summaryrefslogtreecommitdiffstats
path: root/mm/hugetlb.c
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--mm/hugetlb.c7698
1 files changed, 7698 insertions, 0 deletions
diff --git a/mm/hugetlb.c b/mm/hugetlb.c
new file mode 100644
index 000000000..37288a7f0
--- /dev/null
+++ b/mm/hugetlb.c
@@ -0,0 +1,7698 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Generic hugetlb support.
+ * (C) Nadia Yvette Chambers, April 2004
+ */
+#include <linux/list.h>
+#include <linux/init.h>
+#include <linux/mm.h>
+#include <linux/seq_file.h>
+#include <linux/sysctl.h>
+#include <linux/highmem.h>
+#include <linux/mmu_notifier.h>
+#include <linux/nodemask.h>
+#include <linux/pagemap.h>
+#include <linux/mempolicy.h>
+#include <linux/compiler.h>
+#include <linux/cpuset.h>
+#include <linux/mutex.h>
+#include <linux/memblock.h>
+#include <linux/sysfs.h>
+#include <linux/slab.h>
+#include <linux/sched/mm.h>
+#include <linux/mmdebug.h>
+#include <linux/sched/signal.h>
+#include <linux/rmap.h>
+#include <linux/string_helpers.h>
+#include <linux/swap.h>
+#include <linux/swapops.h>
+#include <linux/jhash.h>
+#include <linux/numa.h>
+#include <linux/llist.h>
+#include <linux/cma.h>
+#include <linux/migrate.h>
+#include <linux/nospec.h>
+#include <linux/delayacct.h>
+#include <linux/memory.h>
+
+#include <asm/page.h>
+#include <asm/pgalloc.h>
+#include <asm/tlb.h>
+
+#include <linux/io.h>
+#include <linux/hugetlb.h>
+#include <linux/hugetlb_cgroup.h>
+#include <linux/node.h>
+#include <linux/page_owner.h>
+#include "internal.h"
+#include "hugetlb_vmemmap.h"
+
+int hugetlb_max_hstate __read_mostly;
+unsigned int default_hstate_idx;
+struct hstate hstates[HUGE_MAX_HSTATE];
+
+#ifdef CONFIG_CMA
+static struct cma *hugetlb_cma[MAX_NUMNODES];
+static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
+static bool hugetlb_cma_page(struct page *page, unsigned int order)
+{
+ return cma_pages_valid(hugetlb_cma[page_to_nid(page)], page,
+ 1 << order);
+}
+#else
+static bool hugetlb_cma_page(struct page *page, unsigned int order)
+{
+ return false;
+}
+#endif
+static unsigned long hugetlb_cma_size __initdata;
+
+__initdata LIST_HEAD(huge_boot_pages);
+
+/* for command line parsing */
+static struct hstate * __initdata parsed_hstate;
+static unsigned long __initdata default_hstate_max_huge_pages;
+static bool __initdata parsed_valid_hugepagesz = true;
+static bool __initdata parsed_default_hugepagesz;
+static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
+
+/*
+ * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
+ * free_huge_pages, and surplus_huge_pages.
+ */
+DEFINE_SPINLOCK(hugetlb_lock);
+
+/*
+ * Serializes faults on the same logical page. This is used to
+ * prevent spurious OOMs when the hugepage pool is fully utilized.
+ */
+static int num_fault_mutexes;
+struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
+
+/* Forward declaration */
+static int hugetlb_acct_memory(struct hstate *h, long delta);
+static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
+static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
+static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
+static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
+ unsigned long start, unsigned long end);
+static struct resv_map *vma_resv_map(struct vm_area_struct *vma);
+
+static inline bool subpool_is_free(struct hugepage_subpool *spool)
+{
+ if (spool->count)
+ return false;
+ if (spool->max_hpages != -1)
+ return spool->used_hpages == 0;
+ if (spool->min_hpages != -1)
+ return spool->rsv_hpages == spool->min_hpages;
+
+ return true;
+}
+
+static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
+ unsigned long irq_flags)
+{
+ spin_unlock_irqrestore(&spool->lock, irq_flags);
+
+ /* If no pages are used, and no other handles to the subpool
+ * remain, give up any reservations based on minimum size and
+ * free the subpool */
+ if (subpool_is_free(spool)) {
+ if (spool->min_hpages != -1)
+ hugetlb_acct_memory(spool->hstate,
+ -spool->min_hpages);
+ kfree(spool);
+ }
+}
+
+struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
+ long min_hpages)
+{
+ struct hugepage_subpool *spool;
+
+ spool = kzalloc(sizeof(*spool), GFP_KERNEL);
+ if (!spool)
+ return NULL;
+
+ spin_lock_init(&spool->lock);
+ spool->count = 1;
+ spool->max_hpages = max_hpages;
+ spool->hstate = h;
+ spool->min_hpages = min_hpages;
+
+ if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
+ kfree(spool);
+ return NULL;
+ }
+ spool->rsv_hpages = min_hpages;
+
+ return spool;
+}
+
+void hugepage_put_subpool(struct hugepage_subpool *spool)
+{
+ unsigned long flags;
+
+ spin_lock_irqsave(&spool->lock, flags);
+ BUG_ON(!spool->count);
+ spool->count--;
+ unlock_or_release_subpool(spool, flags);
+}
+
+/*
+ * Subpool accounting for allocating and reserving pages.
+ * Return -ENOMEM if there are not enough resources to satisfy the
+ * request. Otherwise, return the number of pages by which the
+ * global pools must be adjusted (upward). The returned value may
+ * only be different than the passed value (delta) in the case where
+ * a subpool minimum size must be maintained.
+ */
+static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
+ long delta)
+{
+ long ret = delta;
+
+ if (!spool)
+ return ret;
+
+ spin_lock_irq(&spool->lock);
+
+ if (spool->max_hpages != -1) { /* maximum size accounting */
+ if ((spool->used_hpages + delta) <= spool->max_hpages)
+ spool->used_hpages += delta;
+ else {
+ ret = -ENOMEM;
+ goto unlock_ret;
+ }
+ }
+
+ /* minimum size accounting */
+ if (spool->min_hpages != -1 && spool->rsv_hpages) {
+ if (delta > spool->rsv_hpages) {
+ /*
+ * Asking for more reserves than those already taken on
+ * behalf of subpool. Return difference.
+ */
+ ret = delta - spool->rsv_hpages;
+ spool->rsv_hpages = 0;
+ } else {
+ ret = 0; /* reserves already accounted for */
+ spool->rsv_hpages -= delta;
+ }
+ }
+
+unlock_ret:
+ spin_unlock_irq(&spool->lock);
+ return ret;
+}
+
+/*
+ * Subpool accounting for freeing and unreserving pages.
+ * Return the number of global page reservations that must be dropped.
+ * The return value may only be different than the passed value (delta)
+ * in the case where a subpool minimum size must be maintained.
+ */
+static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
+ long delta)
+{
+ long ret = delta;
+ unsigned long flags;
+
+ if (!spool)
+ return delta;
+
+ spin_lock_irqsave(&spool->lock, flags);
+
+ if (spool->max_hpages != -1) /* maximum size accounting */
+ spool->used_hpages -= delta;
+
+ /* minimum size accounting */
+ if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
+ if (spool->rsv_hpages + delta <= spool->min_hpages)
+ ret = 0;
+ else
+ ret = spool->rsv_hpages + delta - spool->min_hpages;
+
+ spool->rsv_hpages += delta;
+ if (spool->rsv_hpages > spool->min_hpages)
+ spool->rsv_hpages = spool->min_hpages;
+ }
+
+ /*
+ * If hugetlbfs_put_super couldn't free spool due to an outstanding
+ * quota reference, free it now.
+ */
+ unlock_or_release_subpool(spool, flags);
+
+ return ret;
+}
+
+static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
+{
+ return HUGETLBFS_SB(inode->i_sb)->spool;
+}
+
+static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
+{
+ return subpool_inode(file_inode(vma->vm_file));
+}
+
+/*
+ * hugetlb vma_lock helper routines
+ */
+static bool __vma_shareable_lock(struct vm_area_struct *vma)
+{
+ return vma->vm_flags & (VM_MAYSHARE | VM_SHARED) &&
+ vma->vm_private_data;
+}
+
+void hugetlb_vma_lock_read(struct vm_area_struct *vma)
+{
+ if (__vma_shareable_lock(vma)) {
+ struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
+
+ down_read(&vma_lock->rw_sema);
+ } else if (__vma_private_lock(vma)) {
+ struct resv_map *resv_map = vma_resv_map(vma);
+
+ down_read(&resv_map->rw_sema);
+ }
+}
+
+void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
+{
+ if (__vma_shareable_lock(vma)) {
+ struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
+
+ up_read(&vma_lock->rw_sema);
+ } else if (__vma_private_lock(vma)) {
+ struct resv_map *resv_map = vma_resv_map(vma);
+
+ up_read(&resv_map->rw_sema);
+ }
+}
+
+void hugetlb_vma_lock_write(struct vm_area_struct *vma)
+{
+ if (__vma_shareable_lock(vma)) {
+ struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
+
+ down_write(&vma_lock->rw_sema);
+ } else if (__vma_private_lock(vma)) {
+ struct resv_map *resv_map = vma_resv_map(vma);
+
+ down_write(&resv_map->rw_sema);
+ }
+}
+
+void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
+{
+ if (__vma_shareable_lock(vma)) {
+ struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
+
+ up_write(&vma_lock->rw_sema);
+ } else if (__vma_private_lock(vma)) {
+ struct resv_map *resv_map = vma_resv_map(vma);
+
+ up_write(&resv_map->rw_sema);
+ }
+}
+
+int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
+{
+
+ if (__vma_shareable_lock(vma)) {
+ struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
+
+ return down_write_trylock(&vma_lock->rw_sema);
+ } else if (__vma_private_lock(vma)) {
+ struct resv_map *resv_map = vma_resv_map(vma);
+
+ return down_write_trylock(&resv_map->rw_sema);
+ }
+
+ return 1;
+}
+
+void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
+{
+ if (__vma_shareable_lock(vma)) {
+ struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
+
+ lockdep_assert_held(&vma_lock->rw_sema);
+ } else if (__vma_private_lock(vma)) {
+ struct resv_map *resv_map = vma_resv_map(vma);
+
+ lockdep_assert_held(&resv_map->rw_sema);
+ }
+}
+
+void hugetlb_vma_lock_release(struct kref *kref)
+{
+ struct hugetlb_vma_lock *vma_lock = container_of(kref,
+ struct hugetlb_vma_lock, refs);
+
+ kfree(vma_lock);
+}
+
+static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
+{
+ struct vm_area_struct *vma = vma_lock->vma;
+
+ /*
+ * vma_lock structure may or not be released as a result of put,
+ * it certainly will no longer be attached to vma so clear pointer.
+ * Semaphore synchronizes access to vma_lock->vma field.
+ */
+ vma_lock->vma = NULL;
+ vma->vm_private_data = NULL;
+ up_write(&vma_lock->rw_sema);
+ kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
+}
+
+static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
+{
+ if (__vma_shareable_lock(vma)) {
+ struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
+
+ __hugetlb_vma_unlock_write_put(vma_lock);
+ } else if (__vma_private_lock(vma)) {
+ struct resv_map *resv_map = vma_resv_map(vma);
+
+ /* no free for anon vmas, but still need to unlock */
+ up_write(&resv_map->rw_sema);
+ }
+}
+
+static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
+{
+ /*
+ * Only present in sharable vmas.
+ */
+ if (!vma || !__vma_shareable_lock(vma))
+ return;
+
+ if (vma->vm_private_data) {
+ struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
+
+ down_write(&vma_lock->rw_sema);
+ __hugetlb_vma_unlock_write_put(vma_lock);
+ }
+}
+
+static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
+{
+ struct hugetlb_vma_lock *vma_lock;
+
+ /* Only establish in (flags) sharable vmas */
+ if (!vma || !(vma->vm_flags & VM_MAYSHARE))
+ return;
+
+ /* Should never get here with non-NULL vm_private_data */
+ if (vma->vm_private_data)
+ return;
+
+ vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
+ if (!vma_lock) {
+ /*
+ * If we can not allocate structure, then vma can not
+ * participate in pmd sharing. This is only a possible
+ * performance enhancement and memory saving issue.
+ * However, the lock is also used to synchronize page
+ * faults with truncation. If the lock is not present,
+ * unlikely races could leave pages in a file past i_size
+ * until the file is removed. Warn in the unlikely case of
+ * allocation failure.
+ */
+ pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
+ return;
+ }
+
+ kref_init(&vma_lock->refs);
+ init_rwsem(&vma_lock->rw_sema);
+ vma_lock->vma = vma;
+ vma->vm_private_data = vma_lock;
+}
+
+/* Helper that removes a struct file_region from the resv_map cache and returns
+ * it for use.
+ */
+static struct file_region *
+get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
+{
+ struct file_region *nrg;
+
+ VM_BUG_ON(resv->region_cache_count <= 0);
+
+ resv->region_cache_count--;
+ nrg = list_first_entry(&resv->region_cache, struct file_region, link);
+ list_del(&nrg->link);
+
+ nrg->from = from;
+ nrg->to = to;
+
+ return nrg;
+}
+
+static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
+ struct file_region *rg)
+{
+#ifdef CONFIG_CGROUP_HUGETLB
+ nrg->reservation_counter = rg->reservation_counter;
+ nrg->css = rg->css;
+ if (rg->css)
+ css_get(rg->css);
+#endif
+}
+
+/* Helper that records hugetlb_cgroup uncharge info. */
+static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
+ struct hstate *h,
+ struct resv_map *resv,
+ struct file_region *nrg)
+{
+#ifdef CONFIG_CGROUP_HUGETLB
+ if (h_cg) {
+ nrg->reservation_counter =
+ &h_cg->rsvd_hugepage[hstate_index(h)];
+ nrg->css = &h_cg->css;
+ /*
+ * The caller will hold exactly one h_cg->css reference for the
+ * whole contiguous reservation region. But this area might be
+ * scattered when there are already some file_regions reside in
+ * it. As a result, many file_regions may share only one css
+ * reference. In order to ensure that one file_region must hold
+ * exactly one h_cg->css reference, we should do css_get for
+ * each file_region and leave the reference held by caller
+ * untouched.
+ */
+ css_get(&h_cg->css);
+ if (!resv->pages_per_hpage)
+ resv->pages_per_hpage = pages_per_huge_page(h);
+ /* pages_per_hpage should be the same for all entries in
+ * a resv_map.
+ */
+ VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
+ } else {
+ nrg->reservation_counter = NULL;
+ nrg->css = NULL;
+ }
+#endif
+}
+
+static void put_uncharge_info(struct file_region *rg)
+{
+#ifdef CONFIG_CGROUP_HUGETLB
+ if (rg->css)
+ css_put(rg->css);
+#endif
+}
+
+static bool has_same_uncharge_info(struct file_region *rg,
+ struct file_region *org)
+{
+#ifdef CONFIG_CGROUP_HUGETLB
+ return rg->reservation_counter == org->reservation_counter &&
+ rg->css == org->css;
+
+#else
+ return true;
+#endif
+}
+
+static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
+{
+ struct file_region *nrg, *prg;
+
+ prg = list_prev_entry(rg, link);
+ if (&prg->link != &resv->regions && prg->to == rg->from &&
+ has_same_uncharge_info(prg, rg)) {
+ prg->to = rg->to;
+
+ list_del(&rg->link);
+ put_uncharge_info(rg);
+ kfree(rg);
+
+ rg = prg;
+ }
+
+ nrg = list_next_entry(rg, link);
+ if (&nrg->link != &resv->regions && nrg->from == rg->to &&
+ has_same_uncharge_info(nrg, rg)) {
+ nrg->from = rg->from;
+
+ list_del(&rg->link);
+ put_uncharge_info(rg);
+ kfree(rg);
+ }
+}
+
+static inline long
+hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
+ long to, struct hstate *h, struct hugetlb_cgroup *cg,
+ long *regions_needed)
+{
+ struct file_region *nrg;
+
+ if (!regions_needed) {
+ nrg = get_file_region_entry_from_cache(map, from, to);
+ record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
+ list_add(&nrg->link, rg);
+ coalesce_file_region(map, nrg);
+ } else
+ *regions_needed += 1;
+
+ return to - from;
+}
+
+/*
+ * Must be called with resv->lock held.
+ *
+ * Calling this with regions_needed != NULL will count the number of pages
+ * to be added but will not modify the linked list. And regions_needed will
+ * indicate the number of file_regions needed in the cache to carry out to add
+ * the regions for this range.
+ */
+static long add_reservation_in_range(struct resv_map *resv, long f, long t,
+ struct hugetlb_cgroup *h_cg,
+ struct hstate *h, long *regions_needed)
+{
+ long add = 0;
+ struct list_head *head = &resv->regions;
+ long last_accounted_offset = f;
+ struct file_region *iter, *trg = NULL;
+ struct list_head *rg = NULL;
+
+ if (regions_needed)
+ *regions_needed = 0;
+
+ /* In this loop, we essentially handle an entry for the range
+ * [last_accounted_offset, iter->from), at every iteration, with some
+ * bounds checking.
+ */
+ list_for_each_entry_safe(iter, trg, head, link) {
+ /* Skip irrelevant regions that start before our range. */
+ if (iter->from < f) {
+ /* If this region ends after the last accounted offset,
+ * then we need to update last_accounted_offset.
+ */
+ if (iter->to > last_accounted_offset)
+ last_accounted_offset = iter->to;
+ continue;
+ }
+
+ /* When we find a region that starts beyond our range, we've
+ * finished.
+ */
+ if (iter->from >= t) {
+ rg = iter->link.prev;
+ break;
+ }
+
+ /* Add an entry for last_accounted_offset -> iter->from, and
+ * update last_accounted_offset.
+ */
+ if (iter->from > last_accounted_offset)
+ add += hugetlb_resv_map_add(resv, iter->link.prev,
+ last_accounted_offset,
+ iter->from, h, h_cg,
+ regions_needed);
+
+ last_accounted_offset = iter->to;
+ }
+
+ /* Handle the case where our range extends beyond
+ * last_accounted_offset.
+ */
+ if (!rg)
+ rg = head->prev;
+ if (last_accounted_offset < t)
+ add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
+ t, h, h_cg, regions_needed);
+
+ return add;
+}
+
+/* Must be called with resv->lock acquired. Will drop lock to allocate entries.
+ */
+static int allocate_file_region_entries(struct resv_map *resv,
+ int regions_needed)
+ __must_hold(&resv->lock)
+{
+ LIST_HEAD(allocated_regions);
+ int to_allocate = 0, i = 0;
+ struct file_region *trg = NULL, *rg = NULL;
+
+ VM_BUG_ON(regions_needed < 0);
+
+ /*
+ * Check for sufficient descriptors in the cache to accommodate
+ * the number of in progress add operations plus regions_needed.
+ *
+ * This is a while loop because when we drop the lock, some other call
+ * to region_add or region_del may have consumed some region_entries,
+ * so we keep looping here until we finally have enough entries for
+ * (adds_in_progress + regions_needed).
+ */
+ while (resv->region_cache_count <
+ (resv->adds_in_progress + regions_needed)) {
+ to_allocate = resv->adds_in_progress + regions_needed -
+ resv->region_cache_count;
+
+ /* At this point, we should have enough entries in the cache
+ * for all the existing adds_in_progress. We should only be
+ * needing to allocate for regions_needed.
+ */
+ VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
+
+ spin_unlock(&resv->lock);
+ for (i = 0; i < to_allocate; i++) {
+ trg = kmalloc(sizeof(*trg), GFP_KERNEL);
+ if (!trg)
+ goto out_of_memory;
+ list_add(&trg->link, &allocated_regions);
+ }
+
+ spin_lock(&resv->lock);
+
+ list_splice(&allocated_regions, &resv->region_cache);
+ resv->region_cache_count += to_allocate;
+ }
+
+ return 0;
+
+out_of_memory:
+ list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
+ list_del(&rg->link);
+ kfree(rg);
+ }
+ return -ENOMEM;
+}
+
+/*
+ * Add the huge page range represented by [f, t) to the reserve
+ * map. Regions will be taken from the cache to fill in this range.
+ * Sufficient regions should exist in the cache due to the previous
+ * call to region_chg with the same range, but in some cases the cache will not
+ * have sufficient entries due to races with other code doing region_add or
+ * region_del. The extra needed entries will be allocated.
+ *
+ * regions_needed is the out value provided by a previous call to region_chg.
+ *
+ * Return the number of new huge pages added to the map. This number is greater
+ * than or equal to zero. If file_region entries needed to be allocated for
+ * this operation and we were not able to allocate, it returns -ENOMEM.
+ * region_add of regions of length 1 never allocate file_regions and cannot
+ * fail; region_chg will always allocate at least 1 entry and a region_add for
+ * 1 page will only require at most 1 entry.
+ */
+static long region_add(struct resv_map *resv, long f, long t,
+ long in_regions_needed, struct hstate *h,
+ struct hugetlb_cgroup *h_cg)
+{
+ long add = 0, actual_regions_needed = 0;
+
+ spin_lock(&resv->lock);
+retry:
+
+ /* Count how many regions are actually needed to execute this add. */
+ add_reservation_in_range(resv, f, t, NULL, NULL,
+ &actual_regions_needed);
+
+ /*
+ * Check for sufficient descriptors in the cache to accommodate
+ * this add operation. Note that actual_regions_needed may be greater
+ * than in_regions_needed, as the resv_map may have been modified since
+ * the region_chg call. In this case, we need to make sure that we
+ * allocate extra entries, such that we have enough for all the
+ * existing adds_in_progress, plus the excess needed for this
+ * operation.
+ */
+ if (actual_regions_needed > in_regions_needed &&
+ resv->region_cache_count <
+ resv->adds_in_progress +
+ (actual_regions_needed - in_regions_needed)) {
+ /* region_add operation of range 1 should never need to
+ * allocate file_region entries.
+ */
+ VM_BUG_ON(t - f <= 1);
+
+ if (allocate_file_region_entries(
+ resv, actual_regions_needed - in_regions_needed)) {
+ return -ENOMEM;
+ }
+
+ goto retry;
+ }
+
+ add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
+
+ resv->adds_in_progress -= in_regions_needed;
+
+ spin_unlock(&resv->lock);
+ return add;
+}
+
+/*
+ * Examine the existing reserve map and determine how many
+ * huge pages in the specified range [f, t) are NOT currently
+ * represented. This routine is called before a subsequent
+ * call to region_add that will actually modify the reserve
+ * map to add the specified range [f, t). region_chg does
+ * not change the number of huge pages represented by the
+ * map. A number of new file_region structures is added to the cache as a
+ * placeholder, for the subsequent region_add call to use. At least 1
+ * file_region structure is added.
+ *
+ * out_regions_needed is the number of regions added to the
+ * resv->adds_in_progress. This value needs to be provided to a follow up call
+ * to region_add or region_abort for proper accounting.
+ *
+ * Returns the number of huge pages that need to be added to the existing
+ * reservation map for the range [f, t). This number is greater or equal to
+ * zero. -ENOMEM is returned if a new file_region structure or cache entry
+ * is needed and can not be allocated.
+ */
+static long region_chg(struct resv_map *resv, long f, long t,
+ long *out_regions_needed)
+{
+ long chg = 0;
+
+ spin_lock(&resv->lock);
+
+ /* Count how many hugepages in this range are NOT represented. */
+ chg = add_reservation_in_range(resv, f, t, NULL, NULL,
+ out_regions_needed);
+
+ if (*out_regions_needed == 0)
+ *out_regions_needed = 1;
+
+ if (allocate_file_region_entries(resv, *out_regions_needed))
+ return -ENOMEM;
+
+ resv->adds_in_progress += *out_regions_needed;
+
+ spin_unlock(&resv->lock);
+ return chg;
+}
+
+/*
+ * Abort the in progress add operation. The adds_in_progress field
+ * of the resv_map keeps track of the operations in progress between
+ * calls to region_chg and region_add. Operations are sometimes
+ * aborted after the call to region_chg. In such cases, region_abort
+ * is called to decrement the adds_in_progress counter. regions_needed
+ * is the value returned by the region_chg call, it is used to decrement
+ * the adds_in_progress counter.
+ *
+ * NOTE: The range arguments [f, t) are not needed or used in this
+ * routine. They are kept to make reading the calling code easier as
+ * arguments will match the associated region_chg call.
+ */
+static void region_abort(struct resv_map *resv, long f, long t,
+ long regions_needed)
+{
+ spin_lock(&resv->lock);
+ VM_BUG_ON(!resv->region_cache_count);
+ resv->adds_in_progress -= regions_needed;
+ spin_unlock(&resv->lock);
+}
+
+/*
+ * Delete the specified range [f, t) from the reserve map. If the
+ * t parameter is LONG_MAX, this indicates that ALL regions after f
+ * should be deleted. Locate the regions which intersect [f, t)
+ * and either trim, delete or split the existing regions.
+ *
+ * Returns the number of huge pages deleted from the reserve map.
+ * In the normal case, the return value is zero or more. In the
+ * case where a region must be split, a new region descriptor must
+ * be allocated. If the allocation fails, -ENOMEM will be returned.
+ * NOTE: If the parameter t == LONG_MAX, then we will never split
+ * a region and possibly return -ENOMEM. Callers specifying
+ * t == LONG_MAX do not need to check for -ENOMEM error.
+ */
+static long region_del(struct resv_map *resv, long f, long t)
+{
+ struct list_head *head = &resv->regions;
+ struct file_region *rg, *trg;
+ struct file_region *nrg = NULL;
+ long del = 0;
+
+retry:
+ spin_lock(&resv->lock);
+ list_for_each_entry_safe(rg, trg, head, link) {
+ /*
+ * Skip regions before the range to be deleted. file_region
+ * ranges are normally of the form [from, to). However, there
+ * may be a "placeholder" entry in the map which is of the form
+ * (from, to) with from == to. Check for placeholder entries
+ * at the beginning of the range to be deleted.
+ */
+ if (rg->to <= f && (rg->to != rg->from || rg->to != f))
+ continue;
+
+ if (rg->from >= t)
+ break;
+
+ if (f > rg->from && t < rg->to) { /* Must split region */
+ /*
+ * Check for an entry in the cache before dropping
+ * lock and attempting allocation.
+ */
+ if (!nrg &&
+ resv->region_cache_count > resv->adds_in_progress) {
+ nrg = list_first_entry(&resv->region_cache,
+ struct file_region,
+ link);
+ list_del(&nrg->link);
+ resv->region_cache_count--;
+ }
+
+ if (!nrg) {
+ spin_unlock(&resv->lock);
+ nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
+ if (!nrg)
+ return -ENOMEM;
+ goto retry;
+ }
+
+ del += t - f;
+ hugetlb_cgroup_uncharge_file_region(
+ resv, rg, t - f, false);
+
+ /* New entry for end of split region */
+ nrg->from = t;
+ nrg->to = rg->to;
+
+ copy_hugetlb_cgroup_uncharge_info(nrg, rg);
+
+ INIT_LIST_HEAD(&nrg->link);
+
+ /* Original entry is trimmed */
+ rg->to = f;
+
+ list_add(&nrg->link, &rg->link);
+ nrg = NULL;
+ break;
+ }
+
+ if (f <= rg->from && t >= rg->to) { /* Remove entire region */
+ del += rg->to - rg->from;
+ hugetlb_cgroup_uncharge_file_region(resv, rg,
+ rg->to - rg->from, true);
+ list_del(&rg->link);
+ kfree(rg);
+ continue;
+ }
+
+ if (f <= rg->from) { /* Trim beginning of region */
+ hugetlb_cgroup_uncharge_file_region(resv, rg,
+ t - rg->from, false);
+
+ del += t - rg->from;
+ rg->from = t;
+ } else { /* Trim end of region */
+ hugetlb_cgroup_uncharge_file_region(resv, rg,
+ rg->to - f, false);
+
+ del += rg->to - f;
+ rg->to = f;
+ }
+ }
+
+ spin_unlock(&resv->lock);
+ kfree(nrg);
+ return del;
+}
+
+/*
+ * A rare out of memory error was encountered which prevented removal of
+ * the reserve map region for a page. The huge page itself was free'ed
+ * and removed from the page cache. This routine will adjust the subpool
+ * usage count, and the global reserve count if needed. By incrementing
+ * these counts, the reserve map entry which could not be deleted will
+ * appear as a "reserved" entry instead of simply dangling with incorrect
+ * counts.
+ */
+void hugetlb_fix_reserve_counts(struct inode *inode)
+{
+ struct hugepage_subpool *spool = subpool_inode(inode);
+ long rsv_adjust;
+ bool reserved = false;
+
+ rsv_adjust = hugepage_subpool_get_pages(spool, 1);
+ if (rsv_adjust > 0) {
+ struct hstate *h = hstate_inode(inode);
+
+ if (!hugetlb_acct_memory(h, 1))
+ reserved = true;
+ } else if (!rsv_adjust) {
+ reserved = true;
+ }
+
+ if (!reserved)
+ pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
+}
+
+/*
+ * Count and return the number of huge pages in the reserve map
+ * that intersect with the range [f, t).
