diff options
Diffstat (limited to 'fs/xfs/xfs_mount.c')
-rw-r--r-- | fs/xfs/xfs_mount.c | 1389 |
1 files changed, 1389 insertions, 0 deletions
diff --git a/fs/xfs/xfs_mount.c b/fs/xfs/xfs_mount.c new file mode 100644 index 000000000..e8bb3c2e8 --- /dev/null +++ b/fs/xfs/xfs_mount.c @@ -0,0 +1,1389 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright (c) 2000-2005 Silicon Graphics, Inc. + * All Rights Reserved. + */ +#include "xfs.h" +#include "xfs_fs.h" +#include "xfs_shared.h" +#include "xfs_format.h" +#include "xfs_log_format.h" +#include "xfs_trans_resv.h" +#include "xfs_bit.h" +#include "xfs_sb.h" +#include "xfs_mount.h" +#include "xfs_inode.h" +#include "xfs_dir2.h" +#include "xfs_ialloc.h" +#include "xfs_alloc.h" +#include "xfs_rtalloc.h" +#include "xfs_bmap.h" +#include "xfs_trans.h" +#include "xfs_trans_priv.h" +#include "xfs_log.h" +#include "xfs_log_priv.h" +#include "xfs_error.h" +#include "xfs_quota.h" +#include "xfs_fsops.h" +#include "xfs_icache.h" +#include "xfs_sysfs.h" +#include "xfs_rmap_btree.h" +#include "xfs_refcount_btree.h" +#include "xfs_reflink.h" +#include "xfs_extent_busy.h" +#include "xfs_health.h" +#include "xfs_trace.h" +#include "xfs_ag.h" + +static DEFINE_MUTEX(xfs_uuid_table_mutex); +static int xfs_uuid_table_size; +static uuid_t *xfs_uuid_table; + +void +xfs_uuid_table_free(void) +{ + if (xfs_uuid_table_size == 0) + return; + kmem_free(xfs_uuid_table); + xfs_uuid_table = NULL; + xfs_uuid_table_size = 0; +} + +/* + * See if the UUID is unique among mounted XFS filesystems. + * Mount fails if UUID is nil or a FS with the same UUID is already mounted. + */ +STATIC int +xfs_uuid_mount( + struct xfs_mount *mp) +{ + uuid_t *uuid = &mp->m_sb.sb_uuid; + int hole, i; + + /* Publish UUID in struct super_block */ + uuid_copy(&mp->m_super->s_uuid, uuid); + + if (xfs_has_nouuid(mp)) + return 0; + + if (uuid_is_null(uuid)) { + xfs_warn(mp, "Filesystem has null UUID - can't mount"); + return -EINVAL; + } + + mutex_lock(&xfs_uuid_table_mutex); + for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) { + if (uuid_is_null(&xfs_uuid_table[i])) { + hole = i; + continue; + } + if (uuid_equal(uuid, &xfs_uuid_table[i])) + goto out_duplicate; + } + + if (hole < 0) { + xfs_uuid_table = krealloc(xfs_uuid_table, + (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table), + GFP_KERNEL | __GFP_NOFAIL); + hole = xfs_uuid_table_size++; + } + xfs_uuid_table[hole] = *uuid; + mutex_unlock(&xfs_uuid_table_mutex); + + return 0; + + out_duplicate: + mutex_unlock(&xfs_uuid_table_mutex); + xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid); + return -EINVAL; +} + +STATIC void +xfs_uuid_unmount( + struct xfs_mount *mp) +{ + uuid_t *uuid = &mp->m_sb.sb_uuid; + int i; + + if (xfs_has_nouuid(mp)) + return; + + mutex_lock(&xfs_uuid_table_mutex); + for (i = 0; i < xfs_uuid_table_size; i++) { + if (uuid_is_null(&xfs_uuid_table[i])) + continue; + if (!uuid_equal(uuid, &xfs_uuid_table[i])) + continue; + memset(&xfs_uuid_table[i], 0, sizeof(uuid_t)); + break; + } + ASSERT(i < xfs_uuid_table_size); + mutex_unlock(&xfs_uuid_table_mutex); +} + +/* + * Check size of device based on the (data/realtime) block count. + * Note: this check is used by the growfs code as well as mount. + */ +int +xfs_sb_validate_fsb_count( + xfs_sb_t *sbp, + uint64_t nblocks) +{ + ASSERT(PAGE_SHIFT >= sbp->sb_blocklog); + ASSERT(sbp->sb_blocklog >= BBSHIFT); + + /* Limited by ULONG_MAX of page cache index */ + if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX) + return -EFBIG; + return 0; +} + +/* + * xfs_readsb + * + * Does the initial read of the superblock. + */ +int +xfs_readsb( + struct xfs_mount *mp, + int flags) +{ + unsigned int sector_size; + struct xfs_buf *bp; + struct xfs_sb *sbp = &mp->m_sb; + int error; + int loud = !(flags & XFS_MFSI_QUIET); + const struct xfs_buf_ops *buf_ops; + + ASSERT(mp->m_sb_bp == NULL); + ASSERT(mp->m_ddev_targp != NULL); + + /* + * For the initial read, we must guess at the sector + * size based on the block device. It's enough to + * get the sb_sectsize out of the superblock and + * then reread with the proper length. + * We don't verify it yet, because it may not be complete. + */ + sector_size = xfs_getsize_buftarg(mp->m_ddev_targp); + buf_ops = NULL; + + /* + * Allocate a (locked) buffer to hold the superblock. This will be kept + * around at all times to optimize access to the superblock. Therefore, + * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count + * elevated. + */ +reread: + error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR, + BTOBB(sector_size), XBF_NO_IOACCT, &bp, + buf_ops); + if (error) { + if (loud) + xfs_warn(mp, "SB validate failed with error %d.", error); + /* bad CRC means corrupted metadata */ + if (error == -EFSBADCRC) + error = -EFSCORRUPTED; + return error; + } + + /* + * Initialize the mount structure from the superblock. + */ + xfs_sb_from_disk(sbp, bp->b_addr); + + /* + * If we haven't validated the superblock, do so now before we try + * to check the sector size and reread the superblock appropriately. + */ + if (sbp->sb_magicnum != XFS_SB_MAGIC) { + if (loud) + xfs_warn(mp, "Invalid superblock magic number"); + error = -EINVAL; + goto release_buf; + } + + /* + * We must be able to do sector-sized and sector-aligned IO. + */ + if (sector_size > sbp->sb_sectsize) { + if (loud) + xfs_warn(mp, "device supports %u byte sectors (not %u)", + sector_size, sbp->sb_sectsize); + error = -ENOSYS; + goto release_buf; + } + + if (buf_ops == NULL) { + /* + * Re-read the superblock so the buffer is correctly sized, + * and properly verified. + */ + xfs_buf_relse(bp); + sector_size = sbp->sb_sectsize; + buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops; + goto reread; + } + + mp->m_features |= xfs_sb_version_to_features(sbp); + xfs_reinit_percpu_counters(mp); + + /* no need to be quiet anymore, so reset the buf ops */ + bp->b_ops = &xfs_sb_buf_ops; + + mp->m_sb_bp = bp; + xfs_buf_unlock(bp); + return 0; + +release_buf: + xfs_buf_relse(bp); + return error; +} + +/* + * If the sunit/swidth change would move the precomputed root inode value, we + * must reject the ondisk change because repair will stumble over that. + * However, we allow the mount to proceed because we never rejected this + * combination before. Returns true to update the sb, false otherwise. + */ +static inline int +xfs_check_new_dalign( + struct xfs_mount *mp, + int new_dalign, + bool *update_sb) +{ + struct xfs_sb *sbp = &mp->m_sb; + xfs_ino_t calc_ino; + + calc_ino = xfs_ialloc_calc_rootino(mp, new_dalign); + trace_xfs_check_new_dalign(mp, new_dalign, calc_ino); + + if (sbp->sb_rootino == calc_ino) { + *update_sb = true; + return 0; + } + + xfs_warn(mp, +"Cannot change stripe alignment; would require moving root inode."); + + /* + * XXX: Next time we add a new incompat feature, this should start + * returning -EINVAL to fail the mount. Until then, spit out a warning + * that we're ignoring the administrator's instructions. + */ + xfs_warn(mp, "Skipping superblock stripe alignment update."); + *update_sb = false; + return 0; +} + +/* + * If we were provided with new sunit/swidth values as mount options, make sure + * that they pass basic alignment and superblock feature checks, and convert + * them into the same units (FSB) that everything else expects. This step + * /must/ be done before computing the inode geometry. + */ +STATIC int +xfs_validate_new_dalign( + struct xfs_mount *mp) +{ + if (mp->m_dalign == 0) + return 0; + + /* + * If stripe unit and stripe width are not multiples + * of the fs blocksize turn off alignment. + */ + if ((BBTOB(mp->m_dalign) & mp->m_blockmask) || + (BBTOB(mp->m_swidth) & mp->m_blockmask)) { + xfs_warn(mp, + "alignment check failed: sunit/swidth vs. blocksize(%d)", + mp->m_sb.sb_blocksize); + return -EINVAL; + } + + /* + * Convert the stripe unit and width to FSBs. + */ + mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign); + if (mp->m_dalign && (mp->m_sb.sb_agblocks % mp->m_dalign)) { + xfs_warn(mp, + "alignment check failed: sunit/swidth vs. agsize(%d)", + mp->m_sb.sb_agblocks); + return -EINVAL; + } + + if (!mp->m_dalign) { + xfs_warn(mp, + "alignment check failed: sunit(%d) less than bsize(%d)", + mp->m_dalign, mp->m_sb.sb_blocksize); + return -EINVAL; + } + + mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth); + + if (!xfs_has_dalign(mp)) { + xfs_warn(mp, +"cannot change alignment: superblock does not support data alignment"); + return -EINVAL; + } + + return 0; +} + +/* Update alignment values based on mount options and sb values. */ +STATIC int +xfs_update_alignment( + struct xfs_mount *mp) +{ + struct xfs_sb *sbp = &mp->m_sb; + + if (mp->m_dalign) { + bool update_sb; + int error; + + if (sbp->sb_unit == mp->m_dalign && + sbp->sb_width == mp->m_swidth) + return 0; + + error = xfs_check_new_dalign(mp, mp->m_dalign, &update_sb); + if (error || !update_sb) + return error; + + sbp->sb_unit = mp->m_dalign; + sbp->sb_width = mp->m_swidth; + mp->m_update_sb = true; + } else if (!xfs_has_noalign(mp) && xfs_has_dalign(mp)) { + mp->m_dalign = sbp->sb_unit; + mp->m_swidth = sbp->sb_width; + } + + return 0; +} + +/* + * precalculate the low space thresholds for dynamic speculative preallocation. + */ +void +xfs_set_low_space_thresholds( + struct xfs_mount *mp) +{ + uint64_t dblocks = mp->m_sb.sb_dblocks; + uint64_t rtexts = mp->m_sb.sb_rextents; + int i; + + do_div(dblocks, 100); + do_div(rtexts, 100); + + for (i = 0; i < XFS_LOWSP_MAX; i++) { + mp->m_low_space[i] = dblocks * (i + 1); + mp->m_low_rtexts[i] = rtexts * (i + 1); + } +} + +/* + * Check that the data (and log if separate) is an ok size. + */ +STATIC int +xfs_check_sizes( + struct xfs_mount *mp) +{ + struct xfs_buf *bp; + xfs_daddr_t d; + int