diff options
Diffstat (limited to 'fs/btrfs/scrub.c')
-rw-r--r-- | fs/btrfs/scrub.c | 4558 |
1 files changed, 4558 insertions, 0 deletions
diff --git a/fs/btrfs/scrub.c b/fs/btrfs/scrub.c new file mode 100644 index 000000000..1672d4846 --- /dev/null +++ b/fs/btrfs/scrub.c @@ -0,0 +1,4558 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright (C) 2011, 2012 STRATO. All rights reserved. + */ + +#include <linux/blkdev.h> +#include <linux/ratelimit.h> +#include <linux/sched/mm.h> +#include <crypto/hash.h> +#include "ctree.h" +#include "discard.h" +#include "volumes.h" +#include "disk-io.h" +#include "ordered-data.h" +#include "transaction.h" +#include "backref.h" +#include "extent_io.h" +#include "dev-replace.h" +#include "check-integrity.h" +#include "rcu-string.h" +#include "raid56.h" +#include "block-group.h" +#include "zoned.h" + +/* + * This is only the first step towards a full-features scrub. It reads all + * extent and super block and verifies the checksums. In case a bad checksum + * is found or the extent cannot be read, good data will be written back if + * any can be found. + * + * Future enhancements: + * - In case an unrepairable extent is encountered, track which files are + * affected and report them + * - track and record media errors, throw out bad devices + * - add a mode to also read unallocated space + */ + +struct scrub_block; +struct scrub_ctx; + +/* + * The following three values only influence the performance. + * + * The last one configures the number of parallel and outstanding I/O + * operations. The first one configures an upper limit for the number + * of (dynamically allocated) pages that are added to a bio. + */ +#define SCRUB_SECTORS_PER_BIO 32 /* 128KiB per bio for 4KiB pages */ +#define SCRUB_BIOS_PER_SCTX 64 /* 8MiB per device in flight for 4KiB pages */ + +/* + * The following value times PAGE_SIZE needs to be large enough to match the + * largest node/leaf/sector size that shall be supported. + */ +#define SCRUB_MAX_SECTORS_PER_BLOCK (BTRFS_MAX_METADATA_BLOCKSIZE / SZ_4K) + +#define SCRUB_MAX_PAGES (DIV_ROUND_UP(BTRFS_MAX_METADATA_BLOCKSIZE, PAGE_SIZE)) + +struct scrub_recover { + refcount_t refs; + struct btrfs_io_context *bioc; + u64 map_length; +}; + +struct scrub_sector { + struct scrub_block *sblock; + struct list_head list; + u64 flags; /* extent flags */ + u64 generation; + /* Offset in bytes to @sblock. */ + u32 offset; + atomic_t refs; + unsigned int have_csum:1; + unsigned int io_error:1; + u8 csum[BTRFS_CSUM_SIZE]; + + struct scrub_recover *recover; +}; + +struct scrub_bio { + int index; + struct scrub_ctx *sctx; + struct btrfs_device *dev; + struct bio *bio; + blk_status_t status; + u64 logical; + u64 physical; + struct scrub_sector *sectors[SCRUB_SECTORS_PER_BIO]; + int sector_count; + int next_free; + struct work_struct work; +}; + +struct scrub_block { + /* + * Each page will have its page::private used to record the logical + * bytenr. + */ + struct page *pages[SCRUB_MAX_PAGES]; + struct scrub_sector *sectors[SCRUB_MAX_SECTORS_PER_BLOCK]; + struct btrfs_device *dev; + /* Logical bytenr of the sblock */ + u64 logical; + u64 physical; + u64 physical_for_dev_replace; + /* Length of sblock in bytes */ + u32 len; + int sector_count; + int mirror_num; + + atomic_t outstanding_sectors; + refcount_t refs; /* free mem on transition to zero */ + struct scrub_ctx *sctx; + struct scrub_parity *sparity; + struct { + unsigned int header_error:1; + unsigned int checksum_error:1; + unsigned int no_io_error_seen:1; + unsigned int generation_error:1; /* also sets header_error */ + + /* The following is for the data used to check parity */ + /* It is for the data with checksum */ + unsigned int data_corrected:1; + }; + struct work_struct work; +}; + +/* Used for the chunks with parity stripe such RAID5/6 */ +struct scrub_parity { + struct scrub_ctx *sctx; + + struct btrfs_device *scrub_dev; + + u64 logic_start; + + u64 logic_end; + + int nsectors; + + u32 stripe_len; + + refcount_t refs; + + struct list_head sectors_list; + + /* Work of parity check and repair */ + struct work_struct work; + + /* Mark the parity blocks which have data */ + unsigned long dbitmap; + + /* + * Mark the parity blocks which have data, but errors happen when + * read data or check data + */ + unsigned long ebitmap; +}; + +struct scrub_ctx { + struct scrub_bio *bios[SCRUB_BIOS_PER_SCTX]; + struct btrfs_fs_info *fs_info; + int first_free; + int curr; + atomic_t bios_in_flight; + atomic_t workers_pending; + spinlock_t list_lock; + wait_queue_head_t list_wait; + struct list_head csum_list; + atomic_t cancel_req; + int readonly; + int sectors_per_bio; + + /* State of IO submission throttling affecting the associated device */ + ktime_t throttle_deadline; + u64 throttle_sent; + + int is_dev_replace; + u64 write_pointer; + + struct scrub_bio *wr_curr_bio; + struct mutex wr_lock; + struct btrfs_device *wr_tgtdev; + bool flush_all_writes; + + /* + * statistics + */ + struct btrfs_scrub_progress stat; + spinlock_t stat_lock; + + /* + * Use a ref counter to avoid use-after-free issues. Scrub workers + * decrement bios_in_flight and workers_pending and then do a wakeup + * on the list_wait wait queue. We must ensure the main scrub task + * doesn't free the scrub context before or while the workers are + * doing the wakeup() call. + */ + refcount_t refs; +}; + +struct scrub_warning { + struct btrfs_path *path; + u64 extent_item_size; + const char *errstr; + u64 physical; + u64 logical; + struct btrfs_device *dev; +}; + +struct full_stripe_lock { + struct rb_node node; + u64 logical; + u64 refs; + struct mutex mutex; +}; + +#ifndef CONFIG_64BIT +/* This structure is for archtectures whose (void *) is smaller than u64 */ +struct scrub_page_private { + u64 logical; +}; +#endif + +static int attach_scrub_page_private(struct page *page, u64 logical) +{ +#ifdef CONFIG_64BIT + attach_page_private(page, (void *)logical); + return 0; +#else + struct scrub_page_private *spp; + + spp = kmalloc(sizeof(*spp), GFP_KERNEL); + if (!spp) + return -ENOMEM; + spp->logical = logical; + attach_page_private(page, (void *)spp); + return 0; +#endif +} + +static void detach_scrub_page_private(struct page *page) +{ +#ifdef CONFIG_64BIT + detach_page_private(page); + return; +#else + struct scrub_page_private *spp; + + spp = detach_page_private(page); + kfree(spp); + return; +#endif +} + +static struct scrub_block *alloc_scrub_block(struct scrub_ctx *sctx, + struct btrfs_device *dev, + u64 logical, u64 physical, + u64 physical_for_dev_replace, + int mirror_num) +{ + struct scrub_block *sblock; + + sblock = kzalloc(sizeof(*sblock), GFP_KERNEL); + if (!sblock) + return NULL; + refcount_set(&sblock->refs, 1); + sblock->sctx = sctx; + sblock->logical = logical; + sblock->physical = physical; + sblock->physical_for_dev_replace = physical_for_dev_replace; + sblock->dev = dev; + sblock->mirror_num = mirror_num; + sblock->no_io_error_seen = 1; + /* + * Scrub_block::pages will be allocated at alloc_scrub_sector() when + * the corresponding page is not allocated. + */ + return sblock; +} + +/* + * Allocate a new scrub sector and attach it to @sblock. + * + * Will also allocate new pages for @sblock if needed. + */ +static struct scrub_sector *alloc_scrub_sector(struct scrub_block *sblock, + u64 logical, gfp_t gfp) +{ + const pgoff_t page_index = (logical - sblock->logical) >> PAGE_SHIFT; + struct scrub_sector *ssector; + + /* We must never have scrub_block exceed U32_MAX in size. */ + ASSERT(logical - sblock->logical < U32_MAX); + + ssector = kzalloc(sizeof(*ssector), gfp); + if (!ssector) + return NULL; + + /* Allocate a new page if the slot is not allocated */ + if (!sblock->pages[page_index]) { + int ret; + + sblock->pages[page_index] = alloc_page(gfp); + if (!sblock->pages[page_index]) { + kfree(ssector); + return NULL; + } + ret = attach_scrub_page_private(sblock->pages[page_index], + sblock->logical + (page_index << PAGE_SHIFT)); + if (ret < 0) { + kfree(ssector); + __free_page(sblock->pages[page_index]); + sblock->pages[page_index] = NULL; + return NULL; + } + } + + atomic_set(&ssector->refs, 1); + ssector->sblock = sblock; + /* The sector to be added should not be used */ + ASSERT(sblock->sectors[sblock->sector_count] == NULL); + ssector->offset = logical - sblock->logical; + + /* The sector count must be smaller than the limit */ + ASSERT(sblock->sector_count < SCRUB_MAX_SECTORS_PER_BLOCK); + + sblock->sectors[sblock->sector_count] = ssector; + sblock->sector_count++; + sblock->len += sblock->sctx->fs_info->sectorsize; + + return ssector; +} + +static struct page *scrub_sector_get_page(struct scrub_sector *ssector) +{ + struct scrub_block *sblock = ssector->sblock; + pgoff_t index; + /* + * When calling this function, ssector must be alreaday attached to the + * parent sblock. + */ + ASSERT(sblock); + + /* The range should be inside the sblock range */ + ASSERT(ssector->offset < sblock->len); + + index = ssector->offset >> PAGE_SHIFT; + ASSERT(index < SCRUB_MAX_PAGES); + ASSERT(sblock->pages[index]); + ASSERT(PagePrivate(sblock->pages[index])); + return sblock->pages[index]; +} + +static unsigned int scrub_sector_get_page_offset(struct scrub_sector *ssector) +{ + struct scrub_block *sblock = ssector->sblock; + + /* + * When calling this function, ssector must be already attached to the + * parent sblock. + */ + ASSERT(sblock); + + /* The range should be inside the sblock range */ + ASSERT(ssector->offset < sblock->len); + + return offset_in_page(ssector->offset); +} + +static char *scrub_sector_get_kaddr(struct scrub_sector *ssector) +{ + return page_address(scrub_sector_get_page(ssector)) + + scrub_sector_get_page_offset(ssector); +} + +static int bio_add_scrub_sector(struct bio *bio, struct scrub_sector *ssector, + unsigned int len) +{ + return bio_add_page(bio, scrub_sector_get_page(ssector), len, + scrub_sector_get_page_offset(ssector)); +} + +static int scrub_setup_recheck_block(struct scrub_block *original_sblock, + struct scrub_block *sblocks_for_recheck[]); +static void scrub_recheck_block(struct btrfs_fs_info *fs_info, + struct scrub_block *sblock, + int retry_failed_mirror); +static void scrub_recheck_block_checksum(struct scrub_block *sblock); +static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad, + struct scrub_block *sblock_good); +static int scrub_repair_sector_from_good_copy(struct scrub_block *sblock_bad, + struct scrub_block *sblock_good, + int sector_num, int force_write); +static void scrub_write_block_to_dev_replace(struct scrub_block *sblock); +static int scrub_write_sector_to_dev_replace(struct scrub_block *sblock, + int sector_num); +static int scrub_checksum_data(struct scrub_block *sblock); +static int scrub_checksum_tree_block(struct scrub_block *sblock); +static int scrub_checksum_super(struct scrub_block *sblock); +static void scrub_block_put(struct scrub_block *sblock); +static void scrub_sector_get(struct scrub_sector *sector); +static void scrub_sector_put(struct scrub_sector *sector); +static void scrub_parity_get(struct scrub_parity *sparity); +static void scrub_parity_put(struct scrub_parity *sparity); +static int scrub_sectors(struct scrub_ctx *sctx, u64 logical, u32 len, + u64 physical, struct btrfs_device *dev, u64 flags, + u64 gen, int mirror_num, u8 *csum, + u64 physical_for_dev_replace); +static void scrub_bio_end_io(struct bio *bio); +static void scrub_bio_end_io_worker(struct work_struct *work); +static void scrub_block_complete(struct scrub_block *sblock); +static void scrub_find_good_copy(struct btrfs_fs_info *fs_info, + u64 extent_logical, u32 extent_len, + u64 *extent_physical, + struct btrfs_device **extent_dev, + int *extent_mirror_num); +static int scrub_add_sector_to_wr_bio(struct scrub_ctx *sctx, + struct scrub_sector *sector); +static void scrub_wr_submit(struct scrub_ctx *sctx); +static void scrub_wr_bio_end_io(struct bio *bio); +static void scrub_wr_bio_end_io_worker(struct work_struct *work); +static void scrub_put_ctx(struct scrub_ctx *sctx); + +static inline int scrub_is_page_on_raid56(struct scrub_sector *sector) +{ + return sector->recover && + (sector->recover->bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK); +} + +static void scrub_pending_bio_inc(struct scrub_ctx *sctx) +{ + refcount_inc(&sctx->refs); + atomic_inc(&sctx->bios_in_flight); +} + +static void scrub_pending_bio_dec(struct scrub_ctx *sctx) +{ + atomic_dec(&sctx->bios_in_flight); + wake_up(&sctx->list_wait); + scrub_put_ctx(sctx); +} + +static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info) +{ + while (atomic_read(&fs_info->scrub_pause_req)) { + mutex_unlock(&fs_info->scrub_lock); + wait_event(fs_info->scrub_pause_wait, + atomic_read(&fs_info->scrub_pause_req) == 0); + mutex_lock(&fs_info->scrub_lock); + } +} + +static void scrub_pause_on(struct btrfs_fs_info *fs_info) +{ + atomic_inc(&fs_info->scrubs_paused); + wake_up(&fs_info->scrub_pause_wait); +} + +static void scrub_pause_off(struct btrfs_fs_info *fs_info) +{ + mutex_lock(&fs_info->scrub_lock); + __scrub_blocked_if_needed(fs_info); + atomic_dec(&fs_info->scrubs_paused); + mutex_unlock(&fs_info->scrub_lock); + + wake_up(&fs_info->scrub_pause_wait); +} + +static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info) +{ + scrub_pause_on(fs_info); + scrub_pause_off(fs_info); +} + +/* + * Insert new full stripe lock into full stripe locks tree + * + * Return pointer to existing or newly inserted full_stripe_lock structure if + * everything works well. + * Return ERR_PTR(-ENOMEM) if we failed to allocate memory + * + * NOTE: caller must hold full_stripe_locks_root->lock before calling this + * function + */ +static struct full_stripe_lock *insert_full_stripe_lock( + struct btrfs_full_stripe_locks_tree *locks_root, + u64 fstripe_logical) +{ + struct rb_node **p; + struct rb_node *parent = NULL; + struct full_stripe_lock *entry; + struct full_stripe_lock *ret; + + lockdep_assert_held(&locks_root->lock); + + p = &locks_root->root.rb_node; + while (*p) { + parent = *p; + entry = rb_entry(parent, struct full_stripe_lock, node); + if (fstripe_logical < entry->logical) { + p = &(*p)->rb_left; + } else if (fstripe_logical > entry->logical) { + p = &(*p)->rb_right; + } else { + entry->refs++; + return entry; + } + } + + /* + * Insert new lock. + */ + ret = kmalloc(sizeof(*ret), GFP_KERNEL); + if (!ret) + return ERR_PTR(-ENOMEM); + ret->logical = fstripe_logical; + ret->refs = 1; + mutex_init(&ret->mutex); + + rb_link_node(&ret->node, parent, p); + rb_insert_color(&ret->node, &locks_root->root); + return ret; +} + +/* + * Search for a full stripe lock of a block group + * + * Return pointer to existing full stripe lock if found + * Return NULL if not found + */ +static struct full_stripe_lock *search_full_stripe_lock( + struct btrfs_full_stripe_locks_tree *locks_root, + u64 fstripe_logical) +{ + struct rb_node *node; + struct full_stripe_lock *entry; + + lockdep_assert_held(&locks_root->lock); + + node = locks_root->root.rb_node; + while (node) { + entry = rb_entry(node, struct full_stripe_lock, node); + if (fstripe_logical < entry->logical) + node = node->rb_left; + else if (fstripe_logical > entry->logical) + node = node->rb_right; + else + return entry; + } + return NULL; +} + +/* + * Helper to get full stripe logical from a normal bytenr. + * + * Caller must ensure @cache is a RAID56 block group. + */ +static u64 get_full_stripe_logical(struct btrfs_block_group *cache, u64 bytenr) +{ + u64 ret; + + /* + * Due to chunk item size limit, full stripe length should not be + * larger than U32_MAX. Just a sanity check here. + */ + WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX); + + /* + * round_down() can only handle power of 2, while RAID56 full + * stripe length can be 64KiB * n, so we need to manually round down. + */ + ret = div64_u64(bytenr - cache->start, cache->full_stripe_len) * + cache->full_stripe_len + cache->start; + return ret; +} + +/* + * Lock a full stripe to avoid concurrency of recovery and read + * + * It's only used for profiles with parities (RAID5/6), for