diff options
Diffstat (limited to 'lib/zstd/compress/huf_compress.c')
-rw-r--r-- | lib/zstd/compress/huf_compress.c | 905 |
1 files changed, 905 insertions, 0 deletions
diff --git a/lib/zstd/compress/huf_compress.c b/lib/zstd/compress/huf_compress.c new file mode 100644 index 000000000..f76a526bf --- /dev/null +++ b/lib/zstd/compress/huf_compress.c @@ -0,0 +1,905 @@ +/* ****************************************************************** + * Huffman encoder, part of New Generation Entropy library + * Copyright (c) Yann Collet, Facebook, Inc. + * + * You can contact the author at : + * - FSE+HUF source repository : https://github.com/Cyan4973/FiniteStateEntropy + * - Public forum : https://groups.google.com/forum/#!forum/lz4c + * + * This source code is licensed under both the BSD-style license (found in the + * LICENSE file in the root directory of this source tree) and the GPLv2 (found + * in the COPYING file in the root directory of this source tree). + * You may select, at your option, one of the above-listed licenses. +****************************************************************** */ + +/* ************************************************************** +* Compiler specifics +****************************************************************/ + + +/* ************************************************************** +* Includes +****************************************************************/ +#include "../common/zstd_deps.h" /* ZSTD_memcpy, ZSTD_memset */ +#include "../common/compiler.h" +#include "../common/bitstream.h" +#include "hist.h" +#define FSE_STATIC_LINKING_ONLY /* FSE_optimalTableLog_internal */ +#include "../common/fse.h" /* header compression */ +#define HUF_STATIC_LINKING_ONLY +#include "../common/huf.h" +#include "../common/error_private.h" + + +/* ************************************************************** +* Error Management +****************************************************************/ +#define HUF_isError ERR_isError +#define HUF_STATIC_ASSERT(c) DEBUG_STATIC_ASSERT(c) /* use only *after* variable declarations */ + + +/* ************************************************************** +* Utils +****************************************************************/ +unsigned HUF_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue) +{ + return FSE_optimalTableLog_internal(maxTableLog, srcSize, maxSymbolValue, 1); +} + + +/* ******************************************************* +* HUF : Huffman block compression +*********************************************************/ +/* HUF_compressWeights() : + * Same as FSE_compress(), but dedicated to huff0's weights compression. + * The use case needs much less stack memory. + * Note : all elements within weightTable are supposed to be <= HUF_TABLELOG_MAX. + */ +#define MAX_FSE_TABLELOG_FOR_HUFF_HEADER 6 + +typedef struct { + FSE_CTable CTable[FSE_CTABLE_SIZE_U32(MAX_FSE_TABLELOG_FOR_HUFF_HEADER, HUF_TABLELOG_MAX)]; + U32 scratchBuffer[FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(HUF_TABLELOG_MAX, MAX_FSE_TABLELOG_FOR_HUFF_HEADER)]; + unsigned count[HUF_TABLELOG_MAX+1]; + S16 norm[HUF_TABLELOG_MAX+1]; +} HUF_CompressWeightsWksp; + +static size_t HUF_compressWeights(void* dst, size_t dstSize, const void* weightTable, size_t wtSize, void* workspace, size_t workspaceSize) +{ + BYTE* const ostart = (BYTE*) dst; + BYTE* op = ostart; + BYTE* const oend = ostart + dstSize; + + unsigned maxSymbolValue = HUF_TABLELOG_MAX; + U32 tableLog = MAX_FSE_TABLELOG_FOR_HUFF_HEADER; + HUF_CompressWeightsWksp* wksp = (HUF_CompressWeightsWksp*)workspace; + + if (workspaceSize < sizeof(HUF_CompressWeightsWksp)) return ERROR(GENERIC); + + /* init conditions */ + if (wtSize <= 1) return 0; /* Not compressible */ + + /* Scan input and build symbol stats */ + { unsigned const maxCount = HIST_count_simple(wksp->count, &maxSymbolValue, weightTable, wtSize); /* never fails */ + if (maxCount == wtSize) return 1; /* only a single symbol in src : rle */ + if (maxCount == 1) return 0; /* each symbol present maximum once => not compressible */ + } + + tableLog = FSE_optimalTableLog(tableLog, wtSize, maxSymbolValue); + CHECK_F( FSE_normalizeCount(wksp->norm, tableLog, wksp->count, wtSize, maxSymbolValue, /* useLowProbCount */ 0) ); + + /* Write table description header */ + { CHECK_V_F(hSize, FSE_writeNCount(op, (size_t)(oend-op), wksp->norm, maxSymbolValue, tableLog) ); + op += hSize; + } + + /* Compress */ + CHECK_F( FSE_buildCTable_wksp(wksp->CTable, wksp->norm, maxSymbolValue, tableLog, wksp->scratchBuffer, sizeof(wksp->scratchBuffer)) ); + { CHECK_V_F(cSize, FSE_compress_usingCTable(op, (size_t)(oend - op), weightTable, wtSize, wksp->CTable) ); + if (cSize == 0) return 0; /* not enough space for compressed data */ + op += cSize; + } + + return (size_t)(op-ostart); +} + + +typedef struct { + HUF_CompressWeightsWksp wksp; + BYTE bitsToWeight[HUF_TABLELOG_MAX + 1]; /* precomputed conversion table */ + BYTE huffWeight[HUF_SYMBOLVALUE_MAX]; +} HUF_WriteCTableWksp; + +size_t HUF_writeCTable_wksp(void* dst, size_t maxDstSize, + const HUF_CElt* CTable, unsigned maxSymbolValue, unsigned huffLog, + void* workspace, size_t workspaceSize) +{ + BYTE* op = (BYTE*)dst; + U32 n; + HUF_WriteCTableWksp* wksp = (HUF_WriteCTableWksp*)workspace; + + /* check conditions */ + if (workspaceSize < sizeof(HUF_WriteCTableWksp)) return ERROR(GENERIC); + if (maxSymbolValue > HUF_SYMBOLVALUE_MAX) return ERROR(maxSymbolValue_tooLarge); + + /* convert to weight */ + wksp->bitsToWeight[0] = 0; + for (n=1; n<huffLog+1; n++) + wksp->bitsToWeight[n] = (BYTE)(huffLog + 1 - n); + for (n=0; n<maxSymbolValue; n++) + wksp->huffWeight[n] = wksp->bitsToWeight[CTable[n].nbBits]; + + /* attempt weights compression by FSE */ + { CHECK_V_F(hSize, HUF_compressWeights(op+1, maxDstSize-1, wksp->huffWeight, maxSymbolValue, &wksp->wksp, sizeof(wksp->wksp)) ); + if ((hSize>1) & (hSize < maxSymbolValue/2)) { /* FSE compressed */ + op[0] = (BYTE)hSize; + return hSize+1; + } } + + /* write raw values as 4-bits (max : 15) */ + if (maxSymbolValue > (256-128)) return ERROR(GENERIC); /* should not happen : likely means source cannot be compressed */ + if (((maxSymbolValue+1)/2) + 1 > maxDstSize) return ERROR(dstSize_tooSmall); /* not enough space within dst buffer */ + op[0] = (BYTE)(128 /*special case*/ + (maxSymbolValue-1)); + wksp->huffWeight[maxSymbolValue] = 0; /* to be sure it doesn't cause msan issue in final combination */ + for (n=0; n<maxSymbolValue; n+=2) + op[(n/2)+1] = (BYTE)((wksp->huffWeight[n] << 4) + wksp->huffWeight[n+1]); + return ((maxSymbolValue+1)/2) + 1; +} + +/*! HUF_writeCTable() : + `CTable` : Huffman tree to save, using huf representation. + @return : size of saved CTable */ +size_t HUF_writeCTable (void* dst, size_t maxDstSize, + const HUF_CElt* CTable, unsigned maxSymbolValue, unsigned huffLog) +{ + HUF_WriteCTableWksp wksp; + return HUF_writeCTable_wksp(dst, maxDstSize, CTable, maxSymbolValue, huffLog, &wksp, sizeof(wksp)); +} + + +size_t HUF_readCTable (HUF_CElt* CTable, unsigned* maxSymbolValuePtr, const void* src, size_t srcSize, unsigned* hasZeroWeights) +{ + BYTE huffWeight[HUF_SYMBOLVALUE_MAX + 1]; /* init not required, even though some static analyzer may complain */ + U32 rankVal[HUF_TABLELOG_ABSOLUTEMAX + 1]; /* large enough for values from 0 to 16 */ + U32 tableLog = 0; + U32 nbSymbols = 0; + + /* get symbol weights */ + CHECK_V_F(readSize, HUF_readStats(huffWeight, HUF_SYMBOLVALUE_MAX+1, rankVal, &nbSymbols, &tableLog, src, srcSize)); + *hasZeroWeights = (rankVal[0] > 0); + + /* check result */ + if (tableLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge); + if (nbSymbols > *maxSymbolValuePtr+1) return ERROR(maxSymbolValue_tooSmall); + + /* Prepare base value per rank */ + { U32 n, nextRankStart = 0; + for (n=1; n<=tableLog; n++) { + U32 curr = nextRankStart; + nextRankStart += (rankVal[n] << (n-1)); + rankVal[n] = curr; + } } + + /* fill nbBits */ + { U32 n; for (n=0; n<nbSymbols; n++) { + const U32 w = huffWeight[n]; + CTable[n].nbBits = (BYTE)(tableLog + 1 - w) & -(w != 0); + } } + + /* fill val */ + { U16 nbPerRank[HUF_TABLELOG_MAX+2] = {0}; /* support w=0=>n=tableLog+1 */ + U16 valPerRank[HUF_TABLELOG_MAX+2] = {0}; + { U32 n; for (n=0; n<nbSymbols; n++) nbPerRank[CTable[n].nbBits]++; } + /* determine stating value per rank */ + valPerRank[tableLog+1] = 0; /* for w==0 */ + { U16 min = 0; + U32 n; for (n=tableLog; n>0; n--) { /* start