+ */
+static long region_count(struct resv_map *resv, long f, long t)
+{
+ struct list_head *head = &resv->regions;
+ struct file_region *rg;
+ long chg = 0;
+
+ spin_lock(&resv->lock);
+ /* Locate each segment we overlap with, and count that overlap. */
+ list_for_each_entry(rg, head, link) {
+ long seg_from;
+ long seg_to;
+
+ if (rg->to <= f)
+ continue;
+ if (rg->from >= t)
+ break;
+
+ seg_from = max(rg->from, f);
+ seg_to = min(rg->to, t);
+
+ chg += seg_to - seg_from;
+ }
+ spin_unlock(&resv->lock);
+
+ return chg;
+}
+
+/*
+ * Convert the address within this vma to the page offset within
+ * the mapping, in pagecache page units; huge pages here.
+ */
+static pgoff_t vma_hugecache_offset(struct hstate *h,
+ struct vm_area_struct *vma, unsigned long address)
+{
+ return ((address - vma->vm_start) >> huge_page_shift(h)) +
+ (vma->vm_pgoff >> huge_page_order(h));
+}
+
+pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
+ unsigned long address)
+{
+ return vma_hugecache_offset(hstate_vma(vma), vma, address);
+}
+EXPORT_SYMBOL_GPL(linear_hugepage_index);
+
+/*
+ * Return the size of the pages allocated when backing a VMA. In the majority
+ * cases this will be same size as used by the page table entries.
+ */
+unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
+{
+ if (vma->vm_ops && vma->vm_ops->pagesize)
+ return vma->vm_ops->pagesize(vma);
+ return PAGE_SIZE;
+}
+EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
+
+/*
+ * Return the page size being used by the MMU to back a VMA. In the majority
+ * of cases, the page size used by the kernel matches the MMU size. On
+ * architectures where it differs, an architecture-specific 'strong'
+ * version of this symbol is required.
+ */
+__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
+{
+ return vma_kernel_pagesize(vma);
+}
+
+/*
+ * Flags for MAP_PRIVATE reservations. These are stored in the bottom
+ * bits of the reservation map pointer, which are always clear due to
+ * alignment.
+ */
+#define HPAGE_RESV_OWNER (1UL << 0)
+#define HPAGE_RESV_UNMAPPED (1UL << 1)
+#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
+
+/*
+ * These helpers are used to track how many pages are reserved for
+ * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
+ * is guaranteed to have their future faults succeed.
+ *
+ * With the exception of hugetlb_dup_vma_private() which is called at fork(),
+ * the reserve counters are updated with the hugetlb_lock held. It is safe
+ * to reset the VMA at fork() time as it is not in use yet and there is no
+ * chance of the global counters getting corrupted as a result of the values.
+ *
+ * The private mapping reservation is represented in a subtly different
+ * manner to a shared mapping. A shared mapping has a region map associated
+ * with the underlying file, this region map represents the backing file
+ * pages which have ever had a reservation assigned which this persists even
+ * after the page is instantiated. A private mapping has a region map
+ * associated with the original mmap which is attached to all VMAs which
+ * reference it, this region map represents those offsets which have consumed
+ * reservation ie. where pages have been instantiated.
+ */
+static unsigned long get_vma_private_data(struct vm_area_struct *vma)
+{
+ return (unsigned long)vma->vm_private_data;
+}
+
+static void set_vma_private_data(struct vm_area_struct *vma,
+ unsigned long value)
+{
+ vma->vm_private_data = (void *)value;
+}
+
+static void
+resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
+ struct hugetlb_cgroup *h_cg,
+ struct hstate *h)
+{
+#ifdef CONFIG_CGROUP_HUGETLB
+ if (!h_cg || !h) {
+ resv_map->reservation_counter = NULL;
+ resv_map->pages_per_hpage = 0;
+ resv_map->css = NULL;
+ } else {
+ resv_map->reservation_counter =
+ &h_cg->rsvd_hugepage[hstate_index(h)];
+ resv_map->pages_per_hpage = pages_per_huge_page(h);
+ resv_map->css = &h_cg->css;
+ }
+#endif
+}
+
+struct resv_map *resv_map_alloc(void)
+{
+ struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
+ struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
+
+ if (!resv_map || !rg) {
+ kfree(resv_map);
+ kfree(rg);
+ return NULL;
+ }
+
+ kref_init(&resv_map->refs);
+ spin_lock_init(&resv_map->lock);
+ INIT_LIST_HEAD(&resv_map->regions);
+ init_rwsem(&resv_map->rw_sema);
+
+ resv_map->adds_in_progress = 0;
+ /*
+ * Initialize these to 0. On shared mappings, 0's here indicate these
+ * fields don't do cgroup accounting. On private mappings, these will be
+ * re-initialized to the proper values, to indicate that hugetlb cgroup
+ * reservations are to be un-charged from here.
+ */
+ resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
+
+ INIT_LIST_HEAD(&resv_map->region_cache);
+ list_add(&rg->link, &resv_map->region_cache);
+ resv_map->region_cache_count = 1;
+
+ return resv_map;
+}
+
+void resv_map_release(struct kref *ref)
+{
+ struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
+ struct list_head *head = &resv_map->region_cache;
+ struct file_region *rg, *trg;
+
+ /* Clear out any active regions before we release the map. */
+ region_del(resv_map, 0, LONG_MAX);
+
+ /* ... and any entries left in the cache */
+ list_for_each_entry_safe(rg, trg, head, link) {
+ list_del(&rg->link);
+ kfree(rg);
+ }
+
+ VM_BUG_ON(resv_map->adds_in_progress);
+
+ kfree(resv_map);
+}
+
+static inline struct resv_map *inode_resv_map(struct inode *inode)
+{
+ /*
+ * At inode evict time, i_mapping may not point to the original
+ * address space within the inode. This original address space
+ * contains the pointer to the resv_map. So, always use the
+ * address space embedded within the inode.
+ * The VERY common case is inode->mapping == &inode->i_data but,
+ * this may not be true for device special inodes.
+ */
+ return (struct resv_map *)(&inode->i_data)->private_data;
+}
+
+static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
+{
+ VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
+ if (vma->vm_flags & VM_MAYSHARE) {
+ struct address_space *mapping = vma->vm_file->f_mapping;
+ struct inode *inode = mapping->host;
+
+ return inode_resv_map(inode);
+
+ } else {
+ return (struct resv_map *)(get_vma_private_data(vma) &
+ ~HPAGE_RESV_MASK);
+ }
+}
+
+static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
+{
+ VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
+ VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
+
+ set_vma_private_data(vma, (unsigned long)map);
+}
+
+static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
+{
+ VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
+ VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
+
+ set_vma_private_data(vma, get_vma_private_data(vma) | flags);
+}
+
+static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
+{
+ VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
+
+ return (get_vma_private_data(vma) & flag) != 0;
+}
+
+bool __vma_private_lock(struct vm_area_struct *vma)
+{
+ return !(vma->vm_flags & VM_MAYSHARE) &&
+ get_vma_private_data(vma) & ~HPAGE_RESV_MASK &&
+ is_vma_resv_set(vma, HPAGE_RESV_OWNER);
+}
+
+void hugetlb_dup_vma_private(struct vm_area_struct *vma)
+{
+ VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
+ /*
+ * Clear vm_private_data
+ * - For shared mappings this is a per-vma semaphore that may be
+ * allocated in a subsequent call to hugetlb_vm_op_open.
+ * Before clearing, make sure pointer is not associated with vma
+ * as this will leak the structure. This is the case when called
+ * via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
+ * been called to allocate a new structure.
+ * - For MAP_PRIVATE mappings, this is the reserve map which does
+ * not apply to children. Faults generated by the children are
+ * not guaranteed to succeed, even if read-only.
+ */
+ if (vma->vm_flags & VM_MAYSHARE) {
+ struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
+
+ if (vma_lock && vma_lock->vma != vma)
+ vma->vm_private_data = NULL;
+ } else
+ vma->vm_private_data = NULL;
+}
+
+/*
+ * Reset and decrement one ref on hugepage private reservation.
+ * Called with mm->mmap_sem writer semaphore held.
+ * This function should be only used by move_vma() and operate on
+ * same sized vma. It should never come here with last ref on the
+ * reservation.
+ */
+void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
+{
+ /*
+ * Clear the old hugetlb private page reservation.
+ * It has already been transferred to new_vma.
+ *
+ * During a mremap() operation of a hugetlb vma we call move_vma()
+ * which copies vma into new_vma and unmaps vma. After the copy
+ * operation both new_vma and vma share a reference to the resv_map
+ * struct, and at that point vma is about to be unmapped. We don't
+ * want to return the reservation to the pool at unmap of vma because
+ * the reservation still lives on in new_vma, so simply decrement the
+ * ref here and remove the resv_map reference from this vma.
+ */
+ struct resv_map *reservations = vma_resv_map(vma);
+
+ if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
+ resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
+ kref_put(&reservations->refs, resv_map_release);
+ }
+
+ hugetlb_dup_vma_private(vma);
+}
+
+/* Returns true if the VMA has associated reserve pages */
+static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
+{
+ if (vma->vm_flags & VM_NORESERVE) {
+ /*
+ * This address is already reserved by other process(chg == 0),
+ * so, we should decrement reserved count. Without decrementing,
+ * reserve count remains after releasing inode, because this
+ * allocated page will go into page cache and is regarded as
+ * coming from reserved pool in releasing step. Currently, we
+ * don't have any other solution to deal with this situation
+ * properly, so add work-around here.
+ */
+ if (vma->vm_flags & VM_MAYSHARE && chg == 0)
+ return true;
+ else
+ return false;
+ }
+
+ /* Shared mappings always use reserves */
+ if (vma->vm_flags & VM_MAYSHARE) {
+ /*
+ * We know VM_NORESERVE is not set. Therefore, there SHOULD
+ * be a region map for all pages. The only situation where
+ * there is no region map is if a hole was punched via
+ * fallocate. In this case, there really are no reserves to
+ * use. This situation is indicated if chg != 0.
+ */
+ if (chg)
+ return false;
+ else
+ return true;
+ }
+
+ /*
+ * Only the process that called mmap() has reserves for
+ * private mappings.
+ */
+ if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
+ /*
+ * Like the shared case above, a hole punch or truncate
+ * could have been performed on the private mapping.
+ * Examine the value of chg to determine if reserves
+ * actually exist or were previously consumed.
+ * Very Subtle - The value of chg comes from a previous
+ * call to vma_needs_reserves(). The reserve map for
+ * private mappings has different (opposite) semantics
+ * than that of shared mappings. vma_needs_reserves()
+ * has already taken this difference in semantics into
+ * account. Therefore, the meaning of chg is the same
+ * as in the shared case above. Code could easily be
+ * combined, but keeping it separate draws attention to
+ * subtle differences.
+ */
+ if (chg)
+ return false;
+ else
+ return true;
+ }
+
+ return false;
+}
+
+static void enqueue_huge_page(struct hstate *h, struct page *page)
+{
+ int nid = page_to_nid(page);
+
+ lockdep_assert_held(&hugetlb_lock);
+ VM_BUG_ON_PAGE(page_count(page), page);
+
+ list_move(&page->lru, &h->hugepage_freelists[nid]);
+ h->free_huge_pages++;
+ h->free_huge_pages_node[nid]++;
+ SetHPageFreed(page);
+}
+
+static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
+{
+ struct page *page;
+ bool pin = !!(current->flags & PF_MEMALLOC_PIN);
+
+ lockdep_assert_held(&hugetlb_lock);
+ list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
+ if (pin && !is_longterm_pinnable_page(page))
+ continue;
+
+ if (PageHWPoison(page))
+ continue;
+
+ list_move(&page->lru, &h->hugepage_activelist);
+ set_page_refcounted(page);
+ ClearHPageFreed(page);
+ h->free_huge_pages--;
+ h->free_huge_pages_node[nid]--;
+ return page;
+ }
+
+ return NULL;
+}
+
+static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
+ nodemask_t *nmask)
+{
+ unsigned int cpuset_mems_cookie;
+ struct zonelist *zonelist;
+ struct zone *zone;
+ struct zoneref *z;
+ int node = NUMA_NO_NODE;
+
+ zonelist = node_zonelist(nid, gfp_mask);
+
+retry_cpuset:
+ cpuset_mems_cookie = read_mems_allowed_begin();
+ for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
+ struct page *page;
+
+ if (!cpuset_zone_allowed(zone, gfp_mask))
+ continue;
+ /*
+ * no need to ask again on the same node. Pool is node rather than
+ * zone aware
+ */
+ if (zone_to_nid(zone) == node)
+ continue;
+ node = zone_to_nid(zone);
+
+ page = dequeue_huge_page_node_exact(h, node);
+ if (page)
+ return page;
+ }
+ if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
+ goto retry_cpuset;
+
+ return NULL;
+}
+
+static unsigned long available_huge_pages(struct hstate *h)
+{
+ return h->free_huge_pages - h->resv_huge_pages;
+}
+
+static struct page *dequeue_huge_page_vma(struct hstate *h,
+ struct vm_area_struct *vma,
+ unsigned long address, int avoid_reserve,
+ long chg)
+{
+ struct page *page = NULL;
+ struct mempolicy *mpol;
+ gfp_t gfp_mask;
+ nodemask_t *nodemask;
+ int nid;
+
+ /*
+ * A child process with MAP_PRIVATE mappings created by their parent
+ * have no page reserves. This check ensures that reservations are
+ * not "stolen". The child may still get SIGKILLed
+ */
+ if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
+ goto err;
+
+ /* If reserves cannot be used, ensure enough pages are in the pool */
+ if (avoid_reserve && !available_huge_pages(h))
+ goto err;
+
+ gfp_mask = htlb_alloc_mask(h);
+ nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
+
+ if (mpol_is_preferred_many(mpol)) {
+ page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
+
+ /* Fallback to all nodes if page==NULL */
+ nodemask = NULL;
+ }
+
+ if (!page)
+ page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
+
+ if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
+ SetHPageRestoreReserve(page);
+ h->resv_huge_pages--;
+ }
+
+ mpol_cond_put(mpol);
+ return page;
+
+err:
+ return NULL;
+}
+
+/*
+ * common helper functions for hstate_next_node_to_{alloc|free}.
+ * We may have allocated or freed a huge page based on a different
+ * nodes_allowed previously, so h->next_node_to_{alloc|free} might
+ * be outside of *nodes_allowed. Ensure that we use an allowed
+ * node for alloc or free.
+ */
+static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
+{
+ nid = next_node_in(nid, *nodes_allowed);
+ VM_BUG_ON(nid >= MAX_NUMNODES);
+
+ return nid;
+}
+
+static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
+{
+ if (!node_isset(nid, *nodes_allowed))
+ nid = next_node_allowed(nid, nodes_allowed);
+ return nid;
+}
+
+/*
+ * returns the previously saved node ["this node"] from which to
+ * allocate a persistent huge page for the pool and advance the
+ * next node from which to allocate, handling wrap at end of node
+ * mask.
+ */
+static int hstate_next_node_to_alloc(struct hstate *h,
+ nodemask_t *nodes_allowed)
+{
+ int nid;
+
+ VM_BUG_ON(!nodes_allowed);
+
+ nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
+ h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
+
+ return nid;
+}
+
+/*
+ * helper for remove_pool_huge_page() - return the previously saved
+ * node ["this node"] from which to free a huge page. Advance the
+ * next node id whether or not we find a free huge page to free so
+ * that the next attempt to free addresses the next node.
+ */
+static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
+{
+ int nid;
+
+ VM_BUG_ON(!nodes_allowed);
+
+ nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
+ h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
+
+ return nid;
+}
+
+#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
+ for (nr_nodes = nodes_weight(*mask); \
+ nr_nodes > 0 && \
+ ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
+ nr_nodes--)
+
+#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
+ for (nr_nodes = nodes_weight(*mask); \
+ nr_nodes > 0 && \
+ ((node = hstate_next_node_to_free(hs, mask)) || 1); \
+ nr_nodes--)
+
+/* used to demote non-gigantic_huge pages as well */
+static void __destroy_compound_gigantic_page(struct page *page,
+ unsigned int order, bool demote)
+{
+ int i;
+ int nr_pages = 1 << order;
+ struct page *p;
+
+ atomic_set(compound_mapcount_ptr(page), 0);
+ atomic_set(compound_pincount_ptr(page), 0);
+
+ for (i = 1; i < nr_pages; i++) {
+ p = nth_page(page, i);
+ p->mapping = NULL;
+ clear_compound_head(p);
+ if (!demote)
+ set_page_refcounted(p);
+ }
+
+ set_compound_order(page, 0);
+#ifdef CONFIG_64BIT
+ page[1].compound_nr = 0;
+#endif
+ __ClearPageHead(page);
+}
+
+static void destroy_compound_hugetlb_page_for_demote(struct page *page,
+ unsigned int order)
+{
+ __destroy_compound_gigantic_page(page, order, true);
+}
+
+#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
+static void destroy_compound_gigantic_page(struct page *page,
+ unsigned int order)
+{
+ __destroy_compound_gigantic_page(page, order, false);
+}
+
+static void free_gigantic_page(struct page *page, unsigned int order)
+{
+ /*
+ * If the page isn't allocated using the cma allocator,
+ * cma_release() returns false.
+ */
+#ifdef CONFIG_CMA
+ if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
+ return;
+#endif
+
+ free_contig_range(page_to_pfn(page), 1 << order);
+}
+
+#ifdef CONFIG_CONTIG_ALLOC
+static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
+ int nid, nodemask_t *nodemask)
+{
+ unsigned long nr_pages = pages_per_huge_page(h);
+ if (nid == NUMA_NO_NODE)
+ nid = numa_mem_id();
+
+#ifdef CONFIG_CMA
+ {
+ struct page *page;
+ int node;
+
+ if (hugetlb_cma[nid]) {
+ page = cma_alloc(hugetlb_cma[nid], nr_pages,
+ huge_page_order(h), true);
+ if (page)
+ return page;
+ }
+
+ if (!(gfp_mask & __GFP_THISNODE)) {
+ for_each_node_mask(node, *nodemask) {
+ if (node == nid || !hugetlb_cma[node])
+ continue;
+
+ page = cma_alloc(hugetlb_cma[node], nr_pages,
+ huge_page_order(h), true);
+ if (page)
+ return page;
+ }
+ }
+ }
+#endif
+
+ return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
+}
+
+#else /* !CONFIG_CONTIG_ALLOC */
+static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
+ int nid, nodemask_t *nodemask)
+{
+ return NULL;
+}
+#endif /* CONFIG_CONTIG_ALLOC */
+
+#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
+static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
+ int nid, nodemask_t *nodemask)
+{
+ return NULL;
+}
+static inline void free_gigantic_page(struct page *page, unsigned int order) { }
+static inline void destroy_compound_gigantic_page(struct page *page,
+ unsigned int order) { }
+#endif
+
+static inline void __clear_hugetlb_destructor(struct hstate *h,
+ struct page *page)
+{
+ lockdep_assert_held(&hugetlb_lock);
+
+ /*
+ * Very subtle
+ *
+ * For non-gigantic pages set the destructor to the normal compound
+ * page dtor. This is needed in case someone takes an additional
+ * temporary ref to the page, and freeing is delayed until they drop
+ * their reference.
+ *
+ * For gigantic pages set the destructor to the null dtor. This
+ * destructor will never be called. Before freeing the gigantic
+ * page destroy_compound_gigantic_folio will turn the folio into a
+ * simple group of pages. After this the destructor does not
+ * apply.
+ *
+ */
+ if (hstate_is_gigantic(h))
+ set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
+ else
+ set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
+}
+
+/*
+ * Remove hugetlb page from lists.
+ * If vmemmap exists for the page, update dtor so that the page appears
+ * as just a compound page. Otherwise, wait until after allocating vmemmap
+ * to update dtor.
+ *
+ * A reference is held on the page, except in the case of demote.
+ *
+ * Must be called with hugetlb lock held.
+ */
+static void __remove_hugetlb_page(struct hstate *h, struct page *page,
+ bool adjust_surplus,
+ bool demote)
+{
+ int nid = page_to_nid(page);
+
+ VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
+ VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
+
+ lockdep_assert_held(&hugetlb_lock);
+ if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
+ return;
+
+ list_del(&page->lru);
+
+ if (HPageFreed(page)) {
+ h->free_huge_pages--;
+ h->free_huge_pages_node[nid]--;
+ }
+ if (adjust_surplus) {
+ h->surplus_huge_pages--;
+ h->surplus_huge_pages_node[nid]--;
+ }
+
+ /*
+ * We can only clear the hugetlb destructor after allocating vmemmap
+ * pages. Otherwise, someone (memory error handling) may try to write
+ * to tail struct pages.
+ */
+ if (!HPageVmemmapOptimized(page))
+ __clear_hugetlb_destructor(h, page);
+
+ /*
+ * In the case of demote we do not ref count the page as it will soon
+ * be turned into a page of smaller size.
+ */
+ if (!demote)
+ set_page_refcounted(page);
+
+ h->nr_huge_pages--;
+ h->nr_huge_pages_node[nid]--;
+}
+
+static void remove_hugetlb_page(struct hstate *h, struct page *page,
+ bool adjust_surplus)
+{
+ __remove_hugetlb_page(h, page, adjust_surplus, false);
+}
+
+static void remove_hugetlb_page_for_demote(struct hstate *h, struct page *page,
+ bool adjust_surplus)
+{
+ __remove_hugetlb_page(h, page, adjust_surplus, true);
+}
+
+static void add_hugetlb_page(struct hstate *h, struct page *page,
+ bool adjust_surplus)
+{
+ int zeroed;
+ int nid = page_to_nid(page);
+
+ VM_BUG_ON_PAGE(!HPageVmemmapOptimized(page), page);
+
+ lockdep_assert_held(&hugetlb_lock);
+
+ INIT_LIST_HEAD(&page->lru);
+ h->nr_huge_pages++;
+ h->nr_huge_pages_node[nid]++;
+
+ if (adjust_surplus) {
+ h->surplus_huge_pages++;
+ h->surplus_huge_pages_node[nid]++;
+ }
+
+ set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
+ set_page_private(page, 0);
+ /*
+ * We have to set HPageVmemmapOptimized again as above
+ * set_page_private(page, 0) cleared it.
+ */
+ SetHPageVmemmapOptimized(page);
+
+ /*
+ * This page is about to be managed by the hugetlb allocator and
+ * should have no users. Drop our reference, and check for others
+ * just in case.
+ */
+ zeroed = put_page_testzero(page);
+ if (!zeroed)
+ /*
+ * It is VERY unlikely soneone else has taken a ref on
+ * the page. In this case, we simply return as the
+ * hugetlb destructor (free_huge_page) will be called
+ * when this other ref is dropped.
+ */
+ return;
+
+ arch_clear_hugepage_flags(page);
+ enqueue_huge_page(h, page);
+}
+
+static void __update_and_free_page(struct hstate *h, struct page *page)
+{
+ int i;
+ struct page *subpage;
+ bool clear_dtor = HPageVmemmapOptimized(page);
+
+ if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
+ return;
+
+ /*
+ * If we don't know which subpages are hwpoisoned, we can't free
+ * the hugepage, so it's leaked intentionally.
+ */
+ if (HPageRawHwpUnreliable(page))
+ return;
+
+ if (hugetlb_vmemmap_restore(h, page)) {
+ spin_lock_irq(&hugetlb_lock);
+ /*
+ * If we cannot allocate vmemmap pages, just refuse to free the
+ * page and put the page back on the hugetlb free list and treat
+ * as a surplus page.
+ */
+ add_hugetlb_page(h, page, true);
+ spin_unlock_irq(&hugetlb_lock);
+ return;
+ }
+
+ /*
+ * Move PageHWPoison flag from head page to the raw error pages,
+ * which makes any healthy subpages reusable.
+ */
+ if (unlikely(PageHWPoison(page)))
+ hugetlb_clear_page_hwpoison(page);
+
+ /*
+ * If vmemmap pages were allocated above, then we need to clear the
+ * hugetlb destructor under the hugetlb lock.
+ */
+ if (clear_dtor) {
+ spin_lock_irq(&hugetlb_lock);
+ __clear_hugetlb_destructor(h, page);
+ spin_unlock_irq(&hugetlb_lock);
+ }
+
+ for (i = 0; i < pages_per_huge_page(h); i++) {
+ subpage = nth_page(page, i);
+ subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
+ 1 << PG_referenced | 1 << PG_dirty |
+ 1 << PG_active | 1 << PG_private |
+ 1 << PG_writeback);
+ }
+
+ /*
+ * Non-gigantic pages demoted from CMA allocated gigantic pages
+ * need to be given back to CMA in free_gigantic_page.
+ */
+ if (hstate_is_gigantic(h) ||
+ hugetlb_cma_page(page, huge_page_order(h))) {
+ destroy_compound_gigantic_page(page, huge_page_order(h));
+ free_gigantic_page(page, huge_page_order(h));
+ } else {
+ __free_pages(page, huge_page_order(h));
+ }
+}
+
+/*
+ * As update_and_free_page() can be called under any context, so we cannot
+ * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
+ * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
+ * the vmemmap pages.
+ *
+ * free_hpage_workfn() locklessly retrieves the linked list of pages to be
+ * freed and frees them one-by-one. As the page->mapping pointer is going
+ * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
+ * structure of a lockless linked list of huge pages to be freed.
+ */
+static LLIST_HEAD(hpage_freelist);
+
+static void free_hpage_workfn(struct work_struct *work)
+{
+ struct llist_node *node;
+
+ node = llist_del_all(&hpage_freelist);
+
+ while (node) {
+ struct page *page;
+ struct hstate *h;
+
+ page = container_of((struct address_space **)node,
+ struct page, mapping);
+ node = node->next;
+ page->mapping = NULL;
+ /*
+ * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
+ * is going to trigger because a previous call to
+ * remove_hugetlb_page() will set_compound_page_dtor(page,
+ * NULL_COMPOUND_DTOR), so do not use page_hstate() directly.
+ */
+ h = size_to_hstate(page_size(page));
+
+ __update_and_free_page(h, page);
+
+ cond_resched();
+ }
+}
+static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
+
+static inline void flush_free_hpage_work(struct hstate *h)
+{
+ if (hugetlb_vmemmap_optimizable(h))
+ flush_work(&free_hpage_work);
+}
+
+static void update_and_free_page(struct hstate *h, struct page *page,
+ bool atomic)
+{
+ if (!HPageVmemmapOptimized(page) || !atomic) {
+ __update_and_free_page(h, page);
+ return;
+ }
+
+ /*
+ * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
+ *
+ * Only call schedule_work() if hpage_freelist is previously
+ * empty. Otherwise, schedule_work() had been called but the workfn
+ * hasn't retrieved the list yet.
+ */
+ if (llist_add((struct llist_node *)&page->mapping, &hpage_freelist))
+ schedule_work(&free_hpage_work);
+}
+
+static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
+{
+ struct page *page, *t_page;
+
+ list_for_each_entry_safe(page, t_page, list, lru) {
+ update_and_free_page(h, page, false);
+ cond_resched();
+ }
+}
+
+struct hstate *size_to_hstate(unsigned long size)
+{
+ struct hstate *h;
+
+ for_each_hstate(h) {
+ if (huge_page_size(h) == size)
+ return h;
+ }
+ return NULL;
+}
+
+void free_huge_page(struct page *page)
+{
+ /*
+ * Can't pass hstate in here because it is called from the
+ * compound page destructor.
+ */
+ struct hstate *h = page_hstate(page);
+ int nid = page_to_nid(page);
+ struct hugepage_subpool *spool = hugetlb_page_subpool(page);
+ bool restore_reserve;
+ unsigned long flags;
+
+ VM_BUG_ON_PAGE(page_count(page), page);
+ VM_BUG_ON_PAGE(page_mapcount(page), page);
+
+ hugetlb_set_page_subpool(page, NULL);
+ if (PageAnon(page))
+ __ClearPageAnonExclusive(page);
+ page->mapping = NULL;
+ restore_reserve = HPageRestoreReserve(page);
+ ClearHPageRestoreReserve(page);
+
+ /*
+ * If HPageRestoreReserve was set on page, page allocation consumed a
+ * reservation. If the page was associated with a subpool, there
+ * would have been a page reserved in the subpool before allocation
+ * via hugepage_subpool_get_pages(). Since we are 'restoring' the
+ * reservation, do not call hugepage_subpool_put_pages() as this will
+ * remove the reserved page from the subpool.
+ */
+ if (!restore_reserve) {
+ /*
+ * A return code of zero implies that the subpool will be
+ * under its minimum size if the reservation is not restored
+ * after page is free. Therefore, force restore_reserve
+ * operation.