error; + + d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); + if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) { + xfs_warn(mp, "filesystem size mismatch detected"); + return -EFBIG; + } + error = xfs_buf_read_uncached(mp->m_ddev_targp, + d - XFS_FSS_TO_BB(mp, 1), + XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL); + if (error) { + xfs_warn(mp, "last sector read failed"); + return error; + } + xfs_buf_relse(bp); + + if (mp->m_logdev_targp == mp->m_ddev_targp) + return 0; + + d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks); + if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) { + xfs_warn(mp, "log size mismatch detected"); + return -EFBIG; + } + error = xfs_buf_read_uncached(mp->m_logdev_targp, + d - XFS_FSB_TO_BB(mp, 1), + XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL); + if (error) { + xfs_warn(mp, "log device read failed"); + return error; + } + xfs_buf_relse(bp); + return 0; +} + +/* + * Clear the quotaflags in memory and in the superblock. + */ +int +xfs_mount_reset_sbqflags( + struct xfs_mount *mp) +{ + mp->m_qflags = 0; + + /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */ + if (mp->m_sb.sb_qflags == 0) + return 0; + spin_lock(&mp->m_sb_lock); + mp->m_sb.sb_qflags = 0; + spin_unlock(&mp->m_sb_lock); + + if (!xfs_fs_writable(mp, SB_FREEZE_WRITE)) + return 0; + + return xfs_sync_sb(mp, false); +} + +uint64_t +xfs_default_resblks(xfs_mount_t *mp) +{ + uint64_t resblks; + + /* + * We default to 5% or 8192 fsbs of space reserved, whichever is + * smaller. This is intended to cover concurrent allocation + * transactions when we initially hit enospc. These each require a 4 + * block reservation. Hence by default we cover roughly 2000 concurrent + * allocation reservations. + */ + resblks = mp->m_sb.sb_dblocks; + do_div(resblks, 20); + resblks = min_t(uint64_t, resblks, 8192); + return resblks; +} + +/* Ensure the summary counts are correct. */ +STATIC int +xfs_check_summary_counts( + struct xfs_mount *mp) +{ + int error = 0; + + /* + * The AG0 superblock verifier rejects in-progress filesystems, + * so we should never see the flag set this far into mounting. + */ + if (mp->m_sb.sb_inprogress) { + xfs_err(mp, "sb_inprogress set after log recovery??"); + WARN_ON(1); + return -EFSCORRUPTED; + } + + /* + * Now the log is mounted, we know if it was an unclean shutdown or + * not. If it was, with the first phase of recovery has completed, we + * have consistent AG blocks on disk. We have not recovered EFIs yet, + * but they are recovered transactionally in the second recovery phase + * later. + * + * If the log was clean when we mounted, we can check the summary + * counters. If any of them are obviously incorrect, we can recompute + * them from the AGF headers in the next step. + */ + if (xfs_is_clean(mp) && + (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks || + !xfs_verify_icount(mp, mp->m_sb.sb_icount) || + mp->m_sb.sb_ifree > mp->m_sb.sb_icount)) + xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS); + + /* + * We can safely re-initialise incore superblock counters from the + * per-ag data. These may not be correct if the filesystem was not + * cleanly unmounted, so we waited for recovery to finish before doing + * this. + * + * If the filesystem was cleanly unmounted or the previous check did + * not flag anything weird, then we can trust the values in the + * superblock to be correct and we don't need to do anything here. + * Otherwise, recalculate the summary counters. + */ + if ((xfs_has_lazysbcount(mp) && !xfs_is_clean(mp)) || + xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS)) { + error = xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount); + if (error) + return error; + } + + /* + * Older kernels misused sb_frextents to reflect both incore + * reservations made by running transactions and the actual count of + * free rt extents in the ondisk metadata. Transactions committed + * during runtime can therefore contain a superblock update that + * undercounts the number of free rt extents tracked in the rt bitmap. + * A clean unmount record will have the correct frextents value since + * there can be no other transactions running at that point. + * + * If we're mounting the rt volume after recovering the log, recompute + * frextents from the rtbitmap file to fix the inconsistency. + */ + if (xfs_has_realtime(mp) && !xfs_is_clean(mp)) { + error = xfs_rtalloc_reinit_frextents(mp); + if (error) + return error; + } + + return 0; +} + +/* + * Flush and reclaim dirty inodes in preparation for unmount. Inodes and + * internal inode structures can be sitting in the CIL and AIL at this point, + * so we need to unpin them, write them back and/or reclaim them before unmount + * can proceed. In other words, callers are required to have inactivated all + * inodes. + * + * An inode cluster that has been freed can have its buffer still