other profiles it + * does nothing. + * + * Return 0 if we locked full stripe covering @bytenr, with a mutex held. + * So caller must call unlock_full_stripe() at the same context. + * + * Return <0 if encounters error. + */ +static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr, + bool *locked_ret) +{ + struct btrfs_block_group *bg_cache; + struct btrfs_full_stripe_locks_tree *locks_root; + struct full_stripe_lock *existing; + u64 fstripe_start; + int ret = 0; + + *locked_ret = false; + bg_cache = btrfs_lookup_block_group(fs_info, bytenr); + if (!bg_cache) { + ASSERT(0); + return -ENOENT; + } + + /* Profiles not based on parity don't need full stripe lock */ + if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) + goto out; + locks_root = &bg_cache->full_stripe_locks_root; + + fstripe_start = get_full_stripe_logical(bg_cache, bytenr); + + /* Now insert the full stripe lock */ + mutex_lock(&locks_root->lock); + existing = insert_full_stripe_lock(locks_root, fstripe_start); + mutex_unlock(&locks_root->lock); + if (IS_ERR(existing)) { + ret = PTR_ERR(existing); + goto out; + } + mutex_lock(&existing->mutex); + *locked_ret = true; +out: + btrfs_put_block_group(bg_cache); + return ret; +} + +/* + * Unlock a full stripe. + * + * NOTE: Caller must ensure it's the same context calling corresponding + * lock_full_stripe(). + * + * Return 0 if we unlock full stripe without problem. + * Return <0 for error + */ +static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr, + bool locked) +{ + struct btrfs_block_group *bg_cache; + struct btrfs_full_stripe_locks_tree *locks_root; + struct full_stripe_lock *fstripe_lock; + u64 fstripe_start; + bool freeit = false; + int ret = 0; + + /* If we didn't acquire full stripe lock, no need to continue */ + if (!locked) + return 0; + + bg_cache = btrfs_lookup_block_group(fs_info, bytenr); + if (!bg_cache) { + ASSERT(0); + return -ENOENT; + } + if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) + goto out; + + locks_root = &bg_cache->full_stripe_locks_root; + fstripe_start = get_full_stripe_logical(bg_cache, bytenr); + + mutex_lock(&locks_root->lock); + fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start); + /* Unpaired unlock_full_stripe() detected */ + if (!fstripe_lock) { + WARN_ON(1); + ret = -ENOENT; + mutex_unlock(&locks_root->lock); + goto out; + } + + if (fstripe_lock->refs == 0) { + WARN_ON(1); + btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow", + fstripe_lock->logical); + } else { + fstripe_lock->refs--; + } + + if (fstripe_lock->refs == 0) { + rb_erase(&fstripe_lock->node, &locks_root->root); + freeit = true; + } + mutex_unlock(&locks_root->lock); + + mutex_unlock(&fstripe_lock->mutex); + if (freeit) + kfree(fstripe_lock); +out: + btrfs_put_block_group(bg_cache); + return ret; +} + +static void scrub_free_csums(struct scrub_ctx *sctx) +{ + while (!list_empty(&sctx->csum_list)) { + struct btrfs_ordered_sum *sum; + sum = list_first_entry(&sctx->csum_list, + struct btrfs_ordered_sum, list); + list_del(&sum->list); + kfree(sum); + } +} + +static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx) +{ + int i; + + if (!sctx) + return; + + /* this can happen when scrub is cancelled */ + if (sctx->curr != -1) { + struct scrub_bio *sbio = sctx->bios[sctx->curr]; + + for (i = 0; i < sbio->sector_count; i++) + scrub_block_put(sbio->sectors[i]->sblock); + bio_put(sbio->bio); + } + + for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) { + struct scrub_bio *sbio = sctx->bios[i]; + + if (!sbio) + break; + kfree(sbio); + } + + kfree(sctx->wr_curr_bio); + scrub_free_csums(sctx); + kfree(sctx); +} + +static void scrub_put_ctx(struct scrub_ctx *sctx) +{ + if (refcount_dec_and_test(&sctx->refs)) + scrub_free_ctx(sctx); +} + +static noinline_for_stack struct scrub_ctx *scrub_setup_ctx( + struct btrfs_fs_info *fs_info, int is_dev_replace) +{ + struct scrub_ctx *sctx; + int i; + + sctx = kzalloc(sizeof(*sctx), GFP_KERNEL); + if (!sctx) + goto nomem; + refcount_set(&sctx->refs, 1); + sctx->is_dev_replace = is_dev_replace; + sctx->sectors_per_bio = SCRUB_SECTORS_PER_BIO; + sctx->curr = -1; + sctx->fs_info = fs_info; + INIT_LIST_HEAD(&sctx->csum_list); + for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) { + struct scrub_bio *sbio; + + sbio = kzalloc(sizeof(*sbio), GFP_KERNEL); + if (!sbio) + goto nomem; + sctx->bios[i] = sbio; + + sbio->index = i; + sbio->sctx = sctx; + sbio->sector_count = 0; + INIT_WORK(&sbio->work, scrub_bio_end_io_worker); + + if (i != SCRUB_BIOS_PER_SCTX - 1) + sctx->bios[i]->next_free = i + 1; + else + sctx->bios[i]->next_free = -1; + } + sctx->first_free = 0; + atomic_set(&sctx->bios_in_flight, 0); + atomic_set(&sctx->workers_pending, 0); + atomic_set(&sctx->cancel_req, 0); + + spin_lock_init(&sctx->list_lock); + spin_lock_init(&sctx->stat_lock); + init_waitqueue_head(&sctx->list_wait); + sctx->throttle_deadline = 0; + + WARN_ON(sctx->wr_curr_bio != NULL); + mutex_init(&sctx->wr_lock); + sctx->wr_curr_bio = NULL; + if (is_dev_replace) { + WARN_ON(!fs_info->dev_replace.tgtdev); + sctx->wr_tgtdev = fs_info->dev_replace.tgtdev; + sctx->flush_all_writes = false; + } + + return sctx; + +nomem: + scrub_free_ctx(sctx); + return ERR_PTR(-ENOMEM); +} + +static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root, + void *warn_ctx) +{ + u32 nlink; + int ret; + int i; + unsigned nofs_flag; + struct extent_buffer *eb; + struct btrfs_inode_item *inode_item; + struct scrub_warning *swarn = warn_ctx; + struct btrfs_fs_info *fs_info = swarn->dev->fs_info; + struct inode_fs_paths *ipath = NULL; + struct btrfs_root *local_root; + struct btrfs_key key; + + local_root = btrfs_get_fs_root(fs_info, root, true); + if (IS_ERR(local_root)) { + ret = PTR_ERR(local_root); + goto err; + } + + /* + * this makes the path point to (inum INODE_ITEM ioff) + */ + key.objectid = inum; + key.type = BTRFS_INODE_ITEM_KEY; + key.offset = 0; + + ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0); + if (ret) { + btrfs_put_root(local_root); + btrfs_release_path(swarn->path); + goto err; + } + + eb = swarn->path->nodes[0]; + inode_item = btrfs_item_ptr(eb, swarn->path->slots[0], + struct btrfs_inode_item); + nlink = btrfs_inode_nlink(eb, inode_item); + btrfs_release_path(swarn->path); + + /* + * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub + * uses GFP_NOFS in this context, so we keep it consistent but it does + * not seem to be strictly necessary. + */ + nofs_flag = memalloc_nofs_save(); + ipath = init_ipath(4096, local_root, swarn->path); + memalloc_nofs_restore(nofs_flag); + if (IS_ERR(ipath)) { + btrfs_put_root(local_root); + ret = PTR_ERR(ipath); + ipath = NULL; + goto err; + } + ret = paths_from_inode(inum, ipath); + + if (ret < 0) + goto err; + + /* + * we deliberately ignore the bit ipath might have been too small to + * hold all of the paths here + */ + for (i = 0; i < ipath->fspath->elem_cnt; ++i) + btrfs_warn_in_rcu(fs_info, +"%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %u, links %u (path: %s)", + swarn->errstr, swarn->logical, + rcu_str_deref(swarn->dev->name), + swarn->physical, + root, inum, offset, + fs_info->sectorsize, nlink, + (char *)(unsigned long)ipath->fspath->val[i]); + + btrfs_put_root(local_root); + free_ipath(ipath); + return 0; + +err: + btrfs_warn_in_rcu(fs_info, + "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d", + swarn->errstr, swarn->logical, + rcu_str_deref(swarn->dev->name), + swarn->physical, + root, inum, offset, ret); + + free_ipath(ipath); + return 0; +} + +static void scrub_print_warning(const char *errstr, struct scrub_block *sblock) +{ + struct btrfs_device *dev; + struct btrfs_fs_info *fs_info; + struct btrfs_path *path; + struct btrfs_key found_key; + struct extent_buffer *eb; + struct btrfs_extent_item *ei; + struct scrub_warning swarn; + unsigned long ptr = 0; + u64 extent_item_pos; + u64 flags = 0; + u64 ref_root; + u32 item_size; + u8 ref_level = 0; + int ret; + + WARN_ON(sblock->sector_count < 1); + dev = sblock->dev; + fs_info = sblock->sctx->fs_info; + + /* Super block error, no need to search extent tree. */ + if (sblock->sectors[0]->flags & BTRFS_EXTENT_FLAG_SUPER) { + btrfs_warn_in_rcu(fs_info, "%s on device %s, physical %llu", + errstr, rcu_str_deref(dev->name), + sblock->physical); + return; + } + path = btrfs_alloc_path(); + if (!path) + return; + + swarn.physical = sblock->physical; + swarn.logical = sblock->logical; + swarn.errstr = errstr; + swarn.dev = NULL; + + ret = extent_from_logical(fs_info, swarn.logical, path, &found_key, + &flags); + if (ret < 0) + goto out; + + extent_item_pos = swarn.logical - found_key.objectid; + swarn.extent_item_size = found_key.offset; + + eb = path->nodes[0]; + ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); + item_size = btrfs_item_size(eb, path->slots[0]); + + if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { + do { + ret = tree_backref_for_extent(&ptr, eb, &found_key, ei, + item_size, &ref_root, + &ref_level); + btrfs_warn_in_rcu(fs_info, +"%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu", + errstr, swarn.logical, + rcu_str_deref(dev->name), + swarn.physical, + ref_level ? "node" : "leaf", + ret < 0 ? -1 : ref_level, + ret < 0 ? -1 : ref_root); + } while (ret != 1); + btrfs_release_path(path); + } else { + btrfs_release_path(path); + swarn.path = path; + swarn.dev = dev; + iterate_extent_inodes(fs_info, found_key.objectid, + extent_item_pos, 1, + scrub_print_warning_inode, &swarn, false); + } + +out: + btrfs_free_path(path); +} + +static inline void scrub_get_recover(struct scrub_recover *recover) +{ + refcount_inc(&recover->refs); +} + +static inline void scrub_put_recover(struct btrfs_fs_info *fs_info, + struct scrub_recover *recover) +{ + if (refcount_dec_and_test(&recover->refs)) { + btrfs_bio_counter_dec(fs_info); + btrfs_put_bioc(recover->bioc); + kfree(recover); + } +} + +/* + * scrub_handle_errored_block gets called when either verification of the + * sectors failed or the bio failed to read, e.g. with EIO. In the latter + * case, this function handles all sectors in the bio, even though only one + * may be bad. + * The goal of this function is to repair the errored block by using the + * contents of one of the mirrors. + */ +static int scrub_handle_errored_block(struct scrub_block *sblock_to_check) +{ + struct scrub_ctx *sctx = sblock_to_check->sctx; + struct btrfs_device *dev = sblock_to_check->dev; + struct btrfs_fs_info *fs_info; + u64 logical; + unsigned int failed_mirror_index; + unsigned int is_metadata; + unsigned int have_csum; + /* One scrub_block for each mirror */ + struct scrub_block *sblocks_for_recheck[BTRFS_MAX_MIRRORS] = { 0 }; + struct scrub_block *sblock_bad; + int ret; + int mirror_index; + int sector_num; + int success; + bool full_stripe_locked; + unsigned int nofs_flag; + static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL, + DEFAULT_RATELIMIT_BURST); + + BUG_ON(sblock_to_check->sector_count < 1); + fs_info = sctx->fs_info; + if (sblock_to_check->sectors[0]->flags & BTRFS_EXTENT_FLAG_SUPER) { + /* + * If we find an error in a super block, we just report it. + * They will get written with the next transaction commit + * anyway + */ + scrub_print_warning("super block error", sblock_to_check); + spin_lock(&sctx->stat_lock); + ++sctx->stat.super_errors; + spin_unlock(&sctx->stat_lock); + btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS); + return 0; + } + logical = sblock_to_check->logical; + ASSERT(sblock_to_check->mirror_num); + failed_mirror_index = sblock_to_check->mirror_num - 1; + is_metadata = !(sblock_to_check->sectors[0]->flags & + BTRFS_EXTENT_FLAG_DATA); + have_csum = sblock_to_check->sectors[0]->have_csum; + + if (!sctx->is_dev_replace && btrfs_repair_one_zone(fs_info, logical)) + return 0; + + /* + * We must use GFP_NOFS because the scrub task might be waiting for a + * worker task executing this function and in turn a transaction commit + * might be waiting the scrub task to pause (which needs to wait for all + * the worker tasks to complete before pausing). + * We do allocations in the workers through insert_full_stripe_lock() + * and scrub_add_sector_to_wr_bio(), which happens down the call chain of + * this function. + */ + nofs_flag = memalloc_nofs_save(); + /* + * For RAID5/6, race can happen for a different device scrub thread. + * For data corruption, Parity and Data threads will both try + * to recovery the data. + * Race can lead to doubly added csum error, or even unrecoverable + * error. + */ + ret = lock_full_stripe(fs_info, logical, &full_stripe_locked); + if (ret < 0) { + memalloc_nofs_restore(nofs_flag); + spin_lock(&sctx->stat_lock); + if (ret == -ENOMEM) + sctx->stat.malloc_errors++; + sctx->stat.read_errors++; + sctx->stat.uncorrectable_errors++; + spin_unlock(&sctx->stat_lock); + return ret; + } + + /* + * read all mirrors one after the other. This includes to + * re-read the extent or metadata block that failed (that was + * the cause that this fixup code is called) another time, + * sector by sector this time in order to know which sectors + * caused I/O errors and which ones are good (for all mirrors). + * It is the goal to handle the situation when more than one + * mirror contains I/O errors, but the errors do not + * overlap, i.e. the data can be repaired by selecting the + * sectors from those mirrors without I/O error on the + * particular sectors. One example (with blocks >= 2 * sectorsize) + * would be that mirror #1 has an I/O error on the first sector, + * the second sector is good, and mirror #2 has an I/O error on + * the second sector, but the first sector is good. + * Then the first sector of the first mirror can be repaired by + * taking the first sector of the second mirror, and the + * second sector of the second mirror can be repaired by + * copying the contents of the 2nd sector of the 1st mirror. + * One more note: if the sectors of one mirror contain I/O + * errors, the checksum cannot be verified. In order to get + * the best data for repairing, the first attempt is to find + * a mirror without I/O errors and with a validated checksum. + * Only if this is not possible, the sectors are picked from + * mirrors with I/O errors without considering the checksum. + * If the latter is the case, at the end, the checksum of the + * repaired area is verified in order to correctly maintain + * the statistics. + */ + for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS; mirror_index++) { + /* + * Note: the two members refs and outstanding_sectors are not + * used in the blocks that are used for the recheck procedure. + * + * But alloc_scrub_block() will initialize sblock::ref anyway, + * so we can use scrub_block_put() to clean them up. + * + * And here we don't setup the physical/dev for the sblock yet, + * they will be correctly initialized in scrub_setup_recheck_block(). + */ + sblocks_for_recheck[mirror_index] = alloc_scrub_block(sctx, NULL, + logical, 0, 0, mirror_index); + if (!sblocks_for_recheck[mirror_index]) { + spin_lock(&sctx->stat_lock); + sctx->stat.malloc_errors++; + sctx->stat.read_errors++; + sctx->stat.uncorrectable_errors++; + spin_unlock(&sctx->stat_lock); + btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); + goto out; + } + } + + /* Setup the context, map the logical blocks and alloc the sectors */ + ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck); + if (ret) { + spin_lock(&sctx->stat_lock); + sctx->stat.read_errors++; + sctx->stat.uncorrectable_errors++; + spin_unlock(&sctx->stat_lock); + btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); + goto out; + } + BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS); + sblock_bad = sblocks_for_recheck[failed_mirror_index]; + + /* build and submit the bios for the failed mirror, check checksums */ + scrub_recheck_block(fs_info, sblock_bad, 1); + + if (!sblock_bad->header_error && !sblock_bad->checksum_error && + sblock_bad->no_io_error_seen) { + /* + * The error disappeared after reading sector by sector, or + * the area was part of a huge bio and other parts