+ */
+ if (hugepage_subpool_put_pages(spool, 1) == 0)
+ restore_reserve = true;
+ }
+
+ spin_lock_irqsave(&hugetlb_lock, flags);
+ ClearHPageMigratable(page);
+ hugetlb_cgroup_uncharge_page(hstate_index(h),
+ pages_per_huge_page(h), page);
+ hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
+ pages_per_huge_page(h), page);
+ if (restore_reserve)
+ h->resv_huge_pages++;
+
+ if (HPageTemporary(page)) {
+ remove_hugetlb_page(h, page, false);
+ spin_unlock_irqrestore(&hugetlb_lock, flags);
+ update_and_free_page(h, page, true);
+ } else if (h->surplus_huge_pages_node[nid]) {
+ /* remove the page from active list */
+ remove_hugetlb_page(h, page, true);
+ spin_unlock_irqrestore(&hugetlb_lock, flags);
+ update_and_free_page(h, page, true);
+ } else {
+ arch_clear_hugepage_flags(page);
+ enqueue_huge_page(h, page);
+ spin_unlock_irqrestore(&hugetlb_lock, flags);
+ }
+}
+
+/*
+ * Must be called with the hugetlb lock held
+ */
+static void __prep_account_new_huge_page(struct hstate *h, int nid)
+{
+ lockdep_assert_held(&hugetlb_lock);
+ h->nr_huge_pages++;
+ h->nr_huge_pages_node[nid]++;
+}
+
+static void __prep_new_huge_page(struct hstate *h, struct page *page)
+{
+ hugetlb_vmemmap_optimize(h, page);
+ INIT_LIST_HEAD(&page->lru);
+ set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
+ hugetlb_set_page_subpool(page, NULL);
+ set_hugetlb_cgroup(page, NULL);
+ set_hugetlb_cgroup_rsvd(page, NULL);
+}
+
+static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
+{
+ __prep_new_huge_page(h, page);
+ spin_lock_irq(&hugetlb_lock);
+ __prep_account_new_huge_page(h, nid);
+ spin_unlock_irq(&hugetlb_lock);
+}
+
+static bool __prep_compound_gigantic_page(struct page *page, unsigned int order,
+ bool demote)
+{
+ int i, j;
+ int nr_pages = 1 << order;
+ struct page *p;
+
+ /* we rely on prep_new_huge_page to set the destructor */
+ set_compound_order(page, order);
+ __ClearPageReserved(page);
+ __SetPageHead(page);
+ for (i = 0; i < nr_pages; i++) {
+ p = nth_page(page, i);
+
+ /*
+ * For gigantic hugepages allocated through bootmem at
+ * boot, it's safer to be consistent with the not-gigantic
+ * hugepages and clear the PG_reserved bit from all tail pages
+ * too. Otherwise drivers using get_user_pages() to access tail
+ * pages may get the reference counting wrong if they see
+ * PG_reserved set on a tail page (despite the head page not
+ * having PG_reserved set). Enforcing this consistency between
+ * head and tail pages allows drivers to optimize away a check
+ * on the head page when they need know if put_page() is needed
+ * after get_user_pages().
+ */
+ if (i != 0) /* head page cleared above */
+ __ClearPageReserved(p);
+ /*
+ * Subtle and very unlikely
+ *
+ * Gigantic 'page allocators' such as memblock or cma will
+ * return a set of pages with each page ref counted. We need
+ * to turn this set of pages into a compound page with tail
+ * page ref counts set to zero. Code such as speculative page
+ * cache adding could take a ref on a 'to be' tail page.
+ * We need to respect any increased ref count, and only set
+ * the ref count to zero if count is currently 1. If count
+ * is not 1, we return an error. An error return indicates
+ * the set of pages can not be converted to a gigantic page.
+ * The caller who allocated the pages should then discard the
+ * pages using the appropriate free interface.
+ *
+ * In the case of demote, the ref count will be zero.
+ */
+ if (!demote) {
+ if (!page_ref_freeze(p, 1)) {
+ pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
+ goto out_error;
+ }
+ } else {
+ VM_BUG_ON_PAGE(page_count(p), p);
+ }
+ if (i != 0)
+ set_compound_head(p, page);
+ }
+ atomic_set(compound_mapcount_ptr(page), -1);
+ atomic_set(compound_pincount_ptr(page), 0);
+ return true;
+
+out_error:
+ /* undo page modifications made above */
+ for (j = 0; j < i; j++) {
+ p = nth_page(page, j);
+ if (j != 0)
+ clear_compound_head(p);
+ set_page_refcounted(p);
+ }
+ /* need to clear PG_reserved on remaining tail pages */
+ for (; j < nr_pages; j++) {
+ p = nth_page(page, j);
+ __ClearPageReserved(p);
+ }
+ set_compound_order(page, 0);
+#ifdef CONFIG_64BIT
+ page[1].compound_nr = 0;
+#endif
+ __ClearPageHead(page);
+ return false;
+}
+
+static bool prep_compound_gigantic_page(struct page *page, unsigned int order)
+{
+ return __prep_compound_gigantic_page(page, order, false);
+}
+
+static bool prep_compound_gigantic_page_for_demote(struct page *page,
+ unsigned int order)
+{
+ return __prep_compound_gigantic_page(page, order, true);
+}
+
+/*
+ * PageHuge() only returns true for hugetlbfs pages, but not for normal or
+ * transparent huge pages. See the PageTransHuge() documentation for more
+ * details.
+ */
+int PageHuge(struct page *page)
+{
+ if (!PageCompound(page))
+ return 0;
+
+ page = compound_head(page);
+ return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
+}
+EXPORT_SYMBOL_GPL(PageHuge);
+
+/*
+ * PageHeadHuge() only returns true for hugetlbfs head page, but not for
+ * normal or transparent huge pages.
+ */
+int PageHeadHuge(struct page *page_head)
+{
+ if (!PageHead(page_head))
+ return 0;
+
+ return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
+}
+EXPORT_SYMBOL_GPL(PageHeadHuge);
+
+/*
+ * Find and lock address space (mapping) in write mode.
+ *
+ * Upon entry, the page is locked which means that page_mapping() is
+ * stable. Due to locking order, we can only trylock_write. If we can
+ * not get the lock, simply return NULL to caller.
+ */
+struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
+{
+ struct address_space *mapping = page_mapping(hpage);
+
+ if (!mapping)
+ return mapping;
+
+ if (i_mmap_trylock_write(mapping))
+ return mapping;
+
+ return NULL;
+}
+
+pgoff_t hugetlb_basepage_index(struct page *page)
+{
+ struct page *page_head = compound_head(page);
+ pgoff_t index = page_index(page_head);
+ unsigned long compound_idx;
+
+ if (compound_order(page_head) >= MAX_ORDER)
+ compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
+ else
+ compound_idx = page - page_head;
+
+ return (index << compound_order(page_head)) + compound_idx;
+}
+
+static struct page *alloc_buddy_huge_page(struct hstate *h,
+ gfp_t gfp_mask, int nid, nodemask_t *nmask,
+ nodemask_t *node_alloc_noretry)
+{
+ int order = huge_page_order(h);
+ struct page *page;
+ bool alloc_try_hard = true;
+ bool retry = true;
+
+ /*
+ * By default we always try hard to allocate the page with
+ * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
+ * a loop (to adjust global huge page counts) and previous allocation
+ * failed, do not continue to try hard on the same node. Use the
+ * node_alloc_noretry bitmap to manage this state information.
+ */
+ if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
+ alloc_try_hard = false;
+ gfp_mask |= __GFP_COMP|__GFP_NOWARN;
+ if (alloc_try_hard)
+ gfp_mask |= __GFP_RETRY_MAYFAIL;
+ if (nid == NUMA_NO_NODE)
+ nid = numa_mem_id();
+retry:
+ page = __alloc_pages(gfp_mask, order, nid, nmask);
+
+ /* Freeze head page */
+ if (page && !page_ref_freeze(page, 1)) {
+ __free_pages(page, order);
+ if (retry) { /* retry once */
+ retry = false;
+ goto retry;
+ }
+ /* WOW! twice in a row. */
+ pr_warn("HugeTLB head page unexpected inflated ref count\n");
+ page = NULL;
+ }
+
+ if (page)
+ __count_vm_event(HTLB_BUDDY_PGALLOC);
+ else
+ __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
+
+ /*
+ * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
+ * indicates an overall state change. Clear bit so that we resume
+ * normal 'try hard' allocations.
+ */
+ if (node_alloc_noretry && page && !alloc_try_hard)
+ node_clear(nid, *node_alloc_noretry);
+
+ /*
+ * If we tried hard to get a page but failed, set bit so that
+ * subsequent attempts will not try as hard until there is an
+ * overall state change.
+ */
+ if (node_alloc_noretry && !page && alloc_try_hard)
+ node_set(nid, *node_alloc_noretry);
+
+ return page;
+}
+
+/*
+ * Common helper to allocate a fresh hugetlb page. All specific allocators
+ * should use this function to get new hugetlb pages
+ *
+ * Note that returned page is 'frozen': ref count of head page and all tail
+ * pages is zero.
+ */
+static struct page *alloc_fresh_huge_page(struct hstate *h,
+ gfp_t gfp_mask, int nid, nodemask_t *nmask,
+ nodemask_t *node_alloc_noretry)
+{
+ struct page *page;
+ bool retry = false;
+
+retry:
+ if (hstate_is_gigantic(h))
+ page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
+ else
+ page = alloc_buddy_huge_page(h, gfp_mask,
+ nid, nmask, node_alloc_noretry);
+ if (!page)
+ return NULL;
+
+ if (hstate_is_gigantic(h)) {
+ if (!prep_compound_gigantic_page(page, huge_page_order(h))) {
+ /*
+ * Rare failure to convert pages to compound page.
+ * Free pages and try again - ONCE!
+ */
+ free_gigantic_page(page, huge_page_order(h));
+ if (!retry) {
+ retry = true;
+ goto retry;
+ }
+ return NULL;
+ }
+ }
+ prep_new_huge_page(h, page, page_to_nid(page));
+
+ return page;
+}
+
+/*
+ * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
+ * manner.
+ */
+static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
+ nodemask_t *node_alloc_noretry)
+{
+ struct page *page;
+ int nr_nodes, node;
+ gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
+
+ for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
+ page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
+ node_alloc_noretry);
+ if (page)
+ break;
+ }
+
+ if (!page)
+ return 0;
+
+ free_huge_page(page); /* free it into the hugepage allocator */
+
+ return 1;
+}
+
+/*
+ * Remove huge page from pool from next node to free. Attempt to keep
+ * persistent huge pages more or less balanced over allowed nodes.
+ * This routine only 'removes' the hugetlb page. The caller must make
+ * an additional call to free the page to low level allocators.
+ * Called with hugetlb_lock locked.
+ */
+static struct page *remove_pool_huge_page(struct hstate *h,
+ nodemask_t *nodes_allowed,
+ bool acct_surplus)
+{
+ int nr_nodes, node;
+ struct page *page = NULL;
+
+ lockdep_assert_held(&hugetlb_lock);
+ for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
+ /*
+ * If we're returning unused surplus pages, only examine
+ * nodes with surplus pages.
+ */
+ if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
+ !list_empty(&h->hugepage_freelists[node])) {
+ page = list_entry(h->hugepage_freelists[node].next,
+ struct page, lru);
+ remove_hugetlb_page(h, page, acct_surplus);
+ break;
+ }
+ }
+
+ return page;
+}
+
+/*
+ * Dissolve a given free hugepage into free buddy pages. This function does
+ * nothing for in-use hugepages and non-hugepages.
+ * This function returns values like below:
+ *
+ * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
+ * when the system is under memory pressure and the feature of
+ * freeing unused vmemmap pages associated with each hugetlb page
+ * is enabled.
+ * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
+ * (allocated or reserved.)
+ * 0: successfully dissolved free hugepages or the page is not a
+ * hugepage (considered as already dissolved)
+ */
+int dissolve_free_huge_page(struct page *page)
+{
+ int rc = -EBUSY;
+
+retry:
+ /* Not to disrupt normal path by vainly holding hugetlb_lock */
+ if (!PageHuge(page))
+ return 0;
+
+ spin_lock_irq(&hugetlb_lock);
+ if (!PageHuge(page)) {
+ rc = 0;
+ goto out;
+ }
+
+ if (!page_count(page)) {
+ struct page *head = compound_head(page);
+ struct hstate *h = page_hstate(head);
+ if (!available_huge_pages(h))
+ goto out;
+
+ /*
+ * We should make sure that the page is already on the free list
+ * when it is dissolved.
+ */
+ if (unlikely(!HPageFreed(head))) {
+ spin_unlock_irq(&hugetlb_lock);
+ cond_resched();
+
+ /*
+ * Theoretically, we should return -EBUSY when we
+ * encounter this race. In fact, we have a chance
+ * to successfully dissolve the page if we do a
+ * retry. Because the race window is quite small.
+ * If we seize this opportunity, it is an optimization
+ * for increasing the success rate of dissolving page.
+ */
+ goto retry;
+ }
+
+ remove_hugetlb_page(h, head, false);
+ h->max_huge_pages--;
+ spin_unlock_irq(&hugetlb_lock);
+
+ /*
+ * Normally update_and_free_page will allocate required vmemmmap
+ * before freeing the page. update_and_free_page will fail to
+ * free the page if it can not allocate required vmemmap. We
+ * need to adjust max_huge_pages if the page is not freed.
+ * Attempt to allocate vmemmmap here so that we can take
+ * appropriate action on failure.
+ */
+ rc = hugetlb_vmemmap_restore(h, head);
+ if (!rc) {
+ update_and_free_page(h, head, false);
+ } else {
+ spin_lock_irq(&hugetlb_lock);
+ add_hugetlb_page(h, head, false);
+ h->max_huge_pages++;
+ spin_unlock_irq(&hugetlb_lock);
+ }
+
+ return rc;
+ }
+out:
+ spin_unlock_irq(&hugetlb_lock);
+ return rc;
+}
+
+/*
+ * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
+ * make specified memory blocks removable from the system.
+ * Note that this will dissolve a free gigantic hugepage completely, if any
+ * part of it lies within the given range.
+ * Also note that if dissolve_free_huge_page() returns with an error, all
+ * free hugepages that were dissolved before that error are lost.
+ */
+int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
+{
+ unsigned long pfn;
+ struct page *page;
+ int rc = 0;
+ unsigned int order;
+ struct hstate *h;
+
+ if (!hugepages_supported())
+ return rc;
+
+ order = huge_page_order(&default_hstate);
+ for_each_hstate(h)
+ order = min(order, huge_page_order(h));
+
+ for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
+ page = pfn_to_page(pfn);
+ rc = dissolve_free_huge_page(page);
+ if (rc)
+ break;
+ }
+
+ return rc;
+}
+
+/*
+ * Allocates a fresh surplus page from the page allocator.
+ */
+static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
+ int nid, nodemask_t *nmask)
+{
+ struct page *page = NULL;
+
+ if (hstate_is_gigantic(h))
+ return NULL;
+
+ spin_lock_irq(&hugetlb_lock);
+ if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
+ goto out_unlock;
+ spin_unlock_irq(&hugetlb_lock);
+
+ page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
+ if (!page)
+ return NULL;
+
+ spin_lock_irq(&hugetlb_lock);
+ /*
+ * We could have raced with the pool size change.
+ * Double check that and simply deallocate the new page
+ * if we would end up overcommiting the surpluses. Abuse
+ * temporary page to workaround the nasty free_huge_page
+ * codeflow
+ */
+ if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
+ SetHPageTemporary(page);
+ spin_unlock_irq(&hugetlb_lock);
+ free_huge_page(page);
+ return NULL;
+ }
+
+ h->surplus_huge_pages++;
+ h->surplus_huge_pages_node[page_to_nid(page)]++;
+
+out_unlock:
+ spin_unlock_irq(&hugetlb_lock);
+
+ return page;
+}
+
+static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
+ int nid, nodemask_t *nmask)
+{
+ struct page *page;
+
+ if (hstate_is_gigantic(h))
+ return NULL;
+
+ page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
+ if (!page)
+ return NULL;
+
+ /* fresh huge pages are frozen */
+ set_page_refcounted(page);
+
+ /*
+ * We do not account these pages as surplus because they are only
+ * temporary and will be released properly on the last reference
+ */
+ SetHPageTemporary(page);
+
+ return page;
+}
+
+/*
+ * Use the VMA's mpolicy to allocate a huge page from the buddy.
+ */
+static
+struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
+ struct vm_area_struct *vma, unsigned long addr)
+{
+ struct page *page = NULL;
+ struct mempolicy *mpol;
+ gfp_t gfp_mask = htlb_alloc_mask(h);
+ int nid;
+ nodemask_t *nodemask;
+
+ nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
+ if (mpol_is_preferred_many(mpol)) {
+ gfp_t gfp = gfp_mask | __GFP_NOWARN;
+
+ gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
+ page = alloc_surplus_huge_page(h, gfp, nid, nodemask);
+
+ /* Fallback to all nodes if page==NULL */
+ nodemask = NULL;
+ }
+
+ if (!page)
+ page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
+ mpol_cond_put(mpol);
+ return page;
+}
+
+/* page migration callback function */
+struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
+ nodemask_t *nmask, gfp_t gfp_mask)
+{
+ spin_lock_irq(&hugetlb_lock);
+ if (available_huge_pages(h)) {
+ struct page *page;
+
+ page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
+ if (page) {
+ spin_unlock_irq(&hugetlb_lock);
+ return page;
+ }
+ }
+ spin_unlock_irq(&hugetlb_lock);
+
+ return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
+}
+
+/* mempolicy aware migration callback */
+struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
+ unsigned long address)
+{
+ struct mempolicy *mpol;
+ nodemask_t *nodemask;
+ struct page *page;
+ gfp_t gfp_mask;
+ int node;
+
+ gfp_mask = htlb_alloc_mask(h);
+ node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
+ page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
+ mpol_cond_put(mpol);
+
+ return page;
+}
+
+/*
+ * Increase the hugetlb pool such that it can accommodate a reservation
+ * of size 'delta'.
+ */
+static int gather_surplus_pages(struct hstate *h, long delta)
+ __must_hold(&hugetlb_lock)
+{
+ LIST_HEAD(surplus_list);
+ struct page *page, *tmp;
+ int ret;
+ long i;
+ long needed, allocated;
+ bool alloc_ok = true;
+
+ lockdep_assert_held(&hugetlb_lock);
+ needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
+ if (needed <= 0) {
+ h->resv_huge_pages += delta;
+ return 0;
+ }
+
+ allocated = 0;
+
+ ret = -ENOMEM;
+retry:
+ spin_unlock_irq(&hugetlb_lock);
+ for (i = 0; i < needed; i++) {
+ page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
+ NUMA_NO_NODE, NULL);
+ if (!page) {
+ alloc_ok = false;
+ break;
+ }
+ list_add(&page->lru, &surplus_list);
+ cond_resched();
+ }
+ allocated += i;
+
+ /*
+ * After retaking hugetlb_lock, we need to recalculate 'needed'
+ * because either resv_huge_pages or free_huge_pages may have changed.
+ */
+ spin_lock_irq(&hugetlb_lock);
+ needed = (h->resv_huge_pages + delta) -
+ (h->free_huge_pages + allocated);
+ if (needed > 0) {
+ if (alloc_ok)
+ goto retry;
+ /*
+ * We were not able to allocate enough pages to
+ * satisfy the entire reservation so we free what
+ * we've allocated so far.
+ */
+ goto free;
+ }
+ /*
+ * The surplus_list now contains _at_least_ the number of extra pages
+ * needed to accommodate the reservation. Add the appropriate number
+ * of pages to the hugetlb pool and free the extras back to the buddy
+ * allocator. Commit the entire reservation here to prevent another
+ * process from stealing the pages as they are added to the pool but
+ * before they are reserved.
+ */
+ needed += allocated;
+ h->resv_huge_pages += delta;
+ ret = 0;
+
+ /* Free the needed pages to the hugetlb pool */
+ list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
+ if ((--needed) < 0)
+ break;
+ /* Add the page to the hugetlb allocator */
+ enqueue_huge_page(h, page);
+ }
+free:
+ spin_unlock_irq(&hugetlb_lock);
+
+ /*
+ * Free unnecessary surplus pages to the buddy allocator.
+ * Pages have no ref count, call free_huge_page directly.
+ */
+ list_for_each_entry_safe(page, tmp, &surplus_list, lru)
+ free_huge_page(page);
+ spin_lock_irq(&hugetlb_lock);
+
+ return ret;
+}
+
+/*
+ * This routine has two main purposes:
+ * 1) Decrement the reservation count (resv_huge_pages) by the value passed
+ * in unused_resv_pages. This corresponds to the prior adjustments made
+ * to the associated reservation map.
+ * 2) Free any unused surplus pages that may have been allocated to satisfy
+ * the reservation. As many as unused_resv_pages may be freed.
+ */
+static void return_unused_surplus_pages(struct hstate *h,
+ unsigned long unused_resv_pages)
+{
+ unsigned long nr_pages;
+ struct page *page;
+ LIST_HEAD(page_list);
+
+ lockdep_assert_held(&hugetlb_lock);
+ /* Uncommit the reservation */
+ h->resv_huge_pages -= unused_resv_pages;
+
+ if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
+ goto out;
+
+ /*
+ * Part (or even all) of the reservation could have been backed
+ * by pre-allocated pages. Only free surplus pages.
+ */
+ nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
+
+ /*
+ * We want to release as many surplus pages as possible, spread
+ * evenly across all nodes with memory. Iterate across these nodes
+ * until we can no longer free unreserved surplus pages. This occurs
+ * when the nodes with surplus pages have no free pages.
+ * remove_pool_huge_page() will balance the freed pages across the
+ * on-line nodes with memory and will handle the hstate accounting.
+ */
+ while (nr_pages--) {
+ page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
+ if (!page)
+ goto out;
+
+ list_add(&page->lru, &page_list);
+ }
+
+out:
+ spin_unlock_irq(&hugetlb_lock);
+ update_and_free_pages_bulk(h, &page_list);
+ spin_lock_irq(&hugetlb_lock);
+}
+
+
+/*
+ * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
+ * are used by the huge page allocation routines to manage reservations.
+ *
+ * vma_needs_reservation is called to determine if the huge page at addr
+ * within the vma has an associated reservation. If a reservation is
+ * needed, the value 1 is returned. The caller is then responsible for
+ * managing the global reservation and subpool usage counts. After
+ * the huge page has been allocated, vma_commit_reservation is called
+ * to add the page to the reservation map. If the page allocation fails,
+ * the reservation must be ended instead of committed. vma_end_reservation
+ * is called in such cases.
+ *
+ * In the normal case, vma_commit_reservation returns the same value
+ * as the preceding vma_needs_reservation call. The only time this
+ * is not the case is if a reserve map was changed between calls. It
+ * is the responsibility of the caller to notice the difference and
+ * take appropriate action.
+ *
+ * vma_add_reservation is used in error paths where a reservation must
+ * be restored when a newly allocated huge page must be freed. It is
+ * to be called after calling vma_needs_reservation to determine if a
+ * reservation exists.
+ *
+ * vma_del_reservation is used in error paths where an entry in the reserve
+ * map was created during huge page allocation and must be removed. It is to
+ * be called after calling vma_needs_reservation to determine if a reservation
+ * exists.
+ */
+enum vma_resv_mode {
+ VMA_NEEDS_RESV,
+ VMA_COMMIT_RESV,
+ VMA_END_RESV,
+ VMA_ADD_RESV,
+ VMA_DEL_RESV,
+};
+static long __vma_reservation_common(struct hstate *h,
+ struct vm_area_struct *vma, unsigned long addr,
+ enum vma_resv_mode mode)
+{
+ struct resv_map *resv;
+ pgoff_t idx;
+ long ret;
+ long dummy_out_regions_needed;
+
+ resv = vma_resv_map(vma);
+ if (!resv)
+ return 1;
+
+ idx = vma_hugecache_offset(h, vma, addr);
+ switch (mode) {
+ case VMA_NEEDS_RESV:
+ ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
+ /* We assume that vma_reservation_* routines always operate on
+ * 1 page, and that adding to resv map a 1 page entry can only
+ * ever require 1 region.
+ */
+ VM_BUG_ON(dummy_out_regions_needed != 1);
+ break;
+ case VMA_COMMIT_RESV:
+ ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
+ /* region_add calls of range 1 should never fail. */
+ VM_BUG_ON(ret < 0);
+ break;
+ case VMA_END_RESV:
+ region_abort(resv, idx, idx + 1, 1);
+ ret = 0;
+ break;
+ case VMA_ADD_RESV:
+ if (vma->vm_flags & VM_MAYSHARE) {
+ ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
+ /* region_add calls of range 1 should never fail. */
+ VM_BUG_ON(ret < 0);
+ } else {
+ region_abort(resv, idx, idx + 1, 1);
+ ret = region_del(resv, idx, idx + 1);
+ }
+ break;
+ case VMA_DEL_RESV:
+ if (vma->vm_flags & VM_MAYSHARE) {
+ region_abort(resv, idx, idx + 1, 1);
+ ret = region_del(resv, idx, idx + 1);
+ } else {
+ ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
+ /* region_add calls of range 1 should never fail. */
+ VM_BUG_ON(ret < 0);
+ }
+ break;
+ default:
+ BUG();
+ }
+
+ if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
+ return ret;
+ /*
+ * We know private mapping must have HPAGE_RESV_OWNER set.
+ *
+ * In most cases, reserves always exist for private mappings.
+ * However, a file associated with mapping could have been
+ * hole punched or truncated after reserves were consumed.
+ * As subsequent fault on such a range will not use reserves.
+ * Subtle - The reserve map for private mappings has the
+ * opposite meaning than that of shared mappings. If NO
+ * entry is in the reserve map, it means a reservation exists.
+ * If an entry exists in the reserve map, it means the
+ * reservation has already been consumed. As a result, the
+ * return value of this routine is the opposite of the
+ * value returned from reserve map manipulation routines above.
+ */
+ if (ret > 0)
+ return 0;
+ if (ret == 0)
+ return 1;
+ return ret;
+}
+
+static long vma_needs_reservation(struct hstate *h,
+ struct vm_area_struct *vma, unsigned long addr)
+{
+ return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
+}
+
+static long vma_commit_reservation(struct hstate *h,
+ struct vm_area_struct *vma, unsigned long addr)
+{
+ return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
+}
+
+static void vma_end_reservation(struct hstate *h,
+ struct vm_area_struct *vma, unsigned long addr)
+{
+ (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
+}
+
+static long vma_add_reservation(struct hstate *h,
+ struct vm_area_struct *vma, unsigned long addr)
+{
+ return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
+}
+
+static long vma_del_reservation(struct hstate *h,
+ struct vm_area_struct *vma, unsigned long addr)
+{
+ return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
+}
+
+/*
+ * This routine is called to restore reservation information on error paths.
+ * It should ONLY be called for pages allocated via alloc_huge_page(), and
+ * the hugetlb mutex should remain held when calling this routine.
+ *
+ * It handles two specific cases:
+ * 1) A reservation was in place and the page consumed the reservation.
+ * HPageRestoreReserve is set in the page.
+ * 2) No reservation was in place for the page, so HPageRestoreReserve is
+ * not set. However, alloc_huge_page always updates the reserve map.
+ *
+ * In case 1, free_huge_page later in the error path will increment the
+ * global reserve count. But, free_huge_page does not have enough context
+ * to adjust the reservation map. This case deals primarily with private
+ * mappings. Adjust the reserve map here to be consistent with global
+ * reserve count adjustments to be made by free_huge_page. Make sure the
+ * reserve map indicates there is a reservation present.
+ *
+ * In case 2, simply undo reserve map modifications done by alloc_huge_page.
+ */
+void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
+ unsigned long address, struct page *page)
+{
+ long rc = vma_needs_reservation(h, vma, address);
+
+ if (HPageRestoreReserve(page)) {
+ if (unlikely(rc < 0))
+ /*
+ * Rare out of memory condition in reserve map
+ * manipulation. Clear HPageRestoreReserve so that
+ * global reserve count will not be incremented
+ * by free_huge_page. This will make it appear
+ * as though the reservation for this page was
+ * consumed. This may prevent the task from
+ * faulting in the page at a later time. This
+ * is better than inconsistent global huge page
+ * accounting of reserve counts.
+ */
+ ClearHPageRestoreReserve(page);
+ else if (rc)
+ (void)vma_add_reservation(h, vma, address);
+ else
+ vma_end_reservation(h, vma, address);
+ } else {
+ if (!rc) {
+ /*
+ * This indicates there is an entry in the reserve map
+ * not added by alloc_huge_page. We know it was added
+ * before the alloc_huge_page call, otherwise
+ * HPageRestoreReserve would be set on the page.
+ * Remove the entry so that a subsequent allocation
+ * does not consume a reservation.
+ */
+ rc = vma_del_reservation(h, vma, address);
+ if (rc < 0)
+ /*
+ * VERY rare out of memory condition. Since
+ * we can not delete the entry, set
+ * HPageRestoreReserve so that the reserve
+ * count will be incremented when the page
+ * is freed. This reserve will be consumed
+ * on a subsequent allocation.
+ */
+ SetHPageRestoreReserve(page);
+ } else if (rc < 0) {
+ /*
+ * Rare out of memory condition from
+ * vma_needs_reservation call. Memory allocation is
+ * only attempted if a new entry is needed. Therefore,
+ * this implies there is not an entry in the
+ * reserve map.
