diff options
Diffstat (limited to 'fs/xfs/xfs_inode_item.c')
-rw-r--r-- | fs/xfs/xfs_inode_item.c | 1012 |
1 files changed, 1012 insertions, 0 deletions
diff --git a/fs/xfs/xfs_inode_item.c b/fs/xfs/xfs_inode_item.c new file mode 100644 index 000000000..ca2941ab6 --- /dev/null +++ b/fs/xfs/xfs_inode_item.c @@ -0,0 +1,1012 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. + * All Rights Reserved. + */ +#include "xfs.h" +#include "xfs_fs.h" +#include "xfs_shared.h" +#include "xfs_format.h" +#include "xfs_log_format.h" +#include "xfs_trans_resv.h" +#include "xfs_mount.h" +#include "xfs_inode.h" +#include "xfs_trans.h" +#include "xfs_inode_item.h" +#include "xfs_trace.h" +#include "xfs_trans_priv.h" +#include "xfs_buf_item.h" +#include "xfs_log.h" +#include "xfs_log_priv.h" +#include "xfs_error.h" + +#include <linux/iversion.h> + +struct kmem_cache *xfs_ili_cache; /* inode log item */ + +static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip) +{ + return container_of(lip, struct xfs_inode_log_item, ili_item); +} + +/* + * The logged size of an inode fork is always the current size of the inode + * fork. This means that when an inode fork is relogged, the size of the logged + * region is determined by the current state, not the combination of the + * previously logged state + the current state. This is different relogging + * behaviour to most other log items which will retain the size of the + * previously logged changes when smaller regions are relogged. + * + * Hence operations that remove data from the inode fork (e.g. shortform + * dir/attr remove, extent form extent removal, etc), the size of the relogged + * inode gets -smaller- rather than stays the same size as the previously logged + * size and this can result in the committing transaction reducing the amount of + * space being consumed by the CIL. + */ +STATIC void +xfs_inode_item_data_fork_size( + struct xfs_inode_log_item *iip, + int *nvecs, + int *nbytes) +{ + struct xfs_inode *ip = iip->ili_inode; + + switch (ip->i_df.if_format) { + case XFS_DINODE_FMT_EXTENTS: + if ((iip->ili_fields & XFS_ILOG_DEXT) && + ip->i_df.if_nextents > 0 && + ip->i_df.if_bytes > 0) { + /* worst case, doesn't subtract delalloc extents */ + *nbytes += xfs_inode_data_fork_size(ip); + *nvecs += 1; + } + break; + case XFS_DINODE_FMT_BTREE: + if ((iip->ili_fields & XFS_ILOG_DBROOT) && + ip->i_df.if_broot_bytes > 0) { + *nbytes += ip->i_df.if_broot_bytes; + *nvecs += 1; + } + break; + case XFS_DINODE_FMT_LOCAL: + if ((iip->ili_fields & XFS_ILOG_DDATA) && + ip->i_df.if_bytes > 0) { + *nbytes += xlog_calc_iovec_len(ip->i_df.if_bytes); + *nvecs += 1; + } + break; + + case XFS_DINODE_FMT_DEV: + break; + default: + ASSERT(0); + break; + } +} + +STATIC void +xfs_inode_item_attr_fork_size( + struct xfs_inode_log_item *iip, + int *nvecs, + int *nbytes) +{ + struct xfs_inode *ip = iip->ili_inode; + + switch (ip->i_af.if_format) { + case XFS_DINODE_FMT_EXTENTS: + if ((iip->ili_fields & XFS_ILOG_AEXT) && + ip->i_af.if_nextents > 0 && + ip->i_af.if_bytes > 0) { + /* worst case, doesn't subtract unused space */ + *nbytes += xfs_inode_attr_fork_size(ip); + *nvecs += 1; + } + break; + case XFS_DINODE_FMT_BTREE: + if ((iip->ili_fields & XFS_ILOG_ABROOT) && + ip->i_af.if_broot_bytes > 0) { + *nbytes += ip->i_af.if_broot_bytes; + *nvecs += 1; + } + break; + case XFS_DINODE_FMT_LOCAL: + if ((iip->ili_fields & XFS_ILOG_ADATA) && + ip->i_af.if_bytes > 0) { + *nbytes += xlog_calc_iovec_len(ip->i_af.if_bytes); + *nvecs += 1; + } + break; + default: + ASSERT(0); + break; + } +} + +/* + * This returns the number of iovecs needed to log the given inode item. + * + * We need one iovec for the inode