pinned in + * memory because the transaction is still sitting in a iclog. The stale inodes + * on that buffer will be pinned to the buffer until the transaction hits the + * disk and the callbacks run. Pushing the AIL will skip the stale inodes and + * may never see the pinned buffer, so nothing will push out the iclog and + * unpin the buffer. + * + * Hence we need to force the log to unpin everything first. However, log + * forces don't wait for the discards they issue to complete, so we have to + * explicitly wait for them to complete here as well. + * + * Then we can tell the world we are unmounting so that error handling knows + * that the filesystem is going away and we should error out anything that we + * have been retrying in the background. This will prevent never-ending + * retries in AIL pushing from hanging the unmount. + * + * Finally, we can push the AIL to clean all the remaining dirty objects, then + * reclaim the remaining inodes that are still in memory at this point in time. + */ +static void +xfs_unmount_flush_inodes( + struct xfs_mount *mp) +{ + xfs_log_force(mp, XFS_LOG_SYNC); + xfs_extent_busy_wait_all(mp); + flush_workqueue(xfs_discard_wq); + + set_bit(XFS_OPSTATE_UNMOUNTING, &mp->m_opstate); + + xfs_ail_push_all_sync(mp->m_ail); + xfs_inodegc_stop(mp); + cancel_delayed_work_sync(&mp->m_reclaim_work); + xfs_reclaim_inodes(mp); + xfs_health_unmount(mp); +} + +static void +xfs_mount_setup_inode_geom( + struct xfs_mount *mp) +{ + struct xfs_ino_geometry *igeo = M_IGEO(mp); + + igeo->attr_fork_offset = xfs_bmap_compute_attr_offset(mp); + ASSERT(igeo->attr_fork_offset < XFS_LITINO(mp)); + + xfs_ialloc_setup_geometry(mp); +} + +/* Compute maximum possible height for per-AG btree types for this fs. */ +static inline void +xfs_agbtree_compute_maxlevels( + struct xfs_mount *mp) +{ + unsigned int levels; + + levels = max(mp->m_alloc_maxlevels, M_IGEO(mp)->inobt_maxlevels); + levels = max(levels, mp->m_rmap_maxlevels); + mp->m_agbtree_maxlevels = max(levels, mp->m_refc_maxlevels); +} + +/* + * This function does the following on an initial mount of a file system: + * - reads the superblock from disk and init the mount struct + * - if we're a 32-bit kernel, do a size check on the superblock + * so we don't mount terabyte filesystems + * - init mount struct realtime fields + * - allocate inode hash table for fs + * - init directory manager + * - perform recovery and init the log manager + */ +int +xfs_mountfs( + struct xfs_mount *mp) +{ + struct xfs_sb *sbp = &(mp->m_sb); + struct xfs_inode *rip; + struct xfs_ino_geometry *igeo = M_IGEO(mp); + uint64_t resblks; + uint quotamount = 0; + uint quotaflags = 0; + int error = 0; + + xfs_sb_mount_common(mp, sbp); + + /* + * Check for a mismatched features2 values. Older kernels read & wrote + * into the wrong sb offset for sb_features2 on some platforms due to + * xfs_sb_t not being 64bit size aligned when sb_features2 was added, + * which made older superblock reading/writing routines swap it as a + * 64-bit value. + * + * For backwards compatibility, we make both slots equal. + * + * If we detect a mismatched field, we OR the set bits into the existing + * features2 field in case it has already been modified; we don't want + * to lose any features. We then update the bad location with the ORed + * value so that older kernels will see any features2 flags. The + * superblock writeback code ensures the new sb_features2 is copied to + * sb_bad_features2 before it is logged or written to disk. + */ + if (xfs_sb_has_mismatched_features2(sbp)) { + xfs_warn(mp, "correcting sb_features alignment problem"); + sbp->sb_features2 |= sbp->sb_bad_features2; + mp->m_update_sb = true; + } + + + /* always use v2 inodes by default now */ + if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) { + mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT; + mp->m_features |= XFS_FEAT_NLINK; + mp->m_update_sb = true; + } + + /* + * If we were given new sunit/swidth options, do some basic validation + * checks and convert the incore dalign and swidth values to the + * same units (FSB) that everything else uses. This /must/ happen + * before computing the inode geometry. + */ + error = xfs_validate_new_dalign(mp); + if (error) + goto out; + + xfs_alloc_compute_maxlevels(mp); + xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK); + xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK); + xfs_mount_setup_inode_geom(mp); + xfs_rmapbt_compute_maxlevels(mp); + xfs_refcountbt_compute_maxlevels(mp); + + xfs_agbtree_compute_maxlevels(mp); + + /* + * Check if sb_agblocks is aligned at stripe boundary. If sb_agblocks + * is NOT aligned turn off m_dalign since allocator alignment is within + * an ag, therefore ag has to be aligned at stripe boundary. Note that + * we must compute the free space and rmap btree geometry before doing + * this. + */ + error = xfs_update_alignment(mp); + if (error) + goto out; + + /* enable fail_at_unmount as default */ + mp->m_fail_unmount = true; + + error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, + NULL, mp->m_super->s_id); + if (error) + goto out; + + error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype, + &mp->m_kobj, "stats"); + if (error) + goto out_remove_sysfs; + + error = xfs_error_sysfs_init(mp); + if (error) + goto out_del_stats; + + error = xfs_errortag_init(mp); + if (error) + goto out_remove_error_sysfs; + + error = xfs_uuid_mount(mp); + if (error) + goto out_remove_errortag; + + /* + * Update the preferred write size based on the information from the + * on-disk superblock. + */ + mp->m_allocsize_log = + max_t(uint32_t, sbp->sb_blocklog, mp->m_allocsize_log); + mp->m_allocsize_blocks = 1U << (mp->m_allocsize_log - sbp->sb_blocklog); + + /* set the low space thresholds for dynamic preallocation */ + xfs_set_low_space_thresholds(mp); + + /* + * If enabled, sparse inode chunk alignment is expected to match the + * cluster size. Full inode chunk alignment must match the chunk size, + * but that is checked on sb read verification... + */ + if (xfs_has_sparseinodes(mp) && + mp->m_sb.sb_spino_align != + XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) { + xfs_warn(mp, + "Sparse inode block alignment (%u) must match cluster size (%llu).", + mp->m_sb.sb_spino_align, + XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)); + error = -EINVAL; + goto out_remove_uuid; + } + + /* + * Check that the data (and log if separate) is an ok size. + */ + error = xfs_check_sizes(mp); + if (error) + goto out_remove_uuid; + + /* + * Initialize realtime fields in the mount structure + */ + error = xfs_rtmount_init(mp); + if (error) { + xfs_warn(mp, "RT mount failed"); + goto out_remove_uuid; + } + + /* + * Copies the low order bits of the timestamp and the randomly + * set "sequence" number out of a UUID. + */ + mp->m_fixedfsid[0] = + (get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) | + get_unaligned_be16(&sbp->sb_uuid.b[4]); + mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]); + + error = xfs_da_mount(mp); + if (error) { + xfs_warn(mp, "Failed dir/attr init: %d", error); + goto out_remove_uuid; + } + + /* + * Initialize the precomputed transaction reservations values. + */ + xfs_trans_init(mp); + + /* + * Allocate and initialize the per-ag data. + */ + error = xfs_initialize_perag(mp, sbp->sb_agcount, mp->m_sb.sb_dblocks, + &mp->m_maxagi); + if (error) { + xfs_warn(mp, "Failed per-ag init: %d", error); + goto out_free_dir; + } + + if (XFS_IS_CORRUPT(mp, !sbp->sb_logblocks)) { + xfs_warn(mp, "no log defined"); + error = -EFSCORRUPTED; + goto out_free_perag; + } + + error = xfs_inodegc_register_shrinker(mp); + if (error) + goto out_fail_wait; + + /* + * Log's mount-time initialization. The first part of recovery can place + * some items on the AIL, to be handled when recovery is finished or + * cancelled. + */ + error = xfs_log_mount(mp, mp->m_logdev_targp, + XFS_FSB_TO_DADDR(mp, sbp->sb_logstart), + XFS_FSB_TO_BB(mp, sbp->sb_logblocks)); + if (error) { + xfs_warn(mp, "log mount failed"); + goto out_inodegc_shrinker; + } + + /* Enable background inode inactivation workers. */ + xfs_inodegc_start(mp); + xfs_blockgc_start(mp); + + /* + * Now that we've recovered any pending superblock feature bit + * additions, we can finish setting up the attr2 behaviour for the + * mount. The noattr2 option overrides the superblock flag, so only + * check the superblock feature flag if the mount option is not set. + */ + if (xfs_has_noattr2(mp)) { + mp->m_features &= ~XFS_FEAT_ATTR2; + } else if (!xfs_has_attr2(mp) && + (mp->m_sb.sb_features2 & XFS_SB_VERSION2_ATTR2BIT)) { + mp->m_features |= XFS_FEAT_ATTR2; + } + + /* + * Get and sanity-check the root inode. + * Save the pointer to it in the mount structure. + */ + error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED, + XFS_ILOCK_EXCL, &rip); + if (error) { + xfs_warn(mp, + "Failed to read root inode 0x%llx, error %d", + sbp->sb_rootino, -error); + goto out_log_dealloc; + } + + ASSERT(rip != NULL); + + if (XFS_IS_CORRUPT(mp, !S_ISDIR(VFS_I(rip)->i_mode))) { + xfs_warn(mp, "corrupted root inode %llu: not a directory", + (unsigned long long)rip->i_ino); + xfs_iunlock(rip, XFS_ILOCK_EXCL); + error = -EFSCORRUPTED; + goto out_rele_rip; + } + mp->m_rootip = rip; /* save it */ + + xfs_iunlock(rip, XFS_ILOCK_EXCL); + + /* + * Initialize realtime inode pointers in the mount structure + */ + error = xfs_rtmount_inodes(mp); + if (error) { + /* + * Free up the root inode. + */ + xfs_warn(mp, "failed to read RT inodes"); + goto out_rele_rip; + } + + /* Make sure the summary counts are ok. */ + error = xfs_check_summary_counts(mp); + if (error) + goto out_rtunmount; + + /* + * If this is a read-only mount defer the superblock updates until + * the next remount