errors++;
+ if (i == 0)
+ primary_failed = true;
+ continue;
+ }
+ /* Page is submitted locked and unlocked once the IO completes */
+ wait_on_page_locked(page);
+ if (PageError(page)) {
+ errors++;
+ if (i == 0)
+ primary_failed = true;
+ }
+
+ /* Drop our reference */
+ put_page(page);
+
+ /* Drop the reference from the writing run */
+ put_page(page);
+ }
+
+ /* log error, force error return */
+ if (primary_failed) {
+ btrfs_err(device->fs_info, "error writing primary super block to device %llu",
+ device->devid);
+ return -1;
+ }
+
+ return errors < i ? 0 : -1;
+}
+
+/*
+ * endio for the write_dev_flush, this will wake anyone waiting
+ * for the barrier when it is done
+ */
+static void btrfs_end_empty_barrier(struct bio *bio)
+{
+ bio_uninit(bio);
+ complete(bio->bi_private);
+}
+
+/*
+ * Submit a flush request to the device if it supports it. Error handling is
+ * done in the waiting counterpart.
+ */
+static void write_dev_flush(struct btrfs_device *device)
+{
+ struct bio *bio = &device->flush_bio;
+
+#ifndef CONFIG_BTRFS_FS_CHECK_INTEGRITY
+ /*
+ * When a disk has write caching disabled, we skip submission of a bio
+ * with flush and sync requests before writing the superblock, since
+ * it's not needed. However when the integrity checker is enabled, this
+ * results in reports that there are metadata blocks referred by a
+ * superblock that were not properly flushed. So don't skip the bio
+ * submission only when the integrity checker is enabled for the sake
+ * of simplicity, since this is a debug tool and not meant for use in
+ * non-debug builds.
+ */
+ if (!bdev_write_cache(device->bdev))
+ return;
+#endif
+
+ bio_init(bio, device->bdev, NULL, 0,
+ REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH);
+ bio->bi_end_io = btrfs_end_empty_barrier;
+ init_completion(&device->flush_wait);
+ bio->bi_private = &device->flush_wait;
+
+ btrfsic_check_bio(bio);
+ submit_bio(bio);
+ set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
+}
+
+/*
+ * If the flush bio has been submitted by write_dev_flush, wait for it.
+ */
+static blk_status_t wait_dev_flush(struct btrfs_device *device)
+{
+ struct bio *bio = &device->flush_bio;
+
+ if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
+ return BLK_STS_OK;
+
+ clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
+ wait_for_completion_io(&device->flush_wait);
+
+ return bio->bi_status;
+}
+
+static int check_barrier_error(struct btrfs_fs_info *fs_info)
+{
+ if (!btrfs_check_rw_degradable(fs_info, NULL))
+ return -EIO;
+ return 0;
+}
+
+/*
+ * send an empty flush down to each device in parallel,
+ * then wait for them
+ */
+static int barrier_all_devices(struct btrfs_fs_info *info)
+{
+ struct list_head *head;
+ struct btrfs_device *dev;
+ int errors_wait = 0;
+ blk_status_t ret;
+
+ lockdep_assert_held(&info->fs_devices->device_list_mutex);
+ /* send down all the barriers */
+ head = &info->fs_devices->devices;
+ list_for_each_entry(dev, head, dev_list) {
+ if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
+ continue;
+ if (!dev->bdev)
+ continue;
+ if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
+ !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
+ continue;
+
+ write_dev_flush(dev);
+ dev->last_flush_error = BLK_STS_OK;
+ }
+
+ /* wait for all the barriers */
+ list_for_each_entry(dev, head, dev_list) {
+ if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
+ continue;
+ if (!dev->bdev) {
+ errors_wait++;
+ continue;
+ }
+ if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
+ !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
+ continue;
+
+ ret = wait_dev_flush(dev);
+ if (ret) {
+ dev->last_flush_error = ret;
+ btrfs_dev_stat_inc_and_print(dev,
+ BTRFS_DEV_STAT_FLUSH_ERRS);
+ errors_wait++;
+ }
+ }
+
+ if (errors_wait) {
+ /*
+ * At some point we need the status of all disks
+ * to arrive at the volume status. So error checking
+ * is being pushed to a separate loop.
+ */
+ return check_barrier_error(info);
+ }
+ return 0;
+}
+
+int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
+{
+ int raid_type;
+ int min_tolerated = INT_MAX;
+
+ if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
+ (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
+ min_tolerated = min_t(int, min_tolerated,
+ btrfs_raid_array[BTRFS_RAID_SINGLE].
+ tolerated_failures);
+
+ for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
+ if (raid_type == BTRFS_RAID_SINGLE)
+ continue;
+ if (!(flags & btrfs_raid_array[raid_type].bg_flag))
+ continue;
+ min_tolerated = min_t(int, min_tolerated,
+ btrfs_raid_array[raid_type].