log format structure, one for the + * inode core, and possibly one for the inode data/extents/b-tree root + * and one for the inode attribute data/extents/b-tree root. + */ +STATIC void +xfs_inode_item_size( + struct xfs_log_item *lip, + int *nvecs, + int *nbytes) +{ + struct xfs_inode_log_item *iip = INODE_ITEM(lip); + struct xfs_inode *ip = iip->ili_inode; + + *nvecs += 2; + *nbytes += sizeof(struct xfs_inode_log_format) + + xfs_log_dinode_size(ip->i_mount); + + xfs_inode_item_data_fork_size(iip, nvecs, nbytes); + if (xfs_inode_has_attr_fork(ip)) + xfs_inode_item_attr_fork_size(iip, nvecs, nbytes); +} + +STATIC void +xfs_inode_item_format_data_fork( + struct xfs_inode_log_item *iip, + struct xfs_inode_log_format *ilf, + struct xfs_log_vec *lv, + struct xfs_log_iovec **vecp) +{ + struct xfs_inode *ip = iip->ili_inode; + size_t data_bytes; + + switch (ip->i_df.if_format) { + case XFS_DINODE_FMT_EXTENTS: + iip->ili_fields &= + ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEV); + + if ((iip->ili_fields & XFS_ILOG_DEXT) && + ip->i_df.if_nextents > 0 && + ip->i_df.if_bytes > 0) { + struct xfs_bmbt_rec *p; + + ASSERT(xfs_iext_count(&ip->i_df) > 0); + + p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IEXT); + data_bytes = xfs_iextents_copy(ip, p, XFS_DATA_FORK); + xlog_finish_iovec(lv, *vecp, data_bytes); + + ASSERT(data_bytes <= ip->i_df.if_bytes); + + ilf->ilf_dsize = data_bytes; + ilf->ilf_size++; + } else { + iip->ili_fields &= ~XFS_ILOG_DEXT; + } + break; + case XFS_DINODE_FMT_BTREE: + iip->ili_fields &= + ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | XFS_ILOG_DEV); + + if ((iip->ili_fields & XFS_ILOG_DBROOT) && + ip->i_df.if_broot_bytes > 0) { + ASSERT(ip->i_df.if_broot != NULL); + xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IBROOT, + ip->i_df.if_broot, + ip->i_df.if_broot_bytes); + ilf->ilf_dsize = ip->i_df.if_broot_bytes; + ilf->ilf_size++; + } else { + ASSERT(!(iip->ili_fields & + XFS_ILOG_DBROOT)); + iip->ili_fields &= ~XFS_ILOG_DBROOT; + } + break; + case XFS_DINODE_FMT_LOCAL: + iip->ili_fields &= + ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | XFS_ILOG_DEV); + if ((iip->ili_fields & XFS_ILOG_DDATA) && + ip->i_df.if_bytes > 0) { + ASSERT(ip->i_df.if_u1.if_data != NULL); + ASSERT(ip->i_disk_size > 0); + xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_ILOCAL, + ip->i_df.if_u1.if_data, + ip->i_df.if_bytes); + ilf->ilf_dsize = (unsigned)ip->i_df.if_bytes; + ilf->ilf_size++; + } else { + iip->ili_fields &= ~XFS_ILOG_DDATA; + } + break; + case XFS_DINODE_FMT_DEV: + iip->ili_fields &= + ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEXT); + if (iip->ili_fields & XFS_ILOG_DEV) + ilf->ilf_u.ilfu_rdev = sysv_encode_dev(VFS_I(ip)->i_rdev); + break; + default: + ASSERT(0); + break; + } +} + +STATIC void +xfs_inode_item_format_attr_fork( + struct xfs_inode_log_item *iip, + struct xfs_inode_log_format *ilf, + struct xfs_log_vec *lv, + struct xfs_log_iovec **vecp) +{ + struct xfs_inode *ip = iip->ili_inode; + size_t data_bytes; + + switch (ip->i_af.if_format) { + case XFS_DINODE_FMT_EXTENTS: + iip->ili_fields &= + ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT); + + if ((iip->ili_fields & XFS_ILOG_AEXT) && + ip->i_af.if_nextents > 0 && + ip->i_af.if_bytes > 0) { + struct xfs_bmbt_rec *p; + + ASSERT(xfs_iext_count(&ip->i_af) == + ip->i_af.if_nextents); + + p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_EXT); + data_bytes = xfs_iextents_copy(ip, p, XFS_ATTR_FORK); + xlog_finish_iovec(lv, *vecp, data_bytes); + + ilf->ilf_asize = data_bytes; + ilf->ilf_size++; + } else { + iip->ili_fields &= ~XFS_ILOG_AEXT; + } + break; + case XFS_DINODE_FMT_BTREE: + iip->ili_fields &= + ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT); + + if ((iip->ili_fields & XFS_ILOG_ABROOT) && + ip->i_af.if_broot_bytes > 0) { + ASSERT(ip->i_af.if_broot != NULL); + + xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_BROOT, + ip->i_af.if_broot, + ip->i_af.if_broot_bytes); + ilf->ilf_asize = ip->i_af.if_broot_bytes; + ilf->ilf_size++; + } else { + iip->ili_fields &= ~XFS_ILOG_ABROOT; + } + break; + case XFS_DINODE_FMT_LOCAL: + iip->ili_fields &= + ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT); + + if ((iip->ili_fields & XFS_ILOG_ADATA) && + ip->i_af.if_bytes > 0) { + ASSERT(ip->i_af.if_u1.if_data != NULL); + xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_LOCAL, + ip->i_af.if_u1.if_data, + ip->i_af.if_bytes); + ilf->ilf_asize = (unsigned)ip->i_af.if_bytes; + ilf->ilf_size++; + } else { + iip->ili_fields &= ~XFS_ILOG_ADATA; + } + break; + default: + ASSERT(0); + break; + } +} + +/* + * Convert an incore timestamp to a log timestamp. Note that the log format + * specifies host endian format! + */ +static inline xfs_log_timestamp_t +xfs_inode_to_log_dinode_ts( + struct xfs_inode *ip, + const struct timespec64 tv) +{ + struct xfs_log_legacy_timestamp *lits; + xfs_log_timestamp_t its; + + if (xfs_inode_has_bigtime(ip)) + return xfs_inode_encode_bigtime(tv); + + lits = (struct xfs_log_legacy_timestamp *)&its; + lits->t_sec = tv.tv_sec; + lits->t_nsec = tv.tv_nsec; + + return its; +} + +/* + * The legacy DMAPI fields are only present in the on-disk and in-log inodes, + * but not in the in-memory one. But we are guaranteed to have an inode buffer + * in memory when logging an inode, so we can just copy it from the on-disk + * inode to the in-log inode here so that recovery of file system with these + * fields set to non-zero values doesn't lose them. For all other cases we zero + * the fields. + */ +static void +xfs_copy_dm_fields_to_log_dinode( + struct xfs_inode *ip, + struct xfs_log_dinode *to) +{ + struct xfs_dinode *dip; + + dip = xfs_buf_offset(ip->i_itemp->ili_item.li_buf, + ip->i_imap.im_boffset); + + if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS)) { + to->di_dmevmask = be32_to_cpu(dip->di_dmevmask); + to->di_dmstate = be16_to_cpu(dip->di_dmstate); + } else { + to->di_dmevmask = 0; + to->di_dmstate = 0; + } +} + +static inline void +xfs_inode_to_log_dinode_iext_counters( + struct xfs_inode *ip, + struct xfs_log_dinode *to) +{ + if (xfs_inode_has_large_extent_counts(ip)) { + to->di_big_nextents = xfs_ifork_nextents(&ip->i_df); + to->di_big_anextents = xfs_ifork_nextents(&ip->i_af); + to->di_nrext64_pad = 0; + } else { + to->di_nextents = xfs_ifork_nextents(&ip->i_df); + to->di_anextents = xfs_ifork_nextents(&ip->i_af); + } +} + +static void +xfs_inode_to_log_dinode( + struct xfs_inode *ip, + struct xfs_log_dinode *to, + xfs_lsn_t lsn) +{ + struct inode *inode = VFS_I(ip); + + to->di_magic = XFS_DINODE_MAGIC; + to->di_format = xfs_ifork_format(&ip->i_df); + to->di_uid = i_uid_read(inode); + to->di_gid = i_gid_read(inode); + to->di_projid_lo = ip->i_projid & 0xffff; + to->di_projid_hi = ip->i_projid >> 16; + + memset(to->di_pad3, 0, sizeof(to->di_pad3)); + to->di_atime = xfs_inode_to_log_dinode_ts(ip, inode->i_atime); + to->di_mtime = xfs_inode_to_log_dinode_ts(ip, inode->i_mtime); + to->di_ctime = xfs_inode_to_log_dinode_ts(ip, inode->i_ctime); + to->di_nlink = inode->i_nlink; + to->di_gen = inode->i_generation; + to->di_mode = inode->i_mode; + + to->di_size = ip->i_disk_size; + to->di_nblocks = ip->i_nblocks; + to->di_extsize = ip->i_extsize; + to->di_forkoff = ip->i_forkoff; + to->di_aformat = xfs_ifork_format(&ip->i_af); + to->di_flags = ip->i_diflags; + + xfs_copy_dm_fields_to_log_dinode(ip, to); + + /* log a dummy value to ensure log structure is fully initialised */ + to->di_next_unlinked = NULLAGINO; + + if (xfs_has_v3inodes(ip->i_mount)) { + to->di_version = 3; + to->di_changecount = inode_peek_iversion(inode); + to->di_crtime = xfs_inode_to_log_dinode_ts(ip, ip->i_crtime); + to->di_flags2 = ip->i_diflags2; + to->di_cowextsize = ip->i_cowextsize; + to->di_ino = ip->i_ino; + to->di_lsn = lsn; + memset(to->di_pad2, 0, sizeof(to->di_pad2)); + uuid_copy(&to->di_uuid, &ip->i_mount->m_sb.sb_meta_uuid); + to->di_v3_pad = 0; + } else { + to->di_version = 2; + to->di_flushiter = ip->i_flushiter; + memset(to->di_v2_pad, 0, sizeof(to->di_v2_pad)); + } + + xfs_inode_to_log_dinode_iext_counters(ip, to); +} + +/* + * Format the inode core. Current timestamp data is only in the VFS inode + * fields, so we need to grab them from there. Hence rather than just copying + * the XFS inode core structure, format the fields directly into the iovec. + */ +static void +xfs_inode_item_format_core( + struct xfs_inode *ip, + struct xfs_log_vec *lv, + struct xfs_log_iovec **vecp) +{ + struct xfs_log_dinode *dic; + + dic = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_ICORE); + xfs_inode_to_log_dinode(ip, dic, ip->i_itemp->ili_item.li_lsn); + xlog_finish_iovec(lv, *vecp, xfs_log_dinode_size(ip->i_mount)); +} + +/* + * This is called to fill in the vector of log iovecs for the given inode + * log item. It fills the first item with an inode log format structure, + * the second with the on-disk inode structure, and a possible third and/or + * fourth with the inode data/extents/b-tree root and inode attributes + * data/extents/b-tree root. + * + * Note: Always use the 64 bit inode log format structure so we don't + * leave an uninitialised hole in the format item on 64 bit systems. Log + * recovery on 32 bit systems handles this just fine, so there's no reason + * for not using an initialising the properly padded structure all the time. + */ +STATIC void +xfs_inode_item_format( + struct xfs_log_item *lip, + struct xfs_log_vec *lv) +{ + struct xfs_inode_log_item *iip = INODE_ITEM(lip); + struct xfs_inode *ip = iip->ili_inode; + struct xfs_log_iovec *vecp = NULL; + struct xfs_inode_log_format *ilf; + + ilf = xlog_prepare_iovec(lv, &vecp, XLOG_REG_TYPE_IFORMAT); + ilf->ilf_type = XFS_LI_INODE; + ilf->ilf_ino = ip->i_ino; + ilf->ilf_blkno = ip->i_imap.im_blkno; + ilf->ilf_len = ip->i_imap.im_len; + ilf->ilf_boffset = ip->i_imap.im_boffset; + ilf->ilf_fields = XFS_ILOG_CORE; + ilf->ilf_size = 2; /* format + core */ + + /* + * make sure we don't leak uninitialised data into the log in the case + * when we don't log every field in the inode. + */ + ilf->ilf_dsize = 0; + ilf->ilf_asize = 0; + ilf->ilf_pad = 0; + memset(&ilf->ilf_u, 0, sizeof(ilf->ilf_u)); + + xlog_finish_iovec(lv, vecp, sizeof(*ilf)); + + xfs_inode_item_format_core(ip, lv, &vecp); + xfs_inode_item_format_data_fork(iip, ilf, lv, &vecp); + if (xfs_inode_has_attr_fork(ip)) { + xfs_inode_item_format_attr_fork(iip, ilf, lv, &vecp); + } else { + iip->ili_fields &= + ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT); + } + + /* update the format with the exact fields we actually logged */ + ilf->ilf_fields |= (iip->ili_fields & ~XFS_ILOG_TIMESTAMP); +} + +/* + * This is called to pin the inode associated with the inode log + * item in memory so it cannot be written out. + */ +STATIC void +xfs_inode_item_pin( + struct xfs_log_item *lip) +{ + struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode; + + ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); + ASSERT(lip->li_buf); + + trace_xfs_inode_pin(ip, _RET_IP_); + atomic_inc(&ip->i_pincount); +} + + +/* + * This