into writeable mode. Otherwise we would never + * perform the update e.g. for the root filesystem. + */ + if (mp->m_update_sb && !xfs_is_readonly(mp)) { + error = xfs_sync_sb(mp, false); + if (error) { + xfs_warn(mp, "failed to write sb changes"); + goto out_rtunmount; + } + } + + /* + * Initialise the XFS quota management subsystem for this mount + */ + if (XFS_IS_QUOTA_ON(mp)) { + error = xfs_qm_newmount(mp, "amount, "aflags); + if (error) + goto out_rtunmount; + } else { + /* + * If a file system had quotas running earlier, but decided to + * mount without -o uquota/pquota/gquota options, revoke the + * quotachecked license. + */ + if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) { + xfs_notice(mp, "resetting quota flags"); + error = xfs_mount_reset_sbqflags(mp); + if (error) + goto out_rtunmount; + } + } + + /* + * Finish recovering the file system. This part needed to be delayed + * until after the root and real-time bitmap inodes were consistently + * read in. Temporarily create per-AG space reservations for metadata + * btree shape changes because space freeing transactions (for inode + * inactivation) require the per-AG reservation in lieu of reserving + * blocks. + */ + error = xfs_fs_reserve_ag_blocks(mp); + if (error && error == -ENOSPC) + xfs_warn(mp, + "ENOSPC reserving per-AG metadata pool, log recovery may fail."); + error = xfs_log_mount_finish(mp); + xfs_fs_unreserve_ag_blocks(mp); + if (error) { + xfs_warn(mp, "log mount finish failed"); + goto out_rtunmount; + } + + /* + * Now the log is fully replayed, we can transition to full read-only + * mode for read-only mounts. This will sync all the metadata and clean + * the log so that the recovery we just performed does not have to be + * replayed again on the next mount. + * + * We use the same quiesce mechanism as the rw->ro remount, as they are + * semantically identical operations. + */ + if (xfs_is_readonly(mp) && !xfs_has_norecovery(mp)) + xfs_log_clean(mp); + + /* + * Complete the quota initialisation, post-log-replay component. + */ + if (quotamount) { + ASSERT(mp->m_qflags == 0); + mp->m_qflags = quotaflags; + + xfs_qm_mount_quotas(mp); + } + + /* + * Now we are mounted, reserve a small amount of unused space for + * privileged transactions. This is needed so that transaction + * space required for critical operations can dip into this pool + * when at ENOSPC. This is needed for operations like create with + * attr, unwritten extent conversion at ENOSPC, etc. Data allocations + * are not allowed to use this reserved space. + * + * This may drive us straight to ENOSPC on mount, but that implies + * we were already there on the last unmount. Warn if this occurs. + */ + if (!xfs_is_readonly(mp)) { + resblks = xfs_default_resblks(mp); + error = xfs_reserve_blocks(mp, &resblks, NULL); + if (error) + xfs_warn(mp, + "Unable to allocate reserve blocks. Continuing without reserve pool."); + + /* Reserve AG blocks for future btree expansion. */ + error = xfs_fs_reserve_ag_blocks(mp); + if (error && error != -ENOSPC) + goto out_agresv; + } + + return 0; + + out_agresv: + xfs_fs_unreserve_ag_blocks(mp); + xfs_qm_unmount_quotas(mp); + out_rtunmount: + xfs_rtunmount_inodes(mp); + out_rele_rip: + xfs_irele(rip); + /* Clean out dquots that might be in memory after quotacheck. */ + xfs_qm_unmount(mp); + + /* + * Inactivate all inodes that might still be in memory after a log + * intent recovery failure so that reclaim can free them. Metadata + * inodes and the root directory shouldn't need inactivation, but the + * mount failed for some reason, so pull down all the state and flee. + */ + xfs_inodegc_flush(mp); + + /* + * Flush all inode reclamation work and flush the log. + * We have to do this /after/ rtunmount and qm_unmount because those + * two will have scheduled delayed reclaim for the rt/quota inodes. + * + * This is slightly different from the unmountfs call sequence + * because we could be tearing down a partially set up mount. In + * particular, if log_mount_finish fails we bail out without calling + * qm_unmount_quotas and therefore rely on qm_unmount to release the + * quota inodes. + */ + xfs_unmount_flush_inodes(mp); + out_log_dealloc: + xfs_log_mount_cancel(mp); + out_inodegc_shrinker: + unregister_shrinker(&mp->m_inodegc_shrinker); + out_fail_wait: + if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) + xfs_buftarg_drain(mp->m_logdev_targp); + xfs_buftarg_drain(mp->m_ddev_targp); + out_free_perag: + xfs_free_perag(mp); + out_free_dir: + xfs_da_unmount(mp); + out_remove_uuid: + xfs_uuid_unmount(mp); + out_remove_errortag: + xfs_errortag_del(mp); + out_remove_error_sysfs: + xfs_error_sysfs_del(mp); + out_del_stats: + xfs_sysfs_del(&mp->m_stats.xs_kobj); + out_remove_sysfs: + xfs_sysfs_del(&mp->m_kobj); + out: + return error; +} + +/* + * This flushes out the inodes,dquots and the superblock, unmounts the + * log