diff options
Diffstat (limited to '')
-rw-r--r-- | fs/btrfs/relocation.c | 4532 |
1 files changed, 4532 insertions, 0 deletions
diff --git a/fs/btrfs/relocation.c b/fs/btrfs/relocation.c new file mode 100644 index 000000000..d2bdcc2cc --- /dev/null +++ b/fs/btrfs/relocation.c @@ -0,0 +1,4532 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright (C) 2009 Oracle. All rights reserved. + */ + +#include <linux/sched.h> +#include <linux/pagemap.h> +#include <linux/writeback.h> +#include <linux/blkdev.h> +#include <linux/rbtree.h> +#include <linux/slab.h> +#include <linux/error-injection.h> +#include "ctree.h" +#include "disk-io.h" +#include "transaction.h" +#include "volumes.h" +#include "locking.h" +#include "btrfs_inode.h" +#include "async-thread.h" +#include "free-space-cache.h" +#include "qgroup.h" +#include "print-tree.h" +#include "delalloc-space.h" +#include "block-group.h" +#include "backref.h" +#include "misc.h" +#include "subpage.h" +#include "zoned.h" +#include "inode-item.h" + +/* + * Relocation overview + * + * [What does relocation do] + * + * The objective of relocation is to relocate all extents of the target block + * group to other block groups. + * This is utilized by resize (shrink only), profile converting, compacting + * space, or balance routine to spread chunks over devices. + * + * Before | After + * ------------------------------------------------------------------ + * BG A: 10 data extents | BG A: deleted + * BG B: 2 data extents | BG B: 10 data extents (2 old + 8 relocated) + * BG C: 1 extents | BG C: 3 data extents (1 old + 2 relocated) + * + * [How does relocation work] + * + * 1. Mark the target block group read-only + * New extents won't be allocated from the target block group. + * + * 2.1 Record each extent in the target block group + * To build a proper map of extents to be relocated. + * + * 2.2 Build data reloc tree and reloc trees + * Data reloc tree will contain an inode, recording all newly relocated + * data extents. + * There will be only one data reloc tree for one data block group. + * + * Reloc tree will be a special snapshot of its source tree, containing + * relocated tree blocks. + * Each tree referring to a tree block in target block group will get its + * reloc tree built. + * + * 2.3 Swap source tree with its corresponding reloc tree + * Each involved tree only refers to new extents after swap. + * + * 3. Cleanup reloc trees and data reloc tree. + * As old extents in the target block group are still referenced by reloc + * trees, we need to clean them up before really freeing the target block + * group. + * + * The main complexity is in steps 2.2 and 2.3. + * + * The entry point of relocation is relocate_block_group() function. + */ + +#define RELOCATION_RESERVED_NODES 256 +/* + * map address of tree root to tree + */ +struct mapping_node { + struct { + struct rb_node rb_node; + u64 bytenr; + }; /* Use rb_simle_node for search/insert */ + void *data; +}; + +struct mapping_tree { + struct rb_root rb_root; + spinlock_t lock; +}; + +/* + * present a tree block to process + */ +struct tree_block { + struct { + struct rb_node rb_node; + u64 bytenr; + }; /* Use rb_simple_node for search/insert */ + u64 owner; + struct btrfs_key key; + unsigned int level:8; + unsigned int key_ready:1; +}; + +#define MAX_EXTENTS 128 + +struct file_extent_cluster { + u64 start; + u64 end; + u64 boundary[MAX_EXTENTS]; + unsigned int nr; +}; + +struct reloc_control { + /* block group to relocate */ + struct btrfs_block_group *block_group; + /* extent tree */ + struct btrfs_root *extent_root; + /* inode for moving data */ + struct inode *data_inode; + + struct btrfs_block_rsv *block_rsv; + + struct btrfs_backref_cache backref_cache; + + struct file_extent_cluster cluster; + /* tree blocks have been processed */ + struct extent_io_tree processed_blocks; + /* map start of tree root to corresponding reloc tree */ + struct mapping_tree reloc_root_tree; + /* list of reloc trees */ + struct list_head reloc_roots; + /* list of subvolume trees that get relocated */ + struct list_head dirty_subvol_roots; + /* size of metadata reservation for merging reloc trees */ + u64 merging_rsv_size; + /* size of relocated tree nodes */ + u64 nodes_relocated; + /* reserved size for block group relocation*/ + u64 reserved_bytes; + + u64 search_start; + u64 extents_found; + + unsigned int stage:8; + unsigned int create_reloc_tree:1; + unsigned int merge_reloc_tree:1; + unsigned int found_file_extent:1; +}; + +/* stages of data relocation */ +#define MOVE_DATA_EXTENTS 0 +#define UPDATE_DATA_PTRS 1 + +static void mark_block_processed(struct reloc_control *rc, + struct btrfs_backref_node *node) +{ + u32 blocksize; + + if (node->level == 0 || + in_range(node->bytenr, rc->block_group->start, + rc->block_group->length)) { + blocksize = rc->extent_root->fs_info->nodesize; + set_extent_bits(&rc->processed_blocks, node->bytenr, + node->bytenr + blocksize - 1, EXTENT_DIRTY); + } + node->processed = 1; +} + + +static void mapping_tree_init(struct mapping_tree *tree) +{ + tree->rb_root = RB_ROOT; + spin_lock_init(&tree->lock); +} + +/* + * walk up backref nodes until reach node presents tree root + */ +static struct btrfs_backref_node *walk_up_backref( + struct btrfs_backref_node *node, + struct btrfs_backref_edge *edges[], int *index) +{ + struct btrfs_backref_edge *edge; + int idx = *index; + + while (!list_empty(&node->upper)) { + edge = list_entry(node->upper.next, + struct btrfs_backref_edge, list[LOWER]); + edges[idx++] = edge; + node = edge->node[UPPER]; + } + BUG_ON(node->detached); + *index = idx; + return node; +} + +/* + * walk down backref nodes to find start of next reference path + */ +static struct btrfs_backref_node *walk_down_backref( + struct btrfs_backref_edge *edges[], int *index) +{ + struct btrfs_backref_edge *edge; + struct btrfs_backref_node *lower; + int idx = *index; + + while (idx > 0) { + edge = edges[idx - 1]; + lower = edge->node[LOWER]; + if (list_is_last(&edge->list[LOWER], &lower->upper)) { + idx--; + continue; + } + edge = list_entry(edge->list[LOWER].next, + struct btrfs_backref_edge, list[LOWER]); + edges[idx - 1] = edge; + *index = idx; + return edge->node[UPPER]; + } + *index = 0; + return NULL; +} + +static void update_backref_node(struct btrfs_backref_cache *cache, + struct btrfs_backref_node *node, u64 bytenr) +{ + struct rb_node *rb_node; + rb_erase(&node->rb_node, &cache->rb_root); + node->bytenr = bytenr; + rb_node = rb_simple_insert(&cache->rb_root, node->bytenr, &node->rb_node); + if (rb_node) + btrfs_backref_panic(cache->fs_info, bytenr, -EEXIST); +} + +/* + * update backref cache after a transaction commit + */ +static int update_backref_cache(struct btrfs_trans_handle *trans, + struct btrfs_backref_cache *cache) +{ + struct btrfs_backref_node *node; + int level = 0; + + if (cache->last_trans == 0) { + cache->last_trans = trans->transid; + return 0; + } + + if (cache->last_trans == trans->transid) + return 0; + + /* + * detached nodes are used to avoid unnecessary backref + * lookup. transaction commit changes the extent tree. + * so the detached nodes are no longer useful. + */ + while (!list_empty(&cache->detached)) { + node = list_entry(cache->detached.next, + struct btrfs_backref_node, list); + btrfs_backref_cleanup_node(cache, node); + } + + while (!list_empty(&cache->changed)) { + node = list_entry(cache->changed.next, + struct btrfs_backref_node, list); + list_del_init(&node->list); + BUG_ON(node->pending); + update_backref_node(cache, node, node->new_bytenr); + } + + /* + * some nodes can be left in the pending list if there were + * errors during processing the pending nodes. + */ + for (level = 0; level < BTRFS_MAX_LEVEL; level++) { + list_for_each_entry(node, &cache->pending[level], list) { + BUG_ON(!node->pending); + if (node->bytenr == node->new_bytenr) + continue; + update_backref_node(cache, node, node->new_bytenr); + } + } + + cache->last_trans = 0; + return 1; +} + +static bool reloc_root_is_dead(struct btrfs_root *root) +{ + /* + * Pair with set_bit/clear_bit in clean_dirty_subvols and + * btrfs_update_reloc_root. We need to see the updated bit before + * trying to access reloc_root + */ + smp_rmb(); + if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state)) + return true; + return false; +} + +/* + * Check if this subvolume tree has valid reloc tree. + * + * Reloc tree after swap is considered dead, thus not considered as valid. + * This is enough for most callers, as they don't distinguish dead reloc root + * from no reloc root. But btrfs_should_ignore_reloc_root() below is a + * special case. + */ +static bool have_reloc_root(struct btrfs_root *root) +{ + if (reloc_root_is_dead(root)) + return false; + if (!root->reloc_root) + return false; + return true; +} + +int btrfs_should_ignore_reloc_root(struct btrfs_root *root) +{ + struct btrfs_root *reloc_root; + + if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) + return 0; + + /* This root has been merged with its reloc tree, we can ignore it */ + if (reloc_root_is_dead(root)) + return 1; + + reloc_root = root->reloc_root; + if (!reloc_root) + return 0; + + if (btrfs_header_generation(reloc_root->commit_root) == + root->fs_info->running_transaction->transid) + return 0; + /* + * if there is reloc tree and it was created in previous + * transaction backref lookup can find the reloc tree, + * so backref node for the fs tree root is useless for + * relocation. + */ + return 1; +} + +/* + * find reloc tree by address of tree root + */ +struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, u64 bytenr) +{ + struct reloc_control *rc = fs_info->reloc_ctl; + struct rb_node *rb_node; + struct mapping_node *node; + struct btrfs_root *root = NULL; + + ASSERT(rc); + spin_lock(&rc->reloc_root_tree.lock); + rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, bytenr); + if (rb_node) { + node = rb_entry(rb_node, struct mapping_node, rb_node); + root = node->data; + } + spin_unlock(&rc->reloc_root_tree.lock); + return btrfs_grab_root(root); +} + +/* + * For useless nodes, do two major clean ups: + * + * - Cleanup the children edges and nodes + * If child node is also orphan (no parent) during cleanup, then the child + * node will also be cleaned up. + * + * - Freeing up leaves (level 0), keeps nodes detached + * For nodes, the node is still cached as "detached" + * + * Return false if @node is not in the @useless_nodes list. + * Return true if @node is in the @useless_nodes list. + */ +static bool handle_useless_nodes(struct reloc_control *rc, + struct btrfs_backref_node *node) +{ + struct btrfs_backref_cache *cache = &rc->backref_cache; + struct list_head *useless_node = &cache->useless_node; + bool ret = false; + + while (!list_empty(useless_node)) { + struct btrfs_backref_node *cur; + + cur = list_first_entry(useless_node, struct btrfs_backref_node, + list); + list_del_init(&cur->list); + + /* Only tree root nodes can be added to @useless_nodes */ + ASSERT(list_empty(&cur->upper)); + + if (cur == node) + ret = true; + + /* The node is the lowest node */ + if (cur->lowest) { + list_del_init(&cur->lower); + cur->lowest = 0; + } + + /* Cleanup the lower edges */ + while (!list_empty(&cur->lower)) { + struct btrfs_backref_edge *edge; + struct btrfs_backref_node *lower; + + edge = list_entry(cur->lower.next, + struct btrfs_backref_edge, list[UPPER]); + list_del(&edge->list[UPPER]); + list_del(&edge->list[LOWER]); + lower = edge->node[LOWER]; + btrfs_backref_free_edge(cache, edge); + + /* Child node is also orphan, queue for cleanup */ + if (list_empty(&lower->upper)) + list_add(&lower->list, useless_node); + } + /* Mark this block processed for relocation */ + mark_block_processed(rc, cur); + + /* + * Backref nodes for tree leaves are deleted from the cache. + * Backref nodes for upper level tree blocks are left in the + * cache to avoid unnecessary backref lookup. + */ + if (cur->level > 0) { + list_add(&cur->list, &cache->detached); + cur->detached = 1; + } else { + rb_erase(&cur->rb_node, &cache->rb_root); + btrfs_backref_free_node(cache, cur); + } + } + return ret; +} + +/* + * Build backref tree for a given tree block. Root of the backref tree + * corresponds the tree block, leaves of the backref tree correspond roots of + * b-trees that reference the tree block. + * + * The basic idea of this function is check backrefs of a given block to find + * upper level blocks that reference the block, and then check backrefs of + * these upper level blocks recursively. The recursion stops when tree root is + * reached or backrefs for the block is cached. + * + * NOTE: if we find that backrefs for a block are cached, we know backrefs for + * all upper level blocks that directly/indirectly reference the block are also + * cached. + */ +static noinline_for_stack struct btrfs_backref_node *build_backref_tree( + struct reloc_control *rc, struct btrfs_key *node_key, + int level, u64 bytenr) +{ + struct btrfs_backref_iter *iter; + struct btrfs_backref_cache *cache = &rc->backref_cache; + /* For searching parent of TREE_BLOCK_REF */ + struct btrfs_path *path; + struct btrfs_backref_node *cur; + struct btrfs_backref_node *node = NULL; + struct btrfs_backref_edge *edge; + int ret; + int err = 0; + + iter = btrfs_backref_iter_alloc(rc->extent_root->fs_info, GFP_NOFS); + if (!iter) + return ERR_PTR(-ENOMEM); + path = btrfs_alloc_path(); + if (!path) { + err = -ENOMEM; + goto out; + } + + node = btrfs_backref_alloc_node(cache, bytenr, level); + if (!node) { + err = -ENOMEM; + goto out; + } + + node->lowest = 1; + cur = node; + + /* Breadth-first search to build backref cache */ + do { + ret = btrfs_backref_add_tree_node(cache, path, iter, node_key, + cur); + if (ret < 0) { + err = ret; + goto out; + } + edge = list_first_entry_or_null(&cache->pending_edge, + struct btrfs_backref_edge, list[UPPER]); + /* + * The pending list isn't empty, take the first block to + * process + */ + if (edge) { + list_del_init(&edge->list[UPPER]); + cur = edge->node[UPPER]; + } + } while (edge); + + /* Finish the upper linkage of newly added edges/nodes */ + ret = btrfs_backref_finish_upper_links(cache, node); + if (ret < 0) { + err = ret; + goto out; + } + + if (handle_useless_nodes(rc, node)) + node = NULL; +out: + btrfs_backref_iter_free(iter); + btrfs_free_path(path); + if (err) { + btrfs_backref_error_cleanup(cache, node); + return ERR_PTR(err); + } + ASSERT(!node || !node->detached); + ASSERT(list_empty(&cache->useless_node) && + list_empty(&cache->pending_edge)); + return node; +} + +/* + * helper to add backref node for the newly created snapshot. + * the backref