+ tolerated_failures);
+ }
+
+ if (min_tolerated == INT_MAX) {
+ pr_warn("BTRFS: unknown raid flag: %llu", flags);
+ min_tolerated = 0;
+ }
+
+ return min_tolerated;
+}
+
+int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
+{
+ struct list_head *head;
+ struct btrfs_device *dev;
+ struct btrfs_super_block *sb;
+ struct btrfs_dev_item *dev_item;
+ int ret;
+ int do_barriers;
+ int max_errors;
+ int total_errors = 0;
+ u64 flags;
+
+ do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
+
+ /*
+ * max_mirrors == 0 indicates we're from commit_transaction,
+ * not from fsync where the tree roots in fs_info have not
+ * been consistent on disk.
+ */
+ if (max_mirrors == 0)
+ backup_super_roots(fs_info);
+
+ sb = fs_info->super_for_commit;
+ dev_item = &sb->dev_item;
+
+ mutex_lock(&fs_info->fs_devices->device_list_mutex);
+ head = &fs_info->fs_devices->devices;
+ max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
+
+ if (do_barriers) {
+ ret = barrier_all_devices(fs_info);
+ if (ret) {
+ mutex_unlock(
+ &fs_info->fs_devices->device_list_mutex);
+ btrfs_handle_fs_error(fs_info, ret,
+ "errors while submitting device barriers.");
+ return ret;
+ }
+ }
+
+ list_for_each_entry(dev, head, dev_list) {
+ if (!dev->bdev) {
+ total_errors++;
+ continue;
+ }
+ if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
+ !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
+ continue;
+
+ btrfs_set_stack_device_generation(dev_item, 0);
+ btrfs_set_stack_device_type(dev_item, dev->type);
+ btrfs_set_stack_device_id(dev_item, dev->devid);
+ btrfs_set_stack_device_total_bytes(dev_item,
+ dev->commit_total_bytes);
+ btrfs_set_stack_device_bytes_used(dev_item,
+ dev->commit_bytes_used);
+ btrfs_set_stack_device_io_align(dev_item, dev->io_align);
+ btrfs_set_stack_device_io_width(dev_item, dev->io_width);
+ btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
+ memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
+ memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
+ BTRFS_FSID_SIZE);
+
+ flags = btrfs_super_flags(sb);
+ btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
+
+ ret = btrfs_validate_write_super(fs_info, sb);
+ if (ret < 0) {
+ mutex_unlock(&fs_info->fs_devices->device_list_mutex);
+ btrfs_handle_fs_error(fs_info, -EUCLEAN,
+ "unexpected superblock corruption detected");
+ return -EUCLEAN;
+ }
+
+ ret = write_dev_supers(dev, sb, max_mirrors);
+ if (ret)
+ total_errors++;
+ }
+ if (total_errors > max_errors) {
+ btrfs_err(fs_info, "%d errors while writing supers",
+ total_errors);
+ mutex_unlock(&fs_info->fs_devices->device_list_mutex);
+
+ /* FUA is masked off if unsupported and can't be the reason */
+ btrfs_handle_fs_error(fs_info, -EIO,
+ "%d errors while writing supers",
+ total_errors);
+ return -EIO;
+ }
+
+ total_errors = 0;
+ list_for_each_entry(dev, head, dev_list) {
+ if (!dev->bdev)
+ continue;
+ if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
+ !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
+ continue;
+
+ ret = wait_dev_supers(dev, max_mirrors);
+ if (ret)
+ total_errors++;
+ }
+ mutex_unlock(&fs_info->fs_devices->device_list_mutex);
+ if (total_errors > max_errors) {
+ btrfs_handle_fs_error(fs_info, -EIO,
+ "%d errors while writing supers",
+ total_errors);
+ return -EIO;
+ }
+ return 0;
+}
+
+/* Drop a fs root from the radix tree and free it. */
+void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
+ struct btrfs_root *root)
+{
+ bool drop_ref = false;
+
+ spin_lock(&fs_info->fs_roots_radix_lock);
+ radix_tree_delete(&fs_info->fs_roots_radix,
+ (unsigned long)root->root_key.objectid);
+ if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
+ drop_ref = true;
+ spin_unlock(&fs_info->fs_roots_radix_lock);
+
+ if (BTRFS_FS_ERROR(fs_info)) {
+ ASSERT(root->log_root == NULL);
+ if (root->reloc_root) {
+ btrfs_put_root(root->reloc_root);
+ root->reloc_root = NULL;
+ }
+ }
+
+ if (drop_ref)
+ btrfs_put_root(root);
+}
+
+int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
+{
+ u64 root_objectid = 0;
+ struct btrfs_root *gang[8];
+ int i = 0;
+ int err = 0;
+ unsigned int ret = 0;
