summaryrefslogtreecommitdiffstats
path: root/mm/slab.h
diff options
context:
space:
mode:
Diffstat (limited to 'mm/slab.h')
-rw-r--r--mm/slab.h874
1 files changed, 874 insertions, 0 deletions
diff --git a/mm/slab.h b/mm/slab.h
new file mode 100644
index 000000000..0202a8c2f
--- /dev/null
+++ b/mm/slab.h
@@ -0,0 +1,874 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+#ifndef MM_SLAB_H
+#define MM_SLAB_H
+/*
+ * Internal slab definitions
+ */
+
+/* Reuses the bits in struct page */
+struct slab {
+ unsigned long __page_flags;
+
+#if defined(CONFIG_SLAB)
+
+ union {
+ struct list_head slab_list;
+ struct rcu_head rcu_head;
+ };
+ struct kmem_cache *slab_cache;
+ void *freelist; /* array of free object indexes */
+ void *s_mem; /* first object */
+ unsigned int active;
+
+#elif defined(CONFIG_SLUB)
+
+ union {
+ struct list_head slab_list;
+ struct rcu_head rcu_head;
+#ifdef CONFIG_SLUB_CPU_PARTIAL
+ struct {
+ struct slab *next;
+ int slabs; /* Nr of slabs left */
+ };
+#endif
+ };
+ struct kmem_cache *slab_cache;
+ /* Double-word boundary */
+ void *freelist; /* first free object */
+ union {
+ unsigned long counters;
+ struct {
+ unsigned inuse:16;
+ unsigned objects:15;
+ unsigned frozen:1;
+ };
+ };
+ unsigned int __unused;
+
+#elif defined(CONFIG_SLOB)
+
+ struct list_head slab_list;
+ void *__unused_1;
+ void *freelist; /* first free block */
+ long units;
+ unsigned int __unused_2;
+
+#else
+#error "Unexpected slab allocator configured"
+#endif
+
+ atomic_t __page_refcount;
+#ifdef CONFIG_MEMCG
+ unsigned long memcg_data;
+#endif
+};
+
+#define SLAB_MATCH(pg, sl) \
+ static_assert(offsetof(struct page, pg) == offsetof(struct slab, sl))
+SLAB_MATCH(flags, __page_flags);
+SLAB_MATCH(compound_head, slab_list); /* Ensure bit 0 is clear */
+#ifndef CONFIG_SLOB
+SLAB_MATCH(rcu_head, rcu_head);
+#endif
+SLAB_MATCH(_refcount, __page_refcount);
+#ifdef CONFIG_MEMCG
+SLAB_MATCH(memcg_data, memcg_data);
+#endif
+#undef SLAB_MATCH
+static_assert(sizeof(struct slab) <= sizeof(struct page));
+
+/**
+ * folio_slab - Converts from folio to slab.
+ * @folio: The folio.
+ *
+ * Currently struct slab is a different representation of a folio where
+ * folio_test_slab() is true.
+ *
+ * Return: The slab which contains this folio.
+ */
+#define folio_slab(folio) (_Generic((folio), \
+ const struct folio *: (const struct slab *)(folio), \
+ struct folio *: (struct slab *)(folio)))
+
+/**
+ * slab_folio - The folio allocated for a slab
+ * @slab: The slab.
+ *
+ * Slabs are allocated as folios that contain the individual objects and are
+ * using some fields in the first struct page of the folio - those fields are
+ * now accessed by struct slab. It is occasionally necessary to convert back to
+ * a folio in order to communicate with the rest of the mm. Please use this
+ * helper function instead of casting yourself, as the implementation may change
+ * in the future.
+ */
+#define slab_folio(s) (_Generic((s), \
+ const struct slab *: (const struct folio *)s, \
+ struct slab *: (struct folio *)s))
+
+/**
+ * page_slab - Converts from first struct page to slab.
+ * @p: The first (either head of compound or single) page of slab.
+ *
+ * A temporary wrapper to convert struct page to struct slab in situations where
+ * we know the page is the compound head, or single order-0 page.