+ *
+ * For shared mappings, no entry in the map indicates
+ * no reservation. We are done.
+ */
+ if (!(vma->vm_flags & VM_MAYSHARE))
+ /*
+ * For private mappings, no entry indicates
+ * a reservation is present. Since we can
+ * not add an entry, set SetHPageRestoreReserve
+ * on the page so reserve count will be
+ * incremented when freed. This reserve will
+ * be consumed on a subsequent allocation.
+ */
+ SetHPageRestoreReserve(page);
+ } else
+ /*
+ * No reservation present, do nothing
+ */
+ vma_end_reservation(h, vma, address);
+ }
+}
+
+/*
+ * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one
+ * @h: struct hstate old page belongs to
+ * @old_page: Old page to dissolve
+ * @list: List to isolate the page in case we need to
+ * Returns 0 on success, otherwise negated error.
+ */
+static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page,
+ struct list_head *list)
+{
+ gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
+ int nid = page_to_nid(old_page);
+ struct page *new_page;
+ int ret = 0;
+
+ /*
+ * Before dissolving the page, we need to allocate a new one for the
+ * pool to remain stable. Here, we allocate the page and 'prep' it
+ * by doing everything but actually updating counters and adding to
+ * the pool. This simplifies and let us do most of the processing
+ * under the lock.
+ */
+ new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL);
+ if (!new_page)
+ return -ENOMEM;
+ __prep_new_huge_page(h, new_page);
+
+retry:
+ spin_lock_irq(&hugetlb_lock);
+ if (!PageHuge(old_page)) {
+ /*
+ * Freed from under us. Drop new_page too.
+ */
+ goto free_new;
+ } else if (page_count(old_page)) {
+ /*
+ * Someone has grabbed the page, try to isolate it here.
+ * Fail with -EBUSY if not possible.
+ */
+ spin_unlock_irq(&hugetlb_lock);
+ ret = isolate_hugetlb(old_page, list);
+ spin_lock_irq(&hugetlb_lock);
+ goto free_new;
+ } else if (!HPageFreed(old_page)) {
+ /*
+ * Page's refcount is 0 but it has not been enqueued in the
+ * freelist yet. Race window is small, so we can succeed here if
+ * we retry.
+ */
+ spin_unlock_irq(&hugetlb_lock);
+ cond_resched();
+ goto retry;
+ } else {
+ /*
+ * Ok, old_page is still a genuine free hugepage. Remove it from
+ * the freelist and decrease the counters. These will be
+ * incremented again when calling __prep_account_new_huge_page()
+ * and enqueue_huge_page() for new_page. The counters will remain
+ * stable since this happens under the lock.
+ */
+ remove_hugetlb_page(h, old_page, false);
+
+ /*
+ * Ref count on new page is already zero as it was dropped
+ * earlier. It can be directly added to the pool free list.
+ */
+ __prep_account_new_huge_page(h, nid);
+ enqueue_huge_page(h, new_page);
+
+ /*
+ * Pages have been replaced, we can safely free the old one.
+ */
+ spin_unlock_irq(&hugetlb_lock);
+ update_and_free_page(h, old_page, false);
+ }
+
+ return ret;
+
+free_new:
+ spin_unlock_irq(&hugetlb_lock);
+ /* Page has a zero ref count, but needs a ref to be freed */
+ set_page_refcounted(new_page);
+ update_and_free_page(h, new_page, false);
+
+ return ret;
+}
+
+int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
+{
+ struct hstate *h;
+ struct page *head;
+ int ret = -EBUSY;
+
+ /*
+ * The page might have been dissolved from under our feet, so make sure
+ * to carefully check the state under the lock.
+ * Return success when racing as if we dissolved the page ourselves.
+ */
+ spin_lock_irq(&hugetlb_lock);
+ if (PageHuge(page)) {
+ head = compound_head(page);
+ h = page_hstate(head);
+ } else {
+ spin_unlock_irq(&hugetlb_lock);
+ return 0;
+ }
+ spin_unlock_irq(&hugetlb_lock);
+
+ /*
+ * Fence off gigantic pages as there is a cyclic dependency between
+ * alloc_contig_range and them. Return -ENOMEM as this has the effect
+ * of bailing out right away without further retrying.
+ */
+ if (hstate_is_gigantic(h))
+ return -ENOMEM;
+
+ if (page_count(head) && !isolate_hugetlb(head, list))
+ ret = 0;
+ else if (!page_count(head))
+ ret = alloc_and_dissolve_huge_page(h, head, list);
+
+ return ret;
+}
+
+struct page *alloc_huge_page(struct vm_area_struct *vma,
+ unsigned long addr, int avoid_reserve)
+{
+ struct hugepage_subpool *spool = subpool_vma(vma);
+ struct hstate *h = hstate_vma(vma);
+ struct page *page;
+ long map_chg, map_commit;
+ long gbl_chg;
+ int ret, idx;
+ struct hugetlb_cgroup *h_cg;
+ bool deferred_reserve;
+
+ idx = hstate_index(h);
+ /*
+ * Examine the region/reserve map to determine if the process
+ * has a reservation for the page to be allocated. A return
+ * code of zero indicates a reservation exists (no change).
+ */
+ map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
+ if (map_chg < 0)
+ return ERR_PTR(-ENOMEM);
+
+ /*
+ * Processes that did not create the mapping will have no
+ * reserves as indicated by the region/reserve map. Check
+ * that the allocation will not exceed the subpool limit.
+ * Allocations for MAP_NORESERVE mappings also need to be
+ * checked against any subpool limit.
+ */
+ if (map_chg || avoid_reserve) {
+ gbl_chg = hugepage_subpool_get_pages(spool, 1);
+ if (gbl_chg < 0) {
+ vma_end_reservation(h, vma, addr);
+ return ERR_PTR(-ENOSPC);
+ }
+
+ /*
+ * Even though there was no reservation in the region/reserve
+ * map, there could be reservations associated with the
+ * subpool that can be used. This would be indicated if the
+ * return value of hugepage_subpool_get_pages() is zero.
+ * However, if avoid_reserve is specified we still avoid even
+ * the subpool reservations.
+ */
+ if (avoid_reserve)
+ gbl_chg = 1;
+ }
+
+ /* If this allocation is not consuming a reservation, charge it now.
+ */
+ deferred_reserve = map_chg || avoid_reserve;
+ if (deferred_reserve) {
+ ret = hugetlb_cgroup_charge_cgroup_rsvd(
+ idx, pages_per_huge_page(h), &h_cg);
+ if (ret)
+ goto out_subpool_put;
+ }
+
+ ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
+ if (ret)
+ goto out_uncharge_cgroup_reservation;
+
+ spin_lock_irq(&hugetlb_lock);
+ /*
+ * glb_chg is passed to indicate whether or not a page must be taken
+ * from the global free pool (global change). gbl_chg == 0 indicates
+ * a reservation exists for the allocation.
+ */
+ page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
+ if (!page) {
+ spin_unlock_irq(&hugetlb_lock);
+ page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
+ if (!page)
+ goto out_uncharge_cgroup;
+ spin_lock_irq(&hugetlb_lock);
+ if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
+ SetHPageRestoreReserve(page);
+ h->resv_huge_pages--;
+ }
+ list_add(&page->lru, &h->hugepage_activelist);
+ set_page_refcounted(page);
+ /* Fall through */
+ }
+ hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
+ /* If allocation is not consuming a reservation, also store the
+ * hugetlb_cgroup pointer on the page.
+ */
+ if (deferred_reserve) {
+ hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
+ h_cg, page);
+ }
+
+ spin_unlock_irq(&hugetlb_lock);
+
+ hugetlb_set_page_subpool(page, spool);
+
+ map_commit = vma_commit_reservation(h, vma, addr);
+ if (unlikely(map_chg > map_commit)) {
+ /*
+ * The page was added to the reservation map between
+ * vma_needs_reservation and vma_commit_reservation.
+ * This indicates a race with hugetlb_reserve_pages.
+ * Adjust for the subpool count incremented above AND
+ * in hugetlb_reserve_pages for the same page. Also,
+ * the reservation count added in hugetlb_reserve_pages
+ * no longer applies.
+ */
+ long rsv_adjust;
+
+ rsv_adjust = hugepage_subpool_put_pages(spool, 1);
+ hugetlb_acct_memory(h, -rsv_adjust);
+ if (deferred_reserve)
+ hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
+ pages_per_huge_page(h), page);
+ }
+ return page;
+
+out_uncharge_cgroup:
+ hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
+out_uncharge_cgroup_reservation:
+ if (deferred_reserve)
+ hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
+ h_cg);
+out_subpool_put:
+ if (map_chg || avoid_reserve)
+ hugepage_subpool_put_pages(spool, 1);
+ vma_end_reservation(h, vma, addr);
+ return ERR_PTR(-ENOSPC);
+}
+
+int alloc_bootmem_huge_page(struct hstate *h, int nid)
+ __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
+int __alloc_bootmem_huge_page(struct hstate *h, int nid)
+{
+ struct huge_bootmem_page *m = NULL; /* initialize for clang */
+ int nr_nodes, node;
+
+ /* do node specific alloc */
+ if (nid != NUMA_NO_NODE) {
+ m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
+ 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
+ if (!m)
+ return 0;
+ goto found;
+ }
+ /* allocate from next node when distributing huge pages */
+ for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
+ m = memblock_alloc_try_nid_raw(
+ huge_page_size(h), huge_page_size(h),
+ 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
+ /*
+ * Use the beginning of the huge page to store the
+ * huge_bootmem_page struct (until gather_bootmem
+ * puts them into the mem_map).
+ */
+ if (!m)
+ return 0;
+ goto found;
+ }
+
+found:
+ /* Put them into a private list first because mem_map is not up yet */
+ INIT_LIST_HEAD(&m->list);
+ list_add(&m->list, &huge_boot_pages);
+ m->hstate = h;
+ return 1;
+}
+
+/*
+ * Put bootmem huge pages into the standard lists after mem_map is up.
+ * Note: This only applies to gigantic (order > MAX_ORDER) pages.
+ */
+static void __init gather_bootmem_prealloc(void)
+{
+ struct huge_bootmem_page *m;
+
+ list_for_each_entry(m, &huge_boot_pages, list) {
+ struct page *page = virt_to_page(m);
+ struct hstate *h = m->hstate;
+
+ VM_BUG_ON(!hstate_is_gigantic(h));
+ WARN_ON(page_count(page) != 1);
+ if (prep_compound_gigantic_page(page, huge_page_order(h))) {
+ WARN_ON(PageReserved(page));
+ prep_new_huge_page(h, page, page_to_nid(page));
+ free_huge_page(page); /* add to the hugepage allocator */
+ } else {
+ /* VERY unlikely inflated ref count on a tail page */
+ free_gigantic_page(page, huge_page_order(h));
+ }
+
+ /*
+ * We need to restore the 'stolen' pages to totalram_pages
+ * in order to fix confusing memory reports from free(1) and
+ * other side-effects, like CommitLimit going negative.
+ */
+ adjust_managed_page_count(page, pages_per_huge_page(h));
+ cond_resched();
+ }
+}
+static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
+{
+ unsigned long i;
+ char buf[32];
+
+ for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
+ if (hstate_is_gigantic(h)) {
+ if (!alloc_bootmem_huge_page(h, nid))
+ break;
+ } else {
+ struct page *page;
+ gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
+
+ page = alloc_fresh_huge_page(h, gfp_mask, nid,
+ &node_states[N_MEMORY], NULL);
+ if (!page)
+ break;
+ free_huge_page(page); /* free it into the hugepage allocator */
+ }
+ cond_resched();
+ }
+ if (i == h->max_huge_pages_node[nid])
+ return;
+
+ string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
+ pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n",
+ h->max_huge_pages_node[nid], buf, nid, i);
+ h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
+ h->max_huge_pages_node[nid] = i;
+}
+
+static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
+{
+ unsigned long i;
+ nodemask_t *node_alloc_noretry;
+ bool node_specific_alloc = false;
+
+ /* skip gigantic hugepages allocation if hugetlb_cma enabled */
+ if (hstate_is_gigantic(h) && hugetlb_cma_size) {
+ pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
+ return;
+ }
+
+ /* do node specific alloc */
+ for_each_online_node(i) {
+ if (h->max_huge_pages_node[i] > 0) {
+ hugetlb_hstate_alloc_pages_onenode(h, i);
+ node_specific_alloc = true;
+ }
+ }
+
+ if (node_specific_alloc)
+ return;
+
+ /* below will do all node balanced alloc */
+ if (!hstate_is_gigantic(h)) {
+ /*
+ * Bit mask controlling how hard we retry per-node allocations.
+ * Ignore errors as lower level routines can deal with
+ * node_alloc_noretry == NULL. If this kmalloc fails at boot
+ * time, we are likely in bigger trouble.
+ */
+ node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
+ GFP_KERNEL);
+ } else {
+ /* allocations done at boot time */
+ node_alloc_noretry = NULL;
+ }
+
+ /* bit mask controlling how hard we retry per-node allocations */
+ if (node_alloc_noretry)
+ nodes_clear(*node_alloc_noretry);
+
+ for (i = 0; i < h->max_huge_pages; ++i) {
+ if (hstate_is_gigantic(h)) {
+ if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
+ break;
+ } else if (!alloc_pool_huge_page(h,
+ &node_states[N_MEMORY],
+ node_alloc_noretry))
+ break;
+ cond_resched();
+ }
+ if (i < h->max_huge_pages) {
+ char buf[32];
+
+ string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
+ pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
+ h->max_huge_pages, buf, i);
+ h->max_huge_pages = i;
+ }
+ kfree(node_alloc_noretry);
+}
+
+static void __init hugetlb_init_hstates(void)
+{
+ struct hstate *h, *h2;
+
+ for_each_hstate(h) {
+ /* oversize hugepages were init'ed in early boot */
+ if (!hstate_is_gigantic(h))
+ hugetlb_hstate_alloc_pages(h);
+
+ /*
+ * Set demote order for each hstate. Note that
+ * h->demote_order is initially 0.
+ * - We can not demote gigantic pages if runtime freeing
+ * is not supported, so skip this.
+ * - If CMA allocation is possible, we can not demote
+ * HUGETLB_PAGE_ORDER or smaller size pages.
+ */
+ if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
+ continue;
+ if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
+ continue;
+ for_each_hstate(h2) {
+ if (h2 == h)
+ continue;
+ if (h2->order < h->order &&
+ h2->order > h->demote_order)
+ h->demote_order = h2->order;
+ }
+ }
+}
+
+static void __init report_hugepages(void)
+{
+ struct hstate *h;
+
+ for_each_hstate(h) {
+ char buf[32];
+
+ string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
+ pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
+ buf, h->free_huge_pages);
+ pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
+ hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
+ }
+}
+
+#ifdef CONFIG_HIGHMEM
+static void try_to_free_low(struct hstate *h, unsigned long count,
+ nodemask_t *nodes_allowed)
+{
+ int i;
+ LIST_HEAD(page_list);
+
+ lockdep_assert_held(&hugetlb_lock);
+ if (hstate_is_gigantic(h))
+ return;
+
+ /*
+ * Collect pages to be freed on a list, and free after dropping lock
+ */
+ for_each_node_mask(i, *nodes_allowed) {
+ struct page *page, *next;
+ struct list_head *freel = &h->hugepage_freelists[i];
+ list_for_each_entry_safe(page, next, freel, lru) {
+ if (count >= h->nr_huge_pages)
+ goto out;
+ if (PageHighMem(page))
+ continue;
+ remove_hugetlb_page(h, page, false);
+ list_add(&page->lru, &page_list);
+ }
+ }
+
+out:
+ spin_unlock_irq(&hugetlb_lock);
+ update_and_free_pages_bulk(h, &page_list);
+ spin_lock_irq(&hugetlb_lock);
+}
+#else
+static inline void try_to_free_low(struct hstate *h, unsigned long count,
+ nodemask_t *nodes_allowed)
+{
+}
+#endif
+
+/*
+ * Increment or decrement surplus_huge_pages. Keep node-specific counters
+ * balanced by operating on them in a round-robin fashion.
+ * Returns 1 if an adjustment was made.
+ */
+static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
+ int delta)
+{
+ int nr_nodes, node;
+
+ lockdep_assert_held(&hugetlb_lock);
+ VM_BUG_ON(delta != -1 && delta != 1);
+
+ if (delta < 0) {
+ for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
+ if (h->surplus_huge_pages_node[node])
+ goto found;
+ }
+ } else {
+ for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
+ if (h->surplus_huge_pages_node[node] <
+ h->nr_huge_pages_node[node])
+ goto found;
+ }
+ }
+ return 0;
+
+found:
+ h->surplus_huge_pages += delta;
+ h->surplus_huge_pages_node[node] += delta;
+ return 1;
+}
+
+#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
+static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
+ nodemask_t *nodes_allowed)
+{
+ unsigned long min_count, ret;
+ struct page *page;
+ LIST_HEAD(page_list);
+ NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
+
+ /*
+ * Bit mask controlling how hard we retry per-node allocations.
+ * If we can not allocate the bit mask, do not attempt to allocate
+ * the requested huge pages.
+ */
+ if (node_alloc_noretry)
+ nodes_clear(*node_alloc_noretry);
+ else
+ return -ENOMEM;
+
+ /*
+ * resize_lock mutex prevents concurrent adjustments to number of
+ * pages in hstate via the proc/sysfs interfaces.
+ */
+ mutex_lock(&h->resize_lock);
+ flush_free_hpage_work(h);
+ spin_lock_irq(&hugetlb_lock);
+
+ /*
+ * Check for a node specific request.
+ * Changing node specific huge page count may require a corresponding
+ * change to the global count. In any case, the passed node mask
+ * (nodes_allowed) will restrict alloc/free to the specified node.
+ */
+ if (nid != NUMA_NO_NODE) {
+ unsigned long old_count = count;
+
+ count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
+ /*
+ * User may have specified a large count value which caused the
+ * above calculation to overflow. In this case, they wanted
+ * to allocate as many huge pages as possible. Set count to
+ * largest possible value to align with their intention.
+ */
+ if (count < old_count)
+ count = ULONG_MAX;
+ }
+
+ /*
+ * Gigantic pages runtime allocation depend on the capability for large
+ * page range allocation.
+ * If the system does not provide this feature, return an error when
+ * the user tries to allocate gigantic pages but let the user free the
+ * boottime allocated gigantic pages.
+ */
+ if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
+ if (count > persistent_huge_pages(h)) {
+ spin_unlock_irq(&hugetlb_lock);
+ mutex_unlock(&h->resize_lock);
+ NODEMASK_FREE(node_alloc_noretry);
+ return -EINVAL;
+ }
+ /* Fall through to decrease pool */
+ }
+
+ /*
+ * Increase the pool size
+ * First take pages out of surplus state. Then make up the
+ * remaining difference by allocating fresh huge pages.
+ *
+ * We might race with alloc_surplus_huge_page() here and be unable
+ * to convert a surplus huge page to a normal huge page. That is
+ * not critical, though, it just means the overall size of the
+ * pool might be one hugepage larger than it needs to be, but
+ * within all the constraints specified by the sysctls.
+ */
+ while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
+ if (!adjust_pool_surplus(h, nodes_allowed, -1))
+ break;
+ }
+
+ while (count > persistent_huge_pages(h)) {
+ /*
+ * If this allocation races such that we no longer need the
+ * page, free_huge_page will handle it by freeing the page
+ * and reducing the surplus.
+ */
+ spin_unlock_irq(&hugetlb_lock);
+
+ /* yield cpu to avoid soft lockup */
+ cond_resched();
+
+ ret = alloc_pool_huge_page(h, nodes_allowed,
+ node_alloc_noretry);
+ spin_lock_irq(&hugetlb_lock);
+ if (!ret)
+ goto out;
+
+ /* Bail for signals. Probably ctrl-c from user */
+ if (signal_pending(current))
+ goto out;
+ }
+
+ /*
+ * Decrease the pool size
+ * First return free pages to the buddy allocator (being careful
+ * to keep enough around to satisfy reservations). Then place
+ * pages into surplus state as needed so the pool will shrink
+ * to the desired size as pages become free.
+ *
+ * By placing pages into the surplus state independent of the
+ * overcommit value, we are allowing the surplus pool size to
+ * exceed overcommit. There are few sane options here. Since
+ * alloc_surplus_huge_page() is checking the global counter,
+ * though, we'll note that we're not allowed to exceed surplus
+ * and won't grow the pool anywhere else. Not until one of the
+ * sysctls are changed, or the surplus pages go out of use.
+ */
+ min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
+ min_count = max(count, min_count);
+ try_to_free_low(h, min_count, nodes_allowed);
+
+ /*
+ * Collect pages to be removed on list without dropping lock
+ */
+ while (min_count < persistent_huge_pages(h)) {
+ page = remove_pool_huge_page(h, nodes_allowed, 0);
+ if (!page)
+ break;
+
+ list_add(&page->lru, &page_list);
+ }
+ /* free the pages after dropping lock */
+ spin_unlock_irq(&hugetlb_lock);
+ update_and_free_pages_bulk(h, &page_list);
+ flush_free_hpage_work(h);
+ spin_lock_irq(&hugetlb_lock);
+
+ while (count < persistent_huge_pages(h)) {
+ if (!adjust_pool_surplus(h, nodes_allowed, 1))
+ break;
+ }
+out:
+ h->max_huge_pages = persistent_huge_pages(h);
+ spin_unlock_irq(&hugetlb_lock);
+ mutex_unlock(&h->resize_lock);
+
+ NODEMASK_FREE(node_alloc_noretry);
+
+ return 0;
+}
+
+static int demote_free_huge_page(struct hstate *h, struct page *page)
+{
+ int i, nid = page_to_nid(page);
+ struct hstate *target_hstate;
+ struct page *subpage;
+ int rc = 0;
+
+ target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
+
+ remove_hugetlb_page_for_demote(h, page, false);
+ spin_unlock_irq(&hugetlb_lock);
+
+ rc = hugetlb_vmemmap_restore(h, page);
+ if (rc) {
+ /* Allocation of vmemmmap failed, we can not demote page */
+ spin_lock_irq(&hugetlb_lock);
+ set_page_refcounted(page);
+ add_hugetlb_page(h, page, false);
+ return rc;
+ }
+
+ /*
+ * Use destroy_compound_hugetlb_page_for_demote for all huge page
+ * sizes as it will not ref count pages.
+ */
+ destroy_compound_hugetlb_page_for_demote(page, huge_page_order(h));
+
+ /*
+ * Taking target hstate mutex synchronizes with set_max_huge_pages.
+ * Without the mutex, pages added to target hstate could be marked
+ * as surplus.
+ *
+ * Note that we already hold h->resize_lock. To prevent deadlock,
+ * use the convention of always taking larger size hstate mutex first.
+ */
+ mutex_lock(&target_hstate->resize_lock);
+ for (i = 0; i < pages_per_huge_page(h);
+ i += pages_per_huge_page(target_hstate)) {
+ subpage = nth_page(page, i);
+ if (hstate_is_gigantic(target_hstate))
+ prep_compound_gigantic_page_for_demote(subpage,
+ target_hstate->order);
+ else
+ prep_compound_page(subpage, target_hstate->order);
+ set_page_private(subpage, 0);
+ prep_new_huge_page(target_hstate, subpage, nid);
+ free_huge_page(subpage);
+ }
+ mutex_unlock(&target_hstate->resize_lock);
+
+ spin_lock_irq(&hugetlb_lock);
+
+ /*
+ * Not absolutely necessary, but for consistency update max_huge_pages
+ * based on pool changes for the demoted page.
+ */
+ h->max_huge_pages--;
+ target_hstate->max_huge_pages +=
+ pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
+
+ return rc;
+}
+
+static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
+ __must_hold(&hugetlb_lock)
+{
+ int nr_nodes, node;
+ struct page *page;
+
+ lockdep_assert_held(&hugetlb_lock);
+
+ /* We should never get here if no demote order */
+ if (!h->demote_order) {
+ pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
+ return -EINVAL; /* internal error */
+ }
+
+ for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
+ list_for_each_entry(page, &h->hugepage_freelists[node], lru) {
+ if (PageHWPoison(page))
+ continue;
+
+ return demote_free_huge_page(h, page);
+ }
+ }
+
+ /*
+ * Only way to get here is if all pages on free lists are poisoned.
+ * Return -EBUSY so that caller will not retry.
+ */
+ return -EBUSY;
+}
+
+#define HSTATE_ATTR_RO(_name) \
+ static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
+
+#define HSTATE_ATTR_WO(_name) \
+ static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
+
+#define HSTATE_ATTR(_name) \
+ static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
+
+static struct kobject *hugepages_kobj;
+static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
+
+static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
+
+static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
+{
+ int i;
+
+ for (i = 0; i < HUGE_MAX_HSTATE; i++)
+ if (hstate_kobjs[i] == kobj) {
+ if (nidp)
+ *nidp = NUMA_NO_NODE;
+ return &hstates[i];
+ }
+
+ return kobj_to_node_hstate(kobj, nidp);
+}
+
+static ssize_t nr_hugepages_show_common(struct kobject *kobj,
+ struct kobj_attribute *attr, char *buf)
+{
+ struct hstate *h;
+ unsigned long nr_huge_pages;
+ int nid;
+
+ h = kobj_to_hstate(kobj, &nid);
+ if (nid == NUMA_NO_NODE)
+ nr_huge_pages = h->nr_huge_pages;
+ else
+ nr_huge_pages = h->nr_huge_pages_node[nid];
+
+ return sysfs_emit(buf, "%lu\n", nr_huge_pages);
+}
+
+static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
+ struct hstate *h, int nid,
+ unsigned long count, size_t len)
+{
+ int err;
+ nodemask_t nodes_allowed, *n_mask;
+
+ if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
+ return -EINVAL;
+
+ if (nid == NUMA_NO_NODE) {
+ /*
+ * global hstate attribute
+ */
+ if (!(obey_mempolicy &&
+ init_nodemask_of_mempolicy(&nodes_allowed)))
+ n_mask = &node_states[N_MEMORY];
+ else
+ n_mask = &nodes_allowed;
+ } else {
+ /*
+ * Node specific request. count adjustment happens in
+ * set_max_huge_pages() after acquiring hugetlb_lock.
+ */
+ init_nodemask_of_node(&nodes_allowed, nid);
+ n_mask = &nodes_allowed;
+ }
+
+ err = set_max_huge_pages(h, count, nid, n_mask);
+
+ return err ? err : len;
+}
+
+static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
+ struct kobject *kobj, const char *buf,
+ size_t len)
+{
+ struct hstate *h;
+ unsigned long count;
+ int nid;
+ int err;
+
+ err = kstrtoul(buf, 10, &count);
+ if (err)
+ return err;
+
+ h = kobj_to_hstate(kobj, &nid);
+ return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
+}
+
+static ssize_t nr_hugepages_show(struct kobject *kobj,
+ struct kobj_attribute *attr, char *buf)
+{
+ return nr_hugepages_show_common(kobj, attr, buf);
+}
+
+static ssize_t nr_hugepages_store(struct kobject *kobj,
+ struct kobj_attribute *attr, const char *buf, size_t len)
+{
+ return nr_hugepages_store_common(false, kobj, buf, len);
+}
+HSTATE_ATTR(nr_hugepages);
+
+#ifdef CONFIG_NUMA
+
+/*
+ * hstate attribute for optionally mempolicy-based constraint on persistent
+ * huge page alloc/free.