+
+ while (1) {
+ spin_lock(&fs_info->fs_roots_radix_lock);
+ ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
+ (void **)gang, root_objectid,
+ ARRAY_SIZE(gang));
+ if (!ret) {
+ spin_unlock(&fs_info->fs_roots_radix_lock);
+ break;
+ }
+ root_objectid = gang[ret - 1]->root_key.objectid + 1;
+
+ for (i = 0; i < ret; i++) {
+ /* Avoid to grab roots in dead_roots */
+ if (btrfs_root_refs(&gang[i]->root_item) == 0) {
+ gang[i] = NULL;
+ continue;
+ }
+ /* grab all the search result for later use */
+ gang[i] = btrfs_grab_root(gang[i]);
+ }
+ spin_unlock(&fs_info->fs_roots_radix_lock);
+
+ for (i = 0; i < ret; i++) {
+ if (!gang[i])
+ continue;
+ root_objectid = gang[i]->root_key.objectid;
+ err = btrfs_orphan_cleanup(gang[i]);
+ if (err)
+ break;
+ btrfs_put_root(gang[i]);
+ }
+ root_objectid++;
+ }
+
+ /* release the uncleaned roots due to error */
+ for (; i < ret; i++) {
+ if (gang[i])
+ btrfs_put_root(gang[i]);
+ }
+ return err;
+}
+
+int btrfs_commit_super(struct btrfs_fs_info *fs_info)
+{
+ struct btrfs_root *root = fs_info->tree_root;
+ struct btrfs_trans_handle *trans;
+
+ mutex_lock(&fs_info->cleaner_mutex);
+ btrfs_run_delayed_iputs(fs_info);
+ mutex_unlock(&fs_info->cleaner_mutex);
+ wake_up_process(fs_info->cleaner_kthread);
+
+ /* wait until ongoing cleanup work done */
+ down_write(&fs_info->cleanup_work_sem);
+ up_write(&fs_info->cleanup_work_sem);
+
+ trans = btrfs_join_transaction(root);
+ if (IS_ERR(trans))
+ return PTR_ERR(trans);
+ return btrfs_commit_transaction(trans);
+}
+
+static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info)
+{
+ struct btrfs_transaction *trans;
+ struct btrfs_transaction *tmp;
+ bool found = false;
+
+ if (list_empty(&fs_info->trans_list))
+ return;
+
+ /*
+ * This function is only called at the very end of close_ctree(),
+ * thus no other running transaction, no need to take trans_lock.
+ */
+ ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags));
+ list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) {
+ struct extent_state *cached = NULL;
+ u64 dirty_bytes = 0;
+ u64 cur = 0;
+ u64 found_start;
+ u64 found_end;
+
+ found = true;
+ while (!find_first_extent_bit(&trans->dirty_pages, cur,
+ &found_start, &found_end, EXTENT_DIRTY, &cached)) {
+ dirty_bytes += found_end + 1 - found_start;
+ cur = found_end + 1;
+ }
+ btrfs_warn(fs_info,
+ "transaction %llu (with %llu dirty metadata bytes) is not committed",
+ trans->transid, dirty_bytes);
+ btrfs_cleanup_one_transaction(trans, fs_info);
+
+ if (trans == fs_info->running_transaction)
+ fs_info->running_transaction = NULL;
+ list_del_init(&trans->list);
+
+ btrfs_put_transaction(trans);
+ trace_btrfs_transaction_commit(fs_info);
+ }
+ ASSERT(!found);
+}
+
+void __cold close_ctree(struct btrfs_fs_info *fs_info)
+{
+ int ret;
+
+ set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
+
+ /*
+ * If we had UNFINISHED_DROPS we could still be processing them, so
+ * clear that bit and wake up relocation so it can stop.
+ * We must do this before stopping the block group reclaim task, because
+ * at btrfs_relocate_block_group() we wait for this bit, and after the
+ * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we
+ * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will
+ * return 1.
+ */
+ btrfs_wake_unfinished_drop(fs_info);
+
+ /*
+ * We may have the reclaim task running and relocating a data block group,
+ * in which case it may create delayed iputs. So stop it before we park
+ * the cleaner kthread otherwise we can get new delayed iputs after
+ * parking the cleaner, and that can make the async reclaim task to hang
+ * if it's waiting for delayed iputs to complete, since the cleaner is
+ * parked and can not run delayed iputs - this will make us hang when
+ * trying to stop the async reclaim task.
+ */
+ cancel_work_sync(&fs_info->reclaim_bgs_work);
+ /*
+ * We don't want the cleaner to start new transactions, add more delayed
+ * iputs, etc. while we're closing. We can't use kthread_stop() yet
+ * because that frees the task_struct, and the transaction kthread might
+ * still try to wake up the cleaner.