+ *
+ * Long-term ideally everything would work with struct slab directly or go
+ * through folio to struct slab.
+ *
+ * Return: The slab which contains this page
+ */
+#define page_slab(p) (_Generic((p), \
+ const struct page *: (const struct slab *)(p), \
+ struct page *: (struct slab *)(p)))
+
+/**
+ * slab_page - The first struct page allocated for a slab
+ * @slab: The slab.
+ *
+ * A convenience wrapper for converting slab to the first struct page of the
+ * underlying folio, to communicate with code not yet converted to folio or
+ * struct slab.
+ */
+#define slab_page(s) folio_page(slab_folio(s), 0)
+
+/*
+ * If network-based swap is enabled, sl*b must keep track of whether pages
+ * were allocated from pfmemalloc reserves.
+ */
+static inline bool slab_test_pfmemalloc(const struct slab *slab)
+{
+ return folio_test_active((struct folio *)slab_folio(slab));
+}
+
+static inline void slab_set_pfmemalloc(struct slab *slab)
+{
+ folio_set_active(slab_folio(slab));
+}
+
+static inline void slab_clear_pfmemalloc(struct slab *slab)
+{
+ folio_clear_active(slab_folio(slab));
+}
+
+static inline void __slab_clear_pfmemalloc(struct slab *slab)
+{
+ __folio_clear_active(slab_folio(slab));
+}
+
+static inline void *slab_address(const struct slab *slab)
+{
+ return folio_address(slab_folio(slab));
+}
+
+static inline int slab_nid(const struct slab *slab)
+{
+ return folio_nid(slab_folio(slab));
+}
+
+static inline pg_data_t *slab_pgdat(const struct slab *slab)
+{
+ return folio_pgdat(slab_folio(slab));
+}
+
+static inline struct slab *virt_to_slab(const void *addr)
+{
+ struct folio *folio = virt_to_folio(addr);
+
+ if (!folio_test_slab(folio))
+ return NULL;
+
+ return folio_slab(folio);
+}
+
+static inline int slab_order(const struct slab *slab)
+{
+ return folio_order((struct folio *)slab_folio(slab));
+}
+
+static inline size_t slab_size(const struct slab *slab)
+{
+ return PAGE_SIZE << slab_order(slab);
+}
+
+#ifdef CONFIG_SLOB
+/*
+ * Common fields provided in kmem_cache by all slab allocators
+ * This struct is either used directly by the allocator (SLOB)
+ * or the allocator must include definitions for all fields
+ * provided in kmem_cache_common in their definition of kmem_cache.
+ *
+ * Once we can do anonymous structs (C11 standard) we could put a
+ * anonymous struct definition in these allocators so that the
+ * separate allocations in the kmem_cache structure of SLAB and
+ * SLUB is no longer needed.
+ */
+struct kmem_cache {
+ unsigned int object_size;/* The original size of the object */
+ unsigned int size; /* The aligned/padded/added on size */
+ unsigned int align; /* Alignment as calculated */
+ slab_flags_t flags; /* Active flags on the slab */
+ unsigned int useroffset;/* Usercopy region offset */
+ unsigned int usersize; /* Usercopy region size */
+ const char *name; /* Slab name for sysfs */
+ int refcount; /* Use counter */
+ void (*ctor)(void *); /* Called on object slot creation */
+ struct list_head list; /* List of all slab caches on the system */
+};
+
+#endif /* CONFIG_SLOB */
+
+#ifdef CONFIG_SLAB
+#include <linux/slab_def.h>
+#endif
+
+#ifdef CONFIG_SLUB
+#include <linux/slub_def.h>
+#endif
+
+#include <linux/memcontrol.h>
+#include <linux/fault-inject.h>
+#include <linux/kasan.h>
+#include <linux/kmemleak.h>
+#include <linux/random.h>
+#include <linux/sched/mm.h>
+#include <linux/list_lru.h>
+
+/*
+ * State of the slab allocator.