and makes sure that incore structures are freed. + */ +void +xfs_unmountfs( + struct xfs_mount *mp) +{ + uint64_t resblks; + int error; + + /* + * Perform all on-disk metadata updates required to inactivate inodes + * that the VFS evicted earlier in the unmount process. Freeing inodes + * and discarding CoW fork preallocations can cause shape changes to + * the free inode and refcount btrees, respectively, so we must finish + * this before we discard the metadata space reservations. Metadata + * inodes and the root directory do not require inactivation. + */ + xfs_inodegc_flush(mp); + + xfs_blockgc_stop(mp); + xfs_fs_unreserve_ag_blocks(mp); + xfs_qm_unmount_quotas(mp); + xfs_rtunmount_inodes(mp); + xfs_irele(mp->m_rootip); + + xfs_unmount_flush_inodes(mp); + + xfs_qm_unmount(mp); + + /* + * Unreserve any blocks we have so that when we unmount we don't account + * the reserved free space as used. This is really only necessary for + * lazy superblock counting because it trusts the incore superblock + * counters to be absolutely correct on clean unmount. + * + * We don't bother correcting this elsewhere for lazy superblock + * counting because on mount of an unclean filesystem we reconstruct the + * correct counter value and this is irrelevant. + * + * For non-lazy counter filesystems, this doesn't matter at all because + * we only every apply deltas to the superblock and hence the incore + * value does not matter.... + */ + resblks = 0; + error = xfs_reserve_blocks(mp, &resblks, NULL); + if (error) + xfs_warn(mp, "Unable to free reserved block pool. " + "Freespace may not be correct on next mount."); + + xfs_log_unmount(mp); + xfs_da_unmount(mp); + xfs_uuid_unmount(mp); + +#if defined(DEBUG) + xfs_errortag_clearall(mp); +#endif + unregister_shrinker(&mp->m_inodegc_shrinker); + xfs_free_perag(mp); + + xfs_errortag_del(mp); + xfs_error_sysfs_del(mp); + xfs_sysfs_del(&mp->m_stats.xs_kobj); + xfs_sysfs_del(&mp->m_kobj); +} + +/* + * Determine whether modifications can proceed. The caller specifies the minimum + * freeze level for which modifications should not be allowed. This allows + * certain operations to proceed while the freeze sequence is in progress, if + * necessary. + */ +bool +xfs_fs_writable( + struct xfs_mount *mp, + int level) +{ + ASSERT(level > SB_UNFROZEN); + if ((mp->m_super->s_writers.frozen >= level) || + xfs_is_shutdown(mp) || xfs_is_readonly(mp)) + return false; + + return true; +} + +/* Adjust m_fdblocks or m_frextents. */ +int +xfs_mod_freecounter( + struct xfs_mount *mp, + struct percpu_counter *counter, + int64_t delta, + bool rsvd) +{ + int64_t lcounter; + long long res_used; + uint64_t set_aside = 0; + s32 batch; + bool has_resv_pool; + + ASSERT(counter == &mp->m_fdblocks || counter == &mp->m_frextents); + has_resv_pool = (counter == &mp->m_fdblocks); + if (rsvd) + ASSERT(has_resv_pool); + + if (delta > 0) { + /* + * If the reserve pool is depleted, put blocks back into it + * first. Most of the time the pool is full. + */ + if (likely(!has_resv_pool || + mp->m_resblks == mp->m_resblks_avail)) { + percpu_counter_add(counter, delta); + return 0; + } + + spin_lock(&mp->m_sb_lock); + res_used = (long long)(mp->m_resblks - mp->m_resblks_avail); + + if (res_used > delta) { + mp->m_resblks_avail += delta; + } else { + delta -= res_used; + mp->m_resblks_avail = mp->m_resblks; + percpu_counter_add(counter, delta); + } + spin_unlock(&mp->m_sb_lock); + return 0; + } + + /* + * Taking blocks away, need to be more accurate the closer we + * are to zero. + * + * If the counter has a value of less than 2 * max batch size, + * then make everything serialise as we are real close to + * ENOSPC. + */ + if (__percpu_counter_compare(counter, 2 * XFS_FDBLOCKS_BATCH, + XFS_FDBLOCKS_BATCH) < 0) + batch = 1; + else + batch = XFS_FDBLOCKS_BATCH; + + /* + * Set aside allocbt blocks because these blocks are tracked as free + * space but not available for allocation. Technically this means that a + * single reservation cannot consume all remaining free space, but the + * ratio of allocbt blocks to usable free blocks should be rather small. + * The tradeoff without this is that filesystems that maintain high + * perag block reservations can over reserve physical block availability + * and fail physical allocation, which leads to much more serious + * problems (i.e. transaction abort, pagecache discards, etc.) than + * slightly premature -ENOSPC. + */ + if (has_resv_pool) + set_aside = xfs_fdblocks_unavailable(mp); + percpu_counter_add_batch(counter, delta, batch); + if (__percpu_counter_compare(counter, set_aside, + XFS_FDBLOCKS_BATCH) >= 0) { + /* we had space! */ + return 0; + } + + /* + * lock up the sb for dipping into reserves before releasing the space + * that took us to ENOSPC. + */ + spin_lock(&mp->m_sb_lock); + percpu_counter_add(counter, -delta); + if (!has_resv_pool || !rsvd) + goto