is called to unpin the inode associated with the inode log + * item which was previously pinned with a call to xfs_inode_item_pin(). + * + * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0. + * + * Note that unpin can race with inode cluster buffer freeing marking the buffer + * stale. In that case, flush completions are run from the buffer unpin call, + * which may happen before the inode is unpinned. If we lose the race, there + * will be no buffer attached to the log item, but the inode will be marked + * XFS_ISTALE. + */ +STATIC void +xfs_inode_item_unpin( + struct xfs_log_item *lip, + int remove) +{ + struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode; + + trace_xfs_inode_unpin(ip, _RET_IP_); + ASSERT(lip->li_buf || xfs_iflags_test(ip, XFS_ISTALE)); + ASSERT(atomic_read(&ip->i_pincount) > 0); + if (atomic_dec_and_test(&ip->i_pincount)) + wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT); +} + +STATIC uint +xfs_inode_item_push( + struct xfs_log_item *lip, + struct list_head *buffer_list) + __releases(&lip->li_ailp->ail_lock) + __acquires(&lip->li_ailp->ail_lock) +{ + struct xfs_inode_log_item *iip = INODE_ITEM(lip); + struct xfs_inode *ip = iip->ili_inode; + struct xfs_buf *bp = lip->li_buf; + uint rval = XFS_ITEM_SUCCESS; + int error; + + if (!bp || (ip->i_flags & XFS_ISTALE)) { + /* + * Inode item/buffer is being aborted due to cluster + * buffer deletion. Trigger a log force to have that operation + * completed and items removed from the AIL before the next push + * attempt. + */ + return XFS_ITEM_PINNED; + } + + if (xfs_ipincount(ip) > 0 || xfs_buf_ispinned(bp)) + return XFS_ITEM_PINNED; + + if (xfs_iflags_test(ip, XFS_IFLUSHING)) + return XFS_ITEM_FLUSHING; + + if (!xfs_buf_trylock(bp)) + return XFS_ITEM_LOCKED; + + spin_unlock(&lip->li_ailp->ail_lock); + + /* + * We need to hold a reference for flushing the cluster buffer as it may + * fail the buffer without IO submission. In which case, we better get a + * reference for that completion because otherwise we don't get a + * reference for IO until we queue the buffer for delwri submission. + */ + xfs_buf_hold(bp); + error = xfs_iflush_cluster(bp); + if (!error) { + if (!xfs_buf_delwri_queue(bp, buffer_list)) + rval = XFS_ITEM_FLUSHING; + xfs_buf_relse(bp); + } else { + /* + * Release the buffer if we were unable to flush anything. On + * any other error, the buffer has already been released. + */ + if (error == -EAGAIN) + xfs_buf_relse(bp); + rval = XFS_ITEM_LOCKED; + } + + spin_lock(&lip->li_ailp->ail_lock); + return rval; +} + +/* + * Unlock the inode associated with the inode log item. + */ +STATIC void +xfs_inode_item_release( + struct xfs_log_item *lip) +{ + struct xfs_inode_log_item *iip = INODE_ITEM(lip); + struct xfs_inode *ip = iip->ili_inode; + unsigned short lock_flags; + + ASSERT(ip->i_itemp != NULL); + ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); + + lock_flags = iip->ili_lock_flags; + iip->ili_lock_flags = 0; + if (lock_flags) + xfs_iunlock(ip, lock_flags); +} + +/* + * This is called to find out where the oldest active copy of the inode log + * item in the on disk log resides now that the last log write of it completed + * at the given lsn. Since we always re-log all dirty data in an inode, the + * latest copy in the on disk log is the only one that matters. Therefore, + * simply return the given lsn. + * + * If the inode has been marked stale because the cluster is being freed, we + * don't want to (re-)insert this inode into the AIL. There is a race condition + * where the cluster buffer may be unpinned before the inode is inserted into + * the AIL during