+ *
+ * This is used to describe the states of the allocator during bootup.
+ * Allocators use this to gradually bootstrap themselves. Most allocators
+ * have the problem that the structures used for managing slab caches are
+ * allocated from slab caches themselves.
+ */
+enum slab_state {
+ DOWN, /* No slab functionality yet */
+ PARTIAL, /* SLUB: kmem_cache_node available */
+ PARTIAL_NODE, /* SLAB: kmalloc size for node struct available */
+ UP, /* Slab caches usable but not all extras yet */
+ FULL /* Everything is working */
+};
+
+extern enum slab_state slab_state;
+
+/* The slab cache mutex protects the management structures during changes */
+extern struct mutex slab_mutex;
+
+/* The list of all slab caches on the system */
+extern struct list_head slab_caches;
+
+/* The slab cache that manages slab cache information */
+extern struct kmem_cache *kmem_cache;
+
+/* A table of kmalloc cache names and sizes */
+extern const struct kmalloc_info_struct {
+ const char *name[NR_KMALLOC_TYPES];
+ unsigned int size;
+} kmalloc_info[];
+
+#ifndef CONFIG_SLOB
+/* Kmalloc array related functions */
+void setup_kmalloc_cache_index_table(void);
+void create_kmalloc_caches(slab_flags_t);
+
+/* Find the kmalloc slab corresponding for a certain size */
+struct kmem_cache *kmalloc_slab(size_t, gfp_t);
+
+void *__kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags,
+ int node, size_t orig_size,
+ unsigned long caller);
+void __kmem_cache_free(struct kmem_cache *s, void *x, unsigned long caller);
+#endif
+
+gfp_t kmalloc_fix_flags(gfp_t flags);
+
+/* Functions provided by the slab allocators */
+int __kmem_cache_create(struct kmem_cache *, slab_flags_t flags);
+
+struct kmem_cache *create_kmalloc_cache(const char *name, unsigned int size,
+ slab_flags_t flags, unsigned int useroffset,
+ unsigned int usersize);
+extern void create_boot_cache(struct kmem_cache *, const char *name,
+ unsigned int size, slab_flags_t flags,
+ unsigned int useroffset, unsigned int usersize);
+
+int slab_unmergeable(struct kmem_cache *s);
+struct kmem_cache *find_mergeable(unsigned size, unsigned align,
+ slab_flags_t flags, const char *name, void (*ctor)(void *));
+#ifndef CONFIG_SLOB
+struct kmem_cache *
+__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
+ slab_flags_t flags, void (*ctor)(void *));
+
+slab_flags_t kmem_cache_flags(unsigned int object_size,
+ slab_flags_t flags, const char *name);
+#else
+static inline struct kmem_cache *
+__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
+ slab_flags_t flags, void (*ctor)(void *))
+{ return NULL; }
+
+static inline slab_flags_t kmem_cache_flags(unsigned int object_size,
+ slab_flags_t flags, const char *name)
+{
+ return flags;
+}
+#endif
+
+
+/* Legal flag mask for kmem_cache_create(), for various configurations */
+#define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | \
+ SLAB_CACHE_DMA32 | SLAB_PANIC | \
+ SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS )
+
+#if defined(CONFIG_DEBUG_SLAB)
+#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
+#elif defined(CONFIG_SLUB_DEBUG)
+#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
+ SLAB_TRACE | SLAB_CONSISTENCY_CHECKS)
+#else
+#define SLAB_DEBUG_FLAGS (0)
+#endif
+
+#if defined(CONFIG_SLAB)
+#define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
+ SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \
+ SLAB_ACCOUNT)
+#elif defined(CONFIG_SLUB)
+#define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
+ SLAB_TEMPORARY | SLAB_ACCOUNT | SLAB_NO_USER_FLAGS)
+#else
+#define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE)