fdblocks_enospc; + + lcounter = (long long)mp->m_resblks_avail + delta; + if (lcounter >= 0) { + mp->m_resblks_avail = lcounter; + spin_unlock(&mp->m_sb_lock); + return 0; + } + xfs_warn_once(mp, +"Reserve blocks depleted! Consider increasing reserve pool size."); + +fdblocks_enospc: + spin_unlock(&mp->m_sb_lock); + return -ENOSPC; +} + +/* + * Used to free the superblock along various error paths. + */ +void +xfs_freesb( + struct xfs_mount *mp) +{ + struct xfs_buf *bp = mp->m_sb_bp; + + xfs_buf_lock(bp); + mp->m_sb_bp = NULL; + xfs_buf_relse(bp); +} + +/* + * If the underlying (data/log/rt) device is readonly, there are some + * operations that cannot proceed. + */ +int +xfs_dev_is_read_only( + struct xfs_mount *mp, + char *message) +{ + if (xfs_readonly_buftarg(mp->m_ddev_targp) || + xfs_readonly_buftarg(mp->m_logdev_targp) || + (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) { + xfs_notice(mp, "%s required on read-only device.", message); + xfs_notice(mp, "write access unavailable, cannot proceed."); + return -EROFS; + } + return 0; +} + +/* Force the summary counters to be recalculated at next mount. */ +void +xfs_force_summary_recalc( + struct xfs_mount *mp) +{ + if (!xfs_has_lazysbcount(mp)) + return; + + xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS); +} + +/* + * Enable a log incompat feature flag in the primary superblock. The caller + * cannot have any other transactions in progress. + */ +int +xfs_add_incompat_log_feature( + struct xfs_mount *mp, + uint32_t feature) +{ + struct xfs_dsb *dsb; + int error; + + ASSERT(hweight32(feature) == 1); + ASSERT(!(feature & XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)); + + /* + * Force the log to disk and kick the background AIL thread to reduce + * the chances that the bwrite will stall waiting for the AIL to unpin + * the primary superblock buffer. This isn't a data integrity + * operation, so we don't need a synchronous push. + */ + error = xfs_log_force(mp, XFS_LOG_SYNC); + if (error) + return error; + xfs_ail_push_all(mp->m_ail); + + /* + * Lock the primary superblock buffer to serialize all callers that + * are trying to set feature bits. + */ + xfs_buf_lock(mp->m_sb_bp); + xfs_buf_hold(mp->m_sb_bp); + + if (xfs_is_shutdown(mp)) { + error = -EIO; + goto rele; + } + + if (xfs_sb_has_incompat_log_feature(&mp->m_sb, feature)) + goto rele; + + /* + * Write the primary superblock to disk immediately, because we need + * the log_incompat bit to be set in the primary super now to protect + * the log items that we're going to commit later. + */ + dsb = mp->m_sb_bp->b_addr; + xfs_sb_to_disk(dsb, &mp->m_sb); + dsb->sb_features_log_incompat |= cpu_to_be32(feature); + error = xfs_bwrite(mp->m_sb_bp); + if (error) + goto shutdown; + + /* + * Add the feature bits to the incore superblock before we unlock the + * buffer. + */ + xfs_sb_add_incompat_log_features(&mp->m_sb, feature); + xfs_buf_relse(mp->m_sb_bp); + + /* Log the superblock to disk. */ + return xfs_sync_sb(mp, false); +shutdown: + xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); +rele: + xfs_buf_relse(mp->m_sb_bp); + return error; +} + +/* + * Clear all the log incompat flags from the superblock. + * + * The caller cannot be in a transaction, must ensure that the log does not + * contain any log items protected by any log incompat bit, and must ensure + * that there are no other threads that depend on the state of the log incompat + * feature flags in the primary super. + * + * Returns true if the superblock is dirty. + */ +bool +xfs_clear_incompat_log_features( + struct xfs_mount *mp) +{ + bool ret = false; + + if (!xfs_has_crc(mp) || + !xfs_sb_has_incompat_log_feature(&mp->m_sb, + XFS_SB_FEAT_INCOMPAT_LOG_ALL) || + xfs_is_shutdown(mp)) + return false; + + /* + * Update the incore superblock. We synchronize on the primary super + * buffer lock to be consistent with the add function, though at least + * in theory this shouldn't be necessary. + */ + xfs_buf_lock(mp->m_sb_bp); + xfs_buf_hold(mp->m_sb_bp); + + if (xfs_sb_has_incompat_log_feature(&mp->m_sb, + XFS_SB_FEAT_INCOMPAT_LOG_ALL)) { + xfs_sb_remove_incompat_log_features(&mp->m_sb); + ret = true; + } + + xfs_buf_relse(mp->m_sb_bp); + return ret; +} + +/* + * Update the in-core delayed block counter. + * + * We prefer to update the counter without having to take a spinlock for every + * counter update (i.e. batching). Each change to delayed allocation + * reservations can change can easily exceed the default percpu counter + * batching, so we use a larger batch factor here. + * + * Note that we don't currently have any callers requiring fast summation + * (e.g. percpu_counter_read) so we can use a big batch value here. + */ +#define XFS_DELALLOC_BATCH (4096) +void +xfs_mod_delalloc( + struct xfs_mount *mp, + int64_t delta) +{ + percpu_counter_add_batch(&mp->m_delalloc_blks, delta, + XFS_DELALLOC_BATCH); +} |