transaction committed processing. If the buffer is unpinned + * before the inode item has been committed and inserted, then it is possible + * for the buffer to be written and IO completes before the inode is inserted + * into the AIL. In that case, we'd be inserting a clean, stale inode into the + * AIL which will never get removed. It will, however, get reclaimed which + * triggers an assert in xfs_inode_free() complaining about freein an inode + * still in the AIL. + * + * To avoid this, just unpin the inode directly and return a LSN of -1 so the + * transaction committed code knows that it does not need to do any further + * processing on the item. + */ +STATIC xfs_lsn_t +xfs_inode_item_committed( + struct xfs_log_item *lip, + xfs_lsn_t lsn) +{ + struct xfs_inode_log_item *iip = INODE_ITEM(lip); + struct xfs_inode *ip = iip->ili_inode; + + if (xfs_iflags_test(ip, XFS_ISTALE)) { + xfs_inode_item_unpin(lip, 0); + return -1; + } + return lsn; +} + +STATIC void +xfs_inode_item_committing( + struct xfs_log_item *lip, + xfs_csn_t seq) +{ + INODE_ITEM(lip)->ili_commit_seq = seq; + return xfs_inode_item_release(lip); +} + +static const struct xfs_item_ops xfs_inode_item_ops = { + .iop_size = xfs_inode_item_size, + .iop_format = xfs_inode_item_format, + .iop_pin = xfs_inode_item_pin, + .iop_unpin = xfs_inode_item_unpin, + .iop_release = xfs_inode_item_release, + .iop_committed = xfs_inode_item_committed, + .iop_push = xfs_inode_item_push, + .iop_committing = xfs_inode_item_committing, +}; + + +/* + * Initialize the inode log item for a newly allocated (in-core) inode. + */ +void +xfs_inode_item_init( + struct xfs_inode *ip, + struct xfs_mount *mp) +{ + struct xfs_inode_log_item *iip; + + ASSERT(ip->i_itemp == NULL); + iip = ip->i_itemp = kmem_cache_zalloc(xfs_ili_cache, + GFP_KERNEL | __GFP_NOFAIL); + + iip->ili_inode = ip; + spin_lock_init(&iip->ili_lock); + xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE, + &xfs_inode_item_ops); +} + +/* + * Free the inode log item and any memory hanging off of it. + */ +void +xfs_inode_item_destroy( + struct xfs_inode *ip) +{ + struct xfs_inode_log_item *iip = ip->i_itemp; + + ASSERT(iip->ili_item.li_buf == NULL); + + ip->i_itemp = NULL; + kmem_free(iip->ili_item.li_lv_shadow); + kmem_cache_free(xfs_ili_cache, iip); +} + + +/* + * We only want to pull the item from the AIL if it is actually there + * and its location in the log has not changed since we started the + * flush. Thus, we only bother if the inode's lsn has not changed. + */ +static void +xfs_iflush_ail_updates( + struct xfs_ail *ailp, + struct list_head *list) +{ + struct xfs_log_item *lip; + xfs_lsn_t tail_lsn = 0; + + /* this is an opencoded batch version of xfs_trans_ail_delete */ + spin_lock(&ailp->ail_lock); + list_for_each_entry(lip, list, li_bio_list) { + xfs_lsn_t lsn; + + clear_bit(XFS_LI_FAILED, &lip->li_flags); + if (INODE_ITEM(lip)->ili_flush_lsn != lip->li_lsn) + continue; + + /* + * dgc: Not sure how this happens, but it happens very + * occassionaly via generic/388. xfs_iflush_abort() also + * silently handles this same "under writeback but not in AIL at + * shutdown" condition via xfs_trans_ail_delete(). + */ + if (!test_bit(XFS_LI_IN_AIL, &lip->li_flags)) { + ASSERT(xlog_is_shutdown(lip->li_log)); + continue; + } + + lsn = xfs_ail_delete_one(ailp, lip); + if (!tail_lsn && lsn) + tail_lsn = lsn; + } + xfs_ail_update_finish(ailp, tail_lsn); +} + +/* + * Walk the list of inodes that have completed their IOs. If they are clean + * remove them from the list and dissociate them from the buffer. Buffers that + * are still dirty remain linked to the buffer and on the list. Caller must + * handle them