+#endif
+
+/* Common flags available with current configuration */
+#define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
+
+/* Common flags permitted for kmem_cache_create */
+#define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | \
+ SLAB_RED_ZONE | \
+ SLAB_POISON | \
+ SLAB_STORE_USER | \
+ SLAB_TRACE | \
+ SLAB_CONSISTENCY_CHECKS | \
+ SLAB_MEM_SPREAD | \
+ SLAB_NOLEAKTRACE | \
+ SLAB_RECLAIM_ACCOUNT | \
+ SLAB_TEMPORARY | \
+ SLAB_ACCOUNT | \
+ SLAB_NO_USER_FLAGS)
+
+bool __kmem_cache_empty(struct kmem_cache *);
+int __kmem_cache_shutdown(struct kmem_cache *);
+void __kmem_cache_release(struct kmem_cache *);
+int __kmem_cache_shrink(struct kmem_cache *);
+void slab_kmem_cache_release(struct kmem_cache *);
+
+struct seq_file;
+struct file;
+
+struct slabinfo {
+ unsigned long active_objs;
+ unsigned long num_objs;
+ unsigned long active_slabs;
+ unsigned long num_slabs;
+ unsigned long shared_avail;
+ unsigned int limit;
+ unsigned int batchcount;
+ unsigned int shared;
+ unsigned int objects_per_slab;
+ unsigned int cache_order;
+};
+
+void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
+void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
+ssize_t slabinfo_write(struct file *file, const char __user *buffer,
+ size_t count, loff_t *ppos);
+
+static inline enum node_stat_item cache_vmstat_idx(struct kmem_cache *s)
+{
+ return (s->flags & SLAB_RECLAIM_ACCOUNT) ?
+ NR_SLAB_RECLAIMABLE_B : NR_SLAB_UNRECLAIMABLE_B;
+}
+
+#ifdef CONFIG_SLUB_DEBUG
+#ifdef CONFIG_SLUB_DEBUG_ON
+DECLARE_STATIC_KEY_TRUE(slub_debug_enabled);
+#else
+DECLARE_STATIC_KEY_FALSE(slub_debug_enabled);
+#endif
+extern void print_tracking(struct kmem_cache *s, void *object);
+long validate_slab_cache(struct kmem_cache *s);
+static inline bool __slub_debug_enabled(void)
+{
+ return static_branch_unlikely(&slub_debug_enabled);
+}
+#else
+static inline void print_tracking(struct kmem_cache *s, void *object)
+{
+}
+static inline bool __slub_debug_enabled(void)
+{
+ return false;
+}
+#endif
+
+/*
+ * Returns true if any of the specified slub_debug flags is enabled for the
+ * cache. Use only for flags parsed by setup_slub_debug() as it also enables
+ * the static key.
+ */
+static inline bool kmem_cache_debug_flags(struct kmem_cache *s, slab_flags_t flags)
+{
+ if (IS_ENABLED(CONFIG_SLUB_DEBUG))
+ VM_WARN_ON_ONCE(!(flags & SLAB_DEBUG_FLAGS));
+ if (__slub_debug_enabled())
+ return s->flags & flags;
+ return false;
+}
+
+#ifdef CONFIG_MEMCG_KMEM
+/*
+ * slab_objcgs - get the object cgroups vector associated with a slab
+ * @slab: a pointer to the slab struct
+ *
+ * Returns a pointer to the object cgroups vector associated with the slab,
+ * or NULL if no such vector has been associated yet.
+ */
+static inline struct obj_cgroup **slab_objcgs(struct slab *slab)
+{
+ unsigned long memcg_data = READ_ONCE(slab->memcg_data);
+
+ VM_BUG_ON_PAGE(memcg_data && !(memcg_data & MEMCG_DATA_OBJCGS),
+ slab_page(slab));
+ VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, slab_page(slab));
+
+ return (struct obj_cgroup **)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
+}
+
+int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
+ gfp_t gfp, bool new_slab);
+void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
+ enum node_stat_item idx, int nr);
+
+static inline void memcg_free_slab_cgroups(struct slab *slab)
+{
+ kfree(slab_objcgs(slab));
+ slab->memcg_data = 0;
+}
+
+static inline size_t obj_full_size(struct kmem_cache *s)
+{
+ /*
+ * For each accounted object there is an extra space which is used
+ * to store obj_cgroup membership. Charge it too.