at n=tablelog <-> w=1 */ + valPerRank[n] = min; /* get starting value within each rank */ + min += nbPerRank[n]; + min >>= 1; + } } + /* assign value within rank, symbol order */ + { U32 n; for (n=0; n<nbSymbols; n++) CTable[n].val = valPerRank[CTable[n].nbBits]++; } + } + + *maxSymbolValuePtr = nbSymbols - 1; + return readSize; +} + +U32 HUF_getNbBits(const void* symbolTable, U32 symbolValue) +{ + const HUF_CElt* table = (const HUF_CElt*)symbolTable; + assert(symbolValue <= HUF_SYMBOLVALUE_MAX); + return table[symbolValue].nbBits; +} + + +typedef struct nodeElt_s { + U32 count; + U16 parent; + BYTE byte; + BYTE nbBits; +} nodeElt; + +/* + * HUF_setMaxHeight(): + * Enforces maxNbBits on the Huffman tree described in huffNode. + * + * It sets all nodes with nbBits > maxNbBits to be maxNbBits. Then it adjusts + * the tree to so that it is a valid canonical Huffman tree. + * + * @pre The sum of the ranks of each symbol == 2^largestBits, + * where largestBits == huffNode[lastNonNull].nbBits. + * @post The sum of the ranks of each symbol == 2^largestBits, + * where largestBits is the return value <= maxNbBits. + * + * @param huffNode The Huffman tree modified in place to enforce maxNbBits. + * @param lastNonNull The symbol with the lowest count in the Huffman tree. + * @param maxNbBits The maximum allowed number of bits, which the Huffman tree + * may not respect. After this function the Huffman tree will + * respect maxNbBits. + * @return The maximum number of bits of the Huffman tree after adjustment, + * necessarily no more than maxNbBits. + */ +static U32 HUF_setMaxHeight(nodeElt* huffNode, U32 lastNonNull, U32 maxNbBits) +{ + const U32 largestBits = huffNode[lastNonNull].nbBits; + /* early exit : no elt > maxNbBits, so the tree is already valid. */ + if (largestBits <= maxNbBits) return largestBits; + + /* there are several too large elements (at least >= 2) */ + { int totalCost = 0; + const U32 baseCost = 1 << (largestBits - maxNbBits); + int n = (int)lastNonNull; + + /* Adjust any ranks > maxNbBits to maxNbBits. + * Compute totalCost, which is how far the sum of the ranks is + * we are over 2^largestBits after adjust the offending ranks. + */ + while (huffNode[n].nbBits > maxNbBits) { + totalCost += baseCost - (1 << (largestBits - huffNode[n].nbBits)); + huffNode[n].nbBits = (BYTE)maxNbBits; + n--; + } + /* n stops at huffNode[n].nbBits <= maxNbBits */ + assert(huffNode[n].nbBits <= maxNbBits); + /* n end at index of smallest symbol using < maxNbBits */ + while (huffNode[n].nbBits == maxNbBits) --n; + + /* renorm totalCost from 2^largestBits to 2^maxNbBits + * note : totalCost is necessarily a multiple of baseCost */ + assert((totalCost & (baseCost - 1)) == 0); + totalCost >>= (largestBits - maxNbBits); + assert(totalCost > 0); + + /* repay normalized cost */ + { U32 const noSymbol = 0xF0F0F0F0; + U32 rankLast[HUF_TABLELOG_MAX+2]; + + /* Get pos of last (smallest = lowest cum. count) symbol per rank */ + ZSTD_memset(rankLast, 0xF0, sizeof(rankLast)); + { U32 currentNbBits = maxNbBits; + int pos; + for (pos=n ; pos >= 0; pos--) { + if (huffNode[pos].nbBits >= currentNbBits) continue; + currentNbBits = huffNode[pos].nbBits; /* < maxNbBits */ + rankLast[maxNbBits-currentNbBits] = (U32)pos; + } } + + while (totalCost > 0) { + /* Try to reduce the next power of 2 above totalCost because we + * gain back half the rank. + */ + U32 nBitsToDecrease = BIT_highbit32((U32)totalCost) + 1; + for ( ; nBitsToDecrease > 1; nBitsToDecrease--) { + U32 const highPos = rankLast[nBitsToDecrease]; + U32 const lowPos = rankLast[nBitsToDecrease-1]; + if (highPos == noSymbol) continue; + /* Decrease highPos if no symbols of lowPos or if it is + * not cheaper to remove 2 lowPos than highPos. + */ + if (lowPos == noSymbol) break; + { U32 const highTotal = huffNode[highPos].count; + U32 const lowTotal = 2 * huffNode[lowPos].count; + if (highTotal <= lowTotal) break; + } } + /* only triggered when no more rank 1 symbol left => find closest one (note : there is necessarily at least one !) */ + assert(rankLast[nBitsToDecrease] != noSymbol || nBitsToDecrease == 1); + /* HUF_MAX_TABLELOG test just to please gcc 5+; but it should not be necessary */ + while ((nBitsToDecrease<=HUF_TABLELOG_MAX) && (rankLast[nBitsToDecrease] == noSymbol)) + nBitsToDecrease++; + assert(rankLast[nBitsToDecrease] != noSymbol); + /* Increase the number of bits to gain back half the rank cost. */ + totalCost -= 1 << (nBitsToDecrease-1); + huffNode[rankLast[nBitsToDecrease]].nbBits++; + + /* Fix up the new rank. + * If the new rank was empty, this symbol is now its smallest. + * Otherwise, this symbol will be the largest in the new rank so no adjustment. + */ + if (rankLast[nBitsToDecrease-1] == noSymbol) + rankLast[nBitsToDecrease-1] = rankLast[nBitsToDecrease]; + /* Fix up the old rank. + * If the symbol was at position 0, meaning it was the highest weight symbol in the tree, + * it must be the only symbol in its rank, so the old rank now has no symbols. + * Otherwise, since the Huffman nodes are sorted by count, the previous position is now + * the smallest node in the rank. If the previous position belongs to a different rank, + * then the rank is now empty. + */ + if (rankLast[nBitsToDecrease] == 0) /* special case, reached largest symbol */ + rankLast[nBitsToDecrease] = noSymbol; + else { + rankLast[nBitsToDecrease]--; + if (huffNode[rankLast[nBitsToDecrease]].nbBits != maxNbBits-nBitsToDecrease) + rankLast[nBitsToDecrease] = noSymbol; /* this rank is now empty */ + } + } /* while (totalCost > 0) */ + + /* If we've removed too much weight, then we have to add it back. + * To avoid overshooting again, we only adjust the smallest rank. + * We take the largest nodes from the lowest rank 0 and move them + * to rank 1. There's guaranteed to be enough rank 0 symbols because + * TODO. + */ + while (totalCost < 0) { /* Sometimes, cost correction overshoot */ + /* special case : no rank 1 symbol (using maxNbBits-1); + * let's create one from largest rank 0 (using maxNbBits). + */ + if (rankLast[1] == noSymbol) { + while (huffNode[n].nbBits == maxNbBits) n--; + huffNode[n+1].nbBits--; + assert(n >= 0); + rankLast[1] = (U32)(n+1); + totalCost++; + continue; + } + huffNode[ rankLast[1] + 1 ].nbBits--; + rankLast[1]++; + totalCost ++; + } + } /* repay normalized cost */ + } /* there are several too large elements (at least >= 2) */ + + return maxNbBits; +} + +typedef struct { + U32 base; + U32 curr; +} rankPos; + +typedef nodeElt huffNodeTable[HUF_CTABLE_WORKSPACE_SIZE_U32]; + +#define RANK_POSITION_TABLE_SIZE 32 + +typedef struct { + huffNodeTable huffNodeTbl; + rankPos rankPosition[RANK_POSITION_TABLE_SIZE]; +} HUF_buildCTable_wksp_tables; + +/* + * HUF_sort(): + * Sorts the symbols [0, maxSymbolValue] by count[symbol] in decreasing order. + * + * @param[out] huffNode Sorted symbols by decreasing count. Only members `.count` and `.byte` are filled. + * Must have (maxSymbolValue + 1) entries. + * @param[in] count Histogram of the symbols. + * @param[in] maxSymbolValue Maximum symbol value. + * @param rankPosition This is a scratch workspace. Must have RANK_POSITION_TABLE_SIZE entries. + */ +static void HUF_sort(nodeElt* huffNode, const unsigned* count, U32 maxSymbolValue, rankPos* rankPosition) +{ + int n; + int const maxSymbolValue1 = (int)maxSymbolValue + 1; + + /* Compute base and set curr to base. + * For symbol s let lowerRank = BIT_highbit32(count[n]+1) and rank = lowerRank + 1. + * Then 2^lowerRank <= count[n]+1 <= 2^rank. + * We attribute each symbol to lowerRank's base value, because we want to know where + * each rank begins in the output, so for rank R we want to count ranks R+1 and above. + */ + ZSTD_memset(rankPosition, 0, sizeof(*rankPosition) * RANK_POSITION_TABLE_SIZE); + for (n = 0; n < maxSymbolValue1; ++n) { + U32 lowerRank = BIT_highbit32(count[n] + 1); + rankPosition[lowerRank].base++; + } + assert(rankPosition[RANK_POSITION_TABLE_SIZE - 1].base == 0); + for (n = RANK_POSITION_TABLE_SIZE - 1; n > 0; --n) { + rankPosition[n-1].base += rankPosition[n].base; + rankPosition[n-1].curr = rankPosition[n-1].base; + } + /* Sort */ + for (n = 0; n < maxSymbolValue1; ++n) { + U32 const c = count[n]; + U32 const r = BIT_highbit32(c+1) + 1; + U32 pos = rankPosition[r].curr++; + /* Insert into the correct position in the rank. + * We have at most 256 symbols, so this insertion should be fine. + */ + while ((pos > rankPosition[r].base) && (c > huffNode[pos-1].count)) { + huffNode[pos] = huffNode[pos-1]; + pos--; + } + huffNode[pos].count = c; + huffNode[pos].byte = (BYTE)n; + } +} + + +/* HUF_buildCTable_wksp() : + * Same as HUF_buildCTable(), but using externally allocated scratch buffer. + * `workSpace` must be aligned on 4-bytes boundaries, and be at least as large as sizeof(HUF_buildCTable_wksp_tables). + */ +#define STARTNODE (HUF_SYMBOLVALUE_MAX+1) + +/* HUF_buildTree(): + * Takes the huffNode array sorted by HUF_sort() and builds an unlimited-depth Huffman tree. + * + * @param huffNode The array sorted by HUF_sort(). Builds the Huffman tree in this array. + * @param maxSymbolValue The maximum symbol value. + * @return The smallest node in the Huffman tree (by count). + */ +static int HUF_buildTree(nodeElt* huffNode, U32 maxSymbolValue) +{ + nodeElt* const huffNode0 = huffNode - 1; + int nonNullRank; + int lowS, lowN; + int nodeNb = STARTNODE; + int n, nodeRoot; + /* init for parents */ + nonNullRank = (int)maxSymbolValue; + while(huffNode[nonNullRank].count == 0) nonNullRank--; + lowS = nonNullRank; nodeRoot = nodeNb + lowS - 1; lowN = nodeNb; + huffNode[nodeNb].count = huffNode[lowS].count + huffNode[lowS-1].count; + huffNode[lowS].parent = huffNode[lowS-1].parent = (U16)nodeNb; + nodeNb++; lowS-=2; + for (n=nodeNb; n<=nodeRoot; n++) huffNode[n].count = (U32)(1U<<30); + huffNode0[0].count = (U32)(1U<<31); /* fake entry, strong barrier */ + + /* create parents */ + while (nodeNb <= nodeRoot) { + int const n1 = (huffNode[lowS].count < huffNode[lowN].count) ? lowS-- : lowN++; + int const n2 = (huffNode[lowS].count < huffNode[lowN].count) ? lowS-- : lowN++; + huffNode[nodeNb].count = huffNode[n1].count + huffNode[n2].count; + huffNode[n1].parent = huffNode[n2].parent = (U16)nodeNb; + nodeNb++; + } + + /* distribute weights (unlimited tree height) */ + huffNode[nodeRoot].nbBits = 0; + for (n=nodeRoot-1; n>=STARTNODE; n--) + huffNode[n].nbBits = huffNode[ huffNode[n].parent ].nbBits + 1; + for (n=0; n<=nonNullRank; n++) + huffNode[n].nbBits = huffNode[ huffNode[n].parent ].nbBits + 1; + + return nonNullRank; +} + +/* + * HUF_buildCTableFromTree(): + * Build the CTable given the Huffman tree in huffNode. + * + * @param[out] CTable The output Huffman CTable. + * @param huffNode The Huffman tree. + * @param nonNullRank The last and smallest node in the Huffman tree. + * @param maxSymbolValue The maximum symbol value. + * @param maxNbBits The exact maximum number of bits used in the Huffman tree. + */ +static void HUF_buildCTableFromTree(HUF_CElt* CTable, nodeElt const* huffNode, int nonNullRank, U32 maxSymbolValue, U32 maxNbBits) +{ + /* fill result into ctable (val, nbBits) */ + int n; + U16 nbPerRank[HUF_TABLELOG_MAX+1] = {0}; + U16 valPerRank[HUF_TABLELOG_MAX+1] = {0}; + int const alphabetSize = (int)(maxSymbolValue + 1); + for (n=0; n<=nonNullRank; n++) + nbPerRank[huffNode[n].nbBits]++; + /* determine starting value per rank */ + { U16 min = 0; + for (n=(int)maxNbBits; n>0; n--) { + valPerRank[n] = min; /* get starting value within each rank */ + min += nbPerRank[n]; + min >>= 1; + } } + for (n=0; n<alphabetSize; n++) + CTable[huffNode[n].byte].nbBits = huffNode[n].nbBits; /* push nbBits per symbol, symbol order */ + for (n=0; n<alphabetSize; n++) + CTable[n].val = valPerRank[CTable[n].nbBits]++; /* assign value within rank, symbol order */ +} + +size_t HUF_buildCTable_wksp (HUF_CElt* tree, const unsigned* count, U32 maxSymbolValue, U32 maxNbBits, void* workSpace, size_t wkspSize) +{ + HUF_buildCTable_wksp_tables* const wksp_tables = (HUF_buildCTable_wksp_tables*)workSpace; + nodeElt* const huffNode0 = wksp_tables->huffNodeTbl; + nodeElt* const huffNode = huffNode0+1; + int nonNullRank; + + /* safety checks */ + if (((size_t)workSpace & 3) != 0) return ERROR(GENERIC); /* must be aligned on 4-bytes boundaries */ + if (wkspSize < sizeof(HUF_buildCTable_wksp_tables)) + return ERROR(workSpace_tooSmall); + if (maxNbBits == 0) maxNbBits = HUF_TABLELOG_DEFAULT; + if (maxSymbolValue > HUF_SYMBOLVALUE_MAX) + return ERROR(maxSymbolValue_tooLarge); + ZSTD_memset(huffNode0, 0, sizeof(huffNodeTable)); + + /* sort, decreasing order */ + HUF_sort(huffNode, count, maxSymbolValue, wksp_tables->rankPosition); + + /* build tree */ + nonNullRank = HUF_buildTree(huffNode, maxSymbolValue); + + /* enforce maxTableLog */ + maxNbBits = HUF_setMaxHeight(huffNode, (U32)nonNullRank, maxNbBits); + if (maxNbBits > HUF_TABLELOG_MAX) return ERROR(GENERIC); /* check fit into table */ + + HUF_buildCTableFromTree(tree, huffNode, nonNullRank, maxSymbolValue, maxNbBits); + + return maxNbBits; +} + +size_t HUF_estimateCompressedSize(const HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue) +{ + size_t nbBits = 0; + int s; + for (s = 0; s <= (int)maxSymbolValue; ++s) { + nbBits += CTable[s].nbBits * count[s]; + } + return nbBits >> 3; +} + +int HUF_validateCTable(const HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue) { + int bad = 0; + int s; + for (s = 0; s <= (int)maxSymbolValue; ++s) { + bad |= (count[s] != 0) & (CTable[s].nbBits == 0); + } + return !bad; +} + +size_t HUF_compressBound(size_t size) { return HUF_COMPRESSBOUND(size); } + +FORCE_INLINE_TEMPLATE void +HUF_encodeSymbol(BIT_CStream_t* bitCPtr, U32 symbol, const HUF_CElt* CTable) +{ + BIT_addBitsFast(bitCPtr, CTable[symbol].val, CTable[symbol].nbBits); +} + +#define HUF_FLUSHBITS(s) BIT_flushBits(s) + +#define HUF_FLUSHBITS_1(stream) \ + if (sizeof((stream)->bitContainer)*8 < HUF_TABLELOG_MAX*2+7) HUF_FLUSHBITS(stream) + +#define HUF_FLUSHBITS_2(stream) \ + if (sizeof((stream)->bitContainer)*8 < HUF_TABLELOG_MAX*4+7) HUF_FLUSHBITS(stream) + +FORCE_INLINE_TEMPLATE size_t +HUF_compress1X_usingCTable_internal_body(void* dst, size_t dstSize, + const void* src, size_t srcSize, + const HUF_CElt* CTable) +{ + const BYTE* ip = (const BYTE*) src; + BYTE* const ostart = (BYTE*)dst; + BYTE* const oend = ostart + dstSize; + BYTE* op = ostart; + size_t n; + BIT_CStream_t bitC; + + /* init */ + if (dstSize < 8) return 0; /* not enough space to compress */ + { size_t const initErr = BIT_initCStream(&bitC, op, (size_t)(oend-op)); + if (HUF_isError(initErr)) return 0; } + + n = srcSize & ~3; /* join to mod 4 */ + switch (srcSize & 3) + { + case 3: + HUF_encodeSymbol(&bitC, ip[n+ 2], CTable); + HUF_FLUSHBITS_2(&bitC); + ZSTD_FALLTHROUGH; + case 2: + HUF_encodeSymbol(&bitC, ip[n+ 1], CTable); + HUF_FLUSHBITS_1(&bitC); + ZSTD_FALLTHROUGH; + case 1: + HUF_encodeSymbol(&bitC, ip[n+ 0], CTable); + HUF_FLUSHBITS(&bitC); + ZSTD_FALLTHROUGH; + case 0: ZSTD_FALLTHROUGH; + default: break; + } + + for (; n>0; n-=4) { /* note : n&3==0 at this stage */ + HUF_encodeSymbol(&bitC, ip[n- 1], CTable); + HUF_FLUSHBITS_1(&bitC); + HUF_encodeSymbol(&bitC, ip[n- 2], CTable); + HUF_FLUSHBITS_2(&bitC); + HUF_encodeSymbol(&bitC, ip[n- 3], CTable); + HUF_FLUSHBITS_1(&bitC); + HUF_encodeSymbol(&bitC, ip[n- 4], CTable); + HUF_FLUSHBITS(&bitC); + } + + return BIT_closeCStream(&bitC); +} + +#if DYNAMIC_BMI2 + +static TARGET_ATTRIBUTE("bmi2") size_t +HUF_compress1X_usingCTable_internal_bmi2(void* dst, size_t dstSize, + const void* src, size_t srcSize, + const HUF_CElt* CTable) +{ + return HUF_compress1X_usingCTable_internal_body(dst, dstSize, src, srcSize, CTable); +} + +static size_t +HUF_compress1X_usingCTable_internal_default(void* dst, size_t dstSize, + const void* src, size_t srcSize, + const HUF_CElt* CTable) +{ + return HUF_compress1X_usingCTable_internal_body(dst, dstSize, src, srcSize, CTable); +} + +static size_t +HUF_compress1X_usingCTable_internal(void* dst, size_t dstSize, + const void* src, size_t srcSize, + const HUF_CElt* CTable, const int bmi2) +{ + if (bmi2) { + return HUF_compress1X_usingCTable_internal_bmi2(dst, dstSize, src, srcSize, CTable); + } + return HUF_compress1X_usingCTable_internal_default(dst, dstSize, src, srcSize, CTable); +} + +#else + +static size_t +HUF_compress1X_usingCTable_internal(void* dst, size_t dstSize, + const void* src, size_t srcSize, + const HUF_CElt* CTable, const int bmi2) +{ + (void)bmi2; + return HUF_compress1X_usingCTable_internal_body(dst, dstSize, src, srcSize, CTable); +} + +#endif + +size_t HUF_compress1X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable) +{ + return HUF_compress1X_usingCTable_internal(dst, dstSize, src, srcSize, CTable, /* bmi2 */ 0); +} + + +static size_t +HUF_compress4X_usingCTable_internal(void* dst, size_t dstSize, + const void* src, size_t srcSize, + const HUF_CElt* CTable, int bmi2) +{ + size_t const segmentSize = (srcSize+3)/4; /* first 3 segments */ + const BYTE* ip = (const BYTE*) src; + const BYTE* const iend = ip + srcSize; + BYTE* const ostart = (BYTE*) dst; + BYTE* const oend = ostart + dstSize; + BYTE* op = ostart; + + if (dstSize < 6 + 1 + 1 + 1 + 8) return 0; /* minimum space to compress successfully */ + if (srcSize < 12) return 0; /* no saving possible : too small input */ + op += 6; /* jumpTable */ + + assert(op <= oend); + { CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, segmentSize, CTable, bmi2) ); + if (cSize==0) return 0; + assert(cSize <= 65535); + MEM_writeLE16(ostart, (U16)cSize); + op += cSize; + } + + ip += segmentSize; + assert(op <= oend); + { CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, segmentSize, CTable, bmi2) ); + if (cSize==0) return 0; + assert(cSize <= 65535); + MEM_writeLE16(ostart+2, (U16)cSize); + op += cSize; + } + + ip += segmentSize; + assert(op <= oend); + { CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, segmentSize, CTable, bmi2) ); + if (cSize==0) return 0; + assert(cSize <= 65535); + MEM_writeLE16(ostart+4, (U16)cSize); + op += cSize; + } + + ip += segmentSize; + assert(op <= oend); + assert(ip <= iend); + { CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, (size_t)(iend-ip), CTable, bmi2) ); + if (cSize==0) return 0; + op += cSize; + } + + return (size_t)(op-ostart); +} + +size_t HUF_compress4X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable) +{ + return HUF_compress4X_usingCTable_internal(dst, dstSize, src, srcSize, CTable, /* bmi2 */ 0); +} + +typedef enum { HUF_singleStream, HUF_fourStreams } HUF_nbStreams_e; + +static size_t HUF_compressCTable_internal( + BYTE* const ostart, BYTE* op, BYTE* const oend, + const void* src, size_t srcSize, + HUF_nbStreams_e nbStreams, const HUF_CElt* CTable, const int bmi2) +{ + size_t const cSize = (nbStreams==HUF_singleStream) ? + HUF_compress1X_usingCTable_internal(op, (size_t)(oend - op), src, srcSize, CTable, bmi2) : + HUF_compress4X_usingCTable_internal(op, (size_t)(oend - op), src, srcSize, CTable, bmi2); + if (HUF_isError(cSize)) { return cSize; } + if (cSize==0) { return 0; } /* uncompressible */ + op += cSize; + /* check compressibility */ + assert(op >= ostart); + if ((size_t)(op-ostart) >= srcSize-1) { return 0; } + return (size_t)(op-ostart); +} + +typedef struct { + unsigned count[HUF_SYMBOLVALUE_MAX + 1]; + HUF_CElt CTable[HUF_SYMBOLVALUE_MAX + 1]; + union { + HUF_buildCTable_wksp_tables buildCTable_wksp; + HUF_WriteCTableWksp writeCTable_wksp; + } wksps; +} HUF_compress_tables_t; + +/* HUF_compress_internal() : + * `workSpace_align4` must be aligned on 4-bytes boundaries, + * and occupies the same space as a table of HUF_WORKSPACE_SIZE_U32 unsigned */ +static size_t +HUF_compress_internal (void* dst, size_t dstSize, + const void* src, size_t srcSize, + unsigned maxSymbolValue, unsigned huffLog, + HUF_nbStreams_e nbStreams, + void* workSpace_align4, size_t wkspSize, + HUF_CElt* oldHufTable, HUF_repeat* repeat, int preferRepeat, + const int bmi2) +{ + HUF_compress_tables_t* const table = (HUF_compress_tables_t*)workSpace_align4; + BYTE* const ostart = (BYTE*)dst; + BYTE* const oend = ostart + dstSize; + BYTE* op = ostart; + + HUF_STATIC_ASSERT(sizeof(*table) <= HUF_WORKSPACE_SIZE); + assert(((size_t)workSpace_align4 & 3) == 0); /* must be aligned on 4-bytes boundaries */ + + /* checks & inits */ + if (wkspSize < HUF_WORKSPACE_SIZE) return ERROR(workSpace_tooSmall); + if (!srcSize) return 0; /* Uncompressed */ + if (!dstSize) return 0; /* cannot fit anything within dst budget */ + if (srcSize > HUF_BLOCKSIZE_MAX) return ERROR(srcSize_wrong); /* current block size limit */ + if (huffLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge); + if (maxSymbolValue > HUF_SYMBOLVALUE_MAX) return ERROR(maxSymbolValue_tooLarge); + if (!maxSymbolValue) maxSymbolValue = HUF_SYMBOLVALUE_MAX; + if (!huffLog) huffLog = HUF_TABLELOG_DEFAULT; + + /* Heuristic : If old table is valid, use it for small inputs */ + if (preferRepeat && repeat && *repeat == HUF_repeat_valid) { + return