+ */
+static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
+ struct kobj_attribute *attr,
+ char *buf)
+{
+ return nr_hugepages_show_common(kobj, attr, buf);
+}
+
+static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
+ struct kobj_attribute *attr, const char *buf, size_t len)
+{
+ return nr_hugepages_store_common(true, kobj, buf, len);
+}
+HSTATE_ATTR(nr_hugepages_mempolicy);
+#endif
+
+
+static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
+ struct kobj_attribute *attr, char *buf)
+{
+ struct hstate *h = kobj_to_hstate(kobj, NULL);
+ return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
+}
+
+static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
+ struct kobj_attribute *attr, const char *buf, size_t count)
+{
+ int err;
+ unsigned long input;
+ struct hstate *h = kobj_to_hstate(kobj, NULL);
+
+ if (hstate_is_gigantic(h))
+ return -EINVAL;
+
+ err = kstrtoul(buf, 10, &input);
+ if (err)
+ return err;
+
+ spin_lock_irq(&hugetlb_lock);
+ h->nr_overcommit_huge_pages = input;
+ spin_unlock_irq(&hugetlb_lock);
+
+ return count;
+}
+HSTATE_ATTR(nr_overcommit_hugepages);
+
+static ssize_t free_hugepages_show(struct kobject *kobj,
+ struct kobj_attribute *attr, char *buf)
+{
+ struct hstate *h;
+ unsigned long free_huge_pages;
+ int nid;
+
+ h = kobj_to_hstate(kobj, &nid);
+ if (nid == NUMA_NO_NODE)
+ free_huge_pages = h->free_huge_pages;
+ else
+ free_huge_pages = h->free_huge_pages_node[nid];
+
+ return sysfs_emit(buf, "%lu\n", free_huge_pages);
+}
+HSTATE_ATTR_RO(free_hugepages);
+
+static ssize_t resv_hugepages_show(struct kobject *kobj,
+ struct kobj_attribute *attr, char *buf)
+{
+ struct hstate *h = kobj_to_hstate(kobj, NULL);
+ return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
+}
+HSTATE_ATTR_RO(resv_hugepages);
+
+static ssize_t surplus_hugepages_show(struct kobject *kobj,
+ struct kobj_attribute *attr, char *buf)
+{
+ struct hstate *h;
+ unsigned long surplus_huge_pages;
+ int nid;
+
+ h = kobj_to_hstate(kobj, &nid);
+ if (nid == NUMA_NO_NODE)
+ surplus_huge_pages = h->surplus_huge_pages;
+ else
+ surplus_huge_pages = h->surplus_huge_pages_node[nid];
+
+ return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
+}
+HSTATE_ATTR_RO(surplus_hugepages);
+
+static ssize_t demote_store(struct kobject *kobj,
+ struct kobj_attribute *attr, const char *buf, size_t len)
+{
+ unsigned long nr_demote;
+ unsigned long nr_available;
+ nodemask_t nodes_allowed, *n_mask;
+ struct hstate *h;
+ int err;
+ int nid;
+
+ err = kstrtoul(buf, 10, &nr_demote);
+ if (err)
+ return err;
+ h = kobj_to_hstate(kobj, &nid);
+
+ if (nid != NUMA_NO_NODE) {
+ init_nodemask_of_node(&nodes_allowed, nid);
+ n_mask = &nodes_allowed;
+ } else {
+ n_mask = &node_states[N_MEMORY];
+ }
+
+ /* Synchronize with other sysfs operations modifying huge pages */
+ mutex_lock(&h->resize_lock);
+ spin_lock_irq(&hugetlb_lock);
+
+ while (nr_demote) {
+ /*
+ * Check for available pages to demote each time thorough the
+ * loop as demote_pool_huge_page will drop hugetlb_lock.
+ */
+ if (nid != NUMA_NO_NODE)
+ nr_available = h->free_huge_pages_node[nid];
+ else
+ nr_available = h->free_huge_pages;
+ nr_available -= h->resv_huge_pages;
+ if (!nr_available)
+ break;
+
+ err = demote_pool_huge_page(h, n_mask);
+ if (err)
+ break;
+
+ nr_demote--;
+ }
+
+ spin_unlock_irq(&hugetlb_lock);
+ mutex_unlock(&h->resize_lock);
+
+ if (err)
+ return err;
+ return len;
+}
+HSTATE_ATTR_WO(demote);
+
+static ssize_t demote_size_show(struct kobject *kobj,
+ struct kobj_attribute *attr, char *buf)
+{
+ struct hstate *h = kobj_to_hstate(kobj, NULL);
+ unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
+
+ return sysfs_emit(buf, "%lukB\n", demote_size);
+}
+
+static ssize_t demote_size_store(struct kobject *kobj,
+ struct kobj_attribute *attr,
+ const char *buf, size_t count)
+{
+ struct hstate *h, *demote_hstate;
+ unsigned long demote_size;
+ unsigned int demote_order;
+
+ demote_size = (unsigned long)memparse(buf, NULL);
+
+ demote_hstate = size_to_hstate(demote_size);
+ if (!demote_hstate)
+ return -EINVAL;
+ demote_order = demote_hstate->order;
+ if (demote_order < HUGETLB_PAGE_ORDER)
+ return -EINVAL;
+
+ /* demote order must be smaller than hstate order */
+ h = kobj_to_hstate(kobj, NULL);
+ if (demote_order >= h->order)
+ return -EINVAL;
+
+ /* resize_lock synchronizes access to demote size and writes */
+ mutex_lock(&h->resize_lock);
+ h->demote_order = demote_order;
+ mutex_unlock(&h->resize_lock);
+
+ return count;
+}
+HSTATE_ATTR(demote_size);
+
+static struct attribute *hstate_attrs[] = {
+ &nr_hugepages_attr.attr,
+ &nr_overcommit_hugepages_attr.attr,
+ &free_hugepages_attr.attr,
+ &resv_hugepages_attr.attr,
+ &surplus_hugepages_attr.attr,
+#ifdef CONFIG_NUMA
+ &nr_hugepages_mempolicy_attr.attr,
+#endif
+ NULL,
+};
+
+static const struct attribute_group hstate_attr_group = {
+ .attrs = hstate_attrs,
+};
+
+static struct attribute *hstate_demote_attrs[] = {
+ &demote_size_attr.attr,
+ &demote_attr.attr,
+ NULL,
+};
+
+static const struct attribute_group hstate_demote_attr_group = {
+ .attrs = hstate_demote_attrs,
+};
+
+static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
+ struct kobject **hstate_kobjs,
+ const struct attribute_group *hstate_attr_group)
+{
+ int retval;
+ int hi = hstate_index(h);
+
+ hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
+ if (!hstate_kobjs[hi])
+ return -ENOMEM;
+
+ retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
+ if (retval) {
+ kobject_put(hstate_kobjs[hi]);
+ hstate_kobjs[hi] = NULL;
+ return retval;
+ }
+
+ if (h->demote_order) {
+ retval = sysfs_create_group(hstate_kobjs[hi],
+ &hstate_demote_attr_group);
+ if (retval) {
+ pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
+ sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
+ kobject_put(hstate_kobjs[hi]);
+ hstate_kobjs[hi] = NULL;
+ return retval;
+ }
+ }
+
+ return 0;
+}
+
+#ifdef CONFIG_NUMA
+static bool hugetlb_sysfs_initialized __ro_after_init;
+
+/*
+ * node_hstate/s - associate per node hstate attributes, via their kobjects,
+ * with node devices in node_devices[] using a parallel array. The array
+ * index of a node device or _hstate == node id.
+ * This is here to avoid any static dependency of the node device driver, in
+ * the base kernel, on the hugetlb module.
+ */
+struct node_hstate {
+ struct kobject *hugepages_kobj;
+ struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
+};
+static struct node_hstate node_hstates[MAX_NUMNODES];
+
+/*
+ * A subset of global hstate attributes for node devices
+ */
+static struct attribute *per_node_hstate_attrs[] = {
+ &nr_hugepages_attr.attr,
+ &free_hugepages_attr.attr,
+ &surplus_hugepages_attr.attr,
+ NULL,
+};
+
+static const struct attribute_group per_node_hstate_attr_group = {
+ .attrs = per_node_hstate_attrs,
+};
+
+/*
+ * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
+ * Returns node id via non-NULL nidp.
+ */
+static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
+{
+ int nid;
+
+ for (nid = 0; nid < nr_node_ids; nid++) {
+ struct node_hstate *nhs = &node_hstates[nid];
+ int i;
+ for (i = 0; i < HUGE_MAX_HSTATE; i++)
+ if (nhs->hstate_kobjs[i] == kobj) {
+ if (nidp)
+ *nidp = nid;
+ return &hstates[i];
+ }
+ }
+
+ BUG();
+ return NULL;
+}
+
+/*
+ * Unregister hstate attributes from a single node device.
+ * No-op if no hstate attributes attached.
+ */
+void hugetlb_unregister_node(struct node *node)
+{
+ struct hstate *h;
+ struct node_hstate *nhs = &node_hstates[node->dev.id];
+
+ if (!nhs->hugepages_kobj)
+ return; /* no hstate attributes */
+
+ for_each_hstate(h) {
+ int idx = hstate_index(h);
+ struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
+
+ if (!hstate_kobj)
+ continue;
+ if (h->demote_order)
+ sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
+ sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
+ kobject_put(hstate_kobj);
+ nhs->hstate_kobjs[idx] = NULL;
+ }
+
+ kobject_put(nhs->hugepages_kobj);
+ nhs->hugepages_kobj = NULL;
+}
+
+
+/*
+ * Register hstate attributes for a single node device.
+ * No-op if attributes already registered.
+ */
+void hugetlb_register_node(struct node *node)
+{
+ struct hstate *h;
+ struct node_hstate *nhs = &node_hstates[node->dev.id];
+ int err;
+
+ if (!hugetlb_sysfs_initialized)
+ return;
+
+ if (nhs->hugepages_kobj)
+ return; /* already allocated */
+
+ nhs->hugepages_kobj = kobject_create_and_add("hugepages",
+ &node->dev.kobj);
+ if (!nhs->hugepages_kobj)
+ return;
+
+ for_each_hstate(h) {
+ err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
+ nhs->hstate_kobjs,
+ &per_node_hstate_attr_group);
+ if (err) {
+ pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
+ h->name, node->dev.id);
+ hugetlb_unregister_node(node);
+ break;
+ }
+ }
+}
+
+/*
+ * hugetlb init time: register hstate attributes for all registered node
+ * devices of nodes that have memory. All on-line nodes should have
+ * registered their associated device by this time.
+ */
+static void __init hugetlb_register_all_nodes(void)
+{
+ int nid;
+
+ for_each_online_node(nid)
+ hugetlb_register_node(node_devices[nid]);
+}
+#else /* !CONFIG_NUMA */
+
+static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
+{
+ BUG();
+ if (nidp)
+ *nidp = -1;
+ return NULL;
+}
+
+static void hugetlb_register_all_nodes(void) { }
+
+#endif
+
+#ifdef CONFIG_CMA
+static void __init hugetlb_cma_check(void);
+#else
+static inline __init void hugetlb_cma_check(void)
+{
+}
+#endif
+
+static void __init hugetlb_sysfs_init(void)
+{
+ struct hstate *h;
+ int err;
+
+ hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
+ if (!hugepages_kobj)
+ return;
+
+ for_each_hstate(h) {
+ err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
+ hstate_kobjs, &hstate_attr_group);
+ if (err)
+ pr_err("HugeTLB: Unable to add hstate %s", h->name);
+ }
+
+#ifdef CONFIG_NUMA
+ hugetlb_sysfs_initialized = true;
+#endif
+ hugetlb_register_all_nodes();
+}
+
+static int __init hugetlb_init(void)
+{
+ int i;
+
+ BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
+ __NR_HPAGEFLAGS);
+
+ if (!hugepages_supported()) {
+ if (hugetlb_max_hstate || default_hstate_max_huge_pages)
+ pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
+ return 0;
+ }
+
+ /*
+ * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
+ * architectures depend on setup being done here.
+ */
+ hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
+ if (!parsed_default_hugepagesz) {
+ /*
+ * If we did not parse a default huge page size, set
+ * default_hstate_idx to HPAGE_SIZE hstate. And, if the
+ * number of huge pages for this default size was implicitly
+ * specified, set that here as well.
+ * Note that the implicit setting will overwrite an explicit
+ * setting. A warning will be printed in this case.
+ */
+ default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
+ if (default_hstate_max_huge_pages) {
+ if (default_hstate.max_huge_pages) {
+ char buf[32];
+
+ string_get_size(huge_page_size(&default_hstate),
+ 1, STRING_UNITS_2, buf, 32);
+ pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
+ default_hstate.max_huge_pages, buf);
+ pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
+ default_hstate_max_huge_pages);
+ }
+ default_hstate.max_huge_pages =
+ default_hstate_max_huge_pages;
+
+ for_each_online_node(i)
+ default_hstate.max_huge_pages_node[i] =
+ default_hugepages_in_node[i];
+ }
+ }
+
+ hugetlb_cma_check();
+ hugetlb_init_hstates();
+ gather_bootmem_prealloc();
+ report_hugepages();
+
+ hugetlb_sysfs_init();
+ hugetlb_cgroup_file_init();
+
+#ifdef CONFIG_SMP
+ num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
+#else
+ num_fault_mutexes = 1;
+#endif
+ hugetlb_fault_mutex_table =
+ kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
+ GFP_KERNEL);
+ BUG_ON(!hugetlb_fault_mutex_table);
+
+ for (i = 0; i < num_fault_mutexes; i++)
+ mutex_init(&hugetlb_fault_mutex_table[i]);
+ return 0;
+}
+subsys_initcall(hugetlb_init);
+
+/* Overwritten by architectures with more huge page sizes */
+bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
+{
+ return size == HPAGE_SIZE;
+}
+
+void __init hugetlb_add_hstate(unsigned int order)
+{
+ struct hstate *h;
+ unsigned long i;
+
+ if (size_to_hstate(PAGE_SIZE << order)) {
+ return;
+ }
+ BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
+ BUG_ON(order == 0);
+ h = &hstates[hugetlb_max_hstate++];
+ mutex_init(&h->resize_lock);
+ h->order = order;
+ h->mask = ~(huge_page_size(h) - 1);
+ for (i = 0; i < MAX_NUMNODES; ++i)
+ INIT_LIST_HEAD(&h->hugepage_freelists[i]);
+ INIT_LIST_HEAD(&h->hugepage_activelist);
+ h->next_nid_to_alloc = first_memory_node;
+ h->next_nid_to_free = first_memory_node;
+ snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
+ huge_page_size(h)/SZ_1K);
+
+ parsed_hstate = h;
+}
+
+bool __init __weak hugetlb_node_alloc_supported(void)
+{
+ return true;
+}
+
+static void __init hugepages_clear_pages_in_node(void)
+{
+ if (!hugetlb_max_hstate) {
+ default_hstate_max_huge_pages = 0;
+ memset(default_hugepages_in_node, 0,
+ sizeof(default_hugepages_in_node));
+ } else {
+ parsed_hstate->max_huge_pages = 0;
+ memset(parsed_hstate->max_huge_pages_node, 0,
+ sizeof(parsed_hstate->max_huge_pages_node));
+ }
+}
+
+/*
+ * hugepages command line processing
+ * hugepages normally follows a valid hugepagsz or default_hugepagsz
+ * specification. If not, ignore the hugepages value. hugepages can also
+ * be the first huge page command line option in which case it implicitly
+ * specifies the number of huge pages for the default size.
+ */
+static int __init hugepages_setup(char *s)
+{
+ unsigned long *mhp;
+ static unsigned long *last_mhp;
+ int node = NUMA_NO_NODE;
+ int count;
+ unsigned long tmp;
+ char *p = s;
+
+ if (!parsed_valid_hugepagesz) {
+ pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
+ parsed_valid_hugepagesz = true;
+ return 1;
+ }
+
+ /*
+ * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
+ * yet, so this hugepages= parameter goes to the "default hstate".
+ * Otherwise, it goes with the previously parsed hugepagesz or
+ * default_hugepagesz.
+ */
+ else if (!hugetlb_max_hstate)
+ mhp = &default_hstate_max_huge_pages;
+ else
+ mhp = &parsed_hstate->max_huge_pages;
+
+ if (mhp == last_mhp) {
+ pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
+ return 1;
+ }
+
+ while (*p) {
+ count = 0;
+ if (sscanf(p, "%lu%n", &tmp, &count) != 1)
+ goto invalid;
+ /* Parameter is node format */
+ if (p[count] == ':') {
+ if (!hugetlb_node_alloc_supported()) {
+ pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
+ return 1;
+ }
+ if (tmp >= MAX_NUMNODES || !node_online(tmp))
+ goto invalid;
+ node = array_index_nospec(tmp, MAX_NUMNODES);
+ p += count + 1;
+ /* Parse hugepages */
+ if (sscanf(p, "%lu%n", &tmp, &count) != 1)
+ goto invalid;
+ if (!hugetlb_max_hstate)
+ default_hugepages_in_node[node] = tmp;
+ else
+ parsed_hstate->max_huge_pages_node[node] = tmp;
+ *mhp += tmp;
+ /* Go to parse next node*/
+ if (p[count] == ',')
+ p += count + 1;
+ else
+ break;
+ } else {
+ if (p != s)
+ goto invalid;
+ *mhp = tmp;
+ break;
+ }
+ }
+
+ /*
+ * Global state is always initialized later in hugetlb_init.
+ * But we need to allocate gigantic hstates here early to still
+ * use the bootmem allocator.
+ */
+ if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
+ hugetlb_hstate_alloc_pages(parsed_hstate);
+
+ last_mhp = mhp;
+
+ return 1;
+
+invalid:
+ pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
+ hugepages_clear_pages_in_node();
+ return 1;
+}
+__setup("hugepages=", hugepages_setup);
+
+/*
+ * hugepagesz command line processing
+ * A specific huge page size can only be specified once with hugepagesz.
+ * hugepagesz is followed by hugepages on the command line. The global
+ * variable 'parsed_valid_hugepagesz' is used to determine if prior
+ * hugepagesz argument was valid.
+ */
+static int __init hugepagesz_setup(char *s)
+{
+ unsigned long size;
+ struct hstate *h;
+
+ parsed_valid_hugepagesz = false;
+ size = (unsigned long)memparse(s, NULL);
+
+ if (!arch_hugetlb_valid_size(size)) {
+ pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
+ return 1;
+ }
+
+ h = size_to_hstate(size);
+ if (h) {
+ /*
+ * hstate for this size already exists. This is normally
+ * an error, but is allowed if the existing hstate is the
+ * default hstate. More specifically, it is only allowed if
+ * the number of huge pages for the default hstate was not
+ * previously specified.
+ */
+ if (!parsed_default_hugepagesz || h != &default_hstate ||
+ default_hstate.max_huge_pages) {
+ pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
+ return 1;
+ }
+
+ /*
+ * No need to call hugetlb_add_hstate() as hstate already
+ * exists. But, do set parsed_hstate so that a following
+ * hugepages= parameter will be applied to this hstate.
+ */
+ parsed_hstate = h;
+ parsed_valid_hugepagesz = true;
+ return 1;
+ }
+
+ hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
+ parsed_valid_hugepagesz = true;
+ return 1;
+}
+__setup("hugepagesz=", hugepagesz_setup);
+
+/*
+ * default_hugepagesz command line input
+ * Only one instance of default_hugepagesz allowed on command line.
+ */
+static int __init default_hugepagesz_setup(char *s)
+{
+ unsigned long size;
+ int i;
+
+ parsed_valid_hugepagesz = false;
+ if (parsed_default_hugepagesz) {
+ pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
+ return 1;
+ }
+
+ size = (unsigned long)memparse(s, NULL);
+
+ if (!arch_hugetlb_valid_size(size)) {
+ pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
+ return 1;
+ }
+
+ hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
+ parsed_valid_hugepagesz = true;
+ parsed_default_hugepagesz = true;
+ default_hstate_idx = hstate_index(size_to_hstate(size));
+
+ /*
+ * The number of default huge pages (for this size) could have been
+ * specified as the first hugetlb parameter: hugepages=X. If so,
+ * then default_hstate_max_huge_pages is set. If the default huge
+ * page size is gigantic (>= MAX_ORDER), then the pages must be
+ * allocated here from bootmem allocator.
+ */
+ if (default_hstate_max_huge_pages) {
+ default_hstate.max_huge_pages = default_hstate_max_huge_pages;
+ for_each_online_node(i)
+ default_hstate.max_huge_pages_node[i] =
+ default_hugepages_in_node[i];
+ if (hstate_is_gigantic(&default_hstate))
+ hugetlb_hstate_alloc_pages(&default_hstate);
+ default_hstate_max_huge_pages = 0;
+ }
+
+ return 1;
+}
+__setup("default_hugepagesz=", default_hugepagesz_setup);
+
+static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
+{
+#ifdef CONFIG_NUMA
+ struct mempolicy *mpol = get_task_policy(current);
+
+ /*
+ * Only enforce MPOL_BIND policy which overlaps with cpuset policy
+ * (from policy_nodemask) specifically for hugetlb case
+ */
+ if (mpol->mode == MPOL_BIND &&
+ (apply_policy_zone(mpol, gfp_zone(gfp)) &&
+ cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
+ return &mpol->nodes;
+#endif
+ return NULL;
+}
+
+static unsigned int allowed_mems_nr(struct hstate *h)
+{
+ int node;
+ unsigned int nr = 0;
+ nodemask_t *mbind_nodemask;
+ unsigned int *array = h->free_huge_pages_node;
+ gfp_t gfp_mask = htlb_alloc_mask(h);
+
+ mbind_nodemask = policy_mbind_nodemask(gfp_mask);
+ for_each_node_mask(node, cpuset_current_mems_allowed) {
+ if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
+ nr += array[node];
+ }
+
+ return nr;
+}
+
+#ifdef CONFIG_SYSCTL
+static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
+ void *buffer, size_t *length,
+ loff_t *ppos, unsigned long *out)
+{
+ struct ctl_table dup_table;
+
+ /*
+ * In order to avoid races with __do_proc_doulongvec_minmax(), we
+ * can duplicate the @table and alter the duplicate of it.
+ */
+ dup_table = *table;
+ dup_table.data = out;
+
+ return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
+}
+
+static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
+ struct ctl_table *table, int write,
+ void *buffer, size_t *length, loff_t *ppos)
+{
+ struct hstate *h = &default_hstate;
+ unsigned long tmp = h->max_huge_pages;
+ int ret;
+
+ if (!hugepages_supported())
+ return -EOPNOTSUPP;
+
+ ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
+ &tmp);
+ if (ret)
+ goto out;
+
+ if (write)
+ ret = __nr_hugepages_store_common(obey_mempolicy, h,
+ NUMA_NO_NODE, tmp, *length);
+out:
+ return ret;
+}
+
+int hugetlb_sysctl_handler(struct ctl_table *table, int write,
+ void *buffer, size_t *length, loff_t *ppos)
+{
+
+ return hugetlb_sysctl_handler_common(false, table, write,
+ buffer, length, ppos);
+}
+
+#ifdef CONFIG_NUMA
+int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
+ void *buffer, size_t *length, loff_t *ppos)
+{
+ return hugetlb_sysctl_handler_common(true, table, write,
+ buffer, length, ppos);
+}
+#endif /* CONFIG_NUMA */
+
+int hugetlb_overcommit_handler(struct ctl_table *table, int write,
+ void *buffer, size_t *length, loff_t *ppos)
+{
+ struct hstate *h = &default_hstate;
+ unsigned long tmp;
+ int ret;
+
+ if (!hugepages_supported())
+ return -EOPNOTSUPP;
+
+ tmp = h->nr_overcommit_huge_pages;
+
+ if (write && hstate_is_gigantic(h))
+ return -EINVAL;
+
+ ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
+ &tmp);
+ if (ret)
+ goto out;
+
+ if (write) {
+ spin_lock_irq(&hugetlb_lock);
+ h->nr_overcommit_huge_pages = tmp;
+ spin_unlock_irq(&hugetlb_lock);
+ }
+out:
+ return ret;
+}
+
+#endif /* CONFIG_SYSCTL */
+
+void hugetlb_report_meminfo(struct seq_file *m)
+{
+ struct hstate *h;
+ unsigned long total = 0;
+
+ if (!hugepages_supported())
+ return;
+
+ for_each_hstate(h) {
+ unsigned long count = h->nr_huge_pages;
+
+ total += huge_page_size(h) * count;
+
+ if (h == &default_hstate)
+ seq_printf(m,
+ "HugePages_Total: %5lu\n"
+ "HugePages_Free: %5lu\n"
+ "HugePages_Rsvd: %5lu\n"
+ "HugePages_Surp: %5lu\n"
+ "Hugepagesize: %8lu kB\n",
+ count,
+ h->free_huge_pages,
+ h->resv_huge_pages,
+ h->surplus_huge_pages,
+ huge_page_size(h) / SZ_1K);
+ }
+
+ seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K);
+}
+
+int hugetlb_report_node_meminfo(char *buf, int len, int nid)
+{
+ struct hstate *h = &default_hstate;
+
+ if (!hugepages_supported())
+ return 0;
+
+ return sysfs_emit_at(buf, len,
+ "Node %d HugePages_Total: %5u\n"
+ "Node %d HugePages_Free: %5u\n"
+ "Node %d HugePages_Surp: %5u\n",
+ nid, h->nr_huge_pages_node[nid],
+ nid, h->free_huge_pages_node[nid],
+ nid, h->surplus_huge_pages_node[nid]);
+}
+
+void hugetlb_show_meminfo_node(int nid)
+{
+ struct hstate *h;
+
+ if (!hugepages_supported())
+ return;
+
+ for_each_hstate(h)
+ printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
+ nid,
+ h->nr_huge_pages_node[nid],
+ h->free_huge_pages_node[nid],
+ h->surplus_huge_pages_node[nid],
+ huge_page_size(h) / SZ_1K);
+}
+
+void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
+{
+ seq_printf(m, "HugetlbPages:\t%8lu kB\n",
+ atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
+}
+
+/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
+unsigned long hugetlb_total_pages(void)
+{
+ struct hstate *h;
+ unsigned long nr_total_pages = 0;
+
+ for_each_hstate(h)
+ nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
+ return nr_total_pages;
+}
+
+static int hugetlb_acct_memory(struct hstate *h, long delta)
+{
+ int ret = -ENOMEM;
+
+ if (!delta)
+ return 0;
+
+ spin_lock_irq(&hugetlb_lock);
+ /*
+ * When cpuset is configured, it breaks the strict hugetlb page
+ * reservation as the accounting is done on a global variable. Such
+ * reservation is completely rubbish in the presence of cpuset because
+ * the reservation is not checked against page availability for the
+ * current cpuset. Application can still potentially OOM'ed by kernel
+ * with lack of free htlb page in cpuset that the task is in.
+ * Attempt to enforce strict accounting with cpuset is almost
+ * impossible (or too ugly) because cpuset is too fluid that
+ * task or memory node can be dynamically moved between cpusets.
+ *
+ * The change of semantics for shared hugetlb mapping with cpuset is
+ * undesirable. However, in order to preserve some of the semantics,
+ * we fall back to check against current free page availability as
+ * a best attempt and hopefully to minimize the impact of changing
+ * semantics that cpuset has.
+ *
+ * Apart from cpuset, we also have memory policy mechanism that
+ * also determines from which node the kernel will allocate memory
+ * in a NUMA system. So similar to cpuset, we also should consider
+ * the memory policy of the current task. Similar to the description
+ * above.
+ */
+ if (delta > 0) {
+ if (gather_surplus_pages(h, delta) < 0)
+ goto out;
+
+ if (delta > allowed_mems_nr(h)) {
+ return_unused_surplus_pages(h, delta);
+ goto out;
+ }
+ }
+
+ ret = 0;
+ if (delta < 0)
+ return_unused_surplus_pages(h, (unsigned long) -delta);
+
+out:
+ spin_unlock_irq(&hugetlb_lock);
+ return ret;
+}
+
+static void hugetlb_vm_op_open(struct vm_area_struct *vma)
+{
+ struct resv_map *resv = vma_resv_map(vma);
+
+ /*
+ * HPAGE_RESV_OWNER indicates a private mapping.
+ * This new VMA should share its siblings reservation map if present.
+ * The VMA will only ever have a valid reservation map pointer where
+ * it is being copied for another still existing VMA. As that VMA
+ * has a reference to the reservation map it cannot disappear until
+ * after this open call completes. It is therefore safe to take a
+ * new reference here without additional locking.
+ */
+ if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
+ resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
+ kref_get(&resv->refs);
+ }
+
+ /*
+ * vma_lock structure for sharable mappings is vma specific.
+ * Clear old pointer (if copied via vm_area_dup) and allocate
+ * new structure. Before clearing, make sure vma_lock is not
+ * for this vma.
+ */
+ if (vma->vm_flags & VM_MAYSHARE) {
+ struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
+
+ if (vma_lock) {
+ if (vma_lock->vma != vma) {
+ vma->vm_private_data = NULL;
+ hugetlb_vma_lock_alloc(vma);
+ } else
+ pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
+ } else
+ hugetlb_vma_lock_alloc(vma);
+ }
+}
+
+static void hugetlb_vm_op_close(struct vm_area_struct *vma)
+{
+ struct hstate *h = hstate_vma(vma);
+ struct resv_map *resv;
+ struct hugepage_subpool *spool = subpool_vma(vma);
+ unsigned long reserve, start, end;
+ long gbl_reserve;
+
+ hugetlb_vma_lock_free(vma);
+
+ resv = vma_resv_map(vma);
+ if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
+ return;
+
+ start = vma_hugecache_offset(h, vma, vma->vm_start);
+ end = vma_hugecache_offset(h, vma, vma->vm_end);
+
+ reserve = (end - start) - region_count(resv, start, end);
+ hugetlb_cgroup_uncharge_counter(resv, start, end);
+ if (reserve) {
+ /*
+ * Decrement reserve counts. The global reserve count may be
+ * adjusted if the subpool has a minimum size.
+ */
+ gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
+ hugetlb_acct_memory(h, -gbl_reserve);
+ }
+
+ kref_put(&resv->refs, resv_map_release);
+}
+
+static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
+{
+ if (addr & ~(huge_page_mask(hstate_vma(vma))))
+ return -EINVAL;
+
+ /*
+ * PMD sharing is only possible for PUD_SIZE-aligned address ranges
+ * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
+ * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
+ */
+ if (addr & ~PUD_MASK) {
+ /*
+ * hugetlb_vm_op_split is called right before we attempt to
+ * split the VMA. We will need to unshare PMDs in the old and
+ * new VMAs, so let's unshare before we split.