+ */
+ return s->size + sizeof(struct obj_cgroup *);
+}
+
+/*
+ * Returns false if the allocation should fail.
+ */
+static inline bool memcg_slab_pre_alloc_hook(struct kmem_cache *s,
+ struct list_lru *lru,
+ struct obj_cgroup **objcgp,
+ size_t objects, gfp_t flags)
+{
+ struct obj_cgroup *objcg;
+
+ if (!memcg_kmem_enabled())
+ return true;
+
+ if (!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT))
+ return true;
+
+ objcg = get_obj_cgroup_from_current();
+ if (!objcg)
+ return true;
+
+ if (lru) {
+ int ret;
+ struct mem_cgroup *memcg;
+
+ memcg = get_mem_cgroup_from_objcg(objcg);
+ ret = memcg_list_lru_alloc(memcg, lru, flags);
+ css_put(&memcg->css);
+
+ if (ret)
+ goto out;
+ }
+
+ if (obj_cgroup_charge(objcg, flags, objects * obj_full_size(s)))
+ goto out;
+
+ *objcgp = objcg;
+ return true;
+out:
+ obj_cgroup_put(objcg);
+ return false;
+}
+
+static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s,
+ struct obj_cgroup *objcg,
+ gfp_t flags, size_t size,
+ void **p)
+{
+ struct slab *slab;
+ unsigned long off;
+ size_t i;
+
+ if (!memcg_kmem_enabled() || !objcg)
+ return;
+
+ for (i = 0; i < size; i++) {
+ if (likely(p[i])) {
+ slab = virt_to_slab(p[i]);
+
+ if (!slab_objcgs(slab) &&
+ memcg_alloc_slab_cgroups(slab, s, flags,
+ false)) {
+ obj_cgroup_uncharge(objcg, obj_full_size(s));
+ continue;
+ }
+
+ off = obj_to_index(s, slab, p[i]);
+ obj_cgroup_get(objcg);
+ slab_objcgs(slab)[off] = objcg;
+ mod_objcg_state(objcg, slab_pgdat(slab),
+ cache_vmstat_idx(s), obj_full_size(s));
+ } else {
+ obj_cgroup_uncharge(objcg, obj_full_size(s));
+ }
+ }
+ obj_cgroup_put(objcg);
+}
+
+static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
+ void **p, int objects)
+{
+ struct obj_cgroup **objcgs;
+ int i;
+
+ if (!memcg_kmem_enabled())
+ return;
+
+ objcgs = slab_objcgs(slab);
+ if (!objcgs)
+ return;
+
+ for (i = 0; i < objects; i++) {
+ struct obj_cgroup *objcg;
+ unsigned int off;
+
+ off = obj_to_index(s, slab, p[i]);
+ objcg = objcgs[off];
+ if (!objcg)
+ continue;
+
+ objcgs[off] = NULL;
+ obj_cgroup_uncharge(objcg, obj_full_size(s));
+ mod_objcg_state(objcg, slab_pgdat(slab), cache_vmstat_idx(s),
+ -obj_full_size(s));
+ obj_cgroup_put(objcg);
+ }
+}
+
+#else /* CONFIG_MEMCG_KMEM */
+static inline struct obj_cgroup **slab_objcgs(struct slab *slab)
+{
+ return NULL;
+}
+
+static inline struct mem_cgroup *memcg_from_slab_obj(void *ptr)
+{
+ return NULL;
+}
+
+static inline int memcg_alloc_slab_cgroups(struct slab *slab,
+ struct kmem_cache *s, gfp_t gfp,
+ bool new_slab)
+{
+ return 0;
+}
+
+static inline void memcg_free_slab_cgroups(struct slab *slab)
+{
+}
+
+static inline bool memcg_slab_pre_alloc_hook(struct kmem_cache *s,
+ struct list_lru *lru,
+ struct obj_cgroup **objcgp,
+ size_t objects, gfp_t flags)
+{
+ return true;
+}
+
+static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s,
+ struct obj_cgroup *objcg,
+ gfp_t flags, size_t size,
+ void **p)
+{
+}
+
+static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
+ void **p, int objects)
+{
+}
+#endif /* CONFIG_MEMCG_KMEM */
+
+#ifndef CONFIG_SLOB
+static inline struct kmem_cache *virt_to_cache(const void *obj)
+{
+ struct slab *slab;
+
+ slab = virt_to_slab(obj);