node is created by cloning backref node that + * corresponds to root of source tree + */ +static int clone_backref_node(struct btrfs_trans_handle *trans, + struct reloc_control *rc, + struct btrfs_root *src, + struct btrfs_root *dest) +{ + struct btrfs_root *reloc_root = src->reloc_root; + struct btrfs_backref_cache *cache = &rc->backref_cache; + struct btrfs_backref_node *node = NULL; + struct btrfs_backref_node *new_node; + struct btrfs_backref_edge *edge; + struct btrfs_backref_edge *new_edge; + struct rb_node *rb_node; + + if (cache->last_trans > 0) + update_backref_cache(trans, cache); + + rb_node = rb_simple_search(&cache->rb_root, src->commit_root->start); + if (rb_node) { + node = rb_entry(rb_node, struct btrfs_backref_node, rb_node); + if (node->detached) + node = NULL; + else + BUG_ON(node->new_bytenr != reloc_root->node->start); + } + + if (!node) { + rb_node = rb_simple_search(&cache->rb_root, + reloc_root->commit_root->start); + if (rb_node) { + node = rb_entry(rb_node, struct btrfs_backref_node, + rb_node); + BUG_ON(node->detached); + } + } + + if (!node) + return 0; + + new_node = btrfs_backref_alloc_node(cache, dest->node->start, + node->level); + if (!new_node) + return -ENOMEM; + + new_node->lowest = node->lowest; + new_node->checked = 1; + new_node->root = btrfs_grab_root(dest); + ASSERT(new_node->root); + + if (!node->lowest) { + list_for_each_entry(edge, &node->lower, list[UPPER]) { + new_edge = btrfs_backref_alloc_edge(cache); + if (!new_edge) + goto fail; + + btrfs_backref_link_edge(new_edge, edge->node[LOWER], + new_node, LINK_UPPER); + } + } else { + list_add_tail(&new_node->lower, &cache->leaves); + } + + rb_node = rb_simple_insert(&cache->rb_root, new_node->bytenr, + &new_node->rb_node); + if (rb_node) + btrfs_backref_panic(trans->fs_info, new_node->bytenr, -EEXIST); + + if (!new_node->lowest) { + list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) { + list_add_tail(&new_edge->list[LOWER], + &new_edge->node[LOWER]->upper); + } + } + return 0; +fail: + while (!list_empty(&new_node->lower)) { + new_edge = list_entry(new_node->lower.next, + struct btrfs_backref_edge, list[UPPER]); + list_del(&new_edge->list[UPPER]); + btrfs_backref_free_edge(cache, new_edge); + } + btrfs_backref_free_node(cache, new_node); + return -ENOMEM; +} + +/* + * helper to add 'address of tree root -> reloc tree' mapping + */ +static int __must_check __add_reloc_root(struct btrfs_root *root) +{ + struct btrfs_fs_info *fs_info = root->fs_info; + struct rb_node *rb_node; + struct mapping_node *node; + struct reloc_control *rc = fs_info->reloc_ctl; + + node = kmalloc(sizeof(*node), GFP_NOFS); + if (!node) + return -ENOMEM; + + node->bytenr = root->commit_root->start; + node->data = root; + + spin_lock(&rc->reloc_root_tree.lock); + rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root, + node->bytenr, &node->rb_node); + spin_unlock(&rc->reloc_root_tree.lock); + if (rb_node) { + btrfs_err(fs_info, + "Duplicate root found for start=%llu while inserting into relocation tree", + node->bytenr); + return -EEXIST; + } + + list_add_tail(&root->root_list, &rc->reloc_roots); + return 0; +} + +/* + * helper to delete the 'address of tree root -> reloc tree' + * mapping + */ +static void __del_reloc_root(struct btrfs_root *root) +{ + struct btrfs_fs_info *fs_info = root->fs_info; + struct rb_node *rb_node; + struct mapping_node *node = NULL; + struct reloc_control *rc = fs_info->reloc_ctl; + bool put_ref = false; + + if (rc && root->node) { + spin_lock(&rc->reloc_root_tree.lock); + rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, + root->commit_root->start); + if (rb_node) { + node = rb_entry(rb_node, struct mapping_node, rb_node); + rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root); + RB_CLEAR_NODE(&node->rb_node); + } + spin_unlock(&rc->reloc_root_tree.lock); + ASSERT(!node || (struct btrfs_root *)node->data == root); + } + + /* + * We only put the reloc root here if it's on the list. There's a lot + * of places where the pattern is to splice the rc->reloc_roots, process + * the reloc roots, and then add the reloc root back onto + * rc->reloc_roots. If we call __del_reloc_root while it's off of the + * list we don't want the reference being dropped, because the guy + * messing with the list is in charge of the reference. + */ + spin_lock(&fs_info->trans_lock); + if (!list_empty(&root->root_list)) { + put_ref = true; + list_del_init(&root->root_list); + } + spin_unlock(&fs_info->trans_lock); + if (put_ref) + btrfs_put_root(root); + kfree(node); +} + +/* + * helper to update the 'address of tree root -> reloc tree' + * mapping + */ +static int __update_reloc_root(struct btrfs_root *root) +{ + struct btrfs_fs_info *fs_info = root->fs_info; + struct rb_node *rb_node; + struct mapping_node *node = NULL; + struct reloc_control *rc = fs_info->reloc_ctl; + + spin_lock(&rc->reloc_root_tree.lock); + rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, + root->commit_root->start); + if (rb_node) { + node = rb_entry(rb_node, struct mapping_node, rb_node); + rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root); + } + spin_unlock(&rc->reloc_root_tree.lock); + + if (!node) + return 0; + BUG_ON((struct btrfs_root *)node->data != root); + + spin_lock(&rc->reloc_root_tree.lock); + node->bytenr = root->node->start; + rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root, + node->bytenr, &node->rb_node); + spin_unlock(&rc->reloc_root_tree.lock); + if (rb_node) + btrfs_backref_panic(fs_info, node->bytenr, -EEXIST); + return 0; +} + +static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans, + struct btrfs_root *root, u64 objectid) +{ + struct btrfs_fs_info *fs_info = root->fs_info; + struct btrfs_root *reloc_root; + struct extent_buffer *eb; + struct btrfs_root_item *root_item; + struct btrfs_key root_key; + int ret = 0; + bool must_abort = false; + + root_item = kmalloc(sizeof(*root_item), GFP_NOFS); + if (!root_item) + return ERR_PTR(-ENOMEM); + + root_key.objectid = BTRFS_TREE_RELOC_OBJECTID; + root_key.type = BTRFS_ROOT_ITEM_KEY; + root_key.offset = objectid; + + if (root->root_key.objectid == objectid) { + u64 commit_root_gen; + + /* called by btrfs_init_reloc_root */ + ret = btrfs_copy_root(trans, root, root->commit_root, &eb, + BTRFS_TREE_RELOC_OBJECTID); + if (ret) + goto fail; + + /* + * Set the last_snapshot field to the generation of the commit + * root - like this ctree.c:btrfs_block_can_be_shared() behaves + * correctly (returns true) when the relocation root is created + * either inside the critical section of a transaction commit + * (through transaction.c:qgroup_account_snapshot()) and when + * it's created before the transaction commit is started. + */ + commit_root_gen = btrfs_header_generation(root->commit_root); + btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen); + } else { + /* + * called by btrfs_reloc_post_snapshot_hook. + * the source tree is a reloc tree, all tree blocks + * modified after it was created have RELOC flag + * set in their headers. so it's OK to not update + * the 'last_snapshot'. + */ + ret = btrfs_copy_root(trans, root, root->node, &eb, + BTRFS_TREE_RELOC_OBJECTID); + if (ret) + goto fail; + } + + /* + * We have changed references at this point, we must abort the + * transaction if anything fails. + */ + must_abort = true; + + memcpy(root_item, &root->root_item, sizeof(*root_item)); + btrfs_set_root_bytenr(root_item, eb->start); + btrfs_set_root_level(root_item, btrfs_header_level(eb)); + btrfs_set_root_generation(root_item, trans->transid); + + if (root->root_key.objectid == objectid) { + btrfs_set_root_refs(root_item, 0); + memset(&root_item->drop_progress, 0, + sizeof(struct btrfs_disk_key)); + btrfs_set_root_drop_level(root_item, 0); + } + + btrfs_tree_unlock(eb); + free_extent_buffer(eb); + + ret = btrfs_insert_root(trans, fs_info->tree_root, + &root_key, root_item); + if (ret) + goto fail; + + kfree(root_item); + + reloc_root = btrfs_read_tree_root(fs_info->tree_root, &root_key); + if (IS_ERR(reloc_root)) { + ret = PTR_ERR(reloc_root); + goto abort; + } + set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state); + reloc_root->last_trans = trans->transid; + return reloc_root; +fail: + kfree(root_item); +abort: + if (must_abort) + btrfs_abort_transaction(trans, ret); + return ERR_PTR(ret); +} + +/* + * create reloc tree for a given fs tree. reloc tree is just a + * snapshot of the fs tree with special root objectid. + * + * The reloc_root comes out of here with two references, one for + * root->reloc_root, and another for being on the rc->reloc_roots list. + */ +int btrfs_init_reloc_root(struct btrfs_trans_handle *trans, + struct btrfs_root *root) +{ + struct btrfs_fs_info *fs_info = root->fs_info; + struct btrfs_root *reloc_root; + struct reloc_control *rc = fs_info->reloc_ctl; + struct btrfs_block_rsv *rsv; + int clear_rsv = 0; + int ret; + + if (!rc) + return 0; + + /* + * The subvolume has reloc tree but the swap is finished, no need to + * create/update the dead reloc tree + */ + if (reloc_root_is_dead(root)) + return 0; + + /* + * This is subtle but important. We do not do + * record_root_in_transaction for reloc roots, instead we record their + * corresponding fs root, and then here we update the last trans for the + * reloc root. This means that we have to do this for the entire life + * of the reloc root, regardless of which stage of the relocation we are + * in. + */ + if (root->reloc_root) { + reloc_root = root->reloc_root; + reloc_root->last_trans = trans->transid; + return 0; + } + + /* + * We are merging reloc roots, we do not need new reloc trees. Also + * reloc trees never need their own reloc tree. + */ + if (!rc->create_reloc_tree || + root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) + return 0; + + if (!trans->reloc_reserved) { + rsv = trans->block_rsv; + trans->block_rsv = rc->block_rsv; + clear_rsv = 1; + } + reloc_root = create_reloc_root(trans, root, root->root_key.objectid); + if (clear_rsv) + trans->block_rsv = rsv; + if (IS_ERR(reloc_root)) + return PTR_ERR(reloc_root); + + ret = __add_reloc_root(reloc_root); + ASSERT(ret != -EEXIST); + if (ret) { + /* Pairs with create_reloc_root */ + btrfs_put_root(reloc_root); + return ret; + } + root->reloc_root = btrfs_grab_root(reloc_root); + return 0; +} + +/* + * update root item of reloc tree + */ +int btrfs_update_reloc_root(struct btrfs_trans_handle *trans, + struct btrfs_root *root) +{ + struct btrfs_fs_info *fs_info = root->fs_info; + struct btrfs_root *reloc_root; + struct btrfs_root_item *root_item; + int ret; + + if (!have_reloc_root(root)) + return 0; + + reloc_root = root->reloc_root; + root_item = &reloc_root->root_item; + + /* + * We are probably ok here, but __del_reloc_root() will drop its ref of + * the root. We have the ref for root->reloc_root, but just in case + * hold it while we update the reloc root. + */ + btrfs_grab_root(reloc_root); + + /* root->reloc_root will stay until current relocation finished */ + if (fs_info->reloc_ctl->merge_reloc_tree && + btrfs_root_refs(root_item) == 0) { + set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state); + /* + * Mark the tree as dead before we change reloc_root so + * have_reloc_root will not touch it from now on. + */ + smp_wmb(); + __del_reloc_root(reloc_root); + } + + if (reloc_root->commit_root != reloc_root->node) { + __update_reloc_root(reloc_root); + btrfs_set_root_node(root_item, reloc_root->node); + free_extent_buffer(reloc_root->commit_root); + reloc_root->commit_root = btrfs_root_node(reloc_root); + } + + ret = btrfs_update_root(trans, fs_info->tree_root, + &reloc_root->root_key, root_item); + btrfs_put_root(reloc_root); + return ret; +} + +/* + * helper to find first cached inode with inode number >= objectid + * in a subvolume + */ +static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid) +{ + struct rb_node *node; + struct rb_node *prev; + struct btrfs_inode *entry; + struct inode *inode; + + spin_lock(&root->inode_lock); +again: + node = root->inode_tree.rb_node; + prev = NULL; + while (node) { + prev = node; + entry = rb_entry(node, struct btrfs_inode, rb_node); + + if (objectid < btrfs_ino(entry)) + node = node->rb_left; + else if (objectid > btrfs_ino(entry)) + node = node->rb_right; + else + break; + } + if (!node) { + while (prev) { + entry = rb_entry(prev, struct btrfs_inode, rb_node); + if (objectid <= btrfs_ino(entry)) { + node = prev; + break; + } + prev = rb_next(prev); + } + } + while (node) { + entry = rb_entry(node, struct btrfs_inode, rb_node); + inode = igrab(&entry->vfs_inode); + if (inode) { + spin_unlock(&root->inode_lock); + return inode; + } + + objectid = btrfs_ino(entry) + 1; + if (cond_resched_lock(&root->inode_lock)) + goto again; + + node = rb_next(node); + } + spin_unlock(&root->inode_lock); + return NULL; +} + +/* + * get new location of data + */ +static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr, + u64 bytenr, u64 num_bytes) +{ + struct btrfs_root *root = BTRFS_I(reloc_inode)->root; + struct btrfs_path *path; + struct btrfs_file_extent_item *fi; + struct extent_buffer *leaf; + int ret; + + path = btrfs_alloc_path(); + if (!path) + return -ENOMEM; + + bytenr -= BTRFS_I(reloc_inode)->index_cnt; + ret = btrfs_lookup_file_extent(NULL, root, path, + btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0); + if (ret < 0) + goto out; + if (ret > 0) { + ret = -ENOENT; + goto out; + } + + leaf = path->nodes[0]; + fi = btrfs_item_ptr(leaf, path->slots[0], + struct btrfs_file_extent_item); + + BUG_ON(btrfs_file_extent_offset(leaf, fi) || + btrfs_file_extent_compression(leaf, fi) || + btrfs_file_extent_encryption(leaf, fi) || + btrfs_file_extent_other_encoding(leaf, fi)); + + if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) { + ret = -EINVAL; + goto out; + } + + *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); + ret = 0; +out: + btrfs_free_path(path); + return ret; +} + +/* + * update file extent items in the tree leaf to point to + * the new locations. + */ +static noinline_for_stack +int replace_file_extents(struct btrfs_trans_handle *trans, + struct reloc_control *rc, + struct btrfs_root *root, + struct extent_buffer *leaf) +{ + struct btrfs_fs_info *fs_info = root->fs_info; + struct btrfs_key key; + struct btrfs_file_extent_item *fi; + struct inode *inode = NULL; + u64 parent; + u64 bytenr; + u64 new_bytenr = 0; + u64 num_bytes; + u64 end; + u32 nritems; + u32 i; + int ret = 0; + int first = 1; + int dirty = 0; + + if (rc->stage != UPDATE_DATA_PTRS) + return 0; + + /* reloc trees always use full backref */ + if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) + parent = leaf->start; + else + parent = 0; + + nritems = btrfs_header_nritems(leaf); + for (i = 0; i < nritems; i++) { + struct btrfs_ref ref = { 0 }; + + cond_resched(); + btrfs_item_key_to_cpu(leaf, &key, i); + if (key.type != BTRFS_EXTENT_DATA_KEY) + continue; + fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item); + if (btrfs_file_extent_type(leaf, fi) == + BTRFS_FILE_EXTENT_INLINE) + continue; + bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); + num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); + if (bytenr == 0) + continue; + if (!in_range(bytenr, rc->block_group->start, + rc->block_group->length)) + continue; + + /* + * if we are modifying block in fs tree, wait for read_folio + * to complete and drop the extent cache + */ + if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { + if (first) { + inode = find_next_inode(root, key.objectid); + first = 0; + } else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) { + btrfs_add_delayed_iput(inode); + inode = find_next_inode(root, key.objectid); + } + if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) { + end = key.offset + + btrfs_file_extent_num_bytes(leaf, fi); + WARN_ON(!IS_ALIGNED(key.offset, + fs_info->sectorsize)); + WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize)); + end--; + ret = try_lock_extent(&BTRFS_I(inode)->io_tree, + key.offset, end); + if (!ret) + continue; + + btrfs_drop_extent_map_range(BTRFS_I(inode), + key.offset, end, true); + unlock_extent(&BTRFS_I(inode)->io_tree, + key.offset, end, NULL); + } + } + + ret = get_new_location(rc->data_inode, &new_bytenr, + bytenr, num_bytes); + if (ret) { + /* + * Don't have to abort since we've not changed anything + * in the file extent yet. + */ + break; + } + + btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr); + dirty = 1; + + key.offset -= btrfs_file_extent_offset(leaf, fi); + btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr, + num_bytes, parent); + btrfs_init_data_ref(&ref, btrfs_header_owner(leaf), + key.objectid, key.offset, + root->root_key.objectid, false); + ret = btrfs_inc_extent_ref(trans, &ref); + if (ret) { + btrfs_abort_transaction(trans, ret); + break; + } + + btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr, + num_bytes, parent); + btrfs_init_data_ref(&ref, btrfs_header_owner(leaf), + key.objectid, key.offset, + root->root_key.objectid, false); + ret = btrfs_free_extent(trans, &ref); + if (ret) { + btrfs_abort_transaction(trans, ret); + break; + } + } + if (dirty) + btrfs_mark_buffer_dirty(leaf); + if (inode) + btrfs_add_delayed_iput(inode); + return ret; +} + +static noinline_for_stack +int memcmp_node_keys(struct extent_buffer *eb, int slot, + struct btrfs_path *path, int level) +{ + struct btrfs_disk_key key1; + struct btrfs_disk_key key2; + btrfs_node_key(eb, &key1, slot); + btrfs_node_key(path->nodes[level], &key2, path->slots[level]); + return memcmp(&key1, &key2, sizeof(key1)); +} + +/* + * try to replace tree blocks in fs tree with the new blocks + * in reloc tree. tree blocks haven't been modified since the + * reloc tree was create can be replaced. + * + * if a block was replaced, level of the block + 1 is returned. + * if no block got replaced, 0 is returned. if there are other + * errors, a negative error number is returned. + */ +static noinline_for_stack +int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc, + struct btrfs_root *dest, struct btrfs_root *src, + struct btrfs_path *path, struct btrfs_key *next_key, + int lowest_level, int max_level) +{ + struct btrfs_fs_info *fs_info = dest->fs_info; + struct extent_buffer *eb; + struct extent_buffer *parent; + struct btrfs_ref ref = { 0 }; + struct btrfs_key key; + u64 old_bytenr; + u64 new_bytenr; + u64 old_ptr_gen; + u64 new_ptr_gen; + u64 last_snapshot; + u32 blocksize; + int cow = 0; + int level; + int ret; + int slot; + + ASSERT(src->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID); + ASSERT(dest->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); + + last_snapshot = btrfs_root_last_snapshot(&src->root_item); +again: + slot = path->slots[lowest_level]; + btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot); + + eb = btrfs_lock_root_node(dest); + level = btrfs_header_level(eb); + + if (level < lowest_level) { + btrfs_tree_unlock(eb); + free_extent_buffer(eb); + return 0; + } + + if (cow) { + ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb, + BTRFS_NESTING_COW); + if (ret) { + btrfs_tree_unlock(eb); + free_extent_buffer(eb); + return ret; + } + } + + if (next_key) { + next_key->objectid = (u64)-1; + next_key->type = (u8)-1; + next_key->offset = (u64)-1; + } + + parent = eb; + while (1) { + level = btrfs_header_level(parent); + ASSERT(level >= lowest_level); + + ret = btrfs_bin_search(parent, &key, &slot); + if (ret < 0) + break; + if (ret && slot > 0) + slot--; + + if (next_key && slot + 1 < btrfs_header_nritems(parent)) + btrfs_node_key_to_cpu(parent, next_key, slot + 1); + + old_bytenr = btrfs_node_blockptr(parent, slot); + blocksize = fs_info->nodesize; + old_ptr_gen = btrfs_node_ptr_generation(parent, slot); + + if (level <= max_level) { + eb = path->nodes[level]; + new_bytenr = btrfs_node_blockptr(eb, + path->slots[level]); + new_ptr_gen = btrfs_node_ptr_generation(eb, + path->slots[level]); + } else { + new_bytenr = 0; + new_ptr_gen = 0; + } + + if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) { + ret = level; + break; + } + + if (new_bytenr == 0 || old_ptr_gen > last_snapshot || + memcmp_node_keys(parent, slot, path, level)) { + if (level <= lowest_level) { + ret = 0; + break; + } + + eb = btrfs_read_node_slot(parent, slot); + if (IS_ERR(eb)) { + ret = PTR_ERR(eb); + break; + } + btrfs_tree_lock(eb); + if (cow) { + ret = btrfs_cow_block(trans, dest, eb, parent, + slot, &eb, + BTRFS_NESTING_COW); + if (ret) { + btrfs_tree_unlock(eb); + free_extent_buffer(eb); + break; + } + } + + btrfs_tree_unlock(parent); + free_extent_buffer(parent); + + parent = eb; + continue; + } + + if (!cow) { + btrfs_tree_unlock(parent); + free_extent_buffer(parent); + cow = 1; + goto again; + } + + btrfs_node_key_to_cpu(path->nodes[level], &key, + path->slots[level]); + btrfs_release_path(path); + + path->lowest_level = level; + set_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state); + ret = btrfs_search_slot(trans, src, &key, path, 0, 1); + clear_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state); + path->lowest_level = 0; + if (ret) { + if (ret > 0) + ret = -ENOENT; + break; + } + + /* + * Info qgroup to trace both subtrees. + * + * We must trace both trees. + * 1) Tree reloc subtree + * If not traced, we will leak data numbers + * 2) Fs subtree + * If not traced, we will double count old data + * + * We don't scan the subtree right now, but only record + * the swapped tree blocks. + * The real subtree rescan is delayed until we have new + * CoW on the subtree root node before transaction commit. + */ + ret = btrfs_qgroup_add_swapped_blocks(trans, dest, + rc->block_group, parent, slot, + path->nodes[level], path->slots[level], + last_snapshot); + if (ret < 0) + break; + /* + * swap blocks in fs tree and reloc tree. + */ + btrfs_set_node_blockptr(parent, slot, new_bytenr); + btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen); + btrfs_mark_buffer_dirty(parent); + + btrfs_set_node_blockptr(path->nodes[level], + path->slots[level], old_bytenr); + btrfs_set_node_ptr_generation(path->nodes[level], + path->slots[level], old_ptr_gen); + btrfs_mark_buffer_dirty(path->nodes[level]); + + btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, old_bytenr, + blocksize, path->nodes[level]->start); + btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid, + 0, true); + ret = btrfs_inc_extent_ref(trans, &ref); + if (ret) { + btrfs_abort_transaction(trans, ret); + break; + } + btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr, + blocksize, 0); + btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid, 0, + true); + ret = btrfs_inc_extent_ref(trans, &ref); + if (ret) { + btrfs_abort_transaction(trans, ret); + break; + } + + btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, new_bytenr, + blocksize, path->nodes[level]->start); + btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid, + 0, true); + ret = btrfs_free_extent(trans, &ref); + if (ret) { + btrfs_abort_transaction(trans, ret); + break; + } + + btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, old_bytenr, + blocksize, 0); + btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid, + 0, true); + ret = btrfs_free_extent(trans, &ref); + if (ret) { + btrfs_abort_transaction(trans, ret); + break; + } + + btrfs_unlock_up_safe(path, 0); + + ret = level; + break; + } + btrfs_tree_unlock(parent); + free_extent_buffer(parent); + return ret; +} + +/* + * helper to find next relocated block in reloc tree + */ +static noinline_for_stack +int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, + int *level) +{ + struct extent_buffer *eb; + int i; + u64 last_snapshot; + u32 nritems; + + last_snapshot = btrfs_root_last_snapshot(&root->root_item); + + for (i = 0; i < *level; i++) { + free_extent_buffer(path->nodes[i]); + path->nodes[i] = NULL; + } + + for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) { + eb = path->nodes[i]; + nritems = btrfs_header_nritems(eb); + while (path->slots[i] + 1 < nritems) { + path->slots[i]++; + if (btrfs_node_ptr_generation(eb, path->slots[i]) <= + last_snapshot) + continue; + + *level = i; + return 0; + } + free_extent_buffer(path->nodes[i]); + path->nodes[i] = NULL; + } + return 1; +} + +/* + * walk down reloc tree to find relocated block of lowest level + */ +static noinline_for_stack +int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, + int *level) +{ + struct extent_buffer *eb = NULL; + int i; + u64 ptr_gen = 0; + u64 last_snapshot; + u32 nritems; + + last_snapshot = btrfs_root_last_snapshot(&root->root_item); + + for (i = *level; i > 0; i--) { + eb = path->nodes[i]; + nritems = btrfs_header_nritems(eb); + while (path->slots[i] < nritems) { + ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]); + if (ptr_gen > last_snapshot) + break; + path->slots[i]++; + } + if (path->slots[i] >= nritems) { + if (i == *level) + break; + *level = i + 1; + return 0; + } + if (i == 1) { + *level = i; + return 0; + } + + eb = btrfs_read_node_slot(eb, path->slots[i]); + if (IS_ERR(eb)) + return PTR_ERR(eb); + BUG_ON(btrfs_header_level(eb) != i - 1); + path->nodes[i - 1] = eb; + path->slots[i - 1] = 0; + } + return 1; +} + +/* + * invalidate extent cache for file extents whose key in range of + * [min_key, max_key) + */ +static int invalidate_extent_cache(struct btrfs_root *root, + struct btrfs_key *min_key, + struct btrfs_key *max_key) +{ + struct btrfs_fs_info *fs_info = root->fs_info; + struct inode *inode = NULL; + u64 objectid; + u64 start, end; + u64 ino; + + objectid = min_key->objectid; + while (1) { + cond_resched(); + iput(inode); + + if (objectid > max_key->objectid) + break; + + inode = find_next_inode(root, objectid); + if (!inode) + break; + ino = btrfs_ino(BTRFS_I(inode)); + + if (ino > max_key->objectid) { + iput(inode); + break; + } + + objectid = ino + 1; + if (!S_ISREG(inode->i_mode)) + continue; + + if (unlikely(min_key->objectid == ino)) { + if (min_key->type > BTRFS_EXTENT_DATA_KEY) + continue; + if (min_key->type < BTRFS_EXTENT_DATA_KEY) + start = 0; + else { + start = min_key->offset; + WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize)); + } + } else { + start = 0; + } + + if (unlikely(max_key->objectid == ino)) { + if (max_key->type < BTRFS_EXTENT_DATA_KEY) + continue; + if (max_key->type > BTRFS_EXTENT_DATA_KEY) { + end = (u64)-1; + } else { + if (max_key->offset == 0) + continue; + end = max_key->offset; + WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize)); + end--; + } + } else { + end = (u64)-1; + } + + /* the lock_extent waits for read_folio to complete */ + lock_extent(&BTRFS_I(inode)->io_tree, start, end, NULL); + btrfs_drop_extent_map_range(BTRFS_I(inode), start, end, true); + unlock_extent(&BTRFS_I(inode)->io_tree, start, end, NULL); + } + return 0; +} + +static int find_next_key(struct btrfs_path *path, int level, + struct btrfs_key *key) + +{ + while (level < BTRFS_MAX_LEVEL) { + if (!path->nodes[level]) + break; + if (path->slots[level] + 1 < + btrfs_header_nritems(path->nodes[level])) { + btrfs_node_key_to_cpu(path->nodes[level], key, + path->slots[level] + 1); + return 0; + } + level++; + } + return 1; +} + +/* + * Insert current subvolume into reloc_control::dirty_subvol_roots + */ +static int insert_dirty_subvol(struct btrfs_trans_handle *trans, + struct reloc_control *rc, + struct btrfs_root *root) +{ + struct btrfs_root *reloc_root = root->reloc_root; + struct btrfs_root_item *reloc_root_item; + int ret; + + /* @root must be a subvolume tree root with a valid reloc tree */ + ASSERT(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); + ASSERT(reloc_root); + + reloc_root_item = &reloc_root->root_item; + memset(&reloc_root_item->drop_progress, 0, + sizeof(reloc_root_item->drop_progress)); + btrfs_set_root_drop_level(reloc_root_item, 0); + btrfs_set_root_refs(reloc_root_item, 0); + ret = btrfs_update_reloc_root(trans, root); + if (ret) + return ret; + + if (list_empty(&root->reloc_dirty_list)) { + btrfs_grab_root(root); + list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots); + } + + return 0; +} + +static int clean_dirty_subvols(struct reloc_control *rc) +{ + struct btrfs_root *root; + struct btrfs_root *next; + int ret = 0; + int ret2; + + list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots, + reloc_dirty_list) { + if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { + /* Merged subvolume, cleanup its reloc root */ + struct btrfs_root *reloc_root = root->reloc_root; + + list_del_init(&root->reloc_dirty_list); + root->reloc_root = NULL; + /* + * Need barrier to ensure clear_bit() only happens after + * root->reloc_root = NULL. Pairs with have_reloc_root. + */ + smp_wmb(); + clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state); + if (reloc_root) { + /* + * btrfs_drop_snapshot drops our ref we hold for + * ->reloc_root. If it fails however we must + * drop the ref ourselves. + */ + ret2 = btrfs_drop_snapshot(reloc_root, 0, 1); + if (ret2 < 0) { + btrfs_put_root(reloc_root); + if (!ret) + ret = ret2; + } + } + btrfs_put_root(root); + } else { + /* Orphan reloc tree, just clean it up */ + ret2 = btrfs_drop_snapshot(root, 0, 1); + if (ret2 < 0) { + btrfs_put_root(root); + if (!ret) + ret = ret2; + } + } + } + return ret; +} + +/* + * merge