+ */
+ kthread_park(fs_info->cleaner_kthread);
+
+ /* wait for the qgroup rescan worker to stop */
+ btrfs_qgroup_wait_for_completion(fs_info, false);
+
+ /* wait for the uuid_scan task to finish */
+ down(&fs_info->uuid_tree_rescan_sem);
+ /* avoid complains from lockdep et al., set sem back to initial state */
+ up(&fs_info->uuid_tree_rescan_sem);
+
+ /* pause restriper - we want to resume on mount */
+ btrfs_pause_balance(fs_info);
+
+ btrfs_dev_replace_suspend_for_unmount(fs_info);
+
+ btrfs_scrub_cancel(fs_info);
+
+ /* wait for any defraggers to finish */
+ wait_event(fs_info->transaction_wait,
+ (atomic_read(&fs_info->defrag_running) == 0));
+
+ /* clear out the rbtree of defraggable inodes */
+ btrfs_cleanup_defrag_inodes(fs_info);
+
+ /*
+ * After we parked the cleaner kthread, ordered extents may have
+ * completed and created new delayed iputs. If one of the async reclaim
+ * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we
+ * can hang forever trying to stop it, because if a delayed iput is
+ * added after it ran btrfs_run_delayed_iputs() and before it called
+ * btrfs_wait_on_delayed_iputs(), it will hang forever since there is
+ * no one else to run iputs.
+ *
+ * So wait for all ongoing ordered extents to complete and then run
+ * delayed iputs. This works because once we reach this point no one
+ * can either create new ordered extents nor create delayed iputs
+ * through some other means.
+ *
+ * Also note that btrfs_wait_ordered_roots() is not safe here, because
+ * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent,
+ * but the delayed iput for the respective inode is made only when doing
+ * the final btrfs_put_ordered_extent() (which must happen at
+ * btrfs_finish_ordered_io() when we are unmounting).
+ */
+ btrfs_flush_workqueue(fs_info->endio_write_workers);
+ /* Ordered extents for free space inodes. */
+ btrfs_flush_workqueue(fs_info->endio_freespace_worker);
+ btrfs_run_delayed_iputs(fs_info);
+
+ cancel_work_sync(&fs_info->async_reclaim_work);
+ cancel_work_sync(&fs_info->async_data_reclaim_work);
+ cancel_work_sync(&fs_info->preempt_reclaim_work);
+
+ /* Cancel or finish ongoing discard work */
+ btrfs_discard_cleanup(fs_info);
+
+ if (!sb_rdonly(fs_info->sb)) {
+ /*
+ * The cleaner kthread is stopped, so do one final pass over
+ * unused block groups.
+ */
+ btrfs_delete_unused_bgs(fs_info);
+
+ /*
+ * There might be existing delayed inode workers still running
+ * and holding an empty delayed inode item. We must wait for
+ * them to complete first because they can create a transaction.
+ * This happens when someone calls btrfs_balance_delayed_items()
+ * and then a transaction commit runs the same delayed nodes
+ * before any delayed worker has done something with the nodes.
+ * We must wait for any worker here and not at transaction
+ * commit time since that could cause a deadlock.
+ * This is a very rare case.
+ */
+ btrfs_flush_workqueue(fs_info->delayed_workers);
+
+ ret = btrfs_commit_super(fs_info);
+ if (ret)
+ btrfs_err(fs_info, "commit super ret %d", ret);
+ }
+
+ if (BTRFS_FS_ERROR(fs_info))
+ btrfs_error_commit_super(fs_info);
+
+ kthread_stop(fs_info->transaction_kthread);
+ kthread_stop(fs_info->cleaner_kthread);
+
+ ASSERT(list_empty(&fs_info->delayed_iputs));
+ set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
+
+ if (btrfs_check_quota_leak(fs_info)) {
+ WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
+ btrfs_err(fs_info, "qgroup reserved space leaked");
+ }
+
+ btrfs_free_qgroup_config(fs_info);
+ ASSERT(list_empty(&fs_info->delalloc_roots));
+
+ if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
+ btrfs_info(fs_info, "at unmount delalloc count %lld",
+ percpu_counter_sum(&fs_info->delalloc_bytes));
+ }
+
+ if (percpu_counter_sum(&fs_info->ordered_bytes))
+ btrfs_info(fs_info, "at unmount dio bytes count %lld",
+ percpu_counter_sum(&fs_info->ordered_bytes));
+
+ btrfs_sysfs_remove_mounted(fs_info);
+ btrfs_sysfs_remove_fsid(fs_info->fs_devices);
+
+ btrfs_put_block_group_cache(fs_info);
+
+ /*
+ * we must make sure there is not any read request to
+ * submit after we stopping all workers.
+ */
+ invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
+ btrfs_stop_all_workers(fs_info);
+
+ /* We shouldn't have any transaction open at this point */
+ warn_about_uncommitted_trans(fs_info);
+
+ clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
+ free_root_pointers(fs_info, true);
+ btrfs_free_fs_roots(fs_info);
+
+ /*
+ * We must free the block groups after dropping the fs_roots as we could
+ * have had an IO error and have left over tree log blocks that aren't
+ * cleaned up until the fs roots are freed. This makes the block group
+ * accounting appear to be wrong because there's pending reserved bytes,
+ * so make sure we do the block group cleanup afterwards.