appropriately. + */ +static void +xfs_iflush_finish( + struct xfs_buf *bp, + struct list_head *list) +{ + struct xfs_log_item *lip, *n; + + list_for_each_entry_safe(lip, n, list, li_bio_list) { + struct xfs_inode_log_item *iip = INODE_ITEM(lip); + bool drop_buffer = false; + + spin_lock(&iip->ili_lock); + + /* + * Remove the reference to the cluster buffer if the inode is + * clean in memory and drop the buffer reference once we've + * dropped the locks we hold. + */ + ASSERT(iip->ili_item.li_buf == bp); + if (!iip->ili_fields) { + iip->ili_item.li_buf = NULL; + list_del_init(&lip->li_bio_list); + drop_buffer = true; + } + iip->ili_last_fields = 0; + iip->ili_flush_lsn = 0; + spin_unlock(&iip->ili_lock); + xfs_iflags_clear(iip->ili_inode, XFS_IFLUSHING); + if (drop_buffer) + xfs_buf_rele(bp); + } +} + +/* + * Inode buffer IO completion routine. It is responsible for removing inodes + * attached to the buffer from the AIL if they have not been re-logged and + * completing the inode flush. + */ +void +xfs_buf_inode_iodone( + struct xfs_buf *bp) +{ + struct xfs_log_item *lip, *n; + LIST_HEAD(flushed_inodes); + LIST_HEAD(ail_updates); + + /* + * Pull the attached inodes from the buffer one at a time and take the + * appropriate action on them. + */ + list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) { + struct xfs_inode_log_item *iip = INODE_ITEM(lip); + + if (xfs_iflags_test(iip->ili_inode, XFS_ISTALE)) { + xfs_iflush_abort(iip->ili_inode); + continue; + } + if (!iip->ili_last_fields) + continue; + + /* Do an unlocked check for needing the AIL lock. */ + if (iip->ili_flush_lsn == lip->li_lsn || + test_bit(XFS_LI_FAILED, &lip->li_flags)) + list_move_tail(&lip->li_bio_list, &ail_updates); + else + list_move_tail(&lip->li_bio_list, &flushed_inodes); + } + + if (!list_empty(&ail_updates)) { + xfs_iflush_ail_updates(bp->b_mount->m_ail, &ail_updates); + list_splice_tail(&ail_updates, &flushed_inodes); + } + + xfs_iflush_finish(bp, &flushed_inodes); + if (!list_empty(&flushed_inodes)) + list_splice_tail(&flushed_inodes, &bp->b_li_list); +} + +void +xfs_buf_inode_io_fail( + struct xfs_buf *bp) +{ + struct xfs_log_item *lip; + + list_for_each_entry(lip, &bp->b_li_list, li_bio_list) + set_bit(XFS_LI_FAILED, &lip->li_flags); +} + +/* + * Clear the inode logging fields so no more flushes are attempted. If we are + * on a buffer list, it is now safe to remove it because the buffer is + * guaranteed to be locked. The caller will drop the reference to the buffer + * the log item held. + */ +static void +xfs_iflush_abort_clean( + struct xfs_inode_log_item *iip) +{ + iip->ili_last_fields = 0; + iip->ili_fields = 0; + iip->ili_fsync_fields = 0; + iip->ili_flush_lsn = 0; + iip->ili_item.li_buf = NULL; + list_del_init(&iip->ili_item.li_bio_list); +} + +/* + * Abort flushing the inode from a context holding the cluster buffer locked. + * + * This is the normal runtime method of aborting writeback of an inode that is + * attached to a cluster buffer. It occurs when the inode and the backing + * cluster buffer have been freed (i.e. inode is XFS_ISTALE), or when cluster + * flushing or buffer IO completion encounters a log shutdown situation. + * + * If we need to abort inode writeback and we don't already hold the buffer + * locked, call xfs_iflush_shutdown_abort() instead as this should only ever be + * necessary in a shutdown situation. + */ +void +xfs_iflush_abort( + struct xfs_inode *ip) +{ + struct xfs_inode_log_item *iip = ip->i_itemp; + struct xfs_buf *bp; + + if (!iip) { + /* clean inode, nothing to do */ + xfs_iflags_clear(ip, XFS_IFLUSHING); + return; + } + + /* + * Remove the inode item from the AIL before we clear its