+ */
+ unsigned long floor = addr & PUD_MASK;
+ unsigned long ceil = floor + PUD_SIZE;
+
+ if (floor >= vma->vm_start && ceil <= vma->vm_end)
+ hugetlb_unshare_pmds(vma, floor, ceil);
+ }
+
+ return 0;
+}
+
+static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
+{
+ return huge_page_size(hstate_vma(vma));
+}
+
+/*
+ * We cannot handle pagefaults against hugetlb pages at all. They cause
+ * handle_mm_fault() to try to instantiate regular-sized pages in the
+ * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get
+ * this far.
+ */
+static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
+{
+ BUG();
+ return 0;
+}
+
+/*
+ * When a new function is introduced to vm_operations_struct and added
+ * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
+ * This is because under System V memory model, mappings created via
+ * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
+ * their original vm_ops are overwritten with shm_vm_ops.
+ */
+const struct vm_operations_struct hugetlb_vm_ops = {
+ .fault = hugetlb_vm_op_fault,
+ .open = hugetlb_vm_op_open,
+ .close = hugetlb_vm_op_close,
+ .may_split = hugetlb_vm_op_split,
+ .pagesize = hugetlb_vm_op_pagesize,
+};
+
+static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
+ int writable)
+{
+ pte_t entry;
+ unsigned int shift = huge_page_shift(hstate_vma(vma));
+
+ if (writable) {
+ entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
+ vma->vm_page_prot)));
+ } else {
+ entry = huge_pte_wrprotect(mk_huge_pte(page,
+ vma->vm_page_prot));
+ }
+ entry = pte_mkyoung(entry);
+ entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
+
+ return entry;
+}
+
+static void set_huge_ptep_writable(struct vm_area_struct *vma,
+ unsigned long address, pte_t *ptep)
+{
+ pte_t entry;
+
+ entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
+ if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
+ update_mmu_cache(vma, address, ptep);
+}
+
+bool is_hugetlb_entry_migration(pte_t pte)
+{
+ swp_entry_t swp;
+
+ if (huge_pte_none(pte) || pte_present(pte))
+ return false;
+ swp = pte_to_swp_entry(pte);
+ if (is_migration_entry(swp))
+ return true;
+ else
+ return false;
+}
+
+static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
+{
+ swp_entry_t swp;
+
+ if (huge_pte_none(pte) || pte_present(pte))
+ return false;
+ swp = pte_to_swp_entry(pte);
+ if (is_hwpoison_entry(swp))
+ return true;
+ else
+ return false;
+}
+
+static void
+hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
+ struct page *new_page)
+{
+ __SetPageUptodate(new_page);
+ hugepage_add_new_anon_rmap(new_page, vma, addr);
+ set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
+ hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
+ ClearHPageRestoreReserve(new_page);
+ SetHPageMigratable(new_page);
+}
+
+int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
+ struct vm_area_struct *dst_vma,
+ struct vm_area_struct *src_vma)
+{
+ pte_t *src_pte, *dst_pte, entry;
+ struct page *ptepage;
+ unsigned long addr;
+ bool cow = is_cow_mapping(src_vma->vm_flags);
+ struct hstate *h = hstate_vma(src_vma);
+ unsigned long sz = huge_page_size(h);
+ unsigned long npages = pages_per_huge_page(h);
+ struct mmu_notifier_range range;
+ unsigned long last_addr_mask;
+ int ret = 0;
+
+ if (cow) {
+ mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src_vma, src,
+ src_vma->vm_start,
+ src_vma->vm_end);
+ mmu_notifier_invalidate_range_start(&range);
+ mmap_assert_write_locked(src);
+ raw_write_seqcount_begin(&src->write_protect_seq);
+ } else {
+ /*
+ * For shared mappings the vma lock must be held before
+ * calling huge_pte_offset in the src vma. Otherwise, the
+ * returned ptep could go away if part of a shared pmd and
+ * another thread calls huge_pmd_unshare.
+ */
+ hugetlb_vma_lock_read(src_vma);
+ }
+
+ last_addr_mask = hugetlb_mask_last_page(h);
+ for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
+ spinlock_t *src_ptl, *dst_ptl;
+ src_pte = huge_pte_offset(src, addr, sz);
+ if (!src_pte) {
+ addr |= last_addr_mask;
+ continue;
+ }
+ dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
+ if (!dst_pte) {
+ ret = -ENOMEM;
+ break;
+ }
+
+ /*
+ * If the pagetables are shared don't copy or take references.
+ *
+ * dst_pte == src_pte is the common case of src/dest sharing.
+ * However, src could have 'unshared' and dst shares with
+ * another vma. So page_count of ptep page is checked instead
+ * to reliably determine whether pte is shared.
+ */
+ if (page_count(virt_to_page(dst_pte)) > 1) {
+ addr |= last_addr_mask;
+ continue;
+ }
+
+ dst_ptl = huge_pte_lock(h, dst, dst_pte);
+ src_ptl = huge_pte_lockptr(h, src, src_pte);
+ spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
+ entry = huge_ptep_get(src_pte);
+again:
+ if (huge_pte_none(entry)) {
+ /*
+ * Skip if src entry none.
+ */
+ ;
+ } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
+ bool uffd_wp = huge_pte_uffd_wp(entry);
+
+ if (!userfaultfd_wp(dst_vma) && uffd_wp)
+ entry = huge_pte_clear_uffd_wp(entry);
+ set_huge_pte_at(dst, addr, dst_pte, entry);
+ } else if (unlikely(is_hugetlb_entry_migration(entry))) {
+ swp_entry_t swp_entry = pte_to_swp_entry(entry);
+ bool uffd_wp = huge_pte_uffd_wp(entry);
+
+ if (!is_readable_migration_entry(swp_entry) && cow) {
+ /*
+ * COW mappings require pages in both
+ * parent and child to be set to read.
+ */
+ swp_entry = make_readable_migration_entry(
+ swp_offset(swp_entry));
+ entry = swp_entry_to_pte(swp_entry);
+ if (userfaultfd_wp(src_vma) && uffd_wp)
+ entry = huge_pte_mkuffd_wp(entry);
+ set_huge_pte_at(src, addr, src_pte, entry);
+ }
+ if (!userfaultfd_wp(dst_vma) && uffd_wp)
+ entry = huge_pte_clear_uffd_wp(entry);
+ set_huge_pte_at(dst, addr, dst_pte, entry);
+ } else if (unlikely(is_pte_marker(entry))) {
+ /*
+ * We copy the pte marker only if the dst vma has
+ * uffd-wp enabled.
+ */
+ if (userfaultfd_wp(dst_vma))
+ set_huge_pte_at(dst, addr, dst_pte, entry);
+ } else {
+ entry = huge_ptep_get(src_pte);
+ ptepage = pte_page(entry);
+ get_page(ptepage);
+
+ /*
+ * Failing to duplicate the anon rmap is a rare case
+ * where we see pinned hugetlb pages while they're
+ * prone to COW. We need to do the COW earlier during
+ * fork.
+ *
+ * When pre-allocating the page or copying data, we
+ * need to be without the pgtable locks since we could
+ * sleep during the process.
+ */
+ if (!PageAnon(ptepage)) {
+ page_dup_file_rmap(ptepage, true);
+ } else if (page_try_dup_anon_rmap(ptepage, true,
+ src_vma)) {
+ pte_t src_pte_old = entry;
+ struct page *new;
+
+ spin_unlock(src_ptl);
+ spin_unlock(dst_ptl);
+ /* Do not use reserve as it's private owned */
+ new = alloc_huge_page(dst_vma, addr, 1);
+ if (IS_ERR(new)) {
+ put_page(ptepage);
+ ret = PTR_ERR(new);
+ break;
+ }
+ copy_user_huge_page(new, ptepage, addr, dst_vma,
+ npages);
+ put_page(ptepage);
+
+ /* Install the new huge page if src pte stable */
+ dst_ptl = huge_pte_lock(h, dst, dst_pte);
+ src_ptl = huge_pte_lockptr(h, src, src_pte);
+ spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
+ entry = huge_ptep_get(src_pte);
+ if (!pte_same(src_pte_old, entry)) {
+ restore_reserve_on_error(h, dst_vma, addr,
+ new);
+ put_page(new);
+ /* huge_ptep of dst_pte won't change as in child */
+ goto again;
+ }
+ hugetlb_install_page(dst_vma, dst_pte, addr, new);
+ spin_unlock(src_ptl);
+ spin_unlock(dst_ptl);
+ continue;
+ }
+
+ if (cow) {
+ /*
+ * No need to notify as we are downgrading page
+ * table protection not changing it to point
+ * to a new page.
+ *
+ * See Documentation/mm/mmu_notifier.rst
+ */
+ huge_ptep_set_wrprotect(src, addr, src_pte);
+ entry = huge_pte_wrprotect(entry);
+ }
+
+ set_huge_pte_at(dst, addr, dst_pte, entry);
+ hugetlb_count_add(npages, dst);
+ }
+ spin_unlock(src_ptl);
+ spin_unlock(dst_ptl);
+ }
+
+ if (cow) {
+ raw_write_seqcount_end(&src->write_protect_seq);
+ mmu_notifier_invalidate_range_end(&range);
+ } else {
+ hugetlb_vma_unlock_read(src_vma);
+ }
+
+ return ret;
+}
+
+static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
+ unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte)
+{
+ struct hstate *h = hstate_vma(vma);
+ struct mm_struct *mm = vma->vm_mm;
+ spinlock_t *src_ptl, *dst_ptl;
+ pte_t pte;
+
+ dst_ptl = huge_pte_lock(h, mm, dst_pte);
+ src_ptl = huge_pte_lockptr(h, mm, src_pte);
+
+ /*
+ * We don't have to worry about the ordering of src and dst ptlocks
+ * because exclusive mmap_sem (or the i_mmap_lock) prevents deadlock.
+ */
+ if (src_ptl != dst_ptl)
+ spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
+
+ pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
+ set_huge_pte_at(mm, new_addr, dst_pte, pte);
+
+ if (src_ptl != dst_ptl)
+ spin_unlock(src_ptl);
+ spin_unlock(dst_ptl);
+}
+
+int move_hugetlb_page_tables(struct vm_area_struct *vma,
+ struct vm_area_struct *new_vma,
+ unsigned long old_addr, unsigned long new_addr,
+ unsigned long len)
+{
+ struct hstate *h = hstate_vma(vma);
+ struct address_space *mapping = vma->vm_file->f_mapping;
+ unsigned long sz = huge_page_size(h);
+ struct mm_struct *mm = vma->vm_mm;
+ unsigned long old_end = old_addr + len;
+ unsigned long last_addr_mask;
+ pte_t *src_pte, *dst_pte;
+ struct mmu_notifier_range range;
+ bool shared_pmd = false;
+
+ mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, old_addr,
+ old_end);
+ adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
+ /*
+ * In case of shared PMDs, we should cover the maximum possible
+ * range.
+ */
+ flush_cache_range(vma, range.start, range.end);
+
+ mmu_notifier_invalidate_range_start(&range);
+ last_addr_mask = hugetlb_mask_last_page(h);
+ /* Prevent race with file truncation */
+ hugetlb_vma_lock_write(vma);
+ i_mmap_lock_write(mapping);
+ for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
+ src_pte = huge_pte_offset(mm, old_addr, sz);
+ if (!src_pte) {
+ old_addr |= last_addr_mask;
+ new_addr |= last_addr_mask;
+ continue;
+ }
+ if (huge_pte_none(huge_ptep_get(src_pte)))
+ continue;
+
+ if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
+ shared_pmd = true;
+ old_addr |= last_addr_mask;
+ new_addr |= last_addr_mask;
+ continue;
+ }
+
+ dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
+ if (!dst_pte)
+ break;
+
+ move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte);
+ }
+
+ if (shared_pmd)
+ flush_tlb_range(vma, range.start, range.end);
+ else
+ flush_tlb_range(vma, old_end - len, old_end);
+ mmu_notifier_invalidate_range_end(&range);
+ i_mmap_unlock_write(mapping);
+ hugetlb_vma_unlock_write(vma);
+
+ return len + old_addr - old_end;
+}
+
+static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
+ unsigned long start, unsigned long end,
+ struct page *ref_page, zap_flags_t zap_flags)
+{
+ struct mm_struct *mm = vma->vm_mm;
+ unsigned long address;
+ pte_t *ptep;
+ pte_t pte;
+ spinlock_t *ptl;
+ struct page *page;
+ struct hstate *h = hstate_vma(vma);
+ unsigned long sz = huge_page_size(h);
+ struct mmu_notifier_range range;
+ unsigned long last_addr_mask;
+ bool force_flush = false;
+
+ WARN_ON(!is_vm_hugetlb_page(vma));
+ BUG_ON(start & ~huge_page_mask(h));
+ BUG_ON(end & ~huge_page_mask(h));
+
+ /*
+ * This is a hugetlb vma, all the pte entries should point
+ * to huge page.
+ */
+ tlb_change_page_size(tlb, sz);
+ tlb_start_vma(tlb, vma);
+
+ /*
+ * If sharing possible, alert mmu notifiers of worst case.
+ */
+ mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
+ end);
+ adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
+ mmu_notifier_invalidate_range_start(&range);
+ last_addr_mask = hugetlb_mask_last_page(h);
+ address = start;
+ for (; address < end; address += sz) {
+ ptep = huge_pte_offset(mm, address, sz);
+ if (!ptep) {
+ address |= last_addr_mask;
+ continue;
+ }
+
+ ptl = huge_pte_lock(h, mm, ptep);
+ if (huge_pmd_unshare(mm, vma, address, ptep)) {
+ spin_unlock(ptl);
+ tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
+ force_flush = true;
+ address |= last_addr_mask;
+ continue;
+ }
+
+ pte = huge_ptep_get(ptep);
+ if (huge_pte_none(pte)) {
+ spin_unlock(ptl);
+ continue;
+ }
+
+ /*
+ * Migrating hugepage or HWPoisoned hugepage is already
+ * unmapped and its refcount is dropped, so just clear pte here.
+ */
+ if (unlikely(!pte_present(pte))) {
+#ifdef CONFIG_PTE_MARKER_UFFD_WP
+ /*
+ * If the pte was wr-protected by uffd-wp in any of the
+ * swap forms, meanwhile the caller does not want to
+ * drop the uffd-wp bit in this zap, then replace the
+ * pte with a marker.
+ */
+ if (pte_swp_uffd_wp_any(pte) &&
+ !(zap_flags & ZAP_FLAG_DROP_MARKER))
+ set_huge_pte_at(mm, address, ptep,
+ make_pte_marker(PTE_MARKER_UFFD_WP));
+ else
+#endif
+ huge_pte_clear(mm, address, ptep, sz);
+ spin_unlock(ptl);
+ continue;
+ }
+
+ page = pte_page(pte);
+ /*
+ * If a reference page is supplied, it is because a specific
+ * page is being unmapped, not a range. Ensure the page we
+ * are about to unmap is the actual page of interest.
+ */
+ if (ref_page) {
+ if (page != ref_page) {
+ spin_unlock(ptl);
+ continue;
+ }
+ /*
+ * Mark the VMA as having unmapped its page so that
+ * future faults in this VMA will fail rather than
+ * looking like data was lost
+ */
+ set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
+ }
+
+ pte = huge_ptep_get_and_clear(mm, address, ptep);
+ tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
+ if (huge_pte_dirty(pte))
+ set_page_dirty(page);
+#ifdef CONFIG_PTE_MARKER_UFFD_WP
+ /* Leave a uffd-wp pte marker if needed */
+ if (huge_pte_uffd_wp(pte) &&
+ !(zap_flags & ZAP_FLAG_DROP_MARKER))
+ set_huge_pte_at(mm, address, ptep,
+ make_pte_marker(PTE_MARKER_UFFD_WP));
+#endif
+ hugetlb_count_sub(pages_per_huge_page(h), mm);
+ page_remove_rmap(page, vma, true);
+
+ spin_unlock(ptl);
+ tlb_remove_page_size(tlb, page, huge_page_size(h));
+ /*
+ * Bail out after unmapping reference page if supplied
+ */
+ if (ref_page)
+ break;
+ }
+ mmu_notifier_invalidate_range_end(&range);
+ tlb_end_vma(tlb, vma);
+
+ /*
+ * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
+ * could defer the flush until now, since by holding i_mmap_rwsem we
+ * guaranteed that the last refernece would not be dropped. But we must
+ * do the flushing before we return, as otherwise i_mmap_rwsem will be
+ * dropped and the last reference to the shared PMDs page might be
+ * dropped as well.
+ *
+ * In theory we could defer the freeing of the PMD pages as well, but
+ * huge_pmd_unshare() relies on the exact page_count for the PMD page to
+ * detect sharing, so we cannot defer the release of the page either.
+ * Instead, do flush now.
+ */
+ if (force_flush)
+ tlb_flush_mmu_tlbonly(tlb);
+}
+
+void __unmap_hugepage_range_final(struct mmu_gather *tlb,
+ struct vm_area_struct *vma, unsigned long start,
+ unsigned long end, struct page *ref_page,
+ zap_flags_t zap_flags)
+{
+ hugetlb_vma_lock_write(vma);
+ i_mmap_lock_write(vma->vm_file->f_mapping);
+
+ __unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags);
+
+ if (zap_flags & ZAP_FLAG_UNMAP) { /* final unmap */
+ /*
+ * Unlock and free the vma lock before releasing i_mmap_rwsem.
+ * When the vma_lock is freed, this makes the vma ineligible
+ * for pmd sharing. And, i_mmap_rwsem is required to set up
+ * pmd sharing. This is important as page tables for this
+ * unmapped range will be asynchrously deleted. If the page
+ * tables are shared, there will be issues when accessed by
+ * someone else.
+ */
+ __hugetlb_vma_unlock_write_free(vma);
+ i_mmap_unlock_write(vma->vm_file->f_mapping);
+ } else {
+ i_mmap_unlock_write(vma->vm_file->f_mapping);
+ hugetlb_vma_unlock_write(vma);
+ }
+}
+
+void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
+ unsigned long end, struct page *ref_page,
+ zap_flags_t zap_flags)
+{
+ struct mmu_gather tlb;
+
+ tlb_gather_mmu(&tlb, vma->vm_mm);
+ __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
+ tlb_finish_mmu(&tlb);
+}
+
+/*
+ * This is called when the original mapper is failing to COW a MAP_PRIVATE
+ * mapping it owns the reserve page for. The intention is to unmap the page
+ * from other VMAs and let the children be SIGKILLed if they are faulting the
+ * same region.
+ */
+static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
+ struct page *page, unsigned long address)
+{
+ struct hstate *h = hstate_vma(vma);
+ struct vm_area_struct *iter_vma;
+ struct address_space *mapping;
+ pgoff_t pgoff;
+
+ /*
+ * vm_pgoff is in PAGE_SIZE units, hence the different calculation
+ * from page cache lookup which is in HPAGE_SIZE units.
+ */
+ address = address & huge_page_mask(h);
+ pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
+ vma->vm_pgoff;
+ mapping = vma->vm_file->f_mapping;
+
+ /*
+ * Take the mapping lock for the duration of the table walk. As
+ * this mapping should be shared between all the VMAs,
+ * __unmap_hugepage_range() is called as the lock is already held
+ */
+ i_mmap_lock_write(mapping);
+ vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
+ /* Do not unmap the current VMA */
+ if (iter_vma == vma)
+ continue;
+
+ /*
+ * Shared VMAs have their own reserves and do not affect
+ * MAP_PRIVATE accounting but it is possible that a shared
+ * VMA is using the same page so check and skip such VMAs.
+ */
+ if (iter_vma->vm_flags & VM_MAYSHARE)
+ continue;
+
+ /*
+ * Unmap the page from other VMAs without their own reserves.
+ * They get marked to be SIGKILLed if they fault in these
+ * areas. This is because a future no-page fault on this VMA
+ * could insert a zeroed page instead of the data existing
+ * from the time of fork. This would look like data corruption
+ */
+ if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
+ unmap_hugepage_range(iter_vma, address,
+ address + huge_page_size(h), page, 0);
+ }
+ i_mmap_unlock_write(mapping);
+}
+
+/*
+ * hugetlb_wp() should be called with page lock of the original hugepage held.
+ * Called with hugetlb_fault_mutex_table held and pte_page locked so we
+ * cannot race with other handlers or page migration.
+ * Keep the pte_same checks anyway to make transition from the mutex easier.
+ */
+static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
+ unsigned long address, pte_t *ptep, unsigned int flags,
+ struct page *pagecache_page, spinlock_t *ptl)
+{
+ const bool unshare = flags & FAULT_FLAG_UNSHARE;
+ pte_t pte = huge_ptep_get(ptep);
+ struct hstate *h = hstate_vma(vma);
+ struct page *old_page, *new_page;
+ int outside_reserve = 0;
+ vm_fault_t ret = 0;
+ unsigned long haddr = address & huge_page_mask(h);
+ struct mmu_notifier_range range;
+
+ VM_BUG_ON(unshare && (flags & FOLL_WRITE));
+ VM_BUG_ON(!unshare && !(flags & FOLL_WRITE));
+
+ /*
+ * Never handle CoW for uffd-wp protected pages. It should be only
+ * handled when the uffd-wp protection is removed.
+ *
+ * Note that only the CoW optimization path (in hugetlb_no_page())
+ * can trigger this, because hugetlb_fault() will always resolve
+ * uffd-wp bit first.
+ */
+ if (!unshare && huge_pte_uffd_wp(pte))
+ return 0;
+
+ /*
+ * hugetlb does not support FOLL_FORCE-style write faults that keep the
+ * PTE mapped R/O such as maybe_mkwrite() would do.
+ */
+ if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
+ return VM_FAULT_SIGSEGV;
+
+ /* Let's take out MAP_SHARED mappings first. */
+ if (vma->vm_flags & VM_MAYSHARE) {
+ if (unlikely(unshare))
+ return 0;
+ set_huge_ptep_writable(vma, haddr, ptep);
+ return 0;
+ }
+
+ old_page = pte_page(pte);
+
+ delayacct_wpcopy_start();
+
+retry_avoidcopy:
+ /*
+ * If no-one else is actually using this page, we're the exclusive
+ * owner and can reuse this page.
+ */
+ if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
+ if (!PageAnonExclusive(old_page))
+ page_move_anon_rmap(old_page, vma);
+ if (likely(!unshare))
+ set_huge_ptep_writable(vma, haddr, ptep);
+
+ delayacct_wpcopy_end();
+ return 0;
+ }
+ VM_BUG_ON_PAGE(PageAnon(old_page) && PageAnonExclusive(old_page),
+ old_page);
+
+ /*
+ * If the process that created a MAP_PRIVATE mapping is about to
+ * perform a COW due to a shared page count, attempt to satisfy
+ * the allocation without using the existing reserves. The pagecache
+ * page is used to determine if the reserve at this address was
+ * consumed or not. If reserves were used, a partial faulted mapping
+ * at the time of fork() could consume its reserves on COW instead
+ * of the full address range.
+ */
+ if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
+ old_page != pagecache_page)
+ outside_reserve = 1;
+
+ get_page(old_page);
+
+ /*
+ * Drop page table lock as buddy allocator may be called. It will
+ * be acquired again before returning to the caller, as expected.
+ */
+ spin_unlock(ptl);
+ new_page = alloc_huge_page(vma, haddr, outside_reserve);
+
+ if (IS_ERR(new_page)) {
+ /*
+ * If a process owning a MAP_PRIVATE mapping fails to COW,
+ * it is due to references held by a child and an insufficient
+ * huge page pool. To guarantee the original mappers
+ * reliability, unmap the page from child processes. The child
+ * may get SIGKILLed if it later faults.
+ */
+ if (outside_reserve) {
+ struct address_space *mapping = vma->vm_file->f_mapping;
+ pgoff_t idx;
+ u32 hash;
+
+ put_page(old_page);
+ /*
+ * Drop hugetlb_fault_mutex and vma_lock before
+ * unmapping. unmapping needs to hold vma_lock
+ * in write mode. Dropping vma_lock in read mode
+ * here is OK as COW mappings do not interact with
+ * PMD sharing.
+ *
+ * Reacquire both after unmap operation.
+ */
+ idx = vma_hugecache_offset(h, vma, haddr);
+ hash = hugetlb_fault_mutex_hash(mapping, idx);
+ hugetlb_vma_unlock_read(vma);
+ mutex_unlock(&hugetlb_fault_mutex_table[hash]);
+
+ unmap_ref_private(mm, vma, old_page, haddr);
+
+ mutex_lock(&hugetlb_fault_mutex_table[hash]);
+ hugetlb_vma_lock_read(vma);
+ spin_lock(ptl);
+ ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
+ if (likely(ptep &&
+ pte_same(huge_ptep_get(ptep), pte)))
+ goto retry_avoidcopy;
+ /*
+ * race occurs while re-acquiring page table
+ * lock, and our job is done.
+ */
+ delayacct_wpcopy_end();
+ return 0;
+ }
+
+ ret = vmf_error(PTR_ERR(new_page));
+ goto out_release_old;
+ }
+
+ /*
+ * When the original hugepage is shared one, it does not have
+ * anon_vma prepared.
+ */
+ if (unlikely(anon_vma_prepare(vma))) {
+ ret = VM_FAULT_OOM;
+ goto out_release_all;
+ }
+
+ copy_user_huge_page(new_page, old_page, address, vma,
+ pages_per_huge_page(h));
+ __SetPageUptodate(new_page);
+
+ mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
+ haddr + huge_page_size(h));
+ mmu_notifier_invalidate_range_start(&range);
+
+ /*
+ * Retake the page table lock to check for racing updates
+ * before the page tables are altered
+ */
+ spin_lock(ptl);
+ ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
+ if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
+ ClearHPageRestoreReserve(new_page);
+
+ /* Break COW or unshare */
+ huge_ptep_clear_flush(vma, haddr, ptep);
+ mmu_notifier_invalidate_range(mm, range.start, range.end);
+ page_remove_rmap(old_page, vma, true);
+ hugepage_add_new_anon_rmap(new_page, vma, haddr);
+ set_huge_pte_at(mm, haddr, ptep,
+ make_huge_pte(vma, new_page, !unshare));
+ SetHPageMigratable(new_page);
+ /* Make the old page be freed below */
+ new_page = old_page;
+ }
+ spin_unlock(ptl);
+ mmu_notifier_invalidate_range_end(&range);
+out_release_all:
+ /*
+ * No restore in case of successful pagetable update (Break COW or
+ * unshare)
+ */
+ if (new_page != old_page)
+ restore_reserve_on_error(h, vma, haddr, new_page);
+ put_page(new_page);
+out_release_old:
+ put_page(old_page);
+
+ spin_lock(ptl); /* Caller expects lock to be held */
+
+ delayacct_wpcopy_end();
+ return ret;
+}
+
+/*
+ * Return whether there is a pagecache page to back given address within VMA.
+ * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
+ */
+static bool hugetlbfs_pagecache_present(struct hstate *h,
+ struct vm_area_struct *vma, unsigned long address)
+{
+ struct address_space *mapping;
+ pgoff_t idx;
+ struct page *page;
+
+ mapping = vma->vm_file->f_mapping;
+ idx = vma_hugecache_offset(h, vma, address);
+
+ page = find_get_page(mapping, idx);
+ if (page)
+ put_page(page);
+ return page != NULL;
+}
+
+int hugetlb_add_to_page_cache(struct page *page, struct address_space *mapping,
+ pgoff_t idx)
+{
+ struct folio *folio = page_folio(page);
+ struct inode *inode = mapping->host;
+ struct hstate *h = hstate_inode(inode);
+ int err;
+
+ __folio_set_locked(folio);
+ err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
+
+ if (unlikely(err)) {
+ __folio_clear_locked(folio);
+ return err;
+ }
+ ClearHPageRestoreReserve(page);
+
+ /*
+ * mark folio dirty so that it will not be removed from cache/file
+ * by non-hugetlbfs specific code paths.
+ */
+ folio_mark_dirty(folio);
+
+ spin_lock(&inode->i_lock);
+ inode->i_blocks += blocks_per_huge_page(h);
+ spin_unlock(&inode->i_lock);
+ return 0;
+}
+
+static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
+ struct address_space *mapping,
+ pgoff_t idx,
+ unsigned int flags,
+ unsigned long haddr,
+ unsigned long addr,
+ unsigned long reason)
+{
+ u32 hash;
+ struct vm_fault vmf = {
+ .vma = vma,
+ .address = haddr,
+ .real_address = addr,
+ .flags = flags,
+
+ /*
+ * Hard to debug if it ends up being
+ * used by a callee that assumes
+ * something about the other
+ * uninitialized fields... same as in
+ * memory.c
+ */
+ };
+
+ /*
+ * vma_lock and hugetlb_fault_mutex must be dropped before handling
+ * userfault. Also mmap_lock could be dropped due to handling
+ * userfault, any vma operation should be careful from here.
+ */
+ hugetlb_vma_unlock_read(vma);
+ hash = hugetlb_fault_mutex_hash(mapping, idx);
+ mutex_unlock(&hugetlb_fault_mutex_table[hash]);
+ return handle_userfault(&vmf, reason);
+}
+
+/*
+ * Recheck pte with pgtable lock. Returns true if pte didn't change, or
+ * false if pte changed or is changing.