the relocated tree blocks in reloc tree with corresponding + * fs tree. + */ +static noinline_for_stack int merge_reloc_root(struct reloc_control *rc, + struct btrfs_root *root) +{ + struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; + struct btrfs_key key; + struct btrfs_key next_key; + struct btrfs_trans_handle *trans = NULL; + struct btrfs_root *reloc_root; + struct btrfs_root_item *root_item; + struct btrfs_path *path; + struct extent_buffer *leaf; + int reserve_level; + int level; + int max_level; + int replaced = 0; + int ret = 0; + u32 min_reserved; + + path = btrfs_alloc_path(); + if (!path) + return -ENOMEM; + path->reada = READA_FORWARD; + + reloc_root = root->reloc_root; + root_item = &reloc_root->root_item; + + if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { + level = btrfs_root_level(root_item); + atomic_inc(&reloc_root->node->refs); + path->nodes[level] = reloc_root->node; + path->slots[level] = 0; + } else { + btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); + + level = btrfs_root_drop_level(root_item); + BUG_ON(level == 0); + path->lowest_level = level; + ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0); + path->lowest_level = 0; + if (ret < 0) { + btrfs_free_path(path); + return ret; + } + + btrfs_node_key_to_cpu(path->nodes[level], &next_key, + path->slots[level]); + WARN_ON(memcmp(&key, &next_key, sizeof(key))); + + btrfs_unlock_up_safe(path, 0); + } + + /* + * In merge_reloc_root(), we modify the upper level pointer to swap the + * tree blocks between reloc tree and subvolume tree. Thus for tree + * block COW, we COW at most from level 1 to root level for each tree. + * + * Thus the needed metadata size is at most root_level * nodesize, + * and * 2 since we have two trees to COW. + */ + reserve_level = max_t(int, 1, btrfs_root_level(root_item)); + min_reserved = fs_info->nodesize * reserve_level * 2; + memset(&next_key, 0, sizeof(next_key)); + + while (1) { + ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv, + min_reserved, + BTRFS_RESERVE_FLUSH_LIMIT); + if (ret) + goto out; + trans = btrfs_start_transaction(root, 0); + if (IS_ERR(trans)) { + ret = PTR_ERR(trans); + trans = NULL; + goto out; + } + + /* + * At this point we no longer have a reloc_control, so we can't + * depend on btrfs_init_reloc_root to update our last_trans. + * + * But that's ok, we started the trans handle on our + * corresponding fs_root, which means it's been added to the + * dirty list. At commit time we'll still call + * btrfs_update_reloc_root() and update our root item + * appropriately. + */ + reloc_root->last_trans = trans->transid; + trans->block_rsv = rc->block_rsv; + + replaced = 0; + max_level = level; + + ret = walk_down_reloc_tree(reloc_root, path, &level); + if (ret < 0) + goto out; + if (ret > 0) + break; + + if (!find_next_key(path, level, &key) && + btrfs_comp_cpu_keys(&next_key, &key) >= 0) { + ret = 0; + } else { + ret = replace_path(trans, rc, root, reloc_root, path, + &next_key, level, max_level); + } + if (ret < 0) + goto out; + if (ret > 0) { + level = ret; + btrfs_node_key_to_cpu(path->nodes[level], &key, + path->slots[level]); + replaced = 1; + } + + ret = walk_up_reloc_tree(reloc_root, path, &level); + if (ret > 0) + break; + + BUG_ON(level == 0); + /* + * save the merging progress in the drop_progress. + * this is OK since root refs == 1 in this case. + */ + btrfs_node_key(path->nodes[level], &root_item->drop_progress, + path->slots[level]); + btrfs_set_root_drop_level(root_item, level); + + btrfs_end_transaction_throttle(trans); + trans = NULL; + + btrfs_btree_balance_dirty(fs_info); + + if (replaced && rc->stage == UPDATE_DATA_PTRS) + invalidate_extent_cache(root, &key, &next_key); + } + + /* + * handle the case only one block in the fs tree need to be + * relocated and the block is tree root. + */ + leaf = btrfs_lock_root_node(root); + ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf, + BTRFS_NESTING_COW); + btrfs_tree_unlock(leaf); + free_extent_buffer(leaf); +out: + btrfs_free_path(path); + + if (ret == 0) { + ret = insert_dirty_subvol(trans, rc, root); + if (ret) + btrfs_abort_transaction(trans, ret); + } + + if (trans) + btrfs_end_transaction_throttle(trans); + + btrfs_btree_balance_dirty(fs_info); + + if (replaced && rc->stage == UPDATE_DATA_PTRS) + invalidate_extent_cache(root, &key, &next_key); + + return ret; +} + +static noinline_for_stack +int prepare_to_merge(struct reloc_control *rc, int err) +{ + struct btrfs_root *root = rc->extent_root; + struct btrfs_fs_info *fs_info = root->fs_info; + struct btrfs_root *reloc_root; + struct btrfs_trans_handle *trans; + LIST_HEAD(reloc_roots); + u64 num_bytes = 0; + int ret; + + mutex_lock(&fs_info->reloc_mutex); + rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2; + rc->merging_rsv_size += rc->nodes_relocated * 2; + mutex_unlock(&fs_info->reloc_mutex); + +again: + if (!err) { + num_bytes = rc->merging_rsv_size; + ret = btrfs_block_rsv_add(fs_info, rc->block_rsv, num_bytes, + BTRFS_RESERVE_FLUSH_ALL); + if (ret) + err = ret; + } + + trans = btrfs_join_transaction(rc->extent_root); + if (IS_ERR(trans)) { + if (!err) + btrfs_block_rsv_release(fs_info, rc->block_rsv, + num_bytes, NULL); + return PTR_ERR(trans); + } + + if (!err) { + if (num_bytes != rc->merging_rsv_size) { + btrfs_end_transaction(trans); + btrfs_block_rsv_release(fs_info, rc->block_rsv, + num_bytes, NULL); + goto again; + } + } + + rc->merge_reloc_tree = 1; + + while (!list_empty(&rc->reloc_roots)) { + reloc_root = list_entry(rc->reloc_roots.next, + struct btrfs_root, root_list); + list_del_init(&reloc_root->root_list); + + root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, + false); + if (IS_ERR(root)) { + /* + * Even if we have an error we need this reloc root + * back on our list so we can clean up properly. + */ + list_add(&reloc_root->root_list, &reloc_roots); + btrfs_abort_transaction(trans, (int)PTR_ERR(root)); + if (!err) + err = PTR_ERR(root); + break; + } + + if (unlikely(root->reloc_root != reloc_root)) { + if (root->reloc_root) { + btrfs_err(fs_info, +"reloc tree mismatch, root %lld has reloc root key (%lld %u %llu) gen %llu, expect reloc root key (%lld %u %llu) gen %llu", + root->root_key.objectid, + root->reloc_root->root_key.objectid, + root->reloc_root->root_key.type, + root->reloc_root->root_key.offset, + btrfs_root_generation( + &root->reloc_root->root_item), + reloc_root->root_key.objectid, + reloc_root->root_key.type, + reloc_root->root_key.offset, + btrfs_root_generation( + &reloc_root->root_item)); + } else { + btrfs_err(fs_info, +"reloc tree mismatch, root %lld has no reloc root, expect reloc root key (%lld %u %llu) gen %llu", + root->root_key.objectid, + reloc_root->root_key.objectid, + reloc_root->root_key.type, + reloc_root->root_key.offset, + btrfs_root_generation( + &reloc_root->root_item)); + } + list_add(&reloc_root->root_list, &reloc_roots); + btrfs_put_root(root); + btrfs_abort_transaction(trans, -EUCLEAN); + if (!err) + err = -EUCLEAN; + break; + } + + /* + * set reference count to 1, so btrfs_recover_relocation + * knows it should resumes merging + */ + if (!err) + btrfs_set_root_refs(&reloc_root->root_item, 1); + ret = btrfs_update_reloc_root(trans, root); + + /* + * Even if we have an error we need this reloc root back on our + * list so we can clean up properly. + */ + list_add(&reloc_root->root_list, &reloc_roots); + btrfs_put_root(root); + + if (ret) { + btrfs_abort_transaction(trans, ret); + if (!err) + err = ret; + break; + } + } + + list_splice(&reloc_roots, &rc->reloc_roots); + + if (!err) + err = btrfs_commit_transaction(trans); + else + btrfs_end_transaction(trans); + return err; +} + +static noinline_for_stack +void free_reloc_roots(struct list_head *list) +{ + struct btrfs_root *reloc_root, *tmp; + + list_for_each_entry_safe(reloc_root, tmp, list, root_list) + __del_reloc_root(reloc_root); +} + +static noinline_for_stack +void merge_reloc_roots(struct reloc_control *rc) +{ + struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; + struct btrfs_root *root; + struct btrfs_root *reloc_root; + LIST_HEAD(reloc_roots); + int found = 0; + int ret = 0; +again: + root = rc->extent_root; + + /* + * this serializes us with btrfs_record_root_in_transaction, + * we have to make sure nobody is in the middle of + * adding their roots to the list while we are + * doing this splice + */ + mutex_lock(&fs_info->reloc_mutex); + list_splice_init(&rc->reloc_roots, &reloc_roots); + mutex_unlock(&fs_info->reloc_mutex); + + while (!list_empty(&reloc_roots)) { + found = 1; + reloc_root = list_entry(reloc_roots.next, + struct btrfs_root, root_list); + + root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, + false); + if (btrfs_root_refs(&reloc_root->root_item) > 0) { + if (WARN_ON(IS_ERR(root))) { + /* + * For recovery we read the fs roots on mount, + * and if we didn't find the root then we marked + * the reloc root as a garbage root. For normal + * relocation obviously the root should exist in + * memory. However there's no reason we can't + * handle the error properly here just in case. + */ + ret = PTR_ERR(root); + goto out; + } + if (WARN_ON(root->reloc_root != reloc_root)) { + /* + * This can happen if on-disk metadata has some + * corruption, e.g. bad reloc tree key offset. + */ + ret = -EINVAL; + goto out; + } + ret = merge_reloc_root(rc, root); + btrfs_put_root(root); + if (ret) { + if (list_empty(&reloc_root->root_list)) + list_add_tail(&reloc_root->root_list, + &reloc_roots); + goto out; + } + } else { + if (!IS_ERR(root)) { + if (root->reloc_root == reloc_root) { + root->reloc_root = NULL; + btrfs_put_root(reloc_root); + } + clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, + &root->state); + btrfs_put_root(root); + } + + list_del_init(&reloc_root->root_list); + /* Don't forget to queue this reloc root for cleanup */ + list_add_tail(&reloc_root->reloc_dirty_list, + &rc->dirty_subvol_roots); + } + } + + if (found) { + found = 0; + goto again; + } +out: + if (ret) { + btrfs_handle_fs_error(fs_info, ret, NULL); + free_reloc_roots(&reloc_roots); + + /* new reloc root may be added */ + mutex_lock(&fs_info->reloc_mutex); + list_splice_init(&rc->reloc_roots, &reloc_roots); + mutex_unlock(&fs_info->reloc_mutex); + free_reloc_roots(&reloc_roots); + } + + /* + * We used to have + * + * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root)); + * + * here, but it's wrong. If we fail to start the transaction in + * prepare_to_merge() we will have only 0 ref reloc roots, none of which + * have actually been removed from the reloc_root_tree rb tree. This is + * fine because we're bailing here, and we hold a reference on the root + * for the list that holds it, so these roots will be cleaned up when we + * do the reloc_dirty_list afterwards. Meanwhile the root->reloc_root + * will be cleaned up on unmount. + * + * The remaining nodes will be cleaned up by free_reloc_control. + */ +} + +static void free_block_list(struct rb_root *blocks) +{ + struct tree_block *block; + struct rb_node *rb_node; + while ((rb_node = rb_first(blocks))) { + block = rb_entry(rb_node, struct tree_block, rb_node); + rb_erase(rb_node, blocks); + kfree(block); + } +} + +static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans, + struct btrfs_root *reloc_root) +{ + struct btrfs_fs_info *fs_info = reloc_root->fs_info; + struct btrfs_root *root; + int ret; + + if (reloc_root->last_trans == trans->transid) + return 0; + + root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, false); + + /* + * This should succeed, since we can't have a reloc root without having + * already looked up the actual root and created the reloc root for this + * root. + * + * However if there's some sort of corruption where we have a ref to a + * reloc root without a corresponding root this could return ENOENT. + */ + if (IS_ERR(root)) { + ASSERT(0); + return PTR_ERR(root); + } + if (root->reloc_root != reloc_root) { + ASSERT(0); + btrfs_err(fs_info, + "root %llu has two reloc roots associated with it", + reloc_root->root_key.offset); + btrfs_put_root(root); + return -EUCLEAN; + } + ret = btrfs_record_root_in_trans(trans, root); + btrfs_put_root(root); + + return ret; +} + +static noinline_for_stack +struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans, + struct reloc_control *rc, + struct btrfs_backref_node *node, + struct btrfs_backref_edge *edges[]) +{ + struct btrfs_backref_node *next; + struct btrfs_root *root; + int index = 0; + int ret; + + next = node; + while (1) { + cond_resched(); + next = walk_up_backref(next, edges, &index); + root = next->root; + + /* + * If there is no root, then our references for this block are + * incomplete, as we should be able to walk all the way up to a + * block that is owned by a root. + * + * This path is only for SHAREABLE roots, so if we come upon a + * non-SHAREABLE root then we have backrefs that resolve + * improperly. + * + * Both of these cases indicate file system corruption, or a bug + * in the backref walking code. + */ + if (!root) { + ASSERT(0); + btrfs_err(trans->fs_info, + "bytenr %llu doesn't have a backref path ending in a root", + node->bytenr); + return ERR_PTR(-EUCLEAN); + } + if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) { + ASSERT(0); + btrfs_err(trans->fs_info, + "bytenr %llu has multiple refs with one ending in a non-shareable root", + node->bytenr); + return ERR_PTR(-EUCLEAN); + } + + if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { + ret = record_reloc_root_in_trans(trans, root); + if (ret) + return ERR_PTR(ret); + break; + } + + ret = btrfs_record_root_in_trans(trans, root); + if (ret) + return ERR_PTR(ret); + root = root->reloc_root; + + /* + * We could have raced with another thread which failed, so + * root->reloc_root may not be set, return ENOENT in this case. + */ + if (!root) + return ERR_PTR(-ENOENT); + + if (next->new_bytenr != root->node->start) { + /* + * We just created the reloc root, so we shouldn't have + * ->new_bytenr set and this shouldn't be in the changed + * list. If it is then we have multiple roots pointing + * at the same bytenr which indicates corruption, or + * we've made a mistake in the backref walking code. + */ + ASSERT(next->new_bytenr == 0); + ASSERT(list_empty(&next->list)); + if (next->new_bytenr || !list_empty(&next->list)) { + btrfs_err(trans->fs_info, + "bytenr %llu possibly has multiple roots pointing at the same bytenr %llu", + node->bytenr, next->bytenr); + return ERR_PTR(-EUCLEAN); + } + + next->new_bytenr = root->node->start; + btrfs_put_root(next->root); + next->root = btrfs_grab_root(root); + ASSERT(next->root); + list_add_tail(&next->list, + &rc->backref_cache.changed); + mark_block_processed(rc, next); + break; + } + + WARN_ON(1); + root = NULL; + next = walk_down_backref(edges, &index); + if (!next || next->level <= node->level) + break; + } + if (!root) { + /* + * This can happen if there's fs corruption or if there's a bug + * in the backref lookup code. + */ + ASSERT(0); + return ERR_PTR(-ENOENT); + } + + next = node; + /* setup backref node path for btrfs_reloc_cow_block */ + while (1) { + rc->backref_cache.path[next->level] = next; + if (--index < 0) + break; + next = edges[index]->node[UPPER]; + } + return root; +} + +/* + * Select a tree root for relocation. + * + * Return NULL if the block is not shareable. We should use do_relocation() in + * this case. + * + * Return a tree root pointer if the block is shareable. + * Return -ENOENT if the block is root of reloc tree. + */ +static noinline_for_stack +struct btrfs_root *select_one_root(struct btrfs_backref_node *node) +{ + struct btrfs_backref_node *next; + struct btrfs_root *root; + struct btrfs_root *fs_root = NULL; + struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1]; + int index = 0; + + next = node; + while (1) { + cond_resched(); + next = walk_up_backref(next, edges, &index); + root = next->root; + + /* + * This can occur if we have incomplete extent refs leading all + * the way up a particular path, in this case return -EUCLEAN. + */ + if (!root) + return ERR_PTR(-EUCLEAN); + + /* No other choice for non-shareable tree */ + if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) + return root; + + if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) + fs_root = root; + + if (next != node) + return NULL; + + next = walk_down_backref(edges, &index); + if (!next || next->level <= node->level) + break; + } + + if (!fs_root) + return ERR_PTR(-ENOENT); + return fs_root; +} + +static noinline_for_stack +u64 calcu_metadata_size(struct reloc_control *rc, + struct btrfs_backref_node *node, int reserve) +{ + struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; + struct btrfs_backref_node *next = node; + struct btrfs_backref_edge *edge; + struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1]; + u64 num_bytes = 0; + int index = 0; + + BUG_ON(reserve && node->processed); + + while (next) { + cond_resched(); + while (1) { + if (next->processed && (reserve || next != node)) + break; + + num_bytes += fs_info->nodesize; + + if (list_empty(&next->upper)) + break; + + edge = list_entry(next->upper.next, + struct btrfs_backref_edge, list[LOWER]); + edges[index++] = edge; + next = edge->node[UPPER]; + } + next = walk_down_backref(edges, &index); + } + return num_bytes; +} + +static int reserve_metadata_space(struct btrfs_trans_handle *trans, + struct reloc_control *rc, + struct btrfs_backref_node *node) +{ + struct btrfs_root *root = rc->extent_root; + struct btrfs_fs_info *fs_info = root->fs_info; + u64 num_bytes; + int ret; + u64 tmp; + + num_bytes = calcu_metadata_size(rc, node, 1) * 2; + + trans->block_rsv = rc->block_rsv; + rc->reserved_bytes += num_bytes; + + /* + * We are under a transaction here so we can only do limited flushing. + * If we get an enospc just kick back -EAGAIN so we know to drop the + * transaction and try to refill when we can flush all the things. + */ + ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv, num_bytes, + BTRFS_RESERVE_FLUSH_LIMIT); + if (ret) { + tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES; + while (tmp <= rc->reserved_bytes) + tmp <<= 1; + /* + * only one thread can access block_rsv at this point, + * so we don't need hold lock to protect block_rsv. + * we expand more reservation size here to allow enough + * space for relocation and we will return earlier in + * enospc case. + */ + rc->block_rsv->size = tmp + fs_info->nodesize * + RELOCATION_RESERVED_NODES; + return -EAGAIN; + } + + return 0; +} + +/* + * relocate a block tree, and then update pointers in upper level + * blocks that reference the block to point to the new location. + * + * if called by link_to_upper, the block has already been relocated. + * in that case this function just updates pointers. + */ +static int do_relocation(struct btrfs_trans_handle *trans, + struct reloc_control *rc, + struct btrfs_backref_node *node, + struct btrfs_key *key, + struct btrfs_path *path, int lowest) +{ + struct btrfs_backref_node *upper; + struct btrfs_backref_edge *edge; + struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1]; + struct btrfs_root *root; + struct extent_buffer *eb; + u32 blocksize; + u64 bytenr; + int slot; + int ret = 0; + + /* + * If we are lowest then this is the first time we're processing this + * block, and thus shouldn't have an eb associated with it yet. + */ + ASSERT(!lowest || !node->eb); + + path->lowest_level = node->level + 1; + rc->backref_cache.path[node->level] = node; + list_for_each_entry(edge, &node->upper, list[LOWER]) { + struct btrfs_ref ref = { 0 }; + + cond_resched(); + + upper = edge->node[UPPER]; + root = select_reloc_root(trans, rc, upper, edges); + if (IS_ERR(root)) { + ret = PTR_ERR(root); + goto next; + } + + if (upper->eb && !upper->locked) { + if (!lowest) { + ret = btrfs_bin_search(upper->eb, key, &slot); + if (ret < 0) + goto next; + BUG_ON(ret); + bytenr = btrfs_node_blockptr(upper->eb, slot); + if (node->eb->start == bytenr) + goto next; + } + btrfs_backref_drop_node_buffer(upper); + } + + if (!upper->eb) { + ret = btrfs_search_slot(trans, root, key, path, 0, 1); + if (ret) { + if (ret > 0) + ret = -ENOENT; + + btrfs_release_path(path); + break; + } + + if (!upper->eb) { + upper->eb = path->nodes[upper->level]; + path->nodes[upper->level] = NULL; + } else { + BUG_ON(upper->eb != path->nodes[upper->level]); + } + + upper->locked = 1; + path->locks[upper->level] = 0; + + slot = path->slots[upper->level]; + btrfs_release_path(path); + } else { + ret = btrfs_bin_search(upper->eb, key, &slot); + if (ret < 0) + goto next; + BUG_ON(ret); + } + + bytenr = btrfs_node_blockptr(upper->eb, slot); + if (lowest) { + if (bytenr != node->bytenr) { + btrfs_err(root->fs_info, + "lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu", + bytenr, node->bytenr, slot, + upper->eb->start); + ret = -EIO; + goto next; + } + } else { + if (node->eb->start == bytenr) + goto next; + } + + blocksize = root->fs_info->nodesize; + eb = btrfs_read_node_slot(upper->eb, slot); + if (IS_ERR(eb)) { + ret = PTR_ERR(eb); + goto next; + } + btrfs_tree_lock(eb); + + if (!node->eb) { + ret = btrfs_cow_block(trans, root, eb, upper->eb, + slot, &eb, BTRFS_NESTING_COW); + btrfs_tree_unlock(eb); + free_extent_buffer(eb); + if (ret < 0) + goto next; + /* + * We've just COWed this block, it should have updated + * the correct backref node entry. + */ + ASSERT(node->eb == eb); + } else { + btrfs_set_node_blockptr(upper->eb, slot, + node->eb->start); + btrfs_set_node_ptr_generation(upper->eb, slot, + trans->transid); + btrfs_mark_buffer_dirty(upper->eb); + + btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, + node->eb->start, blocksize, + upper->eb->start); + btrfs_init_tree_ref(&ref, node->level, + btrfs_header_owner(upper->eb), + root->root_key.objectid, false); + ret = btrfs_inc_extent_ref(trans, &ref); + if (!ret) + ret = btrfs_drop_subtree(trans, root, eb, + upper->eb); + if (ret) + btrfs_abort_transaction(trans, ret); + } +next: + if (!upper->pending) + btrfs_backref_drop_node_buffer(upper); + else + btrfs_backref_unlock_node_buffer(upper); + if (ret) + break; + } + + if (!ret && node->pending) { + btrfs_backref_drop_node_buffer(node); + list_move_tail(&node->list, &rc->backref_cache.changed); + node->pending = 0; + } + + path->lowest_level = 0; + + /* + * We should have allocated all of our space in the block rsv and thus + * shouldn't ENOSPC. + */ + ASSERT(ret != -ENOSPC); + return ret; +} + +static int link_to_upper(struct btrfs_trans_handle *trans, + struct reloc_control *rc, + struct btrfs_backref_node *node, + struct btrfs_path *path) +{ + struct btrfs_key key; + + btrfs_node_key_to_cpu(node->eb, &key, 0); + return do_relocation(trans, rc, node, &key, path, 0); +} + +static int finish_pending_nodes(struct btrfs_trans_handle *trans, + struct reloc_control *rc, + struct btrfs_path *path, int err) +{ + LIST_HEAD(list); + struct btrfs_backref_cache *cache = &rc->backref_cache; + struct btrfs_backref_node *node; + int level; + int ret; + + for (level = 0; level < BTRFS_MAX_LEVEL; level++) { + while (!list_empty(&cache->pending[level])) { + node = list_entry(cache->pending[level].next, + struct btrfs_backref_node, list); + list_move_tail(&node->list, &list); + BUG_ON(!node->pending); + + if (!err) { + ret = link_to_upper(trans, rc, node, path); + if (ret < 0) + err = ret; + } + } + list_splice_init(&list, &cache->pending[level]); + } + return err; +} + +/* + * mark a block and all blocks directly/indirectly reference the block + * as processed. + */ +static void update_processed_blocks(struct reloc_control *rc, + struct btrfs_backref_node *node) +{ + struct btrfs_backref_node *next = node; + struct btrfs_backref_edge *edge; + struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1]; + int index = 0; + + while (next) { + cond_resched(); + while (1) { + if (next->processed) + break; + + mark_block_processed(rc, next); + + if (list_empty(&next->upper)) + break; + + edge = list_entry(next->upper.next, + struct btrfs_backref_edge, list[LOWER]); + edges[index++] = edge; + next = edge->node[UPPER]; + } + next = walk_down_backref(edges, &index); + } +} + +static int tree_block_processed(u64 bytenr, struct reloc_control *rc) +{ + u32 blocksize = rc->extent_root->fs_info->nodesize; + + if (test_range_bit(&rc->processed_blocks, bytenr, + bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL)) + return 1; + return 0; +} + +static int get_tree_block_key(struct btrfs_fs_info *fs_info, + struct tree_block *block) +{ + struct extent_buffer *eb; + + eb = read_tree_block(fs_info, block->bytenr, block->owner, + block->key.offset, block->level, NULL); + if (IS_ERR(eb)) + return PTR_ERR(eb); + if (!extent_buffer_uptodate(eb)) { + free_extent_buffer(eb); + return -EIO; + } + if (block->level == 0) + btrfs_item_key_to_cpu(eb, &block->key, 0); + else + btrfs_node_key_to_cpu(eb, &block->key, 0); + free_extent_buffer(eb); + block->key_ready = 1; + return 0; +} + +/* + * helper function to relocate a tree block + */ +static int relocate_tree_block(struct btrfs_trans_handle *trans, + struct reloc_control *rc, + struct btrfs_backref_node *node, + struct btrfs_key *key, + struct btrfs_path *path) +{ + struct btrfs_root *root; + int ret = 0; + + if (!node) + return 0; + + /* + * If we fail here we want to drop our backref_node because we are going + * to start over and regenerate the tree for it. + */ + ret = reserve_metadata_space(trans, rc, node); + if (ret) + goto out; + + BUG_ON(node->processed); + root = select_one_root(node); + if (IS_ERR(root)) { + ret = PTR_ERR(root); + + /* See explanation in select_one_root for the -EUCLEAN case. */ + ASSERT(ret == -ENOENT); + if (ret == -ENOENT) { + ret = 0; + update_processed_blocks(rc, node); + } + goto out; + } + + if (root) { + if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) { + /* + * This block was the root block of a root, and this is + * the first time we're processing the block and thus it + * should not have had the ->new_bytenr modified and + * should have not been included on the changed list. + * + * However in the case of corruption we could have + * multiple refs pointing to the same block improperly, + * and thus we would trip over these checks. ASSERT() + * for the developer case, because it could indicate a + * bug in the backref code, however error out for a + * normal user in the case of corruption. + */ + ASSERT(node->new_bytenr == 0); + ASSERT(list_empty(&node->list)); + if (node->new_bytenr || !list_empty(&node->list)) { + btrfs_err(root->fs_info, + "bytenr %llu has improper references to it", + node->bytenr); + ret = -EUCLEAN; + goto out; + } + ret = btrfs_record_root_in_trans(trans, root); + if (ret) + goto out; + /* + * Another thread could have failed, need to check if we + * have reloc_root actually set. + */ + if (!root->reloc_root) { + ret = -ENOENT; + goto out; + } + root = root->reloc_root; + node->new_bytenr = root->node->start; + btrfs_put_root(node->root); + node->root = btrfs_grab_root(root); + ASSERT(node->root); + list_add_tail(&node->list, &rc->backref_cache.changed); + } else { + path->lowest_level = node->level; + if (root == root->fs_info->chunk_root) + btrfs_reserve_chunk_metadata(trans, false); + ret = btrfs_search_slot(trans, root, key, path, 0, 1); + btrfs_release_path(path); + if (root == root->fs_info->chunk_root) + btrfs_trans_release_chunk_metadata(trans); + if (ret > 0) + ret = 0; + } + if (!ret) + update_processed_blocks(rc, node); + } else { + ret = do_relocation(trans, rc, node, key, path, 1); + } +out: + if (ret || node->level == 0 || node->cowonly) + btrfs_backref_cleanup_node(&rc->backref_cache, node); + return ret; +} + +/* + * relocate a list of blocks + */ +static noinline_for_stack +int relocate_tree_blocks(struct btrfs_trans_handle *trans, + struct reloc_control *rc, struct rb_root *blocks) +{ + struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; + struct btrfs_backref_node *node; + struct btrfs_path *path; + struct tree_block *block; + struct tree_block *next; + int ret; + int err = 0; + + path = btrfs_alloc_path(); + if (!path) { + err = -ENOMEM; + goto out_free_blocks; + } + + /* Kick in readahead for tree blocks with missing keys */ + rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) { + if (!block->key_ready) + btrfs_readahead_tree_block(fs_info, block->bytenr, + block->owner, 0, + block->level); + } + + /* Get first keys */ + rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) { + if (!block->key_ready) { + err = get_tree_block_key(fs_info, block); + if (err) + goto out_free_path; + } + } + + /* Do tree relocation */ + rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) { + node = build_backref_tree(rc, &block->key, + block->level, block->bytenr); + if (IS_ERR(node)) { + err = PTR_ERR(node); + goto out; + } + + ret = relocate_tree_block(trans, rc, node, &block->key, + path); + if (ret < 0) { + err = ret; + break; + } + } +out: + err = finish_pending_nodes(trans, rc, path, err); + +out_free_path: + btrfs_free_path(path); +out_free_blocks: + free_block_list(blocks); + return err; +} + +static noinline_for_stack int prealloc_file_extent_cluster( + struct btrfs_inode *inode, + struct file_extent_cluster *cluster) +{ + u64 alloc_hint = 0; + u64 start; + u64 end; + u64 offset = inode->index_cnt; + u64 num_bytes; + int nr; + int ret = 0; + u64 i_size = i_size_read(&inode->vfs_inode); + u64 prealloc_start = cluster->start - offset; + u64 prealloc_end = cluster->end - offset; + u64 cur_offset = prealloc_start; + + /* + * For subpage case, previous i_size may not be aligned to PAGE_SIZE. + * This means the range [i_size, PAGE_END + 1) is filled with zeros by + * btrfs_do_readpage() call of previously relocated file cluster. + * + * If the current cluster starts in the above range, btrfs_do_readpage() + * will skip the read, and relocate_one_page() will later writeback + * the padding zeros as new data, causing data corruption. + * + * Here we have to manually invalidate the range (i_size, PAGE_END + 1). + */ + if (!IS_ALIGNED(i_size, PAGE_SIZE)) { + struct address_space *mapping = inode->vfs_inode.i_mapping; + struct btrfs_fs_info *fs_info = inode->root->fs_info; + const u32 sectorsize = fs_info->sectorsize; + struct page *page; + + ASSERT(sectorsize < PAGE_SIZE); + ASSERT(IS_ALIGNED(i_size, sectorsize)); + + /* + * Subpage can't handle page with DIRTY but without UPTODATE + * bit as it can lead to the following deadlock: + * + * btrfs_read_folio() + * | Page already *locked* + * |- btrfs_lock_and_flush_ordered_range() + * |- btrfs_start_ordered_extent() + * |- extent_write_cache_pages() + * |- lock_page() + * We try to lock the page we already hold. + * + * Here we just writeback the whole data reloc inode, so that + * we will be ensured to have no dirty range in the page, and + * are safe to clear the uptodate bits. + * + * This shouldn't cause too much overhead, as we need to write + * the data back anyway. + */ + ret = filemap_write_and_wait(mapping); + if (ret < 0) + return ret; + + clear_extent_bits(&inode->io_tree, i_size, + round_up(i_size, PAGE_SIZE) - 1, + EXTENT_UPTODATE); + page = find_lock_page(mapping, i_size >> PAGE_SHIFT); + /* + * If page is freed we don't need to do anything then, as we + * will re-read the whole page anyway. + */ + if (page) { + btrfs_subpage_clear_uptodate(fs_info, page, i_size, + round_up(i_size, PAGE_SIZE) - i_size); + unlock_page(page); + put_page(page); + } + } + + BUG_ON(cluster->start != cluster->boundary[0]); + ret = btrfs_alloc_data_chunk_ondemand(inode, + prealloc_end + 1 - prealloc_start); + if (ret) + return ret; + + btrfs_inode_lock(&inode->vfs_inode, 0); + for (nr = 0; nr < cluster->nr; nr++) { + start = cluster->boundary[nr] - offset; + if (nr + 1 < cluster->nr) + end = cluster->boundary[nr + 1] - 1 - offset; + else + end = cluster->end - offset; + + lock_extent(&inode->io_tree, start, end, NULL); + num_bytes = end + 1 - start; + ret = btrfs_prealloc_file_range(&inode->vfs_inode, 0, start, + num_bytes, num_bytes, + end + 1, &alloc_hint); + cur_offset = end + 1; + unlock_extent(&inode->io_tree, start, end, NULL); + if (ret) + break; + } + btrfs_inode_unlock(&inode->vfs_inode, 0); + + if (cur_offset < prealloc_end) + btrfs_free_reserved_data_space_noquota(inode->root->fs_info, + prealloc_end + 1 - cur_offset); + return ret; +} + +static noinline_for_stack int setup_relocation_extent_mapping(struct inode *inode, + u64 start, u64 end, u64 block_start) +{ + struct extent_map *em; + int ret = 0; + + em = alloc_extent_map(); + if (!em) + return -ENOMEM; + + em->start = start; + em->len = end + 1 - start; + em->block_len = em->len; + em->block_start = block_start; + set_bit(EXTENT_FLAG_PINNED, &em->flags); + + lock_extent(&BTRFS_I(inode)->io_tree, start, end, NULL); + ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, false); + unlock_extent(&BTRFS_I(inode)->io_tree, start, end, NULL); + free_extent_map(em); + + return ret; +} + +/* + * Allow error injection to test balance/relocation cancellation + */ +noinline int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info) +{ + return atomic_read(&fs_info->balance_cancel_req) || + atomic_read(&fs_info->reloc_cancel_req) || + fatal_signal_pending(current); +} +ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance, TRUE); + +static u64 get_cluster_boundary_end(struct file_extent_cluster *cluster, + int cluster_nr) +{ + /* Last extent, use cluster end directly */ + if (cluster_nr >= cluster->nr - 1) + return cluster->end; + + /* Use next boundary start*/ + return cluster->boundary[cluster_nr + 1] - 1; +} + +static int relocate_one_page(struct inode *inode, struct file_ra_state *ra, + struct file_extent_cluster *cluster, + int *cluster_nr, unsigned long page_index) +{ + struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); + u64 offset = BTRFS_I(inode)->index_cnt; + const unsigned long last_index = (cluster->end - offset) >> PAGE_SHIFT; + gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); + struct page *page; + u64 page_start; + u64 page_end; + u64 cur; + int ret; + + ASSERT(page_index <= last_index); + page = find_lock_page(inode->i_mapping, page_index); + if (!page) { + page_cache_sync_readahead(inode->i_mapping, ra, NULL, + page_index, last_index + 1 - page_index); + page = find_or_create_page(inode->i_mapping, page_index, mask); + if (!page) + return -ENOMEM; + } + + if (PageReadahead(page)) + page_cache_async_readahead(inode->i_mapping, ra, NULL, + page_folio(page), page_index, + last_index + 1 - page_index); + + if (!PageUptodate(page)) { + btrfs_read_folio(NULL, page_folio(page)); + lock_page(page); + if (!PageUptodate(page)) { + ret = -EIO; + goto release_page; + } + } + + /* + * We could have lost page private when we dropped the lock to read the + * page above, make sure we set_page_extent_mapped here so we have any + * of the subpage blocksize stuff we need in place. + */ + ret = set_page_extent_mapped(page); + if (ret < 0) + goto release_page; + + page_start = page_offset(page); + page_end = page_start + PAGE_SIZE - 1; + + /* + * Start from the cluster, as for subpage case, the cluster can start + * inside the page. + */ + cur = max(page_start, cluster->boundary[*cluster_nr] - offset); + while (cur <= page_end) { + u64 extent_start = cluster->boundary[*cluster_nr] - offset; + u64 extent_end = get_cluster_boundary_end(cluster, + *cluster_nr) - offset; + u64 clamped_start = max(page_start, extent_start); + u64 clamped_end = min(page_end, extent_end); + u32 clamped_len = clamped_end + 1 - clamped_start; + + /* Reserve metadata for this range */ + ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), + clamped_len, clamped_len, + false); + if (ret) + goto release_page; + + /* Mark the range delalloc and dirty for later writeback */ + lock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end, NULL); + ret = btrfs_set_extent_delalloc(BTRFS_I(inode), clamped_start, + clamped_end, 0, NULL); + if (ret) { + clear_extent_bits(&BTRFS_I(inode)->io_tree, + clamped_start, clamped_end, + EXTENT_LOCKED | EXTENT_BOUNDARY); + btrfs_delalloc_release_metadata(BTRFS_I(inode), + clamped_len, true); + btrfs_delalloc_release_extents(BTRFS_I(inode), + clamped_len); + goto release_page; + } + btrfs_page_set_dirty(fs_info, page, clamped_start, clamped_len); + + /* + * Set the boundary if it's inside the page. + * Data relocation requires the destination extents to have the + * same size as the source. + * EXTENT_BOUNDARY bit prevents current extent from being merged + * with previous extent. + */ + if (in_range(cluster->boundary[*cluster_nr] - offset, + page_start, PAGE_SIZE)) { + u64 boundary_start = cluster->boundary[*cluster_nr] - + offset; + u64 boundary_end = boundary_start + + fs_info->sectorsize - 1; + + set_extent_bits(&BTRFS_I(inode)->io_tree, + boundary_start, boundary_end, + EXTENT_BOUNDARY); + } + unlock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end, NULL); + btrfs_delalloc_release_extents(BTRFS_I(inode), clamped_len); + cur += clamped_len; + + /* Crossed extent end, go to next extent */ + if (cur >= extent_end) { + (*cluster_nr)++; + /* Just finished the last extent of the cluster, exit. */ + if (*cluster_nr >= cluster->nr) + break; + } + } + unlock_page(page); + put_page(page); + + balance_dirty_pages_ratelimited(inode->i_mapping); + btrfs_throttle(fs_info); + if (btrfs_should_cancel_balance(fs_info)) + ret = -ECANCELED; + return ret; + +release_page: + unlock_page(page); + put_page(page); + return ret; +} + +static int relocate_file_extent_cluster(struct inode *inode, + struct file_extent_cluster *cluster) +{ + u64 offset = BTRFS_I(inode)->index_cnt; + unsigned long index; + unsigned long last_index; + struct file_ra_state *ra; + int cluster_nr = 0; + int ret = 0; + + if (!cluster->nr) + return 0; + + ra = kzalloc(sizeof(*ra), GFP_NOFS); + if (!ra) + return -ENOMEM; + + ret = prealloc_file_extent_cluster(BTRFS_I(inode), cluster); + if (ret) + goto out; + + file_ra_state_init(ra, inode->i_mapping); + + ret = setup_relocation_extent_mapping(inode, cluster->start - offset, + cluster->end - offset, cluster->start); + if (ret) + goto out; + + last_index = (cluster->end - offset) >> PAGE_SHIFT; + for (index = (cluster->start - offset) >> PAGE_SHIFT; + index <= last_index && !ret; index++) + ret = relocate_one_page(inode, ra, cluster, &cluster_nr, index); + if (ret == 0) + WARN_ON(cluster_nr != cluster->nr); +out: + kfree(ra); + return ret; +} + +static noinline_for_stack +int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key, + struct file_extent_cluster *cluster) +{ + int ret; + + if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) { + ret = relocate_file_extent_cluster(inode, cluster); + if (ret) + return ret; + cluster->nr = 0; + } + + if (!cluster->nr) + cluster->start = extent_key->objectid; + else + BUG_ON(cluster->nr >= MAX_EXTENTS); + cluster->end = extent_key->objectid + extent_key->offset - 1; + cluster->boundary[cluster->nr] = extent_key->objectid; + cluster->nr++; + + if (cluster->nr >= MAX_EXTENTS) { + ret = relocate_file_extent_cluster(inode, cluster); + if (ret) + return ret; + cluster->nr = 0; + } + return 0; +} + +/* + * helper to add a tree block to the list. + * the major work is getting the generation and level of the block + */ +static int add_tree_block(struct reloc_control *rc, + struct btrfs_key *extent_key, + struct btrfs_path *path, + struct rb_root *blocks) +{ + struct extent_buffer *eb; + struct btrfs_extent_item *ei; + struct btrfs_tree_block_info *bi; + struct tree_block *block; + struct rb_node *rb_node; + u32 item_size; + int level = -1; + u64 generation; + u64 owner = 0; + + eb = path->nodes[0]; + item_size = btrfs_item_size(eb, path->slots[0]); + + if (extent_key->type == BTRFS_METADATA_ITEM_KEY || + item_size >= sizeof(*ei) + sizeof(*bi)) { + unsigned long ptr = 0, end; + + ei = btrfs_item_ptr(eb, path->slots[0], + struct btrfs_extent_item); + end = (unsigned long)ei + item_size; + if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) { + bi = (struct btrfs_tree_block_info *)(ei + 1); + level = btrfs_tree_block_level(eb, bi); + ptr = (unsigned long)(bi + 1); + } else { + level = (int)extent_key->offset; + ptr = (unsigned long)(ei + 1); + } + generation = btrfs_extent_generation(eb, ei); + + /* + * We're reading random blocks without knowing their owner ahead + * of time. This is ok most of the time, as all reloc roots and + * fs roots have the same lock type. However normal trees do + * not, and the only way to know ahead of time is to read the + * inline ref offset. We know it's an fs root if + * + * 1. There's more than one ref. + * 2. There's a SHARED_DATA_REF_KEY set. + * 3. FULL_BACKREF is set on the flags. + * + * Otherwise it's safe to assume that the ref offset == the + * owner of this block, so we can use that when calling + * read_tree_block. + */ + if (btrfs_extent_refs(eb, ei) == 1 && + !(btrfs_extent_flags(eb, ei) & + BTRFS_BLOCK_FLAG_FULL_BACKREF) && + ptr < end) { + struct btrfs_extent_inline_ref *iref; + int type; + + iref = (struct btrfs_extent_inline_ref *)ptr; + type = btrfs_get_extent_inline_ref_type(eb, iref, + BTRFS_REF_TYPE_BLOCK); + if (type == BTRFS_REF_TYPE_INVALID) + return -EINVAL; + if (type == BTRFS_TREE_BLOCK_REF_KEY) + owner = btrfs_extent_inline_ref_offset(eb, iref); + } + } else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) { + btrfs_print_v0_err(eb->fs_info); + btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL); + return -EINVAL; + } else { + BUG(); + } + + btrfs_release_path(path); + + BUG_ON(level == -1); + + block = kmalloc(sizeof(*block), GFP_NOFS); + if (!block) + return -ENOMEM; + + block->bytenr = extent_key->objectid; + block->key.objectid = rc->extent_root->fs_info->nodesize; + block->key.offset = generation; + block->level = level; + block->key_ready = 0; + block->owner = owner; + + rb_node = rb_simple_insert(blocks, block->bytenr, &block->rb_node); + if (rb_node) + btrfs_backref_panic(rc->extent_root->fs_info, block->bytenr, + -EEXIST); + + return 0; +} + +/* + * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY + */ +static int __add_tree_block(struct reloc_control *rc, + u64 bytenr, u32 blocksize, + struct rb_root *blocks) +{ + struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; + struct btrfs_path *path; + struct btrfs_key key; + int ret; + bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA); + + if (tree_block_processed(bytenr, rc)) + return 0; + + if (rb_simple_search(blocks, bytenr)) + return 0; + + path = btrfs_alloc_path(); + if (!path) + return -ENOMEM; +again: + key.objectid = bytenr; + if (skinny) { + key.type = BTRFS_METADATA_ITEM_KEY; + key.offset = (u64)-1; + } else { + key.type = BTRFS_EXTENT_ITEM_KEY; + key.offset = blocksize; + } + + path->search_commit_root = 1; + path->skip_locking = 1; + ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0); + if (ret < 0) + goto out; + + if (ret > 0 && skinny) { + if (path->slots[0]) { + path->slots[0]--; + btrfs_item_key_to_cpu(path->nodes[0], &key, + path->slots[0]); + if (key.objectid == bytenr && + (key.type == BTRFS_METADATA_ITEM_KEY || + (key.type == BTRFS_EXTENT_ITEM_KEY && + key.offset == blocksize))) + ret = 0; + } + + if (ret) { + skinny = false; + btrfs_release_path(path); + goto again; + } + } + if (ret) { + ASSERT(ret == 1); + btrfs_print_leaf(path->nodes[0]); + btrfs_err(fs_info, + "tree block extent item (%llu) is not found in extent tree", + bytenr); + WARN_ON(1); + ret = -EINVAL; + goto out; + } + + ret = add_tree_block(rc, &key, path, blocks); +out: + btrfs_free_path(path); + return ret; +} + +static int delete_block_group_cache(struct btrfs_fs_info *fs_info, + struct btrfs_block_group *block_group, + struct inode *inode, + u64 ino) +{ + struct btrfs_root *root = fs_info->tree_root; + struct btrfs_trans_handle *trans; + int ret = 0; + + if (inode) + goto