internal + * state. Whilst the inode is in the AIL, it should have a valid buffer + * pointer for push operations to access - it is only safe to remove the + * inode from the buffer once it has been removed from the AIL. + * + * We also clear the failed bit before removing the item from the AIL + * as xfs_trans_ail_delete()->xfs_clear_li_failed() will release buffer + * references the inode item owns and needs to hold until we've fully + * aborted the inode log item and detached it from the buffer. + */ + clear_bit(XFS_LI_FAILED, &iip->ili_item.li_flags); + xfs_trans_ail_delete(&iip->ili_item, 0); + + /* + * Grab the inode buffer so can we release the reference the inode log + * item holds on it. + */ + spin_lock(&iip->ili_lock); + bp = iip->ili_item.li_buf; + xfs_iflush_abort_clean(iip); + spin_unlock(&iip->ili_lock); + + xfs_iflags_clear(ip, XFS_IFLUSHING); + if (bp) + xfs_buf_rele(bp); +} + +/* + * Abort an inode flush in the case of a shutdown filesystem. This can be called + * from anywhere with just an inode reference and does not require holding the + * inode cluster buffer locked. If the inode is attached to a cluster buffer, + * it will grab and lock it safely, then abort the inode flush. + */ +void +xfs_iflush_shutdown_abort( + struct xfs_inode *ip) +{ + struct xfs_inode_log_item *iip = ip->i_itemp; + struct xfs_buf *bp; + + if (!iip) { + /* clean inode, nothing to do */ + xfs_iflags_clear(ip, XFS_IFLUSHING); + return; + } + + spin_lock(&iip->ili_lock); + bp = iip->ili_item.li_buf; + if (!bp) { + spin_unlock(&iip->ili_lock); + xfs_iflush_abort(ip); + return; + } + + /* + * We have to take a reference to the buffer so that it doesn't get + * freed when we drop the ili_lock and then wait to lock the buffer. + * We'll clean up the extra reference after we pick up the ili_lock + * again. + */ + xfs_buf_hold(bp); + spin_unlock(&iip->ili_lock); + xfs_buf_lock(bp); + + spin_lock(&iip->ili_lock); + if (!iip->ili_item.li_buf) { + /* + * Raced with another removal, hold the only reference + * to bp now. Inode should not be in the AIL now, so just clean + * up and return; + */ + ASSERT(list_empty(&iip->ili_item.li_bio_list)); + ASSERT(!test_bit(XFS_LI_IN_AIL, &iip->ili_item.li_flags)); + xfs_iflush_abort_clean(iip); + spin_unlock(&iip->ili_lock); + xfs_iflags_clear(ip, XFS_IFLUSHING); + xfs_buf_relse(bp); + return; + } + + /* + * Got two references to bp. The first will get dropped by + * xfs_iflush_abort() when the item is removed from the buffer list, but + * we can't drop our reference until _abort() returns because we have to + * unlock the buffer as well. Hence we abort and then unlock and release + * our reference to the buffer. + */ + ASSERT(iip->ili_item.li_buf == bp); + spin_unlock(&iip->ili_lock); + xfs_iflush_abort(ip); + xfs_buf_relse(bp); +} + + +/* + * convert an xfs_inode_log_format struct from the old 32 bit version + * (which can have different field alignments) to the native 64 bit version + */ +int +xfs_inode_item_format_convert( + struct xfs_log_iovec *buf, + struct xfs_inode_log_format *in_f) +{ + struct xfs_inode_log_format_32 *in_f32 = buf->i_addr; + + if (buf->i_len != sizeof(*in_f32)) { + XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL); + return -EFSCORRUPTED; + } + + in_f->ilf_type = in_f32->ilf_type; + in_f->ilf_size = in_f32->ilf_size; + in_f->ilf_fields = in_f32->ilf_fields; + in_f->ilf_asize = in_f32->ilf_asize; + in_f->ilf_dsize = in_f32->ilf_dsize; + in_f->ilf_ino = in_f32->ilf_ino; + memcpy(&in_f->ilf_u, &in_f32->ilf_u, sizeof(in_f->ilf_u)); + in_f->ilf_blkno = in_f32->ilf_blkno; + in_f->ilf_len = in_f32->ilf_len; + in_f->ilf_boffset = in_f32->ilf_boffset; + return 0; +} |