+ */
+static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
+ pte_t *ptep, pte_t old_pte)
+{
+ spinlock_t *ptl;
+ bool same;
+
+ ptl = huge_pte_lock(h, mm, ptep);
+ same = pte_same(huge_ptep_get(ptep), old_pte);
+ spin_unlock(ptl);
+
+ return same;
+}
+
+static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
+ struct vm_area_struct *vma,
+ struct address_space *mapping, pgoff_t idx,
+ unsigned long address, pte_t *ptep,
+ pte_t old_pte, unsigned int flags)
+{
+ struct hstate *h = hstate_vma(vma);
+ vm_fault_t ret = VM_FAULT_SIGBUS;
+ int anon_rmap = 0;
+ unsigned long size;
+ struct page *page;
+ pte_t new_pte;
+ spinlock_t *ptl;
+ unsigned long haddr = address & huge_page_mask(h);
+ bool new_page, new_pagecache_page = false;
+ u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
+
+ /*
+ * Currently, we are forced to kill the process in the event the
+ * original mapper has unmapped pages from the child due to a failed
+ * COW/unsharing. Warn that such a situation has occurred as it may not
+ * be obvious.
+ */
+ if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
+ pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
+ current->pid);
+ goto out;
+ }
+
+ /*
+ * Use page lock to guard against racing truncation
+ * before we get page_table_lock.
+ */
+ new_page = false;
+ page = find_lock_page(mapping, idx);
+ if (!page) {
+ size = i_size_read(mapping->host) >> huge_page_shift(h);
+ if (idx >= size)
+ goto out;
+ /* Check for page in userfault range */
+ if (userfaultfd_missing(vma)) {
+ /*
+ * Since hugetlb_no_page() was examining pte
+ * without pgtable lock, we need to re-test under
+ * lock because the pte may not be stable and could
+ * have changed from under us. Try to detect
+ * either changed or during-changing ptes and retry
+ * properly when needed.
+ *
+ * Note that userfaultfd is actually fine with
+ * false positives (e.g. caused by pte changed),
+ * but not wrong logical events (e.g. caused by
+ * reading a pte during changing). The latter can
+ * confuse the userspace, so the strictness is very
+ * much preferred. E.g., MISSING event should
+ * never happen on the page after UFFDIO_COPY has
+ * correctly installed the page and returned.
+ */
+ if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
+ ret = 0;
+ goto out;
+ }
+
+ return hugetlb_handle_userfault(vma, mapping, idx, flags,
+ haddr, address,
+ VM_UFFD_MISSING);
+ }
+
+ page = alloc_huge_page(vma, haddr, 0);
+ if (IS_ERR(page)) {
+ /*
+ * Returning error will result in faulting task being
+ * sent SIGBUS. The hugetlb fault mutex prevents two
+ * tasks from racing to fault in the same page which
+ * could result in false unable to allocate errors.
+ * Page migration does not take the fault mutex, but
+ * does a clear then write of pte's under page table
+ * lock. Page fault code could race with migration,
+ * notice the clear pte and try to allocate a page
+ * here. Before returning error, get ptl and make
+ * sure there really is no pte entry.
+ */
+ if (hugetlb_pte_stable(h, mm, ptep, old_pte))
+ ret = vmf_error(PTR_ERR(page));
+ else
+ ret = 0;
+ goto out;
+ }
+ clear_huge_page(page, address, pages_per_huge_page(h));
+ __SetPageUptodate(page);
+ new_page = true;
+
+ if (vma->vm_flags & VM_MAYSHARE) {
+ int err = hugetlb_add_to_page_cache(page, mapping, idx);
+ if (err) {
+ /*
+ * err can't be -EEXIST which implies someone
+ * else consumed the reservation since hugetlb
+ * fault mutex is held when add a hugetlb page
+ * to the page cache. So it's safe to call
+ * restore_reserve_on_error() here.
+ */
+ restore_reserve_on_error(h, vma, haddr, page);
+ put_page(page);
+ goto out;
+ }
+ new_pagecache_page = true;
+ } else {
+ lock_page(page);
+ if (unlikely(anon_vma_prepare(vma))) {
+ ret = VM_FAULT_OOM;
+ goto backout_unlocked;
+ }
+ anon_rmap = 1;
+ }
+ } else {
+ /*
+ * If memory error occurs between mmap() and fault, some process
+ * don't have hwpoisoned swap entry for errored virtual address.
+ * So we need to block hugepage fault by PG_hwpoison bit check.
+ */
+ if (unlikely(PageHWPoison(page))) {
+ ret = VM_FAULT_HWPOISON_LARGE |
+ VM_FAULT_SET_HINDEX(hstate_index(h));
+ goto backout_unlocked;
+ }
+
+ /* Check for page in userfault range. */
+ if (userfaultfd_minor(vma)) {
+ unlock_page(page);
+ put_page(page);
+ /* See comment in userfaultfd_missing() block above */
+ if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
+ ret = 0;
+ goto out;
+ }
+ return hugetlb_handle_userfault(vma, mapping, idx, flags,
+ haddr, address,
+ VM_UFFD_MINOR);
+ }
+ }
+
+ /*
+ * If we are going to COW a private mapping later, we examine the
+ * pending reservations for this page now. This will ensure that
+ * any allocations necessary to record that reservation occur outside
+ * the spinlock.
+ */
+ if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
+ if (vma_needs_reservation(h, vma, haddr) < 0) {
+ ret = VM_FAULT_OOM;
+ goto backout_unlocked;
+ }
+ /* Just decrements count, does not deallocate */
+ vma_end_reservation(h, vma, haddr);
+ }
+
+ ptl = huge_pte_lock(h, mm, ptep);
+ ret = 0;
+ /* If pte changed from under us, retry */
+ if (!pte_same(huge_ptep_get(ptep), old_pte))
+ goto backout;
+
+ if (anon_rmap) {
+ ClearHPageRestoreReserve(page);
+ hugepage_add_new_anon_rmap(page, vma, haddr);
+ } else
+ page_dup_file_rmap(page, true);
+ new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
+ && (vma->vm_flags & VM_SHARED)));
+ /*
+ * If this pte was previously wr-protected, keep it wr-protected even
+ * if populated.
+ */
+ if (unlikely(pte_marker_uffd_wp(old_pte)))
+ new_pte = huge_pte_wrprotect(huge_pte_mkuffd_wp(new_pte));
+ set_huge_pte_at(mm, haddr, ptep, new_pte);
+
+ hugetlb_count_add(pages_per_huge_page(h), mm);
+ if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
+ /* Optimization, do the COW without a second fault */
+ ret = hugetlb_wp(mm, vma, address, ptep, flags, page, ptl);
+ }
+
+ spin_unlock(ptl);
+
+ /*
+ * Only set HPageMigratable in newly allocated pages. Existing pages
+ * found in the pagecache may not have HPageMigratableset if they have
+ * been isolated for migration.
+ */
+ if (new_page)
+ SetHPageMigratable(page);
+
+ unlock_page(page);
+out:
+ hugetlb_vma_unlock_read(vma);
+ mutex_unlock(&hugetlb_fault_mutex_table[hash]);
+ return ret;
+
+backout:
+ spin_unlock(ptl);
+backout_unlocked:
+ if (new_page && !new_pagecache_page)
+ restore_reserve_on_error(h, vma, haddr, page);
+
+ unlock_page(page);
+ put_page(page);
+ goto out;
+}
+
+#ifdef CONFIG_SMP
+u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
+{
+ unsigned long key[2];
+ u32 hash;
+
+ key[0] = (unsigned long) mapping;
+ key[1] = idx;
+
+ hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
+
+ return hash & (num_fault_mutexes - 1);
+}
+#else
+/*
+ * For uniprocessor systems we always use a single mutex, so just
+ * return 0 and avoid the hashing overhead.
+ */
+u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
+{
+ return 0;
+}
+#endif
+
+vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
+ unsigned long address, unsigned int flags)
+{
+ pte_t *ptep, entry;
+ spinlock_t *ptl;
+ vm_fault_t ret;
+ u32 hash;
+ pgoff_t idx;
+ struct page *page = NULL;
+ struct page *pagecache_page = NULL;
+ struct hstate *h = hstate_vma(vma);
+ struct address_space *mapping;
+ int need_wait_lock = 0;
+ unsigned long haddr = address & huge_page_mask(h);
+
+ ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
+ if (ptep) {
+ /*
+ * Since we hold no locks, ptep could be stale. That is
+ * OK as we are only making decisions based on content and
+ * not actually modifying content here.
+ */
+ entry = huge_ptep_get(ptep);
+ if (unlikely(is_hugetlb_entry_migration(entry))) {
+ migration_entry_wait_huge(vma, ptep);
+ return 0;
+ } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
+ return VM_FAULT_HWPOISON_LARGE |
+ VM_FAULT_SET_HINDEX(hstate_index(h));
+ }
+
+ /*
+ * Serialize hugepage allocation and instantiation, so that we don't
+ * get spurious allocation failures if two CPUs race to instantiate
+ * the same page in the page cache.
+ */
+ mapping = vma->vm_file->f_mapping;
+ idx = vma_hugecache_offset(h, vma, haddr);
+ hash = hugetlb_fault_mutex_hash(mapping, idx);
+ mutex_lock(&hugetlb_fault_mutex_table[hash]);
+
+ /*
+ * Acquire vma lock before calling huge_pte_alloc and hold
+ * until finished with ptep. This prevents huge_pmd_unshare from
+ * being called elsewhere and making the ptep no longer valid.
+ *
+ * ptep could have already be assigned via huge_pte_offset. That
+ * is OK, as huge_pte_alloc will return the same value unless
+ * something has changed.
+ */
+ hugetlb_vma_lock_read(vma);
+ ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
+ if (!ptep) {
+ hugetlb_vma_unlock_read(vma);
+ mutex_unlock(&hugetlb_fault_mutex_table[hash]);
+ return VM_FAULT_OOM;
+ }
+
+ entry = huge_ptep_get(ptep);
+ /* PTE markers should be handled the same way as none pte */
+ if (huge_pte_none_mostly(entry))
+ /*
+ * hugetlb_no_page will drop vma lock and hugetlb fault
+ * mutex internally, which make us return immediately.
+ */
+ return hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
+ entry, flags);
+
+ ret = 0;
+
+ /*
+ * entry could be a migration/hwpoison entry at this point, so this
+ * check prevents the kernel from going below assuming that we have
+ * an active hugepage in pagecache. This goto expects the 2nd page
+ * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
+ * properly handle it.
+ */
+ if (!pte_present(entry))
+ goto out_mutex;
+
+ /*
+ * If we are going to COW/unshare the mapping later, we examine the
+ * pending reservations for this page now. This will ensure that any
+ * allocations necessary to record that reservation occur outside the
+ * spinlock. Also lookup the pagecache page now as it is used to
+ * determine if a reservation has been consumed.
+ */
+ if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
+ !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
+ if (vma_needs_reservation(h, vma, haddr) < 0) {
+ ret = VM_FAULT_OOM;
+ goto out_mutex;
+ }
+ /* Just decrements count, does not deallocate */
+ vma_end_reservation(h, vma, haddr);
+
+ pagecache_page = find_lock_page(mapping, idx);
+ }
+
+ ptl = huge_pte_lock(h, mm, ptep);
+
+ /* Check for a racing update before calling hugetlb_wp() */
+ if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
+ goto out_ptl;
+
+ /* Handle userfault-wp first, before trying to lock more pages */
+ if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
+ (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
+ struct vm_fault vmf = {
+ .vma = vma,
+ .address = haddr,
+ .real_address = address,
+ .flags = flags,
+ };
+
+ spin_unlock(ptl);
+ if (pagecache_page) {
+ unlock_page(pagecache_page);
+ put_page(pagecache_page);
+ }
+ hugetlb_vma_unlock_read(vma);
+ mutex_unlock(&hugetlb_fault_mutex_table[hash]);
+ return handle_userfault(&vmf, VM_UFFD_WP);
+ }
+
+ /*
+ * hugetlb_wp() requires page locks of pte_page(entry) and
+ * pagecache_page, so here we need take the former one
+ * when page != pagecache_page or !pagecache_page.
+ */
+ page = pte_page(entry);
+ if (page != pagecache_page)
+ if (!trylock_page(page)) {
+ need_wait_lock = 1;
+ goto out_ptl;
+ }
+
+ get_page(page);
+
+ if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
+ if (!huge_pte_write(entry)) {
+ ret = hugetlb_wp(mm, vma, address, ptep, flags,
+ pagecache_page, ptl);
+ goto out_put_page;
+ } else if (likely(flags & FAULT_FLAG_WRITE)) {
+ entry = huge_pte_mkdirty(entry);
+ }
+ }
+ entry = pte_mkyoung(entry);
+ if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
+ flags & FAULT_FLAG_WRITE))
+ update_mmu_cache(vma, haddr, ptep);
+out_put_page:
+ if (page != pagecache_page)
+ unlock_page(page);
+ put_page(page);
+out_ptl:
+ spin_unlock(ptl);
+
+ if (pagecache_page) {
+ unlock_page(pagecache_page);
+ put_page(pagecache_page);
+ }
+out_mutex:
+ hugetlb_vma_unlock_read(vma);
+ mutex_unlock(&hugetlb_fault_mutex_table[hash]);
+ /*
+ * Generally it's safe to hold refcount during waiting page lock. But
+ * here we just wait to defer the next page fault to avoid busy loop and
+ * the page is not used after unlocked before returning from the current
+ * page fault. So we are safe from accessing freed page, even if we wait
+ * here without taking refcount.
+ */
+ if (need_wait_lock)
+ wait_on_page_locked(page);
+ return ret;
+}
+
+#ifdef CONFIG_USERFAULTFD
+/*
+ * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
+ * modifications for huge pages.
+ */
+int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
+ pte_t *dst_pte,
+ struct vm_area_struct *dst_vma,
+ unsigned long dst_addr,
+ unsigned long src_addr,
+ enum mcopy_atomic_mode mode,
+ struct page **pagep,
+ bool wp_copy)
+{
+ bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
+ struct hstate *h = hstate_vma(dst_vma);
+ struct address_space *mapping = dst_vma->vm_file->f_mapping;
+ pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
+ unsigned long size;
+ int vm_shared = dst_vma->vm_flags & VM_SHARED;
+ pte_t _dst_pte;
+ spinlock_t *ptl;
+ int ret = -ENOMEM;
+ struct page *page;
+ int writable;
+ bool page_in_pagecache = false;
+
+ if (is_continue) {
+ ret = -EFAULT;
+ page = find_lock_page(mapping, idx);
+ if (!page)
+ goto out;
+ page_in_pagecache = true;
+ } else if (!*pagep) {
+ /* If a page already exists, then it's UFFDIO_COPY for
+ * a non-missing case. Return -EEXIST.
+ */
+ if (vm_shared &&
+ hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
+ ret = -EEXIST;
+ goto out;
+ }
+
+ page = alloc_huge_page(dst_vma, dst_addr, 0);
+ if (IS_ERR(page)) {
+ ret = -ENOMEM;
+ goto out;
+ }
+
+ ret = copy_huge_page_from_user(page,
+ (const void __user *) src_addr,
+ pages_per_huge_page(h), false);
+
+ /* fallback to copy_from_user outside mmap_lock */
+ if (unlikely(ret)) {
+ ret = -ENOENT;
+ /* Free the allocated page which may have
+ * consumed a reservation.
+ */
+ restore_reserve_on_error(h, dst_vma, dst_addr, page);
+ put_page(page);
+
+ /* Allocate a temporary page to hold the copied
+ * contents.
+ */
+ page = alloc_huge_page_vma(h, dst_vma, dst_addr);
+ if (!page) {
+ ret = -ENOMEM;
+ goto out;
+ }
+ *pagep = page;
+ /* Set the outparam pagep and return to the caller to
+ * copy the contents outside the lock. Don't free the
+ * page.
+ */
+ goto out;
+ }
+ } else {
+ if (vm_shared &&
+ hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
+ put_page(*pagep);
+ ret = -EEXIST;
+ *pagep = NULL;
+ goto out;
+ }
+
+ page = alloc_huge_page(dst_vma, dst_addr, 0);
+ if (IS_ERR(page)) {
+ put_page(*pagep);
+ ret = -ENOMEM;
+ *pagep = NULL;
+ goto out;
+ }
+ copy_user_huge_page(page, *pagep, dst_addr, dst_vma,
+ pages_per_huge_page(h));
+ put_page(*pagep);
+ *pagep = NULL;
+ }
+
+ /*
+ * The memory barrier inside __SetPageUptodate makes sure that
+ * preceding stores to the page contents become visible before
+ * the set_pte_at() write.
+ */
+ __SetPageUptodate(page);
+
+ /* Add shared, newly allocated pages to the page cache. */
+ if (vm_shared && !is_continue) {
+ size = i_size_read(mapping->host) >> huge_page_shift(h);
+ ret = -EFAULT;
+ if (idx >= size)
+ goto out_release_nounlock;
+
+ /*
+ * Serialization between remove_inode_hugepages() and
+ * hugetlb_add_to_page_cache() below happens through the
+ * hugetlb_fault_mutex_table that here must be hold by
+ * the caller.
+ */
+ ret = hugetlb_add_to_page_cache(page, mapping, idx);
+ if (ret)
+ goto out_release_nounlock;
+ page_in_pagecache = true;
+ }
+
+ ptl = huge_pte_lock(h, dst_mm, dst_pte);
+
+ ret = -EIO;
+ if (PageHWPoison(page))
+ goto out_release_unlock;
+
+ /*
+ * We allow to overwrite a pte marker: consider when both MISSING|WP
+ * registered, we firstly wr-protect a none pte which has no page cache
+ * page backing it, then access the page.
+ */
+ ret = -EEXIST;
+ if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
+ goto out_release_unlock;
+
+ if (page_in_pagecache) {
+ page_dup_file_rmap(page, true);
+ } else {
+ ClearHPageRestoreReserve(page);
+ hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
+ }
+
+ /*
+ * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
+ * with wp flag set, don't set pte write bit.
+ */
+ if (wp_copy || (is_continue && !vm_shared))
+ writable = 0;
+ else
+ writable = dst_vma->vm_flags & VM_WRITE;
+
+ _dst_pte = make_huge_pte(dst_vma, page, writable);
+ /*
+ * Always mark UFFDIO_COPY page dirty; note that this may not be
+ * extremely important for hugetlbfs for now since swapping is not
+ * supported, but we should still be clear in that this page cannot be
+ * thrown away at will, even if write bit not set.
+ */
+ _dst_pte = huge_pte_mkdirty(_dst_pte);
+ _dst_pte = pte_mkyoung(_dst_pte);
+
+ if (wp_copy)
+ _dst_pte = huge_pte_mkuffd_wp(_dst_pte);
+
+ set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
+
+ hugetlb_count_add(pages_per_huge_page(h), dst_mm);
+
+ /* No need to invalidate - it was non-present before */
+ update_mmu_cache(dst_vma, dst_addr, dst_pte);
+
+ spin_unlock(ptl);
+ if (!is_continue)
+ SetHPageMigratable(page);
+ if (vm_shared || is_continue)
+ unlock_page(page);
+ ret = 0;
+out:
+ return ret;
+out_release_unlock:
+ spin_unlock(ptl);
+ if (vm_shared || is_continue)
+ unlock_page(page);
+out_release_nounlock:
+ if (!page_in_pagecache)
+ restore_reserve_on_error(h, dst_vma, dst_addr, page);
+ put_page(page);
+ goto out;
+}
+#endif /* CONFIG_USERFAULTFD */
+
+static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
+ int refs, struct page **pages,
+ struct vm_area_struct **vmas)
+{
+ int nr;
+
+ for (nr = 0; nr < refs; nr++) {
+ if (likely(pages))
+ pages[nr] = nth_page(page, nr);
+ if (vmas)
+ vmas[nr] = vma;
+ }
+}
+
+static inline bool __follow_hugetlb_must_fault(unsigned int flags, pte_t *pte,
+ bool *unshare)
+{
+ pte_t pteval = huge_ptep_get(pte);
+
+ *unshare = false;
+ if (is_swap_pte(pteval))
+ return true;
+ if (huge_pte_write(pteval))
+ return false;
+ if (flags & FOLL_WRITE)
+ return true;
+ if (gup_must_unshare(flags, pte_page(pteval))) {
+ *unshare = true;
+ return true;
+ }
+ return false;
+}
+
+long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
+ struct page **pages, struct vm_area_struct **vmas,
+ unsigned long *position, unsigned long *nr_pages,
+ long i, unsigned int flags, int *locked)
+{
+ unsigned long pfn_offset;
+ unsigned long vaddr = *position;
+ unsigned long remainder = *nr_pages;
+ struct hstate *h = hstate_vma(vma);
+ int err = -EFAULT, refs;
+
+ while (vaddr < vma->vm_end && remainder) {
+ pte_t *pte;
+ spinlock_t *ptl = NULL;
+ bool unshare = false;
+ int absent;
+ struct page *page;
+
+ /*
+ * If we have a pending SIGKILL, don't keep faulting pages and
+ * potentially allocating memory.
+ */
+ if (fatal_signal_pending(current)) {
+ remainder = 0;
+ break;
+ }
+
+ /*
+ * Some archs (sparc64, sh*) have multiple pte_ts to
+ * each hugepage. We have to make sure we get the
+ * first, for the page indexing below to work.
+ *
+ * Note that page table lock is not held when pte is null.
+ */
+ pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
+ huge_page_size(h));
+ if (pte)
+ ptl = huge_pte_lock(h, mm, pte);
+ absent = !pte || huge_pte_none(huge_ptep_get(pte));
+
+ /*
+ * When coredumping, it suits get_dump_page if we just return
+ * an error where there's an empty slot with no huge pagecache
+ * to back it. This way, we avoid allocating a hugepage, and
+ * the sparse dumpfile avoids allocating disk blocks, but its
+ * huge holes still show up with zeroes where they need to be.
+ */
+ if (absent && (flags & FOLL_DUMP) &&
+ !hugetlbfs_pagecache_present(h, vma, vaddr)) {
+ if (pte)
+ spin_unlock(ptl);
+ remainder = 0;
+ break;
+ }
+
+ /*
+ * We need call hugetlb_fault for both hugepages under migration
+ * (in which case hugetlb_fault waits for the migration,) and
+ * hwpoisoned hugepages (in which case we need to prevent the
+ * caller from accessing to them.) In order to do this, we use
+ * here is_swap_pte instead of is_hugetlb_entry_migration and
+ * is_hugetlb_entry_hwpoisoned. This is because it simply covers
+ * both cases, and because we can't follow correct pages
+ * directly from any kind of swap entries.
+ */
+ if (absent ||
+ __follow_hugetlb_must_fault(flags, pte, &unshare)) {
+ vm_fault_t ret;
+ unsigned int fault_flags = 0;
+
+ if (pte)
+ spin_unlock(ptl);
+ if (flags & FOLL_WRITE)
+ fault_flags |= FAULT_FLAG_WRITE;
+ else if (unshare)
+ fault_flags |= FAULT_FLAG_UNSHARE;
+ if (locked)
+ fault_flags |= FAULT_FLAG_ALLOW_RETRY |
+ FAULT_FLAG_KILLABLE;
+ if (flags & FOLL_NOWAIT)
+ fault_flags |= FAULT_FLAG_ALLOW_RETRY |
+ FAULT_FLAG_RETRY_NOWAIT;
+ if (flags & FOLL_TRIED) {
+ /*
+ * Note: FAULT_FLAG_ALLOW_RETRY and
+ * FAULT_FLAG_TRIED can co-exist
+ */
+ fault_flags |= FAULT_FLAG_TRIED;
+ }
+ ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
+ if (ret & VM_FAULT_ERROR) {
+ err = vm_fault_to_errno(ret, flags);
+ remainder = 0;
+ break;
+ }
+ if (ret & VM_FAULT_RETRY) {
+ if (locked &&
+ !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
+ *locked = 0;
+ *nr_pages = 0;
+ /*
+ * VM_FAULT_RETRY must not return an
+ * error, it will return zero
+ * instead.
+ *
+ * No need to update "position" as the
+ * caller will not check it after
+ * *nr_pages is set to 0.
+ */
+ return i;
+ }
+ continue;
+ }
+
+ pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
+ page = pte_page(huge_ptep_get(pte));
+
+ VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
+ !PageAnonExclusive(page), page);
+
+ /*
+ * If subpage information not requested, update counters
+ * and skip the same_page loop below.
+ */
+ if (!pages && !vmas && !pfn_offset &&
+ (vaddr + huge_page_size(h) < vma->vm_end) &&
+ (remainder >= pages_per_huge_page(h))) {
+ vaddr += huge_page_size(h);
+ remainder -= pages_per_huge_page(h);
+ i += pages_per_huge_page(h);
+ spin_unlock(ptl);
+ continue;
+ }
+
+ /* vaddr may not be aligned to PAGE_SIZE */
+ refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
+ (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
+
+ if (pages || vmas)
+ record_subpages_vmas(nth_page(page, pfn_offset),
+ vma, refs,
+ likely(pages) ? pages + i : NULL,
+ vmas ? vmas + i : NULL);
+
+ if (pages) {
+ /*
+ * try_grab_folio() should always succeed here,
+ * because: a) we hold the ptl lock, and b) we've just
+ * checked that the huge page is present in the page
+ * tables. If the huge page is present, then the tail
+ * pages must also be present. The ptl prevents the
+ * head page and tail pages from being rearranged in
+ * any way. So this page must be available at this
+ * point, unless the page refcount overflowed:
+ */
+ if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs,
+ flags))) {
+ spin_unlock(ptl);
+ remainder = 0;
+ err = -ENOMEM;
+ break;
+ }
+ }
+
+ vaddr += (refs << PAGE_SHIFT);
+ remainder -= refs;
+ i += refs;
+
+ spin_unlock(ptl);
+ }
+ *nr_pages = remainder;
+ /*
+ * setting position is actually required only if remainder is
+ * not zero but it's faster not to add a "if (remainder)"
+ * branch.
+ */
+ *position = vaddr;
+
+ return i ? i : err;
+}
+
+unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
+ unsigned long address, unsigned long end,
+ pgprot_t newprot, unsigned long cp_flags)
+{
+ struct mm_struct *mm = vma->vm_mm;
+ unsigned long start = address;
+ pte_t *ptep;
+ pte_t pte;
+ struct hstate *h = hstate_vma(vma);
+ unsigned long pages = 0, psize = huge_page_size(h);
+ bool shared_pmd = false;
+ struct mmu_notifier_range range;
+ unsigned long last_addr_mask;
+ bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
+ bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
+
+ /*
+ * In the case of shared PMDs, the area to flush could be beyond
+ * start/end. Set range.start/range.end to cover the maximum possible
+ * range if PMD sharing is possible.
+ */
+ mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
+ 0, vma, mm, start, end);
+ adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
+
+ BUG_ON(address >= end);
+ flush_cache_range(vma, range.start, range.end);
+
+ mmu_notifier_invalidate_range_start(&range);
+ hugetlb_vma_lock_write(vma);
+ i_mmap_lock_write(vma->vm_file->f_mapping);
+ last_addr_mask = hugetlb_mask_last_page(h);
+ for (; address < end; address += psize) {
+ spinlock_t *ptl;
+ ptep = huge_pte_offset(mm, address, psize);
+ if (!ptep) {
+ if (!uffd_wp) {
+ address |= last_addr_mask;
+ continue;
+ }
+ /*
+ * Userfaultfd wr-protect requires pgtable
+ * pre-allocations to install pte markers.
+ */
+ ptep = huge_pte_alloc(mm, vma, address, psize);
+ if (!ptep)
+ break;
+ }
+ ptl = huge_pte_lock(h, mm, ptep);
+ if (huge_pmd_unshare(mm, vma, address, ptep)) {
+ /*
+ * When uffd-wp is enabled on the vma, unshare
+ * shouldn't happen at all. Warn about it if it
+ * happened due to some reason.