of the + * bio caused I/O errors, or the block layer merged several + * read requests into one and the error is caused by a + * different bio (usually one of the two latter cases is + * the cause) + */ + spin_lock(&sctx->stat_lock); + sctx->stat.unverified_errors++; + sblock_to_check->data_corrected = 1; + spin_unlock(&sctx->stat_lock); + + if (sctx->is_dev_replace) + scrub_write_block_to_dev_replace(sblock_bad); + goto out; + } + + if (!sblock_bad->no_io_error_seen) { + spin_lock(&sctx->stat_lock); + sctx->stat.read_errors++; + spin_unlock(&sctx->stat_lock); + if (__ratelimit(&rs)) + scrub_print_warning("i/o error", sblock_to_check); + btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); + } else if (sblock_bad->checksum_error) { + spin_lock(&sctx->stat_lock); + sctx->stat.csum_errors++; + spin_unlock(&sctx->stat_lock); + if (__ratelimit(&rs)) + scrub_print_warning("checksum error", sblock_to_check); + btrfs_dev_stat_inc_and_print(dev, + BTRFS_DEV_STAT_CORRUPTION_ERRS); + } else if (sblock_bad->header_error) { + spin_lock(&sctx->stat_lock); + sctx->stat.verify_errors++; + spin_unlock(&sctx->stat_lock); + if (__ratelimit(&rs)) + scrub_print_warning("checksum/header error", + sblock_to_check); + if (sblock_bad->generation_error) + btrfs_dev_stat_inc_and_print(dev, + BTRFS_DEV_STAT_GENERATION_ERRS); + else + btrfs_dev_stat_inc_and_print(dev, + BTRFS_DEV_STAT_CORRUPTION_ERRS); + } + + if (sctx->readonly) { + ASSERT(!sctx->is_dev_replace); + goto out; + } + + /* + * now build and submit the bios for the other mirrors, check + * checksums. + * First try to pick the mirror which is completely without I/O + * errors and also does not have a checksum error. + * If one is found, and if a checksum is present, the full block + * that is known to contain an error is rewritten. Afterwards + * the block is known to be corrected. + * If a mirror is found which is completely correct, and no + * checksum is present, only those sectors are rewritten that had + * an I/O error in the block to be repaired, since it cannot be + * determined, which copy of the other sectors is better (and it + * could happen otherwise that a correct sector would be + * overwritten by a bad one). + */ + for (mirror_index = 0; ;mirror_index++) { + struct scrub_block *sblock_other; + + if (mirror_index == failed_mirror_index) + continue; + + /* raid56's mirror can be more than BTRFS_MAX_MIRRORS */ + if (!scrub_is_page_on_raid56(sblock_bad->sectors[0])) { + if (mirror_index >= BTRFS_MAX_MIRRORS) + break; + if (!sblocks_for_recheck[mirror_index]->sector_count) + break; + + sblock_other = sblocks_for_recheck[mirror_index]; + } else { + struct scrub_recover *r = sblock_bad->sectors[0]->recover; + int max_allowed = r->bioc->num_stripes - r->bioc->num_tgtdevs; + + if (mirror_index >= max_allowed) + break; + if (!sblocks_for_recheck[1]->sector_count) + break; + + ASSERT(failed_mirror_index == 0); + sblock_other = sblocks_for_recheck[1]; + sblock_other->mirror_num = 1 + mirror_index; + } + + /* build and submit the bios, check checksums */ + scrub_recheck_block(fs_info, sblock_other, 0); + + if (!sblock_other->header_error && + !sblock_other->checksum_error && + sblock_other->no_io_error_seen) { + if (sctx->is_dev_replace) { + scrub_write_block_to_dev_replace(sblock_other); + goto corrected_error; + } else { + ret = scrub_repair_block_from_good_copy( + sblock_bad, sblock_other); + if (!ret) + goto corrected_error; + } + } + } + + if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace) + goto did_not_correct_error; + + /* + * In case of I/O errors in the area that is supposed to be + * repaired, continue by picking good copies of those sectors. + * Select the good sectors from mirrors to rewrite bad sectors from + * the area to fix. Afterwards verify the checksum of the block + * that is supposed to be repaired. This verification step is + * only done for the purpose of statistic counting and for the + * final scrub report, whether errors remain. + * A perfect algorithm could make use of the checksum and try + * all possible combinations of sectors from the different mirrors + * until the checksum verification succeeds. For example, when + * the 2nd sector of mirror #1 faces I/O errors, and the 2nd sector + * of mirror #2 is readable but the final checksum test fails, + * then the 2nd sector of mirror #3 could be tried, whether now + * the final checksum succeeds. But this would be a rare + * exception and is therefore not implemented. At least it is + * avoided that the good copy is overwritten. + * A more useful improvement would be to pick the sectors + * without I/O error based on sector sizes (512 bytes on legacy + * disks) instead of on sectorsize. Then maybe 512 byte of one + * mirror could be repaired by taking 512 byte of a different + * mirror, even if other 512 byte sectors in the same sectorsize + * area are unreadable. + */ + success = 1; + for (sector_num = 0; sector_num < sblock_bad->sector_count; + sector_num++) { + struct scrub_sector *sector_bad = sblock_bad->sectors[sector_num]; + struct scrub_block *sblock_other = NULL; + + /* Skip no-io-error sectors in scrub */ + if (!sector_bad->io_error && !sctx->is_dev_replace) + continue; + + if (scrub_is_page_on_raid56(sblock_bad->sectors[0])) { + /* + * In case of dev replace, if raid56 rebuild process + * didn't work out correct data, then copy the content + * in sblock_bad to make sure target device is identical + * to source device, instead of writing garbage data in + * sblock_for_recheck array to target device. + */ + sblock_other = NULL; + } else if (sector_bad->io_error) { + /* Try to find no-io-error sector in mirrors */ + for (mirror_index = 0; + mirror_index < BTRFS_MAX_MIRRORS && + sblocks_for_recheck[mirror_index]->sector_count > 0; + mirror_index++) { + if (!sblocks_for_recheck[mirror_index]-> + sectors[sector_num]->io_error) { + sblock_other = sblocks_for_recheck[mirror_index]; + break; + } + } + if (!sblock_other) + success = 0; + } + + if (sctx->is_dev_replace) { + /* + * Did not find a mirror to fetch the sector from. + * scrub_write_sector_to_dev_replace() handles this + * case (sector->io_error), by filling the block with + * zeros before submitting the write request + */ + if (!sblock_other) + sblock_other = sblock_bad; + + if (scrub_write_sector_to_dev_replace(sblock_other, + sector_num) != 0) { + atomic64_inc( + &fs_info->dev_replace.num_write_errors); + success = 0; + } + } else if (sblock_other) { + ret = scrub_repair_sector_from_good_copy(sblock_bad, + sblock_other, + sector_num, 0); + if (0 == ret) + sector_bad->io_error = 0; + else + success = 0; + } + } + + if (success && !sctx->is_dev_replace) { + if (is_metadata || have_csum) { + /* + * need to verify the checksum now that all + * sectors on disk are repaired (the write + * request for data to be repaired is on its way). + * Just be lazy and use scrub_recheck_block() + * which re-reads the data before the checksum + * is verified, but most likely the data comes out + * of the page cache. + */ + scrub_recheck_block(fs_info, sblock_bad, 1); + if (!sblock_bad->header_error && + !sblock_bad->checksum_error && + sblock_bad->no_io_error_seen) + goto corrected_error; + else + goto did_not_correct_error; + } else { +corrected_error: + spin_lock(&sctx->stat_lock); + sctx->stat.corrected_errors++; + sblock_to_check->data_corrected = 1; + spin_unlock(&sctx->stat_lock); + btrfs_err_rl_in_rcu(fs_info, + "fixed up error at logical %llu on dev %s", + logical, rcu_str_deref(dev->name)); + } + } else { +did_not_correct_error: + spin_lock(&sctx->stat_lock); + sctx->stat.uncorrectable_errors++; + spin_unlock(&sctx->stat_lock); + btrfs_err_rl_in_rcu(fs_info, + "unable to fixup (regular) error at logical %llu on dev %s", + logical, rcu_str_deref(dev->name)); + } + +out: + for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS; mirror_index++) { + struct scrub_block *sblock = sblocks_for_recheck[mirror_index]; + struct scrub_recover *recover; + int sector_index; + + /* Not allocated, continue checking the next mirror */ + if (!sblock) + continue; + + for (sector_index = 0; sector_index < sblock->sector_count; + sector_index++) { + /* + * Here we just cleanup the recover, each sector will be + * properly cleaned up by later scrub_block_put() + */ + recover = sblock->sectors[sector_index]->recover; + if (recover) { + scrub_put_recover(fs_info, recover); + sblock->sectors[sector_index]->recover = NULL; + } + } + scrub_block_put(sblock); + } + + ret = unlock_full_stripe(fs_info, logical, full_stripe_locked); + memalloc_nofs_restore(nofs_flag); + if (ret < 0) + return ret; + return 0; +} + +static inline int scrub_nr_raid_mirrors(struct btrfs_io_context *bioc) +{ + if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID5) + return 2; + else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID6) + return 3; + else + return (int)bioc->num_stripes; +} + +static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type, + u64 *raid_map, + int nstripes, int mirror, + int *stripe_index, + u64 *stripe_offset) +{ + int i; + + if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) { + /* RAID5/6 */ + for (i = 0; i < nstripes; i++) { + if (raid_map[i] == RAID6_Q_STRIPE || + raid_map[i] == RAID5_P_STRIPE) + continue; + + if (logical >= raid_map[i] && + logical < raid_map[i] + BTRFS_STRIPE_LEN) + break; + } + + *stripe_index = i; + *stripe_offset = logical - raid_map[i]; + } else { + /* The other RAID type */ + *stripe_index = mirror; + *stripe_offset = 0; + } +} + +static int scrub_setup_recheck_block(struct scrub_block *original_sblock, + struct scrub_block *sblocks_for_recheck[]) +{ + struct scrub_ctx *sctx = original_sblock->sctx; + struct btrfs_fs_info *fs_info = sctx->fs_info; + u64 logical = original_sblock->logical; + u64 length = original_sblock->sector_count << fs_info->sectorsize_bits; + u64 generation = original_sblock->sectors[0]->generation; + u64 flags = original_sblock->sectors[0]->flags; + u64 have_csum = original_sblock->sectors[0]->have_csum; + struct scrub_recover *recover; + struct btrfs_io_context *bioc; + u64 sublen; + u64 mapped_length; + u64 stripe_offset; + int stripe_index; + int sector_index = 0; + int mirror_index; + int nmirrors; + int ret; + + while (length > 0) { + sublen = min_t(u64, length, fs_info->sectorsize); + mapped_length = sublen; + bioc = NULL; + + /* + * With a length of sectorsize, each returned stripe represents + * one mirror + */ + btrfs_bio_counter_inc_blocked(fs_info); + ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, + logical, &mapped_length, &bioc); + if (ret || !bioc || mapped_length < sublen) { + btrfs_put_bioc(bioc); + btrfs_bio_counter_dec(fs_info); + return -EIO; + } + + recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS); + if (!recover) { + btrfs_put_bioc(bioc); + btrfs_bio_counter_dec(fs_info); + return -ENOMEM; + } + + refcount_set(&recover->refs, 1); + recover->bioc = bioc; + recover->map_length = mapped_length; + + ASSERT(sector_index < SCRUB_MAX_SECTORS_PER_BLOCK); + + nmirrors = min(scrub_nr_raid_mirrors(bioc), BTRFS_MAX_MIRRORS); + + for (mirror_index = 0; mirror_index < nmirrors; + mirror_index++) { + struct scrub_block *sblock; + struct scrub_sector *sector; + + sblock = sblocks_for_recheck[mirror_index]; + sblock->sctx = sctx; + + sector = alloc_scrub_sector(sblock, logical, GFP_NOFS); + if (!sector) { + spin_lock(&sctx->stat_lock); + sctx->stat.malloc_errors++; + spin_unlock(&sctx->stat_lock); + scrub_put_recover(fs_info, recover); + return -ENOMEM; + } + sector->flags = flags; + sector->generation = generation; + sector->have_csum = have_csum; + if (have_csum) + memcpy(sector->csum, + original_sblock->sectors[0]->csum, + sctx->fs_info->csum_size); + + scrub_stripe_index_and_offset(logical, + bioc->map_type, + bioc->raid_map, + bioc->num_stripes - + bioc->num_tgtdevs, + mirror_index, + &stripe_index, + &stripe_offset); + /* + * We're at the first sector, also populate @sblock + * physical and dev. + */ + if (sector_index == 0) { + sblock->physical = + bioc->stripes[stripe_index].physical + + stripe_offset; + sblock->dev = bioc->stripes[stripe_index].dev; + sblock->physical_for_dev_replace = + original_sblock->physical_for_dev_replace; + } + + BUG_ON(sector_index >= original_sblock->sector_count); + scrub_get_recover(recover); + sector->recover = recover; + } + scrub_put_recover(fs_info, recover); + length -= sublen; + logical += sublen; + sector_index++; + } + + return 0; +} + +static void scrub_bio_wait_endio(struct bio *bio) +{ + complete(bio->bi_private); +} + +static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info, + struct bio *bio, + struct scrub_sector *sector) +{ + DECLARE_COMPLETION_ONSTACK(done); + + bio->bi_iter.bi_sector = (sector->offset + sector->sblock->logical) >> + SECTOR_SHIFT; + bio->bi_private = &done; + bio->bi_end_io = scrub_bio_wait_endio; + raid56_parity_recover(bio, sector->recover->bioc, sector->sblock->mirror_num); + + wait_for_completion_io(&done); + return blk_status_to_errno(bio->bi_status); +} + +static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info, + struct scrub_block *sblock) +{ + struct scrub_sector *first_sector = sblock->sectors[0]; + struct bio *bio; + int i; + + /* All sectors in sblock belong to the same stripe on the same device. */ + ASSERT(sblock->dev); + if (!sblock->dev->bdev) + goto out; + + bio = bio_alloc(sblock->dev->bdev, BIO_MAX_VECS, REQ_OP_READ, GFP_NOFS); + + for (i = 0; i < sblock->sector_count; i++) { + struct scrub_sector *sector = sblock->sectors[i]; + + bio_add_scrub_sector(bio, sector, fs_info->sectorsize); + } + + if (scrub_submit_raid56_bio_wait(fs_info, bio, first_sector)) { + bio_put(bio); + goto out; + } + + bio_put(bio); + + scrub_recheck_block_checksum(sblock); + + return; +out: + for (i = 0; i < sblock->sector_count; i++) + sblock->sectors[i]->io_error = 1; + + sblock->no_io_error_seen = 0; +} + +/* + * This function will check the on disk data for checksum errors, header errors + * and read I/O errors. If any I/O errors happen, the exact sectors which are + * errored are marked as being bad. The goal is to enable scrub to take those + * sectors that are not errored from all the mirrors so that the sectors that + * are errored in the just handled mirror can be repaired. + */ +static void scrub_recheck_block(struct btrfs_fs_info *fs_info, + struct scrub_block *sblock, + int retry_failed_mirror) +{ + int i; + + sblock->no_io_error_seen = 1; + + /* short cut for raid56 */ + if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->sectors[0])) + return scrub_recheck_block_on_raid56(fs_info, sblock); + + for (i = 0; i < sblock->sector_count; i++) { + struct scrub_sector *sector = sblock->sectors[i]; + struct bio bio; + struct bio_vec bvec; + + if (sblock->dev->bdev == NULL) { + sector->io_error = 1; + sblock->no_io_error_seen = 0; + continue; + } + + bio_init(&bio, sblock->dev->bdev, &bvec, 1, REQ_OP_READ); + bio_add_scrub_sector(&bio, sector, fs_info->sectorsize); + bio.bi_iter.bi_sector = (sblock->physical + sector->offset) >> + SECTOR_SHIFT; + + btrfsic_check_bio(&bio); + if (submit_bio_wait(&bio)) { + sector->io_error = 1; + sblock->no_io_error_seen = 0; + } + + bio_uninit(&bio); + } + + if (sblock->no_io_error_seen) + scrub_recheck_block_checksum(sblock); +} + +static inline int scrub_check_fsid(u8 fsid[], struct scrub_sector *sector) +{ + struct btrfs_fs_devices *fs_devices = sector->sblock->dev->fs_devices; + int ret; + + ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE); + return !ret; +} + +static void scrub_recheck_block_checksum(struct scrub_block *sblock) +{ + sblock->header_error = 0; + sblock->checksum_error = 0; + sblock->generation_error = 0; + + if (sblock->sectors[0]->flags & BTRFS_EXTENT_FLAG_DATA) + scrub_checksum_data(sblock); + else + scrub_checksum_tree_block(sblock); +} + +static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad, + struct scrub_block *sblock_good) +{ + int i; + int ret = 0; + + for (i = 0; i < sblock_bad->sector_count; i++) { + int ret_sub; + + ret_sub = scrub_repair_sector_from_good_copy(sblock_bad, + sblock_good, i, 1); + if (ret_sub) + ret = ret_sub; + } + + return ret; +} + +static int scrub_repair_sector_from_good_copy(struct scrub_block *sblock_bad, + struct scrub_block *sblock_good, + int sector_num, int force_write) +{ + struct scrub_sector *sector_bad = sblock_bad->sectors[sector_num]; + struct scrub_sector *sector_good = sblock_good->sectors[sector_num]; + struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info; + const u32 sectorsize = fs_info->sectorsize; + + if (force_write || sblock_bad->header_error || + sblock_bad->checksum_error || sector_bad->io_error) { + struct bio bio; + struct bio_vec bvec; + int ret; + + if (!sblock_bad->dev->bdev) { + btrfs_warn_rl(fs_info, + "scrub_repair_page_from_good_copy(bdev == NULL) is unexpected"); + return -EIO; + } + + bio_init(&bio, sblock_bad->dev->bdev, &bvec, 1, REQ_OP_WRITE); + bio.bi_iter.bi_sector = (sblock_bad->physical + + sector_bad->offset) >> SECTOR_SHIFT; + ret = bio_add_scrub_sector(&bio, sector_good, sectorsize); + + btrfsic_check_bio(&bio); + ret = submit_bio_wait(&bio); + bio_uninit(&bio); + + if (ret) { + btrfs_dev_stat_inc_and_print(sblock_bad->dev, + BTRFS_DEV_STAT_WRITE_ERRS); + atomic64_inc(&fs_info->dev_replace.num_write_errors); + return -EIO; + } + } + + return 0; +} + +static void scrub_write_block_to_dev_replace(struct scrub_block *sblock) +{ + struct btrfs_fs_info *fs_info = sblock->sctx->fs_info; + int i; + + /* + * This block is used for the check of the parity on the source device, + * so the data needn't be written into the destination device. + */ + if (sblock->sparity) + return; + + for (i = 0; i < sblock->sector_count; i++) { + int ret; + + ret = scrub_write_sector_to_dev_replace(sblock, i); + if (ret) + atomic64_inc(&fs_info->dev_replace.num_write_errors); + } +} + +static int scrub_write_sector_to_dev_replace(struct scrub_block *sblock, int sector_num) +{ + const u32 sectorsize = sblock->sctx->fs_info->sectorsize; + struct scrub_sector *sector = sblock->sectors[sector_num]; + + if (sector->io_error) + memset(scrub_sector_get_kaddr(sector), 0, sectorsize); + + return scrub_add_sector_to_wr_bio(sblock->sctx, sector); +} + +static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical) +{ + int ret = 0; + u64 length; + + if (!btrfs_is_zoned(sctx->fs_info)) + return 0; + + if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) + return 0; + + if (sctx->write_pointer < physical) { + length = physical - sctx->write_pointer; + + ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev, + sctx->write_pointer, length); + if (!ret) + sctx->write_pointer = physical; + } + return ret; +} + +static void scrub_block_get(struct scrub_block *sblock) +{ + refcount_inc(&sblock->refs); +} + +static int scrub_add_sector_to_wr_bio(struct scrub_ctx *sctx, + struct scrub_sector *sector) +{ + struct scrub_block *sblock = sector->sblock; + struct scrub_bio *sbio; + int ret; + const u32 sectorsize = sctx->fs_info->sectorsize; + + mutex_lock(&sctx->wr_lock); +again: + if (!sctx->wr_curr_bio) { + sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio), + GFP_KERNEL); + if (!sctx->wr_curr_bio) { + mutex_unlock(&sctx->wr_lock); + return -ENOMEM; + } + sctx->wr_curr_bio->sctx = sctx; + sctx->wr_curr_bio->sector_count = 0; + } + sbio = sctx->wr_curr_bio; + if (sbio->sector_count == 0) { + ret = fill_writer_pointer_gap(sctx, sector->offset + + sblock->physical_for_dev_replace); + if (ret) { + mutex_unlock(&sctx->wr_lock); + return ret; + } + + sbio->physical = sblock->physical_for_dev_replace + sector->offset; + sbio->logical = sblock->logical + sector->offset; + sbio->dev = sctx->wr_tgtdev; + if (!sbio->bio) { + sbio->bio = bio_alloc(sbio->dev->bdev, sctx->sectors_per_bio, + REQ_OP_WRITE, GFP_NOFS); + } + sbio->bio->bi_private = sbio; + sbio->bio->bi_end_io = scrub_wr_bio_end_io; + sbio->bio->bi_iter.bi_sector = sbio->physical >> 9; + sbio->status = 0; + } else if (sbio->physical + sbio->sector_count * sectorsize != + sblock->physical_for_dev_replace + sector->offset || + sbio->logical + sbio->sector_count * sectorsize != + sblock->logical + sector->offset) { + scrub_wr_submit(sctx); + goto again; + } + + ret = bio_add_scrub_sector(sbio->bio, sector, sectorsize); + if (ret != sectorsize) { + if (sbio->sector_count < 1) { + bio_put(sbio->bio); + sbio->bio = NULL; + mutex_unlock(&sctx->wr_lock); + return -EIO; + } + scrub_wr_submit(sctx); + goto again; + } + + sbio->sectors[sbio->sector_count] = sector; + scrub_sector_get(sector); + /* + * Since ssector no longer holds a page, but uses sblock::pages, we + * have to ensure the sblock had not been freed before our write bio + * finished. + */ + scrub_block_get(sector->sblock); + + sbio->sector_count++; + if (sbio->sector_count == sctx->sectors_per_bio) + scrub_wr_submit(sctx); + mutex_unlock(&sctx->wr_lock); + + return 0; +} + +static void scrub_wr_submit(struct scrub_ctx *sctx) +{ + struct scrub_bio *sbio; + + if (!sctx->wr_curr_bio) + return; + + sbio = sctx->wr_curr_bio; + sctx->wr_curr_bio = NULL; + scrub_pending_bio_inc(sctx); + /* process all writes in a single worker thread. Then the block layer + * orders the requests before sending them to the driver which + * doubled the write performance on spinning disks when measured + * with Linux 3.5 */ + btrfsic_check_bio(sbio->bio); + submit_bio(sbio->bio); + + if (btrfs_is_zoned(sctx->fs_info)) + sctx->write_pointer = sbio->physical + sbio->sector_count * + sctx->fs_info->sectorsize; +} + +static void scrub_wr_bio_end_io(struct bio *bio) +{ + struct scrub_bio *sbio = bio->bi_private; + struct btrfs_fs_info *fs_info = sbio->dev->fs_info; + + sbio->status = bio->bi_status; + sbio->bio = bio; + + INIT_WORK(&sbio->work, scrub_wr_bio_end_io_worker); + queue_work(fs_info->scrub_wr_completion_workers, &sbio->work); +} + +static void scrub_wr_bio_end_io_worker(struct work_struct *work) +{ + struct scrub_bio *sbio = container_of(work, struct scrub_bio, work); + struct scrub_ctx *sctx = sbio->sctx; + int i; + + ASSERT(sbio->sector_count <= SCRUB_SECTORS_PER_BIO); + if (sbio->status) { + struct btrfs_dev_replace *dev_replace = + &sbio->sctx->fs_info->dev_replace; + + for (i = 0; i < sbio->sector_count; i++) { + struct scrub_sector *sector = sbio->sectors[i]; + + sector->io_error = 1; + atomic64_inc(&dev_replace->num_write_errors); + } + } + + /* + * In scrub_add_sector_to_wr_bio() we grab extra ref for sblock, now in + * endio we should put the sblock. + */ + for (i = 0; i < sbio->sector_count; i++) { + scrub_block_put(sbio->sectors[i]->sblock); + scrub_sector_put(sbio->sectors[i]); + } + + bio_put(sbio->bio); + kfree(sbio); + scrub_pending_bio_dec(sctx); +} + +static int scrub_checksum(struct scrub_block *sblock) +{ + u64 flags; + int ret; + + /* + * No need to initialize these stats currently, + * because this function only use return value + * instead of these stats value. + * + * Todo: + * always use stats + */ + sblock->header_error = 0; + sblock->generation_error = 0; + sblock->checksum_error = 0; + + WARN_ON(sblock->sector_count < 1); + flags = sblock->sectors[0]->flags; + ret = 0; + if (flags & BTRFS_EXTENT_FLAG_DATA) + ret = scrub_checksum_data(sblock); + else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) + ret = scrub_checksum_tree_block(sblock); + else if (flags & BTRFS_EXTENT_FLAG_SUPER) + ret = scrub_checksum_super(sblock); + else + WARN_ON(1); + if (ret) + scrub_handle_errored_block(sblock); + + return ret; +} + +static int scrub_checksum_data(struct scrub_block *sblock) +{ + struct scrub_ctx *sctx = sblock->sctx; + struct btrfs_fs_info *fs_info = sctx->fs_info; + SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); + u8 csum[BTRFS_CSUM_SIZE]; + struct scrub_sector *sector; + char *kaddr; + + BUG_ON(sblock->sector_count < 1); + sector = sblock->sectors[0]; + if (!sector->have_csum) + return 0; + + kaddr = scrub_sector_get_kaddr(sector); + + shash->tfm = fs_info->csum_shash; + crypto_shash_init(shash); + + crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum); + + if (memcmp(csum, sector->csum, fs_info->csum_size)) + sblock->checksum_error = 1; + return sblock->checksum_error; +} + +static int scrub_checksum_tree_block(struct scrub_block *sblock) +{ + struct scrub_ctx *sctx = sblock->sctx; + struct btrfs_header *h; + struct btrfs_fs_info *fs_info = sctx->fs_info; + SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); + u8 calculated_csum[BTRFS_CSUM_SIZE]; + u8 on_disk_csum[BTRFS_CSUM_SIZE]; + /* + * This is done in sectorsize steps even for metadata as there's a + * constraint for nodesize to be aligned to sectorsize. This will need + * to change so we don't misuse data and metadata units like that. + */ + const u32 sectorsize = sctx->fs_info->sectorsize; + const int num_sectors = fs_info->nodesize >> fs_info->sectorsize_bits; + int i; + struct scrub_sector *sector; + char *kaddr; + + BUG_ON(sblock->sector_count < 1); + + /* Each member in sectors is just one sector */ + ASSERT(sblock->sector_count == num_sectors); + + sector = sblock->sectors[0]; + kaddr = scrub_sector_get_kaddr(sector); + h = (struct btrfs_header *)kaddr; + memcpy(on_disk_csum, h->csum, sctx->fs_info->csum_size); + + /* + * we don't use the getter functions here, as we + * a) don't have an extent buffer and + * b) the page is already kmapped + */ + if (sblock->logical != btrfs_stack_header_bytenr(h)) { + sblock->header_error = 1; + btrfs_warn_rl(fs_info, + "tree block %llu mirror %u has bad bytenr, has %llu want %llu", + sblock->logical, sblock->mirror_num, + btrfs_stack_header_bytenr(h), + sblock->logical); + goto out; + } + + if (!scrub_check_fsid(h->fsid, sector)) { + sblock->header_error = 1; + btrfs_warn_rl(fs_info, + "tree block %llu mirror %u has bad fsid, has %pU want %pU", + sblock->logical, sblock->mirror_num, + h->fsid, sblock->dev->fs_devices->fsid); + goto out; + } + + if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid, BTRFS_UUID_SIZE)) { + sblock->header_error = 1; + btrfs_warn_rl(fs_info, + "tree block %llu mirror %u has bad chunk tree uuid, has %pU want %pU", + sblock->logical, sblock->mirror_num, + h->chunk_tree_uuid, fs_info->chunk_tree_uuid); + goto out; + } + + shash->tfm = fs_info->csum_shash; + crypto_shash_init(shash); + crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE, + sectorsize - BTRFS_CSUM_SIZE); + + for (i = 1; i < num_sectors; i++) { + kaddr = scrub_sector_get_kaddr(sblock->sectors[i]); + crypto_shash_update(shash, kaddr, sectorsize); + } + + crypto_shash_final(shash, calculated_csum); + if (memcmp(calculated_csum, on_disk_csum, sctx->fs_info->csum_size)) { + sblock->checksum_error = 1; + btrfs_warn_rl(fs_info, + "tree block %llu mirror %u has bad csum, has " CSUM_FMT " want " CSUM_FMT, + sblock->logical, sblock->mirror_num, + CSUM_FMT_VALUE(fs_info->csum_size, on_disk_csum), + CSUM_FMT_VALUE(fs_info->csum_size, calculated_csum)); + goto out; + } + + if (sector->generation != btrfs_stack_header_generation(h)) { + sblock->header_error = 1; + sblock->generation_error = 1; + btrfs_warn_rl(fs_info, + "tree block %llu mirror %u has bad generation, has %llu want %llu", + sblock->logical, sblock->mirror_num, + btrfs_stack_header_generation(h), + sector->generation); + } + +out: + return sblock->header_error || sblock->checksum_error; +} + +static int scrub_checksum_super(struct scrub_block *sblock) +{ + struct btrfs_super_block *s; + struct scrub_ctx *sctx = sblock->sctx; + struct btrfs_fs_info *fs_info = sctx->fs_info; + SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); + u8 calculated_csum[BTRFS_CSUM_SIZE]; + struct scrub_sector *sector; + char *kaddr; + int fail_gen = 0; + int fail_cor = 0; + + BUG_ON(sblock->sector_count < 1); + sector = sblock->sectors[0]; + kaddr = scrub_sector_get_kaddr(sector); + s = (struct btrfs_super_block *)kaddr; + + if (sblock->logical != btrfs_super_bytenr(s)) + ++fail_cor; + + if (sector->generation != btrfs_super_generation(s)) + ++fail_gen; + + if (!scrub_check_fsid(s->fsid, sector)) + ++fail_cor; + + shash->tfm = fs_info->csum_shash; + crypto_shash_init(shash); + crypto_shash_digest(shash, kaddr + BTRFS_CSUM_SIZE, + BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, calculated_csum); + + if (memcmp(calculated_csum, s->csum, sctx->fs_info->csum_size)) + ++fail_cor; + + return fail_cor + fail_gen; +} + +static void scrub_block_put(struct scrub_block *sblock) +{ + if (refcount_dec_and_test(&sblock->refs)) { + int i; + + if (sblock->sparity) + scrub_parity_put(sblock->sparity); + + for (i = 0; i < sblock->sector_count; i++) + scrub_sector_put(sblock->sectors[i]); + for (i = 0; i < DIV_ROUND_UP(sblock->len, PAGE_SIZE); i++) { + if (sblock->pages[i]) { + detach_scrub_page_private(sblock->pages[i]); + __free_page(sblock->pages[i]); + } + } + kfree(sblock); + } +} + +static void scrub_sector_get(struct scrub_sector *sector) +{ + atomic_inc(§or->refs); +} + +static void scrub_sector_put(struct scrub_sector *sector) +{ + if (atomic_dec_and_test(§or->refs)) + kfree(sector); +} + +/* + * Throttling of IO submission, bandwidth-limit based, the timeslice is 1 + * second. Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max. + */ +static void scrub_throttle(struct scrub_ctx *sctx) +{ + const int time_slice = 1000; + struct scrub_bio *sbio; + struct btrfs_device *device; + s64 delta; + ktime_t now; + u32 div; + u64 bwlimit; + + sbio = sctx->bios[sctx->curr]; + device = sbio->dev; + bwlimit = READ_ONCE(device->scrub_speed_max); + if (bwlimit == 0) + return; + + /* + * Slice is divided into intervals when the IO is submitted, adjust by + * bwlimit and maximum of 64 intervals. + */ + div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024))); + div = min_t(u32, 64, div); + + /* Start new epoch, set deadline */ + now = ktime_get(); + if (sctx->throttle_deadline == 0) { + sctx->throttle_deadline = ktime_add_ms(now, time_slice / div); + sctx->throttle_sent = 0; + } + + /* Still in the time to send? */ + if (ktime_before(now, sctx->throttle_deadline)) { + /* If current bio is within the limit, send it */ + sctx->throttle_sent += sbio->bio->bi_iter.bi_size; + if (sctx->throttle_sent <= div_u64(bwlimit, div)) + return; + + /* We're over the limit, sleep until the rest of the slice */ + delta = ktime_ms_delta(sctx->throttle_deadline, now); + } else { + /* New request after deadline, start new epoch */ + delta = 0; + } + + if (delta) { + long timeout; + + timeout = div_u64(delta * HZ, 1000); + schedule_timeout_interruptible(timeout); + } + + /* Next call will start the deadline period */ + sctx->throttle_deadline = 0; +} + +static void scrub_submit(struct scrub_ctx *sctx) +{ + struct scrub_bio *sbio; + + if (sctx->curr == -1) + return; + + scrub_throttle(sctx); + + sbio = sctx->bios[sctx->curr]; + sctx->curr = -1; + scrub_pending_bio_inc(sctx); + btrfsic_check_bio(sbio->bio); + submit_bio(sbio->bio); +} + +static int scrub_add_sector_to_rd_bio(struct scrub_ctx *sctx, + struct scrub_sector *sector) +{ + struct scrub_block *sblock = sector->sblock; + struct scrub_bio *sbio; + const u32 sectorsize = sctx->fs_info->sectorsize; + int ret; + +again: + /* + * grab a fresh bio or wait for one to become available + */ + while (sctx->curr == -1) { + spin_lock(&sctx->list_lock); + sctx->curr = sctx->first_free; + if (sctx->curr != -1) { + sctx->first_free = sctx->bios[sctx->curr]->next_free; + sctx->bios[sctx->curr]->next_free = -1; + sctx->bios[sctx->curr]->sector_count = 0; + spin_unlock(&sctx->list_lock); + } else { + spin_unlock(&sctx->list_lock); + wait_event(sctx->list_wait, sctx->first_free != -1); + } + } + sbio = sctx->bios[sctx->curr]; + if (sbio->sector_count == 0) { + sbio->physical = sblock->physical + sector->offset; + sbio->logical = sblock->logical + sector->offset; + sbio->dev = sblock->dev; + if (!sbio->bio) { + sbio->bio = bio_alloc(sbio->dev->bdev, sctx->sectors_per_bio, + REQ_OP_READ, GFP_NOFS); + } + sbio->bio->bi_private = sbio; + sbio->bio->bi_end_io = scrub_bio_end_io; + sbio->bio->bi_iter.bi_sector = sbio->physical >> 9; + sbio->status = 0; + } else if (sbio->physical + sbio->sector_count * sectorsize != + sblock->physical + sector->offset || + sbio->logical + sbio->sector_count * sectorsize != + sblock->logical + sector->offset || + sbio->dev != sblock->dev) { + scrub_submit(sctx); + goto again; + } + + sbio->sectors[sbio->sector_count] = sector; + ret = bio_add_scrub_sector(sbio->bio, sector, sectorsize); + if (ret != sectorsize) { + if (sbio->sector_count < 1) { + bio_put(sbio->bio); + sbio->bio = NULL; + return -EIO; + } + scrub_submit(sctx); + goto again; + } + + scrub_block_get(sblock); /* one for the page added to the bio */ + atomic_inc(&sblock->outstanding_sectors); + sbio->sector_count++; + if (sbio->sector_count == sctx->sectors_per_bio) + scrub_submit(sctx); + + return 0; +} + +static void scrub_missing_raid56_end_io(struct bio *bio) +{ + struct scrub_block *sblock = bio->bi_private; + struct btrfs_fs_info *fs_info = sblock->sctx->fs_info; + + btrfs_bio_counter_dec(fs_info); + if (bio->bi_status) + sblock->no_io_error_seen = 0; + + bio_put(bio); + + queue_work(fs_info->scrub_workers, &sblock->work); +} + +static void scrub_missing_raid56_worker(struct work_struct *work) +{ + struct scrub_block *sblock = container_of(work, struct scrub_block, work); + struct scrub_ctx *sctx = sblock->sctx; + struct btrfs_fs_info *fs_info = sctx->fs_info; + u64 logical; + struct btrfs_device *dev; + + logical = sblock->logical; + dev = sblock->dev; + + if (sblock->no_io_error_seen) + scrub_recheck_block_checksum(sblock); + + if (!sblock->no_io_error_seen) { + spin_lock(&sctx->stat_lock); + sctx->stat.read_errors++; + spin_unlock(&sctx->stat_lock); + btrfs_err_rl_in_rcu(fs_info, + "IO error rebuilding logical %llu for dev %s", + logical, rcu_str_deref(dev->name)); + } else if (sblock->header_error || sblock->checksum_error) { + spin_lock(&sctx->stat_lock); + sctx->stat.uncorrectable_errors++; + spin_unlock(&sctx->stat_lock); + btrfs_err_rl_in_rcu(fs_info, + "failed to rebuild valid logical %llu for dev %s", + logical, rcu_str_deref(dev->name)); + } else { + scrub_write_block_to_dev_replace(sblock); + } + + if (sctx->is_dev_replace && sctx->flush_all_writes) { + mutex_lock(&sctx->wr_lock); + scrub_wr_submit(sctx); + mutex_unlock(&sctx->wr_lock); + } + + scrub_block_put(sblock); + scrub_pending_bio_dec(sctx); +} + +static void scrub_missing_raid56_pages(struct scrub_block *sblock) +{ + struct scrub_ctx *sctx = sblock->sctx; + struct btrfs_fs_info *fs_info = sctx->fs_info; + u64 length = sblock->sector_count << fs_info->sectorsize_bits; + u64 logical = sblock->logical; + struct btrfs_io_context *bioc = NULL; + struct bio *bio; + struct btrfs_raid_bio *rbio; + int ret; + int i; + + btrfs_bio_counter_inc_blocked(fs_info); + ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical, + &length, &bioc); + if (ret || !bioc || !bioc->raid_map) + goto bioc_out; + + if (WARN_ON(!sctx->is_dev_replace || + !(bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) { + /* + * We shouldn't be scrubbing a missing device. Even for dev + * replace, we should only get here for RAID 5/6. We either + * managed to mount something with no mirrors remaining or + * there's a bug in scrub_find_good_copy()/btrfs_map_block(). + */ + goto bioc_out; + } + + bio = bio_alloc(NULL, BIO_MAX_VECS, REQ_OP_READ, GFP_NOFS); + bio->bi_iter.bi_sector = logical >> 9; + bio->bi_private = sblock; + bio->bi_end_io = scrub_missing_raid56_end_io; + + rbio = raid56_alloc_missing_rbio(bio, bioc); + if (!rbio) + goto rbio_out; + + for (i = 0; i < sblock->sector_count; i++) { + struct scrub_sector *sector = sblock->sectors[i]; + + raid56_add_scrub_pages(rbio, scrub_sector_get_page(sector), + scrub_sector_get_page_offset(sector), + sector->offset + sector->sblock->logical); + } + + INIT_WORK(&sblock->work, scrub_missing_raid56_worker); + scrub_block_get(sblock); + scrub_pending_bio_inc(sctx); + raid56_submit_missing_rbio(rbio); + btrfs_put_bioc(bioc); + return; + +rbio_out: + bio_put(bio); +bioc_out: + btrfs_bio_counter_dec(fs_info); + btrfs_put_bioc(bioc); + spin_lock(&sctx->stat_lock); + sctx->stat.malloc_errors++; + spin_unlock(&sctx->stat_lock); +} + +static int scrub_sectors(struct scrub_ctx *sctx, u64 logical, u32 len, + u64 physical, struct btrfs_device *dev, u64 flags, + u64 gen, int mirror_num, u8 *csum, + u64 physical_for_dev_replace) +{ + struct scrub_block *sblock; + const u32 sectorsize = sctx->fs_info->sectorsize; + int index; + + sblock = alloc_scrub_block(sctx, dev, logical, physical, + physical_for_dev_replace, mirror_num); + if (!sblock) { + spin_lock(&sctx->stat_lock); + sctx->stat.malloc_errors++; + spin_unlock(&sctx->stat_lock); + return -ENOMEM; + } + + for (index = 0; len > 0; index++) { + struct scrub_sector *sector; + /* + * Here we will allocate one page for one sector to scrub. + * This is fine if PAGE_SIZE == sectorsize, but will cost + * more memory for PAGE_SIZE > sectorsize case. + */ + u32 l = min(sectorsize, len); + + sector = alloc_scrub_sector(sblock, logical, GFP_KERNEL); + if (!sector) { + spin_lock(&sctx->stat_lock); + sctx->stat.malloc_errors++; + spin_unlock(&sctx->stat_lock); + scrub_block_put(sblock); + return -ENOMEM; + } + sector->flags = flags; + sector->generation = gen; + if (csum) { + sector->have_csum = 1; + memcpy(sector->csum, csum, sctx->fs_info->csum_size); + } else { + sector->have_csum = 0; + } + len -= l; + logical += l; + physical += l; + physical_for_dev_replace += l; + } + + WARN_ON(sblock->sector_count == 0); + if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) { + /* + * This case should only be hit for RAID 5/6 device replace. See + * the comment in scrub_missing_raid56_pages() for details. + */ + scrub_missing_raid56_pages(sblock); + } else { + for (index = 0; index < sblock->sector_count; index++) { + struct scrub_sector *sector = sblock->sectors[index]; + int ret; + + ret = scrub_add_sector_to_rd_bio(sctx, sector); + if (ret) { + scrub_block_put(sblock); + return ret; + } + } + + if (flags & BTRFS_EXTENT_FLAG_SUPER) + scrub_submit(sctx); + } + + /* last one frees, either here or in bio completion for last page */ + scrub_block_put(sblock); + return 0; +} + +static void scrub_bio_end_io(struct bio *bio) +{ + struct scrub_bio *sbio = bio->bi_private; + struct btrfs_fs_info *fs_info = sbio->dev->fs_info; + + sbio->status = bio->bi_status; + sbio->bio = bio; + + queue_work(fs_info->scrub_workers, &sbio->work); +} + +static void scrub_bio_end_io_worker(struct work_struct *work) +{ + struct scrub_bio *sbio = container_of(work, struct scrub_bio, work); + struct scrub_ctx *sctx = sbio->sctx; + int i; + + ASSERT(sbio->sector_count <= SCRUB_SECTORS_PER_BIO); + if (sbio->status) { + for (i = 0; i < sbio->sector_count; i++) { + struct scrub_sector *sector = sbio->sectors[i]; + + sector->io_error = 1; + sector->sblock->no_io_error_seen = 0; + } + } + + /* Now complete the scrub_block items that have all pages completed */ + for (i = 0; i < sbio->sector_count; i++) { + struct scrub_sector *sector = sbio->sectors[i]; + struct scrub_block *sblock = sector->sblock; + + if (atomic_dec_and_test(&sblock->outstanding_sectors)) + scrub_block_complete(sblock); + scrub_block_put(sblock); + } + + bio_put(sbio->bio); + sbio->bio = NULL; + spin_lock(&sctx->list_lock); + sbio->next_free = sctx->first_free; + sctx->first_free = sbio->index; + spin_unlock(&sctx->list_lock); + + if (sctx->is_dev_replace && sctx->flush_all_writes) { + mutex_lock(&sctx->wr_lock); + scrub_wr_submit(sctx); + mutex_unlock(&sctx->wr_lock); + } + + scrub_pending_bio_dec(sctx); +} + +static inline void __scrub_mark_bitmap(struct scrub_parity *sparity, + unsigned long *bitmap, + u64 start, u32 len) +{ + u64 offset; + u32 nsectors; + u32 sectorsize_bits = sparity->sctx->fs_info->sectorsize_bits; + + if (len >= sparity->stripe_len) { + bitmap_set(bitmap, 0, sparity->nsectors); + return; + } + + start -= sparity->logic_start; + start = div64_u64_rem(start, sparity->stripe_len, &offset); + offset = offset >> sectorsize_bits; + nsectors = len >> sectorsize_bits; + + if (offset + nsectors <= sparity->nsectors) { + bitmap_set(bitmap, offset, nsectors); + return; + } + + bitmap_set(bitmap, offset, sparity->nsectors - offset); + bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset)); +} + +static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity, + u64 start, u32 len) +{ + __scrub_mark_bitmap(sparity, &sparity->ebitmap, start, len); +} + +static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity, + u64 start, u32 len) +{ + __scrub_mark_bitmap(sparity, &sparity->dbitmap, start, len); +} + +static void scrub_block_complete(struct scrub_block *sblock) +{ + int corrupted = 0; + + if (!sblock->no_io_error_seen) { + corrupted = 1; + scrub_handle_errored_block(sblock); + } else { + /* + * if has checksum error, write via repair mechanism in + * dev replace case, otherwise write here in dev replace + * case. + */ + corrupted = scrub_checksum(sblock); + if (!corrupted && sblock->sctx->is_dev_replace) + scrub_write_block_to_dev_replace(sblock); + } + + if (sblock->sparity && corrupted && !sblock->data_corrected) { + u64 start = sblock->logical; + u64 end = sblock->logical + + sblock->sectors[sblock->sector_count - 1]->offset + + sblock->sctx->fs_info->sectorsize; + + ASSERT(end - start <= U32_MAX); + scrub_parity_mark_sectors_error(sblock->sparity, + start, end - start); + } +} + +static void drop_csum_range(struct scrub_ctx *sctx, struct btrfs_ordered_sum *sum) +{ + sctx->stat.csum_discards += sum->len >> sctx->fs_info->sectorsize_bits; + list_del(&sum->list); + kfree(sum); +} + +/* + * Find the desired csum for range [logical, logical + sectorsize), and store + * the csum into @csum. + * + * The search source is sctx->csum_list, which is a pre-populated list + * storing bytenr ordered csum ranges. We're responsible to cleanup any range + * that is before @logical. + * + * Return 0 if there is no csum for the range. + * Return 1 if there is csum for the range and copied to @csum. + */ +static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum) +{ + bool found = false; + + while (!list_empty(&sctx->csum_list)) { + struct btrfs_ordered_sum *sum = NULL; + unsigned long index; + unsigned long num_sectors; + + sum = list_first_entry(&sctx->csum_list, + struct btrfs_ordered_sum, list); + /* The current csum range is beyond our range, no csum found */ + if (sum->bytenr > logical) + break; + + /* + * The current sum is before our bytenr, since scrub is always + * done in bytenr order, the csum will never be used anymore, + * clean it up so that later calls won't bother with the range, + * and continue search the next range. + */ + if (sum->bytenr + sum->len <= logical) { + drop_csum_range(sctx, sum); + continue; + } + + /* Now the csum range covers our bytenr, copy the csum */ + found = true; + index = (logical - sum->bytenr) >> sctx->fs_info->sectorsize_bits; + num_sectors = sum->len >> sctx->fs_info->sectorsize_bits; + + memcpy(csum, sum->sums + index * sctx->fs_info->csum_size, + sctx->fs_info->csum_size); + + /* Cleanup the range if we're at the end of the csum range */ + if (index == num_sectors - 1) + drop_csum_range(sctx, sum); + break; + } + if (!found) + return 0; + return 1; +} + +/* scrub extent tries to collect up to 64 kB for each bio */ +static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map, + u64 logical, u32 len, + u64 physical, struct btrfs_device *dev, u64 flags, + u64 gen, int mirror_num) +{ + struct btrfs_device *src_dev = dev; + u64 src_physical = physical; + int src_mirror = mirror_num; + int ret; + u8 csum[BTRFS_CSUM_SIZE]; + u32 blocksize; + + if (flags & BTRFS_EXTENT_FLAG_DATA) { + if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) + blocksize = map->stripe_len; + else + blocksize = sctx->fs_info->sectorsize; + spin_lock(&sctx->stat_lock); + sctx->stat.data_extents_scrubbed++; + sctx->stat.data_bytes_scrubbed += len; + spin_unlock(&sctx->stat_lock); + } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { + if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) + blocksize = map->stripe_len; + else + blocksize = sctx->fs_info->nodesize; + spin_lock(&sctx->stat_lock); + sctx->stat.tree_extents_scrubbed++; + sctx->stat.tree_bytes_scrubbed += len; + spin_unlock(&sctx->stat_lock); + } else { + blocksize = sctx->fs_info->sectorsize; + WARN_ON(1); + } + + /* + * For dev-replace case, we can have @dev being a missing device. + * Regular scrub will avoid its execution on missing device at all, + * as that would trigger tons of read error. + * + * Reading from missing device will cause read error counts to + * increase unnecessarily. + * So here we change the read source to a good mirror. + */ + if (sctx->is_dev_replace && !dev->bdev) + scrub_find_good_copy(sctx->fs_info, logical, len, &src_physical, + &src_dev, &src_mirror); + while (len) { + u32 l = min(len, blocksize); + int have_csum = 0; + + if (flags & BTRFS_EXTENT_FLAG_DATA) { + /* push csums to sbio */ + have_csum = scrub_find_csum(sctx, logical, csum); + if (have_csum == 0) + ++sctx->stat.no_csum; + } + ret = scrub_sectors(sctx, logical, l, src_physical, src_dev, + flags, gen, src_mirror, + have_csum ? csum : NULL, physical); + if (ret) + return ret; + len -= l; + logical += l; + physical += l; + src_physical += l; + } + return 0; +} + +static int scrub_sectors_for_parity(struct scrub_parity *sparity, + u64 logical, u32 len, + u64 physical, struct btrfs_device *dev, + u64 flags, u64 gen, int mirror_num, u8 *csum) +{ + struct scrub_ctx *sctx = sparity->sctx; + struct scrub_block *sblock; + const u32 sectorsize = sctx->fs_info->sectorsize; + int index; + + ASSERT(IS_ALIGNED(len, sectorsize)); + + sblock = alloc_scrub_block(sctx, dev, logical, physical, physical, mirror_num); + if (!sblock) { + spin_lock(&sctx->stat_lock); + sctx->stat.malloc_errors++; + spin_unlock(&sctx->stat_lock); + return -ENOMEM; + } + + sblock->sparity = sparity; + scrub_parity_get(sparity); + + for (index = 0; len > 0; index++) { + struct scrub_sector *sector; + + sector = alloc_scrub_sector(sblock, logical, GFP_KERNEL); + if (!sector) { + spin_lock(&sctx->stat_lock); + sctx->stat.malloc_errors++; + spin_unlock(&sctx->stat_lock); + scrub_block_put(sblock); + return -ENOMEM; + } + sblock->sectors[index] = sector; + /* For scrub parity */ + scrub_sector_get(sector); + list_add_tail(§or->list, &sparity->sectors_list); + sector->flags = flags; + sector->generation = gen; + if (csum) { + sector->have_csum = 1; + memcpy(sector->csum, csum, sctx->fs_info->csum_size); + } else { + sector->have_csum = 0; + } + + /* Iterate over the stripe range in sectorsize steps */ + len -= sectorsize; + logical += sectorsize; + physical += sectorsize; + } + + WARN_ON(sblock->sector_count == 0); + for (index = 0; index < sblock->sector_count; index++) { + struct scrub_sector *sector = sblock->sectors[index]; + int ret; + + ret = scrub_add_sector_to_rd_bio(sctx, sector); + if (ret) { + scrub_block_put(sblock); + return ret; + } + } + + /* Last one frees, either here or in bio completion for last sector */ + scrub_block_put(sblock); + return 0; +} + +static int scrub_extent_for_parity(struct scrub_parity *sparity, + u64 logical, u32 len, + u64 physical, struct btrfs_device *dev, + u64 flags, u64 gen, int mirror_num) +{ + struct scrub_ctx *sctx = sparity->sctx; + int ret; + u8 csum[BTRFS_CSUM_SIZE]; + u32 blocksize; + + if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) { + scrub_parity_mark_sectors_error(sparity, logical, len); + return 0; + } + + if (flags & BTRFS_EXTENT_FLAG_DATA) { + blocksize = sparity->stripe_len; + } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { + blocksize = sparity->stripe_len; + } else { + blocksize = sctx->fs_info->sectorsize; + WARN_ON(1); + } + + while (len) { + u32 l = min(len, blocksize); + int have_csum = 0; + + if (flags & BTRFS_EXTENT_FLAG_DATA) { + /* push csums to sbio */ + have_csum = scrub_find_csum(sctx, logical, csum); + if (have_csum == 0) + goto skip; + } + ret = scrub_sectors_for_parity(sparity, logical, l, physical, dev, + flags, gen, mirror_num, + have_csum ? csum : NULL); + if (ret) + return ret; +skip: + len -= l; + logical += l; + physical += l; + } + return 0; +} + +/* + * Given a physical address, this will calculate it's + * logical offset. if this is a parity stripe, it will return + * the most left data stripe's logical offset. + * + * return 0 if it is a data stripe, 1 means parity stripe. + */ +static int get_raid56_logic_offset(u64 physical, int num, + struct map_lookup *map, u64 *offset, + u64 *stripe_start) +{ + int i; + int j = 0; + u64 stripe_nr; + u64 last_offset; + u32 stripe_index; + u32 rot; + const int data_stripes = nr_data_stripes(map); + + last_offset = (physical - map->stripes[num].physical) * data_stripes; + if (stripe_start) + *stripe_start = last_offset; + + *offset = last_offset; + for (i = 0; i < data_stripes; i++) { + *offset = last_offset + i * map->stripe_len; + + stripe_nr = div64_u64(*offset, map->stripe_len); + stripe_nr = div_u64(stripe_nr, data_stripes); + + /* Work out the disk rotation on this stripe-set */ + stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot); + /* calculate which stripe this data locates */ + rot += i; + stripe_index = rot % map->num_stripes; + if (stripe_index == num) + return 0; + if (stripe_index < num) + j++; + } + *offset = last_offset + j * map->stripe_len; + return 1; +} + +static void scrub_free_parity(struct scrub_parity *sparity) +{ + struct scrub_ctx *sctx = sparity->sctx; + struct scrub_sector *curr, *next; + int nbits; + + nbits = bitmap_weight(&sparity->ebitmap, sparity->nsectors); + if (nbits) { + spin_lock(&sctx->stat_lock); + sctx->stat.read_errors += nbits; + sctx->stat.uncorrectable_errors += nbits; + spin_unlock(&sctx->stat_lock); + } + + list_for_each_entry_safe(curr, next, &sparity->sectors_list, list) { + list_del_init(&curr->list); + scrub_sector_put(curr); + } + + kfree(sparity); +} + +static void scrub_parity_bio_endio_worker(struct work_struct *work) +{ + struct scrub_parity *sparity = container_of(work, struct scrub_parity, + work); + struct scrub_ctx *sctx = sparity->sctx; + + btrfs_bio_counter_dec(sctx->fs_info); + scrub_free_parity(sparity); + scrub_pending_bio_dec(sctx); +} + +static void scrub_parity_bio_endio(struct bio *bio) +{ + struct scrub_parity *sparity = bio->bi_private; + struct btrfs_fs_info *fs_info = sparity->sctx->fs_info; + + if (bio->bi_status) + bitmap_or(&sparity->ebitmap, &sparity->ebitmap, + &sparity->dbitmap, sparity->nsectors); + + bio_put(bio); + + INIT_WORK(&sparity->work, scrub_parity_bio_endio_worker); + queue_work(fs_info->scrub_parity_workers, &sparity->work); +} + +static void scrub_parity_check_and_repair(struct scrub_parity *sparity) +{ + struct scrub_ctx *sctx = sparity->sctx; + struct btrfs_fs_info *fs_info = sctx->fs_info; + struct bio *bio; + struct btrfs_raid_bio *rbio; + struct btrfs_io_context *bioc = NULL; + u64 length; + int ret; + + if (!bitmap_andnot(&sparity->dbitmap, &sparity->dbitmap, + &sparity->ebitmap, sparity->nsectors)) + goto out; + + length = sparity->logic_end - sparity->logic_start; + + btrfs_bio_counter_inc_blocked(fs_info); + ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start, + &length, &bioc); + if (ret || !bioc || !bioc->raid_map) + goto bioc_out; + + bio = bio_alloc(NULL, BIO_MAX_VECS, REQ_OP_READ, GFP_NOFS); + bio->bi_iter.bi_sector = sparity->logic_start >> 9; + bio->bi_private = sparity; + bio->bi_end_io = scrub_parity_bio_endio; + + rbio = raid56_parity_alloc_scrub_rbio(bio, bioc, + sparity->scrub_dev, + &sparity->dbitmap, + sparity->nsectors); + btrfs_put_bioc(bioc); + if (!rbio) + goto rbio_out; + + scrub_pending_bio_inc(sctx); + raid56_parity_submit_scrub_rbio(rbio); + return; + +rbio_out: + bio_put(bio); +bioc_out: + btrfs_bio_counter_dec(fs_info); + bitmap_or(&sparity->ebitmap, &sparity->ebitmap, &sparity->dbitmap, + sparity->nsectors); + spin_lock(&sctx->stat_lock); + sctx->stat.malloc_errors++; + spin_unlock(&sctx->stat_lock); +out: + scrub_free_parity(sparity); +} + +static void scrub_parity_get(struct scrub_parity *sparity) +{ + refcount_inc(&sparity->refs); +} + +static void scrub_parity_put(struct scrub_parity *sparity) +{ + if (!refcount_dec_and_test(&sparity->refs)) + return; + + scrub_parity_check_and_repair(sparity); +} + +/* + * Return 0 if the extent item range covers any byte of the range. + * Return <0 if the extent item is before @search_start. + * Return >0 if the extent item is after @start_start + @search_len. + */ +static int compare_extent_item_range(struct btrfs_path *path, + u64 search_start, u64 search_len) +{ + struct btrfs_fs_info *fs_info = path->nodes[0]->fs_info; + u64 len; + struct btrfs_key key; + + btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); + ASSERT(key.type == BTRFS_EXTENT_ITEM_KEY || + key.type == BTRFS_METADATA_ITEM_KEY); + if (key.type == BTRFS_METADATA_ITEM_KEY) + len = fs_info->nodesize; + else + len = key.offset; + + if (key.objectid + len <= search_start) + return -1; + if (key.objectid >= search_start + search_len) + return 1; + return 0; +} + +/* + * Locate one extent item which covers any byte in range + * [@search_start, @search_start + @search_length) + * + * If the path is not initialized, we will initialize the search by doing + * a btrfs_search_slot(). + * If the path is already initialized, we will use the path as the initial + * slot, to avoid duplicated btrfs_search_slot() calls. + * + * NOTE: If an extent item starts before @search_start, we will still + * return the extent item. This is for data extent crossing stripe boundary. + * + * Return 0 if we found such extent item, and @path will point to the extent item. + * Return >0 if no such extent item can be found, and @path will be released. + * Return <0 if hit fatal error, and @path will be released. + */ +static int find_first_extent_item(struct btrfs_root *extent_root, + struct btrfs_path *path, + u64 search_start, u64 search_len) +{ + struct btrfs_fs_info *fs_info = extent_root->fs_info; + struct btrfs_key key; + int ret; + + /* Continue using the existing path */ + if (path->nodes[0]) + goto search_forward; + + if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) + key.type = BTRFS_METADATA_ITEM_KEY; + else + key.type = BTRFS_EXTENT_ITEM_KEY; + key.objectid = search_start; + key.offset = (u64)-1; + + ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); + if (ret < 0) + return ret; + + ASSERT(ret > 0); + /* + * Here we intentionally pass 0 as @min_objectid, as there could be + * an extent item starting before @search_start. + */ + ret = btrfs_previous_extent_item(extent_root, path, 0); + if (ret < 0) + return ret; + /* + * No matter whether we have found an extent item, the next loop will + * properly do every check on the key. + */ +search_forward: + while (true) { + btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); + if (key.objectid >= search_start + search_len) + break; + if (key.type != BTRFS_METADATA_ITEM_KEY && + key.type != BTRFS_EXTENT_ITEM_KEY) + goto next; + + ret = compare_extent_item_range(path, search_start, search_len); + if (ret == 0) + return ret; + if (ret > 0) + break; +next: + path->slots[0]++; + if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { + ret = btrfs_next_leaf(extent_root, path); + if (ret) { + /* Either no more item or fatal error */ + btrfs_release_path(path); + return ret; + } + } + } + btrfs_release_path(path); + return 1; +} + +static void get_extent_info(struct btrfs_path *path, u64 *extent_start_ret, + u64 *size_ret, u64 *flags_ret, u64 *generation_ret) +{ + struct btrfs_key key; + struct btrfs_extent_item *ei; + + btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); + ASSERT(key.type == BTRFS_METADATA_ITEM_KEY || + key.type == BTRFS_EXTENT_ITEM_KEY); + *extent_start_ret = key.objectid; + if (key.type == BTRFS_METADATA_ITEM_KEY) + *size_ret = path->nodes[0]->fs_info->nodesize; + else + *size_ret = key.offset; + ei = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_extent_item); + *flags_ret = btrfs_extent_flags(path->nodes[0], ei); + *generation_ret = btrfs_extent_generation(path->nodes[0], ei); +} + +static bool does_range_cross_boundary(u64 extent_start, u64 extent_len, + u64 boundary_start, u64 boudary_len) +{ + return (extent_start < boundary_start && + extent_start + extent_len > boundary_start) || + (extent_start < boundary_start + boudary_len && + extent_start + extent_len > boundary_start + boudary_len); +} + +static int scrub_raid56_data_stripe_for_parity(struct scrub_ctx *sctx, + struct scrub_parity *sparity, + struct map_lookup *map, + struct btrfs_device *sdev, + struct btrfs_path *path, + u64 logical) +{ + struct btrfs_fs_info *fs_info = sctx->fs_info; + struct btrfs_root *extent_root = btrfs_extent_root(fs_info, logical); + struct btrfs_root *csum_root = btrfs_csum_root(fs_info, logical); + u64 cur_logical = logical; + int ret; + + ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK); + + /* Path must not be populated */ + ASSERT(!path->nodes[0]); + + while (cur_logical < logical + map->stripe_len) { + struct btrfs_io_context *bioc = NULL; + struct btrfs_device *extent_dev; + u64 extent_start; + u64 extent_size; + u64 mapped_length; + u64 extent_flags; + u64 extent_gen; + u64 extent_physical; + u64 extent_mirror_num; + + ret = find_first_extent_item(extent_root, path, cur_logical, + logical + map->stripe_len - cur_logical); + /* No more extent item in this data stripe */ + if (ret > 0) { + ret = 0; + break; + } + if (ret < 0) + break; + get_extent_info(path, &extent_start, &extent_size, &extent_flags, + &extent_gen); + + /* Metadata should not cross stripe boundaries */ + if ((extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) && + does_range_cross_boundary(extent_start, extent_size, + logical, map->stripe_len)) { + btrfs_err(fs_info, + "scrub: tree block %llu spanning stripes, ignored. logical=%llu", + extent_start, logical); + spin_lock(&sctx->stat_lock); + sctx->stat.uncorrectable_errors++; + spin_unlock(&sctx->stat_lock); + cur_logical += extent_size; + continue; + } + + /* Skip hole range which doesn't have any extent */ + cur_logical = max(extent_start, cur_logical); + + /* Truncate the range inside this data stripe */ + extent_size = min(extent_start + extent_size, + logical + map->stripe_len) - cur_logical; + extent_start = cur_logical; + ASSERT(extent_size <= U32_MAX); + + scrub_parity_mark_sectors_data(sparity, extent_start, extent_size); + + mapped_length = extent_size; + ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_start, + &mapped_length, &bioc, 0); + if (!ret && (!bioc || mapped_length < extent_size)) + ret = -EIO; + if (ret) { + btrfs_put_bioc(bioc); + scrub_parity_mark_sectors_error(sparity, extent_start, + extent_size); + break; + } + extent_physical = bioc->stripes[0].physical; + extent_mirror_num = bioc->mirror_num; + extent_dev = bioc->stripes[0].dev; + btrfs_put_bioc(bioc); + + ret = btrfs_lookup_csums_range(csum_root, extent_start, + extent_start + extent_size - 1, + &sctx->csum_list, 1, false); + if (ret) { + scrub_parity_mark_sectors_error(sparity, extent_start, + extent_size); + break; + } + + ret = scrub_extent_for_parity(sparity, extent_start, + extent_size, extent_physical, + extent_dev, extent_flags, + extent_gen, extent_mirror_num); + scrub_free_csums(sctx); + + if (ret) { + scrub_parity_mark_sectors_error(sparity, extent_start, + extent_size); + break; + } + + cond_resched(); + cur_logical += extent_size; + } + btrfs_release_path(path); + return ret; +} + +static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx, + struct map_lookup *map, + struct btrfs_device *sdev, + u64 logic_start, + u64 logic_end) +{ + struct btrfs_fs_info *fs_info = sctx->fs_info; + struct btrfs_path *path; + u64 cur_logical; + int ret; + struct scrub_parity *sparity; + int nsectors; + + path = btrfs_alloc_path(); + if (!path) { + spin_lock(&sctx->stat_lock); + sctx->stat.malloc_errors++; + spin_unlock(&sctx->stat_lock); + return -ENOMEM; + } + path->search_commit_root = 1; + path->skip_locking = 1; + + ASSERT(map->stripe_len <= U32_MAX); + nsectors = map->stripe_len >> fs_info->sectorsize_bits; + ASSERT(nsectors <= BITS_PER_LONG); + sparity = kzalloc(sizeof(struct scrub_parity), GFP_NOFS); + if (!sparity) { + spin_lock(&sctx->stat_lock); + sctx->stat.malloc_errors++; + spin_unlock(&sctx->stat_lock); + btrfs_free_path(path); + return -ENOMEM; + } + + ASSERT(map->stripe_len <= U32_MAX); + sparity->stripe_len = map->stripe_len; + sparity->nsectors = nsectors; + sparity->sctx = sctx; + sparity->scrub_dev = sdev; + sparity->logic_start = logic_start; + sparity->logic_end = logic_end; + refcount_set(&sparity->refs, 1); + INIT_LIST_HEAD(&sparity->sectors_list); + + ret = 0; + for (cur_logical = logic_start; cur_logical < logic_end; + cur_logical += map->stripe_len) { + ret = scrub_raid56_data_stripe_for_parity(sctx, sparity, map, + sdev, path, cur_logical); + if (ret < 0) + break; + } + + scrub_parity_put(sparity); + scrub_submit(sctx); + mutex_lock(&sctx->wr_lock); + scrub_wr_submit(sctx); + mutex_unlock(&sctx->wr_lock); + + btrfs_free_path(path); + return ret < 0 ? ret : 0; +} + +static void sync_replace_for_zoned(struct scrub_ctx *sctx) +{ + if (!btrfs_is_zoned(sctx->fs_info)) + return; + + sctx->flush_all_writes = true; + scrub_submit(sctx); + mutex_lock(&sctx->wr_lock); + scrub_wr_submit(sctx); + mutex_unlock(&sctx->wr_lock); + + wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0); +} + +static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical, + u64 physical, u64 physical_end) +{ + struct btrfs_fs_info *fs_info = sctx->fs_info; + int ret = 0; + + if (!btrfs_is_zoned(fs_info)) + return 0; + + wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0); + + mutex_lock(&sctx->wr_lock); + if (sctx->write_pointer < physical_end) { + ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical, + physical, + sctx->write_pointer); + if (ret) + btrfs_err(fs_info, + "zoned: failed to recover write pointer"); + } + mutex_unlock(&sctx->wr_lock); + btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical); + + return ret; +} + +/* + * Scrub one range which can only has simple mirror based profile. + * (Including all range in SINGLE/DUP/RAID1/RAID1C*, and each stripe in + * RAID0/RAID10). + * + * Since we may need to handle a subset of block group, we need @logical_start + * and @logical_length parameter. + */ +static int scrub_simple_mirror(struct scrub_ctx *sctx, + struct btrfs_root *extent_root, + struct btrfs_root *csum_root, + struct btrfs_block_group *bg, + struct map_lookup *map, + u64 logical_start, u64 logical_length, + struct btrfs_device *device, + u64 physical, int mirror_num) +{ + struct btrfs_fs_info *fs_info = sctx->fs_info; + const u64 logical_end = logical_start + logical_length; + /* An artificial limit, inherit from old scrub behavior */ + const u32 max_length = SZ_64K; + struct btrfs_path path = { 0 }; + u64 cur_logical = logical_start; + int ret; + + /* The range must be inside the bg */ + ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length); + + path.search_commit_root = 1; + path.skip_locking = 1; + /* Go through each extent items inside the logical range */ + while (cur_logical < logical_end) { + u64 extent_start; + u64 extent_len; + u64 extent_flags; + u64 extent_gen; + u64 scrub_len; + + /* Canceled? */ + if (atomic_read(&fs_info->scrub_cancel_req) || + atomic_read(&sctx->cancel_req)) { + ret = -ECANCELED; + break; + } + /* Paused? */ + if (atomic_read(&fs_info->scrub_pause_req)) { + /* Push queued extents */ + sctx->flush_all_writes = true; + scrub_submit(sctx); + mutex_lock(&sctx->wr_lock); + scrub_wr_submit(sctx); + mutex_unlock(&sctx->wr_lock); + wait_event(sctx->list_wait, + atomic_read(&sctx->bios_in_flight) == 0); + sctx->flush_all_writes = false; + scrub_blocked_if_needed(fs_info); + } + /* Block group removed? */ + spin_lock(&bg->lock); + if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags)) { + spin_unlock(&bg->lock); + ret = 0; + break; + } + spin_unlock(&bg->lock); + + ret = find_first_extent_item(extent_root, &path, cur_logical, + logical_end - cur_logical); + if (ret > 0) { + /* No more extent, just update the accounting */ + sctx->stat.last_physical = physical + logical_length; + ret = 0; + break; + } + if (ret < 0) + break; + get_extent_info(&path, &extent_start, &extent_len, + &extent_flags, &extent_gen); + /* Skip hole range which doesn't have any extent */ + cur_logical = max(extent_start, cur_logical); + + /* + * Scrub len has three limits: + * - Extent size limit + * - Scrub range limit + * This is especially imporatant for RAID0/RAID10 to reuse + * this function + * - Max scrub size limit + */ + scrub_len = min(min(extent_start + extent_len, + logical_end), cur_logical + max_length) - + cur_logical; + + if (extent_flags & BTRFS_EXTENT_FLAG_DATA) { + ret = btrfs_lookup_csums_range(csum_root, cur_logical, + cur_logical + scrub_len - 1, + &sctx->csum_list, 1, false); + if (ret) + break; + } + if ((extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) && + does_range_cross_boundary(extent_start, extent_len, + logical_start, logical_length)) { + btrfs_err(fs_info, +"scrub: tree block %llu spanning boundaries, ignored. boundary=[%llu, %llu)", + extent_start, logical_start, logical_end); + spin_lock(&sctx->stat_lock); + sctx->stat.uncorrectable_errors++; + spin_unlock(&sctx->stat_lock); + cur_logical += scrub_len; + continue; + } + ret = scrub_extent(sctx, map, cur_logical, scrub_len, + cur_logical - logical_start + physical, + device, extent_flags, extent_gen, + mirror_num); + scrub_free_csums(sctx); + if (ret) + break; + if (sctx->is_dev_replace) + sync_replace_for_zoned(sctx); + cur_logical += scrub_len; + /* Don't hold CPU for too long time */ + cond_resched(); + } + btrfs_release_path(&path); + return ret; +} + +/* Calculate the full stripe length for simple stripe based profiles */ +static u64 simple_stripe_full_stripe_len(const struct map_lookup *map) +{ + ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 | + BTRFS_BLOCK_GROUP_RAID10)); + + return map->num_stripes / map->sub_stripes * map->stripe_len; +} + +/* Get the logical bytenr for the stripe */ +static u64 simple_stripe_get_logical(struct map_lookup *map, + struct btrfs_block_group *bg, + int stripe_index) +{ + ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 | + BTRFS_BLOCK_GROUP_RAID10)); + ASSERT(stripe_index < map->num_stripes); + + /* + * (stripe_index / sub_stripes) gives how many data stripes we need to + * skip. + */ + return (stripe_index / map->sub_stripes) * map->stripe_len + bg->start; +} + +/* Get the mirror number for the stripe */ +static int simple_stripe_mirror_num(struct map_lookup *map, int stripe_index) +{ + ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 | + BTRFS_BLOCK_GROUP_RAID10)); + ASSERT(stripe_index < map->num_stripes); + + /* For RAID0, it's fixed to 1, for RAID10 it's 0,1,0,1... */ + return stripe_index % map->sub_stripes + 1; +} + +static int scrub_simple_stripe(struct scrub_ctx *sctx, + struct btrfs_root *extent_root, + struct btrfs_root *csum_root, + struct btrfs_block_group *bg, + struct map_lookup *map, + struct btrfs_device *device, + int stripe_index) +{ + const u64 logical_increment = simple_stripe_full_stripe_len(map); + const u64 orig_logical = simple_stripe_get_logical(map, bg, stripe_index); + const u64 orig_physical = map->stripes[stripe_index].physical; + const int mirror_num = simple_stripe_mirror_num(map, stripe_index); + u64 cur_logical = orig_logical; + u64 cur_physical = orig_physical; + int ret = 0; + + while (cur_logical < bg->start + bg->length) { + /* + * Inside each stripe, RAID0 is just SINGLE, and RAID10 is + * just RAID1, so we can reuse scrub_simple_mirror() to scrub + * this stripe. + */ + ret = scrub_simple_mirror(sctx, extent_root, csum_root, bg, map, + cur_logical, map->stripe_len, device, + cur_physical, mirror_num); + if (ret) + return ret; + /* Skip to next stripe which belongs to the target device */ + cur_logical += logical_increment; + /* For physical offset, we just go to next stripe */ + cur_physical += map->stripe_len; + } + return ret; +} + +static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx, + struct btrfs_block_group *bg, + struct extent_map *em, + struct btrfs_device *scrub_dev, + int stripe_index) +{ + struct btrfs_path *path; + struct btrfs_fs_info *fs_info = sctx->fs_info; + struct btrfs_root *root; + struct btrfs_root *csum_root; + struct blk_plug plug; + struct map_lookup *map = em->map_lookup; + const u64 profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK; + const u64 chunk_logical = bg->start; + int ret; + u64 physical = map->stripes[stripe_index].physical; + const u64 dev_stripe_len = btrfs_calc_stripe_length(em); + const u64 physical_end = physical + dev_stripe_len; + u64 logical; + u64 logic_end; + /* The logical increment after finishing one stripe */ + u64 increment; + /* Offset inside the chunk */ + u64 offset; + u64 stripe_logical; + u64 stripe_end; + int stop_loop = 0; + + path = btrfs_alloc_path(); + if (!path) + return -ENOMEM; + + /* + * work on commit root. The related disk blocks are static as + * long as COW is applied. This means, it is save to rewrite + * them to repair disk errors without any race conditions + */ + path->search_commit_root = 1; + path->skip_locking = 1; + path->reada = READA_FORWARD; + + wait_event(sctx->list_wait, + atomic_read(&sctx->bios_in_flight) == 0); + scrub_blocked_if_needed(fs_info); + + root = btrfs_extent_root(fs_info, bg->start); + csum_root = btrfs_csum_root(fs_info, bg->start); + + /* + * collect all data csums for the stripe to avoid seeking during + * the scrub. This might currently (crc32) end up to be about 1MB + */ + blk_start_plug(&plug); + + if (sctx->is_dev_replace && + btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) { + mutex_lock(&sctx->wr_lock); + sctx->write_pointer = physical; + mutex_unlock(&sctx->wr_lock); + sctx->flush_all_writes = true; + } + + /* + * There used to be a big double loop to handle all profiles using the + * same routine, which grows larger and more gross over time. + * + * So here we handle each profile differently, so simpler profiles + * have simpler scrubbing function. + */ + if (!(profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10 | + BTRFS_BLOCK_GROUP_RAID56_MASK))) { + /* + * Above check rules out all complex profile, the remaining + * profiles are SINGLE|DUP|RAID1|RAID1C*, which is simple + * mirrored duplication without stripe. + * + * Only @physical and @mirror_num needs to calculated using + * @stripe_index. + */ + ret = scrub_simple_mirror(sctx, root, csum_root, bg, map, + bg->start, bg->length, scrub_dev, + map->stripes[stripe_index].physical, + stripe_index + 1); + offset = 0; + goto out; + } + if (profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) { + ret = scrub_simple_stripe(sctx, root, csum_root, bg, map, + scrub_dev, stripe_index); + offset = map->stripe_len * (stripe_index / map->sub_stripes); + goto out; + } + + /* Only RAID56 goes through the old code */ + ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK); + ret = 0; + + /* Calculate the logical end of the stripe */ + get_raid56_logic_offset(physical_end, stripe_index, + map, &logic_end, NULL); + logic_end += chunk_logical; + + /* Initialize @offset in case we need to go to out: label */ + get_raid56_logic_offset(physical, stripe_index, map, &offset, NULL); + increment = map->stripe_len * nr_data_stripes(map); + + /* + * Due to the rotation, for RAID56 it's better to iterate each stripe + * using their physical offset. + */ + while (physical < physical_end) { + ret = get_raid56_logic_offset(physical, stripe_index, map, + &logical, &stripe_logical); + logical += chunk_logical; + if (ret) { + /* it is parity strip */ + stripe_logical += chunk_logical; + stripe_end = stripe_logical + increment; + ret = scrub_raid56_parity(sctx, map, scrub_dev, + stripe_logical, + stripe_end); + if (ret) + goto out; + goto next; + } + + /* + * Now we're at a data stripe, scrub each extents in the range. + * + * At this stage, if we ignore the repair part, inside each data + * stripe it is no different than SINGLE profile. + * We can reuse scrub_simple_mirror() here, as the repair part + * is still based on @mirror_num. + */ + ret = scrub_simple_mirror(sctx, root, csum_root, bg, map, + logical, map->stripe_len, + scrub_dev, physical, 1); + if (ret < 0) + goto out; +next: + logical += increment; + physical += map->stripe_len; + spin_lock(&sctx->stat_lock); + if (stop_loop) + sctx->stat.last_physical = + map->stripes[stripe_index].physical + dev_stripe_len; + else + sctx->stat.last_physical = physical; + spin_unlock(&sctx->stat_lock); + if (stop_loop) + break; + } +out: + /* push queued extents */ + scrub_submit(sctx); + mutex_lock(&sctx->wr_lock); + scrub_wr_submit(sctx); + mutex_unlock(&sctx->wr_lock); + + blk_finish_plug(&plug); + btrfs_free_path(path); + + if (sctx->is_dev_replace && ret >= 0) { + int ret2; + + ret2 = sync_write_pointer_for_zoned(sctx, + chunk_logical + offset, + map->stripes[stripe_index].physical, + physical_end); + if (ret2) + ret = ret2; + } + + return ret < 0 ? ret : 0; +} + +static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx, + struct btrfs_block_group *bg, + struct btrfs_device *scrub_dev, + u64 dev_offset, + u64 dev_extent_len) +{ + struct btrfs_fs_info *fs_info = sctx->fs_info; + struct extent_map_tree *map_tree = &fs_info->mapping_tree; + struct map_lookup *map; + struct extent_map *em; + int i; + int ret = 0; + + read_lock(&map_tree->lock); + em = lookup_extent_mapping(map_tree, bg->start, bg->length); + read_unlock(&map_tree->lock); + + if (!em) { + /* + * Might have been an unused block group deleted by the cleaner + * kthread or relocation. + */ + spin_lock(&bg->lock); + if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags)) + ret = -EINVAL; + spin_unlock(&bg->lock); + + return ret; + } + if (em->start != bg->start) + goto out; + if (em->len < dev_extent_len) + goto out; + + map = em->map_lookup; + for (i = 0; i < map->num_stripes; ++i) { + if (map->stripes[i].dev->bdev == scrub_dev->bdev && + map->stripes[i].physical == dev_offset) { + ret = scrub_stripe(sctx, bg, em, scrub_dev, i); + if (ret) + goto out; + } + } +out: + free_extent_map(em); + + return ret; +} + +static int finish_extent_writes_for_zoned(struct btrfs_root *root, + struct btrfs_block_group *cache) +{ + struct btrfs_fs_info *fs_info = cache->fs_info; + struct btrfs_trans_handle *trans; + + if (!btrfs_is_zoned(fs_info)) + return 0; + + btrfs_wait_block_group_reservations(cache); + btrfs_wait_nocow_writers(cache); + btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, cache->length); + + trans = btrfs_join_transaction(root); + if (IS_ERR(trans)) + return PTR_ERR(trans); + return btrfs_commit_transaction(trans); +} + +static noinline_for_stack +int scrub_enumerate_chunks(struct scrub_ctx *sctx, + struct btrfs_device *scrub_dev, u64 start, u64 end) +{ + struct btrfs_dev_extent *dev_extent = NULL; + struct btrfs_path *path; + struct btrfs_fs_info *fs_info = sctx->fs_info; + struct btrfs_root *root = fs_info->dev_root; + u64 chunk_offset; + int ret = 0; + int ro_set; + int slot; + struct extent_buffer *l; + struct btrfs_key key; + struct btrfs_key found_key; + struct btrfs_block_group *cache; + struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; + + path = btrfs_alloc_path(); + if (!path) + return -ENOMEM; + + path->reada = READA_FORWARD; + path->search_commit_root = 1; + path->skip_locking = 1; + + key.objectid = scrub_dev->devid; + key.offset = 0ull; + key.type = BTRFS_DEV_EXTENT_KEY; + + while (1) { + u64 dev_extent_len; + + ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); + if (ret < 0) + break; + if (ret > 0) { + if (path->slots[0] >= + btrfs_header_nritems(path->nodes[0])) { + ret = btrfs_next_leaf(root, path); + if (ret < 0) + break; + if (ret > 0) { + ret = 0; + break; + } + } else { + ret = 0; + } + } + + l = path->nodes[0]; + slot = path->slots[0]; + + btrfs_item_key_to_cpu(l, &found_key, slot); + + if (found_key.objectid != scrub_dev->devid) + break; + + if (found_key.type != BTRFS_DEV_EXTENT_KEY) + break; + + if (found_key.offset >= end) + break; + + if (found_key.offset < key.offset) + break; + + dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); + dev_extent_len = btrfs_dev_extent_length(l, dev_extent); + + if (found_key.offset + dev_extent_len <= start) + goto skip; + + chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); + + /* + * get a reference on the corresponding block group to prevent + * the chunk from going away while we scrub it + */ + cache = btrfs_lookup_block_group(fs_info, chunk_offset); + + /* some chunks are removed but not committed to disk yet, + * continue scrubbing */ + if (!cache) + goto skip; + + ASSERT(cache->start <= chunk_offset); + /* + * We are using the commit root to search for device extents, so + * that means we could have found a device extent item from a + * block group that was deleted in the current transaction. The + * logical start offset of the deleted block group, stored at + * @chunk_offset, might be part of the logical address range of + * a new block group (which uses different physical extents). + * In this case btrfs_lookup_block_group() has returned the new + * block group, and its start address is less than @chunk_offset. + * + * We skip such new block groups, because it's pointless to + * process them, as we won't find their extents because we search + * for them using the commit root of the extent tree. For a device + * replace it's also fine to skip it, we won't miss copying them + * to the target device because we have the write duplication + * setup through the regular write path (by btrfs_map_block()), + * and we have committed a transaction when we started the device + * replace, right after setting up the device replace state. + */ + if (cache->start < chunk_offset) { + btrfs_put_block_group(cache); + goto skip; + } + + if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) { + if (!test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags)) { + btrfs_put_block_group(cache); + goto skip; + } + } + + /* + * Make sure that while we are scrubbing the corresponding block + * group doesn't get its logical address and its device extents + * reused for another block group, which can possibly be of a + * different type and different profile. We do this to prevent + * false error detections and crashes due to bogus attempts to + * repair extents. + */ + spin_lock(&cache->lock); + if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags)) { + spin_unlock(&cache->lock); + btrfs_put_block_group(cache); + goto skip; + } + btrfs_freeze_block_group(cache); + spin_unlock(&cache->lock); + + /* + * we need call btrfs_inc_block_group_ro() with scrubs_paused, + * to avoid deadlock caused by: + * btrfs_inc_block_group_ro() + * -> btrfs_wait_for_commit() + * -> btrfs_commit_transaction() + * -> btrfs_scrub_pause() + */ + scrub_pause_on(fs_info); + + /* + * Don't do chunk preallocation for scrub. + * + * This is especially important for SYSTEM bgs, or we can hit + * -EFBIG from btrfs_finish_chunk_alloc() like: + * 1. The only SYSTEM bg is marked RO. + * Since SYSTEM bg is small, that's pretty common. + * 2. New SYSTEM bg will be allocated + * Due to regular version will allocate new chunk. + * 3. New SYSTEM bg is empty and will get cleaned up + * Before cleanup really happens, it's marked RO again. + * 4. Empty SYSTEM bg get scrubbed + * We go back to 2. + * + * This can easily boost the amount of SYSTEM chunks if cleaner + * thread can't be triggered fast enough, and use up all space + * of btrfs_super_block::sys_chunk_array + * + * While for dev replace, we need to try our best to mark block + * group RO, to prevent race between: + * - Write duplication + * Contains latest data + * - Scrub copy + * Contains data from commit tree + * + * If target block group is not marked RO, nocow writes can + * be overwritten by scrub copy, causing data corruption. + * So for dev-replace, it's not allowed to continue if a block + * group is not RO. + */ + ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace); + if (!ret && sctx->is_dev_replace) { + ret = finish_extent_writes_for_zoned(root, cache); + if (ret) { + btrfs_dec_block_group_ro(cache); + scrub_pause_off(fs_info); + btrfs_put_block_group(cache); + break; + } + } + + if (ret == 0) { + ro_set = 1; + } else if (ret == -ENOSPC && !sctx->is_dev_replace && + !(cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) { + /* + * btrfs_inc_block_group_ro return -ENOSPC when it + * failed in creating new chunk for metadata. + * It is not a problem for scrub, because + * metadata are always cowed, and our scrub paused + * commit_transactions. + * + * For RAID56 chunks, we have to mark them read-only + * for scrub, as later we would use our own cache + * out of RAID56 realm. + * Thus we want the RAID56 bg to be marked RO to + * prevent RMW from screwing up out cache. + */ + ro_set = 0; + } else if (ret == -ETXTBSY) { + btrfs_warn(fs_info, + "skipping scrub of block group %llu due to active swapfile", + cache->start); + scrub_pause_off(fs_info); + ret = 0; + goto skip_unfreeze; + } else { + btrfs_warn(fs_info, + "failed setting block group ro: %d", ret); + btrfs_unfreeze_block_group(cache); + btrfs_put_block_group(cache); + scrub_pause_off(fs_info); + break; + } + + /* + * Now the target block is marked RO, wait for nocow writes to + * finish before dev-replace. + * COW is fine, as COW never overwrites extents in commit tree. + */ + if (sctx->is_dev_replace) { + btrfs_wait_nocow_writers(cache); + btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, + cache->length); + } + + scrub_pause_off(fs_info); + down_write(&dev_replace->rwsem); + dev_replace->cursor_right = found_key.offset + dev_extent_len; + dev_replace->cursor_left = found_key.offset; + dev_replace->item_needs_writeback = 1; + up_write(&dev_replace->rwsem); + + ret = scrub_chunk(sctx, cache, scrub_dev, found_key.offset, + dev_extent_len); + + /* + * flush, submit all pending read and write bios, afterwards + * wait for them. + * Note that in the dev replace case, a read request causes + * write requests that are submitted in the read completion + * worker. Therefore in the current situation, it is required + * that all write requests are flushed, so that all read and + * write requests are really completed when bios_in_flight + * changes to 0. + */ + sctx->flush_all_writes = true; + scrub_submit(sctx); + mutex_lock(&sctx->wr_lock); + scrub_wr_submit(sctx); + mutex_unlock(&sctx->wr_lock); + + wait_event(sctx->list_wait, + atomic_read(&sctx->bios_in_flight) == 0); + + scrub_pause_on(fs_info); + + /* + * must be called before we decrease @scrub_paused. + * make sure we don't block transaction commit while + * we are waiting pending workers finished. + */ + wait_event(sctx->list_wait, + atomic_read(&sctx->workers_pending) == 0); + sctx->flush_all_writes = false; + + scrub_pause_off(fs_info); + + if (sctx->is_dev_replace && + !btrfs_finish_block_group_to_copy(dev_replace->srcdev, + cache, found_key.offset)) + ro_set = 0; + + down_write(&dev_replace->rwsem); + dev_replace->cursor_left = dev_replace->cursor_right; + dev_replace->item_needs_writeback = 1; + up_write(&dev_replace->rwsem); + + if (ro_set) + btrfs_dec_block_group_ro(cache); + + /* + * We might have prevented the cleaner kthread from deleting + * this block group if it was already unused because we raced + * and set it to RO mode first. So add it back to the unused + * list, otherwise it might not ever be deleted unless a manual + * balance is triggered or it becomes used and unused again. + */ + spin_lock(&cache->lock); + if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags) && + !cache->ro && cache->reserved == 0 && cache->used == 0) { + spin_unlock(&cache->lock); + if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) + btrfs_discard_queue_work(&fs_info->discard_ctl, + cache); + else + btrfs_mark_bg_unused(cache); + } else { + spin_unlock(&cache->lock); + } +skip_unfreeze: + btrfs_unfreeze_block_group(cache); + btrfs_put_block_group(cache); + if (ret) + break; + if (sctx->is_dev_replace && + atomic64_read(&dev_replace->num_write_errors) > 0) { + ret = -EIO; + break; + } + if (sctx->stat.malloc_errors > 0) { + ret = -ENOMEM; + break; + } +skip: + key.offset = found_key.offset + dev_extent_len; + btrfs_release_path(path); + } + + btrfs_free_path(path); + + return ret; +} + +static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx, + struct btrfs_device *scrub_dev) +{ + int i; + u64 bytenr; + u64 gen; + int ret; + struct btrfs_fs_info *fs_info = sctx->fs_info; + + if (BTRFS_FS_ERROR(fs_info)) + return -EROFS; + + /* Seed devices of a new filesystem has their own generation. */ + if (scrub_dev->fs_devices != fs_info->fs_devices) + gen = scrub_dev->generation; + else + gen = fs_info->last_trans_committed; + + for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { + bytenr = btrfs_sb_offset(i); + if (bytenr + BTRFS_SUPER_INFO_SIZE > + scrub_dev->commit_total_bytes) + break; + if (!btrfs_check_super_location(scrub_dev, bytenr)) + continue; + + ret = scrub_sectors(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr, + scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i, + NULL, bytenr); + if (ret) + return ret; + } + wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0); + + return 0; +} + +static void scrub_workers_put(struct btrfs_fs_info *fs_info) +{ + if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt, + &fs_info->scrub_lock)) { + struct workqueue_struct *scrub_workers = fs_info->scrub_workers; + struct workqueue_struct *scrub_wr_comp = + fs_info->scrub_wr_completion_workers; + struct workqueue_struct *scrub_parity = + fs_info->scrub_parity_workers; + + fs_info->scrub_workers = NULL; + fs_info->scrub_wr_completion_workers = NULL; + fs_info->scrub_parity_workers = NULL; + mutex_unlock(&fs_info->scrub_lock); + + if (scrub_workers) + destroy_workqueue(scrub_workers); + if (scrub_wr_comp) + destroy_workqueue(scrub_wr_comp); + if (scrub_parity) + destroy_workqueue(scrub_parity); + } +} + +/* + * get a reference count on fs_info->scrub_workers. start worker if necessary + */ +static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info, + int is_dev_replace) +{ + struct workqueue_struct *scrub_workers = NULL; + struct workqueue_struct *scrub_wr_comp = NULL; + struct workqueue_struct *scrub_parity = NULL; + unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND; + int max_active = fs_info->thread_pool_size; + int ret = -ENOMEM; + + if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt)) + return 0; + + scrub_workers = alloc_workqueue("btrfs-scrub", flags, + is_dev_replace ? 1 : max_active); + if (!scrub_workers) + goto fail_scrub_workers; + + scrub_wr_comp = alloc_workqueue("btrfs-scrubwrc", flags, max_active); + if (!scrub_wr_comp) + goto fail_scrub_wr_completion_workers; + + scrub_parity = alloc_workqueue("btrfs-scrubparity", flags, max_active); + if (!scrub_parity) + goto fail_scrub_parity_workers; + + mutex_lock(&fs_info->scrub_lock); + if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) { + ASSERT(fs_info->scrub_workers == NULL && + fs_info->scrub_wr_completion_workers == NULL && + fs_info->scrub_parity_workers == NULL); + fs_info->scrub_workers = scrub_workers; + fs_info->scrub_wr_completion_workers = scrub_wr_comp; + fs_info->scrub_parity_workers = scrub_parity; + refcount_set(&fs_info->scrub_workers_refcnt, 1); + mutex_unlock(&fs_info->scrub_lock); + return 0; + } + /* Other thread raced in and created the workers for us */ + refcount_inc(&fs_info->scrub_workers_refcnt); + mutex_unlock(&fs_info->scrub_lock); + + ret = 0; + destroy_workqueue(scrub_parity); +fail_scrub_parity_workers: + destroy_workqueue(scrub_wr_comp); +fail_scrub_wr_completion_workers: + destroy_workqueue(scrub_workers); +fail_scrub_workers: + return ret; +} + +int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start, + u64 end, struct btrfs_scrub_progress *progress, + int readonly, int is_dev_replace) +{ + struct btrfs_dev_lookup_args args = { .devid = devid }; + struct scrub_ctx *sctx; + int ret; + struct btrfs_device *dev; + unsigned int nofs_flag; + bool need_commit = false; + + if (btrfs_fs_closing(fs_info)) + return -EAGAIN; + + /* At mount time we have ensured nodesize is in the range of [4K, 64K]. */ + ASSERT(fs_info->nodesize <= BTRFS_STRIPE_LEN); + + /* + * SCRUB_MAX_SECTORS_PER_BLOCK is calculated using the largest possible + * value (max nodesize / min sectorsize), thus nodesize should always + * be fine. + */ + ASSERT(fs_info->nodesize <= + SCRUB_MAX_SECTORS_PER_BLOCK << fs_info->sectorsize_bits); + + /* Allocate outside of device_list_mutex */ + sctx = scrub_setup_ctx(fs_info, is_dev_replace); + if (IS_ERR(sctx)) + return PTR_ERR(sctx); + + ret = scrub_workers_get(fs_info, is_dev_replace); + if (ret) + goto out_free_ctx; + + mutex_lock(&fs_info->fs_devices->device_list_mutex); + dev = btrfs_find_device(fs_info->fs_devices, &args); + if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) && + !is_dev_replace)) { + mutex_unlock(&fs_info->fs_devices->device_list_mutex); + ret = -ENODEV; + goto out; + } + + if (!is_dev_replace && !readonly && + !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) { + mutex_unlock(&fs_info->fs_devices->device_list_mutex); + btrfs_err_in_rcu(fs_info, + "scrub on devid %llu: filesystem on %s is not writable", + devid, rcu_str_deref(dev->name)); + ret = -EROFS; + goto out; + } + + mutex_lock(&fs_info->scrub_lock); + if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || + test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) { + mutex_unlock(&fs_info->scrub_lock); + mutex_unlock(&fs_info->fs_devices->device_list_mutex); + ret = -EIO; + goto out; + } + + down_read(&fs_info->dev_replace.rwsem); + if (dev->scrub_ctx || + (!is_dev_replace && + btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) { + up_read(&fs_info->dev_replace.rwsem); + mutex_unlock(&fs_info->scrub_lock); + mutex_unlock(&fs_info->fs_devices->device_list_mutex); + ret = -EINPROGRESS; + goto out; + } + up_read(&fs_info->dev_replace.rwsem); + + sctx->readonly = readonly; + dev->scrub_ctx = sctx; + mutex_unlock(&fs_info->fs_devices->device_list_mutex); + + /* + * checking @scrub_pause_req here, we can avoid + * race between committing transaction and scrubbing. + */ + __scrub_blocked_if_needed(fs_info); + atomic_inc(&fs_info->scrubs_running); + mutex_unlock(&fs_info->scrub_lock); + + /* + * In order to avoid deadlock with reclaim when there is a transaction + * trying to pause scrub, make sure we use GFP_NOFS for all the + * allocations done at btrfs_scrub_sectors() and scrub_sectors_for_parity() + * invoked by our callees. The pausing request is done when the + * transaction commit starts, and it blocks the transaction until scrub + * is paused (done at specific points at scrub_stripe() or right above + * before incrementing fs_info->scrubs_running). + */ + nofs_flag = memalloc_nofs_save(); + if (!is_dev_replace) { + u64 old_super_errors; + + spin_lock(&sctx->stat_lock); + old_super_errors = sctx->stat.super_errors; + spin_unlock(&sctx->stat_lock); + + btrfs_info(fs_info, "scrub: started on devid %llu", devid); + /* + * by holding device list mutex, we can + * kick off writing super in log tree sync. + */ + mutex_lock(&fs_info->fs_devices->device_list_mutex); + ret = scrub_supers(sctx, dev); + mutex_unlock(&fs_info->fs_devices->device_list_mutex); + + spin_lock(&sctx->stat_lock); + /* + * Super block errors found, but we can not commit transaction + * at current context, since btrfs_commit_transaction() needs + * to pause the current running scrub (hold by ourselves). + */ + if (sctx->stat.super_errors > old_super_errors && !sctx->readonly) + need_commit = true; + spin_unlock(&sctx->stat_lock); + } + + if (!ret) + ret = scrub_enumerate_chunks(sctx, dev, start, end); + memalloc_nofs_restore(nofs_flag); + + wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0); + atomic_dec(&fs_info->scrubs_running); + wake_up(&fs_info->scrub_pause_wait); + + wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0); + + if (progress) + memcpy(progress, &sctx->stat, sizeof(*progress)); + + if (!is_dev_replace) + btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d", + ret ? "not finished" : "finished", devid, ret); + + mutex_lock(&fs_info->scrub_lock); + dev->scrub_ctx = NULL; + mutex_unlock(&fs_info->scrub_lock); + + scrub_workers_put(fs_info); + scrub_put_ctx(sctx); + + /* + * We found some super block errors before, now try to force a + * transaction commit, as scrub has finished. + */ + if (need_commit) { + struct btrfs_trans_handle *trans; + + trans = btrfs_start_transaction(fs_info->tree_root, 0); + if (IS_ERR(trans)) { + ret = PTR_ERR(trans); + btrfs_err(fs_info, + "scrub: failed to start transaction to fix super block errors: %d", ret); + return ret; + } + ret = btrfs_commit_transaction(trans); + if (ret < 0) + btrfs_err(fs_info, + "scrub: failed to commit transaction to fix super block errors: %d", ret); + } + return ret; +out: + scrub_workers_put(fs_info); +out_free_ctx: + scrub_free_ctx(sctx); + + return ret; +} + +void btrfs_scrub_pause(struct btrfs_fs_info *fs_info) +{ + mutex_lock(&fs_info->scrub_lock); + atomic_inc(&fs_info->scrub_pause_req); + while (atomic_read(&fs_info->scrubs_paused) != + atomic_read(&fs_info->scrubs_running)) { + mutex_unlock(&fs_info->scrub_lock); + wait_event(fs_info->scrub_pause_wait, + atomic_read(&fs_info->scrubs_paused) == + atomic_read(&fs_info->scrubs_running)); + mutex_lock(&fs_info->scrub_lock); + } + mutex_unlock(&fs_info->scrub_lock); +} + +void btrfs_scrub_continue(struct btrfs_fs_info *fs_info) +{ + atomic_dec(&fs_info->scrub_pause_req); + wake_up(&fs_info->scrub_pause_wait); +} + +int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info) +{ + mutex_lock(&fs_info->scrub_lock); + if (!atomic_read(&fs_info->scrubs_running)) { + mutex_unlock(&fs_info->scrub_lock); + return -ENOTCONN; + } + + atomic_inc(&fs_info->scrub_cancel_req); + while (atomic_read(&fs_info->scrubs_running)) { + mutex_unlock(&fs_info->scrub_lock); + wait_event(fs_info->scrub_pause_wait, + atomic_read(&fs_info->scrubs_running) == 0); + mutex_lock(&fs_info->scrub_lock); + } + atomic_dec(&fs_info->scrub_cancel_req); + mutex_unlock(&fs_info->scrub_lock); + + return 0; +} + +int btrfs_scrub_cancel_dev(struct btrfs_device *dev) +{ + struct btrfs_fs_info *fs_info = dev->fs_info; + struct scrub_ctx *sctx; + + mutex_lock(&fs_info->scrub_lock); + sctx = dev->scrub_ctx; + if (!sctx) { + mutex_unlock(&fs_info->scrub_lock); + return -ENOTCONN; + } + atomic_inc(&sctx->cancel_req); + while (dev->scrub_ctx) { + mutex_unlock(&fs_info->scrub_lock); + wait_event(fs_info->scrub_pause_wait, + dev->scrub_ctx == NULL); + mutex_lock(&fs_info->scrub_lock); + } + mutex_unlock(&fs_info->scrub_lock); + + return 0; +} + +int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid, + struct btrfs_scrub_progress *progress) +{ + struct btrfs_dev_lookup_args args = { .devid = devid }; + struct btrfs_device *dev; + struct scrub_ctx *sctx = NULL; + + mutex_lock(&fs_info->fs_devices->device_list_mutex); + dev = btrfs_find_device(fs_info->fs_devices, &args); + if (dev) + sctx = dev->scrub_ctx; + if (sctx) + memcpy(progress, &sctx->stat, sizeof(*progress)); + mutex_unlock(&fs_info->fs_devices->device_list_mutex); + + return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV; +} + +static void scrub_find_good_copy(struct btrfs_fs_info *fs_info, + u64 extent_logical, u32 extent_len, + u64 *extent_physical, + struct btrfs_device **extent_dev, + int *extent_mirror_num) +{ + u64 mapped_length; + struct btrfs_io_context *bioc = NULL; + int ret; + + mapped_length = extent_len; + ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical, + &mapped_length, &bioc, 0); + if (ret || !bioc || mapped_length < extent_len || + !bioc->stripes[0].dev->bdev) { + btrfs_put_bioc(bioc); + return; + } + + *extent_physical = bioc->stripes[0].physical; + *extent_mirror_num = bioc->mirror_num; + *extent_dev = bioc->stripes[0].dev; + btrfs_put_bioc(bioc); +} |