+ if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n",
+ __func__))
+ return NULL;
+ return slab->slab_cache;
+}
+
+static __always_inline void account_slab(struct slab *slab, int order,
+ struct kmem_cache *s, gfp_t gfp)
+{
+ if (memcg_kmem_enabled() && (s->flags & SLAB_ACCOUNT))
+ memcg_alloc_slab_cgroups(slab, s, gfp, true);
+
+ mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
+ PAGE_SIZE << order);
+}
+
+static __always_inline void unaccount_slab(struct slab *slab, int order,
+ struct kmem_cache *s)
+{
+ if (memcg_kmem_enabled())
+ memcg_free_slab_cgroups(slab);
+
+ mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
+ -(PAGE_SIZE << order));
+}
+
+static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
+{
+ struct kmem_cache *cachep;
+
+ if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
+ !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
+ return s;
+
+ cachep = virt_to_cache(x);
+ if (WARN(cachep && cachep != s,
+ "%s: Wrong slab cache. %s but object is from %s\n",
+ __func__, s->name, cachep->name))
+ print_tracking(cachep, x);
+ return cachep;
+}
+
+void free_large_kmalloc(struct folio *folio, void *object);
+
+#endif /* CONFIG_SLOB */
+
+size_t __ksize(const void *objp);
+
+static inline size_t slab_ksize(const struct kmem_cache *s)
+{
+#ifndef CONFIG_SLUB
+ return s->object_size;
+
+#else /* CONFIG_SLUB */
+# ifdef CONFIG_SLUB_DEBUG
+ /*
+ * Debugging requires use of the padding between object
+ * and whatever may come after it.
+ */
+ if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
+ return s->object_size;
+# endif
+ if (s->flags & SLAB_KASAN)
+ return s->object_size;
+ /*
+ * If we have the need to store the freelist pointer
+ * back there or track user information then we can
+ * only use the space before that information.
+ */
+ if (s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_STORE_USER))
+ return s->inuse;
+ /*
+ * Else we can use all the padding etc for the allocation
+ */
+ return s->size;
+#endif
+}
+
+static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
+ struct list_lru *lru,
+ struct obj_cgroup **objcgp,
+ size_t size, gfp_t flags)
+{
+ flags &= gfp_allowed_mask;
+
+ might_alloc(flags);
+
+ if (should_failslab(s, flags))
+ return NULL;
+
+ if (!memcg_slab_pre_alloc_hook(s, lru, objcgp, size, flags))
+ return NULL;
+
+ return s;
+}
+
+static inline void slab_post_alloc_hook(struct kmem_cache *s,
+ struct obj_cgroup *objcg, gfp_t flags,
+ size_t size, void **p, bool init)
+{
+ size_t i;
+
+ flags &= gfp_allowed_mask;
+
+ /*
+ * As memory initialization might be integrated into KASAN,
+ * kasan_slab_alloc and initialization memset must be
+ * kept together to avoid discrepancies in behavior.
+ *
+ * As p[i] might get tagged, memset and kmemleak hook come after KASAN.
+ */
+ for (i = 0; i < size; i++) {
+ p[i] = kasan_slab_alloc(s, p[i], flags, init);
+ if (p[i] && init && !kasan_has_integrated_init())
+ memset(p[i], 0, s->object_size);
+ kmemleak_alloc_recursive(p[i], s->object_size, 1,
+ s->flags, flags);
+ kmsan_slab_alloc(s, p[i], flags);
+ }
+
+ memcg_slab_post_alloc_hook(s, objcg, flags, size, p);
+}
+
+#ifndef CONFIG_SLOB
+/*
+ * The slab lists for all objects.