+ */
+ WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
+ pages++;
+ spin_unlock(ptl);
+ shared_pmd = true;
+ address |= last_addr_mask;
+ continue;
+ }
+ pte = huge_ptep_get(ptep);
+ if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
+ /* Nothing to do. */
+ } else if (unlikely(is_hugetlb_entry_migration(pte))) {
+ swp_entry_t entry = pte_to_swp_entry(pte);
+ struct page *page = pfn_swap_entry_to_page(entry);
+ pte_t newpte = pte;
+
+ if (is_writable_migration_entry(entry)) {
+ if (PageAnon(page))
+ entry = make_readable_exclusive_migration_entry(
+ swp_offset(entry));
+ else
+ entry = make_readable_migration_entry(
+ swp_offset(entry));
+ newpte = swp_entry_to_pte(entry);
+ pages++;
+ }
+
+ if (uffd_wp)
+ newpte = pte_swp_mkuffd_wp(newpte);
+ else if (uffd_wp_resolve)
+ newpte = pte_swp_clear_uffd_wp(newpte);
+ if (!pte_same(pte, newpte))
+ set_huge_pte_at(mm, address, ptep, newpte);
+ } else if (unlikely(is_pte_marker(pte))) {
+ /* No other markers apply for now. */
+ WARN_ON_ONCE(!pte_marker_uffd_wp(pte));
+ if (uffd_wp_resolve)
+ /* Safe to modify directly (non-present->none). */
+ huge_pte_clear(mm, address, ptep, psize);
+ } else if (!huge_pte_none(pte)) {
+ pte_t old_pte;
+ unsigned int shift = huge_page_shift(hstate_vma(vma));
+
+ old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
+ pte = huge_pte_modify(old_pte, newprot);
+ pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
+ if (uffd_wp)
+ pte = huge_pte_mkuffd_wp(huge_pte_wrprotect(pte));
+ else if (uffd_wp_resolve)
+ pte = huge_pte_clear_uffd_wp(pte);
+ huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
+ pages++;
+ } else {
+ /* None pte */
+ if (unlikely(uffd_wp))
+ /* Safe to modify directly (none->non-present). */
+ set_huge_pte_at(mm, address, ptep,
+ make_pte_marker(PTE_MARKER_UFFD_WP));
+ }
+ spin_unlock(ptl);
+ }
+ /*
+ * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
+ * may have cleared our pud entry and done put_page on the page table:
+ * once we release i_mmap_rwsem, another task can do the final put_page
+ * and that page table be reused and filled with junk. If we actually
+ * did unshare a page of pmds, flush the range corresponding to the pud.
+ */
+ if (shared_pmd)
+ flush_hugetlb_tlb_range(vma, range.start, range.end);
+ else
+ flush_hugetlb_tlb_range(vma, start, end);
+ /*
+ * No need to call mmu_notifier_invalidate_range() we are downgrading
+ * page table protection not changing it to point to a new page.
+ *
+ * See Documentation/mm/mmu_notifier.rst
+ */
+ i_mmap_unlock_write(vma->vm_file->f_mapping);
+ hugetlb_vma_unlock_write(vma);
+ mmu_notifier_invalidate_range_end(&range);
+
+ return pages << h->order;
+}
+
+/* Return true if reservation was successful, false otherwise. */
+bool hugetlb_reserve_pages(struct inode *inode,
+ long from, long to,
+ struct vm_area_struct *vma,
+ vm_flags_t vm_flags)
+{
+ long chg, add = -1;
+ struct hstate *h = hstate_inode(inode);
+ struct hugepage_subpool *spool = subpool_inode(inode);
+ struct resv_map *resv_map;
+ struct hugetlb_cgroup *h_cg = NULL;
+ long gbl_reserve, regions_needed = 0;
+
+ /* This should never happen */
+ if (from > to) {
+ VM_WARN(1, "%s called with a negative range\n", __func__);
+ return false;
+ }
+
+ /*
+ * vma specific semaphore used for pmd sharing and fault/truncation
+ * synchronization
+ */
+ hugetlb_vma_lock_alloc(vma);
+
+ /*
+ * Only apply hugepage reservation if asked. At fault time, an
+ * attempt will be made for VM_NORESERVE to allocate a page
+ * without using reserves
+ */
+ if (vm_flags & VM_NORESERVE)
+ return true;
+
+ /*
+ * Shared mappings base their reservation on the number of pages that
+ * are already allocated on behalf of the file. Private mappings need
+ * to reserve the full area even if read-only as mprotect() may be
+ * called to make the mapping read-write. Assume !vma is a shm mapping
+ */
+ if (!vma || vma->vm_flags & VM_MAYSHARE) {
+ /*
+ * resv_map can not be NULL as hugetlb_reserve_pages is only
+ * called for inodes for which resv_maps were created (see
+ * hugetlbfs_get_inode).
+ */
+ resv_map = inode_resv_map(inode);
+
+ chg = region_chg(resv_map, from, to, &regions_needed);
+ } else {
+ /* Private mapping. */
+ resv_map = resv_map_alloc();
+ if (!resv_map)
+ goto out_err;
+
+ chg = to - from;
+
+ set_vma_resv_map(vma, resv_map);
+ set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
+ }
+
+ if (chg < 0)
+ goto out_err;
+
+ if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
+ chg * pages_per_huge_page(h), &h_cg) < 0)
+ goto out_err;
+
+ if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
+ /* For private mappings, the hugetlb_cgroup uncharge info hangs
+ * of the resv_map.
+ */
+ resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
+ }
+
+ /*
+ * There must be enough pages in the subpool for the mapping. If
+ * the subpool has a minimum size, there may be some global
+ * reservations already in place (gbl_reserve).
+ */
+ gbl_reserve = hugepage_subpool_get_pages(spool, chg);
+ if (gbl_reserve < 0)
+ goto out_uncharge_cgroup;
+
+ /*
+ * Check enough hugepages are available for the reservation.
+ * Hand the pages back to the subpool if there are not
+ */
+ if (hugetlb_acct_memory(h, gbl_reserve) < 0)
+ goto out_put_pages;
+
+ /*
+ * Account for the reservations made. Shared mappings record regions
+ * that have reservations as they are shared by multiple VMAs.
+ * When the last VMA disappears, the region map says how much
+ * the reservation was and the page cache tells how much of
+ * the reservation was consumed. Private mappings are per-VMA and
+ * only the consumed reservations are tracked. When the VMA
+ * disappears, the original reservation is the VMA size and the
+ * consumed reservations are stored in the map. Hence, nothing
+ * else has to be done for private mappings here
+ */
+ if (!vma || vma->vm_flags & VM_MAYSHARE) {
+ add = region_add(resv_map, from, to, regions_needed, h, h_cg);
+
+ if (unlikely(add < 0)) {
+ hugetlb_acct_memory(h, -gbl_reserve);
+ goto out_put_pages;
+ } else if (unlikely(chg > add)) {
+ /*
+ * pages in this range were added to the reserve
+ * map between region_chg and region_add. This
+ * indicates a race with alloc_huge_page. Adjust
+ * the subpool and reserve counts modified above
+ * based on the difference.
+ */
+ long rsv_adjust;
+
+ /*
+ * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
+ * reference to h_cg->css. See comment below for detail.
+ */
+ hugetlb_cgroup_uncharge_cgroup_rsvd(
+ hstate_index(h),
+ (chg - add) * pages_per_huge_page(h), h_cg);
+
+ rsv_adjust = hugepage_subpool_put_pages(spool,
+ chg - add);
+ hugetlb_acct_memory(h, -rsv_adjust);
+ } else if (h_cg) {
+ /*
+ * The file_regions will hold their own reference to
+ * h_cg->css. So we should release the reference held
+ * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
+ * done.
+ */
+ hugetlb_cgroup_put_rsvd_cgroup(h_cg);
+ }
+ }
+ return true;
+
+out_put_pages:
+ /* put back original number of pages, chg */
+ (void)hugepage_subpool_put_pages(spool, chg);
+out_uncharge_cgroup:
+ hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
+ chg * pages_per_huge_page(h), h_cg);
+out_err:
+ hugetlb_vma_lock_free(vma);
+ if (!vma || vma->vm_flags & VM_MAYSHARE)
+ /* Only call region_abort if the region_chg succeeded but the
+ * region_add failed or didn't run.
+ */
+ if (chg >= 0 && add < 0)
+ region_abort(resv_map, from, to, regions_needed);
+ if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
+ kref_put(&resv_map->refs, resv_map_release);
+ set_vma_resv_map(vma, NULL);
+ }
+ return false;
+}
+
+long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
+ long freed)
+{
+ struct hstate *h = hstate_inode(inode);
+ struct resv_map *resv_map = inode_resv_map(inode);
+ long chg = 0;
+ struct hugepage_subpool *spool = subpool_inode(inode);
+ long gbl_reserve;
+
+ /*
+ * Since this routine can be called in the evict inode path for all
+ * hugetlbfs inodes, resv_map could be NULL.
+ */
+ if (resv_map) {
+ chg = region_del(resv_map, start, end);
+ /*
+ * region_del() can fail in the rare case where a region
+ * must be split and another region descriptor can not be
+ * allocated. If end == LONG_MAX, it will not fail.
+ */
+ if (chg < 0)
+ return chg;
+ }
+
+ spin_lock(&inode->i_lock);
+ inode->i_blocks -= (blocks_per_huge_page(h) * freed);
+ spin_unlock(&inode->i_lock);
+
+ /*
+ * If the subpool has a minimum size, the number of global
+ * reservations to be released may be adjusted.
+ *
+ * Note that !resv_map implies freed == 0. So (chg - freed)
+ * won't go negative.
+ */
+ gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
+ hugetlb_acct_memory(h, -gbl_reserve);
+
+ return 0;
+}
+
+#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
+static unsigned long page_table_shareable(struct vm_area_struct *svma,
+ struct vm_area_struct *vma,
+ unsigned long addr, pgoff_t idx)
+{
+ unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
+ svma->vm_start;
+ unsigned long sbase = saddr & PUD_MASK;
+ unsigned long s_end = sbase + PUD_SIZE;
+
+ /* Allow segments to share if only one is marked locked */
+ unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
+ unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
+
+ /*
+ * match the virtual addresses, permission and the alignment of the
+ * page table page.
+ *
+ * Also, vma_lock (vm_private_data) is required for sharing.
+ */
+ if (pmd_index(addr) != pmd_index(saddr) ||
+ vm_flags != svm_flags ||
+ !range_in_vma(svma, sbase, s_end) ||
+ !svma->vm_private_data)
+ return 0;
+
+ return saddr;
+}
+
+bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
+{
+ unsigned long start = addr & PUD_MASK;
+ unsigned long end = start + PUD_SIZE;
+
+#ifdef CONFIG_USERFAULTFD
+ if (uffd_disable_huge_pmd_share(vma))
+ return false;
+#endif
+ /*
+ * check on proper vm_flags and page table alignment
+ */
+ if (!(vma->vm_flags & VM_MAYSHARE))
+ return false;
+ if (!vma->vm_private_data) /* vma lock required for sharing */
+ return false;
+ if (!range_in_vma(vma, start, end))
+ return false;
+ return true;
+}
+
+/*
+ * Determine if start,end range within vma could be mapped by shared pmd.
+ * If yes, adjust start and end to cover range associated with possible
+ * shared pmd mappings.
+ */
+void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
+ unsigned long *start, unsigned long *end)
+{
+ unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
+ v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
+
+ /*
+ * vma needs to span at least one aligned PUD size, and the range
+ * must be at least partially within in.
+ */
+ if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
+ (*end <= v_start) || (*start >= v_end))
+ return;
+
+ /* Extend the range to be PUD aligned for a worst case scenario */
+ if (*start > v_start)
+ *start = ALIGN_DOWN(*start, PUD_SIZE);
+
+ if (*end < v_end)
+ *end = ALIGN(*end, PUD_SIZE);
+}
+
+/*
+ * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
+ * and returns the corresponding pte. While this is not necessary for the
+ * !shared pmd case because we can allocate the pmd later as well, it makes the
+ * code much cleaner. pmd allocation is essential for the shared case because
+ * pud has to be populated inside the same i_mmap_rwsem section - otherwise
+ * racing tasks could either miss the sharing (see huge_pte_offset) or select a
+ * bad pmd for sharing.
+ */
+pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
+ unsigned long addr, pud_t *pud)
+{
+ struct address_space *mapping = vma->vm_file->f_mapping;
+ pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
+ vma->vm_pgoff;
+ struct vm_area_struct *svma;
+ unsigned long saddr;
+ pte_t *spte = NULL;
+ pte_t *pte;
+ spinlock_t *ptl;
+
+ i_mmap_lock_read(mapping);
+ vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
+ if (svma == vma)
+ continue;
+
+ saddr = page_table_shareable(svma, vma, addr, idx);
+ if (saddr) {
+ spte = huge_pte_offset(svma->vm_mm, saddr,
+ vma_mmu_pagesize(svma));
+ if (spte) {
+ get_page(virt_to_page(spte));
+ break;
+ }
+ }
+ }
+
+ if (!spte)
+ goto out;
+
+ ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
+ if (pud_none(*pud)) {
+ pud_populate(mm, pud,
+ (pmd_t *)((unsigned long)spte & PAGE_MASK));
+ mm_inc_nr_pmds(mm);
+ } else {
+ put_page(virt_to_page(spte));
+ }
+ spin_unlock(ptl);
+out:
+ pte = (pte_t *)pmd_alloc(mm, pud, addr);
+ i_mmap_unlock_read(mapping);
+ return pte;
+}
+
+/*
+ * unmap huge page backed by shared pte.
+ *
+ * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
+ * indicated by page_count > 1, unmap is achieved by clearing pud and
+ * decrementing the ref count. If count == 1, the pte page is not shared.
+ *
+ * Called with page table lock held.
+ *
+ * returns: 1 successfully unmapped a shared pte page
+ * 0 the underlying pte page is not shared, or it is the last user
+ */
+int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
+ unsigned long addr, pte_t *ptep)
+{
+ pgd_t *pgd = pgd_offset(mm, addr);
+ p4d_t *p4d = p4d_offset(pgd, addr);
+ pud_t *pud = pud_offset(p4d, addr);
+
+ i_mmap_assert_write_locked(vma->vm_file->f_mapping);
+ hugetlb_vma_assert_locked(vma);
+ BUG_ON(page_count(virt_to_page(ptep)) == 0);
+ if (page_count(virt_to_page(ptep)) == 1)
+ return 0;
+
+ pud_clear(pud);
+ put_page(virt_to_page(ptep));
+ mm_dec_nr_pmds(mm);
+ return 1;
+}
+
+#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
+
+pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
+ unsigned long addr, pud_t *pud)
+{
+ return NULL;
+}
+
+int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
+ unsigned long addr, pte_t *ptep)
+{
+ return 0;
+}
+
+void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
+ unsigned long *start, unsigned long *end)
+{
+}
+
+bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
+{
+ return false;
+}
+#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
+
+#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
+pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
+ unsigned long addr, unsigned long sz)
+{
+ pgd_t *pgd;
+ p4d_t *p4d;
+ pud_t *pud;
+ pte_t *pte = NULL;
+
+ pgd = pgd_offset(mm, addr);
+ p4d = p4d_alloc(mm, pgd, addr);
+ if (!p4d)
+ return NULL;
+ pud = pud_alloc(mm, p4d, addr);
+ if (pud) {
+ if (sz == PUD_SIZE) {
+ pte = (pte_t *)pud;
+ } else {
+ BUG_ON(sz != PMD_SIZE);
+ if (want_pmd_share(vma, addr) && pud_none(*pud))
+ pte = huge_pmd_share(mm, vma, addr, pud);
+ else
+ pte = (pte_t *)pmd_alloc(mm, pud, addr);
+ }
+ }
+ BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
+
+ return pte;
+}
+
+/*
+ * huge_pte_offset() - Walk the page table to resolve the hugepage
+ * entry at address @addr
+ *
+ * Return: Pointer to page table entry (PUD or PMD) for
+ * address @addr, or NULL if a !p*d_present() entry is encountered and the
+ * size @sz doesn't match the hugepage size at this level of the page
+ * table.
+ */
+pte_t *huge_pte_offset(struct mm_struct *mm,
+ unsigned long addr, unsigned long sz)
+{
+ pgd_t *pgd;
+ p4d_t *p4d;
+ pud_t *pud;
+ pmd_t *pmd;
+
+ pgd = pgd_offset(mm, addr);
+ if (!pgd_present(*pgd))
+ return NULL;
+ p4d = p4d_offset(pgd, addr);
+ if (!p4d_present(*p4d))
+ return NULL;
+
+ pud = pud_offset(p4d, addr);
+ if (sz == PUD_SIZE)
+ /* must be pud huge, non-present or none */
+ return (pte_t *)pud;
+ if (!pud_present(*pud))
+ return NULL;
+ /* must have a valid entry and size to go further */
+
+ pmd = pmd_offset(pud, addr);
+ /* must be pmd huge, non-present or none */
+ return (pte_t *)pmd;
+}
+
+/*
+ * Return a mask that can be used to update an address to the last huge
+ * page in a page table page mapping size. Used to skip non-present
+ * page table entries when linearly scanning address ranges. Architectures
+ * with unique huge page to page table relationships can define their own
+ * version of this routine.
+ */
+unsigned long hugetlb_mask_last_page(struct hstate *h)
+{
+ unsigned long hp_size = huge_page_size(h);
+
+ if (hp_size == PUD_SIZE)
+ return P4D_SIZE - PUD_SIZE;
+ else if (hp_size == PMD_SIZE)
+ return PUD_SIZE - PMD_SIZE;
+ else
+ return 0UL;
+}
+
+#else
+
+/* See description above. Architectures can provide their own version. */
+__weak unsigned long hugetlb_mask_last_page(struct hstate *h)
+{
+#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
+ if (huge_page_size(h) == PMD_SIZE)
+ return PUD_SIZE - PMD_SIZE;
+#endif
+ return 0UL;
+}
+
+#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
+
+/*
+ * These functions are overwritable if your architecture needs its own
+ * behavior.
+ */
+struct page * __weak
+follow_huge_addr(struct mm_struct *mm, unsigned long address,
+ int write)
+{
+ return ERR_PTR(-EINVAL);
+}
+
+struct page * __weak
+follow_huge_pd(struct vm_area_struct *vma,
+ unsigned long address, hugepd_t hpd, int flags, int pdshift)
+{
+ WARN(1, "hugepd follow called with no support for hugepage directory format\n");
+ return NULL;
+}
+
+struct page * __weak
+follow_huge_pmd_pte(struct vm_area_struct *vma, unsigned long address, int flags)
+{
+ struct hstate *h = hstate_vma(vma);
+ struct mm_struct *mm = vma->vm_mm;
+ struct page *page = NULL;
+ spinlock_t *ptl;
+ pte_t *ptep, pte;
+
+ /*
+ * FOLL_PIN is not supported for follow_page(). Ordinary GUP goes via
+ * follow_hugetlb_page().
+ */
+ if (WARN_ON_ONCE(flags & FOLL_PIN))
+ return NULL;
+
+retry:
+ ptep = huge_pte_offset(mm, address, huge_page_size(h));
+ if (!ptep)
+ return NULL;
+
+ ptl = huge_pte_lock(h, mm, ptep);
+ pte = huge_ptep_get(ptep);
+ if (pte_present(pte)) {
+ page = pte_page(pte) +
+ ((address & ~huge_page_mask(h)) >> PAGE_SHIFT);
+ /*
+ * try_grab_page() should always succeed here, because: a) we
+ * hold the pmd (ptl) lock, and b) we've just checked that the
+ * huge pmd (head) page is present in the page tables. The ptl
+ * prevents the head page and tail pages from being rearranged
+ * in any way. So this page must be available at this point,
+ * unless the page refcount overflowed:
+ */
+ if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
+ page = NULL;
+ goto out;
+ }
+ } else {
+ if (is_hugetlb_entry_migration(pte)) {
+ spin_unlock(ptl);
+ __migration_entry_wait_huge(ptep, ptl);
+ goto retry;
+ }
+ /*
+ * hwpoisoned entry is treated as no_page_table in
+ * follow_page_mask().
+ */
+ }
+out:
+ spin_unlock(ptl);
+ return page;
+}
+
+struct page * __weak
+follow_huge_pud(struct mm_struct *mm, unsigned long address,
+ pud_t *pud, int flags)
+{
+ struct page *page = NULL;
+ spinlock_t *ptl;
+ pte_t pte;
+
+ if (WARN_ON_ONCE(flags & FOLL_PIN))
+ return NULL;
+
+retry:
+ ptl = huge_pte_lock(hstate_sizelog(PUD_SHIFT), mm, (pte_t *)pud);
+ if (!pud_huge(*pud))
+ goto out;
+ pte = huge_ptep_get((pte_t *)pud);
+ if (pte_present(pte)) {
+ page = pud_page(*pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
+ if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
+ page = NULL;
+ goto out;
+ }
+ } else {
+ if (is_hugetlb_entry_migration(pte)) {
+ spin_unlock(ptl);
+ __migration_entry_wait(mm, (pte_t *)pud, ptl);
+ goto retry;
+ }
+ /*
+ * hwpoisoned entry is treated as no_page_table in
+ * follow_page_mask().
+ */
+ }
+out:
+ spin_unlock(ptl);
+ return page;
+}
+
+struct page * __weak
+follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
+{
+ if (flags & (FOLL_GET | FOLL_PIN))
+ return NULL;
+
+ return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
+}
+
+int isolate_hugetlb(struct page *page, struct list_head *list)
+{
+ int ret = 0;
+
+ spin_lock_irq(&hugetlb_lock);
+ if (!PageHeadHuge(page) ||
+ !HPageMigratable(page) ||
+ !get_page_unless_zero(page)) {
+ ret = -EBUSY;
+ goto unlock;
+ }
+ ClearHPageMigratable(page);
+ list_move_tail(&page->lru, list);
+unlock:
+ spin_unlock_irq(&hugetlb_lock);
+ return ret;
+}
+
+int get_hwpoison_huge_page(struct page *page, bool *hugetlb)
+{
+ int ret = 0;
+
+ *hugetlb = false;
+ spin_lock_irq(&hugetlb_lock);
+ if (PageHeadHuge(page)) {
+ *hugetlb = true;
+ if (HPageFreed(page))
+ ret = 0;
+ else if (HPageMigratable(page))
+ ret = get_page_unless_zero(page);
+ else
+ ret = -EBUSY;
+ }
+ spin_unlock_irq(&hugetlb_lock);
+ return ret;
+}
+
+int get_huge_page_for_hwpoison(unsigned long pfn, int flags)
+{
+ int ret;
+
+ spin_lock_irq(&hugetlb_lock);
+ ret = __get_huge_page_for_hwpoison(pfn, flags);
+ spin_unlock_irq(&hugetlb_lock);
+ return ret;
+}
+
+void putback_active_hugepage(struct page *page)
+{
+ spin_lock_irq(&hugetlb_lock);
+ SetHPageMigratable(page);
+ list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
+ spin_unlock_irq(&hugetlb_lock);
+ put_page(page);
+}
+
+void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
+{
+ struct hstate *h = page_hstate(oldpage);
+
+ hugetlb_cgroup_migrate(oldpage, newpage);
+ set_page_owner_migrate_reason(newpage, reason);
+
+ /*
+ * transfer temporary state of the new huge page. This is
+ * reverse to other transitions because the newpage is going to
+ * be final while the old one will be freed so it takes over
+ * the temporary status.
+ *
+ * Also note that we have to transfer the per-node surplus state
+ * here as well otherwise the global surplus count will not match
+ * the per-node's.
+ */
+ if (HPageTemporary(newpage)) {
+ int old_nid = page_to_nid(oldpage);
+ int new_nid = page_to_nid(newpage);
+
+ SetHPageTemporary(oldpage);
+ ClearHPageTemporary(newpage);
+
+ /*
+ * There is no need to transfer the per-node surplus state
+ * when we do not cross the node.
+ */
+ if (new_nid == old_nid)
+ return;
+ spin_lock_irq(&hugetlb_lock);
+ if (h->surplus_huge_pages_node[old_nid]) {
+ h->surplus_huge_pages_node[old_nid]--;
+ h->surplus_huge_pages_node[new_nid]++;
+ }
+ spin_unlock_irq(&hugetlb_lock);
+ }
+}
+
+static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
+ unsigned long start,
+ unsigned long end)
+{
+ struct hstate *h = hstate_vma(vma);
+ unsigned long sz = huge_page_size(h);
+ struct mm_struct *mm = vma->vm_mm;
+ struct mmu_notifier_range range;
+ unsigned long address;
+ spinlock_t *ptl;
+ pte_t *ptep;
+
+ if (!(vma->vm_flags & VM_MAYSHARE))
+ return;
+
+ if (start >= end)
+ return;
+
+ flush_cache_range(vma, start, end);
+ /*
+ * No need to call adjust_range_if_pmd_sharing_possible(), because
+ * we have already done the PUD_SIZE alignment.
+ */
+ mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
+ start, end);
+ mmu_notifier_invalidate_range_start(&range);
+ hugetlb_vma_lock_write(vma);
+ i_mmap_lock_write(vma->vm_file->f_mapping);
+ for (address = start; address < end; address += PUD_SIZE) {
+ ptep = huge_pte_offset(mm, address, sz);
+ if (!ptep)
+ continue;
+ ptl = huge_pte_lock(h, mm, ptep);
+ huge_pmd_unshare(mm, vma, address, ptep);
+ spin_unlock(ptl);
+ }
+ flush_hugetlb_tlb_range(vma, start, end);
+ i_mmap_unlock_write(vma->vm_file->f_mapping);
+ hugetlb_vma_unlock_write(vma);
+ /*
+ * No need to call mmu_notifier_invalidate_range(), see
+ * Documentation/mm/mmu_notifier.rst.
+ */
+ mmu_notifier_invalidate_range_end(&range);
+}
+
+/*
+ * This function will unconditionally remove all the shared pmd pgtable entries
+ * within the specific vma for a hugetlbfs memory range.
+ */
+void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
+{
+ hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
+ ALIGN_DOWN(vma->vm_end, PUD_SIZE));
+}
+
+#ifdef CONFIG_CMA
+static bool cma_reserve_called __initdata;
+
+static int __init cmdline_parse_hugetlb_cma(char *p)
+{
+ int nid, count = 0;
+ unsigned long tmp;
+ char *s = p;
+
+ while (*s) {
+ if (sscanf(s, "%lu%n", &tmp, &count) != 1)
+ break;
+
+ if (s[count] == ':') {
+ if (tmp >= MAX_NUMNODES)
+ break;
+ nid = array_index_nospec(tmp, MAX_NUMNODES);
+
+ s += count + 1;
+ tmp = memparse(s, &s);
+ hugetlb_cma_size_in_node[nid] = tmp;
+ hugetlb_cma_size += tmp;
+
+ /*
+ * Skip the separator if have one, otherwise
+ * break the parsing.
+ */
+ if (*s == ',')
+ s++;
+ else
+ break;
+ } else {
+ hugetlb_cma_size = memparse(p, &p);
+ break;
+ }
+ }
+
+ return 0;
+}
+
+early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
+
+void __init hugetlb_cma_reserve(int order)
+{
+ unsigned long size, reserved, per_node;
+ bool node_specific_cma_alloc = false;
+ int nid;
+
+ cma_reserve_called = true;
+
+ if (!hugetlb_cma_size)
+ return;
+
+ for (nid = 0; nid < MAX_NUMNODES; nid++) {
+ if (hugetlb_cma_size_in_node[nid] == 0)
+ continue;
+
+ if (!node_online(nid)) {
+ pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
+ hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
+ hugetlb_cma_size_in_node[nid] = 0;
+ continue;
+ }
+
+ if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
+ pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
+ nid, (PAGE_SIZE << order) / SZ_1M);
+ hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
+ hugetlb_cma_size_in_node[nid] = 0;
+ } else {
+ node_specific_cma_alloc = true;
+ }
+ }
+
+ /* Validate the CMA size again in case some invalid nodes specified. */
+ if (!hugetlb_cma_size)
+ return;
+
+ if (hugetlb_cma_size < (PAGE_SIZE << order)) {
+ pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
+ (PAGE_SIZE << order) / SZ_1M);
+ hugetlb_cma_size = 0;
+ return;
+ }
+
+ if (!node_specific_cma_alloc) {
+ /*
+ * If 3 GB area is requested on a machine with 4 numa nodes,
+ * let's allocate 1 GB on first three nodes and ignore the last one.
+ */
+ per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
+ pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
+ hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
+ }
+
+ reserved = 0;
+ for_each_online_node(nid) {
+ int res;
+ char name[CMA_MAX_NAME];
+
+ if (node_specific_cma_alloc) {
+ if (hugetlb_cma_size_in_node[nid] == 0)
+ continue;
+
+ size = hugetlb_cma_size_in_node[nid];
+ } else {
+ size = min(per_node, hugetlb_cma_size - reserved);
+ }
+
+ size = round_up(size, PAGE_SIZE << order);
+
+ snprintf(name, sizeof(name), "hugetlb%d", nid);
+ /*
+ * Note that 'order per bit' is based on smallest size that
+ * may be returned to CMA allocator in the case of
+ * huge page demotion.
+ */
+ res = cma_declare_contiguous_nid(0, size, 0,
+ PAGE_SIZE << HUGETLB_PAGE_ORDER,
+ 0, false, name,
+ &hugetlb_cma[nid], nid);
+ if (res) {
+ pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
+ res, nid);
+ continue;
+ }
+
+ reserved += size;
+ pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
+ size / SZ_1M, nid);
+
+ if (reserved >= hugetlb_cma_size)
+ break;
+ }
+
+ if (!reserved)
+ /*
+ * hugetlb_cma_size is used to determine if allocations from
+ * cma are possible. Set to zero if no cma regions are set up.
+ */
+ hugetlb_cma_size = 0;
+}
+
+static void __init hugetlb_cma_check(void)
+{
+ if (!hugetlb_cma_size || cma_reserve_called)
+ return;
+
+ pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
+}
+
+#endif /* CONFIG_CMA */