HUF_compressCTable_internal(ostart, op, oend, + src, srcSize, + nbStreams, oldHufTable, bmi2); + } + + /* Scan input and build symbol stats */ + { CHECK_V_F(largest, HIST_count_wksp (table->count, &maxSymbolValue, (const BYTE*)src, srcSize, workSpace_align4, wkspSize) ); + if (largest == srcSize) { *ostart = ((const BYTE*)src)[0]; return 1; } /* single symbol, rle */ + if (largest <= (srcSize >> 7)+4) return 0; /* heuristic : probably not compressible enough */ + } + + /* Check validity of previous table */ + if ( repeat + && *repeat == HUF_repeat_check + && !HUF_validateCTable(oldHufTable, table->count, maxSymbolValue)) { + *repeat = HUF_repeat_none; + } + /* Heuristic : use existing table for small inputs */ + if (preferRepeat && repeat && *repeat != HUF_repeat_none) { + return HUF_compressCTable_internal(ostart, op, oend, + src, srcSize, + nbStreams, oldHufTable, bmi2); + } + + /* Build Huffman Tree */ + huffLog = HUF_optimalTableLog(huffLog, srcSize, maxSymbolValue); + { size_t const maxBits = HUF_buildCTable_wksp(table->CTable, table->count, + maxSymbolValue, huffLog, + &table->wksps.buildCTable_wksp, sizeof(table->wksps.buildCTable_wksp)); + CHECK_F(maxBits); + huffLog = (U32)maxBits; + /* Zero unused symbols in CTable, so we can check it for validity */ + ZSTD_memset(table->CTable + (maxSymbolValue + 1), 0, + sizeof(table->CTable) - ((maxSymbolValue + 1) * sizeof(HUF_CElt))); + } + + /* Write table description header */ + { CHECK_V_F(hSize, HUF_writeCTable_wksp(op, dstSize, table->CTable, maxSymbolValue, huffLog, + &table->wksps.writeCTable_wksp, sizeof(table->wksps.writeCTable_wksp)) ); + /* Check if using previous huffman table is beneficial */ + if (repeat && *repeat != HUF_repeat_none) { + size_t const oldSize = HUF_estimateCompressedSize(oldHufTable, table->count, maxSymbolValue); + size_t const newSize = HUF_estimateCompressedSize(table->CTable, table->count, maxSymbolValue); + if (oldSize <= hSize + newSize || hSize + 12 >= srcSize) { + return HUF_compressCTable_internal(ostart, op, oend, + src, srcSize, + nbStreams, oldHufTable, bmi2); + } } + + /* Use the new huffman table */ + if (hSize + 12ul >= srcSize) { return 0; } + op += hSize; + if (repeat) { *repeat = HUF_repeat_none; } + if (oldHufTable) + ZSTD_memcpy(oldHufTable, table->CTable, sizeof(table->CTable)); /* Save new table */ + } + return HUF_compressCTable_internal(ostart, op, oend, + src, srcSize, + nbStreams, table->CTable, bmi2); +} + + +size_t HUF_compress1X_wksp (void* dst, size_t dstSize, + const void* src, size_t srcSize, + unsigned maxSymbolValue, unsigned huffLog, + void* workSpace, size_t wkspSize) +{ + return HUF_compress_internal(dst, dstSize, src, srcSize, + maxSymbolValue, huffLog, HUF_singleStream, + workSpace, wkspSize, + NULL, NULL, 0, 0 /*bmi2*/); +} + +size_t HUF_compress1X_repeat (void* dst, size_t dstSize, + const void* src, size_t srcSize, + unsigned maxSymbolValue, unsigned huffLog, + void* workSpace, size_t wkspSize, + HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat, int bmi2) +{ + return HUF_compress_internal(dst, dstSize, src, srcSize, + maxSymbolValue, huffLog, HUF_singleStream, + workSpace, wkspSize, hufTable, + repeat, preferRepeat, bmi2); +} + +/* HUF_compress4X_repeat(): + * compress input using 4 streams. + * provide workspace to generate compression tables */ +size_t HUF_compress4X_wksp (void* dst, size_t dstSize, + const void* src, size_t srcSize, + unsigned maxSymbolValue, unsigned huffLog, + void* workSpace, size_t wkspSize) +{ + return HUF_compress_internal(dst, dstSize, src, srcSize, + maxSymbolValue, huffLog, HUF_fourStreams, + workSpace, wkspSize, + NULL, NULL, 0, 0 /*bmi2*/); +} + +/* HUF_compress4X_repeat(): + * compress input using 4 streams. + * re-use an existing huffman compression table */ +size_t HUF_compress4X_repeat (void* dst, size_t dstSize, + const void* src, size_t srcSize, + unsigned maxSymbolValue, unsigned huffLog, + void* workSpace, size_t wkspSize, + HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat, int bmi2) +{ + return HUF_compress_internal(dst, dstSize, src, srcSize, + maxSymbolValue, huffLog, HUF_fourStreams, + workSpace, wkspSize, + hufTable, repeat, preferRepeat, bmi2); +} + |