+ */
+ btrfs_free_block_groups(fs_info);
+
+ iput(fs_info->btree_inode);
+
+#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
+ if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
+ btrfsic_unmount(fs_info->fs_devices);
+#endif
+
+ btrfs_mapping_tree_free(&fs_info->mapping_tree);
+ btrfs_close_devices(fs_info->fs_devices);
+}
+
+int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
+ int atomic)
+{
+ int ret;
+ struct inode *btree_inode = buf->pages[0]->mapping->host;
+
+ ret = extent_buffer_uptodate(buf);
+ if (!ret)
+ return ret;
+
+ ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
+ parent_transid, atomic);
+ if (ret == -EAGAIN)
+ return ret;
+ return !ret;
+}
+
+void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
+{
+ struct btrfs_fs_info *fs_info = buf->fs_info;
+ u64 transid = btrfs_header_generation(buf);
+ int was_dirty;
+
+#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
+ /*
+ * This is a fast path so only do this check if we have sanity tests
+ * enabled. Normal people shouldn't be using unmapped buffers as dirty
+ * outside of the sanity tests.
+ */
+ if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
+ return;
+#endif
+ btrfs_assert_tree_write_locked(buf);
+ if (transid != fs_info->generation)
+ WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
+ buf->start, transid, fs_info->generation);
+ was_dirty = set_extent_buffer_dirty(buf);
+ if (!was_dirty)
+ percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
+ buf->len,
+ fs_info->dirty_metadata_batch);
+#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
+ /*
+ * Since btrfs_mark_buffer_dirty() can be called with item pointer set
+ * but item data not updated.
+ * So here we should only check item pointers, not item data.
+ */
+ if (btrfs_header_level(buf) == 0 &&
+ btrfs_check_leaf_relaxed(buf)) {
+ btrfs_print_leaf(buf);
+ ASSERT(0);
+ }
+#endif
+}
+
+static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
+ int flush_delayed)
+{
+ /*
+ * looks as though older kernels can get into trouble with
+ * this code, they end up stuck in balance_dirty_pages forever
+ */
+ int ret;
+
+ if (current->flags & PF_MEMALLOC)
+ return;
+
+ if (flush_delayed)
+ btrfs_balance_delayed_items(fs_info);
+
+ ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
+ BTRFS_DIRTY_METADATA_THRESH,
+ fs_info->dirty_metadata_batch);
+ if (ret > 0) {
+ balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
+ }
+}
+
+void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
+{
+ __btrfs_btree_balance_dirty(fs_info, 1);
+}
+
+void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
+{
+ __btrfs_btree_balance_dirty(fs_info, 0);
+}
+
+static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
+{
+ /* cleanup FS via transaction */
+ btrfs_cleanup_transaction(fs_info);
+
+ mutex_lock(&fs_info->cleaner_mutex);
+ btrfs_run_delayed_iputs(fs_info);
+ mutex_unlock(&fs_info->cleaner_mutex);
+
+ down_write(&fs_info->cleanup_work_sem);
+ up_write(&fs_info->cleanup_work_sem);
+}
+
+static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
+{
+ struct btrfs_root *gang[8];
+ u64 root_objectid = 0;
+ int ret;
+
+ spin_lock(&fs_info->fs_roots_radix_lock);
+ while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
+ (void **)gang, root_objectid,
+ ARRAY_SIZE(gang))) != 0) {
+ int i;
+
+ for (i = 0; i < ret; i++)
+ gang[i] = btrfs_grab_root(gang[i]);
+ spin_unlock(&fs_info->fs_roots_radix_lock);
+
+ for (i = 0; i < ret; i++) {
+ if (!gang[i])
+ continue;
+ root_objectid = gang[i]->root_key.objectid;
+ btrfs_free_log(NULL, gang[i]);
+ btrfs_put_root(gang[i]);
+ }
+ root_objectid++;
+ spin_lock(&fs_info->fs_roots_radix_lock);
+ }
+ spin_unlock(&fs_info->fs_roots_radix_lock);
+ btrfs_free_log_root_tree(NULL, fs_info);
+}
+
+static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
+{
+ struct btrfs_ordered_extent *ordered;
+
+ spin_lock(&root->ordered_extent_lock);
+ /*
+ * This will just short circuit the ordered completion stuff which will
+ * make sure the ordered extent gets properly cleaned up.