+ */
+struct kmem_cache_node {
+ spinlock_t list_lock;
+
+#ifdef CONFIG_SLAB
+ struct list_head slabs_partial; /* partial list first, better asm code */
+ struct list_head slabs_full;
+ struct list_head slabs_free;
+ unsigned long total_slabs; /* length of all slab lists */
+ unsigned long free_slabs; /* length of free slab list only */
+ unsigned long free_objects;
+ unsigned int free_limit;
+ unsigned int colour_next; /* Per-node cache coloring */
+ struct array_cache *shared; /* shared per node */
+ struct alien_cache **alien; /* on other nodes */
+ unsigned long next_reap; /* updated without locking */
+ int free_touched; /* updated without locking */
+#endif
+
+#ifdef CONFIG_SLUB
+ unsigned long nr_partial;
+ struct list_head partial;
+#ifdef CONFIG_SLUB_DEBUG
+ atomic_long_t nr_slabs;
+ atomic_long_t total_objects;
+ struct list_head full;
+#endif
+#endif
+
+};
+
+static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
+{
+ return s->node[node];
+}
+
+/*
+ * Iterator over all nodes. The body will be executed for each node that has
+ * a kmem_cache_node structure allocated (which is true for all online nodes)
+ */
+#define for_each_kmem_cache_node(__s, __node, __n) \
+ for (__node = 0; __node < nr_node_ids; __node++) \
+ if ((__n = get_node(__s, __node)))
+
+#endif
+
+#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
+void dump_unreclaimable_slab(void);
+#else
+static inline void dump_unreclaimable_slab(void)
+{
+}
+#endif
+
+void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr);
+
+#ifdef CONFIG_SLAB_FREELIST_RANDOM
+int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
+ gfp_t gfp);
+void cache_random_seq_destroy(struct kmem_cache *cachep);
+#else
+static inline int cache_random_seq_create(struct kmem_cache *cachep,
+ unsigned int count, gfp_t gfp)
+{
+ return 0;
+}
+static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { }
+#endif /* CONFIG_SLAB_FREELIST_RANDOM */
+
+static inline bool slab_want_init_on_alloc(gfp_t flags, struct kmem_cache *c)
+{
+ if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
+ &init_on_alloc)) {
+ if (c->ctor)
+ return false;
+ if (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON))
+ return flags & __GFP_ZERO;
+ return true;
+ }
+ return flags & __GFP_ZERO;
+}
+
+static inline bool slab_want_init_on_free(struct kmem_cache *c)
+{
+ if (static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
+ &init_on_free))
+ return !(c->ctor ||
+ (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)));
+ return false;
+}
+
+#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
+void debugfs_slab_release(struct kmem_cache *);
+#else
+static inline void debugfs_slab_release(struct kmem_cache *s) { }
+#endif
+
+#ifdef CONFIG_PRINTK
+#define KS_ADDRS_COUNT 16
+struct kmem_obj_info {
+ void *kp_ptr;
+ struct slab *kp_slab;
+ void *kp_objp;
+ unsigned long kp_data_offset;
+ struct kmem_cache *kp_slab_cache;
+ void *kp_ret;
+ void *kp_stack[KS_ADDRS_COUNT];
+ void *kp_free_stack[KS_ADDRS_COUNT];
+};
+void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab);
+#endif
+
+#ifdef CONFIG_HAVE_HARDENED_USERCOPY_ALLOCATOR
+void __check_heap_object(const void *ptr, unsigned long n,
+ const struct slab *slab, bool to_user);
+#else
+static inline
+void __check_heap_object(const void *ptr, unsigned long n,
+ const struct slab *slab, bool to_user)
+{
+}
+#endif
+
+#endif /* MM_SLAB_H */