truncate; + + inode = btrfs_iget(fs_info->sb, ino, root); + if (IS_ERR(inode)) + return -ENOENT; + +truncate: + ret = btrfs_check_trunc_cache_free_space(fs_info, + &fs_info->global_block_rsv); + if (ret) + goto out; + + trans = btrfs_join_transaction(root); + if (IS_ERR(trans)) { + ret = PTR_ERR(trans); + goto out; + } + + ret = btrfs_truncate_free_space_cache(trans, block_group, inode); + + btrfs_end_transaction(trans); + btrfs_btree_balance_dirty(fs_info); +out: + iput(inode); + return ret; +} + +/* + * Locate the free space cache EXTENT_DATA in root tree leaf and delete the + * cache inode, to avoid free space cache data extent blocking data relocation. + */ +static int delete_v1_space_cache(struct extent_buffer *leaf, + struct btrfs_block_group *block_group, + u64 data_bytenr) +{ + u64 space_cache_ino; + struct btrfs_file_extent_item *ei; + struct btrfs_key key; + bool found = false; + int i; + int ret; + + if (btrfs_header_owner(leaf) != BTRFS_ROOT_TREE_OBJECTID) + return 0; + + for (i = 0; i < btrfs_header_nritems(leaf); i++) { + u8 type; + + btrfs_item_key_to_cpu(leaf, &key, i); + if (key.type != BTRFS_EXTENT_DATA_KEY) + continue; + ei = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item); + type = btrfs_file_extent_type(leaf, ei); + + if ((type == BTRFS_FILE_EXTENT_REG || + type == BTRFS_FILE_EXTENT_PREALLOC) && + btrfs_file_extent_disk_bytenr(leaf, ei) == data_bytenr) { + found = true; + space_cache_ino = key.objectid; + break; + } + } + if (!found) + return -ENOENT; + ret = delete_block_group_cache(leaf->fs_info, block_group, NULL, + space_cache_ino); + return ret; +} + +/* + * helper to find all tree blocks that reference a given data extent + */ +static noinline_for_stack +int add_data_references(struct reloc_control *rc, + struct btrfs_key *extent_key, + struct btrfs_path *path, + struct rb_root *blocks) +{ + struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; + struct ulist *leaves = NULL; + struct ulist_iterator leaf_uiter; + struct ulist_node *ref_node = NULL; + const u32 blocksize = fs_info->nodesize; + int ret = 0; + + btrfs_release_path(path); + ret = btrfs_find_all_leafs(NULL, fs_info, extent_key->objectid, + 0, &leaves, NULL, true); + if (ret < 0) + return ret; + + ULIST_ITER_INIT(&leaf_uiter); + while ((ref_node = ulist_next(leaves, &leaf_uiter))) { + struct extent_buffer *eb; + + eb = read_tree_block(fs_info, ref_node->val, 0, 0, 0, NULL); + if (IS_ERR(eb)) { + ret = PTR_ERR(eb); + break; + } + ret = delete_v1_space_cache(eb, rc->block_group, + extent_key->objectid); + free_extent_buffer(eb); + if (ret < 0) + break; + ret = __add_tree_block(rc, ref_node->val, blocksize, blocks); + if (ret < 0) + break; + } + if (ret < 0) + free_block_list(blocks); + ulist_free(leaves); + return ret; +} + +/* + * helper to find next unprocessed extent + */ +static noinline_for_stack +int find_next_extent(struct reloc_control *rc, struct btrfs_path *path, + struct btrfs_key *extent_key) +{ + struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; + struct btrfs_key key; + struct extent_buffer *leaf; + u64 start, end, last; + int ret; + + last = rc->block_group->start + rc->block_group->length; + while (1) { + cond_resched(); + if (rc->search_start >= last) { + ret = 1; + break; + } + + key.objectid = rc->search_start; + key.type = BTRFS_EXTENT_ITEM_KEY; + key.offset = 0; + + path->search_commit_root = 1; + path->skip_locking = 1; + ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, + 0, 0); + if (ret < 0) + break; +next: + leaf = path->nodes[0]; + if (path->slots[0] >= btrfs_header_nritems(leaf)) { + ret = btrfs_next_leaf(rc->extent_root, path); + if (ret != 0) + break; + leaf = path->nodes[0]; + } + + btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); + if (key.objectid >= last) { + ret = 1; + break; + } + + if (key.type != BTRFS_EXTENT_ITEM_KEY && + key.type != BTRFS_METADATA_ITEM_KEY) { + path->slots[0]++; + goto next; + } + + if (key.type == BTRFS_EXTENT_ITEM_KEY && + key.objectid + key.offset <= rc->search_start) { + path->slots[0]++; + goto next; + } + + if (key.type == BTRFS_METADATA_ITEM_KEY && + key.objectid + fs_info->nodesize <= + rc->search_start) { + path->slots[0]++; + goto next; + } + + ret = find_first_extent_bit(&rc->processed_blocks, + key.objectid, &start, &end, + EXTENT_DIRTY, NULL); + + if (ret == 0 && start <= key.objectid) { + btrfs_release_path(path); + rc->search_start = end + 1; + } else { + if (key.type == BTRFS_EXTENT_ITEM_KEY) + rc->search_start = key.objectid + key.offset; + else + rc->search_start = key.objectid + + fs_info->nodesize; + memcpy(extent_key, &key, sizeof(key)); + return 0; + } + } + btrfs_release_path(path); + return ret; +} + +static void set_reloc_control(struct reloc_control *rc) +{ + struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; + + mutex_lock(&fs_info->reloc_mutex); + fs_info->reloc_ctl = rc; + mutex_unlock(&fs_info->reloc_mutex); +} + +static void unset_reloc_control(struct reloc_control *rc) +{ + struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; + + mutex_lock(&fs_info->reloc_mutex); + fs_info->reloc_ctl = NULL; + mutex_unlock(&fs_info->reloc_mutex); +} + +static noinline_for_stack +int prepare_to_relocate(struct reloc_control *rc) +{ + struct btrfs_trans_handle *trans; + int ret; + + rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info, + BTRFS_BLOCK_RSV_TEMP); + if (!rc->block_rsv) + return -ENOMEM; + + memset(&rc->cluster, 0, sizeof(rc->cluster)); + rc->search_start = rc->block_group->start; + rc->extents_found = 0; + rc->nodes_relocated = 0; + rc->merging_rsv_size = 0; + rc->reserved_bytes = 0; + rc->block_rsv->size = rc->extent_root->fs_info->nodesize * + RELOCATION_RESERVED_NODES; + ret = btrfs_block_rsv_refill(rc->extent_root->fs_info, + rc->block_rsv, rc->block_rsv->size, + BTRFS_RESERVE_FLUSH_ALL); + if (ret) + return ret; + + rc->create_reloc_tree = 1; + set_reloc_control(rc); + + trans = btrfs_join_transaction(rc->extent_root); + if (IS_ERR(trans)) { + unset_reloc_control(rc); + /* + * extent tree is not a ref_cow tree and has no reloc_root to + * cleanup. And callers are responsible to free the above + * block rsv. + */ + return PTR_ERR(trans); + } + + ret = btrfs_commit_transaction(trans); + if (ret) + unset_reloc_control(rc); + + return ret; +} + +static noinline_for_stack int relocate_block_group(struct reloc_control *rc) +{ + struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; + struct rb_root blocks = RB_ROOT; + struct btrfs_key key; + struct btrfs_trans_handle *trans = NULL; + struct btrfs_path *path; + struct btrfs_extent_item *ei; + u64 flags; + int ret; + int err = 0; + int progress = 0; + + path = btrfs_alloc_path(); + if (!path) + return -ENOMEM; + path->reada = READA_FORWARD; + + ret = prepare_to_relocate(rc); + if (ret) { + err = ret; + goto out_free; + } + + while (1) { + rc->reserved_bytes = 0; + ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv, + rc->block_rsv->size, + BTRFS_RESERVE_FLUSH_ALL); + if (ret) { + err = ret; + break; + } + progress++; + trans = btrfs_start_transaction(rc->extent_root, 0); + if (IS_ERR(trans)) { + err = PTR_ERR(trans); + trans = NULL; + break; + } +restart: + if (update_backref_cache(trans, &rc->backref_cache)) { + btrfs_end_transaction(trans); + trans = NULL; + continue; + } + + ret = find_next_extent(rc, path, &key); + if (ret < 0) + err = ret; + if (ret != 0) + break; + + rc->extents_found++; + + ei = btrfs_item_ptr(path->nodes[0], path->slots[0], + struct btrfs_extent_item); + flags = btrfs_extent_flags(path->nodes[0], ei); + + if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { + ret = add_tree_block(rc, &key, path, &blocks); + } else if (rc->stage == UPDATE_DATA_PTRS && + (flags & BTRFS_EXTENT_FLAG_DATA)) { + ret = add_data_references(rc, &key, path, &blocks); + } else { + btrfs_release_path(path); + ret = 0; + } + if (ret < 0) { + err = ret; + break; + } + + if (!RB_EMPTY_ROOT(&blocks)) { + ret = relocate_tree_blocks(trans, rc, &blocks); + if (ret < 0) { + if (ret != -EAGAIN) { + err = ret; + break; + } + rc->extents_found--; + rc->search_start = key.objectid; + } + } + + btrfs_end_transaction_throttle(trans); + btrfs_btree_balance_dirty(fs_info); + trans = NULL; + + if (rc->stage == MOVE_DATA_EXTENTS && + (flags & BTRFS_EXTENT_FLAG_DATA)) { + rc->found_file_extent = 1; + ret = relocate_data_extent(rc->data_inode, + &key, &rc->cluster); + if (ret < 0) { + err = ret; + break; + } + } + if (btrfs_should_cancel_balance(fs_info)) { + err = -ECANCELED; + break; + } + } + if (trans && progress && err == -ENOSPC) { + ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags); + if (ret == 1) { + err = 0; + progress = 0; + goto restart; + } + } + + btrfs_release_path(path); + clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY); + + if (trans) { + btrfs_end_transaction_throttle(trans); + btrfs_btree_balance_dirty(fs_info); + } + + if (!err) { + ret = relocate_file_extent_cluster(rc->data_inode, + &rc->cluster); + if (ret < 0) + err = ret; + } + + rc->create_reloc_tree = 0; + set_reloc_control(rc); + + btrfs_backref_release_cache(&rc->backref_cache); + btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL); + + /* + * Even in the case when the relocation is cancelled, we should all go + * through prepare_to_merge() and merge_reloc_roots(). + * + * For error (including cancelled balance), prepare_to_merge() will + * mark all reloc trees orphan, then queue them for cleanup in + * merge_reloc_roots() + */ + err = prepare_to_merge(rc, err); + + merge_reloc_roots(rc); + + rc->merge_reloc_tree = 0; + unset_reloc_control(rc); + btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL); + + /* get rid of pinned extents */ + trans = btrfs_join_transaction(rc->extent_root); + if (IS_ERR(trans)) { + err = PTR_ERR(trans); + goto out_free; + } + ret = btrfs_commit_transaction(trans); + if (ret && !err) + err = ret; +out_free: + ret = clean_dirty_subvols(rc); + if (ret < 0 && !err) + err = ret; + btrfs_free_block_rsv(fs_info, rc->block_rsv); + btrfs_free_path(path); + return err; +} + +static int __insert_orphan_inode(struct btrfs_trans_handle *trans, + struct btrfs_root *root, u64 objectid) +{ + struct btrfs_path *path; + struct btrfs_inode_item *item; + struct extent_buffer *leaf; + int ret; + + path = btrfs_alloc_path(); + if (!path) + return -ENOMEM; + + ret = btrfs_insert_empty_inode(trans, root, path, objectid); + if (ret) + goto out; + + leaf = path->nodes[0]; + item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item); + memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item)); + btrfs_set_inode_generation(leaf, item, 1); + btrfs_set_inode_size(leaf, item, 0); + btrfs_set_inode_mode(leaf, item, S_IFREG | 0600); + btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS | + BTRFS_INODE_PREALLOC); + btrfs_mark_buffer_dirty(leaf); +out: + btrfs_free_path(path); + return ret; +} + +static void delete_orphan_inode(struct btrfs_trans_handle *trans, + struct btrfs_root *root, u64 objectid) +{ + struct btrfs_path *path; + struct btrfs_key key; + int ret = 0; + + path = btrfs_alloc_path(); + if (!path) { + ret = -ENOMEM; + goto out; + } + + key.objectid = objectid; + key.type = BTRFS_INODE_ITEM_KEY; + key.offset = 0; + ret = btrfs_search_slot(trans, root, &key, path, -1, 1); + if (ret) { + if (ret > 0) + ret = -ENOENT; + goto out; + } + ret = btrfs_del_item(trans, root, path); +out: + if (ret) + btrfs_abort_transaction(trans, ret); + btrfs_free_path(path); +} + +/* + * helper to create inode for data relocation. + * the inode is in data relocation tree and its link count is 0 + */ +static noinline_for_stack +struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info, + struct btrfs_block_group *group) +{ + struct inode *inode = NULL; + struct btrfs_trans_handle *trans; + struct btrfs_root *root; + u64 objectid; + int err = 0; + + root = btrfs_grab_root(fs_info->data_reloc_root); + trans = btrfs_start_transaction(root, 6); + if (IS_ERR(trans)) { + btrfs_put_root(root); + return ERR_CAST(trans); + } + + err = btrfs_get_free_objectid(root, &objectid); + if (err) + goto out; + + err = __insert_orphan_inode(trans, root, objectid); + if (err) + goto out; + + inode = btrfs_iget(fs_info->sb, objectid, root); + if (IS_ERR(inode)) { + delete_orphan_inode(trans, root, objectid); + err = PTR_ERR(inode); + inode = NULL; + goto out; + } + BTRFS_I(inode)->index_cnt = group->start; + + err = btrfs_orphan_add(trans, BTRFS_I(inode)); +out: + btrfs_put_root(root); + btrfs_end_transaction(trans); + btrfs_btree_balance_dirty(fs_info); + if (err) { + iput(inode); + inode = ERR_PTR(err); + } + return inode; +} + +/* + * Mark start of chunk relocation that is cancellable. Check if the cancellation + * has been requested meanwhile and don't start in that case. + * + * Return: + * 0 success + * -EINPROGRESS operation is already in progress, that's probably a bug + * -ECANCELED cancellation request was set before the operation started + */ +static int reloc_chunk_start(struct btrfs_fs_info *fs_info) +{ + if (test_and_set_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) { + /* This should not happen */ + btrfs_err(fs_info, "reloc already running, cannot start"); + return -EINPROGRESS; + } + + if (atomic_read(&fs_info->reloc_cancel_req) > 0) { + btrfs_info(fs_info, "chunk relocation canceled on start"); + /* + * On cancel, clear all requests but let the caller mark + * the end after cleanup operations. + */ + atomic_set(&fs_info->reloc_cancel_req, 0); + return -ECANCELED; + } + return 0; +} + +/* + * Mark end of chunk relocation that is cancellable and wake any waiters. + */ +static void reloc_chunk_end(struct btrfs_fs_info *fs_info) +{ + /* Requested after start, clear bit first so any waiters can continue */ + if (atomic_read(&fs_info->reloc_cancel_req) > 0) + btrfs_info(fs_info, "chunk relocation canceled during operation"); + clear_and_wake_up_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags); + atomic_set(&fs_info->reloc_cancel_req, 0); +} + +static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info) +{ + struct reloc_control *rc; + + rc = kzalloc(sizeof(*rc), GFP_NOFS); + if (!rc) + return NULL; + + INIT_LIST_HEAD(&rc->reloc_roots); + INIT_LIST_HEAD(&rc->dirty_subvol_roots); + btrfs_backref_init_cache(fs_info, &rc->backref_cache, 1); + mapping_tree_init(&rc->reloc_root_tree); + extent_io_tree_init(fs_info, &rc->processed_blocks, + IO_TREE_RELOC_BLOCKS, NULL); + return rc; +} + +static void free_reloc_control(struct reloc_control *rc) +{ + struct mapping_node *node, *tmp; + + free_reloc_roots(&rc->reloc_roots); + rbtree_postorder_for_each_entry_safe(node, tmp, + &rc->reloc_root_tree.rb_root, rb_node) + kfree(node); + + kfree(rc); +} + +/* + * Print the block group being relocated + */ +static void describe_relocation(struct btrfs_fs_info *fs_info, + struct btrfs_block_group *block_group) +{ + char buf[128] = {'\0'}; + + btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf)); + + btrfs_info(fs_info, + "relocating block group %llu flags %s", + block_group->start, buf); +} + +static const char *stage_to_string(int stage) +{ + if (stage == MOVE_DATA_EXTENTS) + return "move data extents"; + if (stage == UPDATE_DATA_PTRS) + return "update data pointers"; + return "unknown"; +} + +/* + * function to relocate all extents in a block group. + */ +int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start) +{ + struct btrfs_block_group *bg; + struct btrfs_root *extent_root = btrfs_extent_root(fs_info, group_start); + struct reloc_control *rc; + struct inode *inode; + struct btrfs_path *path; + int ret; + int rw = 0; + int err = 0; + + /* + * This only gets set if we had a half-deleted snapshot on mount. We + * cannot allow relocation to start while we're still trying to clean up + * these pending deletions. + */ + ret = wait_on_bit(&fs_info->flags, BTRFS_FS_UNFINISHED_DROPS, TASK_INTERRUPTIBLE); + if (ret) + return ret; + + /* We may have been woken up by close_ctree, so bail if we're closing. */ + if (btrfs_fs_closing(fs_info)) + return -EINTR; + + bg = btrfs_lookup_block_group(fs_info, group_start); + if (!bg) + return -ENOENT; + + /* + * Relocation of a data block group creates ordered extents. Without + * sb_start_write(), we can freeze the filesystem while unfinished + * ordered extents are left. Such ordered extents can cause a deadlock + * e.g. when syncfs() is waiting for their completion but they can't + * finish because they block when joining a transaction, due to the + * fact that the freeze locks are being held in write mode. + */ + if (bg->flags & BTRFS_BLOCK_GROUP_DATA) + ASSERT(sb_write_started(fs_info->sb)); + + if (btrfs_pinned_by_swapfile(fs_info, bg)) { + btrfs_put_block_group(bg); + return -ETXTBSY; + } + + rc = alloc_reloc_control(fs_info); + if (!rc) { + btrfs_put_block_group(bg); + return -ENOMEM; + } + + ret = reloc_chunk_start(fs_info); + if (ret < 0) { + err = ret; + goto out_put_bg; + } + + rc->extent_root = extent_root; + rc->block_group = bg; + + ret = btrfs_inc_block_group_ro(rc->block_group, true); + if (ret) { + err = ret; + goto out; + } + rw = 1; + + path = btrfs_alloc_path(); + if (!path) { + err = -ENOMEM; + goto out; + } + + inode = lookup_free_space_inode(rc->block_group, path); + btrfs_free_path(path); + + if (!IS_ERR(inode)) + ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0); + else + ret = PTR_ERR(inode); + + if (ret && ret != -ENOENT) { + err = ret; + goto out; + } + + rc->data_inode = create_reloc_inode(fs_info, rc->block_group); + if (IS_ERR(rc->data_inode)) { + err = PTR_ERR(rc->data_inode); + rc->data_inode = NULL; + goto out; + } + + describe_relocation(fs_info, rc->block_group); + + btrfs_wait_block_group_reservations(rc->block_group); + btrfs_wait_nocow_writers(rc->block_group); + btrfs_wait_ordered_roots(fs_info, U64_MAX, + rc->block_group->start, + rc->block_group->length); + + ret = btrfs_zone_finish(rc->block_group); + WARN_ON(ret && ret != -EAGAIN); + + while (1) { + int finishes_stage; + + mutex_lock(&fs_info->cleaner_mutex); + ret = relocate_block_group(rc); + mutex_unlock(&fs_info->cleaner_mutex); + if (ret < 0) + err = ret; + + finishes_stage = rc->stage; + /* + * We may have gotten ENOSPC after we already dirtied some + * extents. If writeout happens while we're relocating a + * different block group we could end up hitting the + * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in + * btrfs_reloc_cow_block. Make sure we write everything out + * properly so we don't trip over this problem, and then break + * out of the loop if we hit an error. + */ + if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) { + ret = btrfs_wait_ordered_range(rc->data_inode, 0, + (u64)-1); + if (ret) + err = ret; + invalidate_mapping_pages(rc->data_inode->i_mapping, + 0, -1); + rc->stage = UPDATE_DATA_PTRS; + } + + if (err < 0) + goto out; + + if (rc->extents_found == 0) + break; + + btrfs_info(fs_info, "found %llu extents, stage: %s", + rc->extents_found, stage_to_string(finishes_stage)); + } + + WARN_ON(rc->block_group->pinned > 0); + WARN_ON(rc->block_group->reserved > 0); + WARN_ON(rc->block_group->used > 0); +out: + if (err && rw) + btrfs_dec_block_group_ro(rc->block_group); + iput(rc->data_inode); +out_put_bg: + btrfs_put_block_group(bg); + reloc_chunk_end(fs_info); + free_reloc_control(rc); + return err; +} + +static noinline_for_stack int mark_garbage_root(struct btrfs_root *root) +{ + struct btrfs_fs_info *fs_info = root->fs_info; + struct btrfs_trans_handle *trans; + int ret, err; + + trans = btrfs_start_transaction(fs_info->tree_root, 0); + if (IS_ERR(trans)) + return PTR_ERR(trans); + + memset(&root->root_item.drop_progress, 0, + sizeof(root->root_item.drop_progress)); + btrfs_set_root_drop_level(&root->root_item, 0); + btrfs_set_root_refs(&root->root_item, 0); + ret = btrfs_update_root(trans, fs_info->tree_root, + &root->root_key, &root->root_item); + + err = btrfs_end_transaction(trans); + if (err) + return err; + return ret; +} + +/* + * recover relocation interrupted by system crash. + * + * this function resumes merging reloc trees with corresponding fs trees. + * this is important for keeping the sharing of tree blocks + */ +int btrfs_recover_relocation(struct btrfs_fs_info *fs_info) +{ + LIST_HEAD(reloc_roots); + struct btrfs_key key; + struct btrfs_root *fs_root; + struct btrfs_root *reloc_root; + struct btrfs_path *path; + struct extent_buffer *leaf; + struct reloc_control *rc = NULL; + struct btrfs_trans_handle *trans; + int ret; + int err = 0; + + path = btrfs_alloc_path(); + if (!path) + return -ENOMEM; + path->reada = READA_BACK; + + key.objectid = BTRFS_TREE_RELOC_OBJECTID; + key.type = BTRFS_ROOT_ITEM_KEY; + key.offset = (u64)-1; + + while (1) { + ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, + path, 0, 0); + if (ret < 0) { + err = ret; + goto out; + } + if (ret > 0) { + if (path->slots[0] == 0) + break; + path->slots[0]--; + } + leaf = path->nodes[0]; + btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); + btrfs_release_path(path); + + if (key.objectid != BTRFS_TREE_RELOC_OBJECTID || + key.type != BTRFS_ROOT_ITEM_KEY) + break; + + reloc_root = btrfs_read_tree_root(fs_info->tree_root, &key); + if (IS_ERR(reloc_root)) { + err = PTR_ERR(reloc_root); + goto out; + } + + set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state); + list_add(&reloc_root->root_list, &reloc_roots); + + if (btrfs_root_refs(&reloc_root->root_item) > 0) { + fs_root = btrfs_get_fs_root(fs_info, + reloc_root->root_key.offset, false); + if (IS_ERR(fs_root)) { + ret = PTR_ERR(fs_root); + if (ret != -ENOENT) { + err = ret; + goto out; + } + ret = mark_garbage_root(reloc_root); + if (ret < 0) { + err = ret; + goto out; + } + } else { + btrfs_put_root(fs_root); + } + } + + if (key.offset == 0) + break; + + key.offset--; + } + btrfs_release_path(path); + + if (list_empty(&reloc_roots)) + goto out; + + rc = alloc_reloc_control(fs_info); + if (!rc) { + err = -ENOMEM; + goto out; + } + + ret = reloc_chunk_start(fs_info); + if (ret < 0) { + err = ret; + goto out_end; + } + + rc->extent_root = btrfs_extent_root(fs_info, 0); + + set_reloc_control(rc); + + trans = btrfs_join_transaction(rc->extent_root); + if (IS_ERR(trans)) { + err = PTR_ERR(trans); + goto out_unset; + } + + rc->merge_reloc_tree = 1; + + while (!list_empty(&reloc_roots)) { + reloc_root = list_entry(reloc_roots.next, + struct btrfs_root, root_list); + list_del(&reloc_root->root_list); + + if (btrfs_root_refs(&reloc_root->root_item) == 0) { + list_add_tail(&reloc_root->root_list, + &rc->reloc_roots); + continue; + } + + fs_root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, + false); + if (IS_ERR(fs_root)) { + err = PTR_ERR(fs_root); + list_add_tail(&reloc_root->root_list, &reloc_roots); + btrfs_end_transaction(trans); + goto out_unset; + } + + err = __add_reloc_root(reloc_root); + ASSERT(err != -EEXIST); + if (err) { + list_add_tail(&reloc_root->root_list, &reloc_roots); + btrfs_put_root(fs_root); + btrfs_end_transaction(trans); + goto out_unset; + } + fs_root->reloc_root = btrfs_grab_root(reloc_root); + btrfs_put_root(fs_root); + } + + err = btrfs_commit_transaction(trans); + if (err) + goto out_unset; + + merge_reloc_roots(rc); + + unset_reloc_control(rc); + + trans = btrfs_join_transaction(rc->extent_root); + if (IS_ERR(trans)) { + err = PTR_ERR(trans); + goto out_clean; + } + err = btrfs_commit_transaction(trans); +out_clean: + ret = clean_dirty_subvols(rc); + if (ret < 0 && !err) + err = ret; +out_unset: + unset_reloc_control(rc); +out_end: + reloc_chunk_end(fs_info); + free_reloc_control(rc); +out: + free_reloc_roots(&reloc_roots); + + btrfs_free_path(path); + + if (err == 0) { + /* cleanup orphan inode in data relocation tree */ + fs_root = btrfs_grab_root(fs_info->data_reloc_root); + ASSERT(fs_root); + err = btrfs_orphan_cleanup(fs_root); + btrfs_put_root(fs_root); + } + return err; +} + +/* + * helper to add ordered checksum for data relocation. + * + * cloning checksum properly handles the nodatasum extents. + * it also saves CPU time to re-calculate the checksum. + */ +int btrfs_reloc_clone_csums(struct btrfs_inode *inode, u64 file_pos, u64 len) +{ + struct btrfs_fs_info *fs_info = inode->root->fs_info; + struct btrfs_root *csum_root; + struct btrfs_ordered_sum *sums; + struct btrfs_ordered_extent *ordered; + int ret; + u64 disk_bytenr; + u64 new_bytenr; + LIST_HEAD(list); + + ordered = btrfs_lookup_ordered_extent(inode, file_pos); + BUG_ON(ordered->file_offset != file_pos || ordered->num_bytes != len); + + disk_bytenr = file_pos + inode->index_cnt; + csum_root = btrfs_csum_root(fs_info, disk_bytenr); + ret = btrfs_lookup_csums_range(csum_root, disk_bytenr, + disk_bytenr + len - 1, &list, 0, false); + if (ret) + goto out; + + while (!list_empty(&list)) { + sums = list_entry(list.next, struct btrfs_ordered_sum, list); + list_del_init(&sums->list); + + /* + * We need to offset the new_bytenr based on where the csum is. + * We need to do this because we will read in entire prealloc + * extents but we may have written to say the middle of the + * prealloc extent, so we need to make sure the csum goes with + * the right disk offset. + * + * We can do this because the data reloc inode refers strictly + * to the on disk bytes, so we don't have to worry about + * disk_len vs real len like with real inodes since it's all + * disk length. + */ + new_bytenr = ordered->disk_bytenr + sums->bytenr - disk_bytenr; + sums->bytenr = new_bytenr; + + btrfs_add_ordered_sum(ordered, sums); + } +out: + btrfs_put_ordered_extent(ordered); + return ret; +} + +int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans, + struct btrfs_root *root, struct extent_buffer *buf, + struct extent_buffer *cow) +{ + struct btrfs_fs_info *fs_info = root->fs_info; + struct reloc_control *rc; + struct btrfs_backref_node *node; + int first_cow = 0; + int level; + int ret = 0; + + rc = fs_info->reloc_ctl; + if (!rc) + return 0; + + BUG_ON(rc->stage == UPDATE_DATA_PTRS && btrfs_is_data_reloc_root(root)); + + level = btrfs_header_level(buf); + if (btrfs_header_generation(buf) <= + btrfs_root_last_snapshot(&root->root_item)) + first_cow = 1; + + if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID && + rc->create_reloc_tree) { + WARN_ON(!first_cow && level == 0); + + node = rc->backref_cache.path[level]; + BUG_ON(node->bytenr != buf->start && + node->new_bytenr != buf->start); + + btrfs_backref_drop_node_buffer(node); + atomic_inc(&cow->refs); + node->eb = cow; + node->new_bytenr = cow->start; + + if (!node->pending) { + list_move_tail(&node->list, + &rc->backref_cache.pending[level]); + node->pending = 1; + } + + if (first_cow) + mark_block_processed(rc, node); + + if (first_cow && level > 0) + rc->nodes_relocated += buf->len; + } + + if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS) + ret = replace_file_extents(trans, rc, root, cow); + return ret; +} + +/* + * called before creating snapshot. it calculates metadata reservation + * required for relocating tree blocks in the snapshot + */ +void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending, + u64 *bytes_to_reserve) +{ + struct btrfs_root *root = pending->root; + struct reloc_control *rc = root->fs_info->reloc_ctl; + + if (!rc || !have_reloc_root(root)) + return; + + if (!rc->merge_reloc_tree) + return; + + root = root->reloc_root; + BUG_ON(btrfs_root_refs(&root->root_item) == 0); + /* + * relocation is in the stage of merging trees. the space + * used by merging a reloc tree is twice the size of + * relocated tree nodes in the worst case. half for cowing + * the reloc tree, half for cowing the fs tree. the space + * used by cowing the reloc tree will be freed after the + * tree is dropped. if we create snapshot, cowing the fs + * tree may use more space than it frees. so we need + * reserve extra space. + */ + *bytes_to_reserve += rc->nodes_relocated; +} + +/* + * called after snapshot is created. migrate block reservation + * and create reloc root for the newly created snapshot + * + * This is similar to btrfs_init_reloc_root(), we come out of here with two + * references held on the reloc_root, one for root->reloc_root and one for + * rc->reloc_roots. + */ +int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans, + struct btrfs_pending_snapshot *pending) +{ + struct btrfs_root *root = pending->root; + struct btrfs_root *reloc_root; + struct btrfs_root *new_root; + struct reloc_control *rc = root->fs_info->reloc_ctl; + int ret; + + if (!rc || !have_reloc_root(root)) + return 0; + + rc = root->fs_info->reloc_ctl; + rc->merging_rsv_size += rc->nodes_relocated; + + if (rc->merge_reloc_tree) { + ret = btrfs_block_rsv_migrate(&pending->block_rsv, + rc->block_rsv, + rc->nodes_relocated, true); + if (ret) + return ret; + } + + new_root = pending->snap; + reloc_root = create_reloc_root(trans, root->reloc_root, + new_root->root_key.objectid); + if (IS_ERR(reloc_root)) + return PTR_ERR(reloc_root); + + ret = __add_reloc_root(reloc_root); + ASSERT(ret != -EEXIST); + if (ret) { + /* Pairs with create_reloc_root */ + btrfs_put_root(reloc_root); + return ret; + } + new_root->reloc_root = btrfs_grab_root(reloc_root); + + if (rc->create_reloc_tree) + ret = clone_backref_node(trans, rc, root, reloc_root); + return ret; +} |