+ */
+ list_for_each_entry(ordered, &root->ordered_extents,
+ root_extent_list)
+ set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
+ spin_unlock(&root->ordered_extent_lock);
+}
+
+static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
+{
+ struct btrfs_root *root;
+ struct list_head splice;
+
+ INIT_LIST_HEAD(&splice);
+
+ spin_lock(&fs_info->ordered_root_lock);
+ list_splice_init(&fs_info->ordered_roots, &splice);
+ while (!list_empty(&splice)) {
+ root = list_first_entry(&splice, struct btrfs_root,
+ ordered_root);
+ list_move_tail(&root->ordered_root,
+ &fs_info->ordered_roots);
+
+ spin_unlock(&fs_info->ordered_root_lock);
+ btrfs_destroy_ordered_extents(root);
+
+ cond_resched();
+ spin_lock(&fs_info->ordered_root_lock);
+ }
+ spin_unlock(&fs_info->ordered_root_lock);
+
+ /*
+ * We need this here because if we've been flipped read-only we won't
+ * get sync() from the umount, so we need to make sure any ordered
+ * extents that haven't had their dirty pages IO start writeout yet
+ * actually get run and error out properly.
+ */
+ btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
+}
+
+static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
+ struct btrfs_fs_info *fs_info)
+{
+ struct rb_node *node;
+ struct btrfs_delayed_ref_root *delayed_refs;
+ struct btrfs_delayed_ref_node *ref;
+ int ret = 0;
+
+ delayed_refs = &trans->delayed_refs;
+
+ spin_lock(&delayed_refs->lock);
+ if (atomic_read(&delayed_refs->num_entries) == 0) {
+ spin_unlock(&delayed_refs->lock);
+ btrfs_debug(fs_info, "delayed_refs has NO entry");
+ return ret;
+ }
+
+ while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
+ struct btrfs_delayed_ref_head *head;
+ struct rb_node *n;
+ bool pin_bytes = false;
+
+ head = rb_entry(node, struct btrfs_delayed_ref_head,
+ href_node);
+ if (btrfs_delayed_ref_lock(delayed_refs, head))
+ continue;
+
+ spin_lock(&head->lock);
+ while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
+ ref = rb_entry(n, struct btrfs_delayed_ref_node,
+ ref_node);
+ ref->in_tree = 0;
+ rb_erase_cached(&ref->ref_node, &head->ref_tree);
+ RB_CLEAR_NODE(&ref->ref_node);
+ if (!list_empty(&ref->add_list))
+ list_del(&ref->add_list);
+ atomic_dec(&delayed_refs->num_entries);
+ btrfs_put_delayed_ref(ref);
+ }
+ if (head->must_insert_reserved)
+ pin_bytes = true;
+ btrfs_free_delayed_extent_op(head->extent_op);
+ btrfs_delete_ref_head(delayed_refs, head);
+ spin_unlock(&head->lock);
+ spin_unlock(&delayed_refs->lock);
+ mutex_unlock(&head->mutex);
+
+ if (pin_bytes) {
+ struct btrfs_block_group *cache;
+
+ cache = btrfs_lookup_block_group(fs_info, head->bytenr);
+ BUG_ON(!cache);
+
+ spin_lock(&cache->space_info->lock);
+ spin_lock(&cache->lock);
+ cache->pinned += head->num_bytes;
+ btrfs_space_info_update_bytes_pinned(fs_info,
+ cache->space_info, head->num_bytes);
+ cache->reserved -= head->num_bytes;
+ cache->space_info->bytes_reserved -= head->num_bytes;
+ spin_unlock(&cache->lock);
+ spin_unlock(&cache->space_info->lock);
+
+ btrfs_put_block_group(cache);
+
+ btrfs_error_unpin_extent_range(fs_info, head->bytenr,
+ head->bytenr + head->num_bytes - 1);
+ }
+ btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
+ btrfs_put_delayed_ref_head(head);
+ cond_resched();
+ spin_lock(&delayed_refs->lock);
+ }
+ btrfs_qgroup_destroy_extent_records(trans);
+
+ spin_unlock(&delayed_refs->lock);
+
+ return ret;
+}
+
+static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
+{
+ struct btrfs_inode *btrfs_inode;
+ struct list_head splice;
+
+ INIT_LIST_HEAD(&splice);
+
+ spin_lock(&root->delalloc_lock);
+ list_splice_init(&root->delalloc_inodes, &splice);
+
+ while (!list_empty(&splice)) {
+ struct inode *inode = NULL;
+ btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
+ delalloc_inodes);
+ __btrfs_del_delalloc_inode(root, btrfs_inode);
+ spin_unlock(&root->delalloc_lock);
+
+ /*
+ * Make sure we get a live inode and that it'll not disappear
+ * meanwhile.
+ */
+ inode = igrab(&btrfs_inode->vfs_inode);
+ if (inode) {
+ unsigned int nofs_flag;
+
+ nofs_flag = memalloc_nofs_save();
+ invalidate_inode_pages2(inode->i_mapping);
+ memalloc_nofs_restore(nofs_flag);
+ iput(inode);
+ }
+ spin_lock(&root->delalloc_lock);
+ }
+ spin_unlock(&root->delalloc_lock);
+}
+
+static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
+{
+ struct btrfs_root *root;
+ struct list_head splice;
+
+ INIT_LIST_HEAD(&splice);
+
+ spin_lock(&fs_info->delalloc_root_lock);
+ list_splice_init(&fs_info->delalloc_roots, &splice);
+ while (!list_empty(&splice)) {
+ root = list_first_entry(&splice, struct btrfs_root,
+ delalloc_root);
+ root = btrfs_grab_root(root);
+ BUG_ON(!root);
+ spin_unlock(&fs_info->delalloc_root_lock);
+
+ btrfs_destroy_delalloc_inodes(root);
+ btrfs_put_root(root);
+
+ spin_lock(&fs_info->delalloc_root_lock);
+ }
+ spin_unlock(&fs_info->delalloc_root_lock);
+}
+
+static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
+ struct extent_io_tree *dirty_pages,
+ int mark)
+{
+ int ret;
+ struct extent_buffer *eb;
+ u64 start = 0;
+ u64 end;
+
+ while (1) {
+ ret = find_first_extent_bit(dirty_pages, start, &start, &end,
+ mark, NULL);
+ if (ret)
+ break;
+
+ clear_extent_bits(dirty_pages, start, end, mark);
+ while (start <= end) {
+ eb = find_extent_buffer(fs_info, start);
+ start += fs_info->nodesize;
+ if (!eb)
+ continue;
+ wait_on_extent_buffer_writeback(eb);
+
+ if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
+ &eb->bflags))
+ clear_extent_buffer_dirty(eb);
+ free_extent_buffer_stale(eb);
+ }
+ }
+
+ return ret;
+}
+
+static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
+ struct extent_io_tree *unpin)
+{
+ u64 start;
+ u64 end;
+ int ret;
+
+ while (1) {
+ struct extent_state *cached_state = NULL;
+
+ /*
+ * The btrfs_finish_extent_commit() may get the same range as
+ * ours between find_first_extent_bit and clear_extent_dirty.
+ * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
+ * the same extent range.
+ */
+ mutex_lock(&fs_info->unused_bg_unpin_mutex);
+ ret = find_first_extent_bit(unpin, 0, &start, &end,
+ EXTENT_DIRTY, &cached_state);
+ if (ret) {
+ mutex_unlock(&fs_info->unused_bg_unpin_mutex);
+ break;
+ }
+
+ clear_extent_dirty(unpin, start, end, &cached_state);
+ free_extent_state(cached_state);
+ btrfs_error_unpin_extent_range(fs_info, start, end);
+ mutex_unlock(&fs_info->unused_bg_unpin_mutex);
+ cond_resched();
+ }
+
+ return 0;
+}
+
+static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
+{
+ struct inode *inode;
+
+ inode = cache->io_ctl.inode;
+ if (inode) {
+ unsigned int nofs_flag;
+
+ nofs_flag = memalloc_nofs_save();
+ invalidate_inode_pages2(inode->i_mapping);
+ memalloc_nofs_restore(nofs_flag);
+
+ BTRFS_I(inode)->generation = 0;
+ cache->io_ctl.inode = NULL;
+ iput(inode);
+ }
+ ASSERT(cache->io_ctl.pages == NULL);
+ btrfs_put_block_group(cache);
+}
+
+void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
+ struct btrfs_fs_info *fs_info)
+{
+ struct btrfs_block_group *cache;
+
+ spin_lock(&cur_trans->dirty_bgs_lock);
+ while (!list_empty(&cur_trans->dirty_bgs)) {
+ cache = list_first_entry(&cur_trans->dirty_bgs,
+ struct btrfs_block_group,
+ dirty_list);
+
+ if (!list_empty(&cache->io_list)) {
+ spin_unlock(&cur_trans->dirty_bgs_lock);
+ list_del_init(&cache->io_list);
+ btrfs_cleanup_bg_io(cache);
+ spin_lock(&cur_trans->dirty_bgs_lock);
+ }
+
+ list_del_init(&cache->dirty_list);
+ spin_lock(&cache->lock);
+ cache->disk_cache_state = BTRFS_DC_ERROR;
+ spin_unlock(&cache->lock);
+
+ spin_unlock(&cur_trans->dirty_bgs_lock);
+ btrfs_put_block_group(cache);
+ btrfs_delayed_refs_rsv_release(fs_info, 1);
+ spin_lock(&cur_trans->dirty_bgs_lock);
+ }
+ spin_unlock(&cur_trans->dirty_bgs_lock);
+
+ /*
+ * Refer to the definition of io_bgs member for details why it's safe
+ * to use it without any locking
+ */
+ while (!list_empty(&cur_trans->io_bgs)) {
+ cache = list_first_entry(&cur_trans->io_bgs,
+ struct btrfs_block_group,
+ io_list);
+
+ list_del_init(&cache->io_list);
+ spin_lock(&cache->lock);
+ cache->disk_cache_state = BTRFS_DC_ERROR;
+ spin_unlock(&cache->lock);
+ btrfs_cleanup_bg_io(cache);
+ }
+}
+
+void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
+ struct btrfs_fs_info *fs_info)
+{
+ struct btrfs_device *dev, *tmp;
+
+ btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
+ ASSERT(list_empty(&cur_trans->dirty_bgs));
+ ASSERT(list_empty(&cur_trans->io_bgs));
+
+ list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
+ post_commit_list) {
+ list_del_init(&dev->post_commit_list);
+ }
+
+ btrfs_destroy_delayed_refs(cur_trans, fs_info);
+
+ cur_trans->state = TRANS_STATE_COMMIT_START;
+ wake_up(&fs_info->transaction_blocked_wait);
+
+ cur_trans->state = TRANS_STATE_UNBLOCKED;
+ wake_up(&fs_info->transaction_wait);
+
+ btrfs_destroy_delayed_inodes(fs_info);
+
+ btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
+ EXTENT_DIRTY);
+ btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
+
+ btrfs_free_redirty_list(cur_trans);
+
+ cur_trans->state =TRANS_STATE_COMPLETED;
+ wake_up(&cur_trans->commit_wait);
+}
+
+static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
+{
+ struct btrfs_transaction *t;
+
+ mutex_lock(&fs_info->transaction_kthread_mutex);
+
+ spin_lock(&fs_info->trans_lock);
+ while (!list_empty(&fs_info->trans_list)) {
+ t = list_first_entry(&fs_info->trans_list,
+ struct btrfs_transaction, list);
+ if (t->state >= TRANS_STATE_COMMIT_START) {
+ refcount_inc(&t->use_count);
+ spin_unlock(&fs_info->trans_lock);
+ btrfs_wait_for_commit(fs_info, t->transid);
+ btrfs_put_transaction(t);
+ spin_lock(&fs_info->trans_lock);
+ continue;
+ }
+ if (t == fs_info->running_transaction) {
+ t->state = TRANS_STATE_COMMIT_DOING;
+ spin_unlock(&fs_info->trans_lock);
+ /*
+ * We wait for 0 num_writers since we don't hold a trans
+ * handle open currently for this transaction.
+ */
+ wait_event(t->writer_wait,
+ atomic_read(&t->num_writers) == 0);
+ } else {
+ spin_unlock(&fs_info->trans_lock);
+ }
+ btrfs_cleanup_one_transaction(t, fs_info);
+
+ spin_lock(&fs_info->trans_lock);
+ if (t == fs_info->running_transaction)
+ fs_info->running_transaction = NULL;
+ list_del_init(&t->list);
+ spin_unlock(&fs_info->trans_lock);
+
+ btrfs_put_transaction(t);
+ trace_btrfs_transaction_commit(fs_info);
+ spin_lock(&fs_info->trans_lock);
+ }
+ spin_unlock(&fs_info->trans_lock);
+ btrfs_destroy_all_ordered_extents(fs_info);
+ btrfs_destroy_delayed_inodes(fs_info);
+ btrfs_assert_delayed_root_empty(fs_info);
+ btrfs_destroy_all_delalloc_inodes(fs_info);
+ btrfs_drop_all_logs(fs_info);
+ mutex_unlock(&fs_info->transaction_kthread_mutex);
+
+ return 0;
+}
+
+int btrfs_init_root_free_objectid(struct btrfs_root *root)
+{
+ struct btrfs_path *path;
+ int ret;
+ struct extent_buffer *l;
+ struct btrfs_key search_key;
+ struct btrfs_key found_key;
+ int slot;
+
+ path = btrfs_alloc_path();
+ if (!path)
+ return -ENOMEM;
+
+ search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
+ search_key.type = -1;
+ search_key.offset = (u64)-1;
+ ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
+ if (ret < 0)
+ goto error;
+ BUG_ON(ret == 0); /* Corruption */
+ if (path->slots[0] > 0) {
+ slot = path->slots[0] - 1;
+ l = path->nodes[0];
+ btrfs_item_key_to_cpu(l, &found_key, slot);
+ root->free_objectid = max_t(u64, found_key.objectid + 1,
+ BTRFS_FIRST_FREE_OBJECTID);
+ } else {
+ root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
+ }
+ ret = 0;
+error:
+ btrfs_free_path(path);
+ return ret;
+}
+
+int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
+{
+ int ret;
+ mutex_lock(&root->objectid_mutex);
+
+ if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
+ btrfs_warn(root->fs_info,
+ "the objectid of root %llu reaches its highest value",
+ root->root_key.objectid);
+ ret = -ENOSPC;
+ goto out;
+ }
+
+ *objectid = root->free_objectid++;
+ ret = 0;
+out:
+ mutex_unlock(&